WO2013051502A1 - 設置型充電システム - Google Patents

設置型充電システム Download PDF

Info

Publication number
WO2013051502A1
WO2013051502A1 PCT/JP2012/075370 JP2012075370W WO2013051502A1 WO 2013051502 A1 WO2013051502 A1 WO 2013051502A1 JP 2012075370 W JP2012075370 W JP 2012075370W WO 2013051502 A1 WO2013051502 A1 WO 2013051502A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
unit
data
control unit
charging unit
Prior art date
Application number
PCT/JP2012/075370
Other languages
English (en)
French (fr)
Inventor
大隈 重男
高正 三ツ矢
真輔 立崎
Original Assignee
ニチコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチコン株式会社 filed Critical ニチコン株式会社
Priority to CN201280003116.XA priority Critical patent/CN103141005B/zh
Priority to US13/825,897 priority patent/US8994329B2/en
Priority to KR1020137005626A priority patent/KR101344931B1/ko
Priority to EP12832781.4A priority patent/EP2613422B1/en
Publication of WO2013051502A1 publication Critical patent/WO2013051502A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a stationary charging system that charges a battery mounted on a vehicle, and more particularly to a stationary charging system that includes a plurality of charging units.
  • the method of charging a battery using electric power supplied from the outside of the vehicle is roughly divided into a method using an in-vehicle charger mounted on the vehicle and a method using an installed charging system in a charging station or the like.
  • an in-vehicle charger and a household outlet are connected, and for example, AC 100V is converted to DC 200V by the in-vehicle charger, and the battery is charged relatively slowly with the charging power of DC 200V.
  • AC200V is converted to DC400V by an installation type charging system, and the battery is rapidly charged with the charging power of DC400V.
  • a power supply unit 102 including one charging unit (CHG) 103, a control unit (MCU) 105 that controls the charging unit 103, a control unit 105, A first CAN communication line 106 that enables transmission / reception of data to / from the charging unit 103, and a second CAN communication line that enables transmission / reception of data between the control unit 105 and the vehicle via a charging gun (connector) 109.
  • a device including an I / F unit 108 including a liquid crystal touch panel 107 for performing an operation such as charging start 107 is known.
  • the data on the state of the power supply unit (power supply unit state data) is transmitted to the vehicle side within a predetermined time defined by the CHAdeMO standard. It is obliged to send.
  • each charging unit creates charging unit state data relating to its own state (such as the presence or absence of a failure), and then the control unit transmits each charging unit.
  • the charging unit state data is received from the charging unit, power unit state data is created based on the received charging unit state data, and the power unit state data is transmitted to the vehicle side.
  • the charging unit status data is transmitted from each charging unit to the control unit all at once, so that the control unit receives the charging unit status data of all charging units in one reception.
  • the processing capacity of the control unit may be exceeded. If the processing capacity of the control unit is exceeded, the control unit may fail to receive data, and in this case, the control unit tries to receive the charging unit status data of all charging units again. For this reason, in the conventional installation-type charging system, there is a possibility that transmission of power supply unit state data to the vehicle cannot be completed within a predetermined time defined by the CHAdeMO standard.
  • This invention is made
  • the place made into the subject is the installation type charging system which can make a control unit receive the data from a charging unit reliably, without raising a cost. It is to provide.
  • an installed charging system is an installed charging system that charges a battery mounted on a vehicle using DC charging power generated based on AC input power, Data between a power supply unit that generates DC charging power based on AC input power, a plurality of charging units that constitute the power supply unit, a control unit that controls the plurality of charging units, and the control unit and the plurality of charging units
  • a first CAN communication line that enables transmission and reception of Each of the plurality of charging units receives the control command data transmitted from the control unit and creates charging unit state data regarding the state of the charging unit,
  • the control unit groups a plurality of charging units into a plurality of charging unit groups, transmits control command data to at least one charging unit group among the plurality of charging unit groups, and transmits the control command data to another charging unit group. By shifting the timing, the timing for receiving the charging unit state data from the plurality of charging units is shifted.
  • the control unit since the timing at which the control unit receives the charging unit state data is shifted, the number of charging unit state data received by the control unit at a time can be reduced. Therefore, according to this configuration, the control unit can reliably receive data from the charging unit without using an expensive control unit with high processing capability.
  • control unit shifts the timing for receiving the charging unit state data for each charging unit group by shifting the timing for transmitting the control command data for each charging unit group.
  • the timing which makes a control unit receive charging unit state data can be disperse
  • the installed charging system further includes a second CAN communication line that enables data transmission / reception between the control unit and the vehicle,
  • the control unit receives charging unit status data from a plurality of charging units within a predetermined time after receiving vehicle-side command data transmitted from the vehicle via the second CAN communication line, and stores the charging unit status data in the charging unit status data. It is preferable that the amount of deviation of the timing for transmitting the control command data is determined so that the power supply unit state data relating to the state of the power supply unit is generated and the transmission of the power supply unit state data to the vehicle is completed.
  • the charging unit state data in the installation type charging system includes, for example, charging unit failure information
  • the power supply unit state data includes, for example, power supply unit failure information created based on the charging unit failure information. Shall be.
  • the AC input power in the installation type charging system is three-phase AC power
  • the charging unit group is composed of three charging units to which any one phase AC power out of the three phases is input. May be.
  • FIG. 1 shows a block diagram of a stationary charging system 1 according to an embodiment of the present invention.
  • the installed charging system 1 includes a power supply unit 2 including a plurality (9 in this embodiment) of charging units 3 (CHG1 to 9), and a control unit (MCU) that controls each charging unit 3. ) 5, a first CAN communication line 6 that enables data transmission / reception between the control unit 5 and each charging unit 3, and a data transfer between the control unit 5 and the vehicle via a charging gun (connector) 9.
  • a second CAN communication line 7 enabling transmission and reception and an I / F unit 8 including a liquid crystal touch panel for performing an operation such as charging start are provided.
  • Each charging unit 3 is connected in parallel to the first CAN communication line 6, and the control unit 5 controls the first charging unit group 4-1 (CHG 1 to 3) composed of three charging units 3, respectively.
  • the charging unit groups 4-2 (CHG4 to 6) and third charging unit groups 4-3 (CHG7 to 9) are grouped.
  • the input power supplied to the power supply unit 2 is three-phase AC power, and the three charging units 3 constituting each charging unit group 4-1, 4-2, 4-3 have three phases. Any one-phase AC power is input. For example, 4-1 is input in the U phase, 4-2 is in the V phase, and 3-3 is input in the W phase.
  • FIG. 2 shows a block diagram of the charging unit 3.
  • the charging unit 3 includes a rectifying / smoothing circuit 10 that rectifies and smoothes the one-phase AC power to generate DC power, and switches the DC power generated by the rectifying / smoothing circuit 10 to switch means 12a.
  • Data is transmitted / received between the DC / DC converter circuit 11 that switches to DC power to be charged power by switching at 12 to 12d and the control unit 5 via the first CAN communication line 6, and the switch means 12a to 12d.
  • a control circuit 15 for controlling the duty ratio.
  • the rectifying / smoothing circuit 10 includes a diode bridge circuit 16, a smoothing capacitor 17, and a power factor correction circuit (not shown).
  • the DC / DC converter circuit 11 has an inverter circuit 12 composed of four switch means 12a to 12d such as IGBT and MOSFET, a booster circuit 13 composed of a transformer, and an output circuit 14 connected to the secondary side of the transformer. is doing.
  • the output circuit 14 includes a diode bridge circuit 18, an LC low-pass filter including a coil 19 and a smoothing capacitor 20, and a shunt resistor 21 of several m ⁇ .
  • the charging unit 3 also includes a current detection circuit 22 that detects a DC current flowing through the shunt resistor 21 and a voltage detection circuit 23 that detects a DC voltage after passing through the LC low-pass filter.
  • the control circuit 15 transmits / receives data to / from the control unit 5 via the first CAN communication line 6. Specifically, the control circuit 15 has a failure diagnosis function for determining whether or not the rectifying / smoothing circuit 10 and the DC / DC converter circuit 11 have failed.
