WO2013051599A1 - Semiconductor device and production method for same - Google Patents

Semiconductor device and production method for same Download PDF

Info

Publication number
WO2013051599A1
WO2013051599A1 PCT/JP2012/075632 JP2012075632W WO2013051599A1 WO 2013051599 A1 WO2013051599 A1 WO 2013051599A1 JP 2012075632 W JP2012075632 W JP 2012075632W WO 2013051599 A1 WO2013051599 A1 WO 2013051599A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
drain
pad
wires
pad electrode
Prior art date
Application number
PCT/JP2012/075632
Other languages
French (fr)
Japanese (ja)
Inventor
智明 下石
亮太 佐藤
靜城 中島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013051599A1 publication Critical patent/WO2013051599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/06154Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry covering only portions of the surface to be connected
    • H01L2224/06155Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device in which a wire is connected to a pad of a semiconductor chip having an amplifying element and a technique effective when applied to the manufacturing thereof.
  • GSM registered trademark
  • PCS PCS method
  • PDC method PDC method
  • CDMA Code Division Multiple Access
  • this type of mobile communication device includes an antenna that emits and receives radio waves, a high-frequency power amplifier (RF power module) that amplifies a power-modulated high-frequency signal and supplies the signal to the antenna, and a high-frequency signal received by the antenna.
  • RF power module high-frequency power amplifier
  • a receiving unit that performs signal processing, a control unit that performs these controls, and a battery (battery) that supplies a power supply voltage thereto are configured.
  • Patent Document 1 describes a technique in which a bond pad has a probe region and a wire bond region that do not substantially overlap each other.
  • Patent Document 2 describes a technique in which a contact pad has a probe inspection region and a bonding region.
  • a semiconductor device such as a power amplification module is manufactured by mounting a semiconductor chip on a wiring board and electrically connecting pad electrodes of the semiconductor chip and terminals of the wiring board with wires.
  • a surface protective film and a pad electrode
  • a probe inspection is performed in the wafer state.
  • a probe probe
  • the semiconductor wafer is cut into individual pieces (chips) by dicing, and the obtained semiconductor chip is mounted on the wiring board, and wire bonding is performed between the pad electrode of the semiconductor chip and the terminal of the wiring board.
  • a probe mark which is a mark pressed by the probe, is formed on the pad electrode to which the probe for inspection is pressed.
  • wire bonding is performed after the semiconductor chip is mounted on the wiring board, if the wire is connected to the probe trace of the pad electrode, the wire is connected to an area where the flatness is lowered. Connection strength may be reduced. The reduction in the connection strength of the wires reduces the reliability of the manufactured semiconductor device.
  • the pad electrode it is also conceivable to divide the wire connection region and the region where the probe is pressed in the probe inspection process (probe mark).
  • the area of the semiconductor chip is increased by increasing the size of the pad electrode simply by separating the wire connection area and the area where the probe is pressed in the probe inspection process (probe marks). There is a risk of inviting.
  • An increase in the area of the semiconductor chip leads to an increase in manufacturing cost and is disadvantageous for downsizing of the semiconductor device.
  • An object of the present invention is to provide a technique capable of improving the reliability of a semiconductor device.
  • an object of the present invention is to provide a technique capable of reducing the size of a semiconductor device.
  • a semiconductor device is a semiconductor device including a semiconductor chip having a plurality of pad electrodes, and a plurality of wires connected to the plurality of pad electrodes.
  • This semiconductor chip has a first pad electrode connected to the output of the semiconductor element constituting the power amplifier circuit, and a plurality of first wires are connected to the first pad electrode.
  • Probe marks are formed between the connection regions of the plurality of first wires.
  • a plurality of pad electrodes of the semiconductor chip and a plurality of terminals of the wiring board are connected via a plurality of wires. Connect electrically.
  • This semiconductor chip has a first pad electrode connected to the output of the semiconductor element constituting the power amplifier circuit, and a plurality of first wires are connected to the first pad electrode in the wire bonding step. In the first pad electrode, a position where the probe is applied in the probe inspection process is located between positions where the plurality of first wires are connected in the Y bonding process.
  • the reliability of the semiconductor device can be improved.
  • the semiconductor device can be miniaturized.
  • FIG. 2 is a circuit block diagram schematically showing a configuration example of a power amplification module used in the digital mobile phone shown in FIG. 1. It is a top view which shows the power amplification module of one embodiment of this invention. It is a bottom view which shows the power amplification module of one embodiment of this invention. It is a plane perspective view which shows the power amplification module of one embodiment of this invention. It is sectional drawing which shows the power amplification module of one embodiment of this invention. It is a side view which shows the state which mounted the power amplification module of one embodiment of this invention on the mounting board
  • FIG. 10 is a cross-sectional view of the power amplification module during a manufacturing step following that of FIG. 9; It is sectional drawing in the manufacturing process of the power amplification module following FIG.
  • FIG. 12 is a cross-sectional view of the power amplification module during a manufacturing step following that of FIG. 11;
  • FIG. 13 is a cross-sectional view of the power amplification module during a manufacturing step following that of FIG. 12;
  • FIG. 6 is a partially enlarged plan view of FIG. 5.
  • FIG. 4 is an explanatory diagram showing probe marks formed on a drain pad of a semiconductor chip according to an embodiment of the present invention, and a wire connection region in the drain pad 3.
  • FIG. 4 is an explanatory diagram showing probe marks formed on a drain pad of a semiconductor chip according to an embodiment of the present invention, and a wire connection region in the drain pad 3.
  • FIG. It is sectional drawing which shows a mode that the probe for a test
  • hatching may be omitted even in a cross-sectional view in order to make the drawings easy to see. Further, even a plan view may be hatched to make the drawing easy to see.
  • a power amplification module such as a radio frequency (RF) power module
  • RF radio frequency
  • a digital mobile phone mobile communication device
  • a network such as the GSM system ( A semiconductor device) and a semiconductor chip (semiconductor device) used (mounted).
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • GSM900 Global System for Mobile Communication
  • GSM1800 the 1800 MHz band (1710 to 1910 MHz)
  • DCS Digital Cellular System
  • GSM1900 the 1900 MHz band
  • GSM1900 is mainly used in North America.
  • GSM850 in the 850 MHz band may also be used.
  • the power amplification module PA1 of the present embodiment is a power amplification module used in these frequency bands (high frequency bands), for example.
  • FIG. 1 is a block diagram (an explanatory diagram) showing an example of a standard digital cellular phone (digital cellular phone system, mobile communication device) DPS.
  • a signal received from an antenna ANT is amplified by a low noise amplifier LNA through an antenna switch ANT-SW, and an IF frequency of about 150 to 250 MHz by a reception mixer RX-MIX ( (Intermediate frequency), and further frequency converted by the IF circuit IFC, guided to the baseband unit BBP as a second IF frequency of about 455 kHz, and demodulated by the demodulation circuit DMDL.
  • code COD1 is an audio CODEC (codec)
  • code SP is a speaker
  • code MIC is a microphone
  • code COD2 is a channel CODEC (codec)
  • code MDL is a modulation circuit.
  • the digitalized signal is DA-converted (digital-analog conversion) by the D / A conversion circuit DAC of the baseband unit BBP, and is guided to the RF block unit RFBP as an I / Q signal, and is a quadrature modulator.
  • the digitalized signal After being modulated to an IF frequency by QMD and converted to a transmission signal by transmission mixer TX-MIX, it is amplified by power amplification module PA1 and transmitted from antenna ANT through antenna switch ANT-SW.
  • a local signal is supplied to the reception mixer RX-MIX and the transmission mixer TX-MIX from a synthesizer composed of an oscillator and a PLL (phase synchronization circuit).
  • a synthesizer composed of an oscillator and a PLL (phase synchronization circuit).
  • AGCAMP is an AGC (Automatic Gain Control) amplifier
  • symbol FPL1 is an RF-PLL (RF frequency phase synchronization circuit)
  • symbol FPL2 is an IF-PLL (IF frequency phase synchronization circuit).
  • the digital cellular phone DPS also includes a display / control unit CDP configured by a liquid crystal display LCD, a microcomputer MCN, a memory MRY, and the like.
  • FIG. 2 shows a power amplification module (semiconductor device, electronic device, power amplifier, high output amplifier, high frequency power amplifier, high frequency power amplification device) used in a mobile communication device such as the digital cellular phone DPS shown in FIG.
  • FIG. 2 is a circuit block diagram (explanatory diagram) schematically showing a configuration example of a power amplifier module, RF power module) PA1.
  • two frequency bands of GSM900 and DCS1800 can be used (dual band system), and GMSK (Gaussian filtered Minimum Shift Keying) modulation system and EDGE (Enhanced Data GSM Environment) modulation system in each frequency band.
  • the circuit block diagram (amplifier circuit) of the power amplification module which can use two communication systems is shown.
  • the GMSK modulation method is a method used for communication of audio signals, and is a method of shifting the phase of a carrier wave according to transmission data.
  • the EDGE modulation method is a method used for data communication and is a method in which an amplitude shift is further added to the phase shift of GMSK modulation.
  • the circuit configuration of the power amplifying module PA1 includes two power amplifying circuits (high frequency power amplifying circuits) LDML and LDMH, a peripheral circuit 103, matching circuits 105A, 105B, 107A, and 107B.
  • Low-pass filters (low-pass filter circuits) 108A and 108B and switch circuits 109A and 109B are provided.
  • the power amplifier circuit LDML is a power amplifier circuit for GSM900, and has a multi-stage configuration in which a plurality of amplifier stages (amplifier circuits), here, three amplifier stages (amplifier circuits) LDML1, LDML2, and LDML3 are connected in multistage.
  • the power amplifying circuit LDMH is a power amplifying circuit for DCS1800, and has a multi-stage configuration in which a plurality of amplifying stages (amplifying circuits), here, three amplifying stages (amplifying circuits) LDMH1, LDMH2, and LDMH3 are connected in multistage. Yes.
  • the matching circuit (input matching circuit) 105A is provided between the input terminal 104a for GSM900 and the power amplification circuit LDML (first amplification stage LDML1), and the matching circuit (input matching circuit) 105B is an input for DCS1800. It is provided between terminal 104b and power amplification circuit LDMH (first amplification stage LDMH1).
  • the matching circuit (output matching circuit) 107A is provided between the switch circuit 109A for GSM900 and the power amplifier circuit LDML (third amplifier stage LDML3), and the matching circuit (output matching circuit) 107B is a switch for DCS1800. It is provided between circuit 109B and power amplifier circuit LDMH (third amplifier stage LDMH3).
  • the low-pass filter 108A for GSM900 is provided between the matching circuit 107A and the switch circuit 109A for GSM900, and the output of the power amplifier circuit LDML is input via the matching circuit 107A.
  • the low pass filter 108B for DCS1800 is provided between the matching circuit 107B and the switch circuit 109B for DCS1800, and the output of the power amplifier circuit LDMH is input through the matching circuit 107B.
  • an interstage matching circuit 102AM1 is provided between the amplification stage LDML1 and the amplification stage LDML2 of the power amplification circuit LDML for GSM900, and an interstage matching circuit 102AM2 is provided between the amplification stage LDML2 and the amplification stage LDML3.
  • An interstage matching circuit 102BM1 is provided between the amplification stage LDMH1 and the amplification stage LDMH2 of the power amplification circuit LDMH for the DCS 1800, and an interstage matching circuit 102BM2 is provided between the amplification stage LDMH2 and the amplification stage LDMH3.
  • Each matching circuit is a circuit that performs impedance matching, and the low-pass filters 108A and 108B are circuits that attenuate harmonics (harmonic components generated by the power amplifier circuits LDML and LDMH).
  • the power amplification circuit LDML (amplification stages LDML1 to LDML3) for GSM900, the power amplification circuit LDMH for DCS1800 (amplification stages LDMH1 to LDMH3), and the peripheral circuit 103 are one semiconductor chip (semiconductor amplification element chip). , High frequency power amplifying element chip, semiconductor device) 2.
  • the amplification stages LDML1 to LDML3 constituting the power amplification circuit LDML and the amplification stages LDMH1 to LDMH3 constituting the power amplification circuit LDMH are formed in the semiconductor chip CP1, but the matching circuits 102AM1, 102AM2 for the stages are used.
  • 102BM1, 102BM2 may be formed inside the semiconductor chip CP1 or outside the semiconductor chip CP1.
  • the peripheral circuit 103 is a circuit for controlling and assisting the amplification operation of the power amplifier circuits LDML and LDMH, or controlling the switch circuits 109A and 109B, and the control circuits 103A and 103C, and the amplification stages LDML1 to LDML3 and LDMH1 to LDMH3. And a bias circuit 103B for applying a bias voltage to the.
  • the control circuit 103A is a circuit that generates a desired voltage to be applied to the power amplification circuits LDML and LDMH, and includes a power supply control circuit 103A1 and a bias voltage generation circuit 103A2.
  • the power supply control circuit 103A1 is a circuit that generates a first power supply voltage to be applied to the drain terminals of the output amplifying elements (in this case, LDMOSFETs) of the amplification stages LDML1 to LDML3 and LDMH1 to LDMH3.
  • the bias voltage generation circuit 103A2 is a circuit that generates a first control voltage for controlling the bias circuit 103B.
  • the bias voltage generation circuit 103A2 is generated by the power supply control circuit 103A1.
  • the first control voltage is generated based on the power supply voltage.
  • the baseband circuit is a circuit that generates the output level designation signal.
  • This output level designation signal is a signal that designates the output level of the power amplifier circuits LDML and LDMH, and is generated based on the distance between the mobile phone and the base station, that is, the output level corresponding to the strength of the radio wave. It is like that.
  • the control circuit 103C is a circuit that controls the switch circuits 109A and 109B.
  • the switch circuit 109A for transmission / reception switching of the GSM900 connects the terminal (output terminal) 106 to the output side of the low-pass filter 108A when transmitting the GSM900 and connects the terminal 106 when receiving the GSM900.
  • terminal 110a The switch circuit 109B for transmission / reception switching of the DCS 1800 connects the terminal 106 to the output side of the low-pass filter 108B during transmission of the DCS 1800, and connects the terminal 106 to the terminal 110b during reception of the DCS 1800 according to the switching signal from the control circuit 103C. Connect to.
  • the RF input signal input to the GSM900 input terminal 104a of the power amplifier module PA1 is input to the semiconductor chip CP1 via the matching circuit 105A, and the power amplifier circuit LDML in the semiconductor chip CP1, that is, the three amplification stages LDML1 to LDML3. And output as an RF signal (GSM900 RF signal) amplified from the semiconductor chip CP1.
  • the RF signal of GSM900 amplified and output from the semiconductor chip CP1 is input to the switch circuit 109A through the matching circuit 107A and the low-pass filter 108A.
  • the switch circuit 109A When the switch circuit 109A is switched so as to connect the terminal 106 to the output side of the low-pass filter 108A, the RF signal input to the switch circuit 109A via the low-pass filter 108A is output as an RF output signal of the GSM900 from the terminal 106. And transmitted from the antenna ANT.
  • the RF input signal input to the DCS 1800 input terminal 104b of the power amplifier module PA1 is input to the semiconductor chip CP1 through the matching circuit 105B, and the power amplifier circuit LDMH in the semiconductor chip CP1, that is, the three amplification stages LDMH1. Amplified by LDMH3 and output from the semiconductor chip CP1 as an RF signal (DCS1800 RF signal).
  • the RF signal of DCS 1800 amplified and output from the semiconductor chip CP1 is input to the switch circuit 109B through the matching circuit 107B and the low-pass filter 108B.
  • the switch circuit 109B switches so that the terminal 106 is connected to the output side of the low-pass filter 108B, the RF signal input to the switch circuit 109B via the low-pass filter 108B is output from the terminal 106 as the RF output signal of the DCS 1800. And transmitted from the antenna ANT.
  • an input signal (for example, a control signal) input to the input terminal 104c of the power amplification module PA1 is input to the peripheral circuit 103, and based on this, the peripheral circuit 103 controls the power amplification circuits LDML and LDMH.
  • the switch circuits 109A and 109B can be controlled.
  • the switch circuits 109A and 109B correspond to the antenna switch ANT-SW in FIG. 1, and the power amplification module PA1 shown in FIG. 2 is the same as the antenna switch ANT-SW in FIG. This corresponds to the case where it is built in PA1.
  • the antenna switch ANT-SW can be provided outside the power amplification module PA1, and in this case, the switch circuits 109A and 109B are provided outside the power amplification module PA1.
  • the low-pass filters (low-pass filter circuits) 108A and 108B can be provided outside the power amplification module PA1.
  • Each of the power amplifier circuits LDML and LDMH is composed of three n-channel LDMOSFETs (Laterally Diffused Metal-Oxide-Semiconductor Field Effect Transistor, lateral diffusion MOSFET) ) Are sequentially connected in cascade (multi-stage connection). That is, each amplification stage LDML1, LDML2, LDML3, LDMH1, LDMH2, and LDMH3 are formed by n-channel LDMOSFET elements.
  • n-channel LDMOSFETs that is, an n-channel LDMOSFET constituting the amplification stage LDML1, an n-channel LDMOSFET constituting the amplification stage LDML2, and an n-channel LDMOSFET constituting the amplification stage LDML3 are sequentially connected (multistage connection). ) To form a power amplifier circuit LDML.
  • the input terminal 104a for GSM900 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDML1 via the matching circuit 105A, and the n-channel LDMOSFET constituting the amplification stage LDML1 is electrically connected.
  • the drain is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDML2 through the matching circuit 102AM1.
  • the drain of the n-channel LDMOSFET constituting the amplification stage LDML2 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDML3 via the matching circuit 102AM2, and the n-channel constituting the amplification stage LDML3.
  • the drain of the type LDMOSFET is electrically connected to the low-pass filter 108A through the matching circuit 107A.
  • n-channel LDMOSFETs that is, an n-channel LDMOSFET constituting the amplification stage LDMH1, an n-channel LDMOSFET constituting the amplification stage LDMH2, and an n-channel LDMOSFET constituting the amplification stage LDMH3 are sequentially connected (multi-stage connection). ) To form a power amplifier circuit LDMH.
  • the input terminal 104b for DCS1800 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDMH1 via the matching circuit 105B, and the n-channel LDMOSFET constituting the amplification stage LDMH1 is connected.
  • the drain is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDMH2 through the matching circuit 102BM1.
  • the drain of the n-channel LDMOSFET constituting the amplification stage LDMH2 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDMH3 via the matching circuit 102BM2, and the n-channel constituting the amplification stage LDMH3.
  • the drain of the type LDMOSFET is electrically connected to the low-pass filter 108B through the matching circuit 107B.
  • each power amplifier circuit LDML, LDMH is subordinate to two or four or more n-channel LDMOSFETs. Connected circuit configuration.
  • FIG. 3 is a top view (plan view) of the power amplification module PA1 of the present embodiment
  • FIG. 4 is a bottom view of the power amplification module PA1
  • FIG. 5 is a plan perspective view of the power amplification module PA1.
  • FIG. 6 is a cross-sectional view (side cross-sectional view) of power amplification module PA1 of the present embodiment. 6 corresponds to a cross-sectional view
  • FIG. 5 corresponds to a plan view, both of which show a conceptual structure of the power amplification module PA1.
  • FIG. 6 is a cross-sectional view of the structure of FIG. Is not completely consistent with the cross-sectional view.
  • a power amplification module PA1 of the present embodiment shown in FIGS. 3 to 6 includes a wiring board (multilayer board, multilayer wiring board, module board) 11 and a semiconductor chip (semiconductor) mounted (mounted) on the wiring board 11.
  • a resin (sealing portion, sealing resin portion) 13 The semiconductor chip CP1 and the passive component 12 are electrically connected to the conductor layer (transmission line) of the wiring board 11.
  • the power amplification module PA1 can also be mounted on, for example, an external circuit board (not shown) or a motherboard.
  • the power amplification module PA1 can be regarded as a semiconductor device because it includes the semiconductor chip CP1, but can also be regarded as an electronic device.
  • the wiring board 11 is, for example, a multilayer wiring board (multilayer board) in which a plurality of insulator layers (dielectric layers) 14 and a plurality of conductor layers (wiring layers) are stacked and integrated.
  • the five insulating layers 14 are laminated to form the wiring board 11.
  • the number of the insulating layers 14 to be laminated is not limited to this and can be variously changed.
  • Each conductor layer (wiring layer) 15 constituting the wiring board 11 is electrically connected through a conductor (conductor film) in a via hole (through hole) 16 formed in the insulator layer 14 as necessary.
  • the wiring board 11 As a material for forming the insulator layer 14 of the wiring substrate 11, a ceramic material such as alumina (aluminum oxide, Al 2 O 3 ) can be used.
  • the wiring board 11 is a ceramic multilayer board.
  • the material of the insulator layer 14 of the wiring board 11 is not limited to a ceramic material and can be variously changed. For example, a glass epoxy resin may be used.
  • a conductor layer (wiring layer, wiring pattern, conductor pattern) 15 for wiring formation is formed on the upper surface (front surface) 11a and the lower surface (back surface) 11b of the wiring substrate 11 and between the insulator layers 14.
  • a conductor-side board (terminal, electrode) TE made of a conductor and a chip mounting conductor pattern 15 c are formed on the upper surface 11 a of the wiring board 11 by the uppermost conductor layer 15 of the wiring board 11, and the lowermost layer of the wiring board 11.
  • the conductor layer 15 forms an external connection terminal (terminal, electrode, module electrode) 15 a made of a conductor and a reference potential supply terminal 15 b on the lower surface 11 b of the wiring board 11.
  • the external connection terminal 15 a includes terminals corresponding to the input terminals 104 a, 104 b, and 104 c and terminals corresponding to the terminals (output terminals) 106.
  • a conductor layer (wiring layer, wiring pattern, conductor pattern) 15 is also formed in the wiring substrate 11, that is, between the insulator layers 14.
  • the wiring pattern for supplying the reference potential (for example, the reference potential supplying terminal 15 b on the lower surface 11 b of the wiring substrate 11) is the wiring of the insulator layer 14.
  • the wiring pattern for the transmission line can be formed as a band-shaped pattern, with a rectangular pattern covering most of the formation surface.
  • the semiconductor chip CP1 is formed by forming a semiconductor integrated circuit on a semiconductor substrate (semiconductor wafer) made of single crystal silicon or the like, and then grinding the back surface of the semiconductor substrate as necessary, and then dicing or the like to each semiconductor chip CP1. It is separated.
  • a plurality of pad electrodes (electrodes, bonding pads) PD are formed on the surface (upper surface) of the semiconductor chip CP1, and each pad electrode PD is electrically connected to a semiconductor element or a semiconductor integrated circuit formed in the semiconductor chip CP1. Connected.
  • the configuration of the semiconductor chip CP1 will be described in detail later.
  • the principal surface on the side where the pad electrode PD is formed is referred to as the surface of the semiconductor chip CP1
  • the principal surface on the side where the pad electrode PD is formed is referred to as the surface of the semiconductor chip CP1
  • the principal surface on the side where the pad electrode PD is formed is referred to as the back surface of the semiconductor chip CP1.
  • the semiconductor chip CP1 is die-bonded (bonded) to the chip mounting conductor pattern 15c on the upper surface 11a of the wiring substrate 11 with a bonding material (adhesive material) such as solder 18 face up.
  • a bonding material such as solder 18 face up.
  • a conductive paste adhesive such as silver paste can be used.
  • the pad electrode PD formed on the surface (upper surface) of the semiconductor chip CP1 is electrically connected to the substrate-side terminal TE on the upper surface 11a of the wiring substrate 11 through a conductive wire (bonding wire) WA.
  • a back electrode BE1 is formed on the entire back surface of the semiconductor chip CP1, and the back electrode BE1 of the semiconductor chip CP1 is electrically conductive such as solder 18 on the chip mounting conductor pattern 15c on the top surface 11a of the wiring substrate 11. Bonded by a bonding material and electrically connected, and further electrically connected to a reference potential supply terminal 15b on the lower surface 11b of the wiring substrate 11 via a conductor in the via hole 16 (16a).
  • the via hole 16a provided below the semiconductor chip CP1 can also function as a thermal via for conducting heat generated in the semiconductor chip CP1 to the lower surface 11b side of the wiring substrate 11.
  • the passive component 12 is composed of a passive element such as a resistive element (for example, a chip resistor), a capacitive element (for example, a chip capacitor), or an inductor element (for example, a chip inductor), for example, a chip component.
  • the passive component 12 is a passive component that constitutes the matching circuits 105A, 105B, 107A, 107B, 102AM1, 102AM2, 102BM1, and 102BM2, for example.
  • the electrodes of the passive component 12 are joined and electrically connected to the board-side terminal TE on the upper surface 11a of the wiring board 11 by a conductive joining material such as solder 18.
  • the board-side terminal TE on the upper surface 11a of the wiring board 11 to which the semiconductor chip CP1 or the passive component 12 is electrically connected is connected to the upper surface 11a of the wiring board 11 or an internal conductor layer (wiring layer) 15 or via hole 16 as necessary.
  • the wiring is connected via an internal conductor or the like, and is electrically connected to the external connection terminal 15a or the reference potential supply terminal 15b on the lower surface 11b of the wiring board 11 as necessary.
  • solder resist layer (not shown) is formed on the upper surface 11a and the lower surface of the wiring substrate 11.
  • the terminal TE is exposed from the opening of the solder resist layer.
  • the external connection terminal 15 a and the reference potential supply terminal 15 b are exposed from the solder resist layer.
  • the sealing resin 13 is formed on the upper surface 11a of the wiring board 11 so as to cover the semiconductor chip CP1, the passive component 12, and the wire WA.
  • the sealing resin 13 is made of, for example, a resin material such as an epoxy resin or a silicone resin, and can contain a filler or the like.
  • FIG. 7 is a side view schematically showing a state in which the power amplification module PA1 of the present embodiment is mounted on a mounting board (wiring board, motherboard, external circuit board) 21.
  • FIG. 7 is a side view schematically showing a state in which the power amplification module PA1 of the present embodiment is mounted on a mounting board (wiring board, motherboard, external circuit board) 21.
  • FIG. 7 is a side view schematically showing a state in which the power amplification module PA1 of the present embodiment is mounted on a mounting board (wiring board, motherboard, external circuit board) 21.
  • the power amplification module PA1 and other components 22 are mounted on the upper surface 21a of the mounting substrate 21.
  • the external connection terminal 15a of the power amplification module PA1 is joined and electrically connected to the terminal 23a of the mounting substrate 21 via a conductive joining material such as solder 24, and the reference of the power amplification module PA1.
  • the potential supply terminal 15b is joined to and electrically connected to a terminal (reference potential supply terminal) 23b of the mounting substrate 21 via a conductive joining material such as solder 24.
  • the electrodes of the component 22 are joined and electrically connected to the terminals 23 c of the mounting substrate 21 via a conductive joining material such as solder 24. Therefore, a reference potential (ground potential, ground potential) is supplied from the terminal (reference potential supply terminal) 23b of the mounting substrate 21 to the power amplification module PA1 via the solder 24 and the reference potential supply terminal 15b. it can.
  • FIG. 8 is a process flow diagram showing the manufacturing process of the power amplification module PA1.
  • 9 to 13 are cross-sectional views of the power amplification module PA1 according to the present embodiment during the manufacturing process.
  • the power amplification module PA1 of the present embodiment can be manufactured, for example, as follows.
  • a wiring board base (wiring board) 25 is prepared as a wiring board (step S1 in FIG. 8).
  • the wiring board base body 25 becomes the wiring board 11 after a cutting process described later, and can be manufactured using, for example, a printing method, a sheet lamination method, a build-up method, or the like. Further, the upper surface 25a of the wiring board base body 25 becomes the upper surface 11a of the wiring board 11 after a cutting process described later.
  • the semiconductor chip CP1 is prepared (Step S2 in FIG. 8).
  • the step of preparing the semiconductor chip CP1 in step S2 may be performed before, after, or simultaneously with the step of preparing the wiring board base 25 in step S1.
  • the preparation process of the semiconductor chip CP1 in step S2 includes steps S11, S12, and S13 described later.
  • the chip mounting conductor pattern 15c on which the semiconductor chip CP1 is to be mounted and the board-side terminal TE on which the passive component 12 is to be mounted are connected to solder or the like.
  • the bonding material is printed or applied as necessary.
  • the semiconductor chip CP1 and the passive component 12 are mounted (arranged) on the upper surface 25a of the wiring board mother body 25 (step S3 in FIG. 8).
  • the wiring board is arranged such that the back side (back side electrode BE1 side) faces downward (wiring board base 25 side) and the front side (pad electrode PD side) faces upward (face-up bonding).
  • the semiconductor chip CP1 and the passive component 12 are fixed (bonded, connected, fixed) to the wiring board base 25 via a bonding material such as solder 18 (step S4 in FIG. 8).
  • the solder melted and solidified by the solder reflow becomes the solder 18.
  • the mounting process of the passive component 12 on the wiring board base 25 and the mounting process of the semiconductor chip CP1 on the wiring board 25 can be performed separately.
  • the wiring board base 25 After the passive component 12 is mounted and fixed with a bonding material such as solder, the semiconductor chip CP1 can be mounted on the wiring board base 25 and fixed with a bonding material (such as solder or a conductive paste adhesive). .
  • a wire bonding step is performed to connect a plurality of pad electrodes PD on the surface of the semiconductor chip CP1 and a plurality of substrate-side terminals TE on the upper surface 25a of the wiring board base 25 to a plurality of wires ( Bonding wires) are electrically connected via WA (step S5 in FIG. 8).
  • the sealing resin (sealing part, sealing resin part) 13 is formed on the upper surface 25a of the wiring board base 25 so as to cover the semiconductor chip CP1, the passive component 12, and the wire WA.
  • the sealing resin 13 can be formed using, for example, a printing method or a mold for molding (for example, transfer mold) (step S6 in FIG. 8).
  • the power amplification module PA1 can be manufactured by cutting the wiring board base 25 and the sealing resin 13 by dicing or the like (step S7 in FIG. 8).
  • the wiring board matrix 25 after cutting becomes the wiring board 11.
  • FIG. 14 is a partially enlarged plan view of FIG. 5 and shows an enlarged view of the semiconductor chip CP1 mounted on the wiring board 11 and its peripheral region.
  • FIG. 15 is a plan view in which the wire WA and the substrate-side terminal TE are omitted from FIG. 14, and corresponds to a plan view (planar layout diagram) of the semiconductor chip CP1.
  • a region in which the LDMOSFET element constituting the first amplification stage LDML1 for GSM900 is formed is denoted as a LDMOSFET formation region REGL1 with a reference sign REGL1, and the region for GSM900 is used.
  • a region in which the LDMOSFET elements constituting the second amplification stage LDML2 are formed is denoted by a reference sign REGL2 and is indicated as an LDMOSFET formation region REGL2.
  • a region in which the LDMOSFET elements constituting the third (final) amplification stage LDML3 for GSM900 are formed is denoted by the reference numeral REGL3 and indicated as an LDMOSFET formation region REGL3.
  • the region where the LDMOSFET element constituting the first amplification stage LDMH1 for DCS1800 is formed is denoted by the reference numeral REGH1, and is indicated as LDMOSFET formation region REGH1, and the second amplification stage LDMH2 for DCS1800 is constituted.
  • a region where the LDMOSFET element is formed is indicated as a LDMOSFET formation region REGH2 with a reference sign REGH2.
  • a region in which the LDMOSFET elements constituting the third (final) amplification stage LDMH3 for DCS1800 are formed is denoted by reference numeral REGH3 and is indicated as an LDMOSFET formation region REGH3.
  • the semiconductor chip CP1 also has a region in which elements constituting the peripheral circuit 103 such as a capacitor element, a resistance element, or a control MOSFET are formed. This region is illustrated in FIGS. Is omitted.
  • a plurality of pad electrodes PD are formed on the surface of the semiconductor chip CP1.
  • the pad electrodes PD are drain pads (drain pad electrodes) PDD1, PDD2, PDD3, PDD4, PDD5, PDD6 which are drain pad electrodes PD and gate pads (gate pad electrodes) PDG1, which are gate pad electrodes PD.
  • PDG2, PDG3, PDG4, PDG5, PDG6 are included.
  • the pad electrode PD includes a pad electrode PD1 for use in inputting a control signal, outputting a detection signal, and the like.
  • the gate pad PDG1 is an input pad electrode (pad electrode for inputting an RF signal through the matching circuit 105A) electrically connected to the gate electrode of the LDMOSFET formation region REGL1.
  • the drain pad PDD1 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGL1) electrically connected to the drain of the LDMOSFET formation region REGL1.
  • the gate pad PDG2 is an input pad electrode (pad electrode for inputting an RF signal via the matching circuit 102AM1) electrically connected to the gate electrode of the LDMOSFET formation region REGL2.
  • the drain pad PDD2 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGL2) electrically connected to the drain of the LDMOSFET formation region REGL2.
  • the gate pad PDG3 is an input pad electrode (pad electrode for inputting an RF signal through the matching circuit 102AM2) electrically connected to the gate electrode of the LDMOSFET formation region REGL3.
  • the drain pad PDD3 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGL3) electrically connected to the drain of the LDMOSFET formation region REGL3.
  • the gate pad PDG4 is an input pad electrode (pad electrode for inputting an RF signal through the matching circuit 105B) electrically connected to the gate electrode of the LDMOSFET formation region REGH1.
  • the drain pad PDD4 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGH1) electrically connected to the drain of the LDMOSFET formation region REGH1.
  • the gate pad PDG5 is an input pad electrode (pad electrode for inputting an RF signal via the matching circuit 102BM1) electrically connected to the gate electrode of the LDMOSFET formation region REGH2.
  • the drain pad PDD5 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGH2) electrically connected to the drain of the LDMOSFET formation region REGH2.
  • the gate pad PDG6 is an input pad electrode (pad electrode for inputting an RF signal via the matching circuit 102BM2) electrically connected to the gate electrode of the LDMOSFET formation region REGH3.
  • the drain pad PDD6 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGH3) electrically connected to the drain of the LDMOSFET formation region REGH3.
  • the regions where the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, and REGH3 are formed and the regions where the elements for the control circuit are formed are buried oxides formed between the regions. Each element is electrically isolated from other regions by element isolation regions (corresponding to element isolation regions 32 described later) made of a film or the like. Further, the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, REGH3 and the region where the elements for the control circuit are formed, and between them and the pad electrode PD, the inside of the semiconductor chip CP1 as necessary. It is electrically connected by wiring.
  • the semiconductor chip CP1 has a rectangular planar shape having the four sides (chip sides) SD1, SD2, SD3, and SD4.
  • the side SD1 and the side SD3 are parallel to and face each other, and the side SD2 And the side SD4 are parallel to each other and face each other, the side SD1 and the side SD2 are orthogonal, the side SD1 and the side SD4 are orthogonal, the side SD3 and the side SD2 are orthogonal, and the side SD3 and the side SD4 are orthogonal is doing.
  • the plurality of pad electrodes PD are arranged on the periphery of the surface of the semiconductor chip CP1.
  • the drain pad PDD3, the gate pad PDG3, the drain pad PDD2, the gate pad PDG2, the drain pad PDD1, and the gate pad PDG1 are arranged along the side SD1 in this order.
  • the drain pad PDD6, the gate pad PDG6, the drain pad PDD5, the gate pad PDG5, the drain pad PDD4, and the gate pad PDG4 are arranged along the side SD3 in this order.
  • the LDMOSFET formation regions REGL3, REGL2, and REGL1 are disposed on the side SD1 side, and the LDMOSFET formation regions REGH3, REGH2, and REGH1 are disposed on the side SD3 side.
  • the drain pad PDD3 is located between the LDMOSFET formation region REGL3 and the side SD1
  • the drain pad PDD2 is located between the LDMOSFET formation region REGL2 and the side SD1
  • a drain pad PDD1 is located between the two.
  • the drain pad PDD6 is located between the LDMOSFET formation region REGH3 and the side SD3
  • the drain pad PDD5 is located between the LDMOSFET formation region REGH2 and the side SD3
  • a drain pad PDD4 is located between SD3 and SD3.
  • FIG. 16 is a cross-sectional view of a main part of the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, and REGH3 in the semiconductor chip CP1.
  • 17 shows a cross-sectional position different from that in FIG. 16, and corresponds to a cross-sectional view of a region where the gate electrode 35 is pulled up to the gate wirings M1G and M2G on the element isolation region 32.
  • FIG. 18 shows a cross-sectional position different from that in FIGS.
  • FIG. 16 and 17 shows cross-sectional positions different from those in FIGS. 16 to 18, and corresponds to a cross-sectional view of a region where the gate pads PDG1, PDG2, PDG3, PDG4, PDG5 and PDG6 are formed.
  • FIG. 20 shows a cross-sectional position different from that in FIGS. 16 to 19 and corresponds to a cross-sectional view of a region where the drain pads PDD3 and PDD6 are formed.
  • a semiconductor substrate (hereinafter simply referred to as a substrate) 31 constituting the semiconductor chip CP1 includes a substrate body (semiconductor substrate, semiconductor wafer) 31a made of p + -type single crystal silicon, and the like. And an epitaxial layer (semiconductor layer) 31b made of, for example, p ⁇ type single crystal silicon, formed on the main surface of the substrate body 31a. For this reason, the substrate 31 is a so-called epitaxial wafer.
  • the epitaxial layer 31b is a semiconductor layer
  • the impurity concentration of the epitaxial layer 31b is lower than the impurity concentration of the substrate body 31a
  • the resistivity of the epitaxial layer 31b is higher than the resistivity of the substrate body 31a.
  • An element isolation region 32 made of an insulator is formed in the epitaxial layer 31b. 16 corresponds to a cross-sectional view crossing an active region (corresponding to an active region AR1 described later) surrounded by the element isolation region 32, the element isolation region 32 is not shown in FIG. 17 to 20 correspond to cross-sectional views across the element isolation region 32 surrounding the active region, so that the element isolation region 32 is shown in FIGS. 17 to 20.
  • the element isolation region 32 is formed by, for example, an STI (Shallow Trench Isolation) method or a LOCOS (Local Oxidization of Silicon) method.
  • the element isolation region 32 defines an active region AR1 described later on the main surface of the substrate body 31a (main surface of the epitaxial layer 31b), and a plurality of LDMOSFET cells (unit LDMOSFET elements) are formed in the active region AR1.
  • the active region AR1 is surrounded by the element isolation region 32.
  • a p-type well 33 that functions as a punch-through stopper that suppresses the extension of the depletion layer from the drain to the source of the LDMOSFET is formed on a part of the main surface of the epitaxial layer 31b.
  • a gate electrode 35 of the LDMOSFET is formed via a gate insulating film 34 made of silicon oxide or the like.
  • the gate electrode 35 is made of, for example, a single film of an n-type polycrystalline silicon film or a laminated film of an n-type polycrystalline silicon film and a metal silicide film, and a side wall made of silicon oxide or the like is formed on the side wall of the gate electrode 35.
  • a wall spacer (side wall insulating film) 36 is formed.
  • the source and drain of the LDMOSFET are formed in regions separated from each other across the channel formation region (region immediately below the gate electrode 35) inside the epitaxial layer 31b. Drain first n in contact with the channel forming region - -type drain region 37, the first n - -type drain region 38 - -type drain region in contact with the second n which is spaced apart from the channel forming region And an n + type drain region (drain high concentration region, high concentration n type drain region) 39 formed in contact with the second n ⁇ type drain region and further away from the channel formation region.
  • the first n ⁇ -type drain region 37 closest to the gate electrode 35 has the highest impurity concentration.
  • the n + -type drain region 39 which is low and is most distant from the gate electrode 35 has the highest impurity concentration.
  • the junction depth of the second n ⁇ -type drain region 38 is substantially the same as the junction depth of the first n ⁇ -type drain region 37, but the n + -type drain region 39 has the second n ⁇ -type drain. It is formed shallower than the drain region 38 and the first n ⁇ -type drain region 37.
  • the first n ⁇ -type drain region (first low-concentration n-type drain region, first n-type LDD region) 37 is formed in a self-aligned manner with respect to the gate electrode 35, and its end is a channel formation region It terminates at the bottom of the side wall of the gate electrode 35 so as to come into contact.
  • the second n ⁇ -type drain region (second low-concentration n-type drain region, second n-type LDD region) 38 is formed with respect to the side wall spacer 36 formed on the side wall on the drain side of the gate electrode 35. Therefore, it is formed so as to be separated from the gate electrode 35 by an amount corresponding to the film thickness of the sidewall spacer 36 along the gate length direction.
  • the source of the LDMOSFET is n ⁇ -type source region 40 in contact with the channel formation region, and is in contact with the n ⁇ -type source region 40, spaced apart from the channel formation region, and has an impurity concentration higher than that of the n ⁇ -type source region 40. And a + type source region 41.
  • the n ⁇ -type source region 40 is formed in a self-aligned manner with respect to the gate electrode 35, and terminates at the lower portion of the side wall of the gate electrode 35 so that the end thereof is in contact with the channel formation region.
  • a p-type halo region (not shown) can be formed below the n ⁇ -type source region 40, and this p-type halo region is not necessarily formed, but when formed, The spread of impurities from the source to the channel formation region is further suppressed, and the short channel effect is further suppressed, so that the threshold voltage can be further prevented from decreasing.
  • the n + type source region 41 is formed in a self-aligned manner with respect to the side wall spacer 36 formed on the source side wall of the gate electrode 35, the n + type source region 41 is an n ⁇ type source region. 40, and is spaced apart from the channel formation region by an amount corresponding to the film thickness of the sidewall spacer 36 along the gate length direction.
  • the position of the bottom of the n + -type source region 41 is deeper than the position of the bottom of the n ⁇ -type source region 40.
  • the lightly doped n-type drain region (n-type LDD region) interposed between the gate electrode 35 and the n + -type drain region 39 has a double structure, and the first n ⁇ -type closest to the gate electrode 35 is formed.
  • the impurity concentration of the drain region 37 is relatively low, and the impurity concentration of the second n ⁇ -type drain region 38 spaced from the gate electrode 35 is relatively high.
  • a depletion layer spreads between the gate electrode 35 and the drain.
  • the feedback capacitance (Cgd) formed between the gate electrode 35 and the first n ⁇ -type drain region 37 in the vicinity thereof is reduced. Get smaller.
  • the impurity concentration of the second n ⁇ -type drain region 38 is high, the on-resistance (Ron) is also reduced. Since the second n ⁇ -type drain region 38 is formed at a position separated from the gate electrode 35, the influence on the feedback capacitance (Cgd) is small. For this reason, since both the on-resistance (Ron) and the feedback capacitance (Cgd) can be reduced, the power added efficiency of the amplifier circuit can be improved.
  • the MOSFET or LDMOSFET is not only a MISFET using an oxide film (silicon oxide film) as a gate insulating film, but also a MISFET using an insulating film other than an oxide film (silicon oxide film) as a gate insulating film. Shall also be included.
  • the LDMOSFET is a MISFET (Metal-Insulator-Semiconductor-Field-Effect-Transistor) element, and is a MISFET element having the following characteristics (first to third characteristics).
  • MISFET Metal-Insulator-Semiconductor-Field-Effect-Transistor
  • the LDMOSFET has an LDD (Lightly doped drain) region formed on the drain side of the gate electrode 35 in order to enable a high voltage operation with a short channel length. That is, the drain of the LDMOSFET has a high impurity concentration n + -type region (here, n + -type drain region 39) and a lower impurity concentration LDD region (here, the first n ⁇ -type drain region 37 and the first n - type drain region 37). 2 n ⁇ -type drain region 38), and the n + -type region (n + -type drain region 39) is separated from the gate electrode 35 (or the channel formation region below the gate electrode 35) via the LDD region. Is formed.
  • LDD Lightly doped drain
  • Charge amount (impurity concentration) in the LDD region on the drain side, and distance along the plane (main surface of the epitaxial layer 31b) between the end of the gate electrode 35 and the n + -type drain region (drain high concentration region) 39 must be optimized to maximize the breakdown voltage of the LDMOSFET.
  • the LDMOSFET has a p-type well (p-type base region) for punch-through stoppers in a source-side source formation region (n ⁇ -type source region 40 and n + -type source region 41) and a channel formation region. ) 33 is formed.
  • the p-type well 33 is not formed, or is formed only in contact with a part of the drain formation region closer to the channel region.
  • the LDMOSFET has a source (here, a source region composed of an n ⁇ type source region 40 and an n + type source region 41) and a drain (here, a first n ⁇ type drain region 37, a second n ⁇ type source region 41).
  • the drain region composed of the ⁇ type drain region 38 and the n + type drain region 39) has an asymmetric structure with respect to the gate electrode 35.
  • the p-type punching layer 44 is a conductive layer for electrically connecting the source of the LDMOSFET and the substrate body 31a, and is formed of, for example, a p-type polycrystalline silicon film embedded in a groove formed in the epitaxial layer 31b.
  • the tip (bottom) of the p-type punching layer 44 reaches the substrate body 31a.
  • the p-type punching layer 44 can also be formed by a metal layer embedded in a groove formed in the substrate 31.
  • An insulating film (interlayer insulating film) 46 is formed on the main surface of the epitaxial layer 31b so as to cover the gate electrode 35 and the sidewall spacers 36.
  • the insulating film 46 is made of, for example, a laminated film of a thin silicon nitride film and a thick silicon oxide film thereon. The upper surface of the insulating film 46 is planarized.
  • a contact hole (opening, through hole, through hole) 47 is formed in the insulating film 46, and a plug (a buried conductor for connection) 48 mainly composed of a tungsten (W) film is embedded in the contact hole 47. It is.
  • the contact hole 47 and the plug 48 filling the contact hole 47 are formed of a p-type punch layer 44 (p + -type semiconductor region 45), a source (n + -type source region 41), a drain (n + -type drain region 39), and a gate electrode 35. It is formed at the top of each.
  • a wiring (first layer wiring) M1 made of a conductor film (tungsten film) mainly composed of tungsten (W) or the like is formed on the insulating film 46 in which the plug 48 is embedded.
  • the wiring M1 is formed by patterning a conductor film (tungsten film) formed on the insulating film 46 in which the plug 48 is embedded.
  • the wiring M1 is not limited to the tungsten wiring, and may be a wiring using another metal material such as an aluminum wiring.
  • the wiring M1 includes a source wiring (source electrode) M1S electrically connected to both the n + -type source region 41 and the p + -type semiconductor region 45 through the plug 48, and an n + -type drain region 39 through the plug 48.
  • a through hole (opening, through hole) 50 exposing a part of the wiring M1 at the bottom is formed.
  • a wiring M2 made of a conductor film mainly composed of aluminum (Al) or an aluminum alloy is formed on the insulating film 49 including the inside of the through hole 50.
  • the wiring M2 includes a barrier conductor film (for example, a laminated film of a titanium film and a titanium nitride film), an aluminum film (or an aluminum alloy film), and a barrier conductor film (for example, a titanium film) on the insulating film 49 including the inside of the through hole 50. And a titanium nitride film) is formed by patterning the conductor film.
  • the upper and lower barrier conductor films are thinner than the aluminum film as the main conductor film.
  • the barrier conductor film below the aluminum film in the laminated film has a function of suppressing a reaction between the aluminum film and the lower wiring M1, a function of improving the adhesion between the wiring M2 and the insulating film 49, and the like. Yes.
  • the barrier conductor film on the upper side of the aluminum film in the laminated film has a function of improving the adhesion between the wiring M2 and the insulating film (surface protective film) 52 and a function as an antireflection film at the time of exposure in the photolithography process. Etc.
  • the wiring M2 extends on the insulating film 49, partially fills the through hole 50, and is electrically connected to the wiring M1 at the bottom of the through hole 50. Therefore, the wiring M2 is integrally formed with a wiring portion extending on the insulating film 49 and a via portion (connecting portion) filling the through hole 50.
  • the wiring M2 is electrically connected to the drain wiring M2D that is electrically connected to the drain wiring M1D via the via portion (the portion that fills the through hole 50) and to the gate wiring M1G via the via portion (the portion that fills the through hole 50). And a source wiring M2S electrically connected to the source wiring M1S through a via portion (a portion filling the through hole 50).
  • a plug similar to the plug 48 is embedded in the through hole 50, a conductor film for forming the wiring M2 is formed on the insulating film 49 in which the plug is embedded, and the conductor film is patterned.
  • the wiring M2 can be formed.
  • the wiring M2 is electrically connected to the wiring M1 through a plug filling the through hole 50.
  • An insulating film (surface protective film) 52 is formed on the insulating film 49 so as to cover the wiring M2.
  • the insulating film 52 is made of, for example, a laminated film of a silicon oxide film and a silicon nitride film thereon, and can function as a protective film on the outermost surface of the semiconductor chip CP1.
  • An opening (through hole, through hole) 53 for a pad electrode is formed in the insulating film 52, and the wiring M ⁇ b> 2 is exposed at the bottom of the opening 53. That is, an opening 53 is formed on the wiring M2, and a part of the wiring M2 is exposed from the opening 53.
  • the wiring M2 exposed from the opening 53 corresponds to the pad electrode PD. That is, the pad electrode PD is formed by the wiring M2 exposed from the opening 53.
  • the opening 53 formed on the drain wiring M2D and exposing a part of the drain wiring M2D is referred to as a drain pad opening 53D.
  • the opening 53 is formed on the gate wiring M2G and is a part of the gate wiring M2G.
  • the opening that exposes is referred to as a gate pad opening 53G.
  • the drain wiring M2D exposed from the drain pad opening 53D corresponds to the drain pads PDD1, PDD2, PDD3, PDD4, PDD5, and PDD6, and the gate wiring M2G exposed from the gate pad opening 53G is the gate. It corresponds to pads PDG1, PDG2, PDG3, PDG4, PDG5 and PDG6.
  • the drain pad PDD1, PDD2, PDD3, PDD4, PDD5, and PDD6 are formed by the drain wiring M2D exposed from the drain pad opening 53D, and the gate wiring M2G exposed from the gate pad opening 53G forms the gate.
  • Pads PDG1, PDG2, PDG3, PDG4, PDG5 and PDG6 are formed.
  • the wire WA is connected to the wiring M2 exposed from the opening 53 (that is, the pad electrode PD) after the semiconductor chip CP1 is mounted on the wiring substrate 11 (wiring substrate base 25).
  • the wiring M2 has a pattern with a larger area than the opening 53. .
  • the wiring M2 is formed by patterning a conductor film made of a laminated film of a barrier conductor film, an aluminum film, and a barrier conductor film, an opening 53 is formed in the insulating film 52.
  • the uppermost barrier conductor film can also be removed by dry etching.
  • a portion of the wiring M2 exposed from the opening 53 (that is, a portion that becomes the pad electrode PD) is formed of a laminated film of a barrier conductor film and an aluminum film thereon, and the wiring M2 ( The surface of the aluminum film (or aluminum alloy film) constituting the pad electrode PD) is exposed, while the portion of the wiring M2 covered with the insulating film 52 includes a barrier conductor film, an aluminum film thereon, and It consists of a laminated film with the upper barrier conductor film.
  • a source back electrode (back electrode) 54 is formed on the back surface of the substrate 31 (the main surface opposite to the main surface on which the epitaxial layer 31b is formed).
  • the source back electrode (back electrode) 54 is formed on the entire back surface of the substrate 31 constituting the semiconductor chip CP1 (that is, the entire back surface of the substrate body 31a), and corresponds to the back electrode BE1.
  • the source (n ⁇ type source region 40 and n + type source region 41) of the LDMOSFET formed in the epitaxial layer 31b is a plug 48 (plug 48 disposed on the n + type source region 41), source wiring M1S, plug 48 (plug 48 disposed on p + type semiconductor region 45), p + type semiconductor region 45, p type punching layer 44, and substrate 31 are electrically connected to source back electrode 54 (ie, back electrode BE1). It is connected.
  • a metal silicide layer (for example, a cobalt silicide layer or a nickel silicide layer, not shown) is further formed on the surface (upper part) of the n + type source region 41 and the p + type semiconductor region 45, and this metal silicide is formed.
  • the n + -type source region 41 and the p + -type semiconductor region 45 can also be electrically connected through the layer, which can further reduce the source resistance.
  • the drain (first n ⁇ type drain region 37, second n ⁇ type drain region 38 and n + type drain region 39) of the LDMOSFET formed in the epitaxial layer 31b is connected to the plug 48 (on the n + type drain region 39).
  • a drain pad any one of drain pads PDD1, PDD2, PDD3, PDD4, PDD5, and PDD6 via a drain wiring M1D and a drain wiring M2D.
  • the gate electrode 35 of the LDMOSFET formed on the epitaxial layer 31b is connected to the gate pad (gate pads PDG1, PDG2, PDG3) via the plug 48 (plug 48 disposed on the gate electrode 35), the gate wiring M1G, and the gate wiring M2G. , PDG4, PDG5, PDG6).
  • FIG. 21 is a process flowchart showing the manufacturing process of the semiconductor chip CP1.
  • the epitaxial layer (semiconductor layer) 31b is formed on the main surface of the substrate body (semiconductor substrate, semiconductor wafer) 31a by using the epitaxial growth method, whereby the substrate body 31a and the substrate body are formed.
  • a substrate (semiconductor substrate) 31 composed of the epitaxial layer 31b on 31a is formed.
  • the substrate 31 at this stage is in a state of a substantially disk-shaped semiconductor wafer because a dicing process described later is not performed.
  • a part of the epitaxial layer 31b is etched using a photolithography technique and a dry etching technique to form a groove reaching the substrate body 31a, and then a CVD method or the like is formed on the epitaxial layer 31b including the inside of the groove.
  • the p-type polycrystalline silicon film is deposited using the p-type, the p-type polycrystalline silicon film outside the trench is removed by an etch back method or the like, thereby forming a p-type polycrystalline silicon film embedded in the trench.
  • a stamping layer 44 is formed.
  • the element isolation region 32 is formed in the epitaxial layer 31b by STI (Shallow Trench Isolation) method or LOCOS (Local Oxidization of Silicon) method.
  • a p-type well 33 is formed by ion-implanting p-type impurities into a part of the epitaxial layer 31b. Then, a gate insulating film 34 is formed on the surface of the epitaxial layer 31b, and a gate electrode 35 is formed on the gate insulating film 34.
  • a first n ⁇ -type drain region 37 is formed by ion-implanting an n-type impurity into a part of the epitaxial layer 31b. Then, an n ⁇ type source region 40 is formed by ion implantation of an n type impurity into a part of the p type well 33.
  • sidewall spacers 36 are formed on the side walls of the gate electrode 35.
  • a second n ⁇ type drain region 38 is formed by ion implantation of n type impurities.
  • an n + type drain region 39 and an n + type source region 41 are formed by ion implantation of an n type impurity.
  • a p + type semiconductor region 45 is formed by ion implantation of p type impurities.
  • an insulating film (interlayer insulating film) 46 is formed on the substrate 31 using a CVD method or the like, and the surface thereof is planarized using a CMP (Chemical Mechanical Polishing) method or the like as necessary. To do. Then, a contact hole 47 is formed in the insulating film 46 by using a photolithography technique and a dry etching technique, and then a plug 48 mainly composed of a tungsten (W) film is formed in the contact hole 47.
  • CMP Chemical Mechanical Polishing
  • the conductor film is patterned by using a photolithography technique and a dry etching technique to form the wiring M1.
  • an insulating film 49 is formed on the insulating film 46 so as to cover the wiring M1. Then, a through hole 50 is formed in the insulating film 49 using a photolithography technique and a dry etching technique.
  • a conductor film is formed on the insulating film 49 so as to fill the through hole 50, and then the conductor film is patterned by using a photolithography technique and a dry etching technique, so that the wiring M2 is formed. Form.
  • an insulating film (surface protective film) 52 is formed on the insulating film 49 so as to cover the wiring M2, and then an opening 53 is formed in the insulating film 49 using a photolithography technique and a dry etching technique. .
  • the wiring M2 is exposed from the opening 53, thereby forming the pad electrode PD including the drain pads PDD1, PDD2, PDD3, PDD4, PDD5, PDD6 and the gate pads PDG1, PDG2, PDG3, PDG4, PDG5, PDG6. Is done.
  • the back surface of the substrate 31 (the main surface opposite to the side on which the epitaxial layer 31b is formed) is polished as necessary, and then the source back electrode 54 is formed on the entire back surface of the substrate 31 by sputtering or the like. To do.
  • the wafer process for the semiconductor wafer (substrate 31) is completed through the steps so far (step S11 in FIG. 21).
  • the wafer process is also called a pre-process, and generally, various elements (in this case, LDMOSFETs) and wiring layers are formed on the main surface of the semiconductor wafer (substrate 31), and a surface protective film (and a pad)
  • LDMOSFETs low-mobility metal-oxidation-oxide
  • a probe inspection process is performed on the semiconductor wafer (substrate 31) (step S12 in FIG. 21).
  • a probe probe
  • a probe is applied (pressed) to the pad electrode PD of each chip region (ie, semiconductor chip CP1) of the semiconductor wafer (substrate 31), and each chip region (ie, semiconductor) of the semiconductor wafer (ie, semiconductor chip CP1).
  • the electrical characteristics of the chip CP1) are inspected (tested).
  • the electrical characteristics of each chip region (that is, the semiconductor chip CP1) of the semiconductor wafer can be inspected.
  • the chip region determined to be defective in the probe inspection process is not used as the semiconductor chip CP1 after dicing, and is determined to be a non-defective product in the probe inspection process.
  • the chip area is used as the semiconductor chip CP1 after dicing.
  • step S13 can also be regarded as a process of obtaining the semiconductor chip CP1 by cutting the semiconductor wafer (substrate 31).
  • the preparation process of the semiconductor chip CP1 in step S2 includes these steps S11, S12, and S13.
  • the separated semiconductor chip CP1 is picked up in step S3 and mounted (mounted, die-bonded) on the wiring board base 25 (wiring board 11) as shown in FIG.
  • 22 to 24 are plan views of main parts of the semiconductor chip CP1, and plan views of the LDMOSFET formation region REGL3 in the semiconductor chip CP1 are shown. 22 to 24 show plan views of the same region, FIG. 22 shows a plan layout of the active region AR1, and FIG. 23 shows a wiring M1 (that is, a source wiring M1S and a drain wiring). A planar layout of M1D and gate wiring M1G) is shown, and FIG. 24 shows a planar layout of wiring M2 (that is, source wiring M2S, drain wiring M2D, and gate wiring M2G). 22 to 24, the drain pad opening 53D and the gate pad opening 53G are indicated by dotted lines in order to make it easy to compare the planar positions of FIGS.
  • FIG. 22 is a plan view, but in order to make the drawing easier to see, in FIG. 22, the active region AR1 is hatched.
  • the sectional view taken along the line A3-A3 in FIG. 24 substantially corresponds to FIG. 18, the sectional view taken along the line A4-A4 in FIG. 24 substantially corresponds to FIG. 19, and the sectional view taken along the line A5-A5 in FIG. Substantially corresponds to FIG.
  • FIG. 25 to 28 are main part plan views of the semiconductor chip CP1, and are enlarged views of a region 55 surrounded by a one-dot chain line in FIG. 25 to 28 show plan views of the same region (that is, the region 55 in FIG. 22).
  • FIG. 25 shows a plan layout of the active region AR1
  • FIG. The planar layout of the n + -type drain region 39, the n + -type source region 41 and the p-type punching layer 44 is shown.
  • 27 shows a planar layout of the wiring M1 (that is, the source wiring M1S, the drain wiring M1D, and the gate wiring M1G)
  • FIG. 28 shows the wiring M2 (that is, the source wiring M2S, the drain wiring M2D, and the gate wiring M2G).
  • Planar layout is shown.
  • the gate electrode 35 is indicated by a dotted line in order to make it easy to compare the planar positions of FIGS. 27 also shows the position of the contact hole 47 located below the wiring M1 (that is, the source wiring M1S, the drain wiring M1D, and the gate wiring M1G), and FIG. 28 shows the wiring M2 (that is, the source wiring M2S and the drain wiring).
  • the position of the through hole 50 located below M2D and the gate wiring M2G) is also illustrated.
  • 25 to 28 are plan views. To make the drawing easier to see, in FIG. 25, the active region AR1 is hatched with dots, and in FIG. 26, the gate electrode 35 is hatched with dots. Is attached.
  • the wiring M1 that is, the source wiring M1S, the drain wiring M1D, and the gate wiring M1G
  • the wiring M2 that is, the source wiring M2S, the drain wiring M2D, and the gate wiring. M2G
  • M2G is hatched with dots.
  • the sectional view taken along line A1-A1 in FIG. 25 substantially corresponds to FIG. 16
  • the sectional view taken along line A2-A2 in FIG. 28 substantially corresponds to FIG.
  • the X direction shown in the plan views of FIGS. 22 to 28 is a direction parallel to the side (chip side) SD1 on the side where the LDMOSFET formation region REGL3 and the drain pad PDD3 are formed in the semiconductor chip CP1.
  • the Y direction shown in the plan views of FIGS. 22 to 28 is a direction intersecting the X direction, and preferably a direction orthogonal to the X direction.
  • the element isolation region 32 defines an active region AR1 as shown in FIG. 22 and FIG. 25, and the active region AR1 is surrounded by the element isolation region 32.
  • the drain region of the LDMOSFET first n ⁇ type drain region 37, second n ⁇ type drain region 38 and n + type drain region 39
  • source region n ⁇ type source region 40 and n + type
  • a source region 41 is formed, and a gate electrode 35 is formed via a gate insulating film 34.
  • the gate electrode 35 of the LDMOSFET extends in the Y direction.
  • the drain region of the LDMOSFET (the first n ⁇ -type drain region 37, the second n ⁇ -type drain region 38 and the n + -type drain region 39) is a region between the adjacent gate electrodes 35 in the active region AR1. Formed in the Y direction.
  • the source region (n ⁇ type source region 40 and n + type source region 41) of the LDMOSFET is formed in a region between the other adjacent gate electrodes 35 in the active region AR1 and extends in the Y direction. Yes.
  • the p-type punching layer 44 is formed in a region between the n + type source regions 41 of adjacent LDMOSFETs.
  • One unit cell 60 forms two unit LDMOSFETs (unit LDMOSFET element, LDMOSFET cell, unit MISFET element) 60a. That is, the unit of repetition is the unit cell 60, but each unit cell 60 is configured by two unit LDMOSFETs 60a having a common n + -type drain region 39 and symmetrical in the X direction. Since the LDMOSFET is a MISFET element, the unit LDMOSFET 60a can be regarded as a unit MISFET element.
  • the structure (layout) of the unit cell 60 is repeated in the X direction, so that a large number (a plurality of) unit LDMOSFETs 60a are formed (arranged), and the large number (a plurality of) unit LDMOSFETs 60a are connected in parallel.
  • the unit LDMOSFETs 60a are repeatedly arranged in the X direction, and the plurality of unit LDMOSFETs 60a arranged in the LDMOSFET formation region REGL3 are connected in parallel.
  • the gate electrodes 35 of the plurality of unit LDMOSFETs 60a in the LDMOSFET formation region REGL3 are connected to each other via the plug 48 and the gate wirings M1G and M2G.
  • the drain regions (n + -type drain regions 39) are electrically connected to each other via the plug 48 and the drain wirings M1D and M2D.
  • the source regions are connected to each other by the plug 48, the source wiring M1S, M2S, the p + type semiconductor region 45, p.
  • the die punching layer 44, the substrate 31 and the source back electrode 54 are electrically connected to each other.
  • the LDMOSFET formation region REGL3 corresponds to a region in which the MISFET elements constituting the amplification stage LDML3 are formed, and a plurality of unit LDMOSFETs 60a formed in the LDMOSFET formation region REGL3 are connected in parallel to form the amplification stage LDML3. Is configured. Therefore, the MISFET element constituting the amplification stage LDML3 is configured by connecting a plurality of unit LDMOSFETs 60a in parallel.
  • the drain wiring M1D is formed on the drain region (n + -type drain region 39) of the LDMOSFET formed in the active region AR1, and the plug 48 disposed on the n + -type drain region 39 is interposed.
  • the drain wiring M1D and the drain region (n + -type drain region 39) of the LDMOSFET thereunder are electrically connected.
  • the drain wiring M1D also extends in the Y direction on the active region AR1, but on the element isolation region 32 between the active regions AR1.
  • the drain wiring M1D is not formed.
  • the drain wiring M1D is an isolated pattern formed only on each active region AR1, the upper portion of the drain wiring M1D extends in the Y direction as shown in FIGS.
  • the drain wiring M2D of the uppermost layer is electrically connected to the drain wiring M2D via a via portion (a portion filling the through hole 50).
  • the uppermost drain wiring M2D is a wiring portion (drain wiring) extending in the Y direction across a plurality of active regions AR1 (drain regions) arranged in the Y direction. Part) M2D1, and a connecting wiring part (drain wiring part) M2D2 that extends in the X direction and connects one ends of the plurality of wiring parts M2D1.
  • the plurality of wiring parts M2D1 and the connection wiring part M2D2 are integrally formed to constitute the drain wiring M2D. Accordingly, the drain wiring M2D has a so-called comb-like pattern.
  • Each wiring portion M2D1 extends in the Y direction so as to be positioned on each drain region of the plurality of unit LDMOSFETs 60a formed in the LDMOSFET formation region REGL3, and a plurality of unit LDMOSFETs 60a are connected via the drain wiring M1D and the plug 48. Are electrically connected to each drain region.
  • a drain pad opening 53D is formed above the connection wiring portion M2D2 of the drain wiring M2D, and the drain pad opening 53D is connected to the connection wiring portion M2D2 in a plane (in a plan view).
  • the wiring portion M2D2 has a larger area pattern than the drain pad opening 53D.
  • the drain pad PDD3 is formed by the drain wiring M2D exposed from the drain pad opening 53D, that is, the connection wiring M2D2 exposed from the drain pad opening 53D.
  • the drain region (n + -type drain region 39) of each unit cell 60 is pulled up to the wiring portion M2D1 of the uppermost drain wiring M2D through the plug 48 and the drain wiring M1D.
  • the drain wiring M2D is electrically connected to each other by the connecting wiring portion M2D2.
  • the drain pad PDD3 is formed by exposing a part of the drain wiring M2D (connection wiring portion M2D2) from the drain pad opening 53D.
  • the source region of LDMOSFET formed in the active region AR1 (n + -type source region 41) electrically connected to have been the source wiring M1S is, the source region (n + -type source region of the active region AR1 41) and the p + type semiconductor region 45.
  • the source wiring M1S since the source region extends in the Y direction, the source wiring M1S also extends in the Y direction on the active region AR1, but in the element isolation region 32 between the active regions AR1, The source wiring M1S is not formed. Therefore, the source line M1S is an isolated pattern formed only on each active region AR1, but as shown in FIGS. 16, 27, 28, etc., the upper part of the source line M1S extends in the Y direction.
  • the uppermost source wiring M2S is electrically connected to the source wiring M2S via a via portion (a portion filling the through hole 50).
  • the uppermost source line M2S extends in the Y direction across a plurality of active regions AR1 (source regions) arranged in the Y direction.
  • the source lines M2S are not connected to each other.
  • the pad electrode PD is not connected to the source wiring M2S because the source of the LDMOSFET is drawn from the source back electrode 54 on the back surface of the substrate 31 through the p-type punching layer 44 and the like. It is.
  • the gate electrode 35 extends in the Y direction and is buried in the contact hole 47 at a portion located on the element isolation region 32 around or between the active regions AR1.
  • the gate wiring M1G is electrically connected through the plug 48.
  • the gate wiring M1G extends in the X direction and the Y direction on the element isolation region 32 around and between the active regions AR1.
  • each gate electrode 35 extending in the Y direction is electrically connected to a portion extending in the X direction of the gate wiring M1G via a plug 48, and extends in the X direction of the gate wiring M1G.
  • the gate electrode 35 is electrically connected to each other via the gate wiring M1G by integrally connecting the portion to be extended and the portion extending in the Y direction.
  • the gate wiring M1G is a wiring in the same layer as the drain wiring M1D and the source wiring M1S. However, as shown in FIGS. 23 and 27, the drain wiring M1D and the source wiring M1S are formed on the element isolation region 32 between the active regions AR1. Is not formed, and the gate wiring M1G extends in the X direction. Therefore, the drain wiring M1D and the source wiring M1S extending in the Y direction are arranged between the portions of the gate wiring M1G extending in the X direction.
  • the gate wiring M1G is located on the opposite side of the drain wiring M2D from the connection wiring portion M2D2 (the side far from the connection wiring portion M2D2) and extends in the X direction.
  • the gate wiring M2G extending in the X direction on the element isolation region 32 is electrically connected to the via portion of the gate wiring M2G (the portion filling the through hole 50). That is, at least a portion of the gate wiring M2G extending in the X direction overlaps with the portion of the gate wiring M1G extending in the X direction in a plane, and the via portion (through hole) of the gate wiring M2G in the overlapping region. 50), the upper gate wiring M2G and the lower gate wiring M1G are electrically connected.
  • the gate electrode 35 of each unit LDMOSFET 60a is pulled up to the gate wiring M1G via the plug 48, and this gate wiring M1G is pulled up to the uppermost gate wiring.
  • the gate wiring M2G is connected to M2G, extends to the gate pad opening 53G, and a part of the gate wiring M2G is exposed from the gate pad opening 53G, thereby forming the gate pad PDG3.
  • FIG. 29 is a plan view of an essential part of the semiconductor chip CP1, and shows the same regions as those in FIGS. However, FIG. 29 shows the layout (arrangement) of the LDMOSFET formation region REGL3, the connection wiring portion M2D2 of the drain wiring M2D, the drain pad opening 53D, the gate wiring M2G, and the gate pad opening 53G, and other components. Is omitted. Accordingly, the source wiring M2S and the wiring portion M2D1 of the drain wiring M2D shown in FIG. 24 are not shown in FIG. Note that FIG.
  • FIG. 29 is a plan view, but the LDMOSFET formation region REGL3, the gate wiring M2G, and the connection wiring portion M2D2 of the drain wiring M2D are hatched for easy understanding of the drawing.
  • the gate pad opening 53G and the drain pad opening 53D are indicated by dotted lines, and the portion of the gate wiring M2G exposed from the gate pad opening 53G is the gate pad PDG3.
  • a portion of the drain wiring M2D (connection wiring portion M2D2) exposed from the opening 53D is the drain pad PDD3.
  • 30 and 31 are main part plan views of the power amplification module PA1 during the manufacturing process.
  • FIG. 30 shows a step after mounting the semiconductor chip CP1 on the wiring board matrix 25 (wiring board 11).
  • FIG. 31 shows the stage immediately after the wire bonding process (wire WA connection process) in step S5.
  • FIG. 32 is a perspective view (bird's eye view) of a main part during the manufacturing process of the power amplification module PA1, and a stage immediately after performing the wire bonding process (connection process of the wire WA) of step S5 to the semiconductor chip CP1 (that is, FIG. 31). The same stage) is shown.
  • 30 and 31 show a region corresponding to the region 56 surrounded by the two-dot chain line in FIG. 15, and FIG. 32 shows a part of FIG.
  • FIG. 33 is a plan view of the main part of the semiconductor chip CP101 of the first comparative example, and corresponds to FIG. 29 of the present embodiment.
  • the LDMOSFET formation region REGL103, the drain wiring M2D101, the drain pad opening 153D, the gate wiring M2G101, and the gate pad opening 153G are respectively the LDMOSFET formation region REGL3 and the drain wiring in this embodiment. This corresponds to M2D, drain pad opening 53D, gate wiring M2G, and gate pad opening 53G.
  • FIG. 34 and FIG. 35 are main part plan views during the manufacturing process of the power amplifying module of the first comparative example, and correspond to FIG. 30 and FIG. 31 of the present embodiment, respectively.
  • FIG. 34 shows a stage after mounting the semiconductor chip CP101 of the first comparative example on the wiring board base 25 and immediately before performing the wire bonding process (connection process of the wire WA101).
  • the stage immediately after performing the wire bonding process (connection process of the wire WA101) is shown.
  • FIG. 36 is a perspective view (bird's eye view) of the main part during the manufacturing process of the power amplifying module of the first comparative example, and corresponds to FIG. 32 of the present embodiment.
  • FIG. 36 shows a stage immediately after the wire bonding process (connection process of the wire WA101) to the semiconductor chip CP101 of the first comparative example (that is, the same stage as FIG. 35).
  • the gate pads PDG101, PDG102, PDG103, the drain pads PDD101, PDD102, PDD103, and the wire WA (bonding wire) 101 shown in FIGS. 34 to 36 are the gate pads PDG1, PDG2, PDG3 in the present embodiment, respectively. This corresponds to the drain pads PDD1, PDD2, PDD3 and the wire WA.
  • a plurality of are formed on the drain wiring M2D101 electrically connected to the drain of the LDMOSFET formed in the LDMOSFET formation region REGL103.
  • seven drain pad openings 153D are provided, and the drain pad PDD103 is formed by the drain wiring M2D101 exposed from each drain pad opening 153D. That is, in the semiconductor chip CP101 of the first comparative example, seven drain pads PDD103 are formed with respect to the LDMOSFET formation region REGL103, and these seven drain pads PDD103 are arranged in the X direction with a predetermined interval. Is arranged in.
  • one wire WA101 is connected to each of the seven drain pads PDD103. That is, the number of wires WA connected to one drain pad PDD103 is one. Therefore, in the semiconductor chip CP101 of the first comparative example, seven drain pads PDD103 are provided for the LDMOSFET formation region REGL103, and a total of seven wires WA101 are connected to these seven drain pads PDD103.
  • a probe inspection is performed after the wafer process.
  • a probe (probe) for inspection is pressed against the pad electrode in each chip area of the semiconductor wafer.
  • the pad electrode in each chip region becomes the pad electrode of each semiconductor chip after dicing of the semiconductor wafer.
  • the pad electrode is deformed in the area where the probe is pressed (contacted). Therefore, the probe is pressed against the pad electrode where the probe is pressed in the probe inspection.
  • Probe marks are formed (contacted) marks.
  • drain pads PDD103 are formed in the LDMOSFET formation region REGL103, and the wire WA101 is connected to each drain pad PDD103.
  • a probe mark PRB101 is formed on any of the seven drain pads PDD103 by pressing the probe in the probe inspection process.
  • FIG. 37 is an explanatory diagram (plan view) showing the probe mark PRB101 formed on the drain pad PDD103 of the semiconductor chip CP101 of the first comparative example and the connection region RGW101 of the wire WA101 on the drain pad PDD103.
  • FIG. 37 shows the drain pad PDD103 before the probe test, and (b) shows a probe (probe for inspection) on two drain pads PDD103 of the seven drain pads PDD103 in the probe test. A state in which the probe mark PRB101 is formed by pressing the needle) is schematically shown.
  • (c) shows a connection region RGW101 of the wire WA101 when the wire WA101 is connected to the drain pad PDD103 in the wire bonding step.
  • the first bonding is performed in the wire bonding process.
  • the bonding is performed on the pad electrodes (PDD3 and PDD103) of the chips CP1 and CP101, and the second bonding is performed on the substrate-side terminal TE.
  • ball bonding is preferably used for the wire bonding. For this reason, at the time of wire bonding, a metal ball at the tip of the wire (a gold ball when the wire is a gold wire) is connected to each pad electrode (PDD3, PDD103) of the semiconductor chips CP1, CP101 (specifically, , Crushed and connected or crimped).
  • a connection area RGW101 of the wire WA101, a connection area RGW201 of the wire WA101, which will be described later, and a connection area RGW of the wire WA are areas to which the metal balls (gold balls when the wires are gold wires) are connected.
  • the wires WA and WA101 are preferably wires (gold wires) made of gold, but when the gold wires (WA and WA101) are connected to the pad electrodes (PDD3 and PDD103) mainly made of aluminum (Al).
  • the gold ball at the tip of the wire (WA, WA101) is alloyed with the aluminum of the pad electrode (PDD3, PDD103), so that the wire (the gold ball at the tip thereof) is connected to the pad electrode (PDD3, PDD103).
  • the pad electrode (PDD3, PDD103) when connecting the wire (the metal ball at the tip of the wire) to the pad electrode (PDD3, PDD103), it is important that the surface state of the pad electrode (PDD3, PDD103) serving as the base is uniform. It is preferable that the pad electrode (PDD3, PDD103) to be formed has high flatness. If the wire (the metal ball at the tip thereof) is connected to the flat surface of the pad electrode, the connection strength of the wire to the pad electrode can be increased. However, since the semiconductor chips (CP1 and CP101) are used only for the production of a semiconductor device such as a power amplification module, contact of the probe to the pad electrodes (PDD3 and PDD103) by probe inspection is avoided. Therefore, probe marks (PRB, PRB101) are generated on the pad electrodes (PDD3, PDD103) to be wire-bonded.
  • connection region RGW101 of the wire WA101 overlaps the probe mark PRB101 as shown in FIG.
  • the connection strength between the PDD 103 and the wire WA101 is reduced.
  • the connection region RGW101 of the wire WA101 overlaps the probe mark PRB101 at two drain pads PDD103 of the seven drain pads PDD103, and the connection strength of the wire WA101 decreases at the two drain pads PDD103.
  • the connection region RGW101 of the wire WA101 becomes the probe mark PRB101 during wire bonding. This is because the wire (the metal ball at the tip thereof) is connected to a non-flat region due to the probe mark, and the connection strength of the wire WA101 is reduced. The decrease in the connection strength of the wire WA101 decreases the reliability of the manufactured power amplification module.
  • An example of the area of the probe mark PRB101 is, for example, about 40% of the area of the connection region RGW101 of the wire WA101.
  • FIG. 38 is an explanatory diagram (plan view) showing the probe mark PRB201 formed on the drain pad PDD203 of the semiconductor chip of the second comparative example and the connection region RGW201 of the wire WA101 in the drain pad PDD203.
  • FIG. 38 shows the drain pad PDD 203 before the probe test, and (b) shows a probe (probe for inspection) on two drain pads PDD 203 of the seven drain pads PDD 203 in the probe test.
  • a state in which the probe mark PRB201 is formed by pressing the needle) is schematically shown.
  • FIG. 38 is an explanatory diagram (plan view) showing the probe mark PRB201 formed on the drain pad PDD203 of the semiconductor chip of the second comparative example and the connection region RGW201 of the wire WA101 in the drain pad PDD203.
  • (c) shows a connection region RGW201 of the wire WA101 when the wire WA101 is connected to the drain pad PDD203 in the wire bonding step.
  • the drain pad PDD203 of the semiconductor chip of the second comparative example of FIG. 38 corresponds to the drain pad PDD103 of the semiconductor chip CP101 of the first comparative example of FIG.
  • the drain pad PDD203 of the semiconductor chip of the second comparative example shown in FIG. 38 has a larger dimension in the Y direction than the drain pad PDD103 of the semiconductor chip CP101 of the first comparative example. For this reason, in the semiconductor chip of the second comparative example, even if the wire WA101 is connected to the drain pad PDD203 to which the probe is pressed in the probe inspection in the wire bonding process, as shown in FIG. 38, the connection of the wire WA101 is performed.
  • the region RGW201 and the probe mark PRB201 can be shifted in the Y direction so that the connection region RGW201 of the wire WA101 and the probe mark PRB201 do not overlap.
  • the drain pad PDD203 of the semiconductor chip of the second comparative example shown in FIG. 38 is used to shift the position of the connection region RGW201 of the wire WA101 and the probe mark PRB201 in the drain pad PDD203 in the Y direction. It is necessary to enlarge the dimension in the Y direction. Therefore, the area required for the LDMOSFET formation region REGL103 and the drain pad PDD203 and the gate pad connected thereto is larger than that of the semiconductor chip CP101 of the first comparative example because the size of the drain pad PDD203 in the Y direction is larger. The semiconductor chip of the second comparative example to which the PDD 203 is applied becomes larger.
  • the semiconductor chip of the second comparative example to which the drain pad PDD203 is applied has a larger chip size (particularly the dimension in the Y direction) than the semiconductor chip CP101 of the first comparative example because the dimension of the drain pad PDD203 in the Y direction is larger. End up. This reduces the number of semiconductor chips that can be obtained from a single wafer, leading to an increase in manufacturing cost, and miniaturization of semiconductor devices (here, power amplification modules) on which semiconductor chips are mounted (planar dimensions). (Reduction) is disadvantageous.
  • a drain pad provided for the LDMOSFET formation region REGL3 that is, a drain pad electrically connected to the drain of the LDMOSFET formed in the LDMOSFET formation region REGL3.
  • a drain pad PDD3 having a larger dimension in the X direction than a dimension in the Y direction is formed.
  • the dimension in the X direction of the drain pad PDD3 is at least twice the dimension in the Y direction of the drain pad PDD3, and the drain pad PDD3 has a substantially rectangular planar shape (however, the rectangular corners are rounded). Can also be held).
  • One of the main features of the present embodiment is that a plurality of wires WA are connected to the one drain pad PDD3.
  • the drain pad PDD3 has a rectangular planar shape, and the long side direction (X direction) of the rectangle is the side (chip side) on the surface of the semiconductor chip CP1 where the drain pad PDD3 is disposed.
  • the direction is preferably parallel to SD1. That is, of the four sides (chip sides) SD1, SD2, SD3, and SD4 of the semiconductor chip CP1, the drain pad PDD3 is aligned in a direction parallel to the chip side (here, the side SD1) located closest to the drain pad PDD3. It is preferable to set the long side direction.
  • the drain pads PDD1, PDD2, and PDD3 and the gate pads PDG1, PDG2, and PDG3 are arranged along the side SD2 instead of the side SD1, and the LDMOSFET formation regions REGL1, REGL2, and REGL3 are When arranged on the side SD2 side instead of the SD1 side, the long side direction (X direction) of the drain pad PDD3 is parallel to the side SD2.
  • the drain pad PDD3 in FIGS. 29 to 32 is connected to the seven drain pads PDD103 arranged in the X direction in FIGS. It corresponds to. That is, in FIGS. 33 to 36, seven drain pads PDD103 and a region between drain pads PDD103 adjacent in the X direction are added to form one drain pad as a whole. It corresponds to PDD3.
  • FIG. 39 is an explanatory view (plan view) showing the probe mark PRB formed on the drain pad PDD3 of the semiconductor chip CP1 of this embodiment and the connection region RGW of the wire WA in the drain pad PDD3.
  • FIG. 39 shows the drain pad PDD3 before the probe test, and (b) shows a probe (probe for inspection) at two locations on the drain pad PDD3 in the probe test (corresponding to step S12). A state in which the probe mark PRB is formed by pressing the needle) is schematically shown.
  • (c) shows a connection region RGW of the wire WA when the wire WA is connected to the drain pad PDD3 in the wire bonding step (corresponding to step S5).
  • FIG. 40 is an explanatory diagram showing the probe mark PRB formed on the drain pad PDD3 of the semiconductor chip CP1 of this embodiment and the connection region RGW of the wire WA in the drain pad PDD3. ) Shows an enlarged view of a region 57 surrounded by a two-dot chain line in FIG. 39, and FIG. 40 (b) shows a cross-sectional view taken along line B1-B1 of FIG. 40 (a).
  • FIG. 40A is a plan view, but the probe mark PRB and the connection region RGW of the wire WA are hatched for easy viewing of the drawing.
  • FIG. 41 is a cross-sectional view showing a state in which the probe (probe) 58 for inspection is pressed against the drain pad PDD3 in the probe inspection (corresponding to step S12 above), and FIG. 42 shows the probe 58 in FIG.
  • FIG. 19 is a cross-sectional view showing a state in which a probe mark PRB is formed on the drain pad PDD3 by being pressed against the drain pad PDD3, and each shows a cross-section corresponding to FIG.
  • the surface (upper surface) of the drain pad PDD3 is substantially flat before the probe test.
  • FIG. 41 when the probe 58 is pressed against the drain pad PDD3 in the probe test (step S12), as shown in FIG.
  • the conductor film constituting the M2S is deformed to form a depression (concave part), and in some cases, a convex part is formed together with the depression (concave part).
  • a probe mark PRB is formed by a portion where the flatness is lost (a portion where a recess is formed or a portion where a recess and a projection are formed).
  • a plurality of wires WA are connected to the drain pad PDD3 and, as can be seen from FIGS. 39 and 40, a plurality of wires WA are connected in the drain pad PDD3.
  • the probe mark PRB is formed between the regions RGW. That is, in the pad electrode PDD3, a plurality of (here, seven) positions where the probe is applied (contacted) in the probe inspection in step S12 (that is, the position where the probe mark PRB is formed) are formed in the wire bonding step in step S5. ) Between the positions where the wire WA is connected. That is, in the drain pad PDD3, the region where the probe is pressed in the probe inspection (that is, the probe mark PRB) is located between the connection region RGW of a certain wire WA and the connection region RGW of the adjacent wire WA. is there.
  • the dimension in the X direction of the drain pad PDD3 is larger than the dimension in the Y direction of the drain pad PDD3, and a plurality of (in this case, seven) wires WA are connected to the drain pad PDD3.
  • the connection regions RGW of the wires WA in the drain pad PDD3 are aligned (arranged) in the X direction.
  • the connection regions RGW of the wires WA are adjacent to each other in the X direction, and probe traces are connected between the connection regions RGW adjacent in the X direction.
  • the PRB that is, the position where the probe is applied in the probe inspection in step S12
  • the connection region RGW of the adjacent wires WA and the probe mark PRB between the connection regions RGW of the adjacent wires WA are arranged in the X direction.
  • a plurality of wires WA are connected to the drain pad PDD3, and a region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) is located between the connection regions RGW of the plurality of wires WA in the drain pad PDD3.
  • the region where the probe is pressed by the probe inspection (that is, the probe mark PRB) is located between the connection regions RGW of the adjacent wires WA, so that the connection of the wire WA is performed in the drain pad PDD3.
  • the overlap between the region RGW and the probe mark PRB can be reduced, and preferably, the connection region RGW of the wire WA and the probe mark PRB can be prevented from overlapping (not overlapping in plan view).
  • the wire WA can be connected to the flat portion of the drain pad PDD3 (the portion where the probe mark PRB is not formed), so that the connection strength between the drain pad PDD3 and the wire WA can be improved. For this reason, the reliability of manufactured power amplification module PA1 can be improved.
  • a region where the probe is pressed in the probe inspection (that is, the probe mark PRB) is positioned between the connection regions RGW of the adjacent wires WA.
  • the planar area for securing does not contribute to an increase in the chip size of the semiconductor chip CP1, and is advantageous in terms of reducing the planar dimension (planar area) of the semiconductor chip CP1.
  • an empty space between the connection regions RGW of the adjacent wires WA is assigned to a region where the probe is pressed in the probe inspection (that is, a region where the probe mark PRB is formed). That is, in the semiconductor chip CP101 of the first comparative example of FIGS. 33 to 37, the region between the adjacent drain pads PDD103 (the region where the insulating film 52 as the surface protective film is formed) In the semiconductor chip CP1 of the present embodiment shown in FIGS.
  • a part of the drain pad PDD3 is used, and this is a region where the probe is pressed in the probe inspection (that is, the region where the probe mark PRB is formed).
  • a region that is not used as a pad electrode or a circuit region that is, a region between adjacent drain pads PDD103
  • FIGS. 32, 39 and 40 it is used as a region where the probe is pressed in the probe inspection (that is, a region where the probe mark PRB is formed).
  • the connection region RGW201 of the wire WA101 and the probe mark PRB201 are shifted in the Y direction. It is necessary to enlarge the probe mark PRB201.
  • the semiconductor chip CP1 of the present embodiment since the probe mark PRB is arranged between the connection regions RGW of the wires WA101 adjacent in the X direction, the dimension of the drain pad PDD3 in the Y direction is the same as that of the wire WA101. It is only necessary to set a dimension that can secure the connection region RGW, and it is not necessary to increase the dimension in the Y direction of the drain pad PDD3 in consideration of the area of the probe mark PRB.
  • the dimension in the Y direction of the drain pad PDD3 of the semiconductor chip CP1 of the present embodiment can be approximately the same as the dimension in the Y direction of the drain pad PDD103 in the semiconductor chip CP101 of the first comparative example. It can be made smaller than the dimension in the Y direction of the drain pad PDD203 in the semiconductor chip of the second comparative example. Therefore, in the present embodiment, the planar dimension (planar area) of the semiconductor chip CP1 can be reduced compared with the case where the drain pad PDD203 of FIG. 38 is applied, and the manufacturing cost can be reduced and the semiconductor chip CP1 can be manufactured.
  • the mounted semiconductor device here, power amplification module PA1 can be reduced in size (reduction in planar dimensions).
  • the connection strength between the drain pad PDD3 and the wire WA can be improved, and the manufactured power amplification The reliability of the module PA1 can be improved.
  • the planar dimension (planar area) of the semiconductor chip CP1 can be reduced. The manufacturing cost can be reduced, and the semiconductor device (here, the power amplification module PA1) on which the semiconductor chip CP1 is mounted can be downsized (planar dimensions can be reduced).
  • the drain pad PDD3 has a long planar shape along the chip side (here, the side SD1) on the side where the drain pad PDD3 is disposed, the dimension of the drain pad PDD3 in the short side direction (Y direction) (
  • the length L1 depends on the size of the metal ball at the tip of the wire WA to be connected, but can be, for example, about 65 ⁇ m (the dimension L1 is shown in FIG. 40).
  • the connection pitch (connection interval) P1 of the wires WA in the drain pad PDD3 (the connection pitch P1 is shown in FIG. 40) is set to 1 of the dimension L1 in the short side direction of the drain pad PDD3 in consideration of the arrangement of the probe marks PRB.
  • the diameter L2 (diameter L2 is a figure of the connection region RGW of the wire WA from the viewpoint of area saving). 40) is set to be 60% or more of the dimension L1 in the short side direction of the drain pad PDD3 (that is, L2 ⁇ L1 ⁇ 0.6), and the dimension L1 in the short side direction of the drain pad PDD3 is set. It is preferable.
  • the thickness of the conductor film (corresponding to the source line M2S) constituting the drain pad PDD3 can be set to, for example, about 0.3 to 3 ⁇ m.
  • the probe mark PRB is arranged between the connection regions RGW of the wires WA adjacent in the X direction, the probe mark PRB is partially overlapped with the connection region RGW of the wire WA. Even if it exists, since the overlapping area of the probe mark PRB and the connection region RGW of the wire WA can be reduced, the effect of improving the connection strength of the wire WA to the drain pad PDD3 can be obtained.
  • the probe mark PRB is arranged between the connection regions RGW of the wires WA adjacent in the X direction, but the probe mark PRB overlaps with the connection region RGW of the wire WA. It is more preferable that they are not overlapped (in a plan view).
  • the plurality of wires WA are connected to the drain pad PDD3 at a position that does not overlap the probe mark PRB in plan view. Since the probe mark PRB and the connection region RGW of the wire WA do not overlap (does not overlap in plan view), the wire WA is connected to the drain pad PDD3 in a flat portion where the probe mark PRB is not formed.
  • the connection strength of the wire WA to the drain pad PDD3 can be improved more accurately, and the reliability of the power amplification module PA1 can be improved more accurately.
  • connection regions RGW of the plurality of wires WA in the drain pad PDD3 are arranged in a line (on a straight line). That is, in the wire bonding process of step S5, it is preferable that the positions where the plurality of wires WA are connected in the drain pad PDD3 are arranged in a line (on a straight line). More specifically, the connection regions RGW of the plurality of wires WA in the drain pad PDD3 are preferably arranged in a line (on a straight line) along the long side direction (X direction) of the drain pad PDD3.
  • connection region RGW of the wires WA is not arranged in a so-called staggered arrangement (without shifting in the Y direction), as shown in FIGS.
  • the connection regions RGW of the plurality of wires WA are arranged in a line (on a straight line) in the X direction (that is, the long side direction of the drain pad PDD3).
  • planar dimension (planar area) of the semiconductor chip CP1 can be reduced, the manufacturing cost can be reduced, and the semiconductor device (here, the power amplification module PA1) on which the semiconductor chip CP1 is mounted is reduced (the planar dimension is reduced). ).
  • FIG. 31 In FIG. 31, FIG. 32 and FIG. 39, seven wires WA are connected to the drain pad PDD3.
  • the number of wires WA connected to the drain pad PDD3 is not limited to seven. Or more).
  • the number of regions in which the probe is pressed against the drain pad PDD3 in the probe inspection process that is, the number of probe marks PRB formed on the drain pad PDD3, or the number of probes pressed against the drain pad PDD3 in the probe inspection process).
  • FIG. 39 the number of regions in which the probe is pressed against the drain pad PDD3 in the probe inspection process (that is, the number of probe marks PRB formed on the drain pad PDD3, or the number of probes pressed against the drain pad PDD3 in the probe inspection process). ) Is two (two places), but is not limited to this, and may be one or more (one or
  • the region between the connection regions RGW of the wires WA in the drain pad PDD3 includes a region where the probe mark PRB is arranged and a region where the probe mark PRB is not arranged.
  • the region where the probe mark PRB is arranged there are six locations between the seven connection regions RGW.
  • a region where the probe is pressed in the probe inspection ie, the probe mark PRB
  • the other ends of the plurality of wires WA whose one ends are connected to the drain pad PDD3 are connected to one terminal TE of the wiring substrate 11.
  • One end of the WA may be connected to the drain pad PDD3, and the other ends of the plurality of wires may be connected to the plurality of terminals TE, respectively.
  • the resistance component due to the wires WA can be further reduced as compared with the case of two wires WA (that is, the power loss reduction effect can be further increased).
  • the number of regions where the probe is pressed against the drain pad PDD3 in the probe inspection process that is, the number of probe marks PRB formed on the drain pad PDD3
  • the reliability of the probe inspection is further improved than the case of one. Can be improved.
  • the drain pad PDD3 electrically connected to the drain of the LDMOSFET formation region REGL3 is connected to the connection region RGW of the wire WA and the region where the probe is pressed in the probe inspection (that is, the probe mark PRB).
  • connection strength between the drain pad PDD6 and the wire WA can be improved, and the reliability of the power amplification module PA1 can be improved.
  • chip size of the semiconductor chip CP1 can be suppressed, so that the manufacturing cost can be reduced and the semiconductor device (here, the power amplification module PA1) on which the semiconductor chip CP1 is mounted can be downsized (planar dimensions are reduced). it can.
  • the semiconductor chip CP1 has a plurality of power amplifier circuits (in this case, the amplifier stages LDML1, LDML2, and LDML3 and the amplifier stages LDMH1, LDMH2, and LDMH3) connected in multiple stages.
  • the pad electrodes PD connected to the outputs of the semiconductor elements (here, LDMOSFETs) constituting the amplification stages (LDML3, LDMH3) are drain pads PDD3, PDD6.
  • the pad electrode (drain pad PDD3, PDD6) connected to the output of the semiconductor element (here LDMOSFET) constituting the final stage power amplification circuit (here amplification stage LDML3, LDMH3) has a large output current
  • the number of wires WA to be connected to be plural (increase) the effect of reducing the resistance component by the wires WA and reducing the power loss is extremely great. Therefore, like the drain pad PDD3 in FIGS. 39 and 40, a plurality of wires WA are connected to the pad electrode PD, and a probe inspection is performed between the connection regions RGW of the plurality of wires WA in the pad electrode PD.
  • the above-described feature of locating the region where the is pressed is particularly effective when applied to the pad electrodes (here, drain pads PDD3 and PDD6) connected to the output of the power amplifier circuit in the final stage. .
  • the pad electrodes (drain pads PDD3 and PDD6) connected to the output are rectangular. Even if a plurality of wires WA are connected to the pad electrode, it is difficult to increase the area of the semiconductor chip CP1.
  • pad electrodes PD (here, drain pads PDD1, PDD2) connected to the outputs of the semiconductor elements (here, LDMOSFETs) constituting the amplification stages LDML1, LDML2, LDMH1, and LDMH2 prior to the last amplification stages LDML3 and LDMH3.
  • PDD4, PDD5 when connecting a plurality of wires WA to the pad electrode PD, the features of the drain pad PDD3 of FIGS. 39 and 40 can be applied. That is, also in the pad electrode PD, the region where the probe is pressed in the probe inspection (that is, the probe mark PRB) can be positioned between the connection regions RGW of the plurality of wires WA. For example, as shown in FIGS.
  • a plurality (two in the case of FIG. 14) of wires WA are connected to the drain pad PDD2, and also in this drain pad PDD2, like the drain pad PDD3 in FIG. Between the connection regions RGW of the plurality of wires WA, a region where the probe is pressed in the probe inspection (that is, the probe mark PRB) can be positioned. Further, as shown in FIGS. 14 and 15, a plurality (two in the case of FIG. 14) of wires WA are connected to the drain pad PDD5, and also in this drain pad PDD5, as in the drain pad PDD3 of FIG. Between the connection regions RGW of the plurality of wires WA, a region where the probe is pressed in the probe inspection (that is, the probe mark PRB) can be positioned.
  • the pad electrode PD (here, drain pad) connected to the output of the semiconductor element (here, LDMOSFET) constituting the power amplifier circuit.
  • a plurality of wires WA are connected to any one of PDD1, PDD2, PDD3, PDD4, PDD5 and PDD6).
  • region (namely, probe mark PRB) which pressed the probe by the probe test
  • FIG. 43 is an explanatory diagram of the first modified example and corresponds to FIG. 39 described above.
  • (a) shows the drain pad PDD3 before the probe inspection
  • (b) shows the probe (probing for inspection) at two locations on the drain pad PDD3 in the probe inspection (corresponding to step S12).
  • a state in which the probe mark PRB is formed by pressing the needle) is schematically shown.
  • (c) shows a connection region RGW of the wire WA when the wire WA is connected to the drain pad PDD3 in the wire bonding step (corresponding to step S5).
  • three or more wires WA are connected to the drain pad PDD3 and are connected at equal intervals. That is, in the drain pad PDD3, a plurality of wires WA are connected at an equal pitch (equal interval), and an interval (a distance in the X direction) between the connection region RGW of the wire WA and the connection region RGW of the adjacent wire WA.
  • the pitch P1) is the same for any wire WA connected to the drain pad PDD3. This is because in the wire bonding step of step S5, three or more wires WA are connected to the drain pad PDD3, and these three or more wires WA are connected to the drain pad PDD3 at equal pitches (equal intervals). is there.
  • a region where the probe mark PRB is arranged and a region where the probe mark PRB is not arranged are mixed.
  • the plurality of wires WA are not connected at an equal pitch (equal interval). That is, in the drain pad PDD3, the interval (pitch, distance) P5 between the connection regions RGW between which the probe marks PRB are disposed is the interval (pitch, distance) between the connection regions RGW between which the probe marks PRB are not disposed. Distance) is larger than P6 (that is, P5> P6).
  • intervals P5 and P6 are shown in FIG. 43, and the interval P5 indicates a plurality of wires WA connected to the drain pad PDD3 in the connection region RGW of adjacent wires WA with the probe mark PRB interposed therebetween. It corresponds to the interval (pitch, distance).
  • the interval P6 corresponds to the interval (pitch, distance) between the connection regions RGW of adjacent wires WA without interposing the probe mark PRB between the plurality of wires WA connected to the drain pad PDD3.
  • the interval between the connection regions RGW of the wires WA is set to a wire bonding apparatus (bonding tool).
  • Bonding tool can be set to the minimum interval (pitch) that needs to be set, and the number of wires WA connected to the pad electrode PD (here, the drain pad PDD3) can be efficiently increased.
  • the resistance component by wire WA can be reduced efficiently and a power loss can be reduced efficiently.
  • the dimension of the pad electrode PD in the long side direction can be suppressed, and the chip size of the semiconductor chip CP1 can be reduced.
  • the interval P5 between the connection regions RGW of the wires WA between which the probe traces PRB are arranged is arranged, and the probe trace PRB is arranged therebetween.
  • P5> P6 the distance between the connection areas RGW of the unwired wires WA is larger (P5> P6), the following advantages can be obtained. That is, if the interval P5 is too small, the connection region RGW of the wire WA and the probe mark PRB overlap with each other, and the connection strength of the wire WA tends to decrease.
  • the connection region RGW of the wire WA and the probe mark PRB do not overlap with each other, and the connection strength of the wire WA does not decrease.
  • the pad electrode PD Here, the number of wires WA that can be connected to the drain pad PDD3) decreases, or the size of the pad electrode PD (here, the drain pad PDD3) in the long side direction (here, the X direction) increases. For this reason, by making the interval P5 larger than the interval P6 (P5> P6), the connection region RGW of the wire WA and the probe trace PRB are more accurately suppressed or prevented and the connection strength of the wire WA is improved.
  • the number of wires WA that can be connected to the pad electrode PD can be increased, and the dimension of the pad electrode PD in the long side direction can also be increased. Can be suppressed.
  • the number of wires WA that can be connected to the pad electrode PD (here, the drain pad PDD3) is increased while the overlapping of the connection region RGW of the wire WA and the probe mark PRB is more accurately suppressed or prevented.
  • the resistance component due to the wire WA can be efficiently reduced, the power loss can be efficiently reduced, and the size of the pad electrode PD in the long side direction is also suppressed, so that the chip size of the semiconductor chip CP1 can be reduced. Reduction is also possible.
  • FIG. 44 is a plan perspective view of the power amplification module PA1 using the semiconductor chip CP1a of the second modified example instead of the semiconductor chip CP1, and shows a state where the sealing resin 13 is seen through.
  • FIG. 45 is a partially enlarged plan view of FIG. 44, in which the semiconductor chip CP1a mounted on the wiring board 11 and its peripheral region are enlarged.
  • FIG. 46 is a plan view in which the wires WA and the substrate-side terminals TE are omitted from FIG. 45, and corresponds to a plan view (planar layout diagram) of the semiconductor chip CP1a.
  • the semiconductor chip CP1 has two systems of power amplification circuits LDML and LDMH.
  • the semiconductor chip CP1a of the second modified example has two systems of power amplification in addition to the two systems of power amplification circuits LDML and LDMH.
  • a circuit is added, and a total of four power amplifier circuits are provided. That is, the semiconductor chip CP1a has four-system power amplifier circuits corresponding to the four frequency bands, and the power amplifier module PA1 of FIG. 44 using the semiconductor chip CP1a corresponds to the four frequency bands.
  • the semiconductor chip CP1a has LDMOSFET formation regions REGM1, REGM2, REGN1, and REGN2 in addition to the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, and REGH3.
  • the first power amplifier circuit LDML is formed by the LDMOSFETs formed in the LDMOSFET formation regions REGL1, REGL2, and REGL3, respectively
  • the second system is formed by the LDMOSFETs formed in the LDMOSFET formation regions REGH1, REGH2, and REGH3, respectively.
  • the semiconductor chip CP1a is the same as the semiconductor chip CP1 in that the power amplifier circuit LDMH is formed.
  • the first amplification stage constituted by the LDMOSFET formed in the LDMOSFET formation region REGM1 and the second amplification stage constituted by the LDMOSFET formed in the LDMOSFET formation region REGM2 are connected.
  • a third system power amplifier circuit is formed.
  • the first stage amplification stage configured by the LDMOSFET formed in the LDMOSFET formation region REGN1 and the second stage amplification stage configured by the LDMOSFET formed in the LDMOSFET formation region REGN2 are connected, and the fourth system power is connected.
  • An amplifier circuit is formed.
  • the semiconductor chip CP1a has, as the pad electrode PD, in addition to the drain pads PDD1, PDD2, PDD3, PDD4, PDD5, PDD6 and the gate pads PDG1, PDG2, PDG3, PDG4, PDG5, PDG6, and further drain pads PDD7, PDD8, PDD9, PDD10 and gate pads PDG7, PDG8, PDG9, PDG10 are also provided.
  • the gate pad PDG7 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGM1
  • the drain pad PDD7 is an output pad electrically connected to the drain of the LDMOSFET formation region REGM1.
  • the pad electrode is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGM1
  • the drain pad PDD7 is an output pad electrically connected to the drain of the LDMOSFET formation region REGM1.
  • the gate pad PDG8 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGM2, and the drain pad PDD8 is electrically connected to the drain of the LDMOSFET formation region REGM2.
  • This is a pad electrode for output.
  • the gate pad PDG9 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGN1
  • the drain pad PDD9 is an output pad electrically connected to the drain of the LDMOSFET formation region REGN1. It is a pad electrode.
  • the gate pad PDG10 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGN2, and the drain pad PDD10 is an output pad electrically connected to the drain of the LDMOSFET formation region REGN2. It is a pad electrode.
  • the semiconductor chip CP1a When the semiconductor chip CP1a is used instead of the semiconductor chip CP1, not only the drain pads PDD1, PDD2, PDD3, PDD4, PDD5 and PDD6 but also one or more of the drain pads PDD7, PDD8, PDD9 and PDD10.
  • the relationship between the pad electrode, the connection region RGW of the wire WA, and the probe mark PRB described with reference to FIGS. 29 to 32 and 39 can also be applied. That is, in FIG. 44 to FIG. 46, a plurality of wires WA are connected to the drain pad PDD7. However, similarly to the drain pad PDD3 in FIG. A region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) can be positioned between the regions RGW.
  • a plurality of wires WA are connected to the drain pad PDD8.
  • a plurality of wires WA are connected to the drain pad PDD8.
  • a region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) can be positioned between the regions RGW.
  • a plurality of wires WA are connected to the drain pad PDD9.
  • the drain pad PDD9 similarly to the drain pad PDD3 in FIG. 39 or 43, the drain pad PDD9 also has a connection region RGW of the plurality of wires WA.
  • the region where the probe is pressed in the probe inspection process that is, the probe mark PRB
  • a plurality of wires WA are connected to the drain pad PDD10. However, similarly to the drain pad PDD3 in FIG. 39 or 43, a plurality of wires WA are connected to the drain pad PDD7.
  • a region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) can be positioned between the regions RGW.
  • the power amplification module has been described as a preferred application example of the present invention.
  • various semiconductor devices in which wires are connected to pad electrodes of a semiconductor chip having an amplification element, and manufacturing methods thereof Can be applied to.
  • the present invention is effective when applied to a semiconductor device and its manufacturing technology.

Abstract

The purpose is to improve the reliability of a semiconductor device, as well as achieving smaller scale of the semiconductor device. A passive component and a semiconductor chip are mounted on a circuit board, a plurality of pad electrodes of the semiconductor chip are electrically connected by wires to a plurality of terminals of the circuit board, and the assembly is resin-encapsulated to manufacture a power amplification module. The semiconductor chip has a drain pad (PDD3) connected to the drain of an LDMOASFET constituting the power amplification circuit, and a plurality of wires are connected to the drain pad (PDD3). In the drain pad (PDD3), a probe mark (PRB) formed by probe inspection is positioned between the connection regions (RGW) of the plurality of wires.

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置およびその製造方法に関し、特に、増幅素子を有する半導体チップのパッドにワイヤを接続した半導体装置およびその製造に適用して有効な技術に関する。 The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device in which a wire is connected to a pad of a semiconductor chip having an amplifying element and a technique effective when applied to the manufacturing thereof.
 近年、GSM(登録商標)方式、PCS方式、PDC方式、CDMA方式といった通信方式に代表される移動体通信装置(いわゆる携帯電話)が世界的に普及している。 In recent years, mobile communication devices (so-called mobile phones) represented by communication methods such as GSM (registered trademark) method, PCS method, PDC method, and CDMA method have become widespread worldwide.
 一般に、この種の移動体通信装置は、電波の放射と受信をするアンテナ、電力変調された高周波信号を増幅してアンテナへ供給する高周波電力増幅器(RFパワーモジュール)、アンテナで受信した高周波信号を信号処理する受信部、これらの制御を行う制御部、そしてこれらに電源電圧を供給する電池(バッテリー)で構成される。 In general, this type of mobile communication device includes an antenna that emits and receives radio waves, a high-frequency power amplifier (RF power module) that amplifies a power-modulated high-frequency signal and supplies the signal to the antenna, and a high-frequency signal received by the antenna. A receiving unit that performs signal processing, a control unit that performs these controls, and a battery (battery) that supplies a power supply voltage thereto are configured.
 特開2008-218442号公報(特許文献1)には、ボンドパッドが実質的に重なりのないプローブ領域およびワイヤボンド領域を有する技術が記載されている。 Japanese Patent Application Laid-Open No. 2008-218442 (Patent Document 1) describes a technique in which a bond pad has a probe region and a wire bond region that do not substantially overlap each other.
 特開2011-40759号公報(特許文献2)には、コンタクトパッドがプローブ検査領域とボンディング領域とを有する技術が記載されている。 Japanese Patent Application Laid-Open No. 2011-40759 (Patent Document 2) describes a technique in which a contact pad has a probe inspection region and a bonding region.
特開2008-218442号公報JP 2008-218442 A 特開2011-40759号公報JP 2011-40759 A
 本発明者の検討によれば、次のことが分かった。 According to the study of the present inventor, the following has been found.
 半導体チップを配線基板に搭載しかつ半導体チップのパッド電極と配線基板の端子とをワイヤで電気的に接続することで、電力増幅モジュールなどの半導体装置が製造される。 A semiconductor device such as a power amplification module is manufactured by mounting a semiconductor chip on a wiring board and electrically connecting pad electrodes of the semiconductor chip and terminals of the wiring board with wires.
 半導体チップを製造するには、半導体ウエハの主面上に種々の素子や配線層を形成し、表面保護膜(およびパッド電極)を形成した後、ウエハ状態でプローブ検査を行う。プローブ検査工程では、半導体ウエハの各チップ領域のパッド電極にプローブ(探針)を当てて、半導体ウエハの各チップ領域の電気的特性を検査する。その後、ダイシングにより半導体ウエハを切断して個片化(チップ化)し、取得された半導体チップは配線基板に搭載され、半導体チップのパッド電極と配線基板の端子との間がワイヤボンディングされる。 To manufacture a semiconductor chip, various elements and wiring layers are formed on the main surface of a semiconductor wafer, a surface protective film (and a pad electrode) is formed, and then a probe inspection is performed in the wafer state. In the probe inspection process, a probe (probe) is applied to the pad electrode of each chip region of the semiconductor wafer to inspect the electrical characteristics of each chip region of the semiconductor wafer. Thereafter, the semiconductor wafer is cut into individual pieces (chips) by dicing, and the obtained semiconductor chip is mounted on the wiring board, and wire bonding is performed between the pad electrode of the semiconductor chip and the terminal of the wiring board.
 プローブ検査の際に、検査用のプローブが押し当てられたパッド電極には、プローブが押し当てられた痕であるプローブ痕が形成される。配線基板に半導体チップを搭載した後に行うワイヤボンディングの際に、パッド電極のプローブ痕上にワイヤを接続しようとすると、平坦性が低下している領域にワイヤを接続することになるため、ワイヤの接続強度が低下する虞がある。ワイヤの接続強度の低下は、製造された半導体装置の信頼性を低下させる。 During probe inspection, a probe mark, which is a mark pressed by the probe, is formed on the pad electrode to which the probe for inspection is pressed. When wire bonding is performed after the semiconductor chip is mounted on the wiring board, if the wire is connected to the probe trace of the pad electrode, the wire is connected to an area where the flatness is lowered. Connection strength may be reduced. The reduction in the connection strength of the wires reduces the reliability of the manufactured semiconductor device.
 一方、パッド電極において、ワイヤの接続領域とプローブ検査工程でプローブを押し当てる領域(プローブ痕)とを分けることも考えられる。しかしながら、パッド電極において、ワイヤの接続領域とプローブ検査工程でプローブを押し当てる領域(プローブ痕)とを単に分ける(別々の領域にする)だけでは、パッド電極の寸法増大により半導体チップの面積の増大を招く虞がある。半導体チップの面積の増大は、製造コストの増大を招き、また、半導体装置の小型化に不利となる。 On the other hand, in the pad electrode, it is also conceivable to divide the wire connection region and the region where the probe is pressed in the probe inspection process (probe mark). However, in the pad electrode, the area of the semiconductor chip is increased by increasing the size of the pad electrode simply by separating the wire connection area and the area where the probe is pressed in the probe inspection process (probe marks). There is a risk of inviting. An increase in the area of the semiconductor chip leads to an increase in manufacturing cost and is disadvantageous for downsizing of the semiconductor device.
 このため、ワイヤの接続強度の向上とチップサイズの抑制とを考慮した総合的な設計が望まれる。 For this reason, a comprehensive design that takes into account improvements in wire connection strength and chip size reduction is desired.
 本発明の目的は、半導体装置の信頼性を向上できる技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the reliability of a semiconductor device.
 また、本発明の目的は、半導体装置の小型化を図ることができる技術を提供することにある。 Also, an object of the present invention is to provide a technique capable of reducing the size of a semiconductor device.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 代表的な実施の形態による半導体装置は、複数のパッド電極を有する半導体チップを備え、前記複数のパッド電極に複数のワイヤが接続された半導体装置である。この半導体チップは、電力増幅回路を構成する半導体素子の出力に接続された第1パッド電極を有し、この第1パッド電極に複数の第1ワイヤが接続されており、第1パッド電極において、複数の第1ワイヤの接続領域の間にプローブ痕が形成されている。 A semiconductor device according to a typical embodiment is a semiconductor device including a semiconductor chip having a plurality of pad electrodes, and a plurality of wires connected to the plurality of pad electrodes. This semiconductor chip has a first pad electrode connected to the output of the semiconductor element constituting the power amplifier circuit, and a plurality of first wires are connected to the first pad electrode. In the first pad electrode, Probe marks are formed between the connection regions of the plurality of first wires.
 また、代表的な実施の形態による半導体装置の製造方法は、半導体チップを配線基板上に搭載してから、半導体チップの複数のパッド電極と配線基板の複数の端子とを複数のワイヤを介して電気的に接続する。この半導体チップは、電力増幅回路を構成する半導体素子の出力に接続された第1パッド電極を有しており、ワイヤボンディング工程において、この第1パッド電極には複数の第1ワイヤを接続する。第1パッド電極において、プローブ検査工程でプローブが当てられる位置は、ワイボンディング工程で複数の第1ワイヤを接続する位置の間に位置する。 Further, in a method for manufacturing a semiconductor device according to a representative embodiment, after mounting a semiconductor chip on a wiring board, a plurality of pad electrodes of the semiconductor chip and a plurality of terminals of the wiring board are connected via a plurality of wires. Connect electrically. This semiconductor chip has a first pad electrode connected to the output of the semiconductor element constituting the power amplifier circuit, and a plurality of first wires are connected to the first pad electrode in the wire bonding step. In the first pad electrode, a position where the probe is applied in the probe inspection process is located between positions where the plurality of first wires are connected in the Y bonding process.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 代表的な実施の形態によれば、半導体装置の信頼性を向上させることができる。 According to the representative embodiment, the reliability of the semiconductor device can be improved.
 また、半導体装置の小型化を図ることができる。 Also, the semiconductor device can be miniaturized.
標準的なデジタル携帯電話機の一例を示すブロック図である。It is a block diagram which shows an example of a standard digital mobile telephone. 図1に示されるデジタル携帯電話機に用いられている電力増幅モジュールの構成例を模式的に示した回路ブロック図である。FIG. 2 is a circuit block diagram schematically showing a configuration example of a power amplification module used in the digital mobile phone shown in FIG. 1. 本発明の一実施の形態の電力増幅モジュールを示す上面図である。It is a top view which shows the power amplification module of one embodiment of this invention. 本発明の一実施の形態の電力増幅モジュールを示す下面図である。It is a bottom view which shows the power amplification module of one embodiment of this invention. 本発明の一実施の形態の電力増幅モジュールを示す平面透視図である。It is a plane perspective view which shows the power amplification module of one embodiment of this invention. 本発明の一実施の形態の電力増幅モジュールを示す断面図である。It is sectional drawing which shows the power amplification module of one embodiment of this invention. 本発明の一実施の形態の電力増幅モジュールを実装基板に実装した状態を示す側面図である。It is a side view which shows the state which mounted the power amplification module of one embodiment of this invention on the mounting board | substrate. 本発明の一実施の形態の電力増幅モジュールの製造工程を示す工程フロー図である。It is a process flow figure showing a manufacturing process of a power amplification module of one embodiment of the present invention. 本発明の一実施の形態の電力増幅モジュールの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the power amplification module of one embodiment of this invention. 図9に続く電力増幅モジュールの製造工程中の断面図である。FIG. 10 is a cross-sectional view of the power amplification module during a manufacturing step following that of FIG. 9; 図10に続く電力増幅モジュールの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the power amplification module following FIG. 図11に続く電力増幅モジュールの製造工程中の断面図である。FIG. 12 is a cross-sectional view of the power amplification module during a manufacturing step following that of FIG. 11; 図12に続く電力増幅モジュールの製造工程中の断面図である。FIG. 13 is a cross-sectional view of the power amplification module during a manufacturing step following that of FIG. 12; 図5の部分拡大平面図である。FIG. 6 is a partially enlarged plan view of FIG. 5. 本発明の一実施の形態の半導体チップの平面図である。It is a top view of the semiconductor chip of one embodiment of the present invention. 本発明の一実施の形態の半導体チップの要部断面図である。It is principal part sectional drawing of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部断面図である。It is principal part sectional drawing of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部断面図である。It is principal part sectional drawing of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部断面図である。It is principal part sectional drawing of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部断面図である。It is principal part sectional drawing of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの製造工程を示す工程フロー図である。It is a process flow figure showing a manufacturing process of a semiconductor chip of a 1 embodiment of the present invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of one embodiment of this invention. 本発明の一実施の形態の電力増幅モジュールの製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the power amplification module of one embodiment of this invention. 本発明の一実施の形態の電力増幅モジュールの製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the power amplification module of one embodiment of this invention. 本発明の一実施の形態の電力増幅モジュールの製造工程中の要部斜視図である。It is a principal part perspective view in the manufacturing process of the power amplification module of one embodiment of this invention. 第1の比較例の半導体チップの要部平面図である。It is a principal part top view of the semiconductor chip of the 1st comparative example. 第1の比較例の電力増幅モジュールの製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the power amplification module of a 1st comparative example. 第1の比較例の電力増幅モジュールの製造工程中の要部平面図である。It is a principal part top view in the manufacturing process of the power amplification module of a 1st comparative example. 第1の比較例の電力増幅モジュールの製造工程中の要部斜視図である。It is a principal part perspective view in the manufacturing process of the power amplification module of a 1st comparative example. 第1の比較例の半導体チップのドレインパッドに形成されたプローブ痕と、ドレインパッドにおけるワイヤの接続領域とを示す説明図である。It is explanatory drawing which shows the probe trace formed in the drain pad of the semiconductor chip of a 1st comparative example, and the connection area | region of the wire in a drain pad. 第2の比較例の半導体チップのドレインパッドに形成されたプローブ痕とドレインパッドにおけるワイヤの接続領域とを示す説明図である。It is explanatory drawing which shows the probe trace formed in the drain pad of the semiconductor chip of the 2nd comparative example, and the connection area | region of the wire in a drain pad. 本発明の一実施の形態の半導体チップのドレインパッドに形成されたプローブ痕と、ドレインパッド3におけるワイヤの接続領域とを示す説明図である。4 is an explanatory diagram showing probe marks formed on a drain pad of a semiconductor chip according to an embodiment of the present invention, and a wire connection region in the drain pad 3. FIG. 本発明の一実施の形態の半導体チップのドレインパッドに形成されたプローブ痕と、ドレインパッド3におけるワイヤの接続領域とを示す説明図である。4 is an explanatory diagram showing probe marks formed on a drain pad of a semiconductor chip according to an embodiment of the present invention, and a wire connection region in the drain pad 3. FIG. プローブ検査工程でドレインパッドに検査用のプローブを押し当てる様子を示す断面図である。It is sectional drawing which shows a mode that the probe for a test | inspection is pressed against a drain pad at a probe test process. プローブ検査工程でプローブをドレインパッドに押し当てたことで、ドレインパッドにプローブ痕が形成された状態を示す断面図である。It is sectional drawing which shows the state by which the probe trace was formed in the drain pad by pressing the probe on the drain pad at the probe test process. 第1の変形例の説明図である。It is explanatory drawing of the 1st modification. 第2の変形例の説明図である。It is explanatory drawing of the 2nd modification. 第2の変形例の説明図である。It is explanatory drawing of the 2nd modification. 第2の変形例の説明図である。It is explanatory drawing of the 2nd modification.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number. Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 また、実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。 In the drawings used in the embodiments, hatching may be omitted even in a cross-sectional view in order to make the drawings easy to see. Further, even a plan view may be hatched to make the drawing easy to see.
 本実施の形態は、例えば、GSM方式などのネットワークを利用して情報を伝送するデジタル携帯電話(移動体通信装置)に使用(搭載)されるRF(Radio Frequency)パワーモジュールなどの電力増幅モジュール(半導体装置)およびそれに使用(搭載)される半導体チップ(半導体装置)である。 In the present embodiment, for example, a power amplification module (such as a radio frequency (RF) power module) used (mounted) in a digital mobile phone (mobile communication device) that transmits information using a network such as the GSM system ( A semiconductor device) and a semiconductor chip (semiconductor device) used (mounted).
 ここで、GSM(Global System for Mobile Communication)は、デジタル携帯電話に使用されている無線通信方式の1つまたは規格をいう。GSMには、使用する電波の周波数帯が3つある。このうち、900MHz帯(824~915MHz)をGSM900または単にGSM、1800MHz帯(1710~1910MHz)をGSM1800またはDCS(Digital Cellular System)1800若しくはPCN、1900MHz帯をGSM1900またはDCS1900若しくはPCS(Personal Communication Services)という。なお、GSM1900は主に北米で使用されている。北米ではその他に850MHz帯のGSM850を使用する場合もある。本実施の形態の電力増幅モジュールPA1は、例えば、これらの周波数帯(高周波帯)で使用される電力増幅モジュールである。 Here, GSM (Global System for Mobile Communication) is one of radio communication systems or standards used for digital mobile phones. GSM has three frequency bands of radio waves to use. Of these, the 900 MHz band (824 to 915 MHz) is referred to as GSM900 or simply GSM, the 1800 MHz band (1710 to 1910 MHz) is referred to as GSM1800 or DCS (Digital Cellular System) 1800 or PCN, and the 1900 MHz band is referred to as GSM1900 or DCS1900 or PCS (Personal Communication Services). . GSM1900 is mainly used in North America. In North America, GSM850 in the 850 MHz band may also be used. The power amplification module PA1 of the present embodiment is a power amplification module used in these frequency bands (high frequency bands), for example.
 <デジタル携帯電話機の構成について>
 図1は、標準的なデジタル携帯電話機(デジタル携帯電話機システム、移動体通信装置)DPSの一例を示すブロック図(説明図)である。
<About the configuration of digital mobile phones>
FIG. 1 is a block diagram (an explanatory diagram) showing an example of a standard digital cellular phone (digital cellular phone system, mobile communication device) DPS.
 図1に示されるデジタル携帯電話機DPSにおいては、アンテナANTより受信した信号は、アンテナスイッチANT-SWを通って低雑音アンプLNAにより増幅され、受信ミクサRX-MIXにより150~250MHz程度のIF周波数(中間周波数)に変換された後、IF回路IFCで更に周波数変換され、455kHz程度の第2IF周波数としてベースバンド部BBPへ導かれて復調回路DMDLで復調される。なお、図1において、符号COD1は音声CODEC(コーデック)、符号SPはスピーカ、符号MICはマイク、符号COD2はチャネルCODEC(コーデック)、符号MDLは変調回路である。 In the digital cellular phone DPS shown in FIG. 1, a signal received from an antenna ANT is amplified by a low noise amplifier LNA through an antenna switch ANT-SW, and an IF frequency of about 150 to 250 MHz by a reception mixer RX-MIX ( (Intermediate frequency), and further frequency converted by the IF circuit IFC, guided to the baseband unit BBP as a second IF frequency of about 455 kHz, and demodulated by the demodulation circuit DMDL. In FIG. 1, code COD1 is an audio CODEC (codec), code SP is a speaker, code MIC is a microphone, code COD2 is a channel CODEC (codec), and code MDL is a modulation circuit.
 また、音声をデジタル化した信号は、ベースバンド部BBPのD/A変換回路DACでD-A変換(デジタル-アナログ変換)され、I/Q信号としてRFブロック部RFBPへ導かれ、直交変調器QMDによりIF周波数へ変調され、送信ミクサTX-MIXにより送信信号に変換された後、電力増幅モジュールPA1で増幅され、アンテナスイッチANT-SWを通してアンテナANTから送信される。受信ミクサRX-MIXおよび送信ミクサTX-MIXへは、発振器とPLL(位相同期回路)により構成されたシンセサイザよりローカル信号が供給されている。なお、図1において、符号AGCAMPはAGC(Automatic Gain Control)アンプ、符号FPL1はRF-PLL(RF周波数位相同期回路)、符号FPL2はIF-PLL(IF周波数位相同期回路)である。また、デジタル携帯電話機DPSは、液晶表示部LCD、マイコンMCNおよびメモリMRYなどで構成された表示・制御部CDPも備えている。 Also, the digitalized signal is DA-converted (digital-analog conversion) by the D / A conversion circuit DAC of the baseband unit BBP, and is guided to the RF block unit RFBP as an I / Q signal, and is a quadrature modulator. After being modulated to an IF frequency by QMD and converted to a transmission signal by transmission mixer TX-MIX, it is amplified by power amplification module PA1 and transmitted from antenna ANT through antenna switch ANT-SW. A local signal is supplied to the reception mixer RX-MIX and the transmission mixer TX-MIX from a synthesizer composed of an oscillator and a PLL (phase synchronization circuit). In FIG. 1, symbol AGCAMP is an AGC (Automatic Gain Control) amplifier, symbol FPL1 is an RF-PLL (RF frequency phase synchronization circuit), and symbol FPL2 is an IF-PLL (IF frequency phase synchronization circuit). The digital cellular phone DPS also includes a display / control unit CDP configured by a liquid crystal display LCD, a microcomputer MCN, a memory MRY, and the like.
 <電力増幅モジュールの回路構成について>
 図2は、図1に示されるデジタル携帯電話機DPSのような移動体通信装置に用いられている電力増幅モジュール(半導体装置、電子装置、電力増幅器、高出力増幅器、高周波電力増幅器、高周波電力増幅装置、電力増幅器モジュール、RFパワーモジュール)PA1の構成例を模式的に示した回路ブロック図(説明図)である。この図には、例えばGSM900とDCS1800との2つの周波数帯が使用可能(デュアルバンド方式)で、それぞれの周波数帯でGMSK(Gaussian filtered Minimum Shift Keying)変調方式とEDGE(Enhanced Data GSM Environment)変調方式との2つの通信方式を使用可能な電力増幅モジュールの回路ブロック図(増幅回路)が示されている。なお、GMSK変調方式は、音声信号の通信に用いる方式で搬送波の位相を送信データに応じて位相シフトする方式である。また、EDGE変調方式は、データ通信に用いる方式でGMSK変調の位相シフトにさらに振幅シフトを加えた方式である。
<About the circuit configuration of the power amplification module>
FIG. 2 shows a power amplification module (semiconductor device, electronic device, power amplifier, high output amplifier, high frequency power amplifier, high frequency power amplification device) used in a mobile communication device such as the digital cellular phone DPS shown in FIG. FIG. 2 is a circuit block diagram (explanatory diagram) schematically showing a configuration example of a power amplifier module, RF power module) PA1. In this figure, for example, two frequency bands of GSM900 and DCS1800 can be used (dual band system), and GMSK (Gaussian filtered Minimum Shift Keying) modulation system and EDGE (Enhanced Data GSM Environment) modulation system in each frequency band. The circuit block diagram (amplifier circuit) of the power amplification module which can use two communication systems is shown. Note that the GMSK modulation method is a method used for communication of audio signals, and is a method of shifting the phase of a carrier wave according to transmission data. The EDGE modulation method is a method used for data communication and is a method in which an amplitude shift is further added to the phase shift of GMSK modulation.
 図2に示されるように、電力増幅モジュールPA1の回路構成は、2系統の電力増幅回路(高周波電力増幅回路)LDML,LDMHと、周辺回路103と、整合回路105A,105B,107A,107Bと、ローパスフィルタ(ローパスフィルタ回路)108A,108Bと、スイッチ回路109A,109Bとを有している。 As shown in FIG. 2, the circuit configuration of the power amplifying module PA1 includes two power amplifying circuits (high frequency power amplifying circuits) LDML and LDMH, a peripheral circuit 103, matching circuits 105A, 105B, 107A, and 107B. Low-pass filters (low-pass filter circuits) 108A and 108B and switch circuits 109A and 109B are provided.
 電力増幅回路LDMLは、GSM900用の電力増幅回路であり、複数の増幅段(増幅回路)、ここでは3つの増幅段(増幅回路)LDML1,LDML2,LDML3、を多段接続した多段構成を有している。電力増幅回路LDMHは、DCS1800用の電力増幅回路であり、複数の増幅段(増幅回路)、ここでは3つの増幅段(増幅回路)LDMH1,LDMH2,LDMH3、を多段接続した多段構成を有している。 The power amplifier circuit LDML is a power amplifier circuit for GSM900, and has a multi-stage configuration in which a plurality of amplifier stages (amplifier circuits), here, three amplifier stages (amplifier circuits) LDML1, LDML2, and LDML3 are connected in multistage. Yes. The power amplifying circuit LDMH is a power amplifying circuit for DCS1800, and has a multi-stage configuration in which a plurality of amplifying stages (amplifying circuits), here, three amplifying stages (amplifying circuits) LDMH1, LDMH2, and LDMH3 are connected in multistage. Yes.
 整合回路(入力整合回路)105Aは、GSM900用の入力端子104aと電力増幅回路LDML(1段目の増幅段LDML1)の間に設けられ、整合回路(入力整合回路)105Bは、DCS1800用の入力端子104bと電力増幅回路LDMH(1段目の増幅段LDMH1)の間に設けられている。整合回路(出力整合回路)107Aは、GSM900用のスイッチ回路109Aと電力増幅回路LDML(3段目の増幅段LDML3)の間に設けられ、整合回路(出力整合回路)107Bは、DCS1800用のスイッチ回路109Bと電力増幅回路LDMH(3段目の増幅段LDMH3)の間に設けられている。 The matching circuit (input matching circuit) 105A is provided between the input terminal 104a for GSM900 and the power amplification circuit LDML (first amplification stage LDML1), and the matching circuit (input matching circuit) 105B is an input for DCS1800. It is provided between terminal 104b and power amplification circuit LDMH (first amplification stage LDMH1). The matching circuit (output matching circuit) 107A is provided between the switch circuit 109A for GSM900 and the power amplifier circuit LDML (third amplifier stage LDML3), and the matching circuit (output matching circuit) 107B is a switch for DCS1800. It is provided between circuit 109B and power amplifier circuit LDMH (third amplifier stage LDMH3).
 GSM900用のローパスフィルタ108Aは、整合回路107AとGSM900用のスイッチ回路109Aの間に設けられ、電力増幅回路LDMLの出力が整合回路107Aを経て入力されるようになっている。DCS1800用のローパスフィルタ108Bは、整合回路107BとDCS1800用のスイッチ回路109Bの間に設けられ、電力増幅回路LDMHの出力が整合回路107Bを経て入力されるようになっている。 The low-pass filter 108A for GSM900 is provided between the matching circuit 107A and the switch circuit 109A for GSM900, and the output of the power amplifier circuit LDML is input via the matching circuit 107A. The low pass filter 108B for DCS1800 is provided between the matching circuit 107B and the switch circuit 109B for DCS1800, and the output of the power amplifier circuit LDMH is input through the matching circuit 107B.
 また、GSM900用の電力増幅回路LDMLの増幅段LDML1と増幅段LDML2の間には段間用の整合回路102AM1が設けられ、増幅段LDML2と増幅段LDML3の間には段間用の整合回路102AM2が設けられている。また、DCS1800用の電力増幅回路LDMHの増幅段LDMH1と増幅段LDMH2の間には段間用の整合回路102BM1が設けられ、増幅段LDMH2と増幅段LDMH3の間には段間用の整合回路102BM2が設けられている。各整合回路はインピーダンスの整合を行う回路であり、ローパスフィルタ108A,108Bは高調波(電力増幅回路LDML,LDMHで発生した高調波成分)を減衰させる回路である。 In addition, an interstage matching circuit 102AM1 is provided between the amplification stage LDML1 and the amplification stage LDML2 of the power amplification circuit LDML for GSM900, and an interstage matching circuit 102AM2 is provided between the amplification stage LDML2 and the amplification stage LDML3. Is provided. An interstage matching circuit 102BM1 is provided between the amplification stage LDMH1 and the amplification stage LDMH2 of the power amplification circuit LDMH for the DCS 1800, and an interstage matching circuit 102BM2 is provided between the amplification stage LDMH2 and the amplification stage LDMH3. Is provided. Each matching circuit is a circuit that performs impedance matching, and the low- pass filters 108A and 108B are circuits that attenuate harmonics (harmonic components generated by the power amplifier circuits LDML and LDMH).
 このうち、GSM900用の電力増幅回路LDML(増幅段LDML1~LDML3)と、DCS1800用の電力増幅回路LDMH(増幅段LDMH1~LDMH3)と、周辺回路103とは、1つの半導体チップ(半導体増幅素子チップ、高周波用電力増幅素子チップ、半導体装置)2内に形成されている。なお、電力増幅回路LDMLを構成する増幅段LDML1~LDML3と、電力増幅回路LDMHを構成する増幅段LDMH1~LDMH3とは、半導体チップCP1内に形成されるが、段間用の整合回路102AM1,102AM2,102BM1,102BM2は、半導体チップCP1内に形成しても、半導体チップCP1外に形成してもよい。 Among these, the power amplification circuit LDML (amplification stages LDML1 to LDML3) for GSM900, the power amplification circuit LDMH for DCS1800 (amplification stages LDMH1 to LDMH3), and the peripheral circuit 103 are one semiconductor chip (semiconductor amplification element chip). , High frequency power amplifying element chip, semiconductor device) 2. The amplification stages LDML1 to LDML3 constituting the power amplification circuit LDML and the amplification stages LDMH1 to LDMH3 constituting the power amplification circuit LDMH are formed in the semiconductor chip CP1, but the matching circuits 102AM1, 102AM2 for the stages are used. , 102BM1, 102BM2 may be formed inside the semiconductor chip CP1 or outside the semiconductor chip CP1.
 周辺回路103は、電力増幅回路LDML,LDMHの増幅動作の制御や補佐あるいはスイッチ回路109A,109Bの制御などを行う回路であり、制御回路103A,103Cと、上記増幅段LDML1~LDML3,LDMH1~LDMH3にバイアス電圧を印加するバイアス回路103Bなどを有している。 The peripheral circuit 103 is a circuit for controlling and assisting the amplification operation of the power amplifier circuits LDML and LDMH, or controlling the switch circuits 109A and 109B, and the control circuits 103A and 103C, and the amplification stages LDML1 to LDML3 and LDMH1 to LDMH3. And a bias circuit 103B for applying a bias voltage to the.
 制御回路103Aは、上記電力増幅回路LDML,LDMHに印加する所望の電圧を発生する回路であり、電源制御回路103A1およびバイアス電圧生成回路103A2を有している。電源制御回路103A1は、上記増幅段LDML1~LDML3,LDMH1~LDMH3の各々の出力用の増幅素子(ここではLDMOSFET)のドレイン端子に印加される第1電源電圧を生成する回路である。また、上記バイアス電圧生成回路103A2は、上記バイアス回路103Bを制御するための第1制御電圧を生成する回路である。ここでは、電源制御回路103A1が外部のベースバンド回路から供給される出力レベル指定信号に基づいて上記第1電源電圧を生成すると、バイアス電圧生成回路103A2が電源制御回路103A1で生成された上記第1電源電圧に基づいて、上記第1制御電圧を生成するようになっている。上記ベースバンド回路は、上記出力レベル指定信号を生成する回路である。この出力レベル指定信号は、電力増幅回路LDML、LDMHの出力レベルを指定する信号で、携帯電話機と基地局との間の距離、すなわち、電波の強弱に応じた出力レベルに基づいて生成されているようになっている。 The control circuit 103A is a circuit that generates a desired voltage to be applied to the power amplification circuits LDML and LDMH, and includes a power supply control circuit 103A1 and a bias voltage generation circuit 103A2. The power supply control circuit 103A1 is a circuit that generates a first power supply voltage to be applied to the drain terminals of the output amplifying elements (in this case, LDMOSFETs) of the amplification stages LDML1 to LDML3 and LDMH1 to LDMH3. The bias voltage generation circuit 103A2 is a circuit that generates a first control voltage for controlling the bias circuit 103B. Here, when the power supply control circuit 103A1 generates the first power supply voltage based on the output level designation signal supplied from the external baseband circuit, the bias voltage generation circuit 103A2 is generated by the power supply control circuit 103A1. The first control voltage is generated based on the power supply voltage. The baseband circuit is a circuit that generates the output level designation signal. This output level designation signal is a signal that designates the output level of the power amplifier circuits LDML and LDMH, and is generated based on the distance between the mobile phone and the base station, that is, the output level corresponding to the strength of the radio wave. It is like that.
 制御回路103Cは、スイッチ回路109A,109Bの制御を行う回路である。GSM900の送受信切り換え用のスイッチ回路109Aは、制御回路103Cからの切換信号に応じて、GSM900の送信時には端子(出力端子)106をローパスフィルタ108Aの出力側に接続し、GSM900の受信時には端子106を端子110aに接続する。また、DCS1800の送受信切り換え用のスイッチ回路109Bは、制御回路103Cからの切換信号に応じて、DCS1800の送信時には端子106をローパスフィルタ108Bの出力側に接続し、DCS1800の受信時には端子106を端子110bに接続する。 The control circuit 103C is a circuit that controls the switch circuits 109A and 109B. In response to the switching signal from the control circuit 103C, the switch circuit 109A for transmission / reception switching of the GSM900 connects the terminal (output terminal) 106 to the output side of the low-pass filter 108A when transmitting the GSM900 and connects the terminal 106 when receiving the GSM900. Connect to terminal 110a. The switch circuit 109B for transmission / reception switching of the DCS 1800 connects the terminal 106 to the output side of the low-pass filter 108B during transmission of the DCS 1800, and connects the terminal 106 to the terminal 110b during reception of the DCS 1800 according to the switching signal from the control circuit 103C. Connect to.
 電力増幅モジュールPA1のGSM900用の入力端子104aに入力されたRF入力信号は、整合回路105Aを経て半導体チップCP1に入力され、半導体チップCP1内の電力増幅回路LDML、すなわち3つの増幅段LDML1~LDML3で増幅されて半導体チップCP1から増幅されたRF信号(GSM900のRF信号)として出力される。この増幅されて半導体チップCP1から出力されたGSM900のRF信号は、整合回路107Aおよびローパスフィルタ108Aを経てスイッチ回路109Aに入力される。スイッチ回路109Aが、端子106をローパスフィルタ108Aの出力側に接続するように切り換えていると、ローパスフィルタ108Aを経てスイッチ回路109Aに入力されたRF信号は、端子106からGSM900のRF出力信号として出力され、上記アンテナANTから送信される。 The RF input signal input to the GSM900 input terminal 104a of the power amplifier module PA1 is input to the semiconductor chip CP1 via the matching circuit 105A, and the power amplifier circuit LDML in the semiconductor chip CP1, that is, the three amplification stages LDML1 to LDML3. And output as an RF signal (GSM900 RF signal) amplified from the semiconductor chip CP1. The RF signal of GSM900 amplified and output from the semiconductor chip CP1 is input to the switch circuit 109A through the matching circuit 107A and the low-pass filter 108A. When the switch circuit 109A is switched so as to connect the terminal 106 to the output side of the low-pass filter 108A, the RF signal input to the switch circuit 109A via the low-pass filter 108A is output as an RF output signal of the GSM900 from the terminal 106. And transmitted from the antenna ANT.
 また、電力増幅モジュールPA1のDCS1800用の入力端子104bに入力されたRF入力信号は、整合回路105Bを経て半導体チップCP1に入力され、半導体チップCP1内の電力増幅回路LDMH、すなわち3つの増幅段LDMH1~LDMH3で増幅されて半導体チップCP1から増幅されたRF信号(DCS1800のRF信号)として出力される。この増幅されて半導体チップCP1から出力されたDCS1800のRF信号は、整合回路107Bおよびローパスフィルタ108Bを経てスイッチ回路109Bに入力される。スイッチ回路109Bが、端子106をローパスフィルタ108Bの出力側に接続するように切り換えていると、ローパスフィルタ108Bを経てスイッチ回路109Bに入力されたRF信号は、端子106からDCS1800のRF出力信号として出力され、上記アンテナANTから送信される。 The RF input signal input to the DCS 1800 input terminal 104b of the power amplifier module PA1 is input to the semiconductor chip CP1 through the matching circuit 105B, and the power amplifier circuit LDMH in the semiconductor chip CP1, that is, the three amplification stages LDMH1. Amplified by LDMH3 and output from the semiconductor chip CP1 as an RF signal (DCS1800 RF signal). The RF signal of DCS 1800 amplified and output from the semiconductor chip CP1 is input to the switch circuit 109B through the matching circuit 107B and the low-pass filter 108B. When the switch circuit 109B switches so that the terminal 106 is connected to the output side of the low-pass filter 108B, the RF signal input to the switch circuit 109B via the low-pass filter 108B is output from the terminal 106 as the RF output signal of the DCS 1800. And transmitted from the antenna ANT.
 また、電力増幅モジュールPA1の入力端子104cに入力された入力信号(例えば制御用信号など)が周辺回路103に入力され、これに基づいて、周辺回路103は、電力増幅回路LDML,LDMHの制御やスイッチ回路109A,109Bの制御などを行うことができる。 Further, an input signal (for example, a control signal) input to the input terminal 104c of the power amplification module PA1 is input to the peripheral circuit 103, and based on this, the peripheral circuit 103 controls the power amplification circuits LDML and LDMH. The switch circuits 109A and 109B can be controlled.
 スイッチ回路109A,109Bは、上記図1の上記アンテナスイッチANT-SWに対応するものであり、図2に示される電力増幅モジュールPA1は、上記図1の上記アンテナスイッチANT-SWも、電力増幅モジュールPA1に内蔵させた場合に対応する。他の形態として、上記アンテナスイッチANT-SWを、電力増幅モジュールPA1の外部に設けることもでき、この場合、スイッチ回路109A,109Bは電力増幅モジュールPA1の外部に設けられることになる。また、更に、上記ローパスフィルタ(ローパスフィルタ回路)108A,108Bを、電力増幅モジュールPA1の外部に設けることもできる。 The switch circuits 109A and 109B correspond to the antenna switch ANT-SW in FIG. 1, and the power amplification module PA1 shown in FIG. 2 is the same as the antenna switch ANT-SW in FIG. This corresponds to the case where it is built in PA1. As another form, the antenna switch ANT-SW can be provided outside the power amplification module PA1, and in this case, the switch circuits 109A and 109B are provided outside the power amplification module PA1. Furthermore, the low-pass filters (low-pass filter circuits) 108A and 108B can be provided outside the power amplification module PA1.
 上記電力増幅回路LDML,LDMHのそれぞれは、上記3段の増幅段LDML1~LDML3,LDMH1~LDMH3として、3個のnチャネル型のLDMOSFET(Laterally Diffused Metal-Oxide-Semiconductor Field Effect Transistor、横方向拡散MOSFET)を順次従属接続(多段接続)した回路構成を有している。すなわち、各増幅段LDML1,LDML2,LDML3,LDMH1,LDMH2,LDMH3がnチャネル型のLDMOSFET素子により形成されている。 Each of the power amplifier circuits LDML and LDMH is composed of three n-channel LDMOSFETs (Laterally Diffused Metal-Oxide-Semiconductor Field Effect Transistor, lateral diffusion MOSFET) ) Are sequentially connected in cascade (multi-stage connection). That is, each amplification stage LDML1, LDML2, LDML3, LDMH1, LDMH2, and LDMH3 are formed by n-channel LDMOSFET elements.
 そして、3個のnチャネル型LDMOSFET(すなわち増幅段LDML1を構成するnチャネル型LDMOSFETと増幅段LDML2を構成するnチャネル型LDMOSFETと増幅段LDML3を構成するnチャネル型LDMOSFET)が順次接続(多段接続)されて電力増幅回路LDMLが形成されている。 Then, three n-channel LDMOSFETs (that is, an n-channel LDMOSFET constituting the amplification stage LDML1, an n-channel LDMOSFET constituting the amplification stage LDML2, and an n-channel LDMOSFET constituting the amplification stage LDML3) are sequentially connected (multistage connection). ) To form a power amplifier circuit LDML.
 具体的には、GSM900用の入力端子104aが、整合回路105Aを介して、増幅段LDML1を構成するnチャネル型LDMOSFETのゲートに電気的に接続され、増幅段LDML1を構成するnチャネル型LDMOSFETのドレインが、整合回路102AM1を介して、増幅段LDML2を構成するnチャネル型LDMOSFETのゲートに電気的に接続されている。そして、増幅段LDML2を構成するnチャネル型LDMOSFETのドレインが、整合回路102AM2を介して、増幅段LDML3を構成するnチャネル型LDMOSFETのゲートに電気的に接続され、増幅段LDML3を構成するnチャネル型LDMOSFETのドレインが、整合回路107Aを介してローパスフィルタ108Aに電気的に接続されている。 Specifically, the input terminal 104a for GSM900 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDML1 via the matching circuit 105A, and the n-channel LDMOSFET constituting the amplification stage LDML1 is electrically connected. The drain is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDML2 through the matching circuit 102AM1. The drain of the n-channel LDMOSFET constituting the amplification stage LDML2 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDML3 via the matching circuit 102AM2, and the n-channel constituting the amplification stage LDML3. The drain of the type LDMOSFET is electrically connected to the low-pass filter 108A through the matching circuit 107A.
 また、3個のnチャネル型LDMOSFET(すなわち増幅段LDMH1を構成するnチャネル型LDMOSFETと増幅段LDMH2を構成するnチャネル型LDMOSFETと増幅段LDMH3を構成するnチャネル型LDMOSFET)が順次接続(多段接続)されて電力増幅回路LDMHが形成されている。 Further, three n-channel LDMOSFETs (that is, an n-channel LDMOSFET constituting the amplification stage LDMH1, an n-channel LDMOSFET constituting the amplification stage LDMH2, and an n-channel LDMOSFET constituting the amplification stage LDMH3) are sequentially connected (multi-stage connection). ) To form a power amplifier circuit LDMH.
 具体的には、DCS1800用の入力端子104bが、整合回路105Bを介して、増幅段LDMH1を構成するnチャネル型LDMOSFETのゲートに電気的に接続され、増幅段LDMH1を構成するnチャネル型LDMOSFETのドレインが、整合回路102BM1を介して、増幅段LDMH2を構成するnチャネル型LDMOSFETのゲートに電気的に接続されている。そして、増幅段LDMH2を構成するnチャネル型LDMOSFETのドレインが、整合回路102BM2を介して、増幅段LDMH3を構成するnチャネル型LDMOSFETのゲートに電気的に接続され、増幅段LDMH3を構成するnチャネル型LDMOSFETのドレインが、整合回路107Bを介してローパスフィルタ108Bに電気的に接続されている。 Specifically, the input terminal 104b for DCS1800 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDMH1 via the matching circuit 105B, and the n-channel LDMOSFET constituting the amplification stage LDMH1 is connected. The drain is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDMH2 through the matching circuit 102BM1. The drain of the n-channel LDMOSFET constituting the amplification stage LDMH2 is electrically connected to the gate of the n-channel LDMOSFET constituting the amplification stage LDMH3 via the matching circuit 102BM2, and the n-channel constituting the amplification stage LDMH3. The drain of the type LDMOSFET is electrically connected to the low-pass filter 108B through the matching circuit 107B.
 なお、本実施の形態では、3段の増幅段が接続(多段接続)されて各電力増幅回路LDML,LDMHを形成しているが、他の形態として、2段の増幅段または4段以上の増幅段を接続(多段接続)して各電力増幅回路LDML,LDMHを形成することも可能であり、この場合、各電力増幅回路LDML,LDMHは2個または4個以上のnチャネル型LDMOSFETが従属接続した回路構成となる。 In this embodiment, three amplification stages are connected (multi-stage connection) to form each power amplification circuit LDML, LDMH. However, as another form, two amplification stages or four or more stages are used. It is also possible to connect the amplifier stages (multi-stage connection) to form each power amplifier circuit LDML, LDMH. In this case, each power amplifier circuit LDML, LDMH is subordinate to two or four or more n-channel LDMOSFETs. Connected circuit configuration.
 <電力増幅モジュールの構造について>
 図3は、本実施の形態の電力増幅モジュールPA1の上面図(平面図)であり、図4は、電力増幅モジュールPA1の下面図であり、図5は、電力増幅モジュールPA1の平面透視図であり、封止樹脂13を透視した状態が示されている。図6は、本実施の形態の電力増幅モジュールPA1の断面図(側面断面図)である。なお、図6は断面図、図5は平面図に対応するが、いずれも電力増幅モジュールPA1の概念的な構造が示されており、図5の構造を所定の位置で切断した断面と図6の断面図とは完全には一致していない。
<About the structure of the power amplification module>
FIG. 3 is a top view (plan view) of the power amplification module PA1 of the present embodiment, FIG. 4 is a bottom view of the power amplification module PA1, and FIG. 5 is a plan perspective view of the power amplification module PA1. There is shown a state in which the sealing resin 13 is seen through. FIG. 6 is a cross-sectional view (side cross-sectional view) of power amplification module PA1 of the present embodiment. 6 corresponds to a cross-sectional view, and FIG. 5 corresponds to a plan view, both of which show a conceptual structure of the power amplification module PA1. FIG. 6 is a cross-sectional view of the structure of FIG. Is not completely consistent with the cross-sectional view.
 図3~図6に示される本実施の形態の電力増幅モジュールPA1は、配線基板(多層基板、多層配線基板、モジュール基板)11と、配線基板11上に搭載(実装)された半導体チップ(半導体素子、能動素子)CP1と、配線基板11上に搭載(実装)された受動部品(受動素子、チップ部品)12と、半導体チップCP1および受動部品12を含む配線基板11の上面11aを覆う封止樹脂(封止部、封止樹脂部)13とを有している。半導体チップCP1および受動部品12は、配線基板11の導体層(伝送線路)に電気的に接続されている。また、電力増幅モジュールPA1は、例えば図示しない外部回路基板またはマザーボードなどに実装することもできる。電力増幅モジュールPA1は、半導体チップCP1を有しているので半導体装置とみなすことができるが、電子装置とみなすこともできる。 A power amplification module PA1 of the present embodiment shown in FIGS. 3 to 6 includes a wiring board (multilayer board, multilayer wiring board, module board) 11 and a semiconductor chip (semiconductor) mounted (mounted) on the wiring board 11. An element, an active element) CP1, a passive component (passive element, chip component) 12 mounted (mounted) on the wiring substrate 11, and a sealing covering the upper surface 11a of the wiring substrate 11 including the semiconductor chip CP1 and the passive component 12. And a resin (sealing portion, sealing resin portion) 13. The semiconductor chip CP1 and the passive component 12 are electrically connected to the conductor layer (transmission line) of the wiring board 11. The power amplification module PA1 can also be mounted on, for example, an external circuit board (not shown) or a motherboard. The power amplification module PA1 can be regarded as a semiconductor device because it includes the semiconductor chip CP1, but can also be regarded as an electronic device.
 配線基板11は、例えば、複数の絶縁体層(誘電体層)14と、複数の導体層(配線層)とを積層して一体化した多層配線基板(多層基板)である。図6では、5つの絶縁体層14が積層されて配線基板11が形成されているが、積層される絶縁体層14の数はこれに限定されるものではなく種々変更可能である。配線基板11を構成する各導体層(配線層)15は、必要に応じて絶縁体層14に形成されたビアホール(スルーホール)16内の導体(導体膜)を通じて電気的に接続されている。配線基板11の絶縁体層14を形成する材料としては、例えばアルミナ(酸化アルミニウム、Al)などのようなセラミック材料を用いることができる。この場合、配線基板11はセラミック多層基板である。配線基板11の絶縁体層14の材料は、セラミック材料に限定されるものではなく種々変更可能であり、例えばガラスエポキシ樹脂などを用いても良い。 The wiring board 11 is, for example, a multilayer wiring board (multilayer board) in which a plurality of insulator layers (dielectric layers) 14 and a plurality of conductor layers (wiring layers) are stacked and integrated. In FIG. 6, the five insulating layers 14 are laminated to form the wiring board 11. However, the number of the insulating layers 14 to be laminated is not limited to this and can be variously changed. Each conductor layer (wiring layer) 15 constituting the wiring board 11 is electrically connected through a conductor (conductor film) in a via hole (through hole) 16 formed in the insulator layer 14 as necessary. As a material for forming the insulator layer 14 of the wiring substrate 11, a ceramic material such as alumina (aluminum oxide, Al 2 O 3 ) can be used. In this case, the wiring board 11 is a ceramic multilayer board. The material of the insulator layer 14 of the wiring board 11 is not limited to a ceramic material and can be variously changed. For example, a glass epoxy resin may be used.
 配線基板11の上面(表面)11a上と下面(裏面)11b上と絶縁体層14間とには、配線形成用の導体層(配線層、配線パターン、導体パターン)15が形成されている。配線基板11の最上層の導体層15によって、配線基板11の上面11aに、導電体からなる基板側端子(端子、電極)TEおよびチップ搭載用導体パターン15cが形成され、配線基板11の最下層の導体層15によって、配線基板11の下面11bに、導電体からなる外部接続用端子(端子、電極、モジュール電極)15aおよび基準電位供給用端子15bが形成されている。 A conductor layer (wiring layer, wiring pattern, conductor pattern) 15 for wiring formation is formed on the upper surface (front surface) 11a and the lower surface (back surface) 11b of the wiring substrate 11 and between the insulator layers 14. A conductor-side board (terminal, electrode) TE made of a conductor and a chip mounting conductor pattern 15 c are formed on the upper surface 11 a of the wiring board 11 by the uppermost conductor layer 15 of the wiring board 11, and the lowermost layer of the wiring board 11. The conductor layer 15 forms an external connection terminal (terminal, electrode, module electrode) 15 a made of a conductor and a reference potential supply terminal 15 b on the lower surface 11 b of the wiring board 11.
 外部接続用端子15aは、上記入力端子104a,104b,104cに対応する端子と上記端子(出力端子)106に対応する端子とを含んでいる。配線基板11の内部、すなわち絶縁体層14の間にも導体層(配線層、配線パターン、導体パターン)15が形成されている。また、配線基板11の導体層15により形成される配線パターンのうち、基準電位供給用の配線パターン(例えば配線基板11の下面11bの基準電位供給用端子15bなど)は、絶縁体層14の配線形成面の大半の領域を覆うような矩形パターンで形成し、伝送線路用の配線パターンは帯状のパターンで形成することができる。 The external connection terminal 15 a includes terminals corresponding to the input terminals 104 a, 104 b, and 104 c and terminals corresponding to the terminals (output terminals) 106. A conductor layer (wiring layer, wiring pattern, conductor pattern) 15 is also formed in the wiring substrate 11, that is, between the insulator layers 14. Among the wiring patterns formed by the conductor layer 15 of the wiring substrate 11, the wiring pattern for supplying the reference potential (for example, the reference potential supplying terminal 15 b on the lower surface 11 b of the wiring substrate 11) is the wiring of the insulator layer 14. The wiring pattern for the transmission line can be formed as a band-shaped pattern, with a rectangular pattern covering most of the formation surface.
 半導体チップCP1は、単結晶シリコンなどからなる半導体基板(半導体ウエハ)に半導体集積回路を形成した後、必要に応じて半導体基板の裏面研削を行ってから、ダイシングなどにより半導体基板を各半導体チップCP1に分離したものである。半導体チップCP1の表面(上面)には、複数のパッド電極(電極、ボンディングパッド)PDが形成されており、各パッド電極PDは、半導体チップCP1内に形成された半導体素子または半導体集積回路に電気的に接続されている。半導体チップCP1の構成については、後でより詳細に説明する。なお、半導体チップCP1の互いに反対側に位置する2つの主面のうち、パッド電極PDが形成された側の主面を半導体チップCP1の表面と称し、パッド電極PDが形成された側の主面(表面)とは反対側の主面(すなわち裏面電極BE1が形成された側の主面)を、半導体チップCP1の裏面と称することとする。 The semiconductor chip CP1 is formed by forming a semiconductor integrated circuit on a semiconductor substrate (semiconductor wafer) made of single crystal silicon or the like, and then grinding the back surface of the semiconductor substrate as necessary, and then dicing or the like to each semiconductor chip CP1. It is separated. A plurality of pad electrodes (electrodes, bonding pads) PD are formed on the surface (upper surface) of the semiconductor chip CP1, and each pad electrode PD is electrically connected to a semiconductor element or a semiconductor integrated circuit formed in the semiconductor chip CP1. Connected. The configuration of the semiconductor chip CP1 will be described in detail later. Of the two principal surfaces located on opposite sides of the semiconductor chip CP1, the principal surface on the side where the pad electrode PD is formed is referred to as the surface of the semiconductor chip CP1, and the principal surface on the side where the pad electrode PD is formed. The main surface opposite to the (front surface) (that is, the main surface on which the back electrode BE1 is formed) is referred to as the back surface of the semiconductor chip CP1.
 図6に示されるように、半導体チップCP1は配線基板11の上面11aにおけるチップ搭載用導体パターン15cに、例えば半田18などの接合材(接着材)によりフェイスアップでダイボンディング(接合)されている。半導体チップCP1のダイボンディングには、半田18の代わりに、銀ペーストなどの導電性ペースト型接着材を用いることもできる。半導体チップCP1の表面(上面)に形成されたパッド電極PDは、導電性のワイヤ(ボンディングワイヤ)WAを介して配線基板11の上面11aの基板側端子TEに電気的に接続されている。また、半導体チップCP1の裏面全面には裏面電極BE1が形成されており、この半導体チップCP1の裏面電極BE1は、配線基板11の上面11aのチップ搭載用導体パターン15cに半田18などの導電性の接合材により接合されて電気的に接続され、更にビアホール16(16a)内の導体などを介して、配線基板11の下面11bの基準電位供給用端子15bに電気的に接続されている。なお、ビアホール16のうち、半導体チップCP1の下方に設けられたビアホール16aは、半導体チップCP1で生じた熱を配線基板11の下面11b側に伝導させるためのサーマルビアとして機能することもできる。 As shown in FIG. 6, the semiconductor chip CP1 is die-bonded (bonded) to the chip mounting conductor pattern 15c on the upper surface 11a of the wiring substrate 11 with a bonding material (adhesive material) such as solder 18 face up. . For die bonding of the semiconductor chip CP1, instead of the solder 18, a conductive paste adhesive such as silver paste can be used. The pad electrode PD formed on the surface (upper surface) of the semiconductor chip CP1 is electrically connected to the substrate-side terminal TE on the upper surface 11a of the wiring substrate 11 through a conductive wire (bonding wire) WA. Also, a back electrode BE1 is formed on the entire back surface of the semiconductor chip CP1, and the back electrode BE1 of the semiconductor chip CP1 is electrically conductive such as solder 18 on the chip mounting conductor pattern 15c on the top surface 11a of the wiring substrate 11. Bonded by a bonding material and electrically connected, and further electrically connected to a reference potential supply terminal 15b on the lower surface 11b of the wiring substrate 11 via a conductor in the via hole 16 (16a). Of the via holes 16, the via hole 16a provided below the semiconductor chip CP1 can also function as a thermal via for conducting heat generated in the semiconductor chip CP1 to the lower surface 11b side of the wiring substrate 11.
 受動部品12は、抵抗素子(例えばチップ抵抗)、容量素子(例えばチップコンデンサ)またはインダクタ素子(例えばチップインダクタ)などの受動素子からなり、例えばチップ部品からなる。受動部品12は、例えば上記整合回路105A,105B,107A,107B,102AM1,102AM2,102BM1,102BM2などを構成する受動部品である。受動部品12の電極は、配線基板11の上面11aの基板側端子TEに半田18などの導電性の接合材により接合されて電気的に接続されている。 The passive component 12 is composed of a passive element such as a resistive element (for example, a chip resistor), a capacitive element (for example, a chip capacitor), or an inductor element (for example, a chip inductor), for example, a chip component. The passive component 12 is a passive component that constitutes the matching circuits 105A, 105B, 107A, 107B, 102AM1, 102AM2, 102BM1, and 102BM2, for example. The electrodes of the passive component 12 are joined and electrically connected to the board-side terminal TE on the upper surface 11a of the wiring board 11 by a conductive joining material such as solder 18.
 半導体チップCP1または受動部品12が電気的に接続された配線基板11の上面11aの基板側端子TEは、必要に応じて配線基板11の上面11aまたは内部の導体層(配線層)15やビアホール16内の導体などを介して結線され、また、必要に応じて配線基板11の下面11bの外部接続用端子15aまたは基準電位供給用端子15bに電気的に接続されている。 The board-side terminal TE on the upper surface 11a of the wiring board 11 to which the semiconductor chip CP1 or the passive component 12 is electrically connected is connected to the upper surface 11a of the wiring board 11 or an internal conductor layer (wiring layer) 15 or via hole 16 as necessary. The wiring is connected via an internal conductor or the like, and is electrically connected to the external connection terminal 15a or the reference potential supply terminal 15b on the lower surface 11b of the wiring board 11 as necessary.
 また、配線基板11の上面11aおよび下面には、半田レジスト層(図示せず)が形成されているが、配線基板11の上面において、端子TEは半田レジスト層の開口部から露出され、配線基板11の下面において、外部接続用端子15aおよび基準電位供給用端子15bは半田レジスト層から露出されている。 Further, a solder resist layer (not shown) is formed on the upper surface 11a and the lower surface of the wiring substrate 11. On the upper surface of the wiring substrate 11, the terminal TE is exposed from the opening of the solder resist layer. 11, the external connection terminal 15 a and the reference potential supply terminal 15 b are exposed from the solder resist layer.
 封止樹脂13は、半導体チップCP1、受動部品12およびワイヤWAを覆うように配線基板11の上面11a上に形成されている。封止樹脂13は、例えばエポキシ樹脂またはシリコーン樹脂などの樹脂材料からなり、フィラーなどを含有することもできる。 The sealing resin 13 is formed on the upper surface 11a of the wiring board 11 so as to cover the semiconductor chip CP1, the passive component 12, and the wire WA. The sealing resin 13 is made of, for example, a resin material such as an epoxy resin or a silicone resin, and can contain a filler or the like.
 <電力増幅モジュールの実装例について>
 図7は、本実施の形態の電力増幅モジュールPA1を実装基板(配線基板、マザーボード、外部回路基板)21に実装した状態を模式的に示す側面図である。
<About mounting example of power amplification module>
FIG. 7 is a side view schematically showing a state in which the power amplification module PA1 of the present embodiment is mounted on a mounting board (wiring board, motherboard, external circuit board) 21. FIG.
 図7に示されるように、実装基板21の上面21a上に電力増幅モジュールPA1や他の部品22(例えば受動部品など)が実装される。この際、電力増幅モジュールPA1の外部接続用端子15aは、実装基板21の端子23aに、半田24などの導電性の接合材を介して接合されて電気的に接続され、電力増幅モジュールPA1の基準電位供給用端子15bは、実装基板21の端子(基準電位供給用端子)23bに半田24などの導電性の接合材を介して接合されて電気的に接続される。また、部品22の電極は、実装基板21の端子23cに、半田24などの導電性の接合材を介して接合されて電気的に接続される。このため、実装基板21の端子(基準電位供給用端子)23bから、半田24および基準電位供給用端子15bを介して、電力増幅モジュールPA1に基準電位(グランド電位、接地電位)を供給することができる。 7, the power amplification module PA1 and other components 22 (for example, passive components) are mounted on the upper surface 21a of the mounting substrate 21. At this time, the external connection terminal 15a of the power amplification module PA1 is joined and electrically connected to the terminal 23a of the mounting substrate 21 via a conductive joining material such as solder 24, and the reference of the power amplification module PA1. The potential supply terminal 15b is joined to and electrically connected to a terminal (reference potential supply terminal) 23b of the mounting substrate 21 via a conductive joining material such as solder 24. Further, the electrodes of the component 22 are joined and electrically connected to the terminals 23 c of the mounting substrate 21 via a conductive joining material such as solder 24. Therefore, a reference potential (ground potential, ground potential) is supplied from the terminal (reference potential supply terminal) 23b of the mounting substrate 21 to the power amplification module PA1 via the solder 24 and the reference potential supply terminal 15b. it can.
 <電力増幅モジュールの製造工程について>
 次に、電力増幅モジュールPA1の製造工程の一例を図面を参照して説明する。
<About manufacturing process of power amplification module>
Next, an example of a manufacturing process of the power amplification module PA1 will be described with reference to the drawings.
 図8は、電力増幅モジュールPA1の製造工程を示す工程フロー図である。図9~図13は、本実施の形態の電力増幅モジュールPA1の製造工程中の断面図である。本実施の形態の電力増幅モジュールPA1は、例えば次のようにして製造することができる。 FIG. 8 is a process flow diagram showing the manufacturing process of the power amplification module PA1. 9 to 13 are cross-sectional views of the power amplification module PA1 according to the present embodiment during the manufacturing process. The power amplification module PA1 of the present embodiment can be manufactured, for example, as follows.
 まず、図9に示されるように、配線基板として配線基板母体(配線基板)25を準備する(図8のステップS1)。この配線基板母体25は、後述の切断工程後に配線基板11となるものであり、例えば、印刷法、シート積層法またはビルドアップ法などを用いて製造することができる。また、配線基板母体25の上面25aは、後述の切断工程後に配線基板11の上面11aとなる。 First, as shown in FIG. 9, a wiring board base (wiring board) 25 is prepared as a wiring board (step S1 in FIG. 8). The wiring board base body 25 becomes the wiring board 11 after a cutting process described later, and can be manufactured using, for example, a printing method, a sheet lamination method, a build-up method, or the like. Further, the upper surface 25a of the wiring board base body 25 becomes the upper surface 11a of the wiring board 11 after a cutting process described later.
 また、半導体チップCP1を準備する(図8のステップS2)。ステップS2の半導体チップCP1の準備工程は、ステップS1の配線基板母体25の準備工程よりも先に行っても、後に行っても、あるいは同時に行ってもよい。ステップS2の半導体チップCP1の準備工程は、後述のステップS11,S12,S13を有している。 Further, the semiconductor chip CP1 is prepared (Step S2 in FIG. 8). The step of preparing the semiconductor chip CP1 in step S2 may be performed before, after, or simultaneously with the step of preparing the wiring board base 25 in step S1. The preparation process of the semiconductor chip CP1 in step S2 includes steps S11, S12, and S13 described later.
 次に、図10に示されるように、配線基板母体25の上面25aにおいて、半導体チップCP1を搭載予定のチップ搭載用導体パターン15cおよび受動部品12を搭載予定の基板側端子TEに、半田などの接合材を必要に応じて印刷または塗布する。それから、配線基板母体25の上面25a上に半導体チップCP1および受動部品12を搭載(配置)する(図8のステップS3)。この際、半導体チップCP1は、裏面側(裏面電極BE1側)が下方(配線基板母体25側)を向き、表面側(パッド電極PD側)が上方を向くように(フェイスアップボンディング)、配線基板母体25の上面25a(のチップ搭載用導体パターン15c)上に搭載(配置)される。それから、半田リフロー処理などを行って、半導体チップCP1および受動部品12を配線基板母体25に半田18などの接合材を介して固着(接合、接続、固定)する(図8のステップS4)。半田リフローで溶融・固化した半田が、半田18となる。また、他の形態として、配線基板母体25への受動部品12の実装工程と配線基板25への半導体チップCP1の実装工程とを、別々に行なうこともでき、この場合、例えば、配線基板母体25へ受動部品12を搭載して半田などの接合材で固定してから、配線基板母体25へ半導体チップCP1を搭載して接合材(半田または導電性ペースト型接着材など)で固定することができる。 Next, as shown in FIG. 10, on the upper surface 25a of the wiring board base 25, the chip mounting conductor pattern 15c on which the semiconductor chip CP1 is to be mounted and the board-side terminal TE on which the passive component 12 is to be mounted are connected to solder or the like. The bonding material is printed or applied as necessary. Then, the semiconductor chip CP1 and the passive component 12 are mounted (arranged) on the upper surface 25a of the wiring board mother body 25 (step S3 in FIG. 8). At this time, in the semiconductor chip CP1, the wiring board is arranged such that the back side (back side electrode BE1 side) faces downward (wiring board base 25 side) and the front side (pad electrode PD side) faces upward (face-up bonding). It is mounted (arranged) on the upper surface 25a (the chip mounting conductor pattern 15c) of the mother body 25. Then, by performing a solder reflow process or the like, the semiconductor chip CP1 and the passive component 12 are fixed (bonded, connected, fixed) to the wiring board base 25 via a bonding material such as solder 18 (step S4 in FIG. 8). The solder melted and solidified by the solder reflow becomes the solder 18. As another form, the mounting process of the passive component 12 on the wiring board base 25 and the mounting process of the semiconductor chip CP1 on the wiring board 25 can be performed separately. In this case, for example, the wiring board base 25 After the passive component 12 is mounted and fixed with a bonding material such as solder, the semiconductor chip CP1 can be mounted on the wiring board base 25 and fixed with a bonding material (such as solder or a conductive paste adhesive). .
 次に、図11に示されるように、ワイヤボンディング工程を行って、半導体チップCP1の表面の複数のパッド電極PDと配線基板母体25の上面25aの複数の基板側端子TEとを複数のワイヤ(ボンディングワイヤ)WAを介してそれぞれ電気的に接続する(図8のステップS5)。 Next, as shown in FIG. 11, a wire bonding step is performed to connect a plurality of pad electrodes PD on the surface of the semiconductor chip CP1 and a plurality of substrate-side terminals TE on the upper surface 25a of the wiring board base 25 to a plurality of wires ( Bonding wires) are electrically connected via WA (step S5 in FIG. 8).
 次に、図12に示されるように、配線基板母体25の上面25a上に、半導体チップCP1、受動部品12およびワイヤWAを覆うように、封止樹脂(封止部、封止樹脂部)13を形成する。封止樹脂13は、例えば印刷法またはモールド用金型(例えばトランスファモールド)などを用いて形成することができる(図8のステップS6)。 Next, as shown in FIG. 12, the sealing resin (sealing part, sealing resin part) 13 is formed on the upper surface 25a of the wiring board base 25 so as to cover the semiconductor chip CP1, the passive component 12, and the wire WA. Form. The sealing resin 13 can be formed using, for example, a printing method or a mold for molding (for example, transfer mold) (step S6 in FIG. 8).
 次に、図13に示されるように、配線基板母体25と封止樹脂13をダイシングなどで切断することで、電力増幅モジュールPA1を製造することができる(図8のステップS7)。切断後の配線基板母体25が上記配線基板11となる。 Next, as shown in FIG. 13, the power amplification module PA1 can be manufactured by cutting the wiring board base 25 and the sealing resin 13 by dicing or the like (step S7 in FIG. 8). The wiring board matrix 25 after cutting becomes the wiring board 11.
 <半導体チップの構造について>
 図14は、上記図5の部分拡大平面図であり、配線基板11に搭載された半導体チップCP1とその周辺領域が拡大して示してある。図15は、図14からワイヤWAおよび基板側端子TEを省略した平面図であり、半導体チップCP1の平面図(平面レイアウト図)に対応している。
<About the structure of the semiconductor chip>
FIG. 14 is a partially enlarged plan view of FIG. 5 and shows an enlarged view of the semiconductor chip CP1 mounted on the wiring board 11 and its peripheral region. FIG. 15 is a plan view in which the wire WA and the substrate-side terminal TE are omitted from FIG. 14, and corresponds to a plan view (planar layout diagram) of the semiconductor chip CP1.
 図14および図15では、半導体チップCP1において、GSM900用の1段目の増幅段LDML1を構成するLDMOSFET素子が形成された領域を、符号REGL1を付してLDMOSFET形成領域REGL1として示し、GSM900用の2段目の増幅段LDML2を構成するLDMOSFET素子が形成された領域を、符号REGL2を付してLDMOSFET形成領域REGL2として示している。そして、GSM900用の3段目(最終段)の増幅段LDML3を構成するLDMOSFET素子が形成された領域を、符号REGL3を付してLDMOSFET形成領域REGL3として示している。 14 and 15, in the semiconductor chip CP1, a region in which the LDMOSFET element constituting the first amplification stage LDML1 for GSM900 is formed is denoted as a LDMOSFET formation region REGL1 with a reference sign REGL1, and the region for GSM900 is used. A region in which the LDMOSFET elements constituting the second amplification stage LDML2 are formed is denoted by a reference sign REGL2 and is indicated as an LDMOSFET formation region REGL2. A region in which the LDMOSFET elements constituting the third (final) amplification stage LDML3 for GSM900 are formed is denoted by the reference numeral REGL3 and indicated as an LDMOSFET formation region REGL3.
 また、DCS1800用の1段目の増幅段LDMH1を構成するLDMOSFET素子が形成された領域を、符号REGH1を付してLDMOSFET形成領域REGH1として示し、DCS1800用の2段目の増幅段LDMH2を構成するLDMOSFET素子が形成された領域を、符号REGH2を付してLDMOSFET形成領域REGH2として示している。そして、DCS1800用の3段目(最終段)の増幅段LDMH3を構成するLDMOSFET素子が形成された領域を、符号REGH3を付してLDMOSFET形成領域REGH3として示している。 Further, the region where the LDMOSFET element constituting the first amplification stage LDMH1 for DCS1800 is formed is denoted by the reference numeral REGH1, and is indicated as LDMOSFET formation region REGH1, and the second amplification stage LDMH2 for DCS1800 is constituted. A region where the LDMOSFET element is formed is indicated as a LDMOSFET formation region REGH2 with a reference sign REGH2. A region in which the LDMOSFET elements constituting the third (final) amplification stage LDMH3 for DCS1800 are formed is denoted by reference numeral REGH3 and is indicated as an LDMOSFET formation region REGH3.
 図14および図15は、平面図であるが、理解を簡単にするために、これらLDMOSFET形成領域REGL1~REGL3,REGH1~REGH3にハッチングを付して示してあるが、実際には、LDMOSFET形成領域REGL1~REGL3,REGH1~REGH3は、半導体チップCP1の最上層の保護膜(後述の絶縁膜52に対応)で覆われている。 14 and 15 are plan views, but for the sake of easy understanding, these LDMOSFET formation regions REGL1 to REGL3 and REGH1 to REGH3 are hatched. REGL1 to REGL3 and REGH1 to REGH3 are covered with an uppermost protective film (corresponding to an insulating film 52 described later) of the semiconductor chip CP1.
 更に、半導体チップCP1は、容量素子、抵抗素子または制御用MOSFETなどの上記周辺回路103を構成する素子が形成された領域も有しているが、この領域については、図14および図15では図示を省略している。 Further, the semiconductor chip CP1 also has a region in which elements constituting the peripheral circuit 103 such as a capacitor element, a resistance element, or a control MOSFET are formed. This region is illustrated in FIGS. Is omitted.
 図14および図15に示されるように、半導体チップCP1の表面には、複数のパッド電極PDが形成されている。このパッド電極PDは、ドレイン用のパッド電極PDであるドレインパッド(ドレインパッド電極)PDD1,PDD2,PDD3,PDD4,PDD5,PDD6およびゲート用のパッド電極PDであるゲートパッド(ゲートパッド電極)PDG1,PDG2,PDG3,PDG4,PDG5,PDG6を含んでいる。また、それ以外に、パッド電極PDは、制御信号の入力や検出信号の出力などに用いるためのパッド電極PD1も含んでいる。 14 and 15, a plurality of pad electrodes PD are formed on the surface of the semiconductor chip CP1. The pad electrodes PD are drain pads (drain pad electrodes) PDD1, PDD2, PDD3, PDD4, PDD5, PDD6 which are drain pad electrodes PD and gate pads (gate pad electrodes) PDG1, which are gate pad electrodes PD. PDG2, PDG3, PDG4, PDG5, PDG6 are included. In addition, the pad electrode PD includes a pad electrode PD1 for use in inputting a control signal, outputting a detection signal, and the like.
 このうち、ゲートパッドPDG1は、LDMOSFET形成領域REGL1のゲート電極に電気的に接続された入力用のパッド電極(上記整合回路105Aを介してRF信号を入力するためのパッド電極)である。ドレインパッドPDD1は、LDMOSFET形成領域REGL1のドレインに電気的に接続された出力用のパッド電極(LDMOSFET形成領域REGL1で増幅したRF信号を出力するためのパッド電極)である。 Among these, the gate pad PDG1 is an input pad electrode (pad electrode for inputting an RF signal through the matching circuit 105A) electrically connected to the gate electrode of the LDMOSFET formation region REGL1. The drain pad PDD1 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGL1) electrically connected to the drain of the LDMOSFET formation region REGL1.
 また、ゲートパッドPDG2は、LDMOSFET形成領域REGL2のゲート電極に電気的に接続された入力用のパッド電極(上記整合回路102AM1を介してRF信号を入力するためのパッド電極)である。ドレインパッドPDD2は、LDMOSFET形成領域REGL2のドレインに電気的に接続された出力用のパッド電極(LDMOSFET形成領域REGL2で増幅したRF信号を出力するためのパッド電極)である。 The gate pad PDG2 is an input pad electrode (pad electrode for inputting an RF signal via the matching circuit 102AM1) electrically connected to the gate electrode of the LDMOSFET formation region REGL2. The drain pad PDD2 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGL2) electrically connected to the drain of the LDMOSFET formation region REGL2.
 また、ゲートパッドPDG3は、LDMOSFET形成領域REGL3のゲート電極に電気的に接続された入力用のパッド電極(上記整合回路102AM2を介してRF信号を入力するためのパッド電極)である。ドレインパッドPDD3は、LDMOSFET形成領域REGL3のドレインに電気的に接続された出力用のパッド電極(LDMOSFET形成領域REGL3で増幅したRF信号を出力するためのパッド電極)である。 The gate pad PDG3 is an input pad electrode (pad electrode for inputting an RF signal through the matching circuit 102AM2) electrically connected to the gate electrode of the LDMOSFET formation region REGL3. The drain pad PDD3 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGL3) electrically connected to the drain of the LDMOSFET formation region REGL3.
 また、ゲートパッドPDG4は、LDMOSFET形成領域REGH1のゲート電極に電気的に接続された入力用のパッド電極(上記整合回路105Bを介してRF信号を入力するためのパッド電極)である。ドレインパッドPDD4は、LDMOSFET形成領域REGH1のドレインに電気的に接続された出力用のパッド電極(LDMOSFET形成領域REGH1で増幅したRF信号を出力するためのパッド電極)である。 The gate pad PDG4 is an input pad electrode (pad electrode for inputting an RF signal through the matching circuit 105B) electrically connected to the gate electrode of the LDMOSFET formation region REGH1. The drain pad PDD4 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGH1) electrically connected to the drain of the LDMOSFET formation region REGH1.
 また、ゲートパッドPDG5は、LDMOSFET形成領域REGH2のゲート電極に電気的に接続された入力用のパッド電極(上記整合回路102BM1を介してRF信号を入力するためのパッド電極)である。ドレインパッドPDD5は、LDMOSFET形成領域REGH2のドレインに電気的に接続された出力用のパッド電極(LDMOSFET形成領域REGH2で増幅したRF信号を出力するためのパッド電極)である。 The gate pad PDG5 is an input pad electrode (pad electrode for inputting an RF signal via the matching circuit 102BM1) electrically connected to the gate electrode of the LDMOSFET formation region REGH2. The drain pad PDD5 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGH2) electrically connected to the drain of the LDMOSFET formation region REGH2.
 また、ゲートパッドPDG6は、LDMOSFET形成領域REGH3のゲート電極に電気的に接続された入力用のパッド電極(上記整合回路102BM2を介してRF信号を入力するためのパッド電極)である。ドレインパッドPDD6は、LDMOSFET形成領域REGH3のドレインに電気的に接続された出力用のパッド電極(LDMOSFET形成領域REGH3で増幅したRF信号を出力するためのパッド電極)である。 The gate pad PDG6 is an input pad electrode (pad electrode for inputting an RF signal via the matching circuit 102BM2) electrically connected to the gate electrode of the LDMOSFET formation region REGH3. The drain pad PDD6 is an output pad electrode (pad electrode for outputting an RF signal amplified in the LDMOSFET formation region REGH3) electrically connected to the drain of the LDMOSFET formation region REGH3.
 また、半導体チップCP1において、各LDMOSFET形成領域REGL1,REGL2,REGL3,REGH1,REGH2,REGH3が形成された領域および制御回路用の素子が形成された領域は、各領域間に形成された埋込酸化膜などからなる素子分離領域(後述の素子分離領域32に対応)によって、それぞれ他の領域から電気的に分離されている。また、LDMOSFET形成領域REGL1,REGL2,REGL3,REGH1,REGH2,REGH3および制御回路用の素子が形成された領域の間や、それらとパッド電極PDとの間は、必要に応じて半導体チップCP1の内部配線により電気的に接続されている。 In the semiconductor chip CP1, the regions where the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, and REGH3 are formed and the regions where the elements for the control circuit are formed are buried oxides formed between the regions. Each element is electrically isolated from other regions by element isolation regions (corresponding to element isolation regions 32 described later) made of a film or the like. Further, the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, REGH3 and the region where the elements for the control circuit are formed, and between them and the pad electrode PD, the inside of the semiconductor chip CP1 as necessary. It is electrically connected by wiring.
 また、半導体チップCP1は、上記4つの辺(チップ辺)SD1,SD2,SD3,SD4を有する矩形の平面形状を有しており、辺SD1と辺SD3とは互いに平行でかつ対向し、辺SD2と辺SD4とは互いに平行でかつ対向し、辺SD1と辺SD2とは直交し、辺SD1と辺SD4とは直交し、辺SD3と辺SD2とは直交し、辺SD3と辺SD4とは直交している。複数のパッド電極PDは半導体チップCP1の表面の周辺部に配置されている。半導体チップCP1の表面において、ドレインパッドPDD3、ゲートパッドPDG3、ドレインパッドPDD2、ゲートパッドPDG2、ドレインパッドPDD1およびゲートパッドPDG1は、この順で辺SD1に沿って配置されている。また、半導体チップCP1の表面において、ドレインパッドPDD6、ゲートパッドPDG6、ドレインパッドPDD5、ゲートパッドPDG5、ドレインパッドPDD4およびゲートパッドPDG4は、この順で辺SD3に沿って配置されている。また、半導体チップCP1の表面において、LDMOSFET形成領域REGL3,REGL2,REGL1は、辺SD1側に配置され、LDMOSFET形成領域REGH3,REGH2,REGH1は辺SD3側に配置されている。平面的に見ると、LDMOSFET形成領域REGL3と辺SD1との間にドレインパッドPDD3が位置し、LDMOSFET形成領域REGL2と辺SD1との間にドレインパッドPDD2が位置し、LDMOSFET形成領域REGL1と辺SD1との間にドレインパッドPDD1が位置している。また、平面的に見ると、LDMOSFET形成領域REGH3と辺SD3との間にドレインパッドPDD6が位置し、LDMOSFET形成領域REGH2と辺SD3との間にドレインパッドPDD5が位置し、LDMOSFET形成領域REGH1と辺SD3との間にドレインパッドPDD4が位置している。 The semiconductor chip CP1 has a rectangular planar shape having the four sides (chip sides) SD1, SD2, SD3, and SD4. The side SD1 and the side SD3 are parallel to and face each other, and the side SD2 And the side SD4 are parallel to each other and face each other, the side SD1 and the side SD2 are orthogonal, the side SD1 and the side SD4 are orthogonal, the side SD3 and the side SD2 are orthogonal, and the side SD3 and the side SD4 are orthogonal is doing. The plurality of pad electrodes PD are arranged on the periphery of the surface of the semiconductor chip CP1. On the surface of the semiconductor chip CP1, the drain pad PDD3, the gate pad PDG3, the drain pad PDD2, the gate pad PDG2, the drain pad PDD1, and the gate pad PDG1 are arranged along the side SD1 in this order. On the surface of the semiconductor chip CP1, the drain pad PDD6, the gate pad PDG6, the drain pad PDD5, the gate pad PDG5, the drain pad PDD4, and the gate pad PDG4 are arranged along the side SD3 in this order. On the surface of the semiconductor chip CP1, the LDMOSFET formation regions REGL3, REGL2, and REGL1 are disposed on the side SD1 side, and the LDMOSFET formation regions REGH3, REGH2, and REGH1 are disposed on the side SD3 side. In plan view, the drain pad PDD3 is located between the LDMOSFET formation region REGL3 and the side SD1, the drain pad PDD2 is located between the LDMOSFET formation region REGL2 and the side SD1, and the LDMOSFET formation region REGL1 and the side SD1. A drain pad PDD1 is located between the two. Further, in a plan view, the drain pad PDD6 is located between the LDMOSFET formation region REGH3 and the side SD3, the drain pad PDD5 is located between the LDMOSFET formation region REGH2 and the side SD3, and the LDMOSFET formation region REGH1 and the side A drain pad PDD4 is located between SD3 and SD3.
 <半導体チップにおけるLDMOSFET形成領域の構成について>
 図16~図20は、半導体チップCP1の要部断面図である。図16には、半導体チップCP1において、上記LDMOSFET形成領域REGL1,REGL2,REGL3,REGH1,REGH2,REGH3の要部断面図が示されている。図17は、図16とは異なる断面位置が示され、素子分離領域32上においてゲート電極35をゲート配線M1G,M2Gに引き上げている領域の断面図に対応する。図18は、図16および図17とは異なる断面位置が示され、ドレインパッドPDD1,PDD2,PDD3,PDD4,PDD5,PDD6が形成された領域の断面図に対応する。図19は、図16~図18とは異なる断面位置が示され、ゲートパッドPDG1,PDG2,PDG3,PDG4,PDG5,PDG6が形成された領域の断面図に対応する。図20は、図16~図19とは異なる断面位置が示され、ドレインパッドPDD3,PDD6が形成された領域の断面図に対応する。
<Configuration of LDMOSFET formation region in semiconductor chip>
16 to 20 are principal part cross-sectional views of the semiconductor chip CP1. FIG. 16 is a cross-sectional view of a main part of the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, and REGH3 in the semiconductor chip CP1. 17 shows a cross-sectional position different from that in FIG. 16, and corresponds to a cross-sectional view of a region where the gate electrode 35 is pulled up to the gate wirings M1G and M2G on the element isolation region 32. FIG. 18 shows a cross-sectional position different from that in FIGS. 16 and 17, and corresponds to a cross-sectional view of a region where drain pads PDD1, PDD2, PDD3, PDD4, PDD5, and PDD6 are formed. FIG. 19 shows cross-sectional positions different from those in FIGS. 16 to 18, and corresponds to a cross-sectional view of a region where the gate pads PDG1, PDG2, PDG3, PDG4, PDG5 and PDG6 are formed. FIG. 20 shows a cross-sectional position different from that in FIGS. 16 to 19 and corresponds to a cross-sectional view of a region where the drain pads PDD3 and PDD6 are formed.
 図16~図20に示されるように、半導体チップCP1を構成する半導体基板(以下、単に基板という)31は、p型単結晶シリコンなどからなる基板本体(半導体基板、半導体ウエハ)31aと、基板本体31aの主面上に形成された、例えばp型単結晶シリコンからなるエピタキシャル層(半導体層)31bと、を有している。このため、基板31は、いわゆるエピタキシャルウエハである。エピタキシャル層31bは、半導体層であるが、エピタキシャル層31bの不純物濃度は基板本体31aの不純物濃度よりも低く、エピタキシャル層31bの抵抗率は基板本体31aの抵抗率よりも高い。このエピタキシャル層31bには、絶縁体からなる素子分離領域32が形成されている。なお、図16は、素子分離領域32に囲まれた活性領域(後述の活性領域AR1に対応)を横切る断面図に対応するため、図16には素子分離領域32は示されておらず、図17~図20は、活性領域を囲む素子分離領域32を横切る断面図に対応するため、図17~図20には素子分離領域32が示されている。 As shown in FIGS. 16 to 20, a semiconductor substrate (hereinafter simply referred to as a substrate) 31 constituting the semiconductor chip CP1 includes a substrate body (semiconductor substrate, semiconductor wafer) 31a made of p + -type single crystal silicon, and the like. And an epitaxial layer (semiconductor layer) 31b made of, for example, p type single crystal silicon, formed on the main surface of the substrate body 31a. For this reason, the substrate 31 is a so-called epitaxial wafer. Although the epitaxial layer 31b is a semiconductor layer, the impurity concentration of the epitaxial layer 31b is lower than the impurity concentration of the substrate body 31a, and the resistivity of the epitaxial layer 31b is higher than the resistivity of the substrate body 31a. An element isolation region 32 made of an insulator is formed in the epitaxial layer 31b. 16 corresponds to a cross-sectional view crossing an active region (corresponding to an active region AR1 described later) surrounded by the element isolation region 32, the element isolation region 32 is not shown in FIG. 17 to 20 correspond to cross-sectional views across the element isolation region 32 surrounding the active region, so that the element isolation region 32 is shown in FIGS. 17 to 20.
 素子分離領域32は、例えばSTI(Shallow Trench Isolation)法またはLOCOS(Local Oxidization of Silicon)法などにより形成されている。素子分離領域32により、基板本体31aの主面(エピタキシャル層31bの主面)に後述の活性領域AR1が規定され、この活性領域AR1にLDMOSFETのセル(単位LDMOSFET素子)が複数形成される。活性領域AR1は、周囲を素子分離領域32によって囲まれている。 The element isolation region 32 is formed by, for example, an STI (Shallow Trench Isolation) method or a LOCOS (Local Oxidization of Silicon) method. The element isolation region 32 defines an active region AR1 described later on the main surface of the substrate body 31a (main surface of the epitaxial layer 31b), and a plurality of LDMOSFET cells (unit LDMOSFET elements) are formed in the active region AR1. The active region AR1 is surrounded by the element isolation region 32.
 エピタキシャル層31bの主面の一部には、LDMOSFETのドレインからソースへの空乏層の延びを抑えるパンチスルーストッパとして機能するp型ウエル33が形成されている。p型ウエル33の表面には、酸化シリコンなどからなるゲート絶縁膜34を介してLDMOSFETのゲート電極35が形成されている。ゲート電極35は、例えばn型の多結晶シリコン膜の単体膜あるいはn型の多結晶シリコン膜と金属シリサイド膜との積層膜などからなり、ゲート電極35の側壁には、酸化シリコンなどからなるサイドウォールスペーサ(側壁絶縁膜)36が形成されている。 A p-type well 33 that functions as a punch-through stopper that suppresses the extension of the depletion layer from the drain to the source of the LDMOSFET is formed on a part of the main surface of the epitaxial layer 31b. On the surface of the p-type well 33, a gate electrode 35 of the LDMOSFET is formed via a gate insulating film 34 made of silicon oxide or the like. The gate electrode 35 is made of, for example, a single film of an n-type polycrystalline silicon film or a laminated film of an n-type polycrystalline silicon film and a metal silicide film, and a side wall made of silicon oxide or the like is formed on the side wall of the gate electrode 35. A wall spacer (side wall insulating film) 36 is formed.
 エピタキシャル層31bの内部のチャネル形成領域(ゲート電極35の直下の領域)を挟んで互いに離間する領域には、LDMOSFETのソース、ドレインが形成されている。ドレインは、チャネル形成領域に接する第1のn型ドレイン領域37と、第1のn型ドレイン領域に接し、チャネル形成領域から離間して形成された第2のn型ドレイン領域38と、第2のn型ドレイン領域に接し、チャネル形成領域からさらに離間して形成されたn型ドレイン領域(ドレイン高濃度領域、高濃度n型ドレイン領域)39とからなる。 The source and drain of the LDMOSFET are formed in regions separated from each other across the channel formation region (region immediately below the gate electrode 35) inside the epitaxial layer 31b. Drain first n in contact with the channel forming region - -type drain region 37, the first n - -type drain region 38 - -type drain region in contact with the second n which is spaced apart from the channel forming region And an n + type drain region (drain high concentration region, high concentration n type drain region) 39 formed in contact with the second n type drain region and further away from the channel formation region.
 これら第1のn型ドレイン領域37、第2のn型ドレイン領域38およびn型ドレイン領域39のうち、ゲート電極35に最も近い第1のn型ドレイン領域37は不純物濃度が最も低く、ゲート電極35から最も離間したn型ドレイン領域39は不純物濃度が最も高い。また、第2のn型ドレイン領域38の接合深さは、第1のn型ドレイン領域37の接合深さとほぼ同じであるが、n型ドレイン領域39は、第2のn型ドレイン領域38および第1のn型ドレイン領域37に比べて浅く形成されている。 Of these first n -type drain region 37, second n -type drain region 38 and n + -type drain region 39, the first n -type drain region 37 closest to the gate electrode 35 has the highest impurity concentration. The n + -type drain region 39 which is low and is most distant from the gate electrode 35 has the highest impurity concentration. The junction depth of the second n -type drain region 38 is substantially the same as the junction depth of the first n -type drain region 37, but the n + -type drain region 39 has the second n -type drain. It is formed shallower than the drain region 38 and the first n -type drain region 37.
 第1のn型ドレイン領域(第1の低濃度n型ドレイン領域、第1のn型LDD領域)37は、ゲート電極35に対して自己整合的に形成され、その端部がチャネル形成領域と接するように、ゲート電極35の側壁下部で終端している。また、第2のn型ドレイン領域(第2の低濃度n型ドレイン領域、第2のn型LDD領域)38は、ゲート電極35のドレイン側の側壁に形成されたサイドウォールスペーサ36に対して自己整合的に形成されることから、ゲート長方向に沿ったサイドウォールスペーサ36の膜厚に相当する分、ゲート電極35から離間して形成される。 The first n -type drain region (first low-concentration n-type drain region, first n-type LDD region) 37 is formed in a self-aligned manner with respect to the gate electrode 35, and its end is a channel formation region It terminates at the bottom of the side wall of the gate electrode 35 so as to come into contact. Further, the second n -type drain region (second low-concentration n-type drain region, second n-type LDD region) 38 is formed with respect to the side wall spacer 36 formed on the side wall on the drain side of the gate electrode 35. Therefore, it is formed so as to be separated from the gate electrode 35 by an amount corresponding to the film thickness of the sidewall spacer 36 along the gate length direction.
 LDMOSFETのソースは、チャネル形成領域に接するn型ソース領域40と、n型ソース領域40に接し、チャネル形成領域から離間して形成され、n型ソース領域40よりも不純物濃度が高いn型ソース領域41とからなる。 The source of the LDMOSFET is n -type source region 40 in contact with the channel formation region, and is in contact with the n -type source region 40, spaced apart from the channel formation region, and has an impurity concentration higher than that of the n -type source region 40. And a + type source region 41.
 n型ソース領域40は、ゲート電極35に対して自己整合的に形成され、その端部がチャネル形成領域と接するように、ゲート電極35の側壁下部で終端している。また、n型ソース領域40の下部に、p型ハロー領域(図示せず)を形成することもでき、このp型ハロー領域は、必ずしも形成する必要はないが、これを形成した場合は、ソースからチャネル形成領域への不純物の広がりがさらに抑制され、さらに短チャネル効果が抑制されるので、しきい値電圧の低下をさらに抑制することができる。 The n -type source region 40 is formed in a self-aligned manner with respect to the gate electrode 35, and terminates at the lower portion of the side wall of the gate electrode 35 so that the end thereof is in contact with the channel formation region. Also, a p-type halo region (not shown) can be formed below the n -type source region 40, and this p-type halo region is not necessarily formed, but when formed, The spread of impurities from the source to the channel formation region is further suppressed, and the short channel effect is further suppressed, so that the threshold voltage can be further prevented from decreasing.
 n型ソース領域41は、ゲート電極35のソース側の側壁に形成されたサイドウォールスペーサ36に対して自己整合的に形成されているため、n型ソース領域41は、n型ソース領域40に接して形成され、かつ、ゲート長方向に沿ったサイドウォールスペーサ36の膜厚に相当する分、チャネル形成領域から離間して形成されている。n型ソース領域41の底部の位置は、n型ソース領域40の底部の位置よりも深い。 Since the n + type source region 41 is formed in a self-aligned manner with respect to the side wall spacer 36 formed on the source side wall of the gate electrode 35, the n + type source region 41 is an n type source region. 40, and is spaced apart from the channel formation region by an amount corresponding to the film thickness of the sidewall spacer 36 along the gate length direction. The position of the bottom of the n + -type source region 41 is deeper than the position of the bottom of the n -type source region 40.
 このように、ゲート電極35とn型ドレイン領域39との間に介在する低濃度n型ドレイン領域(n型LDD領域)を二重構造とし、ゲート電極35に最も近い第1のn型ドレイン領域37の不純物濃度を相対的に低く、ゲート電極35から離間した第2のn型ドレイン領域38の不純物濃度を相対的に高くしている。これにより、ゲート電極35とドレインとの間に空乏層が広がるようになる結果、ゲート電極35とその近傍の第1のn型ドレイン領域37との間に形成される帰還容量(Cgd)は小さくなる。また、第2のn型ドレイン領域38の不純物濃度が高いことから、オン抵抗(Ron)も小さくなる。第2のn型ドレイン領域38は、ゲート電極35から離間した位置に形成されているために、帰還容量(Cgd)に及ぼす影響は僅かである。このため、オン抵抗(Ron)と帰還容量(Cgd)を共に小さくすることができるので、増幅回路の電力付加効率を向上させることができる。 As described above, the lightly doped n-type drain region (n-type LDD region) interposed between the gate electrode 35 and the n + -type drain region 39 has a double structure, and the first n -type closest to the gate electrode 35 is formed. The impurity concentration of the drain region 37 is relatively low, and the impurity concentration of the second n -type drain region 38 spaced from the gate electrode 35 is relatively high. As a result, a depletion layer spreads between the gate electrode 35 and the drain. As a result, the feedback capacitance (Cgd) formed between the gate electrode 35 and the first n -type drain region 37 in the vicinity thereof is reduced. Get smaller. Further, since the impurity concentration of the second n -type drain region 38 is high, the on-resistance (Ron) is also reduced. Since the second n -type drain region 38 is formed at a position separated from the gate electrode 35, the influence on the feedback capacitance (Cgd) is small. For this reason, since both the on-resistance (Ron) and the feedback capacitance (Cgd) can be reduced, the power added efficiency of the amplifier circuit can be improved.
 なお、本願において、MOSFETまたはLDMOSFETというときは、ゲート絶縁膜に酸化膜(酸化シリコン膜)を用いたMISFETだけでなく、酸化膜(酸化シリコン膜)以外の絶縁膜をゲート絶縁膜に用いたMISFETも含むものとする。 In the present application, the MOSFET or LDMOSFET is not only a MISFET using an oxide film (silicon oxide film) as a gate insulating film, but also a MISFET using an insulating film other than an oxide film (silicon oxide film) as a gate insulating film. Shall also be included.
 ここで、LDMOSFETは、MISFET(Metal Insulator Semiconductor Field Effect Transistor:MIS型電界効果トランジスタ)素子であるが、次のような特徴(第1~第3の特徴)を有するMISFET素子である。 Here, the LDMOSFET is a MISFET (Metal-Insulator-Semiconductor-Field-Effect-Transistor) element, and is a MISFET element having the following characteristics (first to third characteristics).
 第1の特徴として、LDMOSFETは、短いチャネル長で高電圧動作を可能とするために、ゲート電極35のドレイン側にLDD(Lightly doped drain)領域が形成されている。すなわち、LDMOSFETのドレインは、高不純物濃度のn型領域(ここではn型ドレイン領域39)と、それよりも低不純物濃度のLDD領域(ここでは第1のn型ドレイン領域37および第2のn型ドレイン領域38)とから構成され、n型領域(n型ドレイン領域39)はLDD領域を介してゲート電極35(またはゲート電極35の下のチャネル形成領域)から離間して形成されている。これにより、高耐圧を実現することができる。ドレイン側のLDD領域における電荷量(不純物濃度)、およびゲート電極35の端部とn型ドレイン領域(ドレイン高濃度領域)39との間の平面(エピタキシャル層31bの主面)に沿った距離は、LDMOSFETのブレークダウン電圧が最大値となるように最適化しなければならない。 As a first feature, the LDMOSFET has an LDD (Lightly doped drain) region formed on the drain side of the gate electrode 35 in order to enable a high voltage operation with a short channel length. That is, the drain of the LDMOSFET has a high impurity concentration n + -type region (here, n + -type drain region 39) and a lower impurity concentration LDD region (here, the first n -type drain region 37 and the first n - type drain region 37). 2 n -type drain region 38), and the n + -type region (n + -type drain region 39) is separated from the gate electrode 35 (or the channel formation region below the gate electrode 35) via the LDD region. Is formed. Thereby, a high breakdown voltage can be realized. Charge amount (impurity concentration) in the LDD region on the drain side, and distance along the plane (main surface of the epitaxial layer 31b) between the end of the gate electrode 35 and the n + -type drain region (drain high concentration region) 39 Must be optimized to maximize the breakdown voltage of the LDMOSFET.
 第2の特徴として、LDMOSFETは、ソース側のソース形成領域(n型ソース領域40およびn型ソース領域41)とチャネル形成領域とに、パンチスルーストッパ用のp型ウエル(p型ベース領域)33が形成されている。LDMOSFETのドレイン側(ドレイン形成領域)では、このp型ウエル33は、形成されていないか、あるいはチャネル領域に近い側のドレイン形成領域の一部に接するようにしか形成されていない。 As a second feature, the LDMOSFET has a p-type well (p-type base region) for punch-through stoppers in a source-side source formation region (n -type source region 40 and n + -type source region 41) and a channel formation region. ) 33 is formed. On the drain side (drain formation region) of the LDMOSFET, the p-type well 33 is not formed, or is formed only in contact with a part of the drain formation region closer to the channel region.
 第3の特徴として、LDMOSFETは、ソース(ここではn型ソース領域40およびn型ソース領域41からなるソース領域)とドレイン(ここでは第1のn型ドレイン領域37、第2のn型ドレイン領域38およびn型ドレイン領域39からなるドレイン領域)とが、ゲート電極35に対して非対称な構造を有している。 As a third feature, the LDMOSFET has a source (here, a source region composed of an n type source region 40 and an n + type source region 41) and a drain (here, a first n type drain region 37, a second n type source region 41). The drain region composed of the type drain region 38 and the n + type drain region 39) has an asymmetric structure with respect to the gate electrode 35.
 n型ソース領域41の端部(n型ソース領域40と接する側とは反対側の端部)には、n型ソース領域41と接するp型打抜き層(p型半導体領域)44が形成されている。p型打抜き層44の表面近傍には、p型打抜き層44よりも高不純物濃度のp型半導体領域45が形成されている。p型打抜き層44は、LDMOSFETのソースと基板本体31aとを電気的に接続するための導電層であり、例えばエピタキシャル層31bに形成した溝の内部に埋め込んだp型多結晶シリコン膜によって形成される。p型打抜き層44の先端部(底部)は、基板本体31aに達している。p型打抜き層44は、基板31に形成した溝に埋め込んだ金属層により形成することもできる。 end of the n + -type source region 41 - in the (n end portion opposite to the side in contact with the source region 40), p-type punched layer in contact with the n + -type source region 41 (p-type semiconductor region) 44 Is formed. Near the surface of the p-type punching layer 44, a p + -type semiconductor region 45 having a higher impurity concentration than the p-type punching layer 44 is formed. The p-type punching layer 44 is a conductive layer for electrically connecting the source of the LDMOSFET and the substrate body 31a, and is formed of, for example, a p-type polycrystalline silicon film embedded in a groove formed in the epitaxial layer 31b. The The tip (bottom) of the p-type punching layer 44 reaches the substrate body 31a. The p-type punching layer 44 can also be formed by a metal layer embedded in a groove formed in the substrate 31.
 エピタキシャル層31bの主面上には、ゲート電極35およびサイドウォールスペーサ36を覆うように、絶縁膜(層間絶縁膜)46が形成されている。絶縁膜46は、例えば、薄い窒化シリコン膜とその上の厚い酸化シリコン膜の積層膜などからなる。絶縁膜46の上面は平坦化されている。 An insulating film (interlayer insulating film) 46 is formed on the main surface of the epitaxial layer 31b so as to cover the gate electrode 35 and the sidewall spacers 36. The insulating film 46 is made of, for example, a laminated film of a thin silicon nitride film and a thick silicon oxide film thereon. The upper surface of the insulating film 46 is planarized.
 絶縁膜46には、コンタクトホール(開口部、スルーホール、貫通孔)47が形成され、コンタクトホール47内には、タングステン(W)膜を主体とするプラグ(接続用埋込導体)48が埋め込まれている。コンタクトホール47およびそれを埋め込むプラグ48は、p型打抜き層44(p型半導体領域45)、ソース(n型ソース領域41)、ドレイン(n型ドレイン領域39)、およびゲート電極35のそれぞれの上部に形成されている。 A contact hole (opening, through hole, through hole) 47 is formed in the insulating film 46, and a plug (a buried conductor for connection) 48 mainly composed of a tungsten (W) film is embedded in the contact hole 47. It is. The contact hole 47 and the plug 48 filling the contact hole 47 are formed of a p-type punch layer 44 (p + -type semiconductor region 45), a source (n + -type source region 41), a drain (n + -type drain region 39), and a gate electrode 35. It is formed at the top of each.
 プラグ48が埋め込まれた絶縁膜46上には、タングステン(W)などを主体とする導電体膜(タングステン膜)からなる配線(第1層配線)M1が形成されている。配線M1は、プラグ48が埋め込まれた絶縁膜46上に形成した導電体膜(タングステン膜)をパターニングすることにより形成されている。配線M1は、タングステン配線に限定されず、アルミニウム配線など他の金属材料を用いた配線とすることもできる。 On the insulating film 46 in which the plug 48 is embedded, a wiring (first layer wiring) M1 made of a conductor film (tungsten film) mainly composed of tungsten (W) or the like is formed. The wiring M1 is formed by patterning a conductor film (tungsten film) formed on the insulating film 46 in which the plug 48 is embedded. The wiring M1 is not limited to the tungsten wiring, and may be a wiring using another metal material such as an aluminum wiring.
 配線M1は、プラグ48を介してn型ソース領域41およびp型半導体領域45の両者に電気的に接続するソース配線(ソース電極)M1Sと、プラグ48を介してn型ドレイン領域39に電気的に接続するドレイン配線(ドレイン電極)M1Dと、プラグ48を介してゲート電極35に電気的に接続するゲート配線M1Gとを有している。 The wiring M1 includes a source wiring (source electrode) M1S electrically connected to both the n + -type source region 41 and the p + -type semiconductor region 45 through the plug 48, and an n + -type drain region 39 through the plug 48. A drain wiring (drain electrode) M1D electrically connected to the gate electrode 35 and a gate wiring M1G electrically connected to the gate electrode 35 through the plug 48.
 絶縁膜46上に、配線M1を覆うように、酸化シリコン膜などからなる絶縁膜(層間絶縁膜)49が形成されている。絶縁膜49には、底部で配線M1の一部を露出するスルーホール(開口部、貫通孔)50が形成されている。スルーホール50内を含む絶縁膜49上には、アルミニウム(Al)またはアルミニウム合金などを主体とする導電体膜からなる配線M2が形成されている。 An insulating film (interlayer insulating film) 49 made of a silicon oxide film or the like is formed on the insulating film 46 so as to cover the wiring M1. In the insulating film 49, a through hole (opening, through hole) 50 exposing a part of the wiring M1 at the bottom is formed. On the insulating film 49 including the inside of the through hole 50, a wiring M2 made of a conductor film mainly composed of aluminum (Al) or an aluminum alloy is formed.
 配線M2は、例えば、スルーホール50内を含む絶縁膜49上に、バリア導体膜(例えばチタン膜と窒化チタン膜の積層膜)、アルミニウム膜(またはアルミニウム合金膜)およびバリア導体膜(例えばチタン膜と窒化チタン膜の積層膜)の積層膜からなる導電体膜を形成してから、この導電体膜をパターニングすることで形成されている。この積層膜では、主導体膜であるアルミニウム膜の膜厚に比べて、その上下のバリア導体膜の膜厚は薄い。この積層膜におけるアルミニウム膜の下側のバリア導体膜は、アルミニウム膜と下層の配線M1との反応を抑制する機能や、配線M2と絶縁膜49との密着性を向上させる機能などを有している。一方、この積層膜におけるアルミニウム膜の上側のバリア導体膜は、配線M2と絶縁膜(表面保護膜)52との密着性を向上させる機能や、フォトリソグラフィ処理の露光時の反射防止膜としての機能などを有している。 For example, the wiring M2 includes a barrier conductor film (for example, a laminated film of a titanium film and a titanium nitride film), an aluminum film (or an aluminum alloy film), and a barrier conductor film (for example, a titanium film) on the insulating film 49 including the inside of the through hole 50. And a titanium nitride film) is formed by patterning the conductor film. In this laminated film, the upper and lower barrier conductor films are thinner than the aluminum film as the main conductor film. The barrier conductor film below the aluminum film in the laminated film has a function of suppressing a reaction between the aluminum film and the lower wiring M1, a function of improving the adhesion between the wiring M2 and the insulating film 49, and the like. Yes. On the other hand, the barrier conductor film on the upper side of the aluminum film in the laminated film has a function of improving the adhesion between the wiring M2 and the insulating film (surface protective film) 52 and a function as an antireflection film at the time of exposure in the photolithography process. Etc.
 配線M2は、絶縁膜49上に延在するとともに、一部がスルーホール50内を埋め、スルーホール50の底部で配線M1と電気的に接続されている。従って、配線M2は、絶縁膜49上を延在する配線部と、スルーホール50内を埋めるビア部(接続部)とが一体的に形成されている。 The wiring M2 extends on the insulating film 49, partially fills the through hole 50, and is electrically connected to the wiring M1 at the bottom of the through hole 50. Therefore, the wiring M2 is integrally formed with a wiring portion extending on the insulating film 49 and a via portion (connecting portion) filling the through hole 50.
 配線M2は、ビア部(スルーホール50を埋める部分)を介してドレイン配線M1Dに電気的に接続するドレイン配線M2Dと、ビア部(スルーホール50を埋める部分)を介してゲート配線M1Gに電気的に接続するゲート配線M2Gと、ビア部(スルーホール50を埋める部分)を介してソース配線M1Sに電気的に接続するソース配線M2Sとを有している。 The wiring M2 is electrically connected to the drain wiring M2D that is electrically connected to the drain wiring M1D via the via portion (the portion that fills the through hole 50) and to the gate wiring M1G via the via portion (the portion that fills the through hole 50). And a source wiring M2S electrically connected to the source wiring M1S through a via portion (a portion filling the through hole 50).
 また、他の形態として、スルーホール50内に上記プラグ48と同様のプラグ埋め込み、このプラグが埋め込まれた絶縁膜49上に配線M2形成用の導電体膜を形成し、この導電体膜をパターニングして配線M2を形成することもでき、この場合、配線M2は、スルーホール50内を埋めるプラグを介して配線M1と電気的に接続されることになる。 As another form, a plug similar to the plug 48 is embedded in the through hole 50, a conductor film for forming the wiring M2 is formed on the insulating film 49 in which the plug is embedded, and the conductor film is patterned. Thus, the wiring M2 can be formed. In this case, the wiring M2 is electrically connected to the wiring M1 through a plug filling the through hole 50.
 絶縁膜49上に、配線M2を覆うように、絶縁膜(表面保護膜)52が形成されている。この絶縁膜52は、例えば、酸化シリコン膜とその上の窒化シリコン膜の積層膜などからなり、半導体チップCP1の最表面の保護膜として機能することができる。絶縁膜52には、パッド電極用の開口部(スルーホール、貫通孔)53が形成されており、開口部53の底部で配線M2が露出されている。すなわち、配線M2上に開口部53が形成され、その開口部53から配線M2の一部が露出されている。開口部53から露出する配線M2が、上記パッド電極PDに対応する。すなわち、開口部53から露出する配線M2によって、上記パッド電極PDが形成されている。 An insulating film (surface protective film) 52 is formed on the insulating film 49 so as to cover the wiring M2. The insulating film 52 is made of, for example, a laminated film of a silicon oxide film and a silicon nitride film thereon, and can function as a protective film on the outermost surface of the semiconductor chip CP1. An opening (through hole, through hole) 53 for a pad electrode is formed in the insulating film 52, and the wiring M <b> 2 is exposed at the bottom of the opening 53. That is, an opening 53 is formed on the wiring M2, and a part of the wiring M2 is exposed from the opening 53. The wiring M2 exposed from the opening 53 corresponds to the pad electrode PD. That is, the pad electrode PD is formed by the wiring M2 exposed from the opening 53.
 開口部53のうち、ドレイン配線M2D上に形成されてドレイン配線M2Dの一部を露出する開口部53をドレインパッド用開口部53Dと称し、ゲート配線M2G上に形成されてゲート配線M2Gの一部を露出する開口部をゲートパッド用開口部53Gと称するものとする。従って、ドレインパッド用開口部53Dから露出するドレイン配線M2Dが、上記ドレインパッドPDD1,PDD2,PDD3,PDD4,PDD5,PDD6に対応し、ゲートパッド用開口部53Gから露出するゲート配線M2Gが、上記ゲートパッドPDG1,PDG2,PDG3,PDG4,PDG5,PDG6に対応する。すなわち、ドレインパッド用開口部53Dから露出するドレイン配線M2Dによって、上記ドレインパッドPDD1,PDD2,PDD3,PDD4,PDD5,PDD6が形成され、ゲートパッド用開口部53Gから露出するゲート配線M2Gによって、上記ゲートパッドPDG1,PDG2,PDG3,PDG4,PDG5,PDG6が形成されている。開口部53から露出する配線M2(すなわち上記パッド電極PD)には、上述のように、半導体チップCP1を上記配線基板11(配線基板母体25)に搭載してから上記ワイヤWAが接続される。 Of the opening 53, the opening 53 formed on the drain wiring M2D and exposing a part of the drain wiring M2D is referred to as a drain pad opening 53D. The opening 53 is formed on the gate wiring M2G and is a part of the gate wiring M2G. The opening that exposes is referred to as a gate pad opening 53G. Accordingly, the drain wiring M2D exposed from the drain pad opening 53D corresponds to the drain pads PDD1, PDD2, PDD3, PDD4, PDD5, and PDD6, and the gate wiring M2G exposed from the gate pad opening 53G is the gate. It corresponds to pads PDG1, PDG2, PDG3, PDG4, PDG5 and PDG6. That is, the drain pad PDD1, PDD2, PDD3, PDD4, PDD5, and PDD6 are formed by the drain wiring M2D exposed from the drain pad opening 53D, and the gate wiring M2G exposed from the gate pad opening 53G forms the gate. Pads PDG1, PDG2, PDG3, PDG4, PDG5 and PDG6 are formed. As described above, the wire WA is connected to the wiring M2 exposed from the opening 53 (that is, the pad electrode PD) after the semiconductor chip CP1 is mounted on the wiring substrate 11 (wiring substrate base 25).
 なお、開口部53が配線M2に平面的に(平面視で)内包されるように、開口部53が形成された領域において、配線M2は、開口部53よりも大面積のパターンとされている。 Note that, in the region where the opening 53 is formed so that the opening 53 is included in the wiring M2 in a plan view (in a plan view), the wiring M2 has a pattern with a larger area than the opening 53. .
 また、上述のように、配線M2を、バリア導体膜、アルミニウム膜およびバリア導体膜の積層膜からなる導電体膜をパターニングすることで形成した場合には、絶縁膜52に開口部53を形成する際のドライエッチングで、最上層のバリア導体膜を除去することもできる。この場合、配線M2のうち開口部53から露出する部分(すなわちパッド電極PDとなる部分)は、バリア導体膜とその上のアルミニウム膜との積層膜からなり、開口部53からは、配線M2(パッド電極PD)を構成するアルミニウム膜(またはアルミニウム合金膜)の表面が露出されており、一方、絶縁膜52で覆われている部分の配線M2は、バリア導体膜とその上のアルミニウム膜とその上のバリア導体膜との積層膜からなる。 Further, as described above, when the wiring M2 is formed by patterning a conductor film made of a laminated film of a barrier conductor film, an aluminum film, and a barrier conductor film, an opening 53 is formed in the insulating film 52. The uppermost barrier conductor film can also be removed by dry etching. In this case, a portion of the wiring M2 exposed from the opening 53 (that is, a portion that becomes the pad electrode PD) is formed of a laminated film of a barrier conductor film and an aluminum film thereon, and the wiring M2 ( The surface of the aluminum film (or aluminum alloy film) constituting the pad electrode PD) is exposed, while the portion of the wiring M2 covered with the insulating film 52 includes a barrier conductor film, an aluminum film thereon, and It consists of a laminated film with the upper barrier conductor film.
 基板31の裏面(エピタキシャル層31bが形成されている側の主面とは反対側の主面)には、ソース裏面電極(裏面電極)54が形成されている。ソース裏面電極(裏面電極)54は、半導体チップCP1を構成する基板31の裏面全体(すなわち基板本体31aの裏面全体)に形成されており、上記裏面電極BE1に対応するものである。 A source back electrode (back electrode) 54 is formed on the back surface of the substrate 31 (the main surface opposite to the main surface on which the epitaxial layer 31b is formed). The source back electrode (back electrode) 54 is formed on the entire back surface of the substrate 31 constituting the semiconductor chip CP1 (that is, the entire back surface of the substrate body 31a), and corresponds to the back electrode BE1.
 エピタキシャル層31bに形成されたLDMOSFETのソース(n型ソース領域40およびn型ソース領域41)は、プラグ48(n型ソース領域41上に配置されたプラグ48)、ソース配線M1S、プラグ48(p型半導体領域45上に配置されたプラグ48)、p型半導体領域45、p型打抜き層44および基板31を介して、ソース裏面電極54(すなわち裏面電極BE1)に電気的に接続されている。 The source (n type source region 40 and n + type source region 41) of the LDMOSFET formed in the epitaxial layer 31b is a plug 48 (plug 48 disposed on the n + type source region 41), source wiring M1S, plug 48 (plug 48 disposed on p + type semiconductor region 45), p + type semiconductor region 45, p type punching layer 44, and substrate 31 are electrically connected to source back electrode 54 (ie, back electrode BE1). It is connected.
 他の形態として、更に、n型ソース領域41およびp型半導体領域45の表面(上部)に金属シリサイド層(例えばコバルトシリサイド層またはニッケルシリサイド層、図示せず)を形成し、この金属シリサイド層を介して、n型ソース領域41とp型半導体領域45とを電気的に接続することもでき、これによりソース抵抗を更に低減することができる。 As another form, a metal silicide layer (for example, a cobalt silicide layer or a nickel silicide layer, not shown) is further formed on the surface (upper part) of the n + type source region 41 and the p + type semiconductor region 45, and this metal silicide is formed. The n + -type source region 41 and the p + -type semiconductor region 45 can also be electrically connected through the layer, which can further reduce the source resistance.
 エピタキシャル層31bに形成されたLDMOSFETのドレイン(第1のn型ドレイン領域37、第2のn型ドレイン領域38およびn型ドレイン領域39)は、プラグ48(n型ドレイン領域39上に配置されたプラグ48)、ドレイン配線M1Dおよびドレイン配線M2Dを介して、ドレインパッド(ドレインパッドPDD1,PDD2,PDD3,PDD4,PDD5,PDD6のいずれか)に電気的に接続されている。 The drain (first n type drain region 37, second n type drain region 38 and n + type drain region 39) of the LDMOSFET formed in the epitaxial layer 31b is connected to the plug 48 (on the n + type drain region 39). Are electrically connected to a drain pad (any one of drain pads PDD1, PDD2, PDD3, PDD4, PDD5, and PDD6) via a drain wiring M1D and a drain wiring M2D.
 エピタキシャル層31bに形成されたLDMOSFETのゲート電極35は、プラグ48(ゲート電極35上に配置されたプラグ48)、ゲート配線M1Gおよびゲート配線M2Gを介して、ゲートパッド(ゲートパッドPDG1,PDG2,PDG3,PDG4,PDG5,PDG6のいずれか)に電気的に接続されている。 The gate electrode 35 of the LDMOSFET formed on the epitaxial layer 31b is connected to the gate pad (gate pads PDG1, PDG2, PDG3) via the plug 48 (plug 48 disposed on the gate electrode 35), the gate wiring M1G, and the gate wiring M2G. , PDG4, PDG5, PDG6).
 <半導体チップの製造工程について>
 次に、半導体チップCP1の製造工程について簡単に説明する。図21は、半導体チップCP1の製造工程を示す工程フロー図である。
<About semiconductor chip manufacturing process>
Next, a manufacturing process of the semiconductor chip CP1 will be briefly described. FIG. 21 is a process flowchart showing the manufacturing process of the semiconductor chip CP1.
 半導体チップCP1を製造するには、まず、基板本体(半導体基板、半導体ウエハ)31aの主面上にエピタキシャル成長法を用いてエピタキシャル層(半導体層)31bを形成することにより、基板本体31aと基板本体31a上のエピタキシャル層31bとからなる基板(半導体基板)31を形成する。この段階の基板31は、後述のダイシング工程は行われていないため、略円盤状の半導体ウエハの状態である。 In order to manufacture the semiconductor chip CP1, first, the epitaxial layer (semiconductor layer) 31b is formed on the main surface of the substrate body (semiconductor substrate, semiconductor wafer) 31a by using the epitaxial growth method, whereby the substrate body 31a and the substrate body are formed. A substrate (semiconductor substrate) 31 composed of the epitaxial layer 31b on 31a is formed. The substrate 31 at this stage is in a state of a substantially disk-shaped semiconductor wafer because a dicing process described later is not performed.
 次に、フォトリソグラフィ技術およびドライエッチング技術を用いてエピタキシャル層31bの一部をエッチングして、基板本体31aに達する溝を形成してから、この溝の内部を含むエピタキシャル層31b上にCVD法などを用いてp型多結晶シリコン膜を堆積した後、溝の外部のp型多結晶シリコン膜をエッチバック法などで除去することにより、溝内に埋め込まれたp型多結晶シリコン膜からなるp型打抜き層44を形成する。 Next, a part of the epitaxial layer 31b is etched using a photolithography technique and a dry etching technique to form a groove reaching the substrate body 31a, and then a CVD method or the like is formed on the epitaxial layer 31b including the inside of the groove. After the p-type polycrystalline silicon film is deposited using the p-type, the p-type polycrystalline silicon film outside the trench is removed by an etch back method or the like, thereby forming a p-type polycrystalline silicon film embedded in the trench. A stamping layer 44 is formed.
 次に、STI(Shallow Trench Isolation)法またはLOCOS(Local Oxidization of Silicon )法などにより、エピタキシャル層31bに素子分離領域32を形成する。 Next, the element isolation region 32 is formed in the epitaxial layer 31b by STI (Shallow Trench Isolation) method or LOCOS (Local Oxidization of Silicon) method.
 次に、エピタキシャル層31bの一部にp型不純物をイオン注入することによって、p型ウエル33を形成する。それから、エピタキシャル層31bの表面にゲート絶縁膜34を形成し、ゲート絶縁膜34の上部にゲート電極35を形成する。 Next, a p-type well 33 is formed by ion-implanting p-type impurities into a part of the epitaxial layer 31b. Then, a gate insulating film 34 is formed on the surface of the epitaxial layer 31b, and a gate electrode 35 is formed on the gate insulating film 34.
 次に、エピタキシャル層31bの一部にn型不純物をイオン注入することによって、第1のn型ドレイン領域37を形成する。それから、p型ウエル33の一部にn型不純物をイオン注入することによって、n型ソース領域40を形成する。 Next, a first n -type drain region 37 is formed by ion-implanting an n-type impurity into a part of the epitaxial layer 31b. Then, an n type source region 40 is formed by ion implantation of an n type impurity into a part of the p type well 33.
 次に、ゲート電極35の側壁にサイドウォールスペーサ36を形成する。それから、n型不純物のイオン注入により、第2のn型ドレイン領域38を形成する。それから、n型不純物のイオン注入により、n型ドレイン領域39およびn型ソース領域41を形成する。それから、p型不純物のイオン注入により、p型半導体領域45を形成する。 Next, sidewall spacers 36 are formed on the side walls of the gate electrode 35. Then, a second n type drain region 38 is formed by ion implantation of n type impurities. Then, an n + type drain region 39 and an n + type source region 41 are formed by ion implantation of an n type impurity. Then, a p + type semiconductor region 45 is formed by ion implantation of p type impurities.
 次に、基板31上にCVD法などを用いて絶縁膜(層間絶縁膜)46を形成し、必要に応じてその表面をCMP(Chemical Mechanical Polishing:化学的機械研磨)法などを用いて平坦化する。それから、フォトリソグラフィ技術およびドライエッチング技術を用いて絶縁膜46にコンタクトホール47を形成してから、このコンタクトホール47内にタングステン(W)膜を主体とするプラグ48を形成する。 Next, an insulating film (interlayer insulating film) 46 is formed on the substrate 31 using a CVD method or the like, and the surface thereof is planarized using a CMP (Chemical Mechanical Polishing) method or the like as necessary. To do. Then, a contact hole 47 is formed in the insulating film 46 by using a photolithography technique and a dry etching technique, and then a plug 48 mainly composed of a tungsten (W) film is formed in the contact hole 47.
 次に、プラグ48が埋め込まれた絶縁膜46上に導電体膜を形成してから、この導電体膜をフォトリソグラフィ技術およびドライエッチング技術を用いてパターニングすることにより、配線M1を形成する。 Next, after forming a conductor film on the insulating film 46 in which the plug 48 is embedded, the conductor film is patterned by using a photolithography technique and a dry etching technique to form the wiring M1.
 次に、絶縁膜46上に、配線M1を覆うように絶縁膜49を形成する。それから、フォトリソグラフィ技術およびドライエッチング技術を用いて絶縁膜49にスルーホール50を形成する。 Next, an insulating film 49 is formed on the insulating film 46 so as to cover the wiring M1. Then, a through hole 50 is formed in the insulating film 49 using a photolithography technique and a dry etching technique.
 次に、絶縁膜49上に、スルーホール50内を埋めるように、導電体膜を形成してから、この導電体膜をフォトリソグラフィ技術およびドライエッチング技術を用いてパターニングすることにより、配線M2を形成する。 Next, a conductor film is formed on the insulating film 49 so as to fill the through hole 50, and then the conductor film is patterned by using a photolithography technique and a dry etching technique, so that the wiring M2 is formed. Form.
 次に、絶縁膜49上に、配線M2を覆うように、絶縁膜(表面保護膜)52を形成してから、フォトリソグラフィ技術およびドライエッチング技術を用いて絶縁膜49に開口部53を形成する。これにより、開口部53から配線M2が露出することで、上記ドレインパッドPDD1,PDD2,PDD3,PDD4,PDD5,PDD6およびゲートパッドPDG1,PDG2,PDG3,PDG4,PDG5,PDG6を含むパッド電極PDが形成される。 Next, an insulating film (surface protective film) 52 is formed on the insulating film 49 so as to cover the wiring M2, and then an opening 53 is formed in the insulating film 49 using a photolithography technique and a dry etching technique. . As a result, the wiring M2 is exposed from the opening 53, thereby forming the pad electrode PD including the drain pads PDD1, PDD2, PDD3, PDD4, PDD5, PDD6 and the gate pads PDG1, PDG2, PDG3, PDG4, PDG5, PDG6. Is done.
 次に、基板31の裏面(エピタキシャル層31bを形成した側とは逆側の主面)を必要に応じて研磨してから、基板31の裏面の全面にソース裏面電極54をスパッタリング法などにより形成する。 Next, the back surface of the substrate 31 (the main surface opposite to the side on which the epitaxial layer 31b is formed) is polished as necessary, and then the source back electrode 54 is formed on the entire back surface of the substrate 31 by sputtering or the like. To do.
 ここまでの工程により、半導体ウエハ(基板31)に対するウエハ・プロセスが完了する(図21のステップS11)。ここでウエハ・プロセスは、前工程とも呼ばれ、一般的に、半導体ウエハ(基板31)の主面上に種々の素子(ここではLDMOSFETなど)や配線層を形成し、表面保護膜(およびパッド電極)を形成した後、半導体ウエハに形成された複数のチップ領域(各チップ領域から半導体チップCP1が形成される)の各々の電気的試験をプローブ等により行える状態にするまでの工程を言う。 The wafer process for the semiconductor wafer (substrate 31) is completed through the steps so far (step S11 in FIG. 21). Here, the wafer process is also called a pre-process, and generally, various elements (in this case, LDMOSFETs) and wiring layers are formed on the main surface of the semiconductor wafer (substrate 31), and a surface protective film (and a pad) This is a process from the formation of the electrode) until the electrical test of each of the plurality of chip regions (the semiconductor chip CP1 is formed from each chip region) formed on the semiconductor wafer can be performed by a probe or the like.
 次に、半導体ウエハ(基板31)に対してプローブ検査工程を行う(図21のステップS12)。このプローブ検査工程では、半導体ウエハ(基板31)の各チップ領域(すなわち半導体チップCP1)のパッド電極PDにプローブ(探針)を当てて(押し当てて)、半導体ウエハの各チップ領域(すなわち半導体チップCP1)の電気的特性を検査(試験)する。パッド電極PDに押し当てたプローブからパッド電極PDに所定の電圧が印加されることで、半導体ウエハの各チップ領域(すなわち半導体チップCP1)の電気的特性を検査することができる。半導体ウエハ(基板31)に形成された複数のチップ領域のうち、プローブ検査工程で不良と判別されたチップ領域は、ダイシング後に半導体チップCP1としては使用せず、プローブ検査工程で良品と判別されたチップ領域が、ダイシング後に半導体チップCP1として使用される。 Next, a probe inspection process is performed on the semiconductor wafer (substrate 31) (step S12 in FIG. 21). In this probe inspection step, a probe (probe) is applied (pressed) to the pad electrode PD of each chip region (ie, semiconductor chip CP1) of the semiconductor wafer (substrate 31), and each chip region (ie, semiconductor) of the semiconductor wafer (ie, semiconductor chip CP1). The electrical characteristics of the chip CP1) are inspected (tested). By applying a predetermined voltage to the pad electrode PD from the probe pressed against the pad electrode PD, the electrical characteristics of each chip region (that is, the semiconductor chip CP1) of the semiconductor wafer can be inspected. Of the plurality of chip regions formed on the semiconductor wafer (substrate 31), the chip region determined to be defective in the probe inspection process is not used as the semiconductor chip CP1 after dicing, and is determined to be a non-defective product in the probe inspection process. The chip area is used as the semiconductor chip CP1 after dicing.
 次に、半導体ウエハ(基板31)に対してダイシング工程を行い、半導体ウエハ(基板31)をスクライブ領域(チップ領域の間の切断領域)に沿って切断することにより、半導体ウエハ(基板31)を個々の半導体チップCP1に個片化する(図21のステップS13)。このステップS13は、半導体ウエハ(基板31)を切断して半導体チップCP1を取得する工程とみなすこともできる。上記ステップS2の半導体チップCP1の準備工程は、これらステップS11,S12,S13を有している。個片化された半導体チップCP1は、上記ステップS3でピックアップされて、上記図10に示されるように、上記配線基板母体25(配線基板11)に搭載(実装、ダイボンディング)される。 Next, a dicing process is performed on the semiconductor wafer (substrate 31), and the semiconductor wafer (substrate 31) is cut along a scribe region (a cutting region between the chip regions). Individual semiconductor chips CP1 are separated (step S13 in FIG. 21). This step S13 can also be regarded as a process of obtaining the semiconductor chip CP1 by cutting the semiconductor wafer (substrate 31). The preparation process of the semiconductor chip CP1 in step S2 includes these steps S11, S12, and S13. The separated semiconductor chip CP1 is picked up in step S3 and mounted (mounted, die-bonded) on the wiring board base 25 (wiring board 11) as shown in FIG.
 <LDMOSFET形成領域近傍のレイアウトについて>
 次に、上記LDMOSFET形成領域REGL1,REGL2,REGL3,REGH1,REGH2,REGH3およびその近傍における各構成要素の平面レイアウトについて説明する。以降の説明では、主としてLDMOSFET形成領域REGL3について説明するが、LDMOSFET形成領域REGL1,REGL2,REGH1,REGH2,REGH3についても、基本的には同様の説明を適用することができる。
<About the layout near the LDMOSFET formation region>
Next, the planar layout of each component in the LDMOSFET formation region REGL1, REGL2, REGL3, REGH1, REGH2, REGH3 and the vicinity thereof will be described. In the following description, the LDMOSFET formation region REGL3 will be mainly described, but basically the same description can be applied to the LDMOSFET formation regions REGL1, REGL2, REGH1, REGH2, and REGH3.
 図22~図24は、半導体チップCP1の要部平面図であり、半導体チップCP1において、上記LDMOSFET形成領域REGL3の平面図が示されている。図22~図24は、互いに同じ領域の平面図が示されているが、図22には、活性領域AR1の平面レイアウトが示され、図23には、配線M1(すなわちソース配線M1S、ドレイン配線M1Dおよびゲート配線M1G)の平面レイアウトが示され、図24には、配線M2(すなわちソース配線M2S、ドレイン配線M2Dおよびゲート配線M2G)の平面レイアウトが示されている。また、図22~図24の平面位置を相互に比較しやすくするために、図22~図24では、ドレインパッド用開口部53Dおよびゲートパッド用開口部53Gを点線で示してある。また、図22は、平面図であるが、図面を見易くするために、図22においては、活性領域AR1にハッチングを付してある。なお、図24のA3-A3線の断面図が上記図18にほぼ対応し、図24のA4-A4線の断面図が上記図19にほぼ対応し、図24のA5-A5線の断面図が上記図20にほぼ対応する。 22 to 24 are plan views of main parts of the semiconductor chip CP1, and plan views of the LDMOSFET formation region REGL3 in the semiconductor chip CP1 are shown. 22 to 24 show plan views of the same region, FIG. 22 shows a plan layout of the active region AR1, and FIG. 23 shows a wiring M1 (that is, a source wiring M1S and a drain wiring). A planar layout of M1D and gate wiring M1G) is shown, and FIG. 24 shows a planar layout of wiring M2 (that is, source wiring M2S, drain wiring M2D, and gate wiring M2G). 22 to 24, the drain pad opening 53D and the gate pad opening 53G are indicated by dotted lines in order to make it easy to compare the planar positions of FIGS. 22 to 24 with each other. Further, FIG. 22 is a plan view, but in order to make the drawing easier to see, in FIG. 22, the active region AR1 is hatched. Note that the sectional view taken along the line A3-A3 in FIG. 24 substantially corresponds to FIG. 18, the sectional view taken along the line A4-A4 in FIG. 24 substantially corresponds to FIG. 19, and the sectional view taken along the line A5-A5 in FIG. Substantially corresponds to FIG.
 また、図25~図28は、半導体チップCP1の要部平面図であり、図22の一点鎖線で囲まれた領域55の拡大図である。図25~図28は、互いに同じ領域(すなわち図22の領域55)の平面図が示されているが、図25には活性領域AR1の平面レイアウトが示され、図26には、ゲート電極35、n型ドレイン領域39、n型ソース領域41およびp型打抜き層44の平面レイアウトが示されている。また、図27には、配線M1(すなわちソース配線M1S、ドレイン配線M1Dおよびゲート配線M1G)の平面レイアウトが示され、図28には、配線M2(すなわちソース配線M2S、ドレイン配線M2Dおよびゲート配線M2G)の平面レイアウトが示されている。なお、図25~図28の平面位置を相互に比較しやすくするために、図25、図27および図28では、ゲート電極35を点線で示してある。また、図27では、配線M1(すなわちソース配線M1S、ドレイン配線M1Dおよびゲート配線M1G)の下に位置するコンタクトホール47の位置も図示し、図28では、配線M2(すなわちソース配線M2S、ドレイン配線M2Dおよびゲート配線M2G)の下に位置するスルーホール50の位置も図示している。 25 to 28 are main part plan views of the semiconductor chip CP1, and are enlarged views of a region 55 surrounded by a one-dot chain line in FIG. 25 to 28 show plan views of the same region (that is, the region 55 in FIG. 22). FIG. 25 shows a plan layout of the active region AR1, and FIG. The planar layout of the n + -type drain region 39, the n + -type source region 41 and the p-type punching layer 44 is shown. 27 shows a planar layout of the wiring M1 (that is, the source wiring M1S, the drain wiring M1D, and the gate wiring M1G), and FIG. 28 shows the wiring M2 (that is, the source wiring M2S, the drain wiring M2D, and the gate wiring M2G). ) Planar layout is shown. In FIG. 25, FIG. 27 and FIG. 28, the gate electrode 35 is indicated by a dotted line in order to make it easy to compare the planar positions of FIGS. 27 also shows the position of the contact hole 47 located below the wiring M1 (that is, the source wiring M1S, the drain wiring M1D, and the gate wiring M1G), and FIG. 28 shows the wiring M2 (that is, the source wiring M2S and the drain wiring). The position of the through hole 50 located below M2D and the gate wiring M2G) is also illustrated.
 また、図25~図28は、平面図であるが、図面を見易くするために、図25においては、活性領域AR1にドットのハッチングを付し、図26においては、ゲート電極35にドットのハッチングを付してある。また、図27においては、配線M1(すなわちソース配線M1S、ドレイン配線M1Dおよびゲート配線M1G)にドットのハッチングを付し、図28においては、配線M2(すなわちソース配線M2S、ドレイン配線M2Dおよびゲート配線M2G)にドットのハッチングを付してある。また、図25のA1-A1線の断面図が上記図16にほぼ対応し、図28のA2-A2線の断面図が上記図17にほぼ対応する。 25 to 28 are plan views. To make the drawing easier to see, in FIG. 25, the active region AR1 is hatched with dots, and in FIG. 26, the gate electrode 35 is hatched with dots. Is attached. In FIG. 27, the wiring M1 (that is, the source wiring M1S, the drain wiring M1D, and the gate wiring M1G) is hatched with dots, and in FIG. 28, the wiring M2 (that is, the source wiring M2S, the drain wiring M2D, and the gate wiring). M2G) is hatched with dots. Further, the sectional view taken along line A1-A1 in FIG. 25 substantially corresponds to FIG. 16, and the sectional view taken along line A2-A2 in FIG. 28 substantially corresponds to FIG.
 また、図22~図28などの平面図に示されるX方向は、半導体チップCP1において、LDMOSFET形成領域REGL3およびドレインパッドPDD3が形成された側の辺(チップ辺)SD1に平行な方向である。また、図22~図28の平面図に示されるY方向は、X方向に交差する方向であり、好ましくはX方向に直交する方向である。 Further, the X direction shown in the plan views of FIGS. 22 to 28 is a direction parallel to the side (chip side) SD1 on the side where the LDMOSFET formation region REGL3 and the drain pad PDD3 are formed in the semiconductor chip CP1. Further, the Y direction shown in the plan views of FIGS. 22 to 28 is a direction intersecting the X direction, and preferably a direction orthogonal to the X direction.
 上記素子分離領域32によって、図22および図25に示されるような活性領域AR1が規定され、活性領域AR1は、周囲を上記素子分離領域32によって囲まれている。活性領域AR1にLDMOSFETのドレイン領域(第1のn型ドレイン領域37、第2のn型ドレイン領域38およびn型ドレイン領域39)およびソース領域(n型ソース領域40およびn型ソース領域41)が形成され、また、ゲート絶縁膜34を介してゲート電極35が形成されている。 The element isolation region 32 defines an active region AR1 as shown in FIG. 22 and FIG. 25, and the active region AR1 is surrounded by the element isolation region 32. In the active region AR1, the drain region of the LDMOSFET (first n type drain region 37, second n type drain region 38 and n + type drain region 39) and source region (n type source region 40 and n + type) A source region 41) is formed, and a gate electrode 35 is formed via a gate insulating film 34.
 図25に示されるように、LDMOSFETのゲート電極35はY方向に延在している。そして、LDMOSFETのドレイン領域(第1のn型ドレイン領域37、第2のn型ドレイン領域38およびn型ドレイン領域39)は、活性領域AR1において、隣り合うゲート電極35の間の領域に形成されてY方向に延在している。また、LDMOSFETのソース領域(n型ソース領域40およびn型ソース領域41)は、活性領域AR1において、隣り合うゲート電極35の他の間の領域に形成されてY方向に延在している。また、p型打抜き層44は、隣り合うLDMOSFETのn型ソース領域41の間の領域に形成されている。 As shown in FIG. 25, the gate electrode 35 of the LDMOSFET extends in the Y direction. The drain region of the LDMOSFET (the first n -type drain region 37, the second n -type drain region 38 and the n + -type drain region 39) is a region between the adjacent gate electrodes 35 in the active region AR1. Formed in the Y direction. Also, the source region (n type source region 40 and n + type source region 41) of the LDMOSFET is formed in a region between the other adjacent gate electrodes 35 in the active region AR1 and extends in the Y direction. Yes. The p-type punching layer 44 is formed in a region between the n + type source regions 41 of adjacent LDMOSFETs.
 また、LDMOSFET形成領域REGL3(活性領域AR1)では、図16および図26に示されるような単位セル(繰り返し単位、繰り返しピッチ、基本セル、単位領域、LDMOSFETの単位セル)60の構造(レイアウト)がX方向に繰り返されている。一つの単位セル60により2つの単位LDMOSFET(単位LDMOSFET素子、LDMOSFETセル、単位MISFET素子)60aが形成される。すなわち、繰り返しの単位は単位セル60であるが、各単位セル60は、n型ドレイン領域39を共通にしてX方向に対称な構造の2つの単位LDMOSFET60aにより構成されている。なお、LDMOSFETは、MISFET素子であるため、単位LDMOSFET60aを単位MISFET素子とみなすこともできる。 In the LDMOSFET formation region REGL3 (active region AR1), the structure (layout) of the unit cell (repeating unit, repetitive pitch, basic cell, unit region, LDMOSFET unit cell) 60 as shown in FIGS. Repeated in the X direction. One unit cell 60 forms two unit LDMOSFETs (unit LDMOSFET element, LDMOSFET cell, unit MISFET element) 60a. That is, the unit of repetition is the unit cell 60, but each unit cell 60 is configured by two unit LDMOSFETs 60a having a common n + -type drain region 39 and symmetrical in the X direction. Since the LDMOSFET is a MISFET element, the unit LDMOSFET 60a can be regarded as a unit MISFET element.
 LDMOSFET形成領域REGL3においては、単位セル60の構造(レイアウト)がX方向に繰り返されることで、多数(複数)の単位LDMOSFET60aが形成(配列)され、それら多数(複数)の単位LDMOSFET60aが並列に接続されている。すなわち、LDMOSFET形成領域REGL3においては、単位LDMOSFET60aがX方向に繰り返し配列し、LDMOSFET形成領域REGL3に配列したこれら複数の単位LDMOSFET60aが並列に接続されているのである。 In the LDMOSFET formation region REGL3, the structure (layout) of the unit cell 60 is repeated in the X direction, so that a large number (a plurality of) unit LDMOSFETs 60a are formed (arranged), and the large number (a plurality of) unit LDMOSFETs 60a are connected in parallel. Has been. That is, in the LDMOSFET formation region REGL3, the unit LDMOSFETs 60a are repeatedly arranged in the X direction, and the plurality of unit LDMOSFETs 60a arranged in the LDMOSFET formation region REGL3 are connected in parallel.
 LDMOSFET形成領域REGL3に形成されている複数の単位LDMOSFET60aを並列に接続するために、LDMOSFET形成領域REGL3のそれら複数の単位LDMOSFET60aのゲート電極35同士は、プラグ48及びゲート配線M1G,M2Gを介して互いに電気的に接続され、ドレイン領域(n型ドレイン領域39)同士は、プラグ48及びドレイン配線M1D,M2Dを介して互いに電気的に接続されている。また、LDMOSFET形成領域REGL3に形成されている複数(多数)の単位LDMOSFET60aにおいて、ソース領域(n型ソース領域41)同士は、プラグ48、ソース配線M1S,M2S、p型半導体領域45、p型打抜き層44、基板31およびソース裏面電極54を介して互いに電気的に接続されている。 In order to connect the plurality of unit LDMOSFETs 60a formed in the LDMOSFET formation region REGL3 in parallel, the gate electrodes 35 of the plurality of unit LDMOSFETs 60a in the LDMOSFET formation region REGL3 are connected to each other via the plug 48 and the gate wirings M1G and M2G. The drain regions (n + -type drain regions 39) are electrically connected to each other via the plug 48 and the drain wirings M1D and M2D. Further, in the plural (many) unit LDMOSFETs 60a formed in the LDMOSFET formation region REGL3, the source regions (n + type source regions 41) are connected to each other by the plug 48, the source wiring M1S, M2S, the p + type semiconductor region 45, p. The die punching layer 44, the substrate 31 and the source back electrode 54 are electrically connected to each other.
 LDMOSFET形成領域REGL3は、上記増幅段LDML3を構成するMISFET素子が形成された領域に対応しており、LDMOSFET形成領域REGL3に形成されている複数の単位LDMOSFET60aが並列に接続されて、上記増幅段LDML3が構成されている。従って、上記増幅段LDML3を構成するMISFET素子は、複数の単位LDMOSFET60aを並列に接続して構成されている。 The LDMOSFET formation region REGL3 corresponds to a region in which the MISFET elements constituting the amplification stage LDML3 are formed, and a plurality of unit LDMOSFETs 60a formed in the LDMOSFET formation region REGL3 are connected in parallel to form the amplification stage LDML3. Is configured. Therefore, the MISFET element constituting the amplification stage LDML3 is configured by connecting a plurality of unit LDMOSFETs 60a in parallel.
 また、上述のように、活性領域AR1に形成されたLDMOSFETのドレイン領域(n型ドレイン領域39)上にドレイン配線M1Dが形成され、n型ドレイン領域39上に配置されたプラグ48を介して、ドレイン配線M1Dとその下方のLDMOSFETのドレイン領域(n型ドレイン領域39)とが電気的に接続されている。活性領域AR1において、ドレイン領域はY方向に延在しているので、ドレイン配線M1Dも活性領域AR1上をY方向に延在しているが、活性領域AR1の間の素子分離領域32上にはドレイン配線M1Dは形成されていない。このため、ドレイン配線M1Dは、各活性領域AR1上にのみ形成された孤立パターンであるが、図16、図27および図28などに示されるように、ドレイン配線M1Dの上部をY方向に延在する最上層のドレイン配線M2Dと、ドレイン配線M2Dのビア部(スルーホール50を埋める部分)を介して電気的に接続されている。 Further, as described above, the drain wiring M1D is formed on the drain region (n + -type drain region 39) of the LDMOSFET formed in the active region AR1, and the plug 48 disposed on the n + -type drain region 39 is interposed. Thus, the drain wiring M1D and the drain region (n + -type drain region 39) of the LDMOSFET thereunder are electrically connected. In the active region AR1, since the drain region extends in the Y direction, the drain wiring M1D also extends in the Y direction on the active region AR1, but on the element isolation region 32 between the active regions AR1. The drain wiring M1D is not formed. Therefore, although the drain wiring M1D is an isolated pattern formed only on each active region AR1, the upper portion of the drain wiring M1D extends in the Y direction as shown in FIGS. The drain wiring M2D of the uppermost layer is electrically connected to the drain wiring M2D via a via portion (a portion filling the through hole 50).
 図22、図24および図28に示されるように、最上層のドレイン配線M2Dは、Y方向に配列する複数の活性領域AR1(ドレイン領域)にまたがってY方向に延在する配線部(ドレイン配線部)M2D1と、X方向に延在して複数の配線部M2D1の一方の端部同士を連結する連結配線部(ドレイン配線部)M2D2とを有している。これら複数の配線部M2D1と連結配線部M2D2とが一体的に形成されてドレイン配線M2Dが構成されている。従って、ドレイン配線M2Dは、いわゆる櫛歯状のパターンとなっている。各配線部M2D1は、LDMOSFET形成領域REGL3に形成された複数の単位LDMOSFET60aの各ドレイン領域上に位置するようにY方向に延在し、かつドレイン配線M1Dおよびプラグ48を介して、複数の単位LDMOSFET60aの各ドレイン領域と電気的に接続されている。 As shown in FIG. 22, FIG. 24 and FIG. 28, the uppermost drain wiring M2D is a wiring portion (drain wiring) extending in the Y direction across a plurality of active regions AR1 (drain regions) arranged in the Y direction. Part) M2D1, and a connecting wiring part (drain wiring part) M2D2 that extends in the X direction and connects one ends of the plurality of wiring parts M2D1. The plurality of wiring parts M2D1 and the connection wiring part M2D2 are integrally formed to constitute the drain wiring M2D. Accordingly, the drain wiring M2D has a so-called comb-like pattern. Each wiring portion M2D1 extends in the Y direction so as to be positioned on each drain region of the plurality of unit LDMOSFETs 60a formed in the LDMOSFET formation region REGL3, and a plurality of unit LDMOSFETs 60a are connected via the drain wiring M1D and the plug 48. Are electrically connected to each drain region.
 ドレイン配線M2Dの連結配線部M2D2の上部にドレインパッド用開口部53Dが形成されており、ドレインパッド用開口部53Dが連結配線部M2D2に平面的に(平面視で)内包されるように、連結配線部M2D2はドレインパッド用開口部53Dよりも大面積のパターンとされている。ドレインパッド用開口部53Dから露出するドレイン配線M2D、すなわち、ドレインパッド用開口部53Dから露出する連結配線部M2D2によって、ドレインパッドPDD3が形成されている。 A drain pad opening 53D is formed above the connection wiring portion M2D2 of the drain wiring M2D, and the drain pad opening 53D is connected to the connection wiring portion M2D2 in a plane (in a plan view). The wiring portion M2D2 has a larger area pattern than the drain pad opening 53D. The drain pad PDD3 is formed by the drain wiring M2D exposed from the drain pad opening 53D, that is, the connection wiring M2D2 exposed from the drain pad opening 53D.
 すなわち、LDMOSFET形成領域REGL3において、上記各単位セル60のドレイン領域(n型ドレイン領域39)を、プラグ48およびドレイン配線M1Dを介して、最上層のドレイン配線M2Dの配線部M2D1まで引き上げてから、ドレイン配線M2Dの連結配線部M2D2によって互いに電気的に接続させる。そして、このドレイン配線M2D(連結配線部M2D2)の一部をドレインパッド用開口部53Dから露出させることで、ドレインパッドPDD3を形成しているのである。 That is, in the LDMOSFET formation region REGL3, the drain region (n + -type drain region 39) of each unit cell 60 is pulled up to the wiring portion M2D1 of the uppermost drain wiring M2D through the plug 48 and the drain wiring M1D. The drain wiring M2D is electrically connected to each other by the connecting wiring portion M2D2. The drain pad PDD3 is formed by exposing a part of the drain wiring M2D (connection wiring portion M2D2) from the drain pad opening 53D.
 また、上述のように、活性領域AR1に形成されたLDMOSFETのソース領域(n型ソース領域41)に電気的に接続されたソース配線M1Sが、活性領域AR1のソース領域(n型ソース領域41)およびp型半導体領域45上に形成されている。活性領域AR1において、ソース領域はY方向に延在しているので、ソース配線M1Sも活性領域AR1上をY方向に延在しているが、活性領域AR1の間の素子分離領域32上にはソース配線M1Sは形成されていない。このため、ソース配線M1Sは、各活性領域AR1上にのみ形成された孤立パターンであるが、図16、図27および図28などに示されるように、ソース配線M1Sの上部をY方向に延在する最上層のソース配線M2Sと、ソース配線M2Sのビア部(スルーホール50を埋める部分)を介して電気的に接続されている。 Further, as described above, the source region of LDMOSFET formed in the active region AR1 (n + -type source region 41) electrically connected to have been the source wiring M1S is, the source region (n + -type source region of the active region AR1 41) and the p + type semiconductor region 45. In the active region AR1, since the source region extends in the Y direction, the source wiring M1S also extends in the Y direction on the active region AR1, but in the element isolation region 32 between the active regions AR1, The source wiring M1S is not formed. Therefore, the source line M1S is an isolated pattern formed only on each active region AR1, but as shown in FIGS. 16, 27, 28, etc., the upper part of the source line M1S extends in the Y direction. The uppermost source wiring M2S is electrically connected to the source wiring M2S via a via portion (a portion filling the through hole 50).
 図22、図24および図28に示されるように、最上層のソース配線M2Sは、Y方向に配列する複数の活性領域AR1(ソース領域)にまたがってY方向に延在しているが、各ソース配線M2S同士は連結されていない。また、ソース配線M2Sには、パッド電極PDは接続されていないが、これは、LDMOSFETのソースは、p型打抜き層44などを介して、基板31の裏面のソース裏面電極54から引き出しているためである。 As shown in FIGS. 22, 24 and 28, the uppermost source line M2S extends in the Y direction across a plurality of active regions AR1 (source regions) arranged in the Y direction. The source lines M2S are not connected to each other. The pad electrode PD is not connected to the source wiring M2S because the source of the LDMOSFET is drawn from the source back electrode 54 on the back surface of the substrate 31 through the p-type punching layer 44 and the like. It is.
 図17および図25~図28に示されるように、ゲート電極35はY方向に延在し、活性領域AR1の周囲または間の素子分離領32上に位置する部分で、コンタクトホール47に埋め込まれたプラグ48を介して、ゲート配線M1Gに電気的に接続されている。ゲート配線M1Gは、活性領域AR1の周囲および間の素子分離領域32上をX方向およびY方向に延在している。LDMOSFET形成領域REGL3において、Y方向に延在する各ゲート電極35は、ゲート配線M1GのX方向に延在する部分とプラグ48を介して電気的に接続され、ゲート配線M1GのX方向に延在する部分とY方向に延在する部分とが一体的に連結されていることで、各ゲート電極35は、ゲート配線M1Gを介して互いに電気的に接続されている。 As shown in FIGS. 17 and 25 to 28, the gate electrode 35 extends in the Y direction and is buried in the contact hole 47 at a portion located on the element isolation region 32 around or between the active regions AR1. The gate wiring M1G is electrically connected through the plug 48. The gate wiring M1G extends in the X direction and the Y direction on the element isolation region 32 around and between the active regions AR1. In the LDMOSFET formation region REGL3, each gate electrode 35 extending in the Y direction is electrically connected to a portion extending in the X direction of the gate wiring M1G via a plug 48, and extends in the X direction of the gate wiring M1G. The gate electrode 35 is electrically connected to each other via the gate wiring M1G by integrally connecting the portion to be extended and the portion extending in the Y direction.
 ゲート配線M1Gはドレイン配線M1Dおよびソース配線M1Sと同層の配線であるが、図23および図27に示されるように活性領域AR1の間の素子分離領域32上にはドレイン配線M1Dおよびソース配線M1Sが形成されておらず、そこでゲート配線M1GがX方向に延在している。従って、ゲート配線M1GのX方向に延在する部分同士の間に、Y方向に延在するドレイン配線M1Dおよびソース配線M1Sが配置された状態となっている。 The gate wiring M1G is a wiring in the same layer as the drain wiring M1D and the source wiring M1S. However, as shown in FIGS. 23 and 27, the drain wiring M1D and the source wiring M1S are formed on the element isolation region 32 between the active regions AR1. Is not formed, and the gate wiring M1G extends in the X direction. Therefore, the drain wiring M1D and the source wiring M1S extending in the Y direction are arranged between the portions of the gate wiring M1G extending in the X direction.
 図17、図23、図27および図28に示されるように、ゲート配線M1Gは、ドレイン配線M2Dの連結配線部M2D2と反対側(連結配線部M2D2から遠い側)に位置しかつX方向に延在する部分において、素子分離領域32上をX方向に延在するゲート配線M2Gと、ゲート配線M2Gのビア部(スルーホール50を埋める部分)を介して電気的に接続されている。すなわち、X方向に延在するゲート配線M2Gの少なくとも一部が、X方向に延在する部分のゲート配線M1Gと平面的に重なっており、その重なり領域において、ゲート配線M2Gのビア部(スルーホール50を埋める部分)を介して上層のゲート配線M2Gと下層のゲート配線M1Gとが電気的に接続されている。 As shown in FIGS. 17, 23, 27, and 28, the gate wiring M1G is located on the opposite side of the drain wiring M2D from the connection wiring portion M2D2 (the side far from the connection wiring portion M2D2) and extends in the X direction. In the existing portion, the gate wiring M2G extending in the X direction on the element isolation region 32 is electrically connected to the via portion of the gate wiring M2G (the portion filling the through hole 50). That is, at least a portion of the gate wiring M2G extending in the X direction overlaps with the portion of the gate wiring M1G extending in the X direction in a plane, and the via portion (through hole) of the gate wiring M2G in the overlapping region. 50), the upper gate wiring M2G and the lower gate wiring M1G are electrically connected.
 このように、活性領域AR1の周囲または間の素子分離領域32上で、上記各単位LDMOSFET60aのゲート電極35を、プラグ48を介してゲート配線M1Gまで引き上げ、このゲート配線M1Gを最上層のゲート配線M2Gに接続し、このゲート配線M2Gをゲートパッド用開口部53Gまで延在させ、このゲートパッド用開口部53Gからゲート配線M2Gの一部を露出させることで、ゲートパッドPDG3を形成している。 In this way, on the element isolation region 32 around or between the active regions AR1, the gate electrode 35 of each unit LDMOSFET 60a is pulled up to the gate wiring M1G via the plug 48, and this gate wiring M1G is pulled up to the uppermost gate wiring. The gate wiring M2G is connected to M2G, extends to the gate pad opening 53G, and a part of the gate wiring M2G is exposed from the gate pad opening 53G, thereby forming the gate pad PDG3.
 <課題について>
 図29は、半導体チップCP1の要部平面図であり、上記図22~図24と同じ領域が示されている。但し、図29では、LDMOSFET形成領域REGL3、ドレイン配線M2Dの連結配線部M2D2、ドレインパッド用開口部53D、ゲート配線M2G、およびゲートパッド用開口部53Gのレイアウト(配置)を示し、他の構成要素の図示を省略したものである。従って、図24に示されていたソース配線M2Sと、ドレイン配線M2Dの配線部M2D1とは、図29では図示を省略してある。なお、図29は、平面図であるが、図面を見やすくするために、LDMOSFET形成領域REGL3と、ゲート配線M2Gと、ドレイン配線M2Dの連結配線部M2D2とを、ハッチングを付して示してある。また、図29では、ゲートパッド用開口部53Gおよびドレインパッド用開口部53Dを点線で示してあり、ゲートパッド用開口部53Gから露出する部分のゲート配線M2GがゲートパッドPDG3であり、ドレインパッド用開口部53Dから露出する部分のドレイン配線M2D(連結配線部M2D2)がドレインパッドPDD3である。図30および図31は、電力増幅モジュールPA1の製造工程中の要部平面図であり、図30には、上記配線基板母体25(配線基板11)上に半導体チップCP1を搭載した後でかつステップS5のワイヤボンディング工程(ワイヤWAの接続工程)を行う直前の段階が示され、図31には、ステップS5のワイヤボンディング工程(ワイヤWAの接続工程)を行った直後の段階が示されている。図32は、電力増幅モジュールPA1の製造工程中の要部斜視図(鳥瞰図)であり、半導体チップCP1に対するステップS5のワイヤボンディング工程(ワイヤWAの接続工程)を行った直後の段階(すなわち図31と同じ段階)が示されている。なお、図30および図31には、上記図15において二点鎖線で囲まれた領域56に相当する領域が示されており、図32には、図31の一部が示されている。
<Issues>
FIG. 29 is a plan view of an essential part of the semiconductor chip CP1, and shows the same regions as those in FIGS. However, FIG. 29 shows the layout (arrangement) of the LDMOSFET formation region REGL3, the connection wiring portion M2D2 of the drain wiring M2D, the drain pad opening 53D, the gate wiring M2G, and the gate pad opening 53G, and other components. Is omitted. Accordingly, the source wiring M2S and the wiring portion M2D1 of the drain wiring M2D shown in FIG. 24 are not shown in FIG. Note that FIG. 29 is a plan view, but the LDMOSFET formation region REGL3, the gate wiring M2G, and the connection wiring portion M2D2 of the drain wiring M2D are hatched for easy understanding of the drawing. In FIG. 29, the gate pad opening 53G and the drain pad opening 53D are indicated by dotted lines, and the portion of the gate wiring M2G exposed from the gate pad opening 53G is the gate pad PDG3. A portion of the drain wiring M2D (connection wiring portion M2D2) exposed from the opening 53D is the drain pad PDD3. 30 and 31 are main part plan views of the power amplification module PA1 during the manufacturing process. FIG. 30 shows a step after mounting the semiconductor chip CP1 on the wiring board matrix 25 (wiring board 11). The stage immediately before the wire bonding process (wire WA connection process) in S5 is shown, and FIG. 31 shows the stage immediately after the wire bonding process (wire WA connection process) in step S5. . FIG. 32 is a perspective view (bird's eye view) of a main part during the manufacturing process of the power amplification module PA1, and a stage immediately after performing the wire bonding process (connection process of the wire WA) of step S5 to the semiconductor chip CP1 (that is, FIG. 31). The same stage) is shown. 30 and 31 show a region corresponding to the region 56 surrounded by the two-dot chain line in FIG. 15, and FIG. 32 shows a part of FIG.
 また、図33は、第1の比較例の半導体チップCP101の要部平面図であり、本実施の形態の図29に対応するものである。なお、図33に示されるLDMOSFET形成領域REGL103、ドレイン配線M2D101、ドレインパッド用開口部153D、ゲート配線M2G101、およびゲートパッド用開口部153Gは、それぞれ、本実施の形態におけるLDMOSFET形成領域REGL3、ドレイン配線M2D、ドレインパッド用開口部53D、ゲート配線M2G、およびゲートパッド用開口部53Gに相当するものである。図34および図35は、第1の比較例の電力増幅モジュールの製造工程中の要部平面図であり、本実施の形態の図30および図31にそれぞれ対応するものである。図34には、上記配線基板母体25上に第1の比較例の半導体チップCP101を搭載した後でかつワイヤボンディング工程(ワイヤWA101の接続工程)を行う直前の段階が示され、図35には、ワイヤボンディング工程(ワイヤWA101の接続工程)を行った直後の段階が示されている。図36は、第1の比較例の電力増幅モジュールの製造工程中の要部斜視図(鳥瞰図)であり、本実施の形態の図32に対応するものである。図36には、第1の比較例の半導体チップCP101に対するワイヤボンディング工程(ワイヤWA101の接続工程)を行った直後の段階(すなわち図35と同じ段階)が示されている。なお、図34~図36に示されるLDMOSFET形成領域REGL101,REGL102,REGL103は、本実施の形態におけるLDMOSFET形成領域REGL1,REGL2,REGL3にそれぞれ相当するものである。また、図34~図36に示されるゲートパッドPDG101,PDG102,PDG103、ドレインパッドPDD101,PDD102,PDD103およびワイヤWA(ボンディングワイヤ)101は、それぞれ、本実施の形態におけるゲートパッドPDG1,PDG2,PDG3、ドレインパッドPDD1,PDD2,PDD3およびワイヤWAに相当するものである。 FIG. 33 is a plan view of the main part of the semiconductor chip CP101 of the first comparative example, and corresponds to FIG. 29 of the present embodiment. 33, the LDMOSFET formation region REGL103, the drain wiring M2D101, the drain pad opening 153D, the gate wiring M2G101, and the gate pad opening 153G are respectively the LDMOSFET formation region REGL3 and the drain wiring in this embodiment. This corresponds to M2D, drain pad opening 53D, gate wiring M2G, and gate pad opening 53G. FIG. 34 and FIG. 35 are main part plan views during the manufacturing process of the power amplifying module of the first comparative example, and correspond to FIG. 30 and FIG. 31 of the present embodiment, respectively. FIG. 34 shows a stage after mounting the semiconductor chip CP101 of the first comparative example on the wiring board base 25 and immediately before performing the wire bonding process (connection process of the wire WA101). The stage immediately after performing the wire bonding process (connection process of the wire WA101) is shown. FIG. 36 is a perspective view (bird's eye view) of the main part during the manufacturing process of the power amplifying module of the first comparative example, and corresponds to FIG. 32 of the present embodiment. FIG. 36 shows a stage immediately after the wire bonding process (connection process of the wire WA101) to the semiconductor chip CP101 of the first comparative example (that is, the same stage as FIG. 35). The LDMOSFET formation regions REGL101, REGL102, and REGL103 shown in FIGS. 34 to 36 correspond to the LDMOSFET formation regions REGL1, REGL2, and REGL3 in the present embodiment, respectively. Also, the gate pads PDG101, PDG102, PDG103, the drain pads PDD101, PDD102, PDD103, and the wire WA (bonding wire) 101 shown in FIGS. 34 to 36 are the gate pads PDG1, PDG2, PDG3 in the present embodiment, respectively. This corresponds to the drain pads PDD1, PDD2, PDD3 and the wire WA.
 図33~図36に示される第1の比較例の半導体チップCP101の場合、LDMOSFET形成領域REGL103に形成されたLDMOSFETのドレインに電気的に接続されたドレイン配線M2D101上には、複数(図33の場合は7つ)のドレインパッド用開口部153Dが設けられ、各ドレインパッド用開口部153Dから露出するドレイン配線M2D101によってドレインパッドPDD103が形成されている。すなわち、第1の比較例の半導体チップCP101場合、LDMOSFET形成領域REGL103に対して、7つのドレインパッドPDD103が形成されており、これら7つのドレインパッドPDD103は、所定の間隔を空けてX方向に並んで配置されている。 In the case of the semiconductor chip CP101 of the first comparative example shown in FIGS. 33 to 36, a plurality of (as shown in FIG. 33) are formed on the drain wiring M2D101 electrically connected to the drain of the LDMOSFET formed in the LDMOSFET formation region REGL103. In this case, seven drain pad openings 153D are provided, and the drain pad PDD103 is formed by the drain wiring M2D101 exposed from each drain pad opening 153D. That is, in the semiconductor chip CP101 of the first comparative example, seven drain pads PDD103 are formed with respect to the LDMOSFET formation region REGL103, and these seven drain pads PDD103 are arranged in the X direction with a predetermined interval. Is arranged in.
 図35および図36に示されるように、第1の比較例の半導体チップCP101の場合、7つのドレインパッドPDD103のそれぞれに対して、一本のワイヤWA101が接続される。すなわち、一つのドレインパッドPDD103に接続されるワイヤWAの数は一本である。このため、第1の比較例の半導体チップCP101では、LDMOSFET形成領域REGL103に対して7つのドレインパッドPDD103が設けられ、これら7つのドレインパッドPDD103に合計7本のワイヤWA101が接続されている。 As shown in FIGS. 35 and 36, in the case of the semiconductor chip CP101 of the first comparative example, one wire WA101 is connected to each of the seven drain pads PDD103. That is, the number of wires WA connected to one drain pad PDD103 is one. Therefore, in the semiconductor chip CP101 of the first comparative example, seven drain pads PDD103 are provided for the LDMOSFET formation region REGL103, and a total of seven wires WA101 are connected to these seven drain pads PDD103.
 ところで、半導体チップを製造するには、ウエハ・プロセスの後にプローブ検査を行うが、このプローブ検査の際に、検査用のプローブ(探針)が半導体ウエハの各チップ領域のパッド電極に押し当てられ、各チップ領域のパッド電極は、半導体ウエハのダイシング後に各半導体チップのパッド電極となる。プローブ検査でパッド電極にプローブが押し当てられると、プローブが押し当てられた(接触した)領域でパッド電極は変形するため、プローブ検査でプローブが押し当てられたパッド電極には、プローブが押し当てられた(接触した)痕であるプローブ痕(後述のプローブ痕PRB,PRB101,PRB201がこれに対応している)が形成される。 By the way, in order to manufacture a semiconductor chip, a probe inspection is performed after the wafer process. During this probe inspection, a probe (probe) for inspection is pressed against the pad electrode in each chip area of the semiconductor wafer. The pad electrode in each chip region becomes the pad electrode of each semiconductor chip after dicing of the semiconductor wafer. When the probe is pressed against the pad electrode in the probe inspection, the pad electrode is deformed in the area where the probe is pressed (contacted). Therefore, the probe is pressed against the pad electrode where the probe is pressed in the probe inspection. Probe marks (probe marks PRB, PRB101, and PRB201 described later correspond to this) are formed (contacted) marks.
 図33~図36の第1の比較例の半導体チップCP101の場合は、LDMOSFET形成領域REGL103に対して7つのドレインパッドPDD103が形成され、それぞれのドレインパッドPDD103に対してワイヤWA101が接続されるが、7つのドレインパッドPDD103のいずれかには、プローブ検査工程においてプローブが押し当てられたことで、プローブ痕PRB101が形成されている。 In the case of the semiconductor chip CP101 of the first comparative example of FIGS. 33 to 36, seven drain pads PDD103 are formed in the LDMOSFET formation region REGL103, and the wire WA101 is connected to each drain pad PDD103. A probe mark PRB101 is formed on any of the seven drain pads PDD103 by pressing the probe in the probe inspection process.
 図37は、第1の比較例の半導体チップCP101のドレインパッドPDD103に形成されたプローブ痕PRB101と、ドレインパッドPDD103におけるワイヤWA101の接続領域RGW101とを示す説明図(平面図)である。図37において、(a)には、プローブ検査前のドレインパッドPDD103が示され、(b)には、プローブ検査で7つのドレインパッドPDD103のうちの2つのドレインパッドPDD103に検査用のプローブ(探針)が押し当てられたことで、プローブ痕PRB101が形成された状態が模式的に示されている。図37において、(c)には、ワイヤボンディング工程でドレインパッドPDD103にワイヤWA101が接続されたときのワイヤWA101の接続領域RGW101が示されている。 FIG. 37 is an explanatory diagram (plan view) showing the probe mark PRB101 formed on the drain pad PDD103 of the semiconductor chip CP101 of the first comparative example and the connection region RGW101 of the wire WA101 on the drain pad PDD103. In FIG. 37, (a) shows the drain pad PDD103 before the probe test, and (b) shows a probe (probe for inspection) on two drain pads PDD103 of the seven drain pads PDD103 in the probe test. A state in which the probe mark PRB101 is formed by pressing the needle) is schematically shown. In FIG. 37, (c) shows a connection region RGW101 of the wire WA101 when the wire WA101 is connected to the drain pad PDD103 in the wire bonding step.
 なお、本実施の形態の場合(半導体チップCP1を用いた場合)と第1の比較例の場合(半導体チップCP101を用いた場合)のいずれの場合も、ワイヤボンディング工程においては、ファーストボンディングは半導体チップCP1,CP101の各パッド電極(PDD3,PDD103)に対して行われ、セカンドボンディングは基板側端子TEに対して行われている。また、このワイヤボンディングには、好ましくはボールボンディングを用いている。このため、ワイヤボンディングの際には、半導体チップCP1,CP101の各パッド電極(PDD3,PDD103)にワイヤ先端の金属ボール(ワイヤが金線の場合は金ボール)が接続される(具体的には、押し潰されて接続または圧着される)。ワイヤWA101の接続領域RGW101や後述のワイヤWA101の接続領域RGW201およびワイヤWAの接続領域RGWは、この金属ボール(ワイヤが金線の場合は金ボール)が接続された領域である。また、ワイヤWA,WA101は好ましくは金からなるワイヤ(金線)であるが、アルミニウム(Al)を主体とするパッド電極(PDD3,PDD103)に金のワイヤ(WA,WA101)を接続する場合は、ワイヤ(WA,WA101)先端の金ボールがパッド電極(PDD3,PDD103)のアルミニウムと合金化することにより、ワイヤ(の先端の金ボール)がパッド電極(PDD3,PDD103)に接続される。このため、ワイヤ(の先端の金属ボール)をパッド電極(PDD3,PDD103)に接続する際には、下地となるパッド電極(PDD3,PDD103)の表面状態が均一であることが重要であり、下地となるパッド電極(PDD3,PDD103)の平坦性が高いことが好ましい。パッド電極の平坦面にワイヤ(の先端の金属ボール)を接続すれば、パッド電極に対するワイヤの接続強度を高めることができる。しかしながら、半導体チップ(CP1,CP101)は、電気的な良品のみを電力増幅モジュールのような半導体装置の製造に使用するため、プローブ検査によるパッド電極(PDD3,PDD103)へのプローブの接触は避けられず、ワイヤボンディングを行うべきパッド電極(PDD3,PDD103)にプローブ痕(PRB,PRB101)が発生してしまう。 In both the case of the present embodiment (in the case of using the semiconductor chip CP1) and the case of the first comparative example (in the case of using the semiconductor chip CP101), the first bonding is performed in the wire bonding process. The bonding is performed on the pad electrodes (PDD3 and PDD103) of the chips CP1 and CP101, and the second bonding is performed on the substrate-side terminal TE. Further, ball bonding is preferably used for the wire bonding. For this reason, at the time of wire bonding, a metal ball at the tip of the wire (a gold ball when the wire is a gold wire) is connected to each pad electrode (PDD3, PDD103) of the semiconductor chips CP1, CP101 (specifically, , Crushed and connected or crimped). A connection area RGW101 of the wire WA101, a connection area RGW201 of the wire WA101, which will be described later, and a connection area RGW of the wire WA are areas to which the metal balls (gold balls when the wires are gold wires) are connected. The wires WA and WA101 are preferably wires (gold wires) made of gold, but when the gold wires (WA and WA101) are connected to the pad electrodes (PDD3 and PDD103) mainly made of aluminum (Al). The gold ball at the tip of the wire (WA, WA101) is alloyed with the aluminum of the pad electrode (PDD3, PDD103), so that the wire (the gold ball at the tip thereof) is connected to the pad electrode (PDD3, PDD103). Therefore, when connecting the wire (the metal ball at the tip of the wire) to the pad electrode (PDD3, PDD103), it is important that the surface state of the pad electrode (PDD3, PDD103) serving as the base is uniform. It is preferable that the pad electrode (PDD3, PDD103) to be formed has high flatness. If the wire (the metal ball at the tip thereof) is connected to the flat surface of the pad electrode, the connection strength of the wire to the pad electrode can be increased. However, since the semiconductor chips (CP1 and CP101) are used only for the production of a semiconductor device such as a power amplification module, contact of the probe to the pad electrodes (PDD3 and PDD103) by probe inspection is avoided. Therefore, probe marks (PRB, PRB101) are generated on the pad electrodes (PDD3, PDD103) to be wire-bonded.
 第1の比較例の半導体チップCP101の場合、ワイヤボンディング工程でドレインパッドPDD103にワイヤWA101を接続する際に、図37のようにワイヤWA101の接続領域RGW101がプローブ痕PRB101に重なることで、ドレインパッドPDD103とワイヤWA101との接続強度が低下してしまう。図37の場合、7つのドレインパッドPDD103のうちの2つのドレインパッドPDD103でワイヤWA101の接続領域RGW101がプローブ痕PRB101に重なり、この2つのドレインパッドPDD103において、ワイヤWA101の接続強度が低下する。これは、プローブ検査前にはドレインパッドPDD103の表面は平坦であっても、プローブ検査で形成されたプローブ痕PRB101により平坦性が崩れ、ワイヤボンディングの際にワイヤWA101の接続領域RGW101がプローブ痕PRB101に重なると、プローブ痕に起因して平坦でない領域にワイヤ(の先端の金属ボール)が接続されることになるため、ワイヤWA101の接続強度が低下するためである。ワイヤWA101の接続強度の低下は、製造された電力増幅モジュールの信頼性を低下させる。なお、プローブ痕PRB101の面積の一例を挙げると、例えば、ワイヤWA101の接続領域RGW101の面積の40%程度である。 In the case of the semiconductor chip CP101 of the first comparative example, when the wire WA101 is connected to the drain pad PDD103 in the wire bonding process, the connection region RGW101 of the wire WA101 overlaps the probe mark PRB101 as shown in FIG. The connection strength between the PDD 103 and the wire WA101 is reduced. In the case of FIG. 37, the connection region RGW101 of the wire WA101 overlaps the probe mark PRB101 at two drain pads PDD103 of the seven drain pads PDD103, and the connection strength of the wire WA101 decreases at the two drain pads PDD103. Even if the surface of the drain pad PDD103 is flat before the probe inspection, the flatness is lost due to the probe mark PRB101 formed by the probe inspection, and the connection region RGW101 of the wire WA101 becomes the probe mark PRB101 during wire bonding. This is because the wire (the metal ball at the tip thereof) is connected to a non-flat region due to the probe mark, and the connection strength of the wire WA101 is reduced. The decrease in the connection strength of the wire WA101 decreases the reliability of the manufactured power amplification module. An example of the area of the probe mark PRB101 is, for example, about 40% of the area of the connection region RGW101 of the wire WA101.
 そこで、図38に示されるように、ドレインパッドPDD103のY方向の寸法を拡大することが考えられる。ここで、図38は、第2の比較例の半導体チップのドレインパッドPDD203に形成されたプローブ痕PRB201と、ドレインパッドPDD203におけるワイヤWA101の接続領域RGW201とを示す説明図(平面図)であり、上記図37に対応するものである。図38において、(a)には、プローブ検査前のドレインパッドPDD203が示され、(b)には、プローブ検査で7つのドレインパッドPDD203のうちの2つのドレインパッドPDD203に検査用のプローブ(探針)が押し当てられたことで、プローブ痕PRB201が形成された状態が模式的に示されている。図38において、(c)には、ワイヤボンディング工程でドレインパッドPDD203にワイヤWA101が接続されたときのワイヤWA101の接続領域RGW201が示されている。図38の第2の比較例の半導体チップのドレインパッドPDD203は、図37の第1の比較例の半導体チップCP101のドレインパッドPDD103のY方向の寸法を大きくしたものに対応している。 Therefore, as shown in FIG. 38, it is conceivable to enlarge the dimension in the Y direction of the drain pad PDD103. Here, FIG. 38 is an explanatory diagram (plan view) showing the probe mark PRB201 formed on the drain pad PDD203 of the semiconductor chip of the second comparative example and the connection region RGW201 of the wire WA101 in the drain pad PDD203. This corresponds to FIG. In FIG. 38, (a) shows the drain pad PDD 203 before the probe test, and (b) shows a probe (probe for inspection) on two drain pads PDD 203 of the seven drain pads PDD 203 in the probe test. A state in which the probe mark PRB201 is formed by pressing the needle) is schematically shown. In FIG. 38, (c) shows a connection region RGW201 of the wire WA101 when the wire WA101 is connected to the drain pad PDD203 in the wire bonding step. The drain pad PDD203 of the semiconductor chip of the second comparative example of FIG. 38 corresponds to the drain pad PDD103 of the semiconductor chip CP101 of the first comparative example of FIG.
 図38に示される第2の比較例の半導体チップのドレインパッドPDD203は、第1の比較例の半導体チップCP101のドレインパッドPDD103に比べてY方向の寸法が大きい。このため、第2の比較例の半導体チップでは、プローブ検査でプローブが押し当てられたドレインパッドPDD203にワイヤボンディング工程でワイヤWA101を接続したとしても、図38に示されるように、ワイヤWA101の接続領域RGW201とプローブ痕PRB201とがY方向にずれるようにし、ワイヤWA101の接続領域RGW201とプローブ痕PRB201とが重ならないようにすることができる。 38. The drain pad PDD203 of the semiconductor chip of the second comparative example shown in FIG. 38 has a larger dimension in the Y direction than the drain pad PDD103 of the semiconductor chip CP101 of the first comparative example. For this reason, in the semiconductor chip of the second comparative example, even if the wire WA101 is connected to the drain pad PDD203 to which the probe is pressed in the probe inspection in the wire bonding process, as shown in FIG. 38, the connection of the wire WA101 is performed. The region RGW201 and the probe mark PRB201 can be shifted in the Y direction so that the connection region RGW201 of the wire WA101 and the probe mark PRB201 do not overlap.
 このため、図38に示される第2の比較例のドレインパッドPDD203の場合は、同じドレインパッドPDD203に対してプローブ検査でプローブを押し当てかつワイヤボンディング工程でワイヤWA101を接続したとしても、ドレインパッドPDD203におけるプローブ痕PRB201とワイヤWA101の接続領域RGW201とが重ならないようにすることができる。これにより、ドレインパッドPDD203とワイヤWA101との接続強度を確保することができる。 Therefore, in the case of the drain pad PDD 203 of the second comparative example shown in FIG. 38, even if the probe is pressed against the same drain pad PDD 203 by the probe inspection and the wire WA 101 is connected in the wire bonding process, It is possible to prevent the probe mark PRB201 in the PDD 203 and the connection region RGW201 of the wire WA101 from overlapping each other. Thereby, the connection strength between the drain pad PDD203 and the wire WA101 can be ensured.
 しかしながら、図38に示される第2の比較例の半導体チップのドレインパッドPDD203の場合、ドレインパッドPDD203におけるワイヤWA101の接続領域RGW201とプローブ痕PRB201との位置をY方向にずらすために、ドレインパッドPDD203のY方向の寸法を拡大する必要がある。このため、LDMOSFET形成領域REGL103とそれに接続されたドレインパッドPDD203およびゲートパッドとに要する面積は、ドレインパッドPDD203のY方向の寸法が大きい分、第1の比較例の半導体チップCP101よりも、ドレインパッドPDD203を適用した第2の比較例の半導体チップの方が大きくなってしまう。ドレインパッドPDD203を適用した第2の比較例の半導体チップは、ドレインパッドPDD203のY方向の寸法が大きい分、第1の比較例の半導体チップCP101よりもチップサイズ(特にY方向寸法)が大きくなってしまう。これは、1枚のウエハから取得できる半導体チップ数を少なくしてしまうため、製造コストの増大を招き、また、半導体チップを搭載した半導体装置(ここでは電力増幅モジュール)の小型化(平面寸法の縮小)には不利となる。 However, in the case of the drain pad PDD203 of the semiconductor chip of the second comparative example shown in FIG. 38, the drain pad PDD203 is used to shift the position of the connection region RGW201 of the wire WA101 and the probe mark PRB201 in the drain pad PDD203 in the Y direction. It is necessary to enlarge the dimension in the Y direction. Therefore, the area required for the LDMOSFET formation region REGL103 and the drain pad PDD203 and the gate pad connected thereto is larger than that of the semiconductor chip CP101 of the first comparative example because the size of the drain pad PDD203 in the Y direction is larger. The semiconductor chip of the second comparative example to which the PDD 203 is applied becomes larger. The semiconductor chip of the second comparative example to which the drain pad PDD203 is applied has a larger chip size (particularly the dimension in the Y direction) than the semiconductor chip CP101 of the first comparative example because the dimension of the drain pad PDD203 in the Y direction is larger. End up. This reduces the number of semiconductor chips that can be obtained from a single wafer, leading to an increase in manufacturing cost, and miniaturization of semiconductor devices (here, power amplification modules) on which semiconductor chips are mounted (planar dimensions). (Reduction) is disadvantageous.
 従って、パッド電極においてワイヤの接続領域とプローブ検査工程でプローブを押し当てる領域(プローブ痕)とを単に分ける(別々の領域にする)のではなく、ワイヤの接続強度の向上とチップサイズの抑制とを考慮した総合的な設計が望まれる。 Therefore, the pad connection area in the pad electrode and the area where the probe is pressed in the probe inspection process (probe marks) are not simply separated (separate areas), but the wire connection strength is improved and the chip size is reduced. A comprehensive design that considers
 <本実施の形態の主要な特徴と効果について>
 本実施の形態では、図29~図32に示されるように、LDMOSFET形成領域REGL3に対して設けるドレインパッド(すなわちLDMOSFET形成領域REGL3に形成されたLDMOSFETのドレインに電気的に接続されたドレインパッド)として、Y方向の寸法よりもX方向の寸法が大きなドレインパッドPDD3が形成されている。ドレインパッドPDD3のX方向の寸法は、ドレインパッドPDD3のY方向の寸法の2倍以上であり、ドレインパッドPDD3は略長方形状の平面形状を有している(但し、長方形の角部に丸みを持たせることもできる)。そして、この1つのドレインパッドPDD3に対して、ワイヤWAを複数接続していることが、本実施の形態の主要な特徴の一つである。
<Main features and effects of the present embodiment>
In the present embodiment, as shown in FIGS. 29 to 32, a drain pad provided for the LDMOSFET formation region REGL3 (that is, a drain pad electrically connected to the drain of the LDMOSFET formed in the LDMOSFET formation region REGL3). As a result, a drain pad PDD3 having a larger dimension in the X direction than a dimension in the Y direction is formed. The dimension in the X direction of the drain pad PDD3 is at least twice the dimension in the Y direction of the drain pad PDD3, and the drain pad PDD3 has a substantially rectangular planar shape (however, the rectangular corners are rounded). Can also be held). One of the main features of the present embodiment is that a plurality of wires WA are connected to the one drain pad PDD3.
 ここで、ドレインパッドPDD3は、長方形の平面形状を有しているが、その長方形の長辺方向(X方向)は、半導体チップCP1の表面におけるそのドレインパッドPDD3を配置した側の辺(チップ辺)SD1に平行な方向であることが好ましい。すなわち、半導体チップCP1の4つの辺(チップ辺)SD1,SD2,SD3,SD4のうち、ドレインパッドPDD3の最も近傍に位置するチップ辺(ここでは辺SD1)に平行な方向に、ドレインパッドPDD3の長辺方向を設定することが好ましい。このため、半導体チップCP1の表面において、もしも辺SD1ではなく辺SD2に沿ってドレインパッドPDD1,PDD2,PDD3およびゲートパッドPDG1,PDG2,PDG3を配置し、LDMOSFET形成領域REGL1,REGL2,REGL3を、辺SD1側ではなく辺SD2側に配置した場合には、ドレインパッドPDD3の長辺方向(X方向)は、辺SD2に平行な方向になる。 Here, the drain pad PDD3 has a rectangular planar shape, and the long side direction (X direction) of the rectangle is the side (chip side) on the surface of the semiconductor chip CP1 where the drain pad PDD3 is disposed. ) The direction is preferably parallel to SD1. That is, of the four sides (chip sides) SD1, SD2, SD3, and SD4 of the semiconductor chip CP1, the drain pad PDD3 is aligned in a direction parallel to the chip side (here, the side SD1) located closest to the drain pad PDD3. It is preferable to set the long side direction. Therefore, on the surface of the semiconductor chip CP1, the drain pads PDD1, PDD2, and PDD3 and the gate pads PDG1, PDG2, and PDG3 are arranged along the side SD2 instead of the side SD1, and the LDMOSFET formation regions REGL1, REGL2, and REGL3 are When arranged on the side SD2 side instead of the SD1 side, the long side direction (X direction) of the drain pad PDD3 is parallel to the side SD2.
 図29~図32と図33~図36とを比べると分かるように、図33~図36のX方向に並んだ7つのドレインパッドPDD103をつないだものが、図29~図32のドレインパッドPDD3に相当している。すなわち、図33~図36において、7つのドレインパッドPDD103と、X方向に隣接するドレインパッドPDD103間の領域とを足して全体を1つのドレインパッドにしたものが、図29~図32のドレインパッドPDD3に相当している。 As can be seen from a comparison between FIGS. 29 to 32 and FIGS. 33 to 36, the drain pad PDD3 in FIGS. 29 to 32 is connected to the seven drain pads PDD103 arranged in the X direction in FIGS. It corresponds to. That is, in FIGS. 33 to 36, seven drain pads PDD103 and a region between drain pads PDD103 adjacent in the X direction are added to form one drain pad as a whole. It corresponds to PDD3.
 図33~図36の第1比較例の半導体チップCP101では、7つのドレインパッドPDD103のそれぞれに1本のワイヤWA101が接続されるため、7つのドレインパッドPDD103全体では、合計7本のワイヤWA101が接続される。このため、図33~図36の第1比較例の半導体チップCP101では、LDMOSFET形成領域REGL103に形成されたLDMOSFETのドレインからの出力電流は、7つのドレインパッドPDD103から合計7本のワイヤWA101を経て、配線基板11の基板側端子TEに出力される。一方、本実施の形態の半導体チップCP1では、図29~図32にも示される様に、1つのドレインパッドPDD3に7本のワイヤWAが接続されるため、LDMOSFET形成領域REGL3に形成されたLDMOSFETのドレインからの出力電流は、1つのドレインパッドPDD3から合計7本のワイヤWA101を経て、配線基板11の基板側端子TEに出力される。従って、図29~図32(本実施の形態)と図33~図36(第1比較例)とを比べると、LDMOSFET形成領域REGL3,REGL103に形成されたLDMOSFETのドレインからの出力電流が流れるワイヤ(WA,WA101)の数は、同じ(ここでは7本)である。 In the semiconductor chip CP101 of the first comparative example shown in FIGS. 33 to 36, one wire WA101 is connected to each of the seven drain pads PDD103. Therefore, a total of seven wires WA101 are formed in the seven drain pads PDD103 as a whole. Connected. For this reason, in the semiconductor chip CP101 of the first comparative example of FIGS. 33 to 36, the output current from the drain of the LDMOSFET formed in the LDMOSFET formation region REGL103 passes through seven wires WA101 from the seven drain pads PDD103 in total. And output to the board-side terminal TE of the wiring board 11. On the other hand, in the semiconductor chip CP1 of the present embodiment, as shown in FIGS. 29 to 32, since seven wires WA are connected to one drain pad PDD3, the LDMOSFET formed in the LDMOSFET formation region REGL3. The output current from the drain of the wiring board 11 is output from one drain pad PDD3 to the board-side terminal TE of the wiring board 11 through a total of seven wires WA101. Therefore, comparing FIGS. 29 to 32 (this embodiment) and FIGS. 33 to 36 (first comparative example), the wire through which the output current flows from the drains of the LDMOSFETs formed in the LDMOSFET formation regions REGL3 and REGL103. The number of (WA, WA101) is the same (here, 7).
 図39は、本実施の形態の半導体チップCP1のドレインパッドPDD3に形成されたプローブ痕PRBと、ドレインパッドPDD3におけるワイヤWAの接続領域RGWとを示す説明図(平面図)であり、上記図37および図38に対応するものである。図39において、(a)には、プローブ検査前のドレインパッドPDD3が示され、(b)には、プローブ検査(上記ステップS12に対応)でドレインパッドPDD3において2箇所に検査用のプローブ(探針)が押し当てられたことで、プローブ痕PRBが形成された状態が模式的に示されている。図39において、(c)には、ワイヤボンディング工程(上記ステップS5に対応)でドレインパッドPDD3にワイヤWAが接続されたときのワイヤWAの接続領域RGWが示されている。また、図40は、本実施の形態の半導体チップCP1のドレインパッドPDD3に形成されたプローブ痕PRBと、ドレインパッドPDD3におけるワイヤWAの接続領域RGWとを示す説明図であり、図40の(a)には、図39において二点鎖線で囲まれた領域57の拡大図が示されており、図40の(b)には、図40の(a)のB1-B1線の断面図が示されている。なお、図40の(a)は、平面図であるが、図面を見やすくするために、プローブ痕PRBとワイヤWAの接続領域RGWとにハッチングを付してある。 FIG. 39 is an explanatory view (plan view) showing the probe mark PRB formed on the drain pad PDD3 of the semiconductor chip CP1 of this embodiment and the connection region RGW of the wire WA in the drain pad PDD3. This corresponds to FIG. In FIG. 39, (a) shows the drain pad PDD3 before the probe test, and (b) shows a probe (probe for inspection) at two locations on the drain pad PDD3 in the probe test (corresponding to step S12). A state in which the probe mark PRB is formed by pressing the needle) is schematically shown. In FIG. 39, (c) shows a connection region RGW of the wire WA when the wire WA is connected to the drain pad PDD3 in the wire bonding step (corresponding to step S5). FIG. 40 is an explanatory diagram showing the probe mark PRB formed on the drain pad PDD3 of the semiconductor chip CP1 of this embodiment and the connection region RGW of the wire WA in the drain pad PDD3. ) Shows an enlarged view of a region 57 surrounded by a two-dot chain line in FIG. 39, and FIG. 40 (b) shows a cross-sectional view taken along line B1-B1 of FIG. 40 (a). Has been. FIG. 40A is a plan view, but the probe mark PRB and the connection region RGW of the wire WA are hatched for easy viewing of the drawing.
 また、図41は、プローブ検査(上記ステップS12に対応)でドレインパッドPDD3に検査用のプローブ(探針)58を押し当てる様子を示す断面図であり、図42は、図41でプローブ58をドレインパッドPDD3に押し当てたことで、ドレインパッドPDD3にプローブ痕PRBが形成された状態を示す断面図であり、いずれも上記図18に相当する断面が示されている。図41からも分かるように、プローブ検査前は、ドレインパッドPDD3の表面(上面)はほぼ平坦である。しかしながら、図41に示されるように、プローブ検査(上記ステップS12)でプローブ58をドレインパッドPDD3に押し当てると、図42に示されるように、ドレインパッドPDD3を構成する導電体膜(すなわちソース配線M2Sを構成する導電体膜)が変形して窪み(凹部)が形成され、場合によっては窪み(凹部)とともに凸部も形成される。ドレインパッドPDD3において、この平坦性が崩れた部分(窪みが形成された部分または窪みと凸部とが形成された部分)により、プローブ痕PRBが形成される。 41 is a cross-sectional view showing a state in which the probe (probe) 58 for inspection is pressed against the drain pad PDD3 in the probe inspection (corresponding to step S12 above), and FIG. 42 shows the probe 58 in FIG. FIG. 19 is a cross-sectional view showing a state in which a probe mark PRB is formed on the drain pad PDD3 by being pressed against the drain pad PDD3, and each shows a cross-section corresponding to FIG. As can be seen from FIG. 41, the surface (upper surface) of the drain pad PDD3 is substantially flat before the probe test. However, as shown in FIG. 41, when the probe 58 is pressed against the drain pad PDD3 in the probe test (step S12), as shown in FIG. 42, the conductor film (that is, the source wiring) constituting the drain pad PDD3. The conductor film constituting the M2S is deformed to form a depression (concave part), and in some cases, a convex part is formed together with the depression (concave part). In the drain pad PDD3, a probe mark PRB is formed by a portion where the flatness is lost (a portion where a recess is formed or a portion where a recess and a projection are formed).
 本実施の形態の主要な特徴の他の一つは、ドレインパッドPDD3に複数のワイヤWAを接続するとともに、図39および図40からも分かるように、ドレインパッドPDD3において、複数のワイヤWAの接続領域RGWの間に、プローブ痕PRBが形成されていることである。すなわち、パッド電極PDD3において、上記ステップS12のプローブ検査でプローブが当てられる(接触する)位置(すなわちプローブ痕PRBが形成される位置)は、上記ステップS5のワイヤボンディング工程で複数(ここでは7本)のワイヤWAを接続する位置の間に位置している。つまり、ドレインパッドPDD3において、あるワイヤWAの接続領域RGWとその隣のワイヤWAの接続領域RGWとの間に、プローブ検査においてプローブを押し当てた領域(すなわちプローブ痕PRB)が位置しているのである。 Another main feature of the present embodiment is that a plurality of wires WA are connected to the drain pad PDD3 and, as can be seen from FIGS. 39 and 40, a plurality of wires WA are connected in the drain pad PDD3. The probe mark PRB is formed between the regions RGW. That is, in the pad electrode PDD3, a plurality of (here, seven) positions where the probe is applied (contacted) in the probe inspection in step S12 (that is, the position where the probe mark PRB is formed) are formed in the wire bonding step in step S5. ) Between the positions where the wire WA is connected. That is, in the drain pad PDD3, the region where the probe is pressed in the probe inspection (that is, the probe mark PRB) is located between the connection region RGW of a certain wire WA and the connection region RGW of the adjacent wire WA. is there.
 具体的には、ドレインパッドPDD3のX方向の寸法はドレインパッドPDD3のY方向の寸法よりも大きくなっており、このドレインパッドPDD3に複数(ここでは7本)のワイヤWAが接続されているが、ドレインパッドPDD3におけるワイヤWAの接続領域RGWは、X方向に並んでいる(配列している)。そして、図39の(c)に示されるように、ドレインパッドPDD3において、ワイヤWAの接続領域RGW同士は、X方向に隣り合っており、X方向に隣り合う接続領域RGWの間に、プローブ痕PRB(すなわち上記ステップS12のプローブ検査でプローブが当てられる位置)が位置するようにしている。このため、ドレインパッドPDD3において、隣り合うワイヤWAの接続領域RGWと、その隣り合うワイヤWAの接続領域RGWの間にあるプローブ痕PRBとが、X方向に並んでいる。 Specifically, the dimension in the X direction of the drain pad PDD3 is larger than the dimension in the Y direction of the drain pad PDD3, and a plurality of (in this case, seven) wires WA are connected to the drain pad PDD3. The connection regions RGW of the wires WA in the drain pad PDD3 are aligned (arranged) in the X direction. As shown in FIG. 39 (c), in the drain pad PDD3, the connection regions RGW of the wires WA are adjacent to each other in the X direction, and probe traces are connected between the connection regions RGW adjacent in the X direction. The PRB (that is, the position where the probe is applied in the probe inspection in step S12) is positioned. For this reason, in the drain pad PDD3, the connection region RGW of the adjacent wires WA and the probe mark PRB between the connection regions RGW of the adjacent wires WA are arranged in the X direction.
 ドレインパッドPDD3に複数のワイヤWAを接続し、ドレインパッドPDD3における複数のワイヤWAの接続領域RGWの間に、プローブ検査工程においてプローブを押し当てた領域(すなわちプローブ痕PRB)が位置していることは、以下の利点を生じさせる。 A plurality of wires WA are connected to the drain pad PDD3, and a region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) is located between the connection regions RGW of the plurality of wires WA in the drain pad PDD3. Produces the following advantages:
 まず、半導体チップCP1のドレインパッドPDD3と配線基板11(配線基板母体25)の端子TEとの間を複数のワイヤWAを介して接続したことにより、LDMOSFET形成領域REGL3に形成されたLDMOSFETのドレインからの出力電流は、ドレインパッドPDD3から複数(ここでは7本)のワイヤWAを経て、配線基板11の基板側端子TEに出力される。これにより、LDMOSFET形成領域REGL3(のドレイン)からの出力電流を、ドレインパッドPDD3から配線基板11の端子TEに出力するためのワイヤWAの数を増やすことができるため、ワイヤWAによる抵抗成分を低減し、電力損失を低減することができる。 First, by connecting the drain pad PDD3 of the semiconductor chip CP1 and the terminal TE of the wiring board 11 (wiring board base body 25) via a plurality of wires WA, from the drain of the LDMOSFET formed in the LDMOSFET formation region REGL3. Is output from the drain pad PDD3 to the board-side terminal TE of the wiring board 11 through a plurality of (here, seven) wires WA. As a result, the number of wires WA for outputting the output current from the LDMOSFET formation region REGL3 (the drain thereof) from the drain pad PDD3 to the terminal TE of the wiring substrate 11 can be increased, so that the resistance component due to the wire WA is reduced. In addition, power loss can be reduced.
 更に、ドレインパッドPDD3において、隣り合うワイヤWAの接続領域RGWの間にプローブ検査でプローブを押し当てた領域(すなわちプローブ痕PRB)が位置していることで、ドレインパッドPDD3において、ワイヤWAの接続領域RGWとプローブ痕PRBとの重なりを小さくすることができ、好ましくはワイヤWAの接続領域RGWとプローブ痕PRBとが重ならない(平面視で重ならない)ようにすることができる。これにより、ドレインパッドPDD3の平坦な部分(プローブ痕PRBが形成されていない部分)にワイヤWAを接続することができるため、ドレインパッドPDD3とワイヤWAとの接続強度を向上させることができる。このため、製造された電力増幅モジュールPA1の信頼性を向上させることができる。 Further, in the drain pad PDD3, the region where the probe is pressed by the probe inspection (that is, the probe mark PRB) is located between the connection regions RGW of the adjacent wires WA, so that the connection of the wire WA is performed in the drain pad PDD3. The overlap between the region RGW and the probe mark PRB can be reduced, and preferably, the connection region RGW of the wire WA and the probe mark PRB can be prevented from overlapping (not overlapping in plan view). As a result, the wire WA can be connected to the flat portion of the drain pad PDD3 (the portion where the probe mark PRB is not formed), so that the connection strength between the drain pad PDD3 and the wire WA can be improved. For this reason, the reliability of manufactured power amplification module PA1 can be improved.
 また、ドレインパッドPDD3において、隣り合うワイヤWAの接続領域RGWの間にプローブ検査においてプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させるため、プローブ検査においてプローブを押し当てる領域(すなわちプローブ痕PRB)を確保するための平面領域が、半導体チップCP1のチップサイズの増大に寄与せず、半導体チップCP1の平面寸法(平面積)の縮小の点で有利である。 In addition, in the drain pad PDD3, a region where the probe is pressed in the probe inspection (that is, the probe mark PRB) is positioned between the connection regions RGW of the adjacent wires WA. The planar area for securing (PRB) does not contribute to an increase in the chip size of the semiconductor chip CP1, and is advantageous in terms of reducing the planar dimension (planar area) of the semiconductor chip CP1.
 すなわち、ワイヤボンディング工程を行う際には、ワイヤボンディング装置(ボンディングツール)などに起因して、隣り合うワイヤWAの接続領域RGWの間に所定の間隔を空ける必要がある。ドレインパッドPDD3において、この隣り合うワイヤWAの接続領域RGWの間の空いたスペースを、プローブ検査においてプローブを押し当てる領域(すなわちプローブ痕PRBが形成される領域)に割り当てる。つまり、図33~図37の第1比較例の半導体チップCP101では、隣り合うドレインパッドPDD103の間の領域(表面保護膜である上記絶縁膜52が形成されている領域)であったところを、図29~図32、図39および図40の本実施の形態の半導体チップCP1ではドレインパッドPDD3の一部とし、そこをプローブ検査においてプローブを押し当てる領域(すなわちプローブ痕PRBが形成される領域)として使用できる。このため、図33~図37の第1比較例の半導体チップCP101ではパッド電極としても回路領域としても使用していなかった領域(すなわち隣り合うドレインパッドPDD103の間の領域)を、図29~図32、図39および図40の本実施の形態の半導体チップCP1では、プローブ検査でプローブを押し当てる領域(すなわちプローブ痕PRBが形成される領域)として使用することになる。このため、半導体チップCP1のチップサイズの増大を抑制することができる。従って、1枚のウエハから取得できる半導体チップCP1の数を増やすことができるため、製造コストを低減することができ、また、半導体チップCP1を搭載した半導体装置(ここでは電力増幅モジュールPA1)の小型化(平面寸法の縮小)を図ることができる。 That is, when performing the wire bonding step, it is necessary to leave a predetermined interval between the connection regions RGW of the adjacent wires WA due to a wire bonding apparatus (bonding tool) or the like. In the drain pad PDD3, an empty space between the connection regions RGW of the adjacent wires WA is assigned to a region where the probe is pressed in the probe inspection (that is, a region where the probe mark PRB is formed). That is, in the semiconductor chip CP101 of the first comparative example of FIGS. 33 to 37, the region between the adjacent drain pads PDD103 (the region where the insulating film 52 as the surface protective film is formed) In the semiconductor chip CP1 of the present embodiment shown in FIGS. 29 to 32, 39 and 40, a part of the drain pad PDD3 is used, and this is a region where the probe is pressed in the probe inspection (that is, the region where the probe mark PRB is formed). Can be used as For this reason, in the semiconductor chip CP101 of the first comparative example of FIGS. 33 to 37, a region that is not used as a pad electrode or a circuit region (that is, a region between adjacent drain pads PDD103) is shown in FIGS. In the semiconductor chip CP1 of this embodiment shown in FIGS. 32, 39 and 40, it is used as a region where the probe is pressed in the probe inspection (that is, a region where the probe mark PRB is formed). For this reason, an increase in the chip size of the semiconductor chip CP1 can be suppressed. Accordingly, since the number of semiconductor chips CP1 that can be obtained from one wafer can be increased, the manufacturing cost can be reduced, and the semiconductor device (here, the power amplification module PA1) on which the semiconductor chip CP1 is mounted can be reduced in size. (Reduction of planar dimensions) can be achieved.
 また、図38の第2の比較例の半導体チップのドレインパッドPDD203の場合は、ワイヤWA101の接続領域RGW201とプローブ痕PRB201とをY方向にずらしているため、ドレインパッドPDD203のY方向の寸法を、プローブ痕PRB201の分だけ大きくする必要がある。それに対して、本実施の形態の半導体チップCP1では、X方向に隣り合うワイヤWA101の接続領域RGWの間にプローブ痕PRBが配置されるため、ドレインパッドPDD3のY方向の寸法は、ワイヤWA101の接続領域RGWを確保できる寸法に設定すればよく、プローブ痕PRBの面積を考慮してドレインパッドPDD3のY方向の寸法を大きくする必要がない。すなわち、本実施の形態の半導体チップCP1のドレインパッドPDD3のY方向の寸法は、第1比較例の半導体チップCP101におけるドレインパッドPDD103のY方向の寸法と同程度とすることができ、図38の第2比較例の半導体チップにおけるドレインパッドPDD203のY方向の寸法よりも小さくすることができる。このため、本実施の形態では、図38のドレインパッドPDD203を適用した場合に比べて、半導体チップCP1の平面寸法(平面積)を小さくすることができ、製造コストの低減や、半導体チップCP1を搭載した半導体装置(ここでは電力増幅モジュールPA1)の小型化(平面寸法の縮小)を図ることができる。 In the case of the drain pad PDD203 of the semiconductor chip of the second comparative example of FIG. 38, the connection region RGW201 of the wire WA101 and the probe mark PRB201 are shifted in the Y direction. It is necessary to enlarge the probe mark PRB201. On the other hand, in the semiconductor chip CP1 of the present embodiment, since the probe mark PRB is arranged between the connection regions RGW of the wires WA101 adjacent in the X direction, the dimension of the drain pad PDD3 in the Y direction is the same as that of the wire WA101. It is only necessary to set a dimension that can secure the connection region RGW, and it is not necessary to increase the dimension in the Y direction of the drain pad PDD3 in consideration of the area of the probe mark PRB. That is, the dimension in the Y direction of the drain pad PDD3 of the semiconductor chip CP1 of the present embodiment can be approximately the same as the dimension in the Y direction of the drain pad PDD103 in the semiconductor chip CP101 of the first comparative example. It can be made smaller than the dimension in the Y direction of the drain pad PDD203 in the semiconductor chip of the second comparative example. Therefore, in the present embodiment, the planar dimension (planar area) of the semiconductor chip CP1 can be reduced compared with the case where the drain pad PDD203 of FIG. 38 is applied, and the manufacturing cost can be reduced and the semiconductor chip CP1 can be manufactured. The mounted semiconductor device (here, power amplification module PA1) can be reduced in size (reduction in planar dimensions).
 このように、上記第1の比較例の半導体チップCP101を用いた場合に比べて、本実施の形態では、ドレインパッドPDD3とワイヤWAとの接続強度を向上させることができ、製造された電力増幅モジュールPA1の信頼性を向上させることができる。また、図38のドレインパッドPDD203を適用した第2の比較例の半導体チップを用いた場合に比べて、本実施の形態では、半導体チップCP1の平面寸法(平面積)を小さくすることができ、製造コストの低減や、半導体チップCP1を搭載した半導体装置(ここでは電力増幅モジュールPA1)の小型化(平面寸法の縮小)を図ることができる。 Thus, compared to the case where the semiconductor chip CP101 of the first comparative example is used, in this embodiment, the connection strength between the drain pad PDD3 and the wire WA can be improved, and the manufactured power amplification The reliability of the module PA1 can be improved. In addition, compared with the case where the semiconductor chip of the second comparative example to which the drain pad PDD203 of FIG. 38 is applied is used, in this embodiment, the planar dimension (planar area) of the semiconductor chip CP1 can be reduced. The manufacturing cost can be reduced, and the semiconductor device (here, the power amplification module PA1) on which the semiconductor chip CP1 is mounted can be downsized (planar dimensions can be reduced).
 ここで、ドレインパッドPDD3の寸法の一例を挙げる。ドレインパッドPDD3は、このドレインパッドPDD3が配置された側のチップ辺(ここでは辺SD1)に沿って長い平面形状を有しているが、ドレインパッドPDD3の短辺方向(Y方向)の寸法(長さ)L1は、接続するワイヤWAの先端の金属ボールの大きさにもよるが、例えば65μm程度とすることができる(寸法L1は図40に示してある)。ドレインパッドPDD3におけるワイヤWAの接続ピッチ(接続間隔)P1(接続ピッチP1は図40に示してある)は、プローブ痕PRBの配置を考慮すると、ドレインパッドPDD3の短辺方向の寸法L1の1.2倍以上(すなわちP1≧L1×1.2)が好ましい。また、ドレインパッドPDD3の短辺方向(Y方向)にワイヤWAの接続領域RGWとプローブ痕PRBとが並ばないので、面積節約の観点から、ワイヤWAの接続領域RGWの直径L2(直径L2は図40に示してある)が、ドレインパッドPDD3の短辺方向の寸法L1の60%以上(すなわちL2≧L1×0.6)になるように、ドレインパッドPDD3の短辺方向の寸法L1を設定することが好ましい。また、ドレインパッドPDD3を構成する導電体膜(上記ソース配線M2Sに対応)の厚みは、例えば0.3~3μm程度とすることができる。 Here, an example of the dimensions of the drain pad PDD3 is given. Although the drain pad PDD3 has a long planar shape along the chip side (here, the side SD1) on the side where the drain pad PDD3 is disposed, the dimension of the drain pad PDD3 in the short side direction (Y direction) ( The length L1 depends on the size of the metal ball at the tip of the wire WA to be connected, but can be, for example, about 65 μm (the dimension L1 is shown in FIG. 40). The connection pitch (connection interval) P1 of the wires WA in the drain pad PDD3 (the connection pitch P1 is shown in FIG. 40) is set to 1 of the dimension L1 in the short side direction of the drain pad PDD3 in consideration of the arrangement of the probe marks PRB. Two times or more (that is, P1 ≧ L1 × 1.2) is preferable. Further, since the connection region RGW of the wire WA and the probe trace PRB are not arranged in the short side direction (Y direction) of the drain pad PDD3, the diameter L2 (diameter L2 is a figure of the connection region RGW of the wire WA from the viewpoint of area saving). 40) is set to be 60% or more of the dimension L1 in the short side direction of the drain pad PDD3 (that is, L2 ≧ L1 × 0.6), and the dimension L1 in the short side direction of the drain pad PDD3 is set. It is preferable. The thickness of the conductor film (corresponding to the source line M2S) constituting the drain pad PDD3 can be set to, for example, about 0.3 to 3 μm.
 また、ドレインパッドPDD3において、X方向に隣り合うワイヤWAの接続領域RGWの間にプローブ痕PRBが配置されていれば、プローブ痕PRBの一部がワイヤWAの接続領域RGWと重なっている場合であっても、プローブ痕PRBとワイヤWAの接続領域RGWとの重なり面積を縮小することができるため、ドレインパッドPDD3に対するワイヤWAの接続強度の向上効果を得ることができる。しかしながら、ドレインパッドPDD3に対するワイヤWAの接続強度をできるだけ高める上では、プローブ痕PRBとワイヤWAの接続領域RGWとの重なり面積をできるだけ小さくすることが望ましく、プローブ痕PRBとワイヤWAの接続領域RGWとが重ならないようにすることが、より好ましい。このため、本実施の形態では、ドレインパッドPDD3において、X方向に隣り合うワイヤWAの接続領域RGWの間にプローブ痕PRBが配置されるが、プローブ痕PRBは、ワイヤWAの接続領域RGWと重なっていない(平面視で重なっていない)ことが、より好ましい。すなわち、上記ステップS5のワイヤボンディング工程では、ドレインパッドPDD3において、プローブ痕PRBに平面視で重ならない位置に、複数のワイヤWAが接続されることが、より好ましい。プローブ痕PRBとワイヤWAの接続領域RGWとが重ならない(平面視で重ならない)ことにより、プローブ痕PRBが形成されていない平坦な部分のドレインパッドPDD3にワイヤWAが接続されることになるため、ドレインパッドPDD3に対するワイヤWAの接続強度を、より的確に向上させることができ、電力増幅モジュールPA1の信頼性を、より的確に向上させることができるようになる。 Further, in the drain pad PDD3, if the probe mark PRB is arranged between the connection regions RGW of the wires WA adjacent in the X direction, the probe mark PRB is partially overlapped with the connection region RGW of the wire WA. Even if it exists, since the overlapping area of the probe mark PRB and the connection region RGW of the wire WA can be reduced, the effect of improving the connection strength of the wire WA to the drain pad PDD3 can be obtained. However, in order to increase the connection strength of the wire WA to the drain pad PDD3 as much as possible, it is desirable to reduce the overlapping area between the probe mark PRB and the connection area RGW of the wire WA as much as possible, and the connection area RGW between the probe mark PRB and the wire WA It is more preferable that the two do not overlap. For this reason, in this embodiment, in the drain pad PDD3, the probe mark PRB is arranged between the connection regions RGW of the wires WA adjacent in the X direction, but the probe mark PRB overlaps with the connection region RGW of the wire WA. It is more preferable that they are not overlapped (in a plan view). That is, in the wire bonding process of step S5, it is more preferable that the plurality of wires WA are connected to the drain pad PDD3 at a position that does not overlap the probe mark PRB in plan view. Since the probe mark PRB and the connection region RGW of the wire WA do not overlap (does not overlap in plan view), the wire WA is connected to the drain pad PDD3 in a flat portion where the probe mark PRB is not formed. The connection strength of the wire WA to the drain pad PDD3 can be improved more accurately, and the reliability of the power amplification module PA1 can be improved more accurately.
 また、ドレインパッドPDD3に複数のワイヤWAが接続されているが、ドレインパッドPDD3における複数のワイヤWAの各接続領域RGWは、一列に(一直線上に)配列していることが好ましい。すなわち、上記ステップS5のワイヤボンディング工程では、ドレインパッドPDD3において、複数のワイヤWAを接続する位置は、一列に(一直線上に)配列していることが好ましい。より具体的には、ドレインパッドPDD3における複数のワイヤWAの接続領域RGWは、ドレインパッドPDD3の長辺方向(X方向)に沿って一列に(一直線上に)配列していることが好ましい。つまり、Y方向寸法よりもX方向寸法が大きなドレインパッドPDD3において、ワイヤWAの接続領域RGWをいわゆる千鳥配列とはせずに(Y方向にずらさずに)、図31、図32および図39に示されるように、X方向(すなわちドレインパッドPDD3の長辺方向)に一列に(一直線上に)複数のワイヤWAの各接続領域RGWが配列するようにすることが好ましい。これにより、ドレインパッドPDD3のY方向の寸法を縮小することができる。このため、半導体チップCP1の平面寸法(平面積)を小さくすることができ、製造コストの低減や、半導体チップCP1を搭載した半導体装置(ここでは電力増幅モジュールPA1)の小型化(平面寸法の縮小)を図ることができる。 Further, although a plurality of wires WA are connected to the drain pad PDD3, it is preferable that the connection regions RGW of the plurality of wires WA in the drain pad PDD3 are arranged in a line (on a straight line). That is, in the wire bonding process of step S5, it is preferable that the positions where the plurality of wires WA are connected in the drain pad PDD3 are arranged in a line (on a straight line). More specifically, the connection regions RGW of the plurality of wires WA in the drain pad PDD3 are preferably arranged in a line (on a straight line) along the long side direction (X direction) of the drain pad PDD3. That is, in the drain pad PDD3 whose dimension in the X direction is larger than the dimension in the Y direction, the connection region RGW of the wires WA is not arranged in a so-called staggered arrangement (without shifting in the Y direction), as shown in FIGS. As shown, it is preferable that the connection regions RGW of the plurality of wires WA are arranged in a line (on a straight line) in the X direction (that is, the long side direction of the drain pad PDD3). Thereby, the dimension of the drain pad PDD3 in the Y direction can be reduced. For this reason, the planar dimension (planar area) of the semiconductor chip CP1 can be reduced, the manufacturing cost can be reduced, and the semiconductor device (here, the power amplification module PA1) on which the semiconductor chip CP1 is mounted is reduced (the planar dimension is reduced). ).
 また、図31、図32および図39では、ドレインパッドPDD3に7本のワイヤWAを接続しているが、ドレインパッドPDD3に接続するワイヤWAの数は7本に限定されず、複数(すなわち2本以上)であればよい。また、図39では、プローブ検査工程においてドレインパッドPDD3にプローブを押し当てる領域の数(すなわちドレインパッドPDD3に形成されたプローブ痕PRBの数、あるいはプローブ検査工程においてドレインパッドPDD3に押し当てるプローブの数)を2つ(2箇所)としているが、これに限定されず、1つ以上(1箇所以上)であればよく、プローブ検査で的確な検査を行えるように設定すればよい。また、図39では、ドレインパッドPDD3におけるワイヤWAの接続領域RGWの間の領域には、プローブ痕PRBが配置されている領域と、プローブ痕PRBが配置されていない領域とが混在している。他の形態として、ドレインパッドPDD3におけるワイヤWAの接続領域RGWの間の領域の全てに対して(ドレインパッドPDD3に7本のワイヤWAを接続した場合は7つの接続領域RGWの間の6箇所に対して)、プローブ検査においてプローブを押し当てる領域(すなわちプローブ痕PRB)を位置させることもできる。また、図30~図32では、ドレインパッドPDD3に一端が接続された複数のワイヤWAの他端は、配線基板11の1つの端子TEに接続されているが、他の形態として、複数のワイヤWAの一端をドレインパッドPDD3に接続し、その複数のワイヤの他端を複数の端子TEにそれぞれ接続することもできる。 In FIG. 31, FIG. 32 and FIG. 39, seven wires WA are connected to the drain pad PDD3. However, the number of wires WA connected to the drain pad PDD3 is not limited to seven. Or more). In FIG. 39, the number of regions in which the probe is pressed against the drain pad PDD3 in the probe inspection process (that is, the number of probe marks PRB formed on the drain pad PDD3, or the number of probes pressed against the drain pad PDD3 in the probe inspection process). ) Is two (two places), but is not limited to this, and may be one or more (one or more places), and may be set so that an accurate inspection can be performed by the probe inspection. In FIG. 39, the region between the connection regions RGW of the wires WA in the drain pad PDD3 includes a region where the probe mark PRB is arranged and a region where the probe mark PRB is not arranged. As another form, for all of the regions between the connection regions RGW of the wires WA in the drain pad PDD3 (when seven wires WA are connected to the drain pad PDD3, there are six locations between the seven connection regions RGW. On the other hand, a region where the probe is pressed in the probe inspection (ie, the probe mark PRB) can be located. 30 to 32, the other ends of the plurality of wires WA whose one ends are connected to the drain pad PDD3 are connected to one terminal TE of the wiring substrate 11. However, as another form, One end of the WA may be connected to the drain pad PDD3, and the other ends of the plurality of wires may be connected to the plurality of terminals TE, respectively.
 なお、ドレインパッドPDD3に接続するワイヤWAの数が3本以上の場合は、2本の場合よりもワイヤWAによる抵抗成分を更に低減でき(すなわち電力損失の低減効果をより大きくでき)、また、プローブ検査工程においてドレインパッドPDD3にプローブを押し当てる領域の数(すなわちドレインパッドPDD3に形成されたプローブ痕PRBの数)が2つ以上の場合は、1つの場合よりもプローブ検査の信頼性を更に向上できる。 When the number of wires WA connected to the drain pad PDD3 is three or more, the resistance component due to the wires WA can be further reduced as compared with the case of two wires WA (that is, the power loss reduction effect can be further increased). When the number of regions where the probe is pressed against the drain pad PDD3 in the probe inspection process (that is, the number of probe marks PRB formed on the drain pad PDD3) is two or more, the reliability of the probe inspection is further improved than the case of one. Can be improved.
 また、本実施の形態では、LDMOSFET形成領域REGL3のドレインに電気的に接続されたドレインパッドPDD3について、ワイヤWAの接続領域RGWとプローブ検査においてプローブを押し当てた領域(すなわちプローブ痕PRB)との関係を説明したが、LDMOSFET形成領域REGH3のドレインに電気的に接続されたドレインパッドPDD6についても、同様に適用することができる。すなわち、上記図14および図15に示されるように、ドレインパッドPDD6に複数のワイヤWAを接続しているが、図39および図40のドレインパッドPDD3と同様に、ドレインパッドPDD6においても、複数のワイヤWAの接続領域RGWの間に、プローブ検査においてプローブを押し当てた領域(すなわちプローブ痕PRB)が位置している。これにより、ドレインパッドPDD6とワイヤWAとの接続強度を向上させることができ、電力増幅モジュールPA1の信頼性を向上させることができる。また、半導体チップCP1のチップサイズを抑制することができ、製造コストの低減や、半導体チップCP1を搭載した半導体装置(ここでは電力増幅モジュールPA1)の小型化(平面寸法の縮小)を図ることができる。 In the present embodiment, the drain pad PDD3 electrically connected to the drain of the LDMOSFET formation region REGL3 is connected to the connection region RGW of the wire WA and the region where the probe is pressed in the probe inspection (that is, the probe mark PRB). Although the relationship has been described, the same applies to the drain pad PDD6 electrically connected to the drain of the LDMOSFET formation region REGH3. That is, as shown in FIGS. 14 and 15, a plurality of wires WA are connected to the drain pad PDD6. However, similarly to the drain pad PDD3 in FIGS. Between the connection areas RGW of the wires WA, an area where the probe is pressed in the probe inspection (that is, the probe mark PRB) is located. Thereby, the connection strength between the drain pad PDD6 and the wire WA can be improved, and the reliability of the power amplification module PA1 can be improved. In addition, the chip size of the semiconductor chip CP1 can be suppressed, so that the manufacturing cost can be reduced and the semiconductor device (here, the power amplification module PA1) on which the semiconductor chip CP1 is mounted can be downsized (planar dimensions are reduced). it can.
 また、半導体チップCP1は、多段接続された複数の電力増幅回路(ここでは増幅段LDML1,LDML2,LDML3および増幅段LDMH1,LDMH2,LDMH3)を有しているが、このうち最終段の電力増幅回路(ここでは増幅段LDML3,LDMH3)を構成する半導体素子(ここではLDMOSFET)の出力に接続されたパッド電極PDが、ドレインパッドPDD3,PDD6である。最終段の電力増幅回路(ここでは増幅段LDML3,LDMH3)を構成する半導体素子(ここではLDMOSFET)の出力に接続されたパッド電極(ドレインパッドPDD3,PDD6)は、出力される電流が大きいため、接続するワイヤWAの本数を複数にする(多くする)ことで、ワイヤWAによる抵抗成分を低減して電力損失を低減できる効果は極めて大きい。このため、図39および図40のドレインパッドPDD3のように、パッド電極PDにワイヤWAを複数本接続し、かつそのパッド電極PDにおける複数のワイヤWAの接続領域RGWの間に、プローブ検査でプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させる上記特徴は、最終段の電力増幅回路の出力に接続されたパッド電極(ここではドレインパッドPDD3,PDD6)に適用すれば、特に有効である。また、最終段の電力増幅回路(ここでは増幅段LDML3,LDMH3)は、前段の電力増幅回路に比べて面積が大きいため、出力に接続されたパッド電極(ドレインパッドPDD3,PDD6)を長方形状のパッド電極にしてそこに複数のワイヤWAを接続しても、半導体チップCP1の面積増大を招きにくい。 The semiconductor chip CP1 has a plurality of power amplifier circuits (in this case, the amplifier stages LDML1, LDML2, and LDML3 and the amplifier stages LDMH1, LDMH2, and LDMH3) connected in multiple stages. The pad electrodes PD connected to the outputs of the semiconductor elements (here, LDMOSFETs) constituting the amplification stages (LDML3, LDMH3) are drain pads PDD3, PDD6. Since the pad electrode (drain pad PDD3, PDD6) connected to the output of the semiconductor element (here LDMOSFET) constituting the final stage power amplification circuit (here amplification stage LDML3, LDMH3) has a large output current, By making the number of wires WA to be connected to be plural (increase), the effect of reducing the resistance component by the wires WA and reducing the power loss is extremely great. Therefore, like the drain pad PDD3 in FIGS. 39 and 40, a plurality of wires WA are connected to the pad electrode PD, and a probe inspection is performed between the connection regions RGW of the plurality of wires WA in the pad electrode PD. The above-described feature of locating the region where the is pressed (ie, the probe mark PRB) is particularly effective when applied to the pad electrodes (here, drain pads PDD3 and PDD6) connected to the output of the power amplifier circuit in the final stage. . Further, since the power amplifier circuit in the final stage (here, the amplifier stages LDML3 and LDMH3) has a larger area than the power amplifier circuit in the previous stage, the pad electrodes (drain pads PDD3 and PDD6) connected to the output are rectangular. Even if a plurality of wires WA are connected to the pad electrode, it is difficult to increase the area of the semiconductor chip CP1.
 また、最終段の増幅段LDML3,LDMH3よりも前の増幅段LDML1,LDML2,LDMH1,LDMH2を構成する半導体素子(ここではLDMOSFET)の出力に接続されたパッド電極PD(ここではドレインパッドPDD1,PDD2,PDD4,PDD5)であっても、そのパッド電極PDにワイヤWAを複数本、接続する場合は、図39および図40のドレインパッドPDD3の特徴を適用できる。すなわち、そのパッド電極PDにおいても、複数のワイヤWAの接続領域RGWの間に、プローブ検査でプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させることができる。例えば、図14および図15のようにドレインパッドPDD2に複数(図14の場合は2本)のワイヤWAを接続し、かつ、このドレインパッドPDD2においても、上記図40のドレインパッドPDD3のように、複数のワイヤWAの接続領域RGWの間に、プローブ検査でプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させることができる。また、図14および図15のようにドレインパッドPDD5に複数(図14の場合は2本)のワイヤWAを接続し、かつ、このドレインパッドPDD5においても、上記図40のドレインパッドPDD3のように、複数のワイヤWAの接続領域RGWの間に、プローブ検査でプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させることができる。 Also, pad electrodes PD (here, drain pads PDD1, PDD2) connected to the outputs of the semiconductor elements (here, LDMOSFETs) constituting the amplification stages LDML1, LDML2, LDMH1, and LDMH2 prior to the last amplification stages LDML3 and LDMH3. , PDD4, PDD5), when connecting a plurality of wires WA to the pad electrode PD, the features of the drain pad PDD3 of FIGS. 39 and 40 can be applied. That is, also in the pad electrode PD, the region where the probe is pressed in the probe inspection (that is, the probe mark PRB) can be positioned between the connection regions RGW of the plurality of wires WA. For example, as shown in FIGS. 14 and 15, a plurality (two in the case of FIG. 14) of wires WA are connected to the drain pad PDD2, and also in this drain pad PDD2, like the drain pad PDD3 in FIG. Between the connection regions RGW of the plurality of wires WA, a region where the probe is pressed in the probe inspection (that is, the probe mark PRB) can be positioned. Further, as shown in FIGS. 14 and 15, a plurality (two in the case of FIG. 14) of wires WA are connected to the drain pad PDD5, and also in this drain pad PDD5, as in the drain pad PDD3 of FIG. Between the connection regions RGW of the plurality of wires WA, a region where the probe is pressed in the probe inspection (that is, the probe mark PRB) can be positioned.
 すなわち、本実施の形態では、電力増幅回路を有する半導体チップCP1のパッド電極PDのうち、電力増幅回路を構成する半導体素子(ここではLDMOSFET)の出力に接続されたパッド電極PD(ここではドレインパッドPDD1,PDD2,PDD3、PDD4,PDD5,PDD6のいずれか)に複数のワイヤWAを接続している。そして、このパッド電極PDにおいて、複数のワイヤWAの接続領域RGWの間に、プローブ検査でプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させているのである。 That is, in the present embodiment, among the pad electrodes PD of the semiconductor chip CP1 having the power amplifier circuit, the pad electrode PD (here, drain pad) connected to the output of the semiconductor element (here, LDMOSFET) constituting the power amplifier circuit. A plurality of wires WA are connected to any one of PDD1, PDD2, PDD3, PDD4, PDD5 and PDD6). And in this pad electrode PD, the area | region (namely, probe mark PRB) which pressed the probe by the probe test | inspection is located between the connection area | region RGW of several wire WA.
 <第1の変形例について>
 図43は、第1の変形例の説明図であり、上記図39に対応するものである。図43において、(a)には、プローブ検査前のドレインパッドPDD3が示され、(b)には、プローブ検査(上記ステップS12に対応)でドレインパッドPDD3において2箇所に検査用のプローブ(探針)が押し当てられたことで、プローブ痕PRBが形成された状態が模式的に示されている。図43において、(c)には、ワイヤボンディング工程(上記ステップS5に対応)でドレインパッドPDD3にワイヤWAが接続されたときのワイヤWAの接続領域RGWが示されている。
<About the first modification>
FIG. 43 is an explanatory diagram of the first modified example and corresponds to FIG. 39 described above. In FIG. 43, (a) shows the drain pad PDD3 before the probe inspection, and (b) shows the probe (probing for inspection) at two locations on the drain pad PDD3 in the probe inspection (corresponding to step S12). A state in which the probe mark PRB is formed by pressing the needle) is schematically shown. In FIG. 43, (c) shows a connection region RGW of the wire WA when the wire WA is connected to the drain pad PDD3 in the wire bonding step (corresponding to step S5).
 上記図39の場合は、ドレインパッドPDD3にワイヤWAは3本以上接続され、かつ等間隔で接続されている。すなわち、ドレインパッドPDD3において、複数のワイヤWAが等ピッチ(等間隔)で接続されており、ワイヤWAの接続領域RGWとその隣のワイヤWAの接続領域RGWとの間の間隔(X方向の距離、上記ピッチP1)は、ドレインパッドPDD3に接続されたいずれのワイヤWAに対しても同じである。これは、上記ステップS5のワイヤボンディング工程で、ドレインパッドPDD3に3本以上のワイヤWAが接続され、かつそれら3本以上のワイヤWAがドレインパッドPDD3に等ピッチ(等間隔)で接続されたためである。ドレインパッドPDD3における複数のワイヤWAの接続領域RGWの間の領域には、プローブ痕PRBが配置されている領域と、プローブ痕PRBが配置されていない領域とが混在している。 In the case of FIG. 39, three or more wires WA are connected to the drain pad PDD3 and are connected at equal intervals. That is, in the drain pad PDD3, a plurality of wires WA are connected at an equal pitch (equal interval), and an interval (a distance in the X direction) between the connection region RGW of the wire WA and the connection region RGW of the adjacent wire WA. The pitch P1) is the same for any wire WA connected to the drain pad PDD3. This is because in the wire bonding step of step S5, three or more wires WA are connected to the drain pad PDD3, and these three or more wires WA are connected to the drain pad PDD3 at equal pitches (equal intervals). is there. In the region between the connection regions RGW of the plurality of wires WA in the drain pad PDD3, a region where the probe mark PRB is arranged and a region where the probe mark PRB is not arranged are mixed.
 一方、図43の場合は、ドレインパッドPDD3にワイヤWAは3本以上接続され、かつ、ドレインパッドPDD3における複数のワイヤWAの接続領域RGWの間の領域には、プローブ痕PRBが配置されている領域と、プローブ痕PRBが配置されていない領域とが混在している。そして、このドレインパッドPDD3において、複数のワイヤWAは等ピッチ(等間隔)では接続されていない。すなわち、ドレインパッドPDD3において、間にプローブ痕PRBが配置されている接続領域RGW間の間隔(ピッチ、距離)P5は、間にプローブ痕PRBが配置されていない接続領域RGW間の間隔(ピッチ、距離)P6よりも大きくなっている(すなわちP5>P6)。ここで、間隔P5,P6は図43に示されており、間隔P5は、ドレインパッドPDD3に接続された複数のワイヤWAについて、プローブ痕PRBを間に挟んで隣り合うワイヤWAの接続領域RGWの間隔(ピッチ、距離)に対応している。また、間隔P6は、ドレインパッドPDD3に接続された複数のワイヤWAについて、プローブ痕PRBを間に挟まずに隣り合うワイヤWAの接続領域RGWの間隔(ピッチ、距離)に対応している。 On the other hand, in the case of FIG. 43, three or more wires WA are connected to the drain pad PDD3, and a probe mark PRB is arranged in a region between the connection regions RGW of the plurality of wires WA in the drain pad PDD3. A region and a region where the probe mark PRB is not arranged are mixed. In the drain pad PDD3, the plurality of wires WA are not connected at an equal pitch (equal interval). That is, in the drain pad PDD3, the interval (pitch, distance) P5 between the connection regions RGW between which the probe marks PRB are disposed is the interval (pitch, distance) between the connection regions RGW between which the probe marks PRB are not disposed. Distance) is larger than P6 (that is, P5> P6). Here, the intervals P5 and P6 are shown in FIG. 43, and the interval P5 indicates a plurality of wires WA connected to the drain pad PDD3 in the connection region RGW of adjacent wires WA with the probe mark PRB interposed therebetween. It corresponds to the interval (pitch, distance). The interval P6 corresponds to the interval (pitch, distance) between the connection regions RGW of adjacent wires WA without interposing the probe mark PRB between the plurality of wires WA connected to the drain pad PDD3.
 上記図39のようにパッド電極PD(ここではドレインパッドPDD3)にワイヤWAが等間隔(等ピッチ)で接続されている場合には、ワイヤWAの接続領域RGWの間隔をワイヤボンディング装置(ボンディングツール)に起因して設定する必要がある最小限の間隔(ピッチ)に設定することができ、パッド電極PD(ここではドレインパッドPDD3)に接続するワイヤWAの数を効率的に増やすことができる。このため、ワイヤWAによる抵抗成分を効率的に低減し、電力損失を効率的に低減することができる。また、パッド電極PDの長辺方向の寸法も抑制でき、半導体チップCP1のチップサイズの縮小も可能になる。 As shown in FIG. 39, when the wires WA are connected to the pad electrodes PD (here, the drain pads PDD3) at equal intervals (equal pitch), the interval between the connection regions RGW of the wires WA is set to a wire bonding apparatus (bonding tool). ) Can be set to the minimum interval (pitch) that needs to be set, and the number of wires WA connected to the pad electrode PD (here, the drain pad PDD3) can be efficiently increased. For this reason, the resistance component by wire WA can be reduced efficiently and a power loss can be reduced efficiently. Further, the dimension of the pad electrode PD in the long side direction can be suppressed, and the chip size of the semiconductor chip CP1 can be reduced.
 一方、図43のように、パッド電極PD(ここではドレインパッドPDD3)において、間にプローブ痕PRBが配置されているワイヤWAの接続領域RGW間の間隔P5を、間にプローブ痕PRBが配置されていないワイヤWAの接続領域RGW間の間隔P6よりも大きく(P5>P6)した場合には、以下の利点を得られる。すなわち、間隔P5が小さすぎると、ワイヤWAの接続領域RGWとプローブ痕PRBとが重なってワイヤWAの接続強度が低下しやすくなる。また、間隔P6を小さくしても、ワイヤWAの接続領域RGWとプローブ痕PRBとが重ることはなく、ワイヤWAの接続強度の低下は招かないが、間隔P6を大きくすると、パッド電極PD(ここではドレインパッドPDD3)に接続できるワイヤWAの本数が少なくなり、あるいは、パッド電極PD(ここではドレインパッドPDD3)の長辺方向(ここではX方向)の寸法が増大してしまう。このため、間隔P5を間隔P6よりも大きく(P5>P6)することで、ワイヤWAの接続領域RGWとプローブ痕PRBとが重なりをより的確に抑制または防止してワイヤWAの接続強度を向上することができるとともに、間隔P6を間隔P5よりも小さく(P5>P6)することで、パッド電極PDに接続できるワイヤWAの本数を増やすことができ、また、パッド電極PDの長辺方向の寸法も抑制できる。第1の変形例では、ワイヤWAの接続領域RGWとプローブ痕PRBとが重なりをより的確に抑制または防止しながら、パッド電極PD(ここではドレインパッドPDD3)に接続できるワイヤWAの本数を増やすことで、ワイヤWAによる抵抗成分を効率的に低減し、電力損失を効率的に低減することができ、また、パッド電極PDの長辺方向の寸法も抑制することで、半導体チップCP1のチップサイズの縮小も可能になる。 On the other hand, as shown in FIG. 43, in the pad electrode PD (here, the drain pad PDD3), the interval P5 between the connection regions RGW of the wires WA between which the probe traces PRB are arranged is arranged, and the probe trace PRB is arranged therebetween. When the distance P6 between the connection areas RGW of the unwired wires WA is larger (P5> P6), the following advantages can be obtained. That is, if the interval P5 is too small, the connection region RGW of the wire WA and the probe mark PRB overlap with each other, and the connection strength of the wire WA tends to decrease. Even if the interval P6 is reduced, the connection region RGW of the wire WA and the probe mark PRB do not overlap with each other, and the connection strength of the wire WA does not decrease. However, if the interval P6 is increased, the pad electrode PD ( Here, the number of wires WA that can be connected to the drain pad PDD3) decreases, or the size of the pad electrode PD (here, the drain pad PDD3) in the long side direction (here, the X direction) increases. For this reason, by making the interval P5 larger than the interval P6 (P5> P6), the connection region RGW of the wire WA and the probe trace PRB are more accurately suppressed or prevented and the connection strength of the wire WA is improved. In addition, by making the interval P6 smaller than the interval P5 (P5> P6), the number of wires WA that can be connected to the pad electrode PD can be increased, and the dimension of the pad electrode PD in the long side direction can also be increased. Can be suppressed. In the first modified example, the number of wires WA that can be connected to the pad electrode PD (here, the drain pad PDD3) is increased while the overlapping of the connection region RGW of the wire WA and the probe mark PRB is more accurately suppressed or prevented. Thus, the resistance component due to the wire WA can be efficiently reduced, the power loss can be efficiently reduced, and the size of the pad electrode PD in the long side direction is also suppressed, so that the chip size of the semiconductor chip CP1 can be reduced. Reduction is also possible.
 <第2の変形例について>
 図44~図46は、第2の変形例の説明図であり、上記図5、図14および図15にそれぞれ対応するものである。図44には、半導体チップCP1の代わりに第2変形例の半導体チップCP1aを用いた電力増幅モジュールPA1の平面透視図であり、封止樹脂13を透視した状態が示されている。図45は、図44の部分拡大平面図であり、配線基板11に搭載された半導体チップCP1aとその周辺領域が拡大して示してある。図46は、図45からワイヤWAおよび基板側端子TEを省略した平面図であり、半導体チップCP1aの平面図(平面レイアウト図)に対応している。
<About the second modification>
44 to 46 are explanatory diagrams of the second modification, and correspond to FIGS. 5, 14 and 15, respectively. FIG. 44 is a plan perspective view of the power amplification module PA1 using the semiconductor chip CP1a of the second modified example instead of the semiconductor chip CP1, and shows a state where the sealing resin 13 is seen through. FIG. 45 is a partially enlarged plan view of FIG. 44, in which the semiconductor chip CP1a mounted on the wiring board 11 and its peripheral region are enlarged. FIG. 46 is a plan view in which the wires WA and the substrate-side terminals TE are omitted from FIG. 45, and corresponds to a plan view (planar layout diagram) of the semiconductor chip CP1a.
 上記半導体チップCP1は、2系統の電力増幅回路LDML,LDMHを有していたが、第2変形例の半導体チップCP1aは、2系統の電力増幅回路LDML,LDMHに加えて更に2系統の電力増幅回路が追加されており、合計で4系統の電力増幅回路を有している。すなわち、半導体チップCP1aは、4つの周波数帯にそれぞれ対応する4系統電力増幅回路を有しており、半導体チップCP1aを用いた図44の電力増幅モジュールPA1は、4つの周波数帯にそれぞれ対応する4系統電力増幅回路を有する電力増幅モジュールである。 The semiconductor chip CP1 has two systems of power amplification circuits LDML and LDMH. However, the semiconductor chip CP1a of the second modified example has two systems of power amplification in addition to the two systems of power amplification circuits LDML and LDMH. A circuit is added, and a total of four power amplifier circuits are provided. That is, the semiconductor chip CP1a has four-system power amplifier circuits corresponding to the four frequency bands, and the power amplifier module PA1 of FIG. 44 using the semiconductor chip CP1a corresponds to the four frequency bands. A power amplifier module having a system power amplifier circuit.
 このため、半導体チップCP1aは、図45および図46に示されるように、LDMOSFET形成領域REGL1,REGL2,REGL3,REGH1,REGH2,REGH3に加えて、LDMOSFET形成領域REGM1,REGM2,REGN1,REGN2も有している。ここで、LDMOSFET形成領域REGL1,REGL2,REGL3にそれぞれ形成されたLDMOSFETにより、1系統目の電力増幅回路LDMLが形成され、LDMOSFET形成領域REGH1,REGH2,REGH3にそれぞれ形成されたLDMOSFETにより、2系統目の電力増幅回路LDMHが形成される点は、半導体チップCP1aも上記半導体チップCP1と同様である。そして、半導体チップCP1aでは、LDMOSFET形成領域REGM1に形成されたLDMOSFETにより構成される初段の増幅段と、LDMOSFET形成領域REGM2に形成されたLDMOSFETにより構成される2段目の増幅段とが接続されて3系統目の電力増幅回路が形成されている。更に、LDMOSFET形成領域REGN1に形成されたLDMOSFETにより構成される初段の増幅段と、LDMOSFET形成領域REGN2に形成されたLDMOSFETにより構成される2段目の増幅段とが接続されて4系統目の電力増幅回路が形成されている。 Therefore, as shown in FIGS. 45 and 46, the semiconductor chip CP1a has LDMOSFET formation regions REGM1, REGM2, REGN1, and REGN2 in addition to the LDMOSFET formation regions REGL1, REGL2, REGL3, REGH1, REGH2, and REGH3. ing. Here, the first power amplifier circuit LDML is formed by the LDMOSFETs formed in the LDMOSFET formation regions REGL1, REGL2, and REGL3, respectively, and the second system is formed by the LDMOSFETs formed in the LDMOSFET formation regions REGH1, REGH2, and REGH3, respectively. The semiconductor chip CP1a is the same as the semiconductor chip CP1 in that the power amplifier circuit LDMH is formed. In the semiconductor chip CP1a, the first amplification stage constituted by the LDMOSFET formed in the LDMOSFET formation region REGM1 and the second amplification stage constituted by the LDMOSFET formed in the LDMOSFET formation region REGM2 are connected. A third system power amplifier circuit is formed. Furthermore, the first stage amplification stage configured by the LDMOSFET formed in the LDMOSFET formation region REGN1 and the second stage amplification stage configured by the LDMOSFET formed in the LDMOSFET formation region REGN2 are connected, and the fourth system power is connected. An amplifier circuit is formed.
 このため、半導体チップCP1aは、パッド電極PDとして、ドレインパッドPDD1,PDD2,PDD3,PDD4,PDD5,PDD6およびゲートパッドPDG1,PDG2,PDG3,PDG4,PDG5,PDG6に加えて、更に、ドレインパッドPDD7,PDD8,PDD9,PDD10およびゲートパッドPDG7,PDG8,PDG9,PDG10も有している。ここで、ゲートパッドPDG7は、LDMOSFET形成領域REGM1のゲート電極に電気的に接続された入力用のパッド電極であり、ドレインパッドPDD7は、LDMOSFET形成領域REGM1のドレインに電気的に接続された出力用のパッド電極である。また、ここで、ゲートパッドPDG8は、LDMOSFET形成領域REGM2のゲート電極に電気的に接続された入力用のパッド電極であり、ドレインパッドPDD8は、LDMOSFET形成領域REGM2のドレインに電気的に接続された出力用のパッド電極である。また、ゲートパッドPDG9は、LDMOSFET形成領域REGN1のゲート電極に電気的に接続された入力用のパッド電極であり、ドレインパッドPDD9は、LDMOSFET形成領域REGN1のドレインに電気的に接続された出力用のパッド電極である。また、ゲートパッドPDG10は、LDMOSFET形成領域REGN2のゲート電極に電気的に接続された入力用のパッド電極であり、ドレインパッドPDD10は、LDMOSFET形成領域REGN2のドレインに電気的に接続された出力用のパッド電極である。 Therefore, the semiconductor chip CP1a has, as the pad electrode PD, in addition to the drain pads PDD1, PDD2, PDD3, PDD4, PDD5, PDD6 and the gate pads PDG1, PDG2, PDG3, PDG4, PDG5, PDG6, and further drain pads PDD7, PDD8, PDD9, PDD10 and gate pads PDG7, PDG8, PDG9, PDG10 are also provided. Here, the gate pad PDG7 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGM1, and the drain pad PDD7 is an output pad electrically connected to the drain of the LDMOSFET formation region REGM1. The pad electrode. Here, the gate pad PDG8 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGM2, and the drain pad PDD8 is electrically connected to the drain of the LDMOSFET formation region REGM2. This is a pad electrode for output. The gate pad PDG9 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGN1, and the drain pad PDD9 is an output pad electrically connected to the drain of the LDMOSFET formation region REGN1. It is a pad electrode. The gate pad PDG10 is an input pad electrode electrically connected to the gate electrode of the LDMOSFET formation region REGN2, and the drain pad PDD10 is an output pad electrically connected to the drain of the LDMOSFET formation region REGN2. It is a pad electrode.
 半導体チップCP1の代わりに、半導体チップCP1aを用いた場合には、ドレインパッドPDD1,PDD2,PDD3,PDD4,PDD5,PDD6だけでなく、ドレインパッドPDD7,PDD8,PDD9,PDD10のうちの1つ以上に対しても、図29~図32および図39を参照して説明したパッド電極、ワイヤWAの接続領域RGWおよびプローブ痕PRBの関係を適用することができる。すなわち、図44~図46では、ドレインパッドPDD7に複数のワイヤWAを接続しているが、上記図39または図43のドレインパッドPDD3と同様に、ドレインパッドPDD7においても、複数のワイヤWAの接続領域RGWの間に、プローブ検査工程においてプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させることができる。また、図44~図46では、ドレインパッドPDD8に複数のワイヤWAを接続しているが、上記図39または図43のドレインパッドPDD3と同様に、ドレインパッドPDD8においても、複数のワイヤWAの接続領域RGWの間に、プローブ検査工程においてプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させることができる。図44~図46では、ドレインパッドPDD9に複数のワイヤWAを接続しているが、上記図39または図43のドレインパッドPDD3と同様に、ドレインパッドPDD9においても、複数のワイヤWAの接続領域RGWの間に、プローブ検査工程においてプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させることができる。また、図44~図46では、ドレインパッドPDD10に複数のワイヤWAを接続しているが、上記図39または図43のドレインパッドPDD3と同様に、ドレインパッドPDD7においても、複数のワイヤWAの接続領域RGWの間に、プローブ検査工程においてプローブを押し当てた領域(すなわちプローブ痕PRB)を位置させることができる。 When the semiconductor chip CP1a is used instead of the semiconductor chip CP1, not only the drain pads PDD1, PDD2, PDD3, PDD4, PDD5 and PDD6 but also one or more of the drain pads PDD7, PDD8, PDD9 and PDD10. The relationship between the pad electrode, the connection region RGW of the wire WA, and the probe mark PRB described with reference to FIGS. 29 to 32 and 39 can also be applied. That is, in FIG. 44 to FIG. 46, a plurality of wires WA are connected to the drain pad PDD7. However, similarly to the drain pad PDD3 in FIG. A region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) can be positioned between the regions RGW. 44 to 46, a plurality of wires WA are connected to the drain pad PDD8. Similarly to the drain pad PDD3 in FIG. 39 or FIG. 43, a plurality of wires WA are connected to the drain pad PDD8. A region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) can be positioned between the regions RGW. 44 to 46, a plurality of wires WA are connected to the drain pad PDD9. However, similarly to the drain pad PDD3 in FIG. 39 or 43, the drain pad PDD9 also has a connection region RGW of the plurality of wires WA. In the meantime, the region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) can be positioned. 44 to 46, a plurality of wires WA are connected to the drain pad PDD10. However, similarly to the drain pad PDD3 in FIG. 39 or 43, a plurality of wires WA are connected to the drain pad PDD7. A region where the probe is pressed in the probe inspection process (that is, the probe mark PRB) can be positioned between the regions RGW.
 また、本実施の形態では、本発明の好適な適用例として電力増幅モジュールを例に挙げて説明したが、増幅素子を有する半導体チップのパッド電極にワイヤを接続した種々の半導体装置およびその製造方法に適用することができる。 Further, in the present embodiment, the power amplification module has been described as a preferred application example of the present invention. However, various semiconductor devices in which wires are connected to pad electrodes of a semiconductor chip having an amplification element, and manufacturing methods thereof Can be applied to.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、半導体装置およびその製造技術に適用して有効である。 The present invention is effective when applied to a semiconductor device and its manufacturing technology.
11 配線基板
11a 上面
11b 下面
12 受動部品
13 封止樹脂
14 絶縁体層
15 導体層
15a 外部接続用端子
15b 基準電位供給用端子
15c チップ搭載用導体パターン
16,16a ビアホール
18 半田
21 実装基板
21a 上面
22 部品
23a,23b,23c 端子
24 半田
25 配線基板母体
25a 上面
31 基板(半導体基板)
31a 基板本体
31b エピタキシャル層
32 素子分離領域
33 p型ウエル
34 ゲート絶縁膜
35 ゲート電極
36 サイドウォールスペーサ
37  第1のn型ドレイン領域
38  第2のn型ドレイン領域
39 n型ドレイン領域
40 n型ソース領域
41 n型ソース領域
44 p型打抜き層
45 p型半導体領域
46 絶縁膜
47 コンタクトホール
48 プラグ
49 絶縁膜
50 スルーホール
52 絶縁膜
53 開口部
53D ドレインパッド用開口部
53G ゲートパッド用開口部
54 ソース裏面電極
55,56,57 領域
58 プローブ
60 単位セル
60a 単位LDMOSFET
102AM1,102AM2,102BM1,102BM2 整合回路
103 周辺回路
103A 制御回路
103A1 電源制御回路
103A2 バイアス電圧生成回路
103B バイアス回路
103C 制御回路
104a,104b,104c 入力端子
105A,105B 整合回路
106 端子
107A,107B 整合回路
108A,108B ローパスフィルタ
109A,109B スイッチ回路
110a,110b 端子
153D ドレインパッド用開口部
153G ゲートパッド用開口部
AGCAMP AGCアンプ
ANT アンテナ
ANT-SW アンテナスイッチ
AR1 活性領域
BBP ベースバンド部
BE1 裏面電極
CDP 表示・制御部
COD1 音声CODEC
COD2 チャネルCODEC
CP1 半導体チップ
CP101 半導体チップ
CP1a 半導体チップ
DAC D/A変換回路
DMDL 復調回路
DPS デジタル携帯電話機
FPL1 RF-PLL(RF周波数位相同期回路)
FPL2 IF-PLL(IF周波数位相同期回路)
IFC IF回路
LCD 液晶表示部
LDMH 電力増幅回路
LDMH1,LDMH2,LDMH3 増幅段
LDML 電力増幅回路
LDML1,LDML2,LDML3 増幅段
LNA 低雑音アンプ
M1 配線
M1D ドレイン配線
M1G ゲート配線
M1S ソース配線
M2 配線
M2D ドレイン配線
M2D1 配線部
M2D101 ドレイン配線
M2D2 連結配線部
M2G ゲート配線
M2G101 ゲート配線
M2S ソース配線
MCN マイコン
MDL 変調回路
MIC マイク
MRY メモリ
P5,P6 間隔
PA1 電力増幅モジュール
PD,PD1 パッド電極
PDD1,PDD2,PDD3,PDD4,PDD5,PDD6 ドレインパッド
PDD7,PDD8,PDD9,PDD10 ドレインパッド
PDD101,PDD103,PDD203 ドレインパッド
PDG1,PDG2,PDG3,PDG4,PDG5,PDG6 ゲートパッド
PDG7,PDG8,PDG9,PDG10,PDG101 ゲートパッド
PRB,PRB101,PRB201 プローブ痕
QMD 直交変調器
REGH1,REGH2,REGH3,REGL101 LDMOSFET形成領域
REGL1,REGL2,REGL3,REGL103 LDMOSFET形成領域
REGM1,REGM2,REGN1,REGN2 LDMOSFET形成領域
RFBP RFブロック部
RGW 接続領域
RGW101 接続領域
RGW201 接続領域
RX-MIX 受信ミクサ
SD1,SD2,SD3,SD4 辺(チップ辺)
SP スピーカ
TE 基板側端子
TE 端子
TX-MIX 送信ミクサ
WA,WA101 ワイヤ
11 Wiring board 11a Upper surface 11b Lower surface 12 Passive component 13 Sealing resin 14 Insulator layer 15 Conductor layer 15a External connection terminal 15b Reference potential supply terminal 15c Chip mounting conductor pattern 16, 16a Via hole 18 Solder 21 Mounting substrate 21a Upper surface 22 Components 23a, 23b, 23c Terminal 24 Solder 25 Wiring board base 25a Upper surface 31 Substrate (semiconductor substrate)
31a Substrate body 31b Epitaxial layer 32 Element isolation region 33 P type well 34 Gate insulating film 35 Gate electrode 36 Side wall spacer 37 First n type drain region 38 Second n type drain region 39 n + type drain region 40 n type source region 41 n + type source region 44 p type punching layer 45 p + type semiconductor region 46 insulating film 47 contact hole 48 plug 49 insulating film 50 through hole 52 insulating film 53 opening 53D drain pad opening 53G gate Pad opening 54 Source back electrode 55, 56, 57 Region 58 Probe 60 Unit cell 60a Unit LDMOSFET
102AM1, 102AM2, 102BM1, 102BM2 Matching circuit 103 Peripheral circuit 103A Control circuit 103A1 Power supply control circuit 103A2 Bias voltage generation circuit 103B Bias circuit 103C Control circuit 104a, 104b, 104c Input terminal 105A, 105B Matching circuit 106 Terminal 107A, 107B Matching circuit 108A , 108B Low pass filter 109A, 109B Switch circuit 110a, 110b Terminal 153D Drain pad opening 153G Gate pad opening AGCAMP AGC amplifier ANT Antenna ANT-SW Antenna switch AR1 Active area BBP Baseband part BE1 Back electrode CDP Display / control part COD1 voice CODEC
COD2 channel CODEC
CP1 Semiconductor chip CP101 Semiconductor chip CP1a Semiconductor chip DAC D / A conversion circuit DMDL Demodulation circuit DPS Digital mobile phone FPL1 RF-PLL (RF frequency phase synchronization circuit)
FPL2 IF-PLL (IF frequency phase synchronization circuit)
IFC IF circuit LCD Liquid crystal display portion LDMH Power amplifier circuit LDMH1, LDMH2, LDMH3 Amplifier stage LDML Power amplifier circuit LDML1, LDML2, LDML3 Amplifier stage LNA Low noise amplifier M1 Wiring M1D Drain wiring M1G Gate wiring M1S Source wiring M2 Wiring M2D1 Drain wiring M2D1 Wiring part M2D101 Drain wiring M2D2 Connection wiring part M2G Gate wiring M2G101 Gate wiring M2S Source wiring MCN Microcomputer MDL Modulation circuit MIC Microphone MRY Memory P5, P6 Spacing PA1 Power amplification module PD, PD1 Pad electrodes PDD1, PDD2, PDD3, PDD4, PDD5 PDD6 Drain pad PDD7, PDD8, PDD9, PDD10 Drain pad PDD101, PDD103, PDD203 Drain Pads PDG1, PDG2, PDG3, PDG4, PDG5, PDG6 Gate pads PDG7, PDG8, PDG9, PDG10, PDG101 Gate pads PRB, PRB101, PRB201 Probe trace QMD Quadrature modulators REGH1, REGH2, REGH3, REGL101 LDMOSFET formation regions REGL1, REGL2, REGL3, REGL103 LDMOSFET formation region REGM1, REGM2, REGN1, REGN2 LDMOSFET formation region RFBP RF block part RGW Connection region RGW101 Connection region RGW201 Connection region RX-MIX Reception mixer SD1, SD2, SD3, SD4 side (chip side)
SP Speaker TE Board side terminal TE Terminal TX-MIX Transmission mixer WA, WA101 Wire

Claims (20)

  1.  複数のパッド電極を有する半導体チップを備え、前記複数のパッド電極に複数のワイヤが接続された半導体装置であって、
     前記半導体チップは、第1電力増幅回路を有しており、
     前記複数のパッド電極は、前記第1電力増幅回路を構成する半導体素子の出力に接続された第1パッド電極を含み、
     前記第1パッド電極に、前記複数のワイヤのうちの複数の第1ワイヤが接続されており、
     前記第1パッド電極において、前記複数の第1ワイヤの接続領域の間に、プローブ痕が形成されていることを特徴とする半導体装置。
    A semiconductor device comprising a semiconductor chip having a plurality of pad electrodes, wherein a plurality of wires are connected to the plurality of pad electrodes,
    The semiconductor chip has a first power amplifier circuit,
    The plurality of pad electrodes include a first pad electrode connected to an output of a semiconductor element constituting the first power amplifier circuit,
    A plurality of first wires of the plurality of wires are connected to the first pad electrode,
    In the first pad electrode, a probe mark is formed between connection regions of the plurality of first wires.
  2.  請求項1記載の半導体装置において、
     前記第1パッド電極における前記複数の第1ワイヤの接続領域は、一列に配列していることを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    A connection region of the plurality of first wires in the first pad electrode is arranged in a line.
  3.  請求項2記載の半導体装置において、
     前記プローブ痕は、プローブ検査でプローブが当たることにより形成されていることを特徴とする半導体装置。
    The semiconductor device according to claim 2,
    2. The semiconductor device according to claim 1, wherein the probe mark is formed when the probe hits the probe.
  4.  請求項3記載の半導体装置において、
     前記第1パッド電極は、長方形状の平面形状を有し、
     前記第1パッド電極における前記複数の第1ワイヤの接続領域は、前記第1パッド電極の長辺方向に沿って一列に配列していることを特徴とする半導体装置。
    The semiconductor device according to claim 3.
    The first pad electrode has a rectangular planar shape,
    The connection region of the plurality of first wires in the first pad electrode is arranged in a line along the long side direction of the first pad electrode.
  5.  請求項4記載の半導体装置において、
     前記第1パッド電極において、前記プローブ痕は、前記複数の第1ワイヤの接続領域と重なっていないことを特徴とする半導体装置。
    The semiconductor device according to claim 4.
    In the first pad electrode, the probe mark does not overlap a connection region of the plurality of first wires.
  6.  請求項5記載の半導体装置において、
     前記半導体チップは、多段接続された複数の電力増幅回路を有しており、
     前記第1電力増幅回路は、前記複数の電力増幅回路のうちの最終段の電力増幅回路であることを特徴とする半導体装置。
    The semiconductor device according to claim 5.
    The semiconductor chip has a plurality of power amplifier circuits connected in multiple stages,
    The semiconductor device according to claim 1, wherein the first power amplifier circuit is a power amplifier circuit at a final stage of the plurality of power amplifier circuits.
  7.  請求項1乃至6の何れか1項記載の半導体装置において、
     前記半導体素子は、LDMOSFETであり、
     前記第1パッド電極は、前記LDMOSFETのドレイン用パッド電極であることを特徴とする半導体装置。
    The semiconductor device according to any one of claims 1 to 6,
    The semiconductor element is an LDMOSFET,
    The semiconductor device according to claim 1, wherein the first pad electrode is a drain pad electrode of the LDMOSFET.
  8.  請求項7記載の半導体装置において、
     前記第1パッド電極に前記第1ワイヤは3本以上接続され、かつ等間隔で接続されていることを特徴とする半導体装置。
    The semiconductor device according to claim 7.
    Three or more first wires are connected to the first pad electrode, and are connected at equal intervals.
  9.  請求項8記載の半導体装置において、
     前記第1パッド電極における前記複数の第1ワイヤの接続領域の間の領域には、前記プローブ痕が配置されている領域と、前記プローブ痕が配置されていない領域とが混在していることを特徴とする半導体装置。
    The semiconductor device according to claim 8.
    In the region between the connection regions of the plurality of first wires in the first pad electrode, a region where the probe mark is arranged and a region where the probe mark is not arranged are mixed. A featured semiconductor device.
  10.  請求項1記載の半導体装置において、
     前記第1パッド電極に前記第1ワイヤは3本以上接続されており、
     前記第1パッド電極における前記複数の第1ワイヤの接続領域の間の領域には、前記プローブ痕が配置されている領域と、前記プローブ痕が配置されていない領域とが混在しており、
     前記第1パッド電極において、間に前記プローブ痕が配置されている前記接続領域の間隔は、間に前記プローブ痕が配置されていない前記接続領域の間隔よりも大きいことを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    Three or more first wires are connected to the first pad electrode,
    In the region between the connection regions of the plurality of first wires in the first pad electrode, a region where the probe mark is arranged and a region where the probe mark is not arranged are mixed,
    In the first pad electrode, the interval between the connection regions in which the probe marks are arranged is larger than the interval between the connection regions in which the probe marks are not arranged.
  11.  (a)半導体チップを準備する工程、
     (b)前記半導体チップを配線基板上に搭載する工程、
     (c)前記半導体チップの複数のパッド電極と前記配線基板の複数の端子とを複数のワイヤを介して電気的に接続する工程、
     を有する半導体装置の製造方法であって、
     前記半導体チップは、第1電力増幅回路を有しており、
     前記複数のパッド電極は、前記第1電力増幅回路を構成する半導体素子の出力に接続された第1パッド電極を含み、
     前記(c)工程では、前記第1パッド電極に、前記複数のワイヤのうちの複数の第1ワイヤが接続され、
     前記(a)工程は、
     (a1)前記半導体基板に対してプローブ検査を行う工程、
     (a2)前記(a1)工程後、前記半導体基板を切断して前記半導体チップを取得する工程、
     を有し、
     前記第1パッド電極において、前記(a1)工程でプローブが当てられる位置は、前記(c)工程で前記複数の第1ワイヤを接続する位置の間に位置することを特徴とする半導体装置の製造方法。
    (A) a step of preparing a semiconductor chip;
    (B) mounting the semiconductor chip on a wiring board;
    (C) electrically connecting a plurality of pad electrodes of the semiconductor chip and a plurality of terminals of the wiring board via a plurality of wires;
    A method of manufacturing a semiconductor device having
    The semiconductor chip has a first power amplifier circuit,
    The plurality of pad electrodes include a first pad electrode connected to an output of a semiconductor element constituting the first power amplifier circuit,
    In the step (c), a plurality of first wires of the plurality of wires are connected to the first pad electrode,
    The step (a)
    (A1) performing a probe inspection on the semiconductor substrate;
    (A2) after the step (a1), cutting the semiconductor substrate to obtain the semiconductor chip;
    Have
    In the first pad electrode, the position where the probe is applied in the step (a1) is located between the positions where the plurality of first wires are connected in the step (c). Method.
  12.  請求項11記載の半導体装置の製造方法において、
     前記第1パッド電極において、前記(c)工程で前記複数の第1ワイヤを接続する位置は、一列に配列していることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11.
    In the first pad electrode, the positions where the plurality of first wires are connected in the step (c) are arranged in a line.
  13.  請求項12記載の半導体装置の製造方法において、
     前記第1パッド電極は、長方形状の平面形状を有し、
     前記第1パッド電極において、前記(c)工程で前記複数の第1ワイヤを接続する位置は、前記第1パッド電極の長辺方向に沿って一列に配列していることを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device according to claim 12,
    The first pad electrode has a rectangular planar shape,
    In the first pad electrode, the positions where the plurality of first wires are connected in the step (c) are arranged in a line along the long side direction of the first pad electrode. Manufacturing method.
  14.  請求項13記載の半導体装置の製造方法において、
     前記(a1)工程で前記第1パッド電極にプローブ痕が形成されることを特徴とする半導体装置の製造方法。
    14. The method of manufacturing a semiconductor device according to claim 13,
    A method of manufacturing a semiconductor device, wherein a probe mark is formed on the first pad electrode in the step (a1).
  15.  請求項14記載の半導体装置の製造方法において、
     前記(c)工程では、前記第1パッド電極において、前記プローブ痕に重ならない位置に、前記複数の第1ワイヤが接続されることを特徴とする半導体装置の製造方法。
    15. The method of manufacturing a semiconductor device according to claim 14,
    In the step (c), in the first pad electrode, the plurality of first wires are connected to positions that do not overlap the probe marks.
  16.  請求項15記載の半導体装置の製造方法において、
     前記半導体チップは、多段接続された複数の電力増幅回路を有しており、
     前記第1電力増幅回路は、前記複数の電力増幅回路のうちの最終段の電力増幅回路であることを特徴とする半導体装置の製造方法。
    In the manufacturing method of the semiconductor device according to claim 15,
    The semiconductor chip has a plurality of power amplifier circuits connected in multiple stages,
    The method of manufacturing a semiconductor device, wherein the first power amplifier circuit is a power amplifier circuit at a final stage of the plurality of power amplifier circuits.
  17.  請求項11乃至16の何れか1項記載の半導体装置の製造方法において、
     前記半導体素子は、LDMOSFETであり、前記第1パッド電極は、前記LDMOSFETのドレイン用パッド電極であることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11,
    The method of manufacturing a semiconductor device, wherein the semiconductor element is an LDMOSFET, and the first pad electrode is a drain pad electrode of the LDMOSFET.
  18.  請求項17記載の半導体装置の製造方法において、
     前記(c)工程では、前記第1パッド電極に前記第1ワイヤは3本以上接続され、かつ、等間隔で接続されることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 17.
    In the step (c), at least three of the first wires are connected to the first pad electrode and are connected at equal intervals.
  19.  請求項11記載の半導体装置の製造方法において、
     前記(c)工程では、前記第1パッド電極に前記第1ワイヤは3本以上接続され、
     前記第1パッド電極における前記複数の第1ワイヤの接続領域の間の領域には、前記プローブ痕が配置されている領域と、前記プローブ痕が配置されていない領域とが混在し、
     前記第1パッド電極において、間に前記プローブ痕が配置されている前記接続領域の間隔は、間に前記プローブ痕が配置されていない前記接続領域の間隔よりも大きいことを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11.
    In the step (c), three or more first wires are connected to the first pad electrode,
    In the region between the connection regions of the plurality of first wires in the first pad electrode, a region where the probe mark is arranged and a region where the probe mark is not arranged are mixed,
    In the first pad electrode, the interval between the connection regions in which the probe marks are disposed is larger than the interval between the connection regions in which the probe marks are not disposed. Production method.
  20.  第1主面を有する配線基板と、
     第2主面と、前記第2主面とは反対側の第1裏面とを有し、前記第1裏面が前記配線基板の前記第1主面と対向するように前記配線基板の前記第1主面に搭載された半導体チップと、
     前記半導体チップの前記第2主面に形成された複数のパッド電極と前記配線基板の前記第1主面に形成された複数の端子とを電気的に接続する複数のワイヤと、
     を備えた半導体装置であって、
     前記半導体チップは、第1電力増幅回路を有しており、
     前記複数のパッド電極は、前記第1電力増幅回路を構成する半導体素子の出力に接続された第1パッド電極を含み、
     前記第1パッド電極に、前記複数のワイヤのうちの複数の第1ワイヤが接続されており、
     前記第1パッド電極において、前記複数の第1ワイヤの接続領域の間に、プローブ痕が形成されていることを特徴とする半導体装置。
    A wiring board having a first main surface;
    The wiring board has a second main surface and a first back surface opposite to the second main surface, and the first back surface of the wiring board is opposed to the first main surface of the wiring board. A semiconductor chip mounted on the main surface;
    A plurality of wires that electrically connect a plurality of pad electrodes formed on the second main surface of the semiconductor chip and a plurality of terminals formed on the first main surface of the wiring board;
    A semiconductor device comprising:
    The semiconductor chip has a first power amplifier circuit,
    The plurality of pad electrodes include a first pad electrode connected to an output of a semiconductor element constituting the first power amplifier circuit,
    A plurality of first wires of the plurality of wires are connected to the first pad electrode,
    In the first pad electrode, a probe mark is formed between connection regions of the plurality of first wires.
PCT/JP2012/075632 2011-10-06 2012-10-03 Semiconductor device and production method for same WO2013051599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-221878 2011-10-06
JP2011221878A JP2014241309A (en) 2011-10-06 2011-10-06 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013051599A1 true WO2013051599A1 (en) 2013-04-11

Family

ID=48043753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075632 WO2013051599A1 (en) 2011-10-06 2012-10-03 Semiconductor device and production method for same

Country Status (2)

Country Link
JP (1) JP2014241309A (en)
WO (1) WO2013051599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210151845A1 (en) * 2014-12-01 2021-05-20 Murata Manufacturing Co., Ltd. Electronic apparatus and electrical element
US20210306018A1 (en) * 2020-03-31 2021-09-30 Murata Manufacturing Co., Ltd. Radio frequency module and communication device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6476000B2 (en) * 2015-02-17 2019-02-27 三菱電機株式会社 Semiconductor device and semiconductor module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235431A (en) * 2007-03-19 2008-10-02 Nec Electronics Corp Semiconductor device
JP2010153901A (en) * 2002-11-26 2010-07-08 Freescale Semiconductor Inc Semiconductor device having bonding pad and method of forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153901A (en) * 2002-11-26 2010-07-08 Freescale Semiconductor Inc Semiconductor device having bonding pad and method of forming the same
JP2008235431A (en) * 2007-03-19 2008-10-02 Nec Electronics Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210151845A1 (en) * 2014-12-01 2021-05-20 Murata Manufacturing Co., Ltd. Electronic apparatus and electrical element
US11605869B2 (en) * 2014-12-01 2023-03-14 Murata Manufacturing Co., Ltd. Electronic apparatus and electrical element
US20210306018A1 (en) * 2020-03-31 2021-09-30 Murata Manufacturing Co., Ltd. Radio frequency module and communication device
US11528044B2 (en) * 2020-03-31 2022-12-13 Murata Manufacturing Co., Ltd. Radio frequency module and communication device

Also Published As

Publication number Publication date
JP2014241309A (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP4892253B2 (en) Electronic equipment
JP5407667B2 (en) Semiconductor device
KR100993277B1 (en) Semiconductor device and electronic device
US7510941B2 (en) Semiconductor device and manufacturing method of the same
JP2007073611A (en) Electronic device and manufacturing method thereof
JP4828235B2 (en) Semiconductor device
JP2008042038A (en) Electronic apparatus and semiconductor device
KR100993579B1 (en) Semiconductor device and electronic device
WO2013051599A1 (en) Semiconductor device and production method for same
JP2013026249A (en) Bidirectional zener diode and bidirectional zener diode manufacturing method
JP2006180151A (en) Power amplifier module and its manufacturing method
JP2010171037A (en) Semiconductor device
JP2006310425A (en) Electronic apparatus and its manufacturing method
JP2008258369A (en) Semiconductor device and its manufacturing method
JP2007053124A (en) Semiconductor device
JP2006165830A (en) Electronic equipment, low pass filter and method for manufacturing electronic equipment
JP2006013070A (en) Semiconductor device and its manufacturing method
TWI283471B (en) Semiconductor device and electronic apparatus
JP2007149930A (en) Electronic apparatus and manufacturing method thereof
JP2006049602A (en) Semiconductor device and its manufacturing method
JP2006324540A (en) Semiconductor device
JP2006086197A (en) Integrated passive element and power amplifying module
JP4574624B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2006165383A (en) Semiconductor module and method for manufacturing the same
JP2007005476A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP