WO2013051558A1 - ケイ素含有euvレジスト下層膜形成組成物 - Google Patents

ケイ素含有euvレジスト下層膜形成組成物 Download PDF

Info

Publication number
WO2013051558A1
WO2013051558A1 PCT/JP2012/075507 JP2012075507W WO2013051558A1 WO 2013051558 A1 WO2013051558 A1 WO 2013051558A1 JP 2012075507 W JP2012075507 W JP 2012075507W WO 2013051558 A1 WO2013051558 A1 WO 2013051558A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
underlayer film
resist
resist underlayer
forming composition
Prior art date
Application number
PCT/JP2012/075507
Other languages
English (en)
French (fr)
Inventor
修平 志垣
博昭 谷口
坂本 力丸
邦慶 何
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US14/350,202 priority Critical patent/US9337052B2/en
Priority to CN201280045182.3A priority patent/CN103827752B/zh
Priority to KR1020147010306A priority patent/KR101943023B1/ko
Priority to JP2013537511A priority patent/JP6065230B2/ja
Priority to EP12838943.4A priority patent/EP2765457A4/en
Publication of WO2013051558A1 publication Critical patent/WO2013051558A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a composition for forming a lower layer film between a substrate used for manufacturing a semiconductor device and a resist (for example, EUV resist). More specifically, the present invention relates to a resist underlayer film forming composition for lithography for forming an underlayer film used as a lower layer of a resist in a lithography process of manufacturing a semiconductor device. The present invention also relates to a method for forming a resist pattern using the underlayer film forming composition.
  • microfabrication is obtained by forming a thin film of photoresist on a semiconductor substrate such as a silicon wafer, irradiating it with an actinic ray such as ultraviolet rays through a mask pattern on which a semiconductor device pattern is drawn, and developing it.
  • actinic ray such as ultraviolet rays
  • fine irregularities corresponding to the pattern are formed on the substrate surface by etching the substrate using the photoresist pattern as a protective film.
  • a film known as a hard mask containing a metal element such as silicon is used as a lower layer film between the semiconductor substrate and the photoresist.
  • the removal rate by dry etching largely depends on the gas type used for dry etching.
  • the gas type it is possible to remove the hard mask by dry etching without a significant decrease in the thickness of the photoresist.
  • a resist underlayer film has been arranged between a semiconductor substrate and a photoresist (see Patent Documents 1 and 2). ).
  • An object of the present invention is to provide a resist underlayer film forming composition for EUV lithography which can be used for manufacturing a semiconductor device, which enables fine substrate processing using a rectangular resist pattern.
  • an object of the present invention is to provide a resist underlayer film forming composition for lithography for forming a resist underlayer film that can be used as a hard mask.
  • Another object of the present invention is to improve the exposure sensitivity of an EUV resist, to prevent intermixing with the resist, to have a large dry etching rate compared to the resist, and to generate less outgas during exposure with EUV light.
  • An object of the present invention is to provide an underlayer film and a resist underlayer film forming composition for forming the underlayer film.
  • the present invention includes, as a first aspect, hydrolyzable silane, a hydrolyzate thereof, a hydrolyzate condensate thereof, or a mixture thereof as silane, wherein the hydrolyzable silane is tetramethoxysilane, alkyltrimethoxysilane, and aryl.
  • the aryltrialkoxysilane has the following formula (1): (In the formula (1), R 1 represents an aromatic ring composed of a benzene ring or a naphthalene ring or a ring containing an isocyanuric acid structure, and R 2 is a substituent of a hydrogen atom in the aromatic ring, a halogen atom, Or an alkoxy group having 1 to 10 carbon atoms, X is an alkoxy group having 1 to 10 carbon atoms, an acyloxy group having 2 to 10 carbon atoms, or a halogen group, and n1 is an integer of 0 or 1.
  • N2 is an integer of 1 to 5 in the case of a benzene ring, and an integer of 1 to 9 in the case of a naphthalene ring)), a resist underlayer film forming composition for EUV lithography
  • the resist underlayer film forming composition according to the first aspect wherein R 1 in formula (1) is a benzene ring
  • R 2 is methoxy group of the formula (1), methoxymethoxy group, a fluorine atom, a chlorine atom, or a resist underlayer film forming composition according to the first aspect or the second aspect is a bromine atom
  • the resist underlayer film forming composition according to any one of the first to fourth aspects wherein n1 in formula (1) is 0,
  • the resist underlayer film forming composition according to the first aspect wherein n1 in formula (1) is 0,
  • a step of applying a resist composition on the resist underlayer film to form a resist film, a step of exposing the resist film, a step of developing the resist film after exposure to obtain a resist pattern, and the resist pattern A method of manufacturing a semiconductor device, comprising: etching a resist underlayer film; etching the organic underlayer film with the patterned resist underlayer film; and processing the semiconductor substrate with the patterned organic underlayer film It is.
  • a resist underlayer film formed from the composition by EUV lithography can be used as a hard mask having dry etching resistance against an oxygen-based dry etching gas, and facilitates fine processing of a substrate.
  • the resist underlayer film formed from the composition can improve the exposure sensitivity of the EUV resist provided on the underlayer film.
  • a resist underlayer film for lithography having a large dry etching rate compared to the resist can be formed without generating outgas during exposure with EUV light, causing no intermixing with the resist.
  • the application of the composition makes it possible to manufacture a semiconductor device using a resist underlayer film having such good performance.
  • a resist underlayer film is formed on a substrate by a coating method, or a resist underlayer film is formed thereon by an organic underlayer film on a substrate, and a resist film (for example, , EUV resist). Then, a resist pattern is formed by exposure and development, and the resist underlayer film is dry-etched using the resist pattern to transfer the pattern, and the substrate is processed by the pattern, or the organic underlayer film is etched by pattern transfer. Then, the substrate is processed with the organic underlayer film.
  • a resist pattern is formed by exposure and development, and the resist underlayer film is dry-etched using the resist pattern to transfer the pattern, and the substrate is processed by the pattern, or the organic underlayer film is etched by pattern transfer.
  • the resist film thickness tends to be thin to prevent pattern collapse.
  • the resist underlayer film (containing an inorganic silicon compound) is coated on the substrate with or without an organic underlayer film on the substrate, and a resist film (organic resist film) is formed thereon. It is coated in the order of.
  • the organic component film and the inorganic component film differ greatly in the dry etching rate depending on the selection of the etching gas.
  • the organic component film has an oxygen-based gas and the dry etching rate increases.
  • the inorganic component film has a halogen-containing gas. This increases the dry etching rate.
  • a resist pattern is formed, and the resist underlayer film of the present application existing under the resist pattern is dry-etched with a halogen-containing gas to transfer the pattern to the resist underlayer film, and the halogen-containing gas is transferred with the pattern transferred to the resist underlayer film.
  • the organic underlayer film under the layer is dry-etched with an oxygen-based gas to transfer the pattern to the organic underlayer film, and the pattern-transferred organic underlayer film is halogen-containing.
  • Substrate processing is performed using gas.
  • the resist underlayer film functions as a hard mask, and a hydrolyzable group such as an alkoxy group, an acyloxy group, or a halogen group in the structure is hydrolyzed or partially hydrolyzed, and then a condensation reaction of a silanol group is performed.
  • a polymer having a polysiloxane structure This polyorganosiloxane structure has a sufficient function as a hard mask.
  • the polyorganosiloxane structure (intermediate film) is effective as a hard mask for etching the underlying organic underlayer film and processing (etching) the substrate. That is, it has sufficient dry etching resistance against oxygen dry etching gas of the organic underlayer film during substrate processing.
  • the alkoxyaryl group of the aryltrialkoxysilane in the silane compound used in the present invention and the halogenated aryl group can reduce the exposure amount of irradiated EUV when the EUV resist existing in the upper layer is exposed with EUV light. Yes, that is, a pattern can be formed with a low exposure amount.
  • the hydrolyzable group in the silane compound used in the present invention is preferably a methoxy group.
  • the silane compound is hydrolyzed, and the hydrolyzed condensate (polysiloxane) is used in the resist underlayer film forming composition, but it may exist partially in the form of silanol groups or alkoxy groups without being completely hydrolyzed. .
  • the alkoxy group in the lower layer film may remain in the film in a subsequent processing step. At the time of EUV exposure, this residual alkoxy group or its component may become outgas and adhere to the mirror of the exposure machine, which may cause contamination or failure of the exposure machine.
  • the present invention has been able to solve these problems by using a hydrolyzable group mainly composed of methoxy groups, rather than mainly composed of ethoxy groups.
  • the present invention includes a hydrolyzable silane, a hydrolyzate thereof, a hydrolyzate condensate thereof, or a mixture thereof as the silane, and the hydrolyzable silane includes tetramethoxysilane, alkyltrimethoxysilane, and aryltrialkoxysilane.
  • the aryltrialkoxysilane relates to a resist underlayer film forming composition for EUV lithography, which is the above formula (1).
  • the resist underlayer film forming composition of the present invention contains the hydrolyzable silane, its hydrolyzate, its hydrolyzed condensate, or a mixture thereof, and further contains a solvent.
  • a solvent for optional components, acid, water, alcohol, curing catalyst, acid generator, other organic polymer, light-absorbing compound, surfactant and the like can be included.
  • the solid content in the resist underlayer film forming composition of the present invention is, for example, 0.1 to 50% by mass, or 0.1 to 30% by mass, and 0.1 to 25% by mass.
  • the solid content is obtained by removing the solvent component from all the components of the resist underlayer film forming composition.
  • the ratio of the hydrolyzable silane, its hydrolyzate, and its hydrolysis condensate in the solid content is 20% by mass or more, for example, 50 to 100% by mass, or 60 to 100% by mass, or 70 to 99%. 0.5% by mass.
  • R 1 represents an aromatic ring composed of a benzene ring or a naphthalene ring or a ring containing an isocyanuric acid structure
  • R 2 is a substituent of a hydrogen atom of the aromatic ring and is a halogen atom or carbon
  • X is an alkoxy group having 1 to 10 atoms
  • X is an alkoxy group having 1 to 10 carbon atoms, an acyloxy group having 2 to 10 carbon atoms, or a halogen group.
  • n1 is an integer of 0 or 1
  • n2 is an integer of 1 to 5. When n1 is 1, the silicon atom and the aromatic ring are connected by a methylene group, and when n1 is 0, the silicon atom and the aromatic ring are directly bonded.
  • the halogen atom of R 2 in the formula (1) is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • Examples of the alkoxy group represented by R 2 in the formula (1) include alkoxy groups having a linear, branched or cyclic alkyl moiety having 1 to 10 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, and an i-propoxy group.
  • an alkoxy group of R 2 of formula (1) are also included alkoxyalkoxy group.
  • methoxymethoxy group, ethoxyethoxy group, methoxyethoxy group, ethoxymethoxy group and the like can be mentioned.
  • a methoxy group and a methoxymethoxy group can be preferably used.
  • alkoxy group having 1 to 10 carbon atoms of X in the formula (1) examples include an alkoxy group having a linear, branched or cyclic alkyl moiety having 1 to 10 carbon atoms, such as methoxy group, ethoxy group, n- Propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, n-pentyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl-n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group Group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n-pentyloxy group, 3-methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1,1
  • the acyloxy group having 2 to 10 carbon atoms of X in the formula (1) is, for example, a methylcarbonyloxy group, an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an i-propylcarbonyloxy group, an n-butylcarbonyloxy group, i -Butylcarbonyloxy group, s-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, 1-methyl-n-butylcarbonyloxy group, 2-methyl-n-butylcarbonyloxy group, 3 -Methyl-n-butylcarbonyloxy group, 1,1-dimethyl-n-propylcarbonyloxy group, 1,2-dimethyl-n-propylcarbonyloxy group, 2,2-dimethyl-n-propylcarbonyloxy group, -Ethyl-n-propylcarbonyloxy group,
  • halogen group X in the formula (1) examples include fluorine, chlorine, bromine and iodine.
  • R 1 when R 1 is a benzene ring, when R 2 is a methoxy group, a methoxymethoxy group, a fluorine atom, a chlorine atom, or a bromine atom, when X is a methoxy group, the integer of n1 is 0. It can be preferably used.
  • hydrolyzable silane of the formula (1) examples are as follows.
  • the alkyl group of the alkyltrimethoxysilane is a linear or branched alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, or an n-butyl group.
  • a cyclic alkyl group can also be used.
  • a cyclic alkyl group having 1 to 10 carbon atoms includes a cyclopropyl group, a cyclobutyl group, a 1-methyl-cyclopropyl group, a 2-methyl-cyclopropyl group, a cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2 -Ethyl-cyclopropyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl Group, 1,2-di
  • a methyl group is preferably used, and the alkyltrimethoxysilane is preferably methyltrimethoxysilane.
  • the hydrolyzable silane can be preferably used when alkyltrimethoxysilane is contained in an amount of 10 to 35 mol and aryltrialkoxysilane in an amount of 2 to 25 mol with respect to 70 mol of tetramethoxysilane.
  • hydrolysis condensate (polyorganosilane) of hydrolyzable silane can be exemplified below.
  • a hydrolyzable silane hydrolysis condensate (polyorganosiloxane) can be obtained as a condensate having a weight average molecular weight of 1,000 to 1,000,000, or 1,000 to 100,000. These molecular weights are molecular weights obtained in terms of polystyrene by GPC analysis.
  • GPC measurement conditions are, for example, GPC apparatus (trade name HLC-8220GPC, manufactured by Tosoh Corporation), GPC column (trade names Shodex KF803L, KF802, KF801, Showa Denko), column temperature is 40 ° C., eluent (elution solvent) Is tetrahydrofuran, the flow rate (flow rate) is 1.0 ml / min, and the standard sample is polystyrene (manufactured by Showa Denko KK).
  • the alkoxysilyl group, acyloxysilyl group, or halogenated silyl group is a hydrolyzable group, and the hydrolysis of the hydrolyzable group is preferably 0.5 to 100 moles per mole of the hydrolyzable group, preferably 1 to 10 moles of water are used. Further, 0.001 to 10 mol, preferably 0.001 to 1 mol of hydrolysis catalyst can be used per mol of the hydrolyzable group.
  • the reaction temperature during the hydrolysis and condensation is usually 20 to 90 ° C.
  • the hydrolysis may be complete hydrolysis or partial hydrolysis. That is, a hydrolyzate or a monomer may remain in the hydrolysis condensate.
  • a catalyst can be used in the hydrolysis and condensation. Examples of the hydrolysis catalyst include metal chelate compounds, organic acids, inorganic acids, organic bases, and inorganic bases.
  • Examples of the metal chelate compound as the hydrolysis catalyst include triethoxy mono (acetylacetonato) titanium, tri-n-propoxy mono (acetylacetonato) titanium, tri-i-propoxy mono (acetylacetonato) titanium, tri -N-Butoxy mono (acetylacetonato) titanium, tri-sec-butoxy mono (acetylacetonato) titanium, tri-t-butoxy mono (acetylacetonato) titanium, diethoxy bis (acetylacetonato) titanium , Di-n-propoxy bis (acetylacetonato) titanium, di-i-propoxy bis (acetylacetonato) titanium, di-n-butoxy bis (acetylacetonato) titanium, di-sec-butoxy bis (Acetylacetonate) titanium, di-t Butoxy bis (acetylacetonato) titanium, monoethoxy tris (acetylacetonato) titanium
  • Organic acids as hydrolysis catalysts include, for example, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacin Acid, gallic acid, butyric acid, meritic acid, arachidonic acid, mikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid Benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid
  • Examples of the inorganic acid as the hydrolysis catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid and the like.
  • Organic bases as hydrolysis catalysts include, for example, pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, trimethylamine, triethylamine, monoethanolamine, diethanolamine, dimethylmonoethanolamine, monomethyldiethanolamine, triethanolamine, diazabicyclooctane, diazine.
  • Examples include zabicyclononane, diazabicycloundecene, and tetramethylammonium hydroxide.
  • the inorganic base include ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like. Of these catalysts, metal chelate compounds, organic acids, and inorganic acids are preferred, and these may be used alone or in combination of two or more.
  • organic solvent used in the hydrolysis examples include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i- Aliphatic hydrocarbon solvents such as octane, cyclohexane and methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propyl benzene, i-propyl benzene, diethylbenzene, i-butylbenzene, triethylbenzene, di Aromatic hydrocarbon solvents such as i-propyl benzene and n-amyl naphthalene; methanol, ethanol, n-propanol, i
  • solvents can be used alone or in combination of two or more.
  • acetone methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, di- Ketone solvents such as i-butyl ketone, trimethylnonanone, cyclohexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, diacetone alcohol, acetophenone, fenchon (1,1,3-trimethyl-2-norbornene) Is preferable from the viewpoint of storage stability of the solution.
  • Hydrolyzable organosilane is hydrolyzed and condensed using a catalyst in a solvent, and the resulting hydrolyzed condensate (polymer) simultaneously removes by-product alcohol, used hydrolysis catalyst and water by distillation under reduced pressure. can do.
  • the acid and base catalyst used for hydrolysis can be removed by neutralization or ion exchange.
  • the resist underlayer film forming composition for lithography of the present invention the resist underlayer film forming composition containing the hydrolysis condensate is added with an acid (for example, an organic acid), water, alcohol, or a combination thereof for stabilization. can do.
  • organic acid examples include oxalic acid, malonic acid, methylmalonic acid, succinic acid, maleic acid, malic acid, tartaric acid, phthalic acid, citric acid, glutaric acid, citric acid, lactic acid, and salicylic acid. Of these, oxalic acid and maleic acid are preferred.
  • the organic acid to be added is 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the condensate (polyorganosiloxane).
  • pure water, ultrapure water, ion exchange water, etc. can be used for the water to add, and the addition amount can be 1-20 mass parts with respect to 100 mass parts of resist underlayer film forming compositions.
  • the alcohol to be added is preferably one that is easily scattered by heating after coating, and examples thereof include methanol, ethanol, propanol, isopropanol, and butanol.
  • the added alcohol can be 1 to 20 parts by mass with respect to 100 parts by mass of the resist underlayer film forming composition.
  • a crosslinkable compound can be contained.
  • cross-linkable compounds having at least two cross-linking substituents are preferably used.
  • examples thereof include melamine compounds and substituted urea compounds having a cross-linking substituent such as a methylol group or a methoxymethyl group.
  • it is a compound such as methoxymethylated glycoluril or methoxymethylated melamine, for example, tetramethoxymethylglycoluril, tetrabutoxymethylglycoluril, or hexamethoxymethylmelamine.
  • compounds such as tetramethoxymethylurea and tetrabutoxymethylurea are also included.
  • the solid content is, for example, 50% by mass or less, 0.01 to 50% by mass, or 10 to 40% by mass.
  • the resist underlayer film forming composition of the present invention can contain an acid compound.
  • the acid compound include sulfonic acid compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, and pyridinium-p-toluenesulfonate, and carboxylic acids such as salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, and hydroxybenzoic acid.
  • sulfonic acid compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, and pyridinium-p-toluenesulfonate
  • carboxylic acids such as salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, and hydroxybenzoic acid.
  • a compound can be mentioned.
  • Examples of the acid compound include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, p-trifluoromethylbenzenesulfonic acid-2,4-dinitrobenzyl,
  • Examples include acid generators that generate an acid by heat or light, such as phenyl-bis (trichloromethyl) -s-triazine and N-hydroxysuccinimide trifluoromethanesulfonate.
  • the acid compound examples include iodonium salt acid generators such as diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, and bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, and triphenylsulfonium hexafluoroantimony And sulfonium salt acid generators such as triphenylsulfonium trifluoromethanesulfonate.
  • a sulfonic acid compound, an iodonium salt acid generator, and a sulfonium salt acid generator are preferably used.
  • An acid compound may use only 1 type and can be used in combination of 2 or more type.
  • the content of the acid compound is, for example, 0.1 to 10% by mass or 0.1 to 5% by mass in the solid content.
  • the resist underlayer film forming composition of the present invention can contain a curing catalyst.
  • the curing catalyst functions as a curing catalyst when a coating film containing polyorganosiloxane composed of a hydrolysis condensate is heated and cured.
  • an ammonium compound, a cyclic ammonium compound, a cyclic amine compound, or an onium compound can be used.
  • the onium compound is an onium salt, and for example, a sulfonium salt can be used.
  • sulfonium salts include: And the sulfonium ion represented by And a salt with an anion represented by The curing catalyst is 0.01 to 10 parts by mass, 0.01 to 5 parts by mass, or 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyorganosiloxane. Further, the sulfonate ion, chloride ion, nitrate ion, maleate ion and onium ion salt containing a hydrocarbon group is 0.1 to 10% by mass with respect to 100 parts by mass of the polyorganosiloxane, or 0 .1 to 5% by mass, or 0.1 to 3% by mass.
  • rheology modifier examples include phthalic acid compounds such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, butyl isodecyl phthalate, adipic acid such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate, octyl decyl adipate Compounds, maleic acid compounds such as dinormal butyl maleate, diethyl maleate, dinonyl maleate, oleic acid compounds such as methyl oleate, butyl oleate, tetrahydrofurfuryl oleate, and stearic acid compounds such as normal butyl stearate, glyceryl stearate Can be mentioned.
  • the amount used is, for example, 0.001 to 10% by mass in the solid content.
  • surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonylphenol.
  • Polyoxyethylene alkyl aryl ethers such as ethers, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate
  • Sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene
  • Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, trade name EFTOP EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), trade names MegaFuck F171, F173, R-08, R-30 (manufactured by Dainippon Ink & Chemicals), Florard FC430, FC
  • any solvent can be used as long as it can dissolve the solid content.
  • solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether.
  • the resist underlayer film forming composition of the present invention is coated on a semiconductor substrate (for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a glass substrate, an ITO substrate, etc.) by an appropriate coating method such as a spinner or a coater. Then, a resist underlayer film is formed by baking.
  • a semiconductor substrate for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a glass substrate, an ITO substrate, etc.
  • Calcination conditions are appropriately selected from a calcination temperature of 80 ° C. to 250 ° C. and a calcination time of 0.3 to 60 minutes.
  • the firing temperature is 130 ° C. to 250 ° C.
  • the firing time is 0.5 to 5 minutes.
  • the film thickness of the resist underlayer film to be formed is, for example, 0.01 to 3.0 ⁇ m, preferably 0.01 to 1.0 ⁇ m, or 0.01 to 0.5 ⁇ m, for example. Or 0.01 to 0.05 ⁇ m.
  • a layer of a high energy ray resist such as an EUV resist is formed on the resist underlayer film. Formation of the layer of the high energy beam resist can be performed by a well-known method, that is, coating and baking of the high energy beam resist composition solution on the lower layer film.
  • a resist composition using a resin such as PMMA (polymethyl methacrylate), polyhydroxystyrene, or phenol resin can be used.
  • exposure is performed through a predetermined mask.
  • EUV light (13.5 nm), electron beam, X-ray or the like can be used.
  • post-exposure heating PEB: Post Exposure Bake
  • the post-exposure heating is appropriately selected from a heating temperature of 70 ° C. to 150 ° C. and a heating time of 0.3 to 10 minutes.
  • Developers include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, ethanolamine, propylamine, An alkaline aqueous solution such as an aqueous amine solution such as ethylenediamine can be mentioned as an example. Further, a surfactant or the like can be added to these developers.
  • the development conditions are appropriately selected from a temperature of 5 to 50 ° C. and a time of 10 to 300 seconds.
  • the resist underlayer film is removed and the semiconductor substrate is processed.
  • the resist underlayer film is removed by tetrafluoromethane, perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, sulfur hexafluoride, difluoro It is carried out using a gas such as methane, nitrogen trifluoride and chlorine trifluoride.
  • a planarizing film, a gap fill material layer, or an organic underlayer film can be formed.
  • a planarizing film or a gap fill material layer is formed.
  • Synthesis example 1 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 1.62 g of (4-methoxyphenyl) trimethoxysilane and 35.55 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer. 0.01 mol / l hydrochloric acid (5.21 g) was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-1), and in polysiloxane, a unit structure derived from tetramethoxysilane, a unit structure derived from methyltrimethoxysilane, and derived from (4-methoxyphenyl) trimethoxysilane.
  • the molar ratio of the unit structure was 70: 25: 5.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • Synthesis example 2 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 1.97 g of (4-methoxybenzyl) trimethoxysilane and 35.55 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer. 0.01 mol / l hydrochloric acid (5.21 g) was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-2), and the unit structure derived from tetramethoxysilane, the unit structure derived from methyltrimethoxysilane in polysiloxane, and derived from (4-methoxybenzyl) trimethoxysilane.
  • the molar ratio of the unit structure was 70: 25: 5.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • Synthesis example 3 Put 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 1.82 g of [4- (methoxymethoxy) phenyl] trimethoxysilane and 35.55 g of acetone in a 300 ml flask, and mix the mixed solution with a magnetic stirrer. While stirring, 5.21 g of 0.01 mol / l hydrochloric acid was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-3), and in polysiloxane, a unit structure derived from tetramethoxysilane, a unit structure derived from methyltrimethoxysilane, [4- (methoxymethoxy) phenyl] trimethoxysilane
  • the molar ratio of the unit structure derived from was 70: 25: 5.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • Synthesis example 4 Put 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 2.19 g of ⁇ 2- [6- (methoxymethoxy) naphthyl] ⁇ trimethoxysilane and 35.55 g of acetone in a 300 ml flask, While stirring with a tic stirrer, 5.21 g of 0.01 mol / l hydrochloric acid was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-4), and in polysiloxane, a unit structure derived from tetramethoxysilane, a unit structure derived from methyltrimethoxysilane, ⁇ 2- [6- (methoxymethoxy) naphthyl] ⁇
  • the molar ratio of the unit structure derived from trimethoxysilane was 70: 25: 5.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • Synthesis example 5 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 2.03 g of pentafluorophenyltriethoxysilane, and 35.55 g of acetone are placed in a 300 ml flask, and 0.01 mol while stirring the mixed solution with a magnetic stirrer. / 21 hydrochloric acid (5.21 g) was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and methanol, ethanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to hydrolytic condensation.
  • a product (polymer) propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-5), and the polysiloxane has a unit structure derived from tetramethoxysilane, a unit structure derived from methyltrimethoxysilane, and a unit structure derived from pentafluorophenyltriethoxysilane.
  • the molar ratio was 70: 25: 5.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • Synthesis Example 6 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 1.62 g of (4-chlorophenyl) triethoxysilane, and 35.55 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer while stirring. .01 mol / l hydrochloric acid (5.21 g) was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and methanol, ethanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to hydrolytic condensation.
  • a product (polymer) propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-6), and in polysiloxane, a unit structure derived from tetramethoxysilane, a unit structure derived from methyltrimethoxysilane, and a unit derived from (4-chlorophenyl) triethoxysilane
  • the molar ratio of the structure was 70: 25: 5.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • Synthesis example 7 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 1.75 g of (4-bromophenyl) trimethoxysilane and 35.55 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer. 0.01 mol / l hydrochloric acid (5.21 g) was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-7), and is derived from a unit structure derived from tetramethoxysilane, a unit structure derived from methyltrimethoxysilane, and (4-bromophenyl) trimethoxysilane in polysiloxane.
  • the molar ratio of the unit structure was 70: 25: 5.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • Synthesis example 8 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 3.24 g of (4-methoxyphenyl) trimethoxysilane and 35.55 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer. 0.01 mol / l hydrochloric acid (5.21 g) was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-1) and is derived from a unit structure derived from tetramethoxysilane in polysiloxane, a unit structure derived from methyltrimethoxysilane, or from (4-methoxyphenyl) trimethoxysilane.
  • the molar ratio of the unit structure was 70:25:15.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • reaction solution is cooled to room temperature, 26 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and methanol, acetone, water and hydrochloric acid as reaction byproducts are distilled off under reduced pressure, and concentrated to hydrolyzed condensate (polymer).
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-1) and is derived from a unit structure derived from tetramethoxysilane in polysiloxane, a unit structure derived from methyltrimethoxysilane, or from (4-methoxyphenyl) trimethoxysilane.
  • the molar ratio of the unit structure was 70:20:10.
  • the weight average molecular weight by GPC was Mw1500 in terms of polystyrene.
  • Synthesis Example 10 Tetramethoxysilane 7.5 g, methyltrimethoxysilane 1.5 g, pentafluorophenyltriethoxysilane 2.5 g, and acetone 19.5 g were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol. 2.7 g / l hydrochloric acid was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 26 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and methanol, ethanol, acetone, water and hydrochloric acid, which are reaction byproducts, are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (2-5), and the polysiloxane has a unit structure derived from tetramethoxysilane, a unit structure derived from methyltrimethoxysilane, and a unit structure derived from pentafluorophenyltriethoxysilane.
  • the molar ratio was 70:20:10.
  • the weight average molecular weight by GPC was Mw1500 in terms of polystyrene.
  • Comparative Synthesis Example 1 18.60 g of tetramethoxysilane, 3.48 g of methyltrimethoxysilane, 1.41 g of phenyltrimethoxysilane, and 35.55 g of acetone were put into a 300 ml flask, and the mixed solution was stirred at 0.01 mol / l with a magnetic stirrer. Of hydrochloric acid was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (3-1), and the molar ratio of the unit structure derived from tetramethoxysilane, the unit structure derived from methyltrimethoxysilane, and the unit structure derived from phenyltrimethoxysilane in the polysiloxane.
  • the weight average molecular weight by GPC was Mw2000 in terms of polystyrene.
  • reaction solution is cooled to room temperature, 48.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, methanol, acetone, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer)
  • a propylene glycol monomethyl ether acetate solution was obtained.
  • Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 20 mass percent in terms of solid residue at 140 ° C.
  • the obtained polymer corresponds to the formula (3-1), and the molar ratio of the unit structure derived from tetraethoxysilane, the unit structure derived from methyltrimethoxysilane, and the unit structure derived from phenyltrimethoxysilane in the polysiloxane.
  • the weight average molecular weight by GPC was Mw1500 in terms of polystyrene.
  • Organic underlayer film (A layer) CNp-PM manufactured by Maruzen Petrochemical Co., Ltd. (in terms of molar ratio of vinyl naphthalene 60%: polyhydroxystyrene 40%, weight average molecular weight: 6000) was used as the organic underlayer film (A layer).
  • maleic acid is MA
  • benzyltriethylammonium chloride is BTAC
  • N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole is IMIDTEOS
  • bis (4-hydroxyphenyl) sulfone is BPS
  • propylene glycol monomethyl Ether acetate was abbreviated as PGMEA
  • propylene glycol monoethyl ether as PGEE
  • propylene glycol monomethyl ether as PGME
  • ethyl lactate EL
  • Water used was ultrapure water. Each addition amount was shown in parts by mass.
  • the prepared resist underlayer film forming solution was used for measuring optical constants, and diluted to 1% by mass with a solid content, and used for resist pattern formation by EUV exposure and outgas measurement.
  • the resist underlayer film forming composition was applied to each silicon wafer using a spinner.
  • a resist underlayer film (thickness 0.05 ⁇ m) was formed by heating on a hot plate at 215 ° C. for 1 minute.
  • These resist underlayer films were then analyzed using a spectroscopic ellipsometer (JA Woollam, VUV-VASE VU-302), with a refractive index (n value) and an optical extinction coefficient (k value, 193 nm, 248 nm). Also called attenuation coefficient).
  • the organic underlayer film (A layer) forming composition was applied onto a silicon wafer and baked on a hot plate at 215 ° C. for 60 seconds to obtain an organic underlayer film (A layer) having a thickness of 90 nm.
  • the resist underlayer film forming composition solution prepared in Examples 1 to 8 and Comparative Example 1 of the present invention was spin-coated and heated at 215 ° C. for 1 minute, whereby the resist underlayer film (B) layer ( 25 nm) is formed.
  • an EUV resist solution (methacrylate resin resist) is spin-coated and heated to form an EUV resist layer (C), and an EUV exposure apparatus (Micro Exposure Tool, abbreviated as MET) is used.
  • NA 0.30
  • 0.36 / 0.68
  • exposure to Quadropole After exposure, PEB (post-exposure heating, 90 ° C.) was performed, cooled to room temperature on a cooling plate, developed and rinsed, and a resist pattern was formed. The evaluation evaluated whether or not a 26 nm line and space could be formed and the pattern shape by pattern cross-sectional observation.
  • Examples 9 and 10 according to Synthesis Examples 9 and 10 obtained using a silane compound consisting only of a methoxy group as a hydrolyzable group use a silane compound containing a large amount of tetraethoxysilane containing an ethoxy group as a hydrolyzable group. The amount of outgas generated is smaller than in Comparative Example 2 obtained by Comparative Synthesis Example 2.
  • the molar ratio of the silane hydrolyzable groups to methoxy groups: ethoxy groups is 100: 0 in all silanes.
  • the molar ratio of the silane hydrolyzable groups to methoxy groups: ethoxy groups is 34: 3 in all silanes.
  • the silane hydrolyzable group has a methoxy group: ethoxy group molar ratio of 28: 9 in all silanes.
  • outgassing is reduced when the hydrolyzable group of silane is used in the range of 100: 0 to 80:20 in the molar ratio of methoxy group: ethoxy group in all silanes.
  • a resist underlayer film forming composition for EUV lithography which can be used for manufacturing a semiconductor device, which enables fine substrate processing using a rectangular resist pattern. It is possible to provide a resist underlayer film for lithography that does not cause EUV resist exposure sensitivity, does not cause intermixing with the resist, has a higher dry etching rate than resist, and generates less outgas when exposed to EUV light. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

【課題】 EUVレジストの露光感度向上や、EUV光で露光時にアウトガス発生が少ないリソグラフィー用レジスト下層膜及び該下層膜を形成するためのレジスト下層膜形成組成物を提供する。 【解決手段】 シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、該加水分解性シランがテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、該アリールトリアルコキシシランは下記式(1): (式(1)中で、R1はベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、R2は芳香族環の水素原子の置換基であってハロゲン原子、又は炭素数1乃至10のアルコキシ基であり、Xは炭素数1乃至10のアルコキシ基、炭素数2乃至10のアシルオキシ基、又はハロゲン基である。)であるEUVリソグラフィー用レジスト下層膜形成組成物。

Description

ケイ素含有EUVレジスト下層膜形成組成物
 本発明は、半導体装置の製造に使用される基板とレジスト(例えば、EUVレジスト)の間に下層膜を形成するための組成物に関する。詳しくは、半導体装置製造のリソグラフィ-工程においてレジストの下層に使用される下層膜を形成するためのリソグラフィ-用レジスト下層膜形成組成物に関する。また、当該下層膜形成組成物を用いたレジストパタ-ンの形成方法に関する。
 従来から半導体装置の製造において、フォトレジストを用いたリソグラフィーによる微細加工が行われている。前記微細加工はシリコンウエハー等の半導体基板上にフォトレジストの薄膜を形成し、その上に半導体デバイスのパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像し、得られたフォトレジストパターンを保護膜として基板をエッチング処理することにより、基板表面に、前記パターンに対応する微細凹凸を形成する加工法である。ところが、近年、半導体デバイスの高集積度化が進み、使用される活性光線もKrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)、EUV光(13.5nm)へと短波長化される傾向にある。
 これまで以上にプロファイル(レジスト形状)の制御や基板との密着性の向上が必要とされる。
 また、半導体基板とフォトレジストとの間の下層膜として、シリコン等の金属元素を含むハードマスクとして知られる膜を使用することが行なわれている。この場合、レジストとハードマスクでは、その構成成分に大きな違いがあるため、それらのドライエッチングによって除去される速度は、ドライエッチングに使用されるガス種に大きく依存する。そして、ガス種を適切に選択することにより、フォトレジストの膜厚の大きな減少を伴うことなく、ハードマスクをドライエッチングによって除去することが可能となる。このように、近年の半導体装置の製造においては、さまざまな効果を達成するために、半導体基板とフォトレジストの間にレジスト下層膜が配置されるようになってきている(特許文献1、2参照)。
 そして、これまでもレジスト下層膜用の組成物の検討が行なわれてきているが、その要求される特性の多様性などから、レジスト下層膜用の新たな材料の開発が望まれている。
特開2008-076889 特開2010-237667
 本発明の目的は、矩形なレジストパターンを利用し微細な基板加工が可能であり、半導体装置の製造に用いることのできるEUVリソグラフィー用レジスト下層膜形成組成物を提供することにある。本発明の目的は、詳しくは、ハードマスクとして使用できるレジスト下層膜を形成するためのリソグラフィー用レジスト下層膜形成組成物を提供することである。また、本発明の目的は、EUVレジストの露光感度向上や、レジストとのインターミキシングを起こさず、レジストに比較して大きなドライエッチング速度を有し、EUV光で露光時にアウトガス発生が少ないリソグラフィー用レジスト下層膜及び該下層膜を形成するためのレジスト下層膜形成組成物を提供することである。
 本発明は第1観点として、シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、該加水分解性シランがテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、該アリールトリアルコキシシランは下記式(1):
Figure JPOXMLDOC01-appb-C000002
(式(1)中で、R1はベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、R2は芳香族環内の水素原子の置換基であってハロゲン原子、又は炭素原子数1乃至10のアルコキシ基であり、Xは炭素原子数1乃至10のアルコキシ基、炭素原子数2乃至10のアシルオキシ基、又はハロゲン基である。n1は0又は1の整数であり、n2はベンゼン環の場合には1乃至5の整数であり、ナフタレン環の場合には1乃至9の整数である。)であるEUVリソグラフィー用レジスト下層膜形成組成物、
 第2観点として、式(1)のR1がベンゼン環である第1観点に記載のレジスト下層膜形成組成物、
 第3観点として、式(1)のR2がメトキシ基、メトキシメトキシ基、フッ素原子、塩素原子、又は臭素原子である第1観点又は第2観点に記載のレジスト下層膜形成組成物、
 第4観点として、式(1)のXがメトキシ基である第1観点乃至第3観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第5観点として、式(1)のn1が0である第1観点乃至第4観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第6観点として、アルキルトリメトキシシランがメチルトリメトキシシランである第1観点乃至第5観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第7観点として、加水分解性シランは、テトラメトキシシラン70モルに対して、アルキルトリメトキシシラン10乃至35モル、アリールトリアルコキシシランが2乃至25モルの割合で含む第1観点乃至第6観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第8観点として、前記シランは、加水分解性基としてメトキシ基及びエトキシ基を全シラン中でメトキシ基:エトキシ基=100:0乃至80:20の割合(モル比)で含有するものである請求項1乃至請求項7のいずれか1項に記載のレジスト下層膜形成組成物、
 第9観点として、更に酸を含む第1観点乃至第8観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第10観点として、更に水を含む第1観点乃至第9観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第11観点として、更にアンモニウム化合物、環状アンモニウム化合物、環状アミン化合物、又はオニウム化合物を含む第1観点乃至第10観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第12観点として、第1観点乃至第11観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜、
 第13観点として、第1観点乃至第11観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、及びパターン化された前記レジスト膜と前記レジスト下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法、及び
 第14観点として、半導体基板上に有機下層膜を形成する工程、その上に第1観点乃至第11観点のいずれか一つに記載のレジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、パターン化された前記レジスト下層膜により前記有機下層膜をエッチングする工程、及びパターン化された前記有機下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法である。
 本発明によれば、当該組成物からEUVリソグラフィーによって形成されたレジスト下層膜は、酸素系ドライエッチングガスに対して耐ドライエッチング性を有するハードマスクとして使用でき、基板の微細な加工を容易にする。
 また、本発明によれば、当該組成物から形成されたレジスト下層膜は、該下層膜上に設けられたEUVレジストの露光感度を向上させることができる。
 また、本発明によれば、EUV光で露光時にアウトガス発生が少なく、レジストとのインターミキシングを起こさず、レジストに比較して大きなドライエッチング速度を有するリソグラフィー用レジスト下層膜を形成できる。
 さらに、本発明によれば、当該組成物の適用により、斯様に良好な性能を有するレジスト下層膜を使用した半導体装置の製造が可能となる。
 本発明では基板上にレジスト下層膜を塗布法により形成するか、又は基板上の有機下層膜を介してその上にレジスト下層膜を塗布法により形成し、そのレジスト下層膜上にレジスト膜(例えば、EUVレジスト)を形成する。そして、露光と現像によりレジストパターンを形成し、そのレジストパターンを用いてレジスト下層膜をドライエッチングしてパターンの転写を行い、そのパターンにより基板を加工するか、又は有機下層膜をエッチングによりパターン転写しその有機下層膜により基板の加工を行う。
 微細なパターンを形成する上で、パターン倒れを防ぐためにレジスト膜厚が薄くなる傾向がある。レジストの薄膜化によりその下層に存在する膜にパターンを転写するためのドライエッチングは、上層の膜よりもエッチング速度が高くなければパターン転写ができない。本発明では基板上に有機下層膜を介するか、又は有機下層膜を介さず、その上に本願レジスト下層膜(無機系シリコン系化合物含有)を被覆し、その上にレジスト膜(有機レジスト膜)の順で被覆される。有機系成分の膜と無機系成分の膜はエッチングガスの選択によりドライエッチング速度が大きく異なり、有機系成分の膜は酸素系ガスでドライエッチング速度が高くなり、無機系成分の膜はハロゲン含有ガスでドライエッチング速度が高くなる。
 例えばレジストパターンが形成され、その下層に存在している本願レジスト下層膜をハロゲン含有ガスでドライエッチングしてレジスト下層膜にパターンを転写し、そのレジスト下層膜に転写されたパターンでハロゲン含有ガスを用いて基板加工を行う。あるいは、パターン転写されたレジスト下層膜を用いて、その下層の有機下層膜を酸素系ガスでドライエッチングして有機下層膜にパターン転写を行って、そのパターン転写された有機下層膜で、ハロゲン含有ガスを用いて基板加工を行う。
 本発明では当該レジスト下層膜がハードマスクとして機能するものであり、構造中のアルコキシ基やアシルオキシ基、ハロゲン基等の加水分解性基は加水分解乃至部分加水分解し、その後にシラノール基の縮合反応によりポリシロキサン構造のポリマーを形成する。このポリオルガノシロキサン構造はハードマスクとしての十分な機能を有している。
 そして、ポリオルガノシロキサン構造(中間膜)は、その下に存在する有機下層膜のエッチングや、基板の加工(エッチング)にハードマスクとして有効である。即ち、基板加工時や有機下層膜の酸素系ドライエッチングガスに対して十分な耐ドライエッチング性を有するものである。
 本発明に用いられるシラン化合物中のアリールトリアルコキシシランのアルコキシアリール基や、ハロゲン化アリール基は上層に存在するEUVレジストをEUV光で露光する際に照射EUVの露光量を低減することが可能であり、即ち低い露光量でパターン形成が可能となる。
 また、本発明に用いられるシラン化合物中の加水分解性基はメトキシ基を用いることが好ましい。シラン化合物が加水分解し、その加水分解縮合物(ポリシロキサン)をレジスト下層膜形成組成物に用いるが、完全に加水分解せずに部分的にシラノール基やアルコキシ基の状態で存在することがある。
 この下層膜中のアルコキシ基は、その後の処理工程で膜中に残留することがある。EUV露光時にこの残留アルコキシ基、又はその成分がアウトガスとなり露光機のミラーに付着するなどして露光機の汚染・故障の原因になることがある。本発明は加水分解性基としてエトキシ基を主体とするものではなく、メトキシ基を主体とするものを用いることによりそれらの問題を解決することができた。
 本発明は、シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、該加水分解性シランがテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、該アリールトリアルコキシシランは上記式(1)であるEUVリソグラフィー用レジスト下層膜形成組成物に関する。
 本発明のレジスト下層膜形成組成物は、上記加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、更に溶剤を含む。そして任意成分として酸、水、アルコール、硬化触媒、酸発生剤、他の有機ポリマー、吸光性化合物、及び界面活性剤等を含むことができる。
 本発明のレジスト下層膜形成組成物における固形分は、例えば0.1乃至50質量%、又は0.1乃至30質量%、0.1乃至25質量%である。ここで固形分とはレジスト下層膜形成組成物の全成分から溶剤成分を除いたものである。
 固形分中に占める加水分解性シラン、その加水分解物、及びその加水分解縮合物の割合は、20質量%以上であり、例えば50乃至100質量%、又は60乃至100質量%、又は70乃至99.5質量%である。
 式(1)中で、R1はベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、R2は芳香族環の水素原子の置換基であってハロゲン原子、又は炭素原子数1乃至10のアルコキシ基であり、Xは炭素原子数1乃至10のアルコキシ基、炭素原子数2乃至10のアシルオキシ基、又はハロゲン基である。n1は0又は1の整数であり、n2は1乃至5の整数である。n1が1である場合はシリコン原子と芳香族環をメチレン基で連結する場合であり、n1が0である場合はシリコン原子と芳香族環が直接結合する場合である。
 式(1)のR2のハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子である。
 式(1)のR2のアルコキシ基は炭素原子数1乃至10の直鎖、分岐、環状のアルキル部分を有するアルコキシ基が挙げられ、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチロキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシロキシ基、1-メチル-n-ペンチロキシ基、2-メチル-n-ペンチロキシ基、3-メチル-n-ペンチロキシ基、4-メチル-n-ペンチロキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基及び1-エチル-2-メチル-n-プロポキシ基等が、また環状のアルコキシ基としてはシクロプロポキシ基、シクロブトキシ基、1-メチル-シクロプロポキシ基、2-メチル-シクロプロポキシ基、シクロペンチロキシ基、1-メチル-シクロブトキシ基、2-メチル-シクロブトキシ基、3-メチル-シクロブトキシ基、1,2-ジメチル-シクロプロポキシ基、2,3-ジメチル-シクロプロポキシ基、1-エチル-シクロプロポキシ基、2-エチル-シクロプロポキシ基、シクロヘキシロキシ基、1-メチル-シクロペンチロキシ基、2-メチル-シクロペンチロキシ基、3-メチル-シクロペンチロキシ基、1-エチル-シクロブトキシ基、2-エチル-シクロブトキシ基、3-エチル-シクロブトキシ基、1,2-ジメチル-シクロブトキシ基、1,3-ジメチル-シクロブトキシ基、2,2-ジメチル-シクロブトキシ基、2,3-ジメチル-シクロブトキシ基、2,4-ジメチル-シクロブトキシ基、3,3-ジメチル-シクロブトキシ基、1-n-プロピル-シクロプロポキシ基、2-n-プロピル-シクロプロポキシ基、1-i-プロピル-シクロプロポキシ基、2-i-プロピル-シクロプロポキシ基、1,2,2-トリメチル-シクロプロポキシ基、1,2,3-トリメチル-シクロプロポキシ基、2,2,3-トリメチル-シクロプロポキシ基、1-エチル-2-メチル-シクロプロポキシ基、2-エチル-1-メチル-シクロプロポキシ基、2-エチル-2-メチル-シクロプロポキシ基及び2-エチル-3-メチル-シクロプロポキシ基等が挙げられる。
 また、式(1)のR2のアルコキシ基はアルコキシアルコキシ基も含まれる。例えばメトキシメトキシ基、エトキシエトキシ基、メトキシエトキシ基、エトキシメトキシ基等が挙げられる。
 式(1)のR2のアルコキシ基の中で、メトキシ基、メトキシメトキシ基は好ましく用いることができる。
 式(1)のXの炭素数1乃至10のアルコキシ基としては、炭素数1乃至10の直鎖、分岐、環状のアルキル部分を有するアルコキシ基が挙げられ、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチロキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシロキシ基、1-メチル-n-ペンチロキシ基、2-メチル-n-ペンチロキシ基、3-メチル-n-ペンチロキシ基、4-メチル-n-ペンチロキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基及び1-エチル-2-メチル-n-プロポキシ基等が、また環状のアルコキシ基としてはシクロプロポキシ基、シクロブトキシ基、1-メチル-シクロプロポキシ基、2-メチル-シクロプロポキシ基、シクロペンチロキシ基、1-メチル-シクロブトキシ基、2-メチル-シクロブトキシ基、3-メチル-シクロブトキシ基、1,2-ジメチル-シクロプロポキシ基、2,3-ジメチル-シクロプロポキシ基、1-エチル-シクロプロポキシ基、2-エチル-シクロプロポキシ基、シクロヘキシロキシ基、1-メチル-シクロペンチロキシ基、2-メチル-シクロペンチロキシ基、3-メチル-シクロペンチロキシ基、1-エチル-シクロブトキシ基、2-エチル-シクロブトキシ基、3-エチル-シクロブトキシ基、1,2-ジメチル-シクロブトキシ基、1,3-ジメチル-シクロブトキシ基、2,2-ジメチル-シクロブトキシ基、2,3-ジメチル-シクロブトキシ基、2,4-ジメチル-シクロブトキシ基、3,3-ジメチル-シクロブトキシ基、1-n-プロピル-シクロプロポキシ基、2-n-プロピル-シクロプロポキシ基、1-i-プロピル-シクロプロポキシ基、2-i-プロピル-シクロプロポキシ基、1,2,2-トリメチル-シクロプロポキシ基、1,2,3-トリメチル-シクロプロポキシ基、2,2,3-トリメチル-シクロプロポキシ基、1-エチル-2-メチル-シクロプロポキシ基、2-エチル-1-メチル-シクロプロポキシ基、2-エチル-2-メチル-シクロプロポキシ基及び2-エチル-3-メチル-シクロプロポキシ基等が挙げられる。
 式(1)のXの炭素数2乃至10のアシルオキシ基は、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、i-プロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、i-ブチルカルボニルオキシ基、s-ブチルカルボニルオキシ基、t-ブチルカルボニルオキシ基、n-ペンチルカルボニルオキシ基、1-メチル-n-ブチルカルボニルオキシ基、2-メチル-n-ブチルカルボニルオキシ基、3-メチル-n-ブチルカルボニルオキシ基、1,1-ジメチル-n-プロピルカルボニルオキシ基、1,2-ジメチル-n-プロピルカルボニルオキシ基、2,2-ジメチル-n-プロピルカルボニルオキシ基、1-エチル-n-プロピルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、1-メチル-n-ペンチルカルボニルオキシ基、2-メチル-n-ペンチルカルボニルオキシ基、3-メチル-n-ペンチルカルボニルオキシ基、4-メチル-n-ペンチルカルボニルオキシ基、1,1-ジメチル-n-ブチルカルボニルオキシ基、1,2-ジメチル-n-ブチルカルボニルオキシ基、1,3-ジメチル-n-ブチルカルボニルオキシ基、2,2-ジメチル-n-ブチルカルボニルオキシ基、2,3-ジメチル-n-ブチルカルボニルオキシ基、3,3-ジメチル-n-ブチルカルボニルオキシ基、1-エチル-n-ブチルカルボニルオキシ基、2-エチル-n-ブチルカルボニルオキシ基、1,1,2-トリメチル-n-プロピルカルボニルオキシ基、1,2,2-トリメチル-n-プロピルカルボニルオキシ基、1-エチル-1-メチル-n-プロピルカルボニルオキシ基、1-エチル-2-メチル-n-プロピルカルボニルオキシ基、フェニルカルボニルオキシ基、及びトシルカルボニルオキシ基等が挙げられる。
 式(1)のXのハロゲン基としてはフッ素、塩素、臭素、ヨウ素等が挙げられる。
 式(1)はR1がベンゼン環である場合、R2がメトキシ基、メトキシメトキシ基、フッ素原子、塩素原子、又は臭素原子である場合、Xがメトキシ基である場合、n1の整数が0である場合が好ましく用いることができる。
 式(1)の加水分解性シランは例えば以下に例示することができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 上記アルキルトリメトキシシランのアルキル基は、直鎖又は分枝を有する炭素原子数1乃至10のアルキル基であり、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基及び1-エチル-2-メチル-n-プロピル基等が挙げられる。また環状アルキル基を用いることもでき、例えば炭素原子数1乃至10の環状アルキル基としては、シクロプロピル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 特にメチル基が好ましく用いられ、アルキルトリメトキシシランはメチルトリメトキシシランである場合が好ましい。
 上記加水分解性シランは、テトラメトキシシラン70モルに対して、アルキルトリメトキシシラン10乃至35モル、アリールトリアルコキシシランが2乃至25モルの割合で含む場合に好ましく用いることができる。
 加水分解性シランの加水分解縮合物(ポリオルガノシラン)の具体例は以下に例示することができる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 加水分解性シランの加水分解縮合物(ポリオルガノシロキサン)は重量平均分子量1000乃至1000000、又は1000乃至100000の縮合物を得ることができる。これらの分子量はGPC分析によるポリスチレン換算で得られる分子量である。
 GPCの測定条件は、例えばGPC装置(商品名HLC-8220GPC、東ソー株式会社製)、GPCカラム(商品名ShodexKF803L、KF802、KF801、昭和電工製)、カラム温度は40℃、溶離液(溶出溶媒)はテトラヒドロフラン、流量(流速)は1.0ml/min、標準試料はポリスチレン(昭和電工株式会社製)を用いて行うことができる。
 アルコキシシリル基、アシルオキシシリル基、又はハロゲン化シリル基は加水分解性基であり、該加水分解性基の加水分解には、加水分解性基の1モル当たり、0.5乃至100モル、好ましくは1乃至10モルの水を用いる。
 また、加水分解性基の1モル当たり0.001乃至10モル、好ましくは0.001乃至1モルの加水分解触媒を用いることができる。
 加水分解と縮合を行う際の反応温度は、通常20乃至90℃である。
 加水分解は完全に加水分解を行うことも、部分加水分解することでもよい。即ち、加水分解縮合物中に加水分解物やモノマーが残存していてもよい。
加水分解し縮合させる際に触媒を用いることができる。
 加水分解触媒としては、金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基を挙げることができる。
 加水分解触媒としての金属キレート化合物は、例えばトリエトキシ・モノ(アセチルアセトナート)チタン、トリ-n-プロポキシ・モノ(アセチルアセトナート)チタン、トリ-i-プロポキシ・モノ(アセチルアセトナート)チタン、トリ-n-ブトキシ・モノ(アセチルアセトナート)チタン、トリ-sec-ブトキシ・モノ(アセチルアセトナート)チタン、トリ-t-ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ-n-プロポキシ・ビス(アセチルアセトナート)チタン、ジ-i-プロポキシ・ビス(アセチルアセトナート)チタン、ジ-n-ブトキシ・ビス(アセチルアセトナート)チタン、ジ-sec-ブトキシ・ビス(アセチルアセトナート)チタン、ジ-t-ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、モノ-n-プロポキシ・トリス(アセチルアセトナート)チタン、モノ-i-プロポキシ・トリス(アセチルアセトナート)チタン、モノ-n-ブトキシ・トリス(アセチルアセトナート)チタン、モノ-sec-ブトキシ・トリス(アセチルアセトナート)チタン、モノ-t-ブトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ-n-プロポキシ・モノ(エチルアセトアセテート)チタン、トリ-i-プロポキシ・モノ(エチルアセトアセテート)チタン、トリ-n-ブトキシ・モノ(エチルアセトアセテート)チタン、トリ-sec-ブトキシ・モノ(エチルアセトアセテート)チタン、トリ-t-ブトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ-n-プロポキシ・ビス(エチルアセトアセテート)チタン、ジ-i-プロポキシ・ビス(エチルアセトアセテート)チタン、ジ-n-ブトキシ・ビス(エチルアセトアセテート)チタン、ジ-sec-ブトキシ・ビス(エチルアセトアセテート)チタン、ジ-t-ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ-n-プロポキシ・トリス(エチルアセトアセテート)チタン、モノ-i-プロポキシ・トリス(エチルアセトアセテート)チタン、モノ-n-ブトキシ・トリス(エチルアセトアセテート)チタン、モノ-sec-ブトキシ・トリス(エチルアセトアセテート)チタン、モノ-t-ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン、等のチタンキレート化合物;トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-i-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-sec-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-t-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-i-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-sec-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-t-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-i-プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-sec-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-t-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-i-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-sec-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-t-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-i-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-sec-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-t-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-i-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-sec-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-t-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム、等のジルコニウムキレート化合物;トリス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム等のアルミニウムキレート化合物;などを挙げることができる。
 加水分解触媒としての有機酸は、例えば酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等を挙げることができる。
 加水分解触媒としての無機酸は、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等を挙げることができる。
 加水分解触媒としての有機塩基は、例えばピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクタン、ジアザビシクロノナン、ジアザビシクロウンデセン、テトラメチルアンモニウムハイドロオキサイド等を挙げることができる。無機塩基としては、例えばアンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等を挙げることができる。これら触媒の内、金属キレート化合物、有機酸、無機酸が好ましく、これらは1種あるいは2種以上を同時に使用してもよい。
 加水分解に用いられる有機溶媒としては、例えばn-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンセン、i-プロピルベンセン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、ヘプタノール-3、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチルヘプタノール-4、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、フェニルメチルカルビノール、ジアセトンアルコール、クレゾール等のモノアルコール系溶媒;エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ペンタンジオール-2,4、2-メチルペンタンジオール-2,4、ヘキサンジオール-2,5、ヘプタンジオール-2,4、2-エチルヘキサンジオール-1,3、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン等の多価アルコール系溶媒;アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロヘキサノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン等のケトン系溶媒;エチルエーテル、i-プロピルエーテル、n-ブチルエーテル、n-ヘキシルエーテル、2-エチルヘキシルエーテル、エチレンオキシド、1,2-プロピレンオキシド、ジオキソラン、4-メチルジオキソラン、ジオキサン、ジメチルジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-n-ヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル系溶媒;ジエチルカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等のエステル系溶媒;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等の含窒素系溶媒;硫化ジメチル、硫化ジエチル、チオフェン、テトラヒドロチオフェン、ジメチルスルホキシド、スルホラン、1,3-プロパンスルトン等の含硫黄系溶媒等を挙げることができる。これらの溶剤は1種又は2種以上の組み合わせで用いることができる。
 特に、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロヘキサノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン(1,1,3-トリメチル-2-ノルボルネン)等のケトン系溶媒が溶液の保存安定性の点で好ましい。
 加水分解性オルガノシランを溶剤中で触媒を用いて加水分解し縮合し、得られた加水分解縮合物(ポリマー)は減圧蒸留等により副生成物のアルコールや用いた加水分解触媒や水を同時に除去することができる。また、加水分解に用いた酸や塩基触媒を中和やイオン交換により取り除くことができる。そして本発明のリソグラフィー用レジスト下層膜形成組成物では、その加水分解縮合物を含むレジスト下層膜形成組成物は安定化のために酸(例えば有機酸)、水、アルコール、又はそれらの組み合わせを添加することができる。
 上記有機酸としては、例えばシュウ酸、マロン酸、メチルマロン酸、コハク酸、マレイン酸、リンゴ酸、酒石酸、フタル酸、クエン酸、グルタル酸、クエン酸、乳酸、サリチル酸等が挙げられる。中でも、シュウ酸、マレイン酸等が好ましい。加える有機酸は縮合物(ポリオルガノシロキサン)100質量部に対して0.5乃至5.0質量部である。また加える水は純水、超純水、イオン交換水等を用いることができ、その添加量はレジスト下層膜形成組成物100質量部に対して1乃至20質量部とすることができる。
 また加えるアルコールとしては塗布後の加熱により飛散しやすいものが好ましく、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール等が挙げられる。加えるアルコールはレジスト下層膜形成組成物100質量部に対して1乃至20質量部とすることができる。
 本発明では架橋性化合物を含有することができる。それらの架橋剤としては少なくとも二つの架橋形成置換基を有する架橋性化合物が好ましく用いられる。例えば、メチロール基、メトキシメチル基といった架橋形成置換基を有するメラミン系化合物や置換尿素系化合物が挙げられる。具体的には、メトキシメチル化グリコールウリル、またはメトキシメチル化メラミンなどの化合物であり、例えば、テトラメトキシメチルグリコールウリル、テトラブトキシメチルグリコールウリル、またはヘキサメトキシメチルメラミンである。また、テトラメトキシメチル尿素、テトラブトキシメチル尿素などの化合物も挙げられる。これらの架橋剤を含む場合は、固形分中で例えば50質量%以下であり、0.01乃至50質量%であり、または10乃至40質量%である。
 本発明のレジスト下層膜形成組成物は、酸化合物を含むことができる。酸化合物としては、例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、及びピリジニウム-p-トルエンスルホネート等のスルホン酸化合物、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、及びヒドロキシ安息香酸等のカルボン酸化合物を挙げることができる。また、酸化合物としては、例えば、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、p-トリフルオロメチルベンゼンスルホン酸-2,4-ジニトロベンジル、フェニル-ビス(トリクロロメチル)-s-トリアジン、及びN-ヒドロキシスクシンイミドトリフルオロメタンスルホネート等の熱または光によって酸を発生する酸発生剤を挙げることができる。酸化合物としては、また、ジフェニルヨードニウムヘキサフルオロホスフエート、ジフェニルヨードニウムトリフルオロメタンスルホネート、及びビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩系酸発生剤、及びトリフェニルスルホニウムヘキサフルオロアンチモネート、及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩系酸発生剤を挙げることができる。酸化合物としては、スルホン酸化合物、ヨードニウム塩系酸発生剤、スルホニウム塩系酸発生剤が好ましく使用される。酸化合物は一種のみを使用してもよく、また二種以上を組み合わせて使用することができる。酸化合物の含有量は固形分中で例えば0.1乃至10質量%であり、または0.1乃至5質量%である。
 本発明のレジスト下層膜形成組成物は硬化触媒を含有することができる。硬化触媒は、加水分解縮合物からなるポリオルガノシロキサンを含有する塗布膜を加熱し硬化させる時に硬化触媒の働きをする。
 更にアンモニウム化合物、環状アンモニウム化合物、環状アミン化合物、又はオニウム化合物を用いることができる。
 上記オニウム化合物としてはオニウム塩であり、例えばスルホニウム塩を用いることができる。スルホニウム塩としては、例えば
Figure JPOXMLDOC01-appb-C000007
で表されるスルホニウムイオンと
Figure JPOXMLDOC01-appb-C000008
で表される陰イオンとの塩が挙げられる。
 硬化触媒はポリオルガノシロキサン100質量部に対して、0.01乃至10質量部、または0.01乃至5質量部、または0.01乃至3質量部である。また、炭化水素基を含むスルホン酸イオン、塩化物イオン、硝酸イオン、マレイン酸イオンとオニウムイオンとの塩は、ポリオルガノシロキサン100質量部に対して0.1乃至10質量%であり、または0.1乃至5質量%、または0.1乃至3質量%である。
 レオロジー調整剤としては、例えば、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸化合物、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸化合物、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸化合物、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸化合物、及びノルマルブチルステアレート、グリセリルステアレート等のステアリン酸化合物を挙げることができる。レオロジー調整剤が使用される場合、その使用量としては、固形分中で、例えば0.001乃至10質量%である。
 界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、商品名メガファックF171、F173、R-08、R-30(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマ-KP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤は単独で使用してもよいし、また2種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その使用量としては、固形分中で、例えば0.0001乃至5質量%である。
 本発明のレジスト下層膜形成組成物に使用される溶剤としては、前記の固形分を溶解できる溶剤であれば、特に制限無く使用することができる。そのような溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、及び乳酸ブチル等を挙げることができる。これらの溶剤は単独で、または二種以上の組み合わせで使用される。さらに、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート等の高沸点溶剤を混合して使用することができる。
 半導体基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、ガラス基板、及びITO基板等)の上に、スピナー、コーター等の適当な塗布方法により本発明のレジスト下層膜形成組成物が塗布され、その後、焼成することによりレジスト下層膜が形成される。
 焼成する条件としては、焼成温度80℃乃至250℃、焼成時間0.3乃至60分間の中から適宜、選択される。好ましくは、焼成温度130℃乃至250℃、焼成時間0.5乃至5分間である。ここで、形成されるレジスト下層膜の膜厚としては、例えば0.01乃至3.0μmであり、好ましくは、例えば0.01乃至1.0μmであり、または0.01乃至0.5μmであり、または0.01乃至0.05μmである。
 次いで、レジスト下層膜の上に、EUVレジスト等の高エネルギー線レジストの層が形成される。高エネルギー線レジストの層の形成は、周知の方法、すなわち、高エネルギー線レジスト組成物溶液の下層膜上への塗布及び焼成によって行なうことができる。
 EUVレジストとしては例えば、PMMA(ポリメチルメタクリレート)、ポリヒドロキシスチレン、フェノール樹脂等の樹脂を用いたレジスト組成物を用いることができる。
 次に、所定のマスクを通して露光が行なわれる。露光には、EUV光(13.5nm)、電子線、X線等を使用することができる。露光後、必要に応じて露光後加熱(PEB:Post Exposure Bake)を行うこともできる。露光後加熱は、加熱温度70℃乃至150℃、加熱時間0.3乃至10分間から適宜、選択される。
 次いで、現像液によって現像が行なわれる。現像液としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液等のアルカリ性水溶液を例として挙げることができる。さらに、これらの現像液に界面活性剤などを加えることもできる。現像の条件としては、温度5乃至50℃、時間10乃至300秒から適宜選択される。
 そして、このようにして形成されたフォトレジストのパターンを保護膜として、レジスト下層膜の除去及び半導体基板の加工が行なわれる。レジスト下層膜の除去は、テトラフルオロメタン、パーフルオロシクロブタン(C48)、パーフルオロプロパン(C38)、トリフルオロメタン、一酸化炭素、アルゴン、酸素、窒素、六フッ化硫黄、ジフルオロメタン、三フッ化窒素及び三フッ化塩素等のガスを用いて行われる。
 半導体基板上に本発明のレジスト下層膜が形成される前に、平坦化膜やギャップフィル材層や有機下層膜が形成されることもできる。大きな段差や、ホールを有する半導体基板が使用される場合には、平坦化膜やギャップフィル材層が形成されていることが好ましい。
 合成例1
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4-メトキシフェニル)トリメトキシシラン1.62g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-1)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4-メトキシフェニル)トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例2
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4-メトキシベンジル)トリメトキシシラン1.97g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-2)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4-メトキシベンジル)トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例3
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、[4-(メトキシメトキシ)フェニル]トリメトキシシラン1.82g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-3)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、[4-(メトキシメトキシ)フェニル]トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例4
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、{2-[6-(メトキシメトキシ)ナフチル]}トリメトキシシラン2.19g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-4)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、{2-[6-(メトキシメトキシ)ナフチル]}トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例5
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、ペンタフルオロフェニルトリエトキシシラン2.03g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、エタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-5)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、ペンタフルオロフェニルトリエトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例6
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4-クロロフェニル)トリエトキシシラン1.62g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、エタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-6)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4-クロロフェニル)トリエトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例7
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4-ブロモフェニル)トリメトキシシラン1.75g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-7)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4-ブロモフェニル)トリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例8
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、(4-メトキシフェニル)トリメトキシシラン3.24g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-1)に相当し、ポリシロキサン中のテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4-メトキシフェニル)トリメトキシシランに由来する単位構造のモル比は70:25:15であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
 合成例9
 テトラメトキシシラン7.5g、メチルトリメトキシシラン1.5g、(4-メトキシフェニル)トリメトキシシラン2.5g、アセトン19.5gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸2.7gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート26gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-1)に相当し、ポリシロキサン中のテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、(4-メトキシフェニル)トリメトキシシランに由来する単位構造のモル比は70:20:10であった。GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
 合成例10
 テトラメトキシシラン7.5g、メチルトリメトキシシラン1.5g、ペンタフルオロフェニルトリエトキシシラン2.5g、アセトン19.5gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸2.7gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート26gを加え、反応副生物であるメタノール、エタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(2-5)に相当し、ポリシロキサン中にテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、ペンタフルオロフェニルトリエトキシシランに由来する単位構造のモル比は70:20:10であった。GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
 比較合成例1
 テトラメトキシシラン18.60g、メチルトリメトキシシラン3.48g、フェニルトリメトキシシラン1.41g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(3-1)に相当し、ポリオシロキサン中のテトラメトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、フェニルトリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw2000であった。
Figure JPOXMLDOC01-appb-C000009
 比較合成例2
 テトラエトキシシラン7.5g、メチルトリメトキシシラン1.5g、フェニルトリメトキシシラン1.2g、アセトン35.55gを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.21gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート48.00gを加え、反応副生物であるメタノール、アセトン、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で20質量パーセントとなるように調整した。得られたポリマーは式(3-1)に相当し、ポリシロキサン中のテトラエトキシシランに由来する単位構造、メチルトリメトキシシランに由来する単位構造、フェニルトリメトキシシランに由来する単位構造のモル比は70:25:5であった。GPCによる重量平均分子量はポリスチレン換算でMw1500であった。
(有機下層膜(A層))
 丸善石油化学株式会社製のCNp-PM(成分はモル比としてビニルナフタレン60%:ポリヒドロキシスチレン40%、重量平均分子量:6000)を有機下層膜(A層)として使用した。
 以下に本発明の薄膜形成組成物による薄膜を、レジスト下層膜として使用した場合の評価結果を以下に示す。
 合成例1乃至10、比較合成例1乃至2で調製したポリマー溶液を固形分20質量%に調整し、それぞれ実施例1乃至10、及び比較例1乃至2のレジスト下層膜形成組成物とした。
(レジスト下層膜の調整)
 上記合成例1乃至10及び比較合成例1乃至2で得られたケイ素含有ポリマー、酸、硬化触媒、添加剤、溶媒、水を表1に示す割合となるように混合し、0.1μmのフッ素樹脂製のフィルターで濾過することによって、レジスト下層膜形成用組成物の溶液をそれぞれ調製した。表1中のポリマーの添加割合はポリマー溶液の添加量ではなく、ポリマー自体の添加量を示した。
表1中でマレイン酸はMA、ベンジルトリエチルアンモニウムクロリドはBTAC、N-(3-トリエトキシシリプロピル)-4,5-ジヒドロイミダゾールはIMIDTEOS、ビス(4-ヒドロキシフェニル)スルホンはBPS、プロピレングリコールモノメチルエーテルアセテートはPGMEA、プロピレングリコールモノエチルエーテルはPGEE、プロピレングリコールモノメチルエーテルはPGME、エチルラクテートはELと略した。水は超純水を用いた。各添加量は質量部で示した。
Figure JPOXMLDOC01-appb-T000010
 調製したレジスト下層膜形成用組成物の溶液を光学定数の測定に用い、固形分で1質量%に希釈したものをEUV露光によるレジストパターンの形成、アウトガス測定に用いた。
(光学定数測定)
 スピナーを用いてシリコンウェハー上にそれぞれ上記レジスト下層膜形成組成物を塗布した。ホットプレート上で215℃1分間加熱しレジスト下層膜(膜厚0.05μm)を形成した。そして、これらのレジスト下層膜を分光エリプソメーター(J.A. Woollam社製、VUV-VASE VU-302)を用い、波長193、248nmでの屈折率(n値)及び光学吸光係数(k値、減衰係数とも呼ぶ)を測定した。
Figure JPOXMLDOC01-appb-T000011
〔EUV露光によるレジストパターンの形成〕
 上記有機下層膜(A層)形成組成物をシリコンウエハー上に塗布し、ホットプレート上で215℃で60秒間ベークし、膜厚90nmの有機下層膜(A層)を得た。その上に、本発明の実施例1乃至8、比較例1で調製されたレジスト下層膜形成組成物溶液をスピンコートし、215℃で1分間加熱することにより、レジスト下層膜(B)層(25nm)が形成される。その(B)層上に、EUV用レジスト溶液(メタクリレート樹脂系レジスト)をスピンコートし加熱を行い、EUVレジスト層(C)層を形成し、EUV露光装置(Micro Exposure Tool、略称MET)を用い、NA=0.30、σ=0.36/0.68、Quadropoleの条件で露光する。露光後、PEB(露光後加熱、90℃)を行い、クーリングプレート上で室温まで冷却し、現像及びリンス処理をし、レジストパターンを形成した。評価は、26nmのラインアンドスペースの形成可否、パターン断面観察によるパターン形状を評価した。
Figure JPOXMLDOC01-appb-T000012
〔アウトガス発生量試験〕
 実施例9及び10、比較例2で調整したレジスト下層膜形成組成物溶液をスピナーを用い、シリコンウェハー上に塗布した。ホットプレート上で205℃1分間加熱し、レジスト下層膜(膜厚0.03μm)を形成した。
 これらレジスト下層膜を用いて、Resist Outgassing Exposure(ROX)システムでアウトガス測定を行った。チャンバー内圧力は1.0乃至8.0×10-8の範囲にて、露光量6.0mJ/cm2でEUV露光し発生したアウトガス量をQuadropole MSにて測定した。アウトガスは分子量44を除く35乃至200の範囲で測定を行った。
アウトガス発生量の結果を表4に記載した。
単位は(Number of Molecule/cm2/s)である。
Figure JPOXMLDOC01-appb-T000013
 加水分解性基としてメトキシ基のみからなるシラン化合物を用いて得られる合成例9及び10による実施例9及び10は、加水分解性基としてエトキシ基を含むテトラエトキシシランを多く含むシラン化合物を用いて得られる比較合成例2による比較例2よりもアウトガスの発生量が少ない。
 実施例9では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比が100:0である。
 実施例10では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比が34:3である。
 比較例2では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比が28:9である。
 本発明では全シラン中で、シランの加水分解性基がメトキシ基:エトキシ基のモル比で100:0乃至80:20の範囲で用いることによりアウトガスの発生が少ないことがわかる。
 本発明により、矩形なレジストパターンを利用し微細な基板加工が可能であり、半導体装置の製造に用いることのできるEUVリソグラフィー用レジスト下層膜形成組成物を提供することができる。EUVレジストの露光感度向上や、レジストとのインターミキシングを起こさず、レジストに比較して大きなドライエッチング速度を有し、EUV光で露光時にアウトガス発生が少ないリソグラフィー用レジスト下層膜の提供が可能である。

Claims (14)

  1. シランとして、加水分解性シラン、その加水分解物、その加水分解縮合物、又はそれらの混合物を含み、該加水分解性シランがテトラメトキシシランとアルキルトリメトキシシランとアリールトリアルコキシシランとの組み合わせを含み、該アリールトリアルコキシシランは下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中で、R1はベンゼン環若しくはナフタレン環からなる芳香族環又はイソシアヌル酸構造を含む環を示し、R2は芳香族環内の水素原子の置換基であってハロゲン原子、又は炭素数1乃至10のアルコキシ基であり、Xは炭素数1乃至10のアルコキシ基、炭素数2乃至10のアシルオキシ基、又はハロゲン基である。n1は0又は1の整数であり、n2はベンゼン環の場合には1乃至5の整数であり、ナフタレン環の場合には1乃至9の整数である。)であるEUVリソグラフィー用レジスト下層膜形成組成物。
  2. 式(1)のR1がベンゼン環である請求項1に記載のレジスト下層膜形成組成物。
  3. 式(1)のR2がメトキシ基、メトキシメトキシ基、フッ素原子、塩素原子、又は臭素原子である請求項1又は請求項2に記載のレジスト下層膜形成組成物。
  4. 式(1)のXがメトキシ基である請求項1乃至請求項3のいずれか1項に記載のレジスト下層膜形成組成物。
  5. 式(1)のn1が0である請求項1乃至請求項4のいずれか1項に記載のレジスト下層膜形成組成物。
  6. アルキルトリメトキシシランがメチルトリメトキシシランである請求項1乃至請求項5のいずれか1項に記載のレジスト下層膜形成組成物。
  7. 加水分解性シランは、テトラメトキシシラン70モルに対して、アルキルトリメトキシシラン10乃至35モル、アリールトリアルコキシシランが2乃至25モルの割合で含む請求項1乃至請求項6のいずれか1項に記載のレジスト下層膜形成組成物。
  8. 前記シランは、加水分解性基としてメトキシ基及びエトキシ基を全シラン中でメトキシ基:エトキシ基=100:0乃至80:20の割合(モル比)で含有するものである請求項1乃至請求項7のいずれか1項に記載のレジスト下層膜形成組成物。
  9. 更に酸を含む請求項1乃至請求項8のいずれか1項に記載のレジスト下層膜形成組成物。
  10. 更に水を含む請求項1乃至請求項9のいずれか1項に記載のレジスト下層膜形成組成物。
  11. 更にアンモニウム化合物、環状アンモニウム化合物、環状アミン化合物、又はオニウム化合物を含む請求項1乃至請求項10のいずれか1項に記載のレジスト下層膜形成組成物。
  12. 請求項1乃至請求項11のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜。
  13. 請求項1乃至請求項11のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、及びパターン化された前記レジスト膜と前記レジスト下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法。
  14. 半導体基板上に有機下層膜を形成する工程、その上に請求項1乃至請求項11のいずれか1項に記載のレジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後に前記レジスト膜を現像しレジストパターンを得る工程、前記レジストパターンにより前記レジスト下層膜をエッチングする工程、パターン化された前記レジスト下層膜により前記有機下層膜をエッチングする工程、及びパターン化された前記有機下層膜により前記半導体基板を加工する工程を含む半導体装置の製造方法。
PCT/JP2012/075507 2011-10-06 2012-10-02 ケイ素含有euvレジスト下層膜形成組成物 WO2013051558A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/350,202 US9337052B2 (en) 2011-10-06 2012-10-02 Silicon-containing EUV resist underlayer film forming composition
CN201280045182.3A CN103827752B (zh) 2011-10-06 2012-10-02 形成含有硅的euv抗蚀剂下层膜的组合物
KR1020147010306A KR101943023B1 (ko) 2011-10-06 2012-10-02 규소 함유 euv 레지스트 하층막 형성 조성물
JP2013537511A JP6065230B2 (ja) 2011-10-06 2012-10-02 ケイ素含有euvレジスト下層膜形成組成物
EP12838943.4A EP2765457A4 (en) 2011-10-06 2012-10-02 COMPOSITION FOR FORMING EUV RESERVE UNDERLAYER FILM CONTAINING SILICON

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011222120 2011-10-06
JP2011-222120 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051558A1 true WO2013051558A1 (ja) 2013-04-11

Family

ID=48043715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075507 WO2013051558A1 (ja) 2011-10-06 2012-10-02 ケイ素含有euvレジスト下層膜形成組成物

Country Status (7)

Country Link
US (1) US9337052B2 (ja)
EP (1) EP2765457A4 (ja)
JP (1) JP6065230B2 (ja)
KR (1) KR101943023B1 (ja)
CN (1) CN103827752B (ja)
TW (1) TWI575324B (ja)
WO (1) WO2013051558A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080217A1 (ja) * 2014-11-19 2016-05-26 日産化学工業株式会社 湿式除去が可能なシリコン含有レジスト下層膜形成組成物
JP2020084175A (ja) * 2018-11-21 2020-06-04 信越化学工業株式会社 ヨウ素含有熱硬化性ケイ素含有材料、これを含むeuvリソグラフィー用レジスト下層膜形成用組成物、及びパターン形成方法
EP3736632A1 (en) 2019-04-26 2020-11-11 Shin-Etsu Chemical Co., Ltd. Method for measuring distance of diffusion of curing catalyst
WO2024115571A1 (en) 2022-12-02 2024-06-06 Merck Patent Gmbh Polysiloxane composition
US12085857B2 (en) 2019-07-23 2024-09-10 Shin-Etsu Chemical Co., Ltd. Composition for forming silicon-containing resist underlayer film and patterning process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082736B2 (en) 2017-01-13 2018-09-25 International Business Machines Corporation Approach to lowering extreme ultraviolet exposure dose for inorganic hardmasks for extreme ultraviolet patterning
US10274847B2 (en) * 2017-09-19 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Humidity control in EUV lithography
KR20200132864A (ko) * 2018-03-19 2020-11-25 닛산 가가쿠 가부시키가이샤 보호된 페놀기와 질산을 포함하는 실리콘함유 레지스트 하층막 형성 조성물
WO2019178873A1 (zh) * 2018-03-23 2019-09-26 南通纺织丝绸产业技术研究院 氟硅树脂及其制备方法
EP4018261A4 (en) * 2019-08-21 2023-09-13 Brewer Science Inc. UNDERCOATS FOR EUV LITHOGRAPHY
US20220102200A1 (en) * 2020-09-30 2022-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Patterning material including carbon-containing layer and method for semiconductor device fabrication
WO2024173437A1 (en) * 2023-02-13 2024-08-22 Brewer Science, Inc. Underlayer and methods for euv lithography

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048152A (ja) * 2002-12-24 2005-02-24 Shin Etsu Chem Co Ltd 高分子化合物、反射防止膜材料及びパターン形成方法
JP2008076889A (ja) 2006-09-22 2008-04-03 Jsr Corp レジスト下層膜用組成物及びその製造方法
JP2008309929A (ja) * 2007-06-13 2008-12-25 Tokyo Ohka Kogyo Co Ltd レジスト下層膜形成用組成物およびレジスト下層膜
JP2009103831A (ja) * 2007-10-22 2009-05-14 Jsr Corp レジスト下層膜用組成物及びその製造方法
WO2009104552A1 (ja) * 2008-02-18 2009-08-27 日産化学工業株式会社 環状アミノ基を有するシリコン含有レジスト下層膜形成組成物
JP2010085878A (ja) * 2008-10-02 2010-04-15 Tokyo Ohka Kogyo Co Ltd レジスト下層膜形成用組成物
JP2010519596A (ja) * 2007-02-26 2010-06-03 ハネウェル・インターナショナル・インコーポレーテッド 三層構造物のパターニング・アプリケーションのための組成物、コーティング、及びフィルム、並びに、これらの製造方法
JP2010237667A (ja) 2009-03-13 2010-10-21 Jsr Corp シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802712B (zh) * 2007-09-11 2013-03-20 日产化学工业株式会社 含有具有带氮的甲硅烷基的聚合物的、抗蚀剂下层膜形成用组合物
KR101579266B1 (ko) * 2008-01-11 2016-01-04 닛산 가가쿠 고교 가부시키 가이샤 우레아기를 가지는 실리콘 함유 레지스트 하층막 형성 조성물
JP2009237363A (ja) * 2008-03-27 2009-10-15 Jsr Corp レジスト下層膜用組成物及びその製造方法
JP4941684B2 (ja) * 2009-03-27 2012-05-30 信越化学工業株式会社 フォトマスクブランク及びその加工方法
JP5038354B2 (ja) * 2009-05-11 2012-10-03 信越化学工業株式会社 ケイ素含有反射防止膜形成用組成物、ケイ素含有反射防止膜形成基板及びパターン形成方法
JP5534250B2 (ja) * 2009-09-16 2014-06-25 日産化学工業株式会社 スルホンアミド基を有するシリコン含有レジスト下層膜形成組成物
KR102061530B1 (ko) 2010-02-19 2020-01-02 닛산 가가쿠 가부시키가이샤 질소 함유환을 가지는 실리콘 함유 레지스트 하층막 형성 조성물
JP5776301B2 (ja) * 2011-04-20 2015-09-09 Jsr株式会社 ポリシロキサン組成物及びパターン形成方法
JP5765298B2 (ja) * 2010-09-09 2015-08-19 Jsr株式会社 レジストパターン形成方法
JP5650086B2 (ja) * 2011-06-28 2015-01-07 信越化学工業株式会社 レジスト下層膜形成用組成物、及びパターン形成方法
JP5453361B2 (ja) * 2011-08-17 2014-03-26 信越化学工業株式会社 ケイ素含有レジスト下層膜形成用組成物、及びパターン形成方法
JP6065497B2 (ja) * 2011-09-29 2017-01-25 Jsr株式会社 パターン形成方法及びポリシロキサン組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048152A (ja) * 2002-12-24 2005-02-24 Shin Etsu Chem Co Ltd 高分子化合物、反射防止膜材料及びパターン形成方法
JP2008076889A (ja) 2006-09-22 2008-04-03 Jsr Corp レジスト下層膜用組成物及びその製造方法
JP2010519596A (ja) * 2007-02-26 2010-06-03 ハネウェル・インターナショナル・インコーポレーテッド 三層構造物のパターニング・アプリケーションのための組成物、コーティング、及びフィルム、並びに、これらの製造方法
JP2008309929A (ja) * 2007-06-13 2008-12-25 Tokyo Ohka Kogyo Co Ltd レジスト下層膜形成用組成物およびレジスト下層膜
JP2009103831A (ja) * 2007-10-22 2009-05-14 Jsr Corp レジスト下層膜用組成物及びその製造方法
WO2009104552A1 (ja) * 2008-02-18 2009-08-27 日産化学工業株式会社 環状アミノ基を有するシリコン含有レジスト下層膜形成組成物
JP2010085878A (ja) * 2008-10-02 2010-04-15 Tokyo Ohka Kogyo Co Ltd レジスト下層膜形成用組成物
JP2010237667A (ja) 2009-03-13 2010-10-21 Jsr Corp シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765457A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080217A1 (ja) * 2014-11-19 2016-05-26 日産化学工業株式会社 湿式除去が可能なシリコン含有レジスト下層膜形成組成物
US11815815B2 (en) 2014-11-19 2023-11-14 Nissan Chemical Industries, Ltd. Composition for forming silicon-containing resist underlayer film removable by wet process
JP2020084175A (ja) * 2018-11-21 2020-06-04 信越化学工業株式会社 ヨウ素含有熱硬化性ケイ素含有材料、これを含むeuvリソグラフィー用レジスト下層膜形成用組成物、及びパターン形成方法
JP7357505B2 (ja) 2018-11-21 2023-10-06 信越化学工業株式会社 ヨウ素含有熱硬化性ケイ素含有材料、これを含むeuvリソグラフィー用レジスト下層膜形成用組成物、及びパターン形成方法
US11914295B2 (en) 2018-11-21 2024-02-27 Shin-Etsu Chemical Co., Ltd. Thermosetting iodine- and silicon-containing material, composition containing the material for forming resist underlayer film for EUV lithography, and patterning process
EP3736632A1 (en) 2019-04-26 2020-11-11 Shin-Etsu Chemical Co., Ltd. Method for measuring distance of diffusion of curing catalyst
US11592287B2 (en) 2019-04-26 2023-02-28 Shin-Etsu Chemical Co., Ltd. Method for measuring distance of diffusion of curing catalyst
US12085857B2 (en) 2019-07-23 2024-09-10 Shin-Etsu Chemical Co., Ltd. Composition for forming silicon-containing resist underlayer film and patterning process
WO2024115571A1 (en) 2022-12-02 2024-06-06 Merck Patent Gmbh Polysiloxane composition

Also Published As

Publication number Publication date
TWI575324B (zh) 2017-03-21
US20140232018A1 (en) 2014-08-21
KR101943023B1 (ko) 2019-01-28
EP2765457A1 (en) 2014-08-13
US9337052B2 (en) 2016-05-10
JP6065230B2 (ja) 2017-01-25
CN103827752B (zh) 2018-11-02
KR20140089350A (ko) 2014-07-14
TW201331720A (zh) 2013-08-01
JPWO2013051558A1 (ja) 2015-03-30
EP2765457A4 (en) 2015-05-27
CN103827752A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
JP6418412B2 (ja) 添加剤を含むケイ素含有euvレジスト下層膜形成組成物
JP6065230B2 (ja) ケイ素含有euvレジスト下層膜形成組成物
TWI590002B (zh) 含有磺酸鎓鹽的含矽euv阻劑下層膜形成組成物
JP6540971B2 (ja) Socパターン上でのパターン反転のための被覆用組成物
US11488824B2 (en) Method for manufacturing semiconductor device using silicon-containing resist underlayer film forming composition for solvent development
WO2016080217A1 (ja) 湿式除去が可能なシリコン含有レジスト下層膜形成組成物
CN106462075B (zh) 含有具有苯基生色团的硅的抗蚀剂下层膜形成用组合物
WO2019124514A1 (ja) 光硬化性シリコン含有被覆膜形成組成物
JP6222484B2 (ja) ヘテロ原子を有する環状有機基含有シリコン含有レジスト下層膜形成組成物
TWI818900B (zh) 圖型反轉用之被覆組成物
JP6195078B2 (ja) スルホン構造及びアミン構造を有するシリコン含有レジスト下層膜形成組成物
JPWO2018079599A1 (ja) ジヒドロキシ基を有する有機基を含むシリコン含有レジスト下層膜形成組成物
WO2020138092A1 (ja) 水素ガスを用いた前処理によるレジスト下層膜のエッチング耐性を向上する方法
JP7143763B2 (ja) シリコン含有パターン反転用被覆剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14350202

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147010306

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012838943

Country of ref document: EP