  • the control circuit 15 receives control command data from the control unit 5 and receives a charging unit. 3 is generated, and the charging unit state data is transmitted to the control unit 5 via the first CAN communication line 6.
  • the charging unit status data includes identification information (ID) of the charging unit 3, failure information (failure code) of the charging unit 3, information on the current value and voltage value detected by the current detection circuit 22 and the voltage detection circuit 23, and the like. included.
  • the control unit 5 transmits / receives data to / from the vehicle via the second CAN communication line 7. Specifically, when the control unit 5 receives the charging unit state data from each charging unit 3, the control unit 5 determines the failure information of the power supply unit 2 based on the failure information of the charging unit 3 included in the charging unit state data. The power supply state data including the power supply state data is generated and transmitted to the vehicle via the second CAN communication line 7.
  • control unit 5 and each charging unit 3 are activated, and the control unit 5 groups the charging units 3. This grouping will be described later.
  • the installed charging system 1 enters the “charging standby (S1)” state, and the charging start button displayed on the I / F unit 8 is pressed during the “charging standby (S1)” state. Then, the installation-type charging system 1 is in a “charging start (S2)” state.
  • the control unit 5 receives battery state data including the capacity of the battery transmitted from the vehicle, determines the compatibility with the vehicle based on the battery state data, and then fails in the power supply unit 2 Transmit power supply state data including information and the like.
  • the vehicle receives the power supply state data, determines compatibility with the installed charging system 1 based on the power supply state data, and then transmits vehicle-side command data for permitting charging to the control unit 5. .
  • the stationary charging system 1 When the control unit 5 receives the vehicle-side command data, the stationary charging system 1 enters a “connector lock (S3)” state, and a connector lock that locks the charging gun (connector) 9 to the vehicle under the control of the control unit 5. Processing is performed.
  • the installation type charging system 1 enters the state of “insulation check (S4)”, and an insulation check process for confirming that a short circuit or the like has not occurred in the charging gun 9 by applying a voltage for a short time. Is done.
  • the installed charging system 1 enters a state of “charging (S5)”, and charging is performed based on the vehicle-side command data regarding the target charging current value transmitted from the vehicle.
  • the vehicle-side command data regarding the target charging current value is transmitted to the control unit 5 every 100 ms via the second CAN communication line 7.
  • the control unit 5 receives the vehicle-side command data, the control unit 5 creates control command data related to the current value output from each charging unit 3 based on the vehicle-side command value data, and transmits the control command data via the first CAN communication line 6. Data is transmitted to each charging unit 3 to control the output current of each charging unit 3.
  • the nine charging units 3 constituting the power supply unit 2 are divided into the first charging unit group 4-1 including the charging units (CHG1 to 3) and the charging units (CHG4 to 6). It is assumed that the second charging unit group 4-2 configured and the third charging unit group 4-3 configured by the charging units (CHG7 to CHG9) are grouped. Further, in this specific example, it is assumed that the power supply state data generated by the control unit 5 must be transmitted to the vehicle via the second CAN communication line 7 within 200 ms after the main power supply is turned on.
  • FIG. 4 shows a timing chart when the installed charging system 1 is started (main power ON to charging standby (S1)). As shown in the figure, when the main power supply of the installed charging system 1 is turned on and the control unit 5 and the charging units 3 start to be activated, the initialization of the charging units 3 is started all at once.
  • the control unit 5 creates control command data for causing each charging unit 3 to transmit charging unit state data, and sends the control command data to the first CAN communication line 6.
  • the control unit 5 first transmits control command data to the charging units (CHG1 to CHG3) constituting the first charging unit group 4-1, and after the elapse of 20 ms, the second charging unit group 4-2.
  • Control command data is transmitted to the charging units (CHG4 to 6) constituting the control unit, and further, control command data is transmitted to the charging units (CHG7 to 9) constituting the third charging unit group 4-3 after the elapse of 20 ms.
  • the amount of deviation of the timing for transmitting the control command data is within a predetermined time (200 ms in this specific example) after the control unit 5 receives the vehicle-side command data transmitted from the vehicle via the second CAN communication line 7.
  • the control unit 5 receives the charging unit state data from each charging unit 3 to create the power unit state data, and is set to a value that can complete the transmission of the power unit state data to the vehicle.
  • the time required for generating the charging unit state data after each charging unit 3 receives the control command data is 90 ms, and the control unit 5 stores the last charging unit state data (charging unit (CHG7 to CHG9)).
  • Each charging unit 3 creates charging unit state data when receiving control command data.
  • the charging unit state data is transmitted to the control unit 5 via the first CAN communication line 6 in the order of creation. That is, the control unit 5 first receives the charging unit state data from the charging units (CHG1 to CHG3) configuring the first charging unit group 4-1, and after the elapse of 20 ms, the charging unit configuring the second charging unit group 4-2.
  • the charging unit status data is received from the units (CHG4 to 6), and further, after the elapse of 20 ms, the charging unit status data is received from the charging units (CHG7 to 9) constituting the third charging unit group 4-3.
  • control unit 5 When the control unit 5 receives the charging unit state data from all the charging units (CHG1 to CHG9), the control unit 5 creates the power source unit state data including the failure information of the power source unit 2 based on the received charging unit state data. Send to.
  • control unit 5 transmits the control command data at different timings for the charging unit groups 4-1, 4-2, and 4-3.
  • the control unit 5 shifts the timing at which the control unit 5 transmits the control command data for each of the charging unit groups 4-1, 4-2, and 4-3.
  • the timing for receiving the charging unit state data can be distributed. Therefore, according to the installed charging system 1 according to the present embodiment, the number of charging unit state data received by the control unit 5 at a time can be reduced.
  • the installation type charging system 1 which concerns on this embodiment, it can prevent that the number of the charging unit state data received at once exceeds the processing capacity of the control unit 5, and the control unit 5 is 1st CAN.
  • the charging unit state data can be reliably received during a predetermined communication cycle of the communication line 6 (in this embodiment, 20 ms).
  • the control unit 5 sets the amount of deviation of the timing for transmitting the control command data within a predetermined time after the control unit 5 receives the vehicle-side command data.
  • the power supply unit state data is created based on the state data, and is set to a value that can be transmitted to the vehicle. Therefore, the transmission of the power supply unit state data to the vehicle is completed within the predetermined time. It is possible to prevent it from being lost.
  • the charging unit group 4-1, 4- since the control unit 5 has a processing capability that can receive three charging unit state data at a time, the charging unit group 4-1, 4- If the control unit 5 has a processing capacity sufficient to receive six charging unit status data at a time, the charging unit groups (for example, 4- The timing for transmitting to 1 and 4-2) may be shifted from the timing for transmitting to another charging unit group (for example, 4-3). In this way, by optimizing the amount of timing deviation to be transmitted to each charging unit group according to the processing capacity of the control unit, charging can be performed while satisfying the request for the transmission time of the power supply unit state data to the vehicle. The number of units that can be installed can be increased.
  • the power supply part 2 is comprised by the nine charging units 3, the number of the charging units 3 can be changed arbitrarily according to the required charging power.
  • the number of charging units 3 is preferably a multiple of 3, and each charging unit group (4-1 to 4-n (n is an integer of 2 or more)) ) Is preferably composed of three charging units 3.
  • the nine charging units 3 constituting the power supply unit 2 are divided into the first charging unit group 4-1 including the charging units (CHG1 to 3) and the charging units (CHG4 to 6).
  • the charging unit 3 is grouped into a second charging unit group 4-2 configured and a third charging unit group 4-3 configured of charging units (CHG7 to CHG9).
  • the charging unit group can be formed by three arbitrary charging units 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

 直流充電電力を用いて車両に搭載されたバッテリーを充電する設置型充電システム1であって、直流充電電力を生成する電源部2と、電源部2を構成する複数の充電ユニット3(CHG1~9)と、制御ユニット(MCU)5と、制御ユニット5と複数の充電ユニット3との間でデータの送受信を可能にする第1CAN通信ライン6とを備え、充電ユニット3は、制御ユニット5から送信された制御指令データを受信して充電ユニット状態データを作成する一方、制御ユニット5は、複数の充電ユニット3を充電ユニットグループ4-1、4-2、4-3にグルーピングするとともに、制御指令データを送信するタイミングをずらすことにより、充電ユニット状態データを受信するタイミングをずらせることを特徴とする。

Description

設置型充電システム
 本発明は、車両に搭載されたバッテリーを充電する設置型充電システムに関し、特に複数の充電ユニットを備えた設置型充電システムに関する。
 一般に、車両外部から供給される電力を用いてバッテリーを充電する手法は、車両に搭載された車載充電器を用いる手法と、充電ステーション等にある設置型充電システムを用いる手法とに大別される。
 このうち前者の手法においては、車載充電器と家庭用コンセントとを接続し、車載充電器により、例えばAC100VをDC200Vに変換し、DC200Vの充電電力で比較的ゆっくりとバッテリーを充電する。
 一方、後者の手法においては、設置型充電システムにより、例えばAC200VをDC400Vに変換し、DC400Vの充電電力でバッテリーを急速充電する。
 設置型充電システムとしては、例えば、図5に示すように、1個の充電ユニット(CHG)103からなる電源部102と、充電ユニット103を制御する制御ユニット(MCU)105と、制御ユニット105と充電ユニット103との間でデータの送受信を可能にする第1CAN通信ライン106と、充電ガン(コネクタ)109を介して制御ユニット105と車両との間でデータの送受信を可能にする第2CAN通信ライン107と、充電開始等の操作を行うための液晶タッチパネルからなるI/F部108とを備えたものが知られている。
 この設置型充電システム100では、電源部102を構成する1個の充電ユニット103により交流の入力電力が直流の充電電力に変換されて、該充電電力が充電ガン109を介して車両に供給される。
 この他、1個の充電ユニットからなる電源部を備えた設置型充電システムとしては、特許文献1に記載のものが知られている。
 また、近年では充電時間の短縮のために高出力化が求められており、高出力化を実現した設置型充電システムとしては、複数の充電ユニットにより電源部を構成したものが知られている。
 この設置型充電システムでは、各充電ユニットから出力される直流電力を足し合わせたものを充電電力とすることで、高出力化を実現している。
特開2009-95157号公報
 ところで、一般に設置型充電システムでは、電源部の状態に関する車両側からの問い合わせに対して、CHAdeMO規格により定められた所定時間内に、電源部の状態に関するデータ(電源部状態データ)を車両側に送信することが義務付けられている。
 この点、複数の充電ユニットを備えた従来の設置型充電システムでは、まず、各充電ユニットが自己の状態(故障の有無等)に関する充電ユニット状態データを作成し、次いで、制御ユニットが各充電ユニットから充電ユニット状態データを受信し、受信した充電ユニット状態データに基づいて電源部状態データを作成して、該電源部状態データを車両側に送信している。
 しかしながら、従来の設置型充電システムでは、各充電ユニットから制御ユニットに一斉に充電ユニット状態データが送信されるので、制御ユニットは、一回の受信で全充電ユニットの充電ユニット状態データを受信することになり、充電ユニットの数によっては制御ユニットの処理能力を超えてしまうことがある。
 制御ユニットの処理能力を超えてしまうと、制御ユニットはデータの受信に失敗する場合があり、その場合、制御ユニットは再度、全充電ユニットの充電ユニット状態データを受信しようとする。
 このため、従来の設置型充電システムでは、CHAdeMO規格で定められた所定時間内に、車両への電源部状態データの送信を完了させることができなくなるおそれがあった。
 なお、処理能力の高い高価な制御ユニットを用いることで、一回の受信で全充電ユニットの充電ユニット状態データを受信することができるが、その場合は、コストアップといった新たな問題が生じてしまう。
 本発明は上記事情に鑑みてなされたものであって、その課題とするところは、コストを上昇させることなく、確実に制御ユニットに充電ユニットからのデータを受信させることができる設置型充電システムを提供することにある。
 上記課題を解決するために、本発明に係る設置型充電システムは、交流入力電力に基づいて生成した直流充電電力を用いて車両に搭載されたバッテリーを充電する設置型充電システムであって、
 交流入力電力に基づいて直流充電電力を生成する電源部と、電源部を構成する複数の充電ユニットと、複数の充電ユニットを制御する制御ユニットと、制御ユニットと複数の充電ユニットとの間でデータの送受信を可能にする第1CAN通信ラインと、を備え、
 複数の充電ユニットの各々は、制御ユニットから送信された制御指令データを受信して、該充電ユニットの状態に関する充電ユニット状態データを作成する一方、
 制御ユニットは、複数の充電ユニットを複数の充電ユニットグループにグルーピングするとともに、制御指令データを複数の充電ユニットグループのうち少なくとも1つの充電ユニットグループに送信するタイミングと、他の充電ユニットグループに送信するタイミングとをずらすことにより、複数の充電ユニットから充電ユニット状態データを受信するタイミングをずらせることを特徴とする。
 この構成によれば、制御ユニットに充電ユニット状態データを受信させるタイミングをずらしているので、制御ユニットが一度に受信する充電ユニット状態データの数を減らすことができる。
 したがって、この構成によれば、処理能力の高い高価な制御ユニットを用いることなく、確実に制御ユニットに充電ユニットからのデータを受信させることができる。
 上記設置型充電システムは、制御ユニットが、制御指令データを送信するタイミングを充電ユニットグループごとにずらすことにより、充電ユニット状態データを受信するタイミングを充電ユニットグループごとにずらしていることが好ましい。
 この構成によれば、制御ユニットに充電ユニット状態データを受信させるタイミングを分散させることができる。
 したがって、この構成によれば、制御ユニットが一度に受信する充電ユニット状態データの数をさらに減らすことができるので、より確実に制御ユニットに充電ユニットからのデータを受信させることができる。
 また、上記設置型充電システムは、制御ユニットと車両との間でデータの送受信を可能にする第2CAN通信ラインをさらに備え、
 上記制御ユニットは、第2CAN通信ラインを介して車両から送信された車両側指令データを受信した後の所定時間内に、複数の充電ユニットから充電ユニット状態データを受信し、該充電ユニット状態データに基づいて電源部の状態に関する電源部状態データを作成し、車両への該電源部状態データの送信を完了させるように、制御指令データを送信するタイミングのずれ量を決めていることが好ましい。
 この構成によれば、例えばCHAdeMO規格で定められた所定時間内に、車両への電源部状態データの送信を確実に完了させることができる。
 上記設置型充電システムにおける充電ユニット状態データは、例えば、充電ユニットの故障情報を含むものとし、上記電源部状態データは、例えば、充電ユニットの故障情報に基づいて作成された電源部の故障情報を含むものとする。
 上記設置型充電システムにおける交流入力電力は、3相の交流電力であり、上記充電ユニットグループは、3相のうちの任意の1相の交流電力がそれぞれ入力される3つの充電ユニットから構成されていてもよい。
 本発明によれば、コストを上昇させることなく、確実に制御ユニットに充電ユニットからのデータを受信させることができる設置型充電システムを提供することができる。
本発明に係る設置型充電システムのブロック図である。 本発明における充電ユニットのブロック図である。 本発明に係る設置型充電システムの一連の動作を示すフローチャートである。 本発明に係る設置型充電システムの起動時におけるタイミングチャートである。 従来の設置型充電システムのブロック図である。
 以下、添付図面を参照しつつ、本発明に係る設置型充電システムの好ましい実施形態について説明する。
[設置型充電システムの構成]
 図1に、本発明の一実施形態に係る設置型充電システム1のブロック図を示す。
 同図に示すように、設置型充電システム1は、複数(本実施形態では9個)の充電ユニット3(CHG1~9)からなる電源部2と、各充電ユニット3を制御する制御ユニット(MCU)5と、制御ユニット5と各充電ユニット3との間でデータの送受信を可能にする第1CAN通信ライン6と、充電ガン(コネクタ)9を介して制御ユニット5と車両との間でデータの送受信を可能にする第2CAN通信ライン7と、充電開始等の操作を行うための液晶タッチパネルからなるI/F部8とを備えている。
 各充電ユニット3は、第1CAN通信ライン6に並列に接続されており、制御ユニット5により、それぞれ3個の充電ユニット3で構成された第1充電ユニットグループ4-1(CHG1~3)、第2充電ユニットグループ4-2(CHG4~6)、および第3充電ユニットグループ4-3(CHG7~9)にグルーピングされている。
 電源部2に供給される入力電力は、3相の交流電力であり、各充電ユニットグループ4-1、4-2、4-3を構成する3個の充電ユニット3には、3相のうちの任意の1相の交流電力がそれぞれ入力される。例えば、4-1がU相、4-2がV相、4-3がW相というように入力される。
 図2に、充電ユニット3のブロック図を示す。
 同図に示すように、充電ユニット3は、上記1相の交流電力を整流および平滑して直流電力を生成する整流平滑回路10と、該整流平滑回路10で生成された直流電力をスイッチ手段12a~12dでスイッチングして充電電力となる直流電力に変換するDC/DCコンバータ回路11と、第1CAN通信ライン6を介して制御ユニット5との間でデータの送受信を行うとともに、スイッチ手段12a~12dのデューティ比の制御を行う制御回路15とを備えている。
 整流平滑回路10は、ダイオードブリッジ回路16と、平滑コンデンサ17と、不図示の力率改善回路とを有している。
 DC/DCコンバータ回路11は、IGBTやMOSFET等の4つのスイッチ手段12a~12dからなるインバータ回路12と、トランスからなる昇圧回路13と、トランスの二次側に接続された出力回路14とを有している。
 出力回路14は、ダイオードブリッジ回路18と、コイル19および平滑コンデンサ20からなるLCローパスフィルタと、数mΩのシャント抵抗21とを有している。
 また、充電ユニット3は、シャント抵抗21に流れる直流電流を検出する電流検出回路22と、LCローパスフィルタ経由後の直流電圧を検出する電圧検出回路23とを備えている。
 制御回路15は、第1CAN通信ライン6を介して制御ユニット5との間でデータの送受信を行う。
 具体的には、制御回路15は、整流平滑回路10およびDC/DCコンバータ回路11の故障の有無を判断する故障診断機能を有しており、制御ユニット5から制御指令データを受信して充電ユニット3の状態に関する充電ユニット状態データを作成し、第1CAN通信ライン6を介して該充電ユニット状態データを制御ユニット5に送信する。
 充電ユニット状態データには、充電ユニット3の識別情報(ID)、充電ユニット3の故障情報(故障コード)、電流検出回路22および電圧検出回路23で検出された電流値および電圧値に関する情報等が含まれる。
 再び図1を参照して、制御ユニット5は、第2CAN通信ライン7を介して車両との間でデータの送受信を行う。
 具体的には、制御ユニット5は、各充電ユニット3から充電ユニット状態データを受信すると、該充電ユニット状態データに含まれる充電ユニット3の故障情報等に基づいて、電源部2の故障情報等を含む電源部状態データを作成し、第2CAN通信ライン7を介して該電源部状態データを車両に送信する。
[設置型充電システムの動作]
 次に、図3を参照して、設置型充電システム1の一連の動作について説明する。
 設置型充電システム1では、主電源がオンされると、制御ユニット5および各充電ユニット3が起動し、制御ユニット5により各充電ユニット3のグルーピングが行われる。このグルーピングに関しては後述する。
 グルーピングが完了すると、設置型充電システム1は「充電待機(S1)」の状態になり、「充電待機(S1)」の状態中にI/F部8に表示されている充電開始ボタンが押されると、設置型充電システム1は「充電開始(S2)」の状態になる。
 「充電開始(S2)」の状態になると、第2CAN通信ライン7を介して制御ユニット5と車両との間でデータの送受信が開始される。
 具体的には、制御ユニット5は、車両から送信されたバッテリーの容量等を含むバッテリー状態データを受信し、該バッテリー状態データに基づいて車両との適合性を判断した後に、電源部2の故障情報等を含む電源部状態データを送信する。
 車両は、電源部状態データを受信し、該電源部状態データに基づいて設置型充電システム1との適合性を判断した後に、充電を許可するための車両側指令データを制御ユニット5に送信する。
 制御ユニット5が車両側指令データを受信すると、設置型充電システム1は「コネクタロック(S3)」の状態になり、制御ユニット5の制御下で充電ガン(コネクタ)9を車両にロックするコネクタロック処理が行われる。
 コネクタロック処理が完了すると、設置型充電システム1は「絶縁チェック(S4)」の状態になり、短時間電圧を印加して充電ガン9にショート等が発生していないことを確認する絶縁チェック処理が行われる。
 絶縁チェック処理が完了すると、設置型充電システム1は「充電中(S5)」の状態になり、車両から送信された目標充電電流値に関する車両側指令データに基づく充電が行われる。
 目標充電電流値に関する車両側指令データは、第2CAN通信ライン7を介して100msごとに制御ユニット5に送信される。
 制御ユニット5は、車両側指令データを受信すると、該車両側指令値データに基づいて各充電ユニット3が出力する電流値に関する制御指令データを作成し、第1CAN通信ライン6を介して該制御指令データを各充電ユニット3に送信して、各充電ユニット3の出力電流を制御する。
 「充電中(S5)」の状態のときにI/F部8に表示されている充電停止ボタンが押されるか、車両から指定された充電時間がゼロになると、設置型充電システム1は「充電終了(S6)」の状態になり、充電終了処理が行われた後に「コネクタロック解除(S7)」の状態になる。
 「コネクタロック解除(S7)」の状態になると、制御ユニット5の制御下で充電ガン9のロックを解除するコネクタロック解除処理が行われ、設置型充電システム1は「充電停止(S8)」の状態になり、一連の動作が完了する。
[制御ユニット-充電ユニット間のデータ通信]
 次に、制御ユニット5-充電ユニット3間のデータ通信について具体的に説明する。
 なお、本具体例では、電源部2を構成する9個の充電ユニット3は、充電ユニット(CHG1~3)により構成された第1充電ユニットグループ4-1と、充電ユニット(CHG4~6)により構成された第2充電ユニットグループ4-2と、充電ユニット(CHG7~9)により構成された第3充電ユニットグループ4-3とにグルーピングされているものとする。
 また、本具体例では、主電源がオンされてから200ms以内に、制御ユニット5で作成された電源部状態データが、第2CAN通信ライン7を介して車両に送信されなければいけないものとする。
 図4に、設置型充電システム1の起動時(主電源オン~充電待機(S1))におけるタイミングチャートを示す。
 同図に示すように、設置型充電システム1の主電源がオンされ、制御ユニット5および各充電ユニット3が起動し始めると、まず、各充電ユニット3の初期化が一斉に開始される。
 制御ユニット5は、各充電ユニット3の初期化が完了した後、各充電ユニット3に充電ユニット状態データを送信させるための制御指令データを作成し、該制御指令データを、第1CAN通信ライン6を介して各充電ユニット3に、充電ユニットグループ4-1、4-2、4-3ごとにタイミングをずらして送信する。
 具体的には、制御ユニット5は、まず第1充電ユニットグループ4-1を構成する充電ユニット(CHG1~3)に対して制御指令データを送信し、20ms経過後に第2充電ユニットグループ4-2を構成する充電ユニット(CHG4~6)に対して制御指令データを送信し、さらに20ms経過後に第3充電ユニットグループ4-3を構成する充電ユニット(CHG7~9)に対して制御指令データを送信する。
 制御指令データを送信するタイミングのずれ量は、第2CAN通信ライン7を介して車両から送信された車両側指令データを制御ユニット5が受信した後の所定時間(本具体例では200ms)内に、制御ユニット5が各充電ユニット3から充電ユニット状態データを受信して電源部状態データを作成し、車両への該電源部状態データの送信を完了させることができる値に設定されている。
 例えば、各充電ユニット3が制御指令データを受信してから充電ユニット状態データを作成するのに必要な時間が90ms、制御ユニット5が最後(充電ユニット(CHG7~9))の充電ユニット状態データを受信してから電源部状態データを作成するのに必要な時間が70msの場合、各充電ユニット3の初期化の時間を無視すると、制御指令データを送信するタイミングのずれ量は、(200ms-90ms-70ms)/(3(充電ユニットグループ数)-1)=20msとなる。
 各充電ユニット3は、制御指令データを受信すると充電ユニット状態データを作成する。
 充電ユニット状態データは、作成された順に第1CAN通信ライン6を介して制御ユニット5に送信される。
 すなわち、制御ユニット5は、まず第1充電ユニットグループ4-1を構成する充電ユニット(CHG1~3)から充電ユニット状態データを受信し、20ms経過後に第2充電ユニットグループ4-2を構成する充電ユニット(CHG4~6)から充電ユニット状態データを受信し、さらに20ms経過後に第3充電ユニットグループ4-3を構成する充電ユニット(CHG7~9)から充電ユニット状態データを受信する。
 制御ユニット5は、すべての充電ユニット(CHG1~9)から充電ユニット状態データを受信すると、受信した充電ユニット状態データに基づいて、電源部2の故障情報を含む電源部状態データを作成し、車両に送信する。
 なお、上記具体例では、設置型充電システム1の起動時(主電源オン~充電待機(S1))における制御ユニット5-充電ユニット3間のデータ通信について説明したが、設置型充電システム1が他の状態の場合であっても、制御ユニット5は、制御指令データを充電ユニットグループ4-1、4-2、4-3ごとにタイミングをずらして送信する。
 結局、本実施形態に係る設置型充電システム1では、制御ユニット5が制御指令データを送信するタイミングを充電ユニットグループ4-1、4-2、4-3ごとにずらすことで、制御ユニット5が充電ユニット状態データを受信するタイミングを分散させることができる。
 したがって、本実施形態に係る設置型充電システム1によれば、制御ユニット5が一度に受信する充電ユニット状態データの数を減らすことができる。
 これにより、本実施形態に係る設置型充電システム1では、一度に受信する充電ユニット状態データの数が制御ユニット5の処理能力を超えてしまうのを防ぐことができ、制御ユニット5は、第1CAN通信ライン6の所定の通信周期(本実施形態では、20ms)の間に、確実に充電ユニット状態データを受信することができる。
 また、本実施形態に係る設置型充電システム1では、制御指令データを送信するタイミングのずれ量を、制御ユニット5が車両側指令データを受信してから所定時間内に、制御ユニット5が充電ユニット状態データに基づいて電源部状態データを作成し、該電源部状態データを車両へ送信することができる値に設定しているので、上記所定時間内に車両への電源部状態データの送信が完了しなくなるのを防ぐことができる。
 以上、本発明に係る設置型充電システムの好ましい実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 上記実施形態では、制御ユニット5が一度に3個の充電ユニット状態データを受信できる程度の処理能力を有しているので、充電ユニット状態データを受信するタイミングを充電ユニットグループ4-1、4-2、4-3ごとにずらしているが、制御ユニット5が一度に6個の充電ユニット状態データを受信できる程度の処理能力を有している場合は、2つの充電ユニットグループ(例えば、4-1と4-2)に送信するタイミングと、他の1つ充電ユニットグループ(例えば、4-3)に送信するタイミングとをずらしてもよい。
 このように、制御ユニットの処理能力に応じて、各充電ユニットグループに送信するタイミングのずれ量の最適化を図ることで、車両への電源部状態データの送信時間に対する要求を満たしながらも、充電ユニットの設置可能台数の拡大を図ることができる。
 また、上記実施形態では、電源部2を9個の充電ユニット3で構成しているが、充電ユニット3の数は要求される充電電力に応じて任意に変更することができる。
 なお、入力電力として3相の交流電力を用いる場合は、充電ユニット3の数は3の倍数であることが好ましく、各充電ユニットグループ(4-1~4-n(n:2以上の整数))は3個の充電ユニット3で構成されていることが好ましい。
 さらに、上記実施形態では、電源部2を構成する9個の充電ユニット3が、充電ユニット(CHG1~3)で構成された第1充電ユニットグループ4-1と、充電ユニット(CHG4~6)で構成された第2充電ユニットグループ4-2と、充電ユニット(CHG7~9)で構成された第3充電ユニットグループ4-3とにグルーピングされているが、各充電ユニット3は第1CAN通信ライン6を介して並列に接続されているので、3個の任意の充電ユニット3により充電ユニットグループを作ることができる。
1  設置型充電システム
2  電源部
3  充電ユニット
4-1、4-2、4-3  充電ユニットグループ
5  制御ユニット
6  第1CAN通信ライン
7  第2CAN通信ライン
8  I/F部
9  充電ガン
10  整流平滑回路
11  DC/DCコンバータ回路
12  インバータ回路
12a~12d  スイッチ手段
13  昇圧回路(トランス)
14  出力回路
15  制御回路
16  ダイオードブリッジ回路
17  平滑コンデンサ
18  ダイオードブリッジ回路
19  コイル
20  平滑コンデンサ
21  シャント抵抗
22  電流検出回路
23  電圧検出回路

Claims (5)

  1.  交流入力電力に基づいて生成した直流充電電力を用いて車両に搭載されたバッテリーを充電する設置型充電システムであって、
     前記交流入力電力に基づいて前記直流充電電力を生成する電源部と、
     前記電源部を構成する複数の充電ユニットと、
     前記複数の充電ユニットを制御する制御ユニットと、
     前記制御ユニットと前記複数の充電ユニットとの間でデータの送受信を可能にする第1CAN通信ラインと、
    を備え、
     前記複数の充電ユニットの各々は、前記制御ユニットから送信された制御指令データを受信して、該充電ユニットの状態に関する充電ユニット状態データを作成する一方、
     前記制御ユニットは、前記複数の充電ユニットを複数の充電ユニットグループにグルーピングするとともに、前記制御指令データを前記複数の充電ユニットグループのうち少なくとも1つの充電ユニットグループに送信するタイミングと、他の充電ユニットグループに送信するタイミングとをずらすことにより、前記複数の充電ユニットから前記充電ユニット状態データを受信するタイミングをずらせることを特徴とする設置型充電システム。
  2.  前記制御ユニットは、前記制御指令データを送信するタイミングを前記充電ユニットグループごとにずらすことにより、前記充電ユニット状態データを受信するタイミングを前記充電ユニットグループごとにずらせることを特徴とする請求項1に記載の設置型充電システム。
  3.  前記制御ユニットと前記車両との間でデータの送受信を可能にする第2CAN通信ラインをさらに備え、
     前記制御ユニットは、
     前記第2CAN通信ラインを介して前記車両から送信された車両側指令データを受信した後の所定時間内に、前記複数の充電ユニットから前記充電ユニット状態データを受信し、該充電ユニット状態データに基づいて前記電源部の状態に関する電源部状態データを作成し、前記車両への該電源部状態データの送信を完了させるように、
     前記制御指令データを送信するタイミングのずれ量を決めていることを特徴とする請求項1または2に記載の設置型充電システム。
  4.  前記充電ユニット状態データは、前記充電ユニットの故障情報を含み、
     前記電源部状態データは、前記充電ユニットの故障情報に基づいて作成された前記電源部の故障情報を含むことを特徴とする請求項3に記載の設置型充電システム。
  5.  前記交流入力電力は、3相の交流電力であり、
     前記充電ユニットグループは、前記3相のうちの任意の1相の交流電力がそれぞれ入力される3つの前記充電ユニットから構成されていることを特徴とする請求項1~4のいずれかに記載の設置型充電システム。
PCT/JP2012/075370 2011-10-05 2012-10-01 設置型充電システム WO2013051502A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280003116.XA CN103141005B (zh) 2011-10-05 2012-10-01 设置型充电系统
US13/825,897 US8994329B2 (en) 2011-10-05 2012-10-01 Stationary charging system
KR1020137005626A KR101344931B1 (ko) 2011-10-05 2012-10-01 설치형 충전 시스템
EP12832781.4A EP2613422B1 (en) 2011-10-05 2012-10-01 Stationary charging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-221039 2011-10-05
JP2011221039A JP5219227B2 (ja) 2011-10-05 2011-10-05 設置型充電システム

Publications (1)

Publication Number Publication Date
WO2013051502A1 true WO2013051502A1 (ja) 2013-04-11

Family

ID=48043661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075370 WO2013051502A1 (ja) 2011-10-05 2012-10-01 設置型充電システム

Country Status (6)

Country Link
US (1) US8994329B2 (ja)
EP (1) EP2613422B1 (ja)
JP (1) JP5219227B2 (ja)
KR (1) KR101344931B1 (ja)
CN (1) CN103141005B (ja)
WO (1) WO2013051502A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20130224A1 (it) 2013-08-01 2015-02-02 Meta System Spa Caricabatterie per veicoli elettrici
KR101591150B1 (ko) * 2013-10-31 2016-02-02 주식회사 엘지화학 배터리의 표준화를 위한 응용 모듈 제어 및 하드웨어 호출 장치
JP6102783B2 (ja) * 2014-02-14 2017-03-29 ソニー株式会社 粒子分取装置、粒子分取方法及びプログラム
JP6601923B2 (ja) * 2015-08-31 2019-11-06 ニチコン株式会社 給電装置
WO2017083259A1 (en) * 2015-11-09 2017-05-18 Faraday&Future Inc. Vehicle charging systems and methods
CN111917620B (zh) * 2020-08-19 2021-12-21 潍柴动力股份有限公司 Mcu业务处理方法、装置、电子设备及可存储介质
FR3138889A1 (fr) * 2022-08-22 2024-02-23 Psa Automobiles Sa Vehicule automobile comprenant un systeme d’interface de recharge sur une jante de volant, et procede sur la base d’un tel vehicule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112413A (ja) * 2006-10-31 2008-05-15 Ricoh Co Ltd データ転送装置および画像処理装置
JP2009095157A (ja) 2007-10-10 2009-04-30 Fuji Heavy Ind Ltd 電気自動車の充電装置
WO2011021718A1 (ja) * 2009-08-21 2011-02-24 Jfeエンジニアリング株式会社 急速充電装置
WO2011062128A1 (ja) * 2009-11-20 2011-05-26 ボッシュ株式会社 送信メッセージ送信タイミング設定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847189B2 (en) * 1995-05-31 2005-01-25 The Regents Of The University Of California Method for controlling the operating characteristics of a hybrid electric vehicle
JP3228097B2 (ja) * 1995-10-19 2001-11-12 株式会社日立製作所 充電システム及び電気自動車
US7688074B2 (en) * 1997-11-03 2010-03-30 Midtronics, Inc. Energy management system for automotive vehicle
US6963186B2 (en) * 2003-02-28 2005-11-08 Raymond Hobbs Battery charger and method of charging a battery
US7394225B2 (en) * 2004-06-09 2008-07-01 International Components Corporation Pseudo constant current multiple cell battery charger configured with a parallel topology
JP5469813B2 (ja) * 2008-01-29 2014-04-16 株式会社日立製作所 車両用電池システム
ES2793924T3 (es) * 2009-09-24 2020-11-17 Vito Nv Vlaamse Instelling Voor Tech Onderzoek Nv Método y sistema para equilibrar celdas de almacenamiento de energía eléctrica
CN201587377U (zh) * 2009-12-30 2010-09-22 浙江吉利汽车研究院有限公司 磷酸铁锂电池管理系统
US20110234165A1 (en) * 2010-03-29 2011-09-29 Dennis Palatov Modular Charging System for Multi-Cell Series-Connected Battery Packs
JP5470193B2 (ja) * 2010-08-10 2014-04-16 日鉄住金テックスエンジ株式会社 急速充電装置
CN201781037U (zh) * 2010-08-24 2011-03-30 扬州飞驰动力科技有限公司 电动汽车的电池管理系统
CN101976867B (zh) 2010-10-21 2013-08-28 中山大学 一种纯电动车用动力电池管理系统及其实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112413A (ja) * 2006-10-31 2008-05-15 Ricoh Co Ltd データ転送装置および画像処理装置
JP2009095157A (ja) 2007-10-10 2009-04-30 Fuji Heavy Ind Ltd 電気自動車の充電装置
WO2011021718A1 (ja) * 2009-08-21 2011-02-24 Jfeエンジニアリング株式会社 急速充電装置
WO2011062128A1 (ja) * 2009-11-20 2011-05-26 ボッシュ株式会社 送信メッセージ送信タイミング設定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2613422A4

Also Published As

Publication number Publication date
CN103141005B (zh) 2015-05-06
EP2613422A1 (en) 2013-07-10
EP2613422B1 (en) 2016-08-17
EP2613422A4 (en) 2013-12-11
JP5219227B2 (ja) 2013-06-26
CN103141005A (zh) 2013-06-05
JP2013081334A (ja) 2013-05-02
US8994329B2 (en) 2015-03-31
KR101344931B1 (ko) 2013-12-27
KR20130055000A (ko) 2013-05-27
US20140292271A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5219227B2 (ja) 設置型充電システム
WO2013054680A1 (ja) 設置型充電システム
EP2636122B1 (en) System and method for bidirectional dc-ac power conversion
CN104796012A (zh) 可适应输入相切换
JP5675893B2 (ja) 電気自動車用インバータ−充電器統合装置及び制御方法
CN104426246A (zh) 具有宽输入电压范围的无线电力发射器及其操作方法
US20150069936A1 (en) Inverter-charger integrated device for electric vehicle
US20100231164A1 (en) Charging system for electric vehicle
JP6201969B2 (ja) 車両用電源システム
KR20130124772A (ko) 전력변환 시스템 및 전력변환 방법과, 그 시스템을 제어하는 장치 및 방법
JP2010187468A (ja) 充電装置、充電方法、およびプログラム
KR102131948B1 (ko) 용량 가변형 파워뱅크 시스템
JP5828774B2 (ja) 2次電池の充放電装置およびそれを用いた充放電検査装置
US10919407B2 (en) Vehicle power system with configurable output converter
CN104600768A (zh) 电源装置
JP6136684B2 (ja) 電力供給システム、電力供給方法および負荷用変換装置
US20150069834A1 (en) Operating method of inverter - charger integration apparatus for electric vehicle
EP3658403A1 (en) Electrical vehicle charging device for charging an electrical vehicle with a dc voltage
KR102557486B1 (ko) 소형 전기모터 구동장치용 통합형 인버터
KR20230081786A (ko) 충전용 모터 중성점을 제거한 소형 전기차용 통합형 인버터
WO2023161363A1 (en) Converter building block, modular isolated active bridge, in particular multi-active-bridge, dc/dc converter circuit and dc/dc converter arrangement
CN115864886A (zh) 一种基于双向移相全桥变换器的三端口变换器
CN113858980A (zh) 电动车辆、充放电装置及其控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003116.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20137005626

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13825897

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012832781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012832781

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE