WO2013048144A2 - 물성이 강화된 키토산 및/또는 키틴 복합체 및 그 용도 - Google Patents

물성이 강화된 키토산 및/또는 키틴 복합체 및 그 용도 Download PDF

Info

Publication number
WO2013048144A2
WO2013048144A2 PCT/KR2012/007822 KR2012007822W WO2013048144A2 WO 2013048144 A2 WO2013048144 A2 WO 2013048144A2 KR 2012007822 W KR2012007822 W KR 2012007822W WO 2013048144 A2 WO2013048144 A2 WO 2013048144A2
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
chitin
catechol
dopa
group
Prior art date
Application number
PCT/KR2012/007822
Other languages
English (en)
French (fr)
Other versions
WO2013048144A3 (ko
Inventor
황동수
오동엽
김상식
차형준
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to EP12837216.6A priority Critical patent/EP2778179A4/en
Priority to US14/346,993 priority patent/US20140242870A1/en
Priority to JP2014533202A priority patent/JP5968447B2/ja
Publication of WO2013048144A2 publication Critical patent/WO2013048144A2/ko
Publication of WO2013048144A3 publication Critical patent/WO2013048144A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/08Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/10Materials or treatment for tissue regeneration for reconstruction of tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • Chitosan and / or chitin complex comprising at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methyl catechol, organic reinforcing material composition comprising the complex.
  • Strength-enhanced chitosan comprising the step of adding at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol to products made of the organic reinforcing material composition, and chitosan and / or chitin. Or to a method for producing a chitin complex.
  • Chitin and chitosan are tasteless and odorless natural polymer polysaccharides.
  • Chitin is a polysaccharide polymer made of N-acetyl-D-glucosamine monomers. to be.
  • chitin and chitosan are natural ingredients, they are excellent for living organisms and have all the conditions to be provided as functional foods, as well as in the fields of medicine, textiles, such as artificial skins, surgical seals, dialysis membranes, and various therapeutic aids.
  • the present inventors added to chitosan and / or chitin to at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methyl catechol, in which biomaterials such as artificial tendons and artificial ligaments have enhanced strength in wet conditions or water.
  • the present invention was completed by confirming that a dragon material (organic reinforcing material) can be implemented. Accordingly, one embodiment of the present invention provides a chitosan and / or chitin complex comprising at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol.
  • Another example provides an organic reinforcing material composition comprising the composite and uses for improving the organic reinforcing material composition of the composite.
  • Another example provides a product made of the organic reinforcing material composition.
  • Another example is the preparation of enhanced strength chitosan and / or chitin complexes comprising the addition of at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol to chitosan and / or chitin.
  • the present invention is catechol, dopamine,
  • Chitosan and / or chitin complex comprising at least one compound selected from the group consisting of DOPA (dihydroxyphenylalanine) and methyl catechol, an organic reinforcing material composition comprising the complex, a product made of the organic reinforcing material composition, and chitosan And / or adding at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol to chitin, to provide a method for preparing an enhanced chitosan and / or chitin complex.
  • DOPA dihydroxyphenylalanine
  • Chitosan and / or chitin complex comprising at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methyl cateche is one selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol Compared to the case of not containing the above compounds, the problem of strength drop due to moisture is remarkably improved. It has the advantage of being able to maintain high strength even in wet conditions.
  • chitin and / or chitosan complexes may be provided as materials for tendons and ligaments.
  • Artificial tendons and ligaments have high strength to serve as a bridge between bones and muscles when these tendons and ligaments are destroyed, and can be absorbed into the body when new tissues are formed and are no longer needed. High suitability is good.
  • Chitin and chitosan are abundant and eco-friendly resources, and have various advantages such as biodegradability, antiviral, and wound healing ability, making them suitable as biomaterials such as artificial tendons and artificial ligaments.
  • biomaterials such as artificial tendons and artificial ligaments.
  • the application of artificial tendons and artificial ligaments is performed in the humid conditions of the body where blood or lymph flows.
  • the existing chitin and chitosan are rapidly used in wet conditions and in wet conditions such as artificial tendons or artificial ligaments. There is a difficulty in commercializing it as a biomaterial whose strength must be maintained.
  • melanin pigment is believed to occur when cross-linking reactions between catechol complexes such as dopa (DOPA). As the crosslink density of the waveguide increases and the hydrophobic group melanin increases, the dehydration reaction proceeds. This is thought to enhance the material properties (Andersen, S.0. Et al, Nature 251, 507 (1974)).
  • DOPA dopa
  • the present invention is chitosan, chitin, or a combination thereof and catechol, dopamine,
  • DOPA, catechol, and methyl e. G., 3-methyl catechol
  • methyl e. G., 3-methyl catechol
  • Bonding provides a complex of crosslinked chitosan, chitin, or combinations thereof.
  • the composite is characterized in that the mechanical properties such as the tensile strength (young's modulus) is significantly enhanced in the state swelled in water than chitosan, chitin, or only a combination thereof. This improvement in mechanical properties can be advantageously applied to artificial ligaments, tendons, or other applications where strong mechanical properties and low water hygroscopicity are required in wet environments (under wet conditions).
  • Such strength enhancing effect is achieved by adding at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol to chitosan, chitin, or a combination thereof, and the degree of strength enhancing effect is catechol, It increases depending on the amount of addition of one or more compounds selected from the group consisting of dopamine, DOPA, and methylcatechol.
  • the range of addition of one or more compounds selected from the group consisting of catechol, domine, DOPA, and methylcatechol is not particularly limited, but the desired strength is maintained while maintaining the original bioavailability of chitosan, chitin, or a combination thereof.
  • chitosan, chitin in order to obtain the enhancing effect, chitosan, chitin, or based on the weight of water thereof heunhap (100 parts by weight 0/0) with 0.1 to 30 wt%, or 1 to 30 increment 0/0, or from 4 to 30 parts by weight 0/0 Or 15 to 30% by weight.
  • the molecular weight of chitosan or chitin in the present invention is not particularly limited but may be in the range of 5 to 500 kDa.
  • chitosan and chitin may be included alone, or they may be included in the form of a mixed mixture.
  • the complex is completely immersed in distilled water for 3 hours to maintain excellent physical properties even in a wet swollen state (see Table 2 and Table 3).
  • the complex may comprise catechol, dopamine, DOPA, in addition to chitosan and / or chitin, and Cross-linking by one or more oxidations selected from the group consisting of these catechols, dopamine, DOPA, and methyl catechols, further comprising one or more selected from the group consisting of methylcatechols (eg, 3-methylcatechol)
  • methylcatechols eg, 3-methylcatechol
  • the complex is hydrophobic melanin production is increased by one or more oxidation selected from the group consisting of catechol, dopamine, DOPA, and methyl catechol, containing a relatively large amount of melanin, such a melanin dehydration reaction It helps to strengthen the physical properties of the material.
  • the melanin content in the complex is about 50% by weight or more as measured by hydrogen peroxide decomposition (Moses, D and J. H Waite, Journal of the biological chemistry, 2006, Vol. 281, Issue 46, 34826-34832) for example, about 50 weight 0/0 to about 99 '% by weight or from about 70% to about 99 weight 0/0, and specifically about 75% to about 98 wt. 0/0, more specifically 80 wt% to about 98 It may be about weight percent, but is not limited thereto.
  • the hygroscopicity can be measured by conventional methods, and can be tested, for example, by the equilibrium water content (EWC) method.
  • EWC equilibrium water content
  • the samples were soaked in 0.15 M phosphate buffered saline (pH 7.4) solution for one day, and then hygroscopicity was tested and the weight change was measured with a precision scale of 0.00 min.
  • EWC can be calculated from the following equation: 100X (W t -W 0 ) AV t (W0: weight of dried sample, Wt: weight when sample no longer absorbs moisture).
  • the composite of the present invention is sodium periodate, hydrogen peroxide, sodium It may further contain at least one selected from the group consisting of sodium iodate, and sodium hydroxide (NaOH).
  • the at least one amount selected from the group consisting of the sodium periodate, hydrogen peroxide, and sodium hydroxide further contained is from 5 to 15% by weight based on at least one selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol. Specifically, it may be 8 to 12% by weight.
  • chitosan or chitin complexes can be thermally treated to further enhance the strength of the wet state (see Table 3).
  • the heat treatment may be to handle for 6 to 12 hours under a vacuum of 80 to 120 ° C, specifically 90 to 1 KTC.
  • the complex has a young's modulus at about 40-50% relative humidity of at least about 500 Mpa, such as 500 to 10000 Mpa, or 500 to 5000 Mpa, and at a relative humidity of about 90 to 100%.
  • the young's modulus may be about 180 Mpa or more, specifically about 280 Mpa or more, more specifically 300 Mpa or more, such as 300 to 5000 Mpa, or about 300 to 3000 Mpa. Therefore, the composite can be used as a material for biomaterials such as artificial tendons and artificial ligaments requiring good strength in humid conditions of the body.
  • the complex according to the invention is one or more selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol is covalently bonded to the amine group of chitosan or chitin (especially when using sodium periodate or hydrogen peroxide), non-covalent It may be a structure that is bonded (eg cation- ⁇ bond) and crosslinked (see FIG. 8).
  • Figure 7 schematically shows the reaction that can occur between the amine group of chitosan and dopamine or catechol when sodium periodate (described as oxidant) is added.
  • the reactions 1 to 3 in FIG. 4 are accelerated when the sodium peodate is added, and the reaction of reaction 4 is performed by reducing the temperature and draining water in vacuum (INTEGR. COMP. BIOL., 42: 1172-1180 (2002) Adhesion a la Moulel, JH Waite).
  • an organic reinforcing material composition including a composite having enhanced physical properties such as physical strength. More specifically, A chitosan, a keyed, or a combination thereof and at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol (eg, 3-methylcatechol), chitosan, chitin, or these
  • An organic reinforcing material composition comprising a complex of chitosan, chitin, or a mixture thereof, which is cross-linked through oil-feeding or non-covalent bonding between a complex of and one or more compounds selected from the group consisting of catechol, dopamine, DOPA, and methyl catechol This is provided.
  • Uses for the preparation of organic reinforcing material compositions are provided. Detailed description of the complex is as described above.
  • the organic reinforcing material composition may be in the form of a film, a filament, a nonwoven fabric, and the like, but is not limited thereto, and may be any material composition requiring strength.
  • Another example includes the chitosan, chitin, or a combination thereof and at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol (eg, 3-methylcatechol), chitosan , Chitin, or a combination thereof and a complex of chitosan, chitin, or a mixture thereof, which is cross-linked through covalent or non-covalent bonding between at least one compound selected from the group consisting of catechol, dopamine, DOPA, and meptyl catechol.
  • It provides a product made of an organic reinforcing material composition.
  • the product can be any stiffener product that requires strength, including biomaterials applied to living bodies.
  • Another example includes chitosan, chitin, or a combination thereof and at least one compound selected from the group consisting of catechol, dopamine, DOPA, and methylcatechol (eg, 3-methylcatechol), chitosan, Reinforcement of chitosan, chitin, or a complex of these crosslinked through covalent or non-covalent linkage between chitin or a combination thereof and catechol, dopamine, DOPA, and one or more compounds selected from the group consisting of methylcatechol Provides use for the manufacture of products.
  • the reinforcement product is, for example, artificial ligaments, artificial tendons, artificial dental materials (E.g., artificial Sharpey's fiber, artificial periodental ligament, etc.), artificial skin, surgical sutures, artificial dialysis membranes, various treatment aids, clothing fibers, tire cords, tire durability And reinforcement of the fiber material that enters the rubber for improved stability.
  • artificial ligaments artificial tendons
  • artificial dental materials E.g., artificial Sharpey's fiber, artificial periodental ligament, etc.
  • artificial skin surgical sutures
  • artificial dialysis membranes various treatment aids
  • clothing fibers e.g., tire cords, tire durability
  • reinforcement of the fiber material that enters the rubber for improved stability.
  • Another example is provided a method for enhancing the strength of chitosan and / or chitin or a method for preparing chitosan and / or chitin with enhanced strength.
  • the method is
  • Step 2) adding at least one selected from the group consisting of catechol, dopamine, DOPA, and methyl catechol to the solution obtained
  • the ionic solvent means all ionic liquids capable of dissolving chitosan and / or chitin, for example acetic acid or aqueous acetic acid solution, DMAc (dimetylacetamide) / LiCl (DMF (dimethylfo amide) ⁇ LiCl dissolved solution, chitosan or chitin can be dissolved in a mass ratio of 5 to 10%), ethyl methyl imidazolium acetate, etc., specifically, may be 0.1 to 5M acetic acid aqueous solution.
  • the catechol, dopamine, DOPA, and methyl catechol Colo least one amount selected from a group of the chitosan, key tin, or a water based on the weight thereof heunhap 0.1 to 30 parts by weight 0/0, or 1 to 30 parts by weight 0/0 Or 4 to 30 weight percent 0 /. Or 15 to 30 weight percent or so.
  • the method is based on one or more selected from the group consisting of sodium periodate, hydrogen peroxide, sodium iodate, and sodium hydroxide, for example, at least one selected from the group consisting of the catechol, dopamine, DOPA, and methylcatechol.
  • a is from 5 to 15 parts by weight 0/0, preferably may comprise a step 2-1) added to, was added in an amount of 8 to 12 wt. / 0. Step 2-1) may be performed before, after or simultaneously with step 2).
  • a heat treatment step may be further included after step 2) or 2-1).
  • the heat treatment step 3) is performed in the step 2) or 2-1).
  • the resulting mixtures (chitosan and / or one or more combinations selected from the group consisting of chitin and catechol, dopamine, DOPA, and methylcatechol; or chitosan and / or chitin and catechol, dopamine, DOPA, and methylcate
  • the strength of the final product can be further enhanced.
  • Chitosan, chitin, or a mixture thereof provided in the present invention is added to the catechol, dopamine, or a combination thereof, because the composite maintains improved strength after immersion, artificial tendons, artificial ligaments, artificial dental materials, etc. It can be used as a variety of biomaterials, it can be usefully used as a variety of materials that need without limiting its use.
  • Figure 1 shows a graph obtained initially at the time of measuring the tensile strength and a method of calculating the tensile strength.
  • FIG. 2 and 3 show graphs obtained when tensile strength tests of C15 vs C15—SP ⁇ annealing 70% (FIG. 2) and D15 vs D15_SP_annealing 70% (FIG. 3) at 90 to 100% relative humidity, respectively.
  • 4A to 4E are graphs showing tensile strength, stiffhess, and toughness of chitosan and DOPA crosslinked chitosan composites in a dry state.
  • 5 is a graph showing tensile strength, stiffhess, and toughness according to DOPA and oxidant content in a wet swollen state.
  • EWC Equilibrium water content
  • FIG. 8 shows a comparison of chitosan and chitosan complexes with a static water contact angle.
  • FIG. 10 shows the water contact angle (top) and EWC (bottom) of the chitin complex containing pure chitin and dopamine.
  • 11 is an SEM image showing the electron microscope structure of the pure chitin film and chitin composite film.
  • FIG. 12 is a graph showing the crystal structure of the chitin complex containing 10% by weight of dopamine, black (bottom of the graph) is native chitin, red (middle of the graph) chitin film, blue (Top of the graph) shows a chitin composite film containing dopamine.
  • FIG. 13 is a graph comparing the cytotoxicity of osteoblasts (MC3T3-el) of the finished chitin fibers.
  • TGA thermal gravimetric analysis
  • FIG. 15 shows an ultraviolet-infrared graph between 300 nm and 700 nm of a sepia melanin solution decomposed by the hydrogen peroxide method in a chitin complex or a chitosan complex according to Example 7.
  • FIG. 15 shows an ultraviolet-infrared graph between 300 nm and 700 nm of a sepia melanin solution decomposed by the hydrogen peroxide method in a chitin complex or a chitosan complex according to Example 7.
  • FIG. 16 is a melanin normalization curve obtained from an extinction coefficient of the sepia melanin solution of FIG. 15.
  • chitosan High molecular weight, sigma-aldrich, Chitosan 419419- (Coarse ground flakes and powder) 800-2000 cP, 1 wt% in l% (w / v) acetic acid, Brookfield ( lit.), DDA: 80% or more
  • 20g was dissolved in 980g of the acetic acid aqueous solution and dissolved under ultrasonication at 40 ° C for 24 hours to prepare a chitosan / acetic acid aqueous solution.
  • Key tin (chitin from shrimp, Sigma-Aldrich ) was dissolved in an ionic liquid such that the weight 10 0/0 to (l-Ethyl-3- methylimidazolium acetate ) to prepare a key tin solution.
  • the dopamine (99wt%, Sigma-Aldrich) to the prepared key Tin was added in an amount of 0 parts by weight 0/0, 5%, or 10% by weight.
  • the chitin solution or chitin / dopamine solution was dissolved at 100 ° C. for 6 hours to completely dissolve the solute. Two completely dissolved solutions were poured onto and treated at 150 ° C for 2 hours to allow the oxidation and crosslinking reaction of dopamine by heat.
  • Example 3 Tensile Strength Test of Chitosan and Chitosan Composites Eight kinds of ⁇ prepared in Example 1 ⁇ 6, Example) 4,) 7, ⁇ 5, 1) 15, 581 > , D15 SP) film of lcmX3cm Cut into rectangular shape and the thickness was measured to 0.001mm position using a micrometer.
  • the average young's modulus, yield stress, yield strain stress at break (Breaking stress), and strain at break (Breaking strain) were obtained from this graph. More specifically, stress is F (force) / A (area, area), the pulling force divided by the cross-sectional area, the unit is N / m. In addition, strain means increased ratio and means changed length / first length. As such, the values are obtained by substituting the initial length and area into the tensile strength test instrument and operating. First, the X-axis is a strain Y-axis graph (see Fig. 1), where the initial slope before the inflection point is called young's modulus, the inflection point is called the yield point, the strain at this time yield strain, This stress is called yield stress.
  • the breaking point is called the breaking point, and the strain at this time is called the breaking strain, and the stress above this time is called the breaking stress.
  • I is called tensile strength, which is generally proportional to the initial young's modulus. In this specification, young's modulus replaces tensile strength. It is also used in the sense.
  • the breaking strain and stress of the catechol-containing chitosan complex were also higher than that of the sample containing only chitosan, neat chitosan, and significantly increased in proportion to the catechol concentration.
  • the breaking strain and stress increased compared to neat chitosan. This seems to be due to the partial cross-linking reaction of the catechol and dopamine to the movement of chitosan molecular chains.
  • Samples CI 5 SP and D15 SP have a relative humidity of about 50% relative to C15 and D15 and immerse the sample in about 0.15 M of phosphate buffered saline (pH 7.4) per day. There is no difference in the young's modulus and breaking stress values under conditions of complete wet of the sample because sodium periodate accelerates the oxidation reaction but does not increase the next reaction crosslinking reaction significantly.
  • SP_annealing and D15 SP_annealing were approximately 50% relative humidity compared to neat chitosan, and the samples were immersed in about 0.15 M of phosphate buffered saline (pH 7.4) for one day to completely wet the young's modulus, respectively. Fold increased about 15 times.
  • chitosan High molecular weight, sigma-aldrich, Chitosan 419419- (Coarse ground flakes and powder) 800-2000 cP, 1% in 1% acetic acid, Brookfield (lit.), DDA: 80% or more) 20 g of acetic acid It was dissolved in 980g and dissolved in an ultrasonic at 40 ° C for 24 hours to prepare an aqueous chitosan / acetic acid solution.
  • the prepared chitosan and chitosan composite film was cut into a rectangular shape of lcmX3cm and the thickness was measured to 0.001 mm using a micrometer.
  • the electron microscope structure of the produced film is shown in FIG.
  • the strain rate was 5 mm / min in the young's constant extension rate mode, and the distance between the specimen clamp and the clamp was 1 cm.
  • the samples measured in each dry state were completely dried by storing them at 120 ° C for 6 hours in a vacuum oven.
  • the samples measured in the wet state were immersed in 0.15 M phosphate buffered saline (pH 7.4) for one day and then quickly taken out to obtain tensile strength. Measured.
  • 4A to 4E are tensile strength results of chitosan and chitosan composites in a dried state (water content of about 1% or less) and in a state of swelling in 0.15 M phosphate buffered saline (pH 7.4). Young's modulus of the samples was calculated by the method described in Example 3.
  • Figure 4a is the tensile strength according to the DOPA content without containing oxidizing agent (sodium periodate; the same below), 4b is the tensile strength according to the content of DOPA when containing 1% by weight oxidizing agent, 4c is 5% by weight of DOPA
  • the tensile strength according to the oxidant content in the case of including 4d shows the stiffiiess according to the DOPA and oxidant content, and FIG. ).
  • Young's modulus in the dried state is Pure chitosan was about 0.5 GPa and increased up to 4 times (about 2 GPa) in proportion to the amount of waveguide added.
  • A, B, and C in FIG. 5 show tensile strength, stiff ess, and toughness, respectively, according to DOPA and oxidant content in the wet swelled state (each numerical value and error bar represent five average values and standard deviations, respectively).
  • Young's modulus in the wet swollen state was 0.05 GPa for pure chitosan and increased up to 7.1 times (35 GPa) in proportion to the amount of dopamine added.
  • Yovmg's modulus of human tendons and ligaments is 0.5GPa and 0.2GPa, respectively, it can be seen that the prepared chitosan complexes can be used as artificial tendons and artificial ligaments.
  • Example 2 The three kinds of manufactured (dopamine content: 0 weight 0/0, 5 parts by weight 0/0, 10 parts by weight 0/0) key tin and key tin cutting the film of the composite state the rectangular form of lcmX3cm a thickness micrometer Measured to 0.001mm seat using.
  • Tensile strength test instrument (Instron 3340 model) was used to measure the strain rate at 5mm / min in young's constant extension rate mode, and the distance between specimen clamp and clamp at lcm.
  • the dried samples were prepared by storing the samples in a vacuum oven at 120 ° C. for 6 hours and drying them completely, and the wet samples were prepared by soaking in distilled water for about 3 hours, and quickly taken out to measure the tensile strength. .
  • FIG. 9 shows tensile strength results of chitin and chitin composites in the dry state (top) and in a swollen state (bottom) in 0.15 M phosphate buffered saline (pH 7.4).
  • Samples and Young's modulus were calculated by the method described in Example 3. Young's modulus of dried pure chitin was about 1.5 GPa, and the chitin complex increased up to 2.1 times in proportion to the amount of dopamine added.
  • the pure chitin Young's modulus in the wet swollen state was 0.21 GPa, and the chitin complex increased up to 2.2 times in proportion to the amount of dopamine added.
  • the Young's modulus of human tendons and ligaments is 0.5 GPa and 0.2 GPa, respectively, chitin complexes can be used as materials for artificial tendons and artificial ligaments. It can be confirmed.
  • the moisture absorption rate (EWC, equilibrium water content) of the chitin / chitosan and chitin / chitosan complexes prepared in Examples 1, 2, and 4.1 was measured.
  • the moisture absorption rate of the sample was measured as follows. After weighing the three kinds of samples completely dried (W 0 ), they were soaked in 0.15 M phosphate buffered saline (pH 7.4) for 3 hours, and taken out to weigh the weight (W t ). The weight was measured with a precision scale with a minimum of 0.00. Hygroscopicity was defined as 100X (W t -W 0 ) / W t .
  • the obtained result was about 66% of pure chitosan and the moisture absorption of chitin was about 65%.
  • Chitosan complexes were reduced by about 55% relative to the amount of added waveguide (see Figure 6). This indicates that the water-resistance of the chitosan complex is remarkably improved, indicating hydrophobic melanin production in wet conditions.
  • the moisture absorption rate decreased in proportion to the amount of dopamine added, which was reduced to a maximum of 43% in the experimental area (see FIG. 10 below).
  • the contact angle of pure chitosan was about 60 degrees and increased to about 80 degrees as dopa was added (unoxidized: with 10 wt% DOPA; oxidized; 10 wt% DOPA + 1 wt% sodium periodate). As shown in FIG. 10 (above), the contact angle of pure chitin was about 35 degrees, while it increased to about 50 degrees as dopamine was added. These results show that the live melanin layer increased the hydrophobicity of the material by dopa and dopamine oxidation.
  • Example 7 Quantitative Melanin Test in Chitin / Chitosan Complex
  • DOPA-containing complexes (10 wt% DOPA-containing chitin complexes, 20 wt% DOPA-containing chitin complexes, 10 wt% DOPA-containing chitosan complexes, and 20 wt% DOPA-containing chitosan complexes) were removed to remove all substances other than melanin. Disassembled. 70 mg of DOPA containing chitin / chitosan complexes were placed in a glass ampoule with 3.6 ml of 6 M hydrochloric acid and 0.12 ml of phenol and completely sealed in vacuo. Ampoule bottles containing each sample were heated at 110 ° C. for 48 hours.
  • Each sample was then taken out of the ampoule and dried with hydrochloric acid and phenol using a rotary evaporator to make the sample powdery.
  • the powder samples were washed with distilled water and ethanol to remove hydrophilic hydrolysis products to prepare a hydrolyzed sample.
  • the aqueous solution was centrifuged at 14,000 rpm to remove remaining solid impurities. It was removed and the extinction coefficient of the supernatant was measured.
  • the cell activity of the chitin and chitin complex prepared in Example 2 was measured as follows.
  • animal osteoblasts (alpha-MEM; Hyclone) containing 10% FBS (fetal bovine serum; Hyclone) and 1% antibiotic-antimycotic (Hyclone) ° 1 were added to rat osteoblasts (MC3T3-El; Riken cell bank). Incubated in a 37 ° C incubator. The cells were removed from the cell culture dish and diluted to a concentration of 2xl0 5 / ml in the culture medium containing no 10% FBS, and plated with a chitin-chitin complex film in a 12-well cell culture dish (Falcon, USA). After cutting to suit shape and size, the cells were added in an amount of 5 lxlO per well and incubated in an incubator for 1 hour.
  • FBS fetal bovine serum
  • Hyclone antibiotic-antimycotic
  • CCK-8 cell counting kit-8; Dojindo, Japan
  • analysis was performed to quantify living cells.
  • PBS phosphate buffered saline; Hyclone
  • the obtained relative viable cell numbers are shown in FIG. 13.
  • the relative extinction coefficient at 450 nm in CCK media refers to the relative number of viable cells on a particular surface.
  • the relative absorbance coefficients according to the culture time were compared while culturing for 3 days on the pure chitin film, the chitin composite film, and the empty well surface.
  • the absorbance coefficients of the CCK medium in the pure chitin film, chitin composite film, and empty wells were about 2.3, 2.2, and 2.1 on the first day, respectively, with similar values within the margin of error, and about 5.0, 5.1, and 5.7 is shown.
  • Chitin cells had fewer viable cells than empty wells, but the difference was about 10% smaller.
  • the number of viable cells present on chitin and chitin complex was very small, with a difference of less than 2%. Therefore, the addition of dopamine and catechol compounds does not increase cytotoxicity.
  • TGA Thermal gravimetric analysis
  • TGA test was performed using a TGA (Q600, TA instrument) at a rate of 10 ° C./min in a nitrogen atmosphere. (See J. Mater. Chem., 2011, 21, 6040-6045; Facile synthesis of organo-soluble surface-grafted allsingle-layer graphene oxide as hole-injecting buffer material in organic light-emitting diodes). 'It is shown in Figure 14 the obtained results.
  • the X-axis represents the temperature
  • the Y-axis represents the weight ratio for the first sample.
  • 0.5mg at that temperature If decomposed and lost, it means 90%.
  • the graphs of all three samples showed weight loss of about 7 percent at less than 200 ° C. According to the literature, it was determined that the water absorbed by the chitosan evaporated. do.
  • the samples C15 SP and D15 SP At 5wt% loss temperature, the samples C15 SP and D15 SP have high temperatures of about 27 and 13 degrees, respectively, meaning that the two composites have less water content than pure chitosan.
  • the remaining relative mass of the two complexes at temperatures above 350 ° C is about 7% higher than that of pure chitosan, indicating the presence of a crosslinked structure in the complex.
  • the reason why the remaining relative mass of the two complexes, particularly between 200 ° C and 320 ° C, is less than that of pure chitosan is believed to be due to the dehydration reaction that occurs as the crosslinking reaction is promoted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Materials For Medical Uses (AREA)
  • Artificial Filaments (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

키토산 및/또는 키틴 및 카테콜계열 화합물을 포함하는 복합체, 상기 복합체를 포함하는 유기 보강 소재 조성물, 상기 유기 보강 소재 조성물로 제조된 제품, 및 키토산 및/또는 키틴에 카테콜계열 화합물을 첨가하는 단계를 포함하는 강도가 증진된 키토산 및/또는 키틴 복합체의 제조 방법이 제공된다. 상기 카테콜계열의 화합물을 포함하는 키토산 및/또는 키틴 복합체는 카테콜계열 화합물을 포함하지 않는 경우와 비교하여 수분에 의한 강도 저하 문제가 현저하게 개선되어, 습윤 팽윤된 후에도 높은 강도를 유지할 수 있다는 이점을 갖는다.

Description

【명세서】
[발명의 명칭]
물성이 강화된 키토산 및 /또는 키틴 복합체 및 그 용도
[기술분야】
카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는 키토산 및 /또는 키틴 복합체, 상기 복합체를 포함하는 유기 보강 소재 조성물,. 상기 유기 보강 소재 조성물로 제조된 제품, 및 키토산 및 /또는 키틴에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 첨가하는 단계를 포함하는 강도가증진된 키토산 및 /또는 키틴 복합체의 제조 방법에 관한 것이다.
【배경기술】
키틴 및 키토산은 무미 /무취의 천연 고분자 다당체로서, 키틴은 N- 아세틸 -D-글루코사민 단위체가 무수히 결합하여 이루어진 다당류 고분자 물질이고, 키토산은 키틴에서 아세틸기가 떨어져 나간 단위체가 무수히 결합하여 이루어진 다당류 고분자 물질이다.
키틴과 키토산은 천연성분이기 때문에 생체에 대한 적합성이 뛰어나고, 기능성 식품으로서 구비할 모든 조건을 완벽히 갖추고 있을 뿐만 아니라 인공피부, 수술용봉할사, 인공투석막, 각종 치료 보조 용품 등의 의약분야, 섬유, 화장품, 생활용품, 폐수 처리, 사진용 필름, 염료, 제지, 생분해성 플라스틱 등의 공업분야, 토양 개량제, 비료, 무공해 농약, 사료 등의 농업분야, 방사능 오염 제거, 액정, 이온 교환막 등의 다양한 분야에서 이용가치가 큰 다기능 물질로 평가된다.
그러나, 기존의 사용되고 있는 키틴 /키토산이 습한조건 및 수중에서 그 강도가 급격히 감소하기 때문에, 혈액이나 림프액이 흐르는 생체 내와 같은 습한 조건에서, 예컨대 인공힘줄 또는 인공인대 등으로 응용 및. 상용화하기에 어려움이 있다. 이러한 현상이 나타나는 이유로서 최근 발표된 분헌에 따르면 수분이 키틴 및 키토산에 가소제 (plasticizer) 역할을 함으로써 강도 및 유리전이 온도를 떨어뜨리는 것으로 보고되어 있다 [Carbohydrate Polymers 83 (2011) 947]. 따라서, 이와 같은 문제를 해결하여 키틴 및 키토산의 다기능의 이용 가치를 유지하면서 습한 조건에서 강도가 증진되어, 인공힘줄, 인공인대 등과 같이 습한 조건에서 작용하는 생체재료용 원천소재를 구현하기 위한 기술의 개발이 요구된다.
[발명의 상세한 설명 ]
【기술적 과제】
본 발명자들은 키토산 및 /또는 키 틴에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 첨가하면 습한 조건 또는 수중에서 강도가 증진된 인공힘줄, 인공인대 등의 생체 재료용 소재 (유기 보강 소재)를 구현할 수 있음을 확인하여 본 발명을 완성하였다. 이에, 본 발명의 일례는 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상꾀 화합물을 포함하는 키토산 및 /또는 키 틴 복합체를 제공한다.
또 다른 예는 상기 복합체를 포함하는 유기 보강 소재 조성물 및 상기 복합체의 유기 보강 소재 조성물 제고를 위 한 용도를 제공한다.
또 다른 예는 상기 유기 보강 소재 조성물로 제조된 제품을 제공한다. 또 다른 예는 키토산 및 /또는 키 틴에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 첨가하는 단계를 포함하는 강도가 증진된 키토산 및 /또는 키 틴 복합체의 제조 방법을 제공한다.
【기술적 해결방법】
상기 한 바와 같이 , 본 발명은 카테콜, 도파민,
DOPA(dihydroxyphenylalanine), 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는 키토산 및 /또는 키 틴 복합체, 상기 복합체를 포함하는 유기 보강 소재 조성물, 상기 유기 보강 소재 조성물로 제조된 제품, 및 키토산 및 /또는 키 틴에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 첨가하는 단계를 포함하는 강도가 증진된 키토산 및 /또는 키 틴 복합체의 제조방법을 제공한다. 상기 카테콜, 도파민, DOPA, 및 메틸카테를로 이루어 진 군에서 선택된 1종 이상의 화합물을 포함하는 키토산 및 /또는 키 틴 복합체는 카테콜, 도파민, DOPA, 및 메틸까테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하지 않는 경우와 비교하여 수분에 의 한 강도 저하 문제가 현저하게 개선되 어 , 습한조건에서도 높은 강도를 유지할 수 있다는 이점을 갖는다.
특히, 인공힘줄 (tendon) 및 인공인대 (ligament)용 소재로서 키틴 및 /또는 키토산 복합체가 제공될 수 있다. 인공힘줄 및 인공인대는 힘줄과 인대가 파괴되었을 때 이들 조직을 대신하여 골격과 근육을 이어주는 역할을 할 수 있도록 높은 강도를 갖고, 새로운 조직이 생겨나 더 이상 필요로 하지 않을 때에는 생체로 흡수 가능하도록 생체적합성이 높은 것이 좋다.
키틴 및 키토산은 풍부하고 친환경적인 자원으로서, 생분해성, 항바이러스성, 상처 치유능 등 다양한 장점올 가지고 있어 인공힘줄 및 인공인대와 같은 생체 재료로서 적합한 소재이다. 하지만 인공힘줄 및 인공인대의 응용이 혈액이나 림프액이 흐르는 체내의 습한 조건 이루어지는데, 기존의 사용되고 있는 키틴 및 키토산이 습한조건 및 수중에서 그 강도가 급격히 감소하여 인공힘줄이나 인공인대와 같이 습한 조건에서 강도가 유지되어야 하는 생체재료로서의 상용화하는 데 어려움이 있다.
앞서 설명한 바와 같이, 본 발명자들의 예비 시험 결과에 따르면, 키틴 및 키토산은 물과 접촉하거나 습한조건에서 그 강도 (modulus)가 현저하게 감소하는 문제점을 갖는 것으로 나타났다. 키틴 /키토산의 강도 (modulus)를 완전히 건조된 시료와 0.15 M phosphate Buffered Saline (pH 7.4) 수용액에서 하루동안 침수 (浸水) 후 시료를 비교하였을 때, 키틴 및 키토산 필름의 수화된 시료의 인장강도 (Young's modulus)는 완전히 건조된 시료 인장강도의 10%로 크게 감소하는 것으로 나타났다. 이와 관련하여, 수분이 키틴 및 키토산에 가소제 (plasticizer) 역할을 함으로써 강도 및 유리전이 온도를 떨어뜨리는 것으로 보고되어 있다 [Carbohydrate Polymers 83 (2011)].
한편, 멜라닌 색소는 도파 (DOPA) 등의 카테콜 (Catechol) 복합체가 서로간의 가교 (cross-linking) 반웅을 하면서 생긴다고 여겨지고 있다. 도파의 가교 밀도가 증가하고 소수성기인 멜라닌이 증가하면서 탈수화 반응이 진행된다. 이것은 재료의 물성을 강화시킬 것으로 생각되고 있다 (Andersen, S.0. et al, Nature 251, 507 (1974)).
이에, 본 발명자들은 키토산 및 /또는 키틴에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물을 첨가하면 강도가증진된 재료를 구현할 수 있음을 확인하여 본 발명을 완성하였다. 우선, 본 발명은 키토산, 키틴, 또는 이들의 흔합물과 카테콜, 도파민,
DOPA, 및 메틸카테콜 (예컨대, 3-메틸카테콜)로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하고, 키토산,,키틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물 간 공유 또는 비공유. 결합을 통하여 가교된 키토산, 키틴, 또는 이들의 흔합물의 복합체를 제공한다. 상기 복합체는 키토산, 키틴, 또는 이들의 흔합물만 존재하는 경우보다 수분에 팽윤된 상태에서 인장강도 (young's modulus) 등의 기계적 물성이 현저하게 증진되는 것을 특장으로 한다. 이와 같은 기계적 물성의 증진으로 인하여 젖은 환경 (습한 조건하)에서 강한 기계적 성질과 낮은 물흡습성이 요구되는 인공인대, 인공힘줄, 또는 기타 용도에 유리하게 적용될 수 있다.
이와 같은 강도 증진 효과는 키토산, 키틴, 또는 이들의 흔합물에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택돤 1종 이상의 화합물을 첨가함으로써 달성되며, 강도 증진 효과 정도는 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물의 첨가량에 의존적으로 증가한다. 따라서, 카테콜, 도과민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물의 첨가량 범위는 특별한 제한은 없지만, 키토산, 키틴, 또는 이들의 흔합물의 본래의 생체 유용성올 유지하면서 소망하는 강도 증진 효과를 얻기 위하여, 키토산, 키틴, 또는 이들의 흔합물의 중량을 기준 (100중량0 /0)으로, 0.1 내지 30 중량 %, 또는 1 내지 30 증량0 /0, 또는 4 내지 30중량0 /0, 또는 15 내지 30 중량 % 정도로 하는 것이 좋다.
본 발명에서의 키토산또는 키틴의 분자량은 특별한 제한은 없지만, 5 내지 500 kDa 범위일 수 있다. 본 발명의 복합체에는 키토산과 키틴이 각각 단독으로 포함될 수 있고, 이들이 흔합된 흔합물 형태로 포함될 수 있다. 상기 복합체는 완전히 증류수에 3시간 침지시켜 습윤 팽윤된 상태에서도 우수한 물성을 유지한다 (표 2 및 표 3 참조)
상기 복합체는 키토산 및 /또는 키틴 이외에 카테콜, 도파민, DOPA, 및 메틸카테콜 (예컨대, 3-메틸카테콜)로 이루어진 군에서 선택된 1종 이상을 추가로 포함함으로써, 이들 카테콜, 도파민 , DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 산화에 의 한 가교 반응 및 탈수 반응에 의하여 수분에 의 한 기 계적 물성의 약화를 방지하고 우수한 물성을 유지할 수 있게 된다.
또한, 상기 복합체는 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 산화에 의하여 소수성의 멜라닌 생성 이 증가하여, 비교적 많은 양의 멜라닌을 포함하며 , 이와 같은 멜라닌은 탈수화 반응을 진행시켜 , 재료의 물성 강화에 도움을 준다. 상기 복합체 내의 멜라닌 함량은 과산화 수소 분해법 (Moses, D and J. H Waite, Journal of the biological chemistry, 2006, Vol. 281, Issue 46, 34826-34832)에 의하여 측정되는 바로서 약 50 중량 % 이상, 예컨대, 약 50 중량0 /0 내지 약 99' 중량% 또는 약 70 중량% 내지 약 99 중량0 /0, 구체적으로 약 75 중량% 내지 약 98 중량0 /0, 보다 구체적으로 80 중량 % 내지 약 98 중량% 정도일 수 있으나 이에 제한되는 것은 아니다.
이 러 한 내용은 후술하는 실시 예에서 입증되는 인장강도 개선 및 흡습성 감소의 결과로부터 확인할 수 있다. 상기 흡습성은 통상의 방법으로 측정 가능하며 , 예컨대, EWC (equilibrium water content)법을 통해 시험할 수 있다. 시료를 0.15 M phosphate Buffered Saline (pH 7.4) 수용액에 하루 동안 담근 후 흡습성을 시험하고 0.00이를 최소단위로 하는 정밀저울로 무게변화를 측정하였다. EWC는 다음의 식으로 계산할 수 있다: 100X(Wt- W0)AVt (W0: 건조된 시료의 무게, Wt: 더 이상 시료가 수분을 흡수하지 않을 . 때 무게).
이와 같이 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 산화가 복합체의 물성 유지 및 강화에 도움이 되므로, 상기 복합체가 산화제 역할을 하는 화합물, 예컨대, 소듐 페리오데이트 (Sodium periodate), 과산화수소, 소듐 아이오데이트 (sodium iodate), 및 /또는 수산화나트륨을 추가로 함유하는 경우, 습윤 팽윤상태에서도 인장 강도 등의 물성 이 현저하게 증진되는 것으로 나타났다 (표 3 참조). 따라서 , 본 발명의 복합체는 소듐 페리오데이트, 과산화수소, 소듐 아이오데이트 (sodium iodate), 및 수산화나트륨 (NaOH)으로 이루어진 군에서 선택된 1종 이상을 추가 함유하는 것 일 수 있다. 상기 추가로 함유되는 소듐 페리오데이트, 과산화수소, 및 수산화나트륨으로 이루어진 군에서 선택된 1종 이상의 양은 상기 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상을 기준으로 5 내지 15 중량 %, 구체적으로 8 내지 12 중량 %일 수 있다.
또한, 키토산 또는 키틴 복합체는 열처 리 (annealing)함으로써 , 습윤 상태의 강도를 보다 증진시 킬 수 있다 (표 3 참조). 상기 열처 리는 80 내지 120 °C , 구체적으로 90 내지 1 KTC의 진공 하에서 6 내지 12시간 동안 처 리하는 것일 수 있다.
키토산 또는 키 틴 복합체의 경우 상기 복합체는 상대 습도 약 40 내지 50%에서의 young's modulus가 약 500 Mpa 이상, 예컨대, 500 내지 10000 Mpa, 또는 500 내지 5000 Mpa 정도이고, 상대 습도 약 90 내지 100%에서의 young's modulus가 약 180 Mpa 이상, 구체적으로 약 280 Mpa 이상, 더욱 구체적으로 300 Mpa 이상, 예컨대, 300 내지 5000 Mpa, 또는 300 내지 3000 Mpa 정도일 수 있다. 따라서 상기 복합체는 체내의 습한 조건에서 좋은 강도를 요구하는 인공힘줄 및 인공인대 등의 생체 재료용 소재로서 웅용가능하다.
본 발명에 따른 복합체는 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상이 키토산 또는 키 틴의 아민 그룹에 공유 결합 되어 있거나 (특히, 소듐 페리오데이트 또는 과산화수소 사용 경우), 비공유결합 (예컨대, cation-π 결합) 되 어 가교되어 있는 구조일 수 있다 (도 Ί 참조). 도 7은 소듐 페리오데이트 (oxidant로 기 재됨) 첨가시 키토산의 아민기와 도파민 또는 카테콜 간 일어날 수 있는 반응을 모식 적으로 보여주는 것이다. 도 4에서의 1번부터 3번 반웅은 소듐 페 이오데이트를 넣었을 때 가속화 되는 반응이며 4번 반웅은 온도를 을리고 진공에서 물이 빠지 면서 나을 수 있는 반응을 보여준다 (INTEGR. COMP. BIOL., 42:1172-1180 (2002) Adhesion a la Moulel , J. H. Waite).
본 발명의 또 다른 예는 상기 물리 적 강도 등의 물성 이 증진된 복합체를 포함하는 유기 보강 소재 조성물을 제공한다. 보다 구체적으로, 키토산, 키된, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜 (예컨대, 3-메틸카테콜)로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하고, 키토산, 키 틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물 간 송유 또는 비공유 결합을 통하여 가교된 키토산, 키 틴, 또는 이들의 흔합물의 복합체를 포함하는 유기 보강 소재 조성물이 제공된다. 또 다른 예에서 , 키토산, 키 틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜 (예컨대, 3-메틸카테콜)로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하고, 키토산, 키 틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물 간 공유 또는 비공유 결합을 통하여 가교된 키토산, 키 틴, 또는 이들의 흔합물의 복합체의 유기 보강 소재 조성물 제조를 위 한 용도가 제공된다. 상기 복합체에 대한 상세한 설명은 앞서 설명한 바와 같다. 상기 유기 보강 소재 조성물은 필름, 장섬유 (filament), 부직포 등의 형 태일 수 있으나, 이에 제한되지 않고, 강도를 필요로 하는 모든 소재 조성물일 수 있다.
또 다른 예는 상기 키토산, 키 틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜 (예컨대, 3-메틸카테콜)로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하고, 키토산, 키 틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 쩨틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물 간 공유 또는 비공유 결합을 통하여 가교된 키토산, 키틴, 또는 이들의 흔합물의 복합체를 포함하는 유기 보강 소재 조성물로 제조된 제품을 제공한다. 상기 제품은 생체에 적용되는 생체 재료를 포함하여 강도를 요구하는 모든 보강재 제품일 수 있다.
또 다른 예는 키토산, 키 틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜 (예컨대, 3-메틸카테콜)로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하고, 키토산, 키 틴, 또는 이들의 흔합물과 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 화합물 간 공유 또는 비공유 결합을 통하여 가교된 키토산, 키 틴, 또는 이들의 흔합물의 복합체의 보강재 제품 제조를 위 한 용도를 제공한다.
상기 보강재 제품은, 예컨대, 인공인대, 인공힘줄, 인공 치과용 재료 (예컨대, 인공샤피섬유 (artificial Sharpey's fiber), 인공치조골 (artificial periodental ligament) 등), 인공 피부, 수술용봉합사, 인공투석막, 각종 치료 보조 용품, 의복용 섬유, 타이어 코드 (tire cord, 타이어의 내구성과 주행성 , 안정성을 높이 기 위해 고무 내부에 들어가는 섬유 재질의 보강재) 등일 수 있다.
또 다른 예는 키토산 및 /또는 키 틴의 강도를 증진시 키 기 위 한 방법 또는 강도가 증진된 키토산 및 /또는 키틴의 제조 방법 이 제공된다. 상기 방법은
키토산, 키 틴, 또는 이들의 흔합물을 물, 이온성 용매 또는 이들의 흔합물에 용해시 키는 단계 1); 및
상기 얻어진 용액에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상을 첨가하는 단계 2)
를 포함할 수 있다.
상기 이온성 용매는 키토산 및 /또는 키 틴을 용해시 킬 수 있는 모든 이온성 액체 (ionic liquid)를 의미하는 것으로, 예컨대, 아세트산 또는 아세트산 수용액, DMAc(dimetylacetamide)/LiCl(DMF(dimethylfo amide)^ LiCl을 녹인 용액, 키토산 또는 키 틴을 질량비율로 5 내지 10%까지 녹일 수 있음), 에틸메틸이미다졸륨 아세테이트 등일 수 있으며., 구체적으로 0.1 내지 5M의 아세트산 수용액 일 수 있다.
상기 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 첨가량은 키토산, 키 틴, 또는 이들의 흔합물의 중량 기준으로 0.1 내지 30 중량0 /0,또는 1 내지 30 중량0 /0,또는 4 내지 30중량0 /。, 또는 15 내지 30 증량% 정도일 수 있다.
또한, 상기 방법은 소듐 페리오데이트, 과산화수소, 소듐 아이오데이트, 및 수산화나트륨으로 이루어진 군에서 선택된 1종 이상을, 예컨대 상기 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상을 기준으로 5 내지 15 중량0 /0, 바람직하게는 8 내지 12 중량。 /0의 양으로, 첨가하는 단계 2-1)을 추가로 포함할 수 있다. 상기 단계 2- 1)은 단계 2) 전, 후 또는 동시에 수행 가능하다.
또한, 상기 단계 2) 또는 2-1) 이후에 열처 리 단계 (단계 3)가 추가로 포함될 수 있다. 예컨대 상기 열처 리 단계 3)은 상기 단계 2) 또는 2-1)에서 얻어진 흔합물 (키토산 및 /또는 키 틴과 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 흔합물; 또는 키토산 및 /또는 키 틴과 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상과 소듐 페리오데이트, 과산화수소, 및 수산화나트륨으로 이루어진 군에서 선택된 1종 이상의 흔합물)을 80 내지 120°C, 바람직하게는 90 내지 1HTC의 진공 하에서 6 내지 12시간 동안 처 리하여 수행될 수 있다. 이와 같은 열처 리 단계를 거 침으로써 , 최종 생산물의 강도를 보다 증진시 킬 수 있다. ^
본 발명에서 제공되는 키토산, 키 틴, 또는 이들의 흔합물에 카테콜, 도파민, 또는 이들의 흔합물이 첨가된 복합체는 침수 후 향상된 강도를 유지하기 때문에、 인공힘줄, 인공인대, 인공 치과 재료 등 다양한 생체 재료로서 이용될 수 있고, 용도를 이 에 제한하지 않고 필요로 하는 각종 재료로서 유용하게 사용될 수 있다.
[도면의 간단한 설명】
도 1 는 인장강도 측정시 초기에 얻어지는 그래프와 인장강도를 계산하는 방법을 도시 한 것이다.
도 2와 도 3은 각각 상대습도 90 내지 100%에서의 C15 vs C15— SPᅳ annealing 70% (도 2)과, D15 vs D15_SP_annealing 70% (도 3)의 인장강도 테스트 시 얻어지는 그래프를 보여주는 것이다.
도 4a 내지 4e는 건조상태에서의 키토산 및 DOPA가 가교결합된 키토산 복합체의 인장강도, stiffhess, 및 toughness를 보여주는 그래프이다. 도 5은 습윤 팽윤된 상태에서의 DOPA 및 산화제 함량에 따른 인장강도, stiffhess, 및 toughness를 보여주는 그래프이다.
도 6은 DOPA 함량에 따른 키토산 복합체의 EWC(Equilibrium water content)를 보여주는 그래프이다.
도 7은 키 틴 또는 키토산과 도파민 또는 카테콜. 간의 공유 결합 (소듐 페리오데이트 첨가나 열처리)을 모식 적으로 보여주는 것 이다.
도 8는 키토산과 키토산 복합체의 물 접촉각 (Static water contact angle)을 비교하여 보여주는 것이다.
도 9은 DOPA 가교결합된 키토산의 흡습성 감소로 인하여 기 계적 물성 이 증진됨을 보여주는 그래프이다.
도 10은 순수한 키틴과 도파민을 포함하는 키틴 복합체의 물 접촉각 (위)과 EWC (아래)를 보여준다.
도 11은 순수 키틴 필름과 키 틴 복합체 필름의 전자현미 경 구조를 보여주는 SEM 이미지 이다.
도 12는 도파민을 10중량%의 양으로 포함하는 키 틴 복합체의 결정 구조를 보여주는 그래프로, 검은색 (그래프 중 가장 아래)은 native 키 틴, 붉은색 (그래프 중 중간)은 키 틴 필름, 파란색 (그래프 중 가장 위 )은 도파민을 포함하는 키 틴 복합체 필름을 나타낸다.
도 13 은 완성된 키 틴 섬유의 조골모세포 (MC3T3-el)에 대한 세포독성을 비교하는 그래프이다.
도 14는 키토산 및 키토산 복합체의 TGA(thermal gravimetric analysis) 테스트 결과를 보여주는 그래프
도 15는 실시 예 7에 따른 키 틴 복합체 또는 키토산 복합체에서의 과산화 수소법으로 분해된 세피아 멜라닌 용액의 300nm에서 700nm 사이의 자외선-적외선 그래프를 보여준다.
도 16은 도 15의 세피아 멜라닌 용액의 흡광계수로부터 얻은 멜라닌 표준화 곡선이다.
【실시 예 ]
이하, 실시 예, 비교예 및 실험 예를 들어 본 발명의 구성 및 효과를 보다 구체적으로 설명한다. 그러나 아래 실시 예, 비교예 및 실험 예는 본 발명 에 ' 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것 일 뿐 본 발명의 범주 및 범위가 그에 의해 제한되는 것은 아니다.
실시예 1: 카테콜 또는 도파민이 포함된 키토산 복합체 제조
0.325M의 아세트산 수용액 제조한 후, 키토산 (High molecular weight, sigma-aldrich, Chitosan 419419-(Coarse ground flakes and powder) 800-2000 cP, 1 wt% in l%(w/v) acetic acid, Brookfield(lit.), DDA: 80% 이상) 20g을 상기 아세트산 수용액 980g에 녹이고 24시간 동안 40°C에서 초음파 하에 녹여서 키토산 /아세트산 수용액을 제조하였다. 상기 얻어진 키토산 /아세트산 수용액 30ml에 카테콜 (99%(w/w), sigma-aldrich)과 도파민 (99%(w/w) sigma-aldrich)을 각각 다음의 표 1과 같은 흔합비 조건을 만족시키도록 첨가하여 용해시 켰다.
【표 1】
Figure imgf000013_0001
시료 C15와 D15에 여기에 포함된 카테콜 또는 도파민의 10% 중량0 /o에 해당하는 소듐 페리오데이트 (Sodium periodate)를 첨가하고, 얻어진 흔합물을 각각 C15 SP와 D15 SP라고 칭하였다.
바닥 전체가 테프론 테이프로 코팅 된 페트리 디쉬에 상기 준비된 시료를 각각 30ml씩 (각 시료별로 별도의 페트리 디쉬 사용)를 넣었다. 상기 준비된 각각의 페트리 디쉬를 40°C 대류식 오본 (convection oven)에서 2일 동안 건조시켜 , 약 0.1mm의 freestanding 필름을 제작하였다. 남아았는 아세트산과 물을 완전히 제거하기 위해서, 상기 얻어진 필름을 50 °C 진공오븐에 하룻밤 동안 두었다.
실시 예 2: 키틴 및 키틴 복합체 제조
키 틴 (chitin from shrimp, Sigma-Aldrich)를 이온성 액체 (l-Ethyl-3- methylimidazolium acetate)에 10중량0 /0가 되도록 용해시켜 키 틴 용액을 제조하였다. 상기 제조된 키 틴 용액에 도파민 (99wt%, Sigma-Aldrich)을 0 중량0 /0, 5 중량 %, 또는 10 중량 %의 양으로 첨가하였다. 용질을 완전히 녹이기 위해서 상기 키 틴 용액 또는 키 틴 /도파민 용액을 100°C에서 6시간 동안 녹였다. 완전히 용해된 두 종류의 용액을 를 위에 붓고 150°C에서 2시간 처 리하여 도파민의 열에 의 한 산화 및 가교 반웅이 일어나도록 하였다. 그 후, 상기 두 용액을 상온에 밤새 두어 온도를 낮추었다. 상기 두 용액은 상온에서 겔이 되 었다. 완성된 두 겔을 100%(w/v) 에 탄을 용액어 ί 1시간 정도 담그고, 증류수에 넣어 확산에 의하여 이온성 액체를 제거하였다. 물에 팽윤된 겔을 너비 1cm 길이 3cm가 되도록 직사각형 형 태로 자른 뒤 건조시켰다. 실시예 3: 키토산과 키토산 복합체의 인장강도 테스트 상기 실시 예 1에서 제조된 8 종류^6 ,예 )4, )7,^5, 1)15, 5 81>, D15 SP)의 필름을 lcmX3cm의 직사각형 형 태로 자르고 두께는 micrometer를 이용해서 0.001mm 자리까지 측정하였다. 인장강도 테스트 기구 (Instron 3340 모델)을 이용해서 young's constant extension rate 모드에서 변형속도를 0.5mm/min으로 하고, 시편 집 게와 집게 사이의 거 리를 1cm로 하였다. 각 시료의 인장강도는 상대습도가 약 50%인 경우와 시료를 약 0.15 M의 phosphate Buffered Saline (pH 7.4)에 하루 침지시 켜 완전히 시료가 젖은 경우의 두 환경에서 각각 측정하였다.
시료 중 C15 SP 및 D15 SP를 100°C 진공오븐에서 하룻밤 (약 12시 간) 동안 두어 , C15 SP annealing 및 D15 SP_annealing 시료를 제작하였다. 상기 인장강도 테스트 기구를 이용하여 , 상기 시료의 상대습도가 약 50%인 경우와 시료를 약 0.15 M의 phosphate Buffered Saline (pH 7.4)에 하루 침지시켜 완전히 시료가 젖은 경우의 두 환경 에서의 인장강도를 측정하여 그 결과를 도 2 내지 도 3에 나타내었다. 도 2와 3에서 검은색은 공통적으로 순수 키토산 필름의 물성을 나타낸 것 이고 도 2의 붉은 색은 카테콜 함유 키토산 복합체를, 도 3의 파란색은 도파민 함유 키토산 복합체를 나타낸 것이다. 또한, 이 그래프로부터 평균 young's modulus, yield stress, yield strainstress at break (Breaking stress), 및 strain at break(Breaking strain) 값을 구하였다 . 보다 구체적으로, stress는 F(force)/A(area, 면적)으로, 잡아당기는 힘을 단면적으로 나눈 값이며 , 단위는 N/m이다. 또한 strain은 늘어난 비율을 의미하며 변한길이 /처음길이를 의 미 한다. 이와 같이, 처음길이와 면적을 상기 인장강도 테스트 기구에 대입하고 작동시키 면 상기 값들이 얻어진다. 우선, X축은 strain Y축은 stress인 그래프가 얻어지는데 (도 1 참조), 여기서 변곡점 이 일어나기 전의 초기 기울기를 young's modulus라고 하고, 변곡점 이 일어나는 점을 yield point라고 하며 , 이때의 strain을 yield strain, 이때의 스트레스를 yield stress라고 한다. 최종적으로 파괴되는 지 점을 breaking point라고 하며, 이 때의 strain을 Breaking strain, 이 때위 stress를 Breaking stress라고 한다.. 파괴될 때까지 기 ; I:기를 인장강도라고 이르는데 초기 young's modulus와 대체로 비 례하여 , 본 명세서에서는 young's modulus가 인장강도를 대체하는 의미로도 사용된다.
상기와 같이 얻어진 결과를 아래의 표 2 및 표 3에 나타내었다:
【표 2】
상대습도 50%인 경우
Figure imgf000015_0002
(Ei: young ' s modulus)
【표 3】
0.15 M phosphate Bufferd Saline (PH 7.4)메
Figure imgf000015_0001
침지시켜 완전히 시료가 ¾믄 ¾무
Figure imgf000015_0003
(Ei: young's modulus) 상기 표 2에서 알 수 있는 바와 같이, 상대 습도 50% 정도에서, 카테콜을 포함하는 키토산 복합체에서는 카테콜 농도와 비례하여 young's modulus (initial modulus)가 800Mpa까지 증가하였다. 도파민을 포함하는 키토산 복합체인 시료 D15 역시 720Mpa의 young's modulus 값올 보였다. 이러한 카테콜 또는 도파민을 포함하는 키토산 복합체 시료의 young's modulus 수치는 키토산만을 포함하는 시료 neat chitosan의 young's modulus (320Mpa)보다 현저하게 높은 수치 이다.
또한, 카테콜을 포함하는 키토산 복합체의 breaking strain과 stress 역시 키토산만을 포함하는 시료 neat chitosan보다 높은 수치를 나타냈으며, 카테콜 농도에 비 례하여 크게 증가하였고, 도파민을 포함하는 키토산 복합체인 시료 D15 역시 시료 neat chitosan에 비해 breaking strain과 stress가 증가하였다. 이 것은 카테콜과 도파민의 도파 (dopa) 그룹이 일부 가교 반응을 하여 키토산 분자 사슬의 움직 임을 억제한 것에 기 인하는 것으로 보인다.
표 3에서 알 수 있는 바와 같이, 시료를 약 0.15 M의 phosphate Buffered Saline (pH 7.4)에 하루 침지시켜 완전히 젖은 시료 neat chitosan, C04, C07, C15, 및 D15의 young's modulus 값이 상대습도 50%인 경우 (표 2)에 비해 약 50% 이상 크게 감소하는 것으로 나타났다. 이는 공기중의 물 분자가 가소제 역할올 하여 재료를 유연하게 하였기 때문이다. 또한, 시료 C15 SP와 D15 SP가 sodium periodate 첨가 전에 없었던 진한 갈색으로 변한 이유는 카테콜 그룹에 존재하는 두 개의 수산기가 케톤기로 산화 되 었기 때문이다. 시료 CI5 SP와 D15 SP이 C15와 D15에 비해 상대습도가 약 50%인 경우와 시료를 약 0.15 M의 phosphate Buffered Saline (pH 7.4)에 하루 침지시 켜. 완전히 시료가 젖도록 한 경우의 조건 하에서 young's modulus 및 breaking stress 값에서 차이가 없는 이유는 sodium periodate가 산화 반응은 촉진시 켰지 만 다음 반웅인 가교 반웅은 크게 증가 시 키지 못하기 때문이 다.
C15 SP와 D15 SP를 진공 하 100°C에서 12시간 정도 가열한 C15
SP_annealing와 D15 SP_annealing는 neat chitosan에 비해 상대습도가 약 50%인 경우와 약 시료를 약 0.15 M의 phosphate Buffered Saline (pH 7.4)에 하루 침지시켜 완전히 시료가 젖도록 한 경우에서 young's modulus 가 각각 대략 24배 15배 정도 증가하였다. 이 러한 결과는 가열반응이 가교 반웅을 가속화 시켰음을 방증한다.
실시 예 4: 키토산 및 키토산 복합체의 인장강도 테스트
4.1. 도파를 포함하는 키토산 복합체 제조
0.325M의 아세트산 수용액 제조한 후, 키토산 (High molecular weight, sigma-aldrich, Chitosan 419419-(Coarse ground flakes and powder) 800-2000 cP, 1 % in 1% acetic acid, Brookfield(lit.), DDA: 80% 이상) 20g을 아세트산 수용액 980g에 녹이고 24시간 동안 40°C에서 초음파 하에 녹여서 키토산 /아세트산 수용액을 제조하였다. 상기 얻어진 키토산 /아세트산 수용액 30ml에 도파 (DOPA, 99%(w/w) sigma-aldrich) 0-20 wt%, 및 sodium periodate 0-3 wt%를 흔합비 조건 (도 4 및 5 참조)을 만족시 키도록 첨가하여 용해시 켰다. 용해시 킨 용액을 바닥 전체가 테프론 테이프로 코팅 된 페트리 디쉬 에 상기 준비된 시료를 각각 30ml씩 (각 시료별로 별도의 페트리 디쉬 사용)를 넣었다. 상기 준비된 각각의 페트리 디쉬를 40°C 대류식 오본 (convection oven)에서 2일 동안 건조시 켜 , 약 0.1mm의 freestanding 필름을 제작하였다. 남아있는 아세트산과 물을 완전히 제거하기 위해서 , 상기 얻어진 필름을 50°C 진공오븐에 하룻밤 동안 두었다.
상기 제작된 키토산 및 키토산 복합체의 필름을 lcmX3cm의 직사각형 형 태로 자르고 두께는 micrometer를 이용해서 0.001mm 자리까지 측정하였다. 생산된 필름의 전자현미경 구조는 도 11에 나타내었다.
인장강도 테스트 기구 (Instron 3340 모델)을 이용해서 young's constant extension rate 모드에서 변형속도를 5mm/min으로 하고, 시편 집 게와 집 게 사이의 거리를 1cm로 하였다. 각 건조상태에서 측정되는 시료는 진공오븐에서 120°C에서 6시간 보관하여 완전히 건조 시켰고, 습윤상태에서 측정되는 시료는 0.15 M phosphate Buffered Saline (pH 7.4)에 하루 침지시 킨 후 재빨리 꺼내어 인장강도를 측정하였다.
도 4a 내지 4e는 건조상태 (수분함량 약 1% 이하)와 도 5는 0.15 M phosphate Buffered Saline (pH 7.4) 속에서 팽윤된 상태의 키토산 및 키토산 복합체의 인장강도 결과이다. 시료들의 Young's modulus는 실시 예 3에 기 재된 방법으로 계산하였다.
도 4a는 산화제 (소듐 페리오데이트; 이하 동일)를 포함하지 않는 경우의 DOPA 함량에 따른 인장강도, 4b는 1 중량 % 산화제를 포함하는 경우의 DOPA 함량에 따른 인장강도, 4c는 5 중량 %의 DOPA를 포함하는 경우의 산화제 함량에 따른 인장강도를 나타내며, 4d는 DOPA 및 산화제 함량에 따른 stiffiiess, 도 4e는 DOPA 및 산화제 함량에 따른 toughness를 보여준다 (각 수치와 에 러바는 각각 5회 평균값 및 표준편차를 나타낸다). 도 4a 내지 4e에서 보여지는 바와 같이, 건조된 상태에서의 Young's modulus은 순수 키토산의 경우 약 0.5GPa 정도였고, 첨가하는 도파 양에 비 례해서 증가하여 최 대 4배 (약 2GPa)까지 증가하였다.
도 5의 A, B, 및 C는 습윤 팽윤된 상태에서의 DOPA 및 산화제 함량에 따른 인장강도, stiff ess, 및 toughness를 각각 보여준다 (각 수치와 에 러바는 각각 5회 평균값 및 표준편차를 나타낸다). 도 5의 A에서 보여지는 바와 같이 습윤 팽윤된 상태에서의 Young's modulus은 순수 키토산의 경우 0.05GPa 였고, 첨가하는 도파민 양에 비 례해서 증가하여 최 대 7.1배 (으35 GPa)까지 증가하였다. 인간의 힘줄과 인대의 Yovmg's modulus는 각각 0.5GPa과 0.2GPa인 것을 고려할 때, 제조된 키토산 복합체는 인공힘줄 및 인공인대용 소재로서 사용될 가능함을 확인할 수 있다.
실시 예 5: 키틴과 키틴 복합체의 인장강도 테스트
상기 실시 예 2에서 제조된 3 종류 (도파민 함량: 0 중량0 /0, 5 중량0 /0, 10 중량0 /0)의 키 틴과 키 틴 복합체의 필름을 lcmX3cm의 직사각형 형 태로 자르고 두께는 micrometer를 이용해서 0.001mm 자리까지 측정하였다. 인장강도 테스트 기구 (Instron 3340 모델)을 이용해서 young's constant extension rate 모드에서 변형속도를 5mm/min으로 하고, 시편 집 게와 집 게 사이의 거리를 lcm로 하여 측정하였다.
건조상태의 시료는 상기 얻어진 각각이 시료를 진공오븐에서 120°C에서 6시간 보관하여 완전히 건조시 켜 준비하였고, 습윤상태 시료는 증류수에서 3시간 정도 담가서 준비하였으며 , 이를 재빨리 꺼내어 인장강도를 측정하였다.
도 9는 건조상태 (위)와 0.15 M phosphate Buffered Saline (pH 7.4) 속에서 팽윤된 상태 (아래)의 키 틴 및 키 틴 복합체의 인장강도 결과이다. 시료들와 Young's modulus는 실시 예 3에 기 재된 방법으로 계산하였다. 건조된 순수 키 틴의 Young's modulus는 약 1.5GPa 정도였고, 키 틴 복합체의 경우에는 첨가된 도파민 양에 비 례해서 증가하여 최대 2.1배까지 증가하였다. 습윤 팽윤된 상태에서 순수 키 틴 Young's modulus는 0.21GPa였고, 키 틴 복합체의 경우에는 첨가된 도파민 양에 비 례해서 증가하여 최 대 2.2배까지 증가하였다. 인간의 힘줄과 인대의 Young's modulus는 각각 0.5GPa과 0.2GPa인 것을 고려할 때, 키 틴 복합체가 인공힘줄 및 인공인대용 소재로서 사용될 수 있음을 확인할 수 있다.
실시예 6: 키틴 /키토산과 키틴 /키토산 복합체의 흡습률 및 접촉각 테스트
상기 실시 예 1, 2, 및 4.1 에서 만들어진 키 틴 /키토산 및 키 틴 /키토산 복합체의 흡습률 (EWC, equilibrium water content)을 측정하였다.
시료의 흡습률은 다음과 같이 측정되었다. 완전히 건조된 상기된 3종류의 시료의 무게 (W0)를 잰 후, 0.15 M phosphate Buffered Saline (pH 7.4)에 3시간 담근 후 꺼내어 그 무게 (Wt)를 재었다. 상기 무게는 0.00이를 최소단위로 하는 정밀저울로 측정하였다. 흡습률를 100X(Wt-W0)/Wt로 정의하였다.
상기 얻어진 그 결과 순수 키토산의 약 66%였고 키틴의 흡습률은 약 65%였다. 키토산 복합체의 경우 첨가된 도파의 양에 비 례해서 약 55%까지 감소하였다 (도 6 참조). 이는 키토산 복합체의 water-resistance가 현저하게 개선되 었음을 나타내는 것으로, 습윤 조건에서의 소수성 멜라닌 생성을 의미하는 것 이다. 또한, 키 틴 복합체의 경우 첨가된 도파민 양에 비 례하여 흡습률이 감소하여 실험 한 영 역에서 최 대 43%로 감소하였다 (도 10 아래 참조).
이와 같은 흡습률 감소는 앞서 설명 한 도파 /도파민 산화에 의 한 가교반웅과 탈수화 반웅에 기 인하는 것이다.
키 틴 /키토산 및 키 틴 /키토산 유토체 필름의 접촉각 실험을 하였다. 최 대한 평평하게 만들어진 시료 필름 위에 10마이크로 리터 미 만의 증류수 방울을 떨어뜨리고 필름과 물방울 사이 의 각을 측정 함으로써 시료의 접촉각을 얻었다 (Rutnakompituk, et al. 2006. Carbohyd. Polym., 63(2), 229-237). 상기 얻어진 결과를 도 8 및 도 10(위)에 나타내었다. 도 8에서 보는 바와 같이 , 순수한 키토산의 접촉각은 약 60도였고 도파가 첨가됨에 따라 약 80도까지 증가하였다 (unoxidized: 10wt% DOPA 포함; oxidized; 10 wt% DOPA + 1 wt% 소듐 페리오데이트). 도 10(위)에서 보는 바와 같이, 순수한 키 틴의 접촉각은 약 35도인 반면, 도파민이 첨가됨에 따라 약 50도로 증가하였다. 이 러 한 결과는 도파 및 도파민 산화 반응으로 생간 멜라닌 층이 소재의 소수성 (hydrophobicity)를 증가시 켰음을 보여준다. 실시예 7: 키틴 /키토산 복합체내에 존재하는 멜라닌 (melanin) 정량 시험
DOPA를 다양한 함량 (10wt% 20wt%)로 포함하는 키토산 복합체 (실시 예 4.1 참조)와 키 틴 복합체 (실시 예 2 참조)내에 존재하는 멜라닌 (melanin)을 정 량화하는 실험을 하였다.
먼저 멜라닌 외의 모든 물질을 제거하기 위해 상기 4 종류의 DOPA 함유 복합체 (10wt% DOPA 함유 키 틴 복합체, 20wt% DOPA 함유 키 틴 복합체, 10wt% DOPA 함유 키토산 복합체, 및 20wt% DOPA 함유 키토산 복합체)를 가수분해 시 켰다. 70 mg의 DOPA 함유 키 틴 /키토산 복합체를 3.6 ml 의 6 M 염산과 0.12 ml 의 페놀과 함께 유리 앰풀 (ampoule)에 넣고 진공 상태에서 완전히 봉인 (sealing)하였다. 각각의 샘플이 들어 있는 앰풀 병들을 110 °C에서 48 시간동안 열을 가하였다. 이후 각 샘플을 앰풀로부터 꺼내어 rotary evaporator를 이용하여 염산과 페놀을 건조시켜 샘플을 파우더 상태로 만들었다. 이 파우더 샘플들을 증류수와 에탄올로 씻어내어 친수성 의 가수분해 산물들을 제거하여 가수분해된 샘플을 준비하였다.
과산화 수소 분해법 (Moses, D and J. H Waite, Journal of the biological chemistry, 2006, Vol. 281, Issue 46, 34826-34832)을 이용한 샘플의 멜라닌 농도 정량화를 수행하였다. 세피아 멜라닌 (Sepia melanin), 상기 준비된 가수분해된 샘플, 및 가수분해 안된 샘플들을 염기성 과산화 수소 수용액 상에서 분해시 킨 후, 560 nm의 흡광계수를 관찰하였다. 세피아 멜라닌은 오징 어 먹물에 있는 것으로써, 멜라닌 순도가 높아서 표준 물질로 실험 적으로 다양하게 사용되는 물질로, Sigma-adrich에서 구매하여 사용하였다.
먼저 , 과산화 수소법으로 분해된 0, 0.1, 0.2, 0.5, 및 1 mgl/ml의 ' 세피아 멜라닌 흡광계수를 얻고 그 결과를 최소 자승법을 통해 표준 멜라닌 흡광계수 그래프를 그리고 1 mg/ml의 샘플 용액 흡광계수를 비교하여 샘플 내의 존재하는 멜라닌 농도를 계산하였다. 샘플과 세피아 멜라닌은 다음과 같이 과산화 수소 분해를 시 켰다. 1 부피배의 10 N 수산화 나트륨과 2 부피배의 30%(w/v) 과산화수소를 37 부피 배의 물과 샘플 (샘플 농도가 1 mg/ml이 되도록)에 잘 섞고, 봉인 후 70 °C에서 하루 정도 보관하였다. 상기 수용액을 14,000 rpm에서 원심분리하여 남아 있는 고체 상태 불순물들을 제거하고, 상등액의 흡광계수를 측정하였다. 세피아 멜라닌으로부터 얻은 560 nm 흡광계수 표준 곡선은 R2 = 0.8767의 최소자승법 계수를 나타냈었고, 가수분해된 샘플과 가수분해를 수행하지 않은 샘플의 흡광계수를 이 표준 곡선에 대입하였다.
상기 얻어진 결과를 도 15 및 도 16에 나타내었다. 이들 결과로부터 , 가수분해가 수행되지 않은 10% 및 20% DOPA 함유 키틴 /키토산 복합체는 각각 8.6, 12.2 %의 멜라닌을 포함하고 있었고, 가수분해된 10% 및 20% DOPA 함유 복합체는 각각 94.6 wt%, 95.2 wt0/。의 멜라닌을 포함하고 있음이 확인되 었다. 다시 말해서, 가수분해 되지 않은 샘플에서 각각 DOPA의 90% 및 84 %가 산화반응 도중 멜라닌이 돠었음을 알 수 있다. 염산 가수 분해법을 키 틴 및 키토산을 포함하는 대부분의 바이오 재료를 용해할 수 있지만 멜라닌은 분해시 킬 수 없다고 알려져 있다. 그 이유는 멜라닌 분자 사이의 가교 반웅과 강력 한 hydrophobic 결합이 멜라닌을 안정화 시 키가 때문이라고 알려졌다. 이 러한 이유 때문에 가수분해된 샘플에서 높은 멜라닌 함유량을 나타내는 것으로 보인다.
실시 예 8: 키틴과 키틴 복합체의 조골모세포 실험
상기 실시 예 2 에서 만들어진 키 틴과 키 틴 복합체의 세포활성을 다음과 같이 측정하였다.
구체적으로, 쥐 조골모세포 (MC3T3-El; Riken cell bank)를 10% FBS (fetal bovine serum; Hyclone), 1% antibiotic-antimycotic (Hyclone) °1 포함된 동물세포배양액 (alpha-MEM; Hyclone)을 사용하여 37°C 인큐베이터에서 배양하였다. 상기 세포를 세포배양 접시에서 떼어내어 10% FBS가 들어가지 않은 상기 배양액에 2xl05개 /ml 농도로 희석하고, 12-웰 세포배양접시 (Falcon, USA) 에 키틴과 키틴 복합체의 필름을 배양접시 모양 및 크기 에 맞게 잘라 넣은 후, 상기 세포를 웰당 lxlO5개의 양으로 넣고 1시간 동안 인큐베이터에서 배양하였다.
상기 배양 후, 살아있는 세포를 정량화하기 위해서 CCK-8 (cell counting kit-8; Dojindo, Japan) 분석을 실시하였다. 먼저 상기 배양 후에 붙어 있지 않은 세포를 제거하기 위해 PBS(phosphate buffered saline; Hyclone)로 씻어 낸 후, CCK-8 용액 50μ1을 웰에 주입하였다. 살아있는 세포는 미토콘드리아에서 2-(2-methoxy-4-nitrophenyl)-3-(4_nitrophenyl)-5-(2,4- disulfophenyl)-2H-tetrazolium (WST-8)를 물에 녹는 포르마잔 (formazan)으로 환원시켜주기 때문에 CCK-8 시 약을 넣고 3시간 추가 배양한 후, 분광기 (spectrophotometer)를 통하여 450nm에서의 흡광도를 측정하여 배지 속에 녹아 있는 포르마잔을 측정하였다.
또한 이를 계속 배양하기 위해서 PBS로 씻어내고 10% FBS가 포함된 상기 배양액 imi를 넣어 37°C 인큐베이터에서 배양하였다. 상기 세포의 성장은 접착시와 동일한 방법을 사용하여 측정하였다.
상기 얻어 진 상대적 인 생존 세포수를 도 13에 나타내었다. CCK 배지의 450nm에서 상대적 흡광계수는 특정표면 위의 상대적 인 생존 세포수를 의미 한다. 도 13과 같이 순수 키틴 필름, 키 틴 복합체 필름, 및 빈 웰 표면 위에서 3일동안 배양하면서 배양 시간에 따른 상대적 인 흡광계수를 비교하였다. 순수 키 틴 필름, 키 틴 복합체 필름, 및 빈 웰 에서 CCK 배지 의 흡광계수는 첫째날 각각 약 2.3, 2.2, 및 약 2.1으로서 오차 범위 내에 비슷한 값을 나타내었고, 마지막 셋째날에는 약 5.0, 5.1, 및 5.7을 나타내었다. 키 틴 세포는 빈 웰보다 생존 세포 수가 적 었지만 그 차이는 약 10% 정로도 작았다. 또한, 키 틴 및 키 틴 복합체 위에 존재하는 생존 세포수는 2% 미만으로 그 차이가 매우 작았다. 그러므로 도파민 및 카테콜 화합물의 첨가는 세포독성을 증가시 키지 않는다.
실시 예 9: 키토산과 키토산 복합체의 TGA (thermal gravimetric analysis)
실시 예 1에서 준비 된 시료 neat chitosan, C15 SP, 및 D15 SP를 각각 약 5mg 정도 취하여 TGA 테스트를 하였다. TGA 테스트는 TGA (Q600, TA instrument)를 사용하여 질소 분위 기에서 10°C/min의 속도로 승온시키면서 테스트를 수행하였다. (J. Mater. Chem., 2011, 21, 6040-6045; Facile synthesis of organo-soluble surface-grafted allsingle-layer graphene oxide as hole-injecting buffer material in organic light-emitting diodes 참조) .' 상기 얻어진 결과를 도 14에 나타내었다.
도 14에서 X-축은 온도, Y-축은 처음 넣은 시료에 대한 무게 비율을 나타낸다. 처음에 5mg을 넣고 가동 시 켰을 경우 해당온도에서 0.5mg이 분해되어 없어졌다면, 90%를 의미한다. 도 14의 TGA 테스트 결과 얻어진 데이터에서 세 종류 시료 모두의 그래프가 200 °C 미만에서 7퍼 센트 정도 weight loss가 발생하는 것으로 나타났는데, 이는 문헌에 따르면 키토산이 흡수하고 있던 물이 증발했기 때문인 것으로 판단된다. 5wt% loss 온도에서 시료 C15 SP와 D15 SP의 온도가 각각 약 27, 13도 정도 높은 은 두 복합체가 순수 키토산에 비해 함수량이 적은 것을 의미한다. 350 °C 이상 서 두 복합체의 남아 있는 상대 질량이 순수 키토산에 비 해 약 7% 정도 높은 것은 복합체 내에 가교구조가 존재함올 의미 한다. 특이하게 200°C에서 320°C 사이에서 두 복합체의 남아있는 상대 질량이 순수 키토산에 비해 적은 이유는 가교 반응이 촉진되면서 생기는 탈수 반웅 때문으로 여겨진다.
실시예 10: 키틴 및 키틴 복합체의 결정구조
키 틴 및 키 틴 복합체의 결정구조를 관찰하기 위해서 액스선 대각산란
(wide-angle X-ray diffraction, WAXD) 시험을 수행하였다. 시험은 엑스선 산란기 (X-Ray diffractometer)의 하나인 D/MAX-2500/PC (Rigaku, Japan)를 이용하여 수행하였고, 실험 조건으로 40킬로볼트 (40kV) 100미 리 암페어 에서 (100mA) 니켈 -구리 유도광 (Ni-filtered Cu Κα radiation) 을 아용하였다. 엑스선 대각 산란 데이터는 5°에서 40°까지 분당 4°씩 증가시키 면서 측정하였다. 상기 결과를 도 12에 나타내었다. 도 12 중 검은색은 native 키 틴, 붉은 색은 키 틴 필름, 파란색은 도파민을 포함하는 키 틴 복합체 필름을 나타낸다.

Claims

【청구의 범위】
【청구항 1】
키토산, 키 틴, 또는 이들의 흔합물; 및
카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상을 포함하고,
상기 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상이 키토산, 키 틴, 또는 이들의 흔합물의 아민 그룹에 공유결합 또는 비공유 결합을 통하여 가교된 구조를 갖는, 복합체.
【청구항 2】
제 1항에 있어서,
상기 복합체는 상대습도 40 내지 50%에서의 young's modulus가 500 내지 10000 Mpa 이상, 상대 습도 90 내지 100%에서의 young's modulus가 180 내지 5000 Mpa인, 복합체.
【청구항 3】
제 1항에 있어서 ,
상기 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 함량비는 키토산, 키틴, 또는 이들의 흔합물의 중량 기준으로 (U 내지 30 중량0 /0인, 복합체.
【청구항 4]
제 1항에 있어서 , 소듐 페리오데이트 (Sodium periodate), 과산화수소, 소듐 아이오데이트 (sodium iodate), 및 수산화나트륨으로 이루어진 군에서 선택된 1종 이상의 산화제를 추가로 포함하는, 복합체.
【청구항 5】
계 4항에 있어서 , 상기 산화제의 함량은 상기 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상을 기준으로 5 내지 15 중량%인, 복합체.
【청구항 6】
제 1항 내지 계 5항 중 어느 한 항에 있어서, 상기 복합체는 80 내지 120°C의 진공 하에서 6 내지 12시간 동안 처 리된 것을 특징으로 하는 것 인, 복합체.
[청구항 7】
계 1항 내지 게 5항 중 어느 한 항의 복합체를 포함하는 유기 보강 소재 조성물.
[청구항 8】
제 7항에 있어서 , 필름, 필라멘트 또는 부직포 형 태인, 유기 보강 소재 조성물 ·
[청구항 9】
제 7항에 있어서, 상기 복합체는 80 내지 120°C의 진공 하에서 6 내지 12시간동안 처 리된 것을 특징으로 하는 것 인, 유기 보강 소재 조성물.
[청구항 10】
제 1항 내지 제 5항 중 어느 한 항의 복합체를 포함하는 유기 보강 소재 조성물로 제조된 제품.
【청구항 11】
제 10항에 있어서, 상기 제품은 인공인대, 인공힘줄, 인공 치과용 재료, 인공 피부, 수술용 봉합사, 인공 투석막, 인공 치료 보조 용품, 의복용 섬유, 및 타이어 코드로 이루어진 군에서 선택된 1종 이상의 것 인, 제품.
【청구항 12】
제 10항에 있어서 , 상기 복합체는 80 내지 120°C의 진공 하에서 6 내지 12시간 동안 처 리된 것을 특징으로 하는 것인, 제품.
【청구항 13】
키토산, 키 틴, 또는 이들의 흔합물을 물, 이온성 용매 또는 이들의 흔합물에 용해시키는 단계 (1); 및
상기 얻어진 용액에 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상을 첨가하는 단계 (2)
를 포함하는,
복합체의 제조 방법 .
【청구항 14】
제 13항에 있어서,
상기 카테콜, 도파민, DOPA, 및 메틸카테콜로 이루어진 군에서 선택된 1종 이상의 첨가량은 키토산, 키 틴, 또는 이들의 흔합물의 중량 기준으로 0.1 내지 30 중량 %인, 제조 방법 .
【청구항 15】
제 13항에 있어서,
소듬 페리오데이트 (Sodium periodate), 과산화수소, 소듐 아이오데이트 (sodium iodate), 및 수산화나트륨으로 이루어진 군에서 선택된 1종 이상의 산화제를 첨가하는 단계 (2-1)을 추가로 포함하는, 제조 방법 .
【청구항 16】
제 15항에 있어서 ,
상기 산화제의 첨가량은 상기 카테콜 계열 화합물을 기준으로 5 내지
15 중량%인, 제조 방법 .
【청구항 17】
제 13항 내지 제 16항 중 어느 한 항에 있어서,
상기 단계 (2) 또는 (2-1) 이후에 , 얻어진 흔합물을 80 내지 120°C의 진공 하에서 6 내지 12시간동안 처리하는 단계 (3)을 추가로 포함하는, 제조 방법.
PCT/KR2012/007822 2011-09-27 2012-09-27 물성이 강화된 키토산 및/또는 키틴 복합체 및 그 용도 WO2013048144A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12837216.6A EP2778179A4 (en) 2011-09-27 2012-09-27 CHITOSAN AND / OR CHITIN COMPOSITE HAVING ENHANCED PHYSICAL PROPERTIES AND USE THEREOF
US14/346,993 US20140242870A1 (en) 2011-09-27 2012-09-27 Chitosan and/or chitin composite having reinforced physical properties and use thereof
JP2014533202A JP5968447B2 (ja) 2011-09-27 2012-09-27 物性が強化されたキトサンおよび/またはキチン複合体およびその用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110097691 2011-09-27
KR10-2011-0097691 2011-09-27
KR1020120107890A KR101458059B1 (ko) 2011-09-27 2012-09-27 물성이 강화된 키토산 및/또는 키틴 복합체 및 그 용도
KR10-2012-0107890 2012-09-27

Publications (2)

Publication Number Publication Date
WO2013048144A2 true WO2013048144A2 (ko) 2013-04-04
WO2013048144A3 WO2013048144A3 (ko) 2013-05-23

Family

ID=48436222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007822 WO2013048144A2 (ko) 2011-09-27 2012-09-27 물성이 강화된 키토산 및/또는 키틴 복합체 및 그 용도

Country Status (5)

Country Link
US (1) US20140242870A1 (ko)
EP (1) EP2778179A4 (ko)
JP (1) JP5968447B2 (ko)
KR (1) KR101458059B1 (ko)
WO (1) WO2013048144A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156915A (zh) * 2019-05-27 2019-08-23 北京科技大学 一种儿茶酚/n-甲基丙烯酰化壳聚糖衍生物及其制备方法
JP7565214B2 (ja) 2017-12-29 2024-10-10 トリコル バイオメディカル, インコーポレイテッド 溶解に耐える組織接着性キトサン材料

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174643A1 (ko) * 2014-05-15 2015-11-19 포항공과대학교 산학협력단 표면 처리된 나노섬유를 포함하는 하이드로젤 및 이의 제조방법
KR101791241B1 (ko) 2014-06-17 2017-10-30 한국과학기술원 카테콜 아민 기반의 다기능성 필름 및 이의 제조 방법
KR101576503B1 (ko) 2015-04-03 2015-12-11 주식회사 이노테라피 카테콜 기 및 산화된 카테콜 기가 도입되어 가교된 키토산으로 코팅된 무출혈 주사바늘
BR112018000399A2 (pt) * 2015-07-07 2018-09-11 Nat Univ Singapore método para preparar um produto polimérico, produto polimérico, produto polimérico para cultivar células ou tecidos e solução de revestimento polimérico
CN105343924B (zh) * 2015-11-30 2018-05-01 北京化工大学 一种使用多巴胺快速交联壳聚糖制备止血海绵的方法
KR102283811B1 (ko) * 2016-09-28 2021-07-30 코오롱인더스트리 주식회사 퀴논 경화형 조성물 및 이를 포함하는 접착제 조성물
WO2018062835A1 (ko) * 2016-09-28 2018-04-05 코오롱인더스트리 주식회사 퀴논 경화형 조성물 및 이를 포함하는 접착제 조성물
US10414659B2 (en) * 2017-08-08 2019-09-17 United States Of America As Represented By The Secretary Of The Army Method of recycling chitosan and graphene oxide compound
KR102257296B1 (ko) * 2017-11-08 2021-05-28 재단법인 아산사회복지재단 세포 배양 기재 및 세포 시트를 제조하는 방법
CN110420344B (zh) * 2019-07-16 2022-12-20 温州大学 一种伤口敷料及其制备方法与应用
JP2021142023A (ja) * 2020-03-11 2021-09-24 有限会社齋藤歯研工業所 歯科技工用作業模型に用いる支持基台
CN113384756B (zh) * 2021-06-22 2022-07-08 山东大学 一种原位负载聚多巴胺的壳聚糖复合支架材料及其制备方法
WO2024073359A1 (en) * 2022-09-26 2024-04-04 Medcura, Inc. Hydrophobically-modified biopolymers with benzenediol functional groups and oxidized forms thereof
WO2024155958A1 (en) * 2023-01-20 2024-07-25 Syntis Bio, Inc. Permeation enhancers for gastrointestinal synthetic epithelial linings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288532B1 (en) * 1998-08-21 2007-10-30 The University Of Maryland Biotechnology Institute Modified chitosan polymers and enzymatic methods for the production thereof
CA2341470C (en) * 1998-08-21 2008-12-23 Guneet Kumar Modified chitosan polymers and enzymatic methods for the production thereof
DE10035476A1 (de) * 2000-07-21 2002-02-14 Valeo Auto Electric Gmbh Wischanlage für eine Scheibe eines Kraftfahrzeugs
US6955520B2 (en) * 2003-07-22 2005-10-18 Delaware Capital Formation, Inc. Refuse collection vehicle and method with stackable refuse storage container
KR101103423B1 (ko) * 2009-09-04 2012-01-06 아주대학교산학협력단 생체 주입형 조직 접착성 하이드로젤 및 이의 생의학적 용도

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANDERSEN, S. O. ET AL., NATURE, vol. 251, 1974, pages 507
CARBOHYDRATE POLYMERS, vol. 83, 2011
CARBOHYDRATE POLYMERS, vol. 83, 2011, pages 947
J. H. WAITE: "Adhesion a la Moulel", INTEGR. COMP. BIOL., vol. 42, 2002, pages 1172 - 1180
J. MATER. CHEM., vol. 21, 2011, pages 6040 - 6045
MOSES, D; J. H WAITE, JOURNAL OF THE BIOLOGICAL CHEMISTRY, vol. 281, no. 46, 2006, pages 34826 - 34832
RUTNAKORNPITUK ET AL., CARBOHYD. POLYM., vol. 63, no. 2, 2006, pages 229 - 237

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7565214B2 (ja) 2017-12-29 2024-10-10 トリコル バイオメディカル, インコーポレイテッド 溶解に耐える組織接着性キトサン材料
CN110156915A (zh) * 2019-05-27 2019-08-23 北京科技大学 一种儿茶酚/n-甲基丙烯酰化壳聚糖衍生物及其制备方法

Also Published As

Publication number Publication date
EP2778179A4 (en) 2015-03-04
KR101458059B1 (ko) 2014-11-12
JP5968447B2 (ja) 2016-08-10
JP2014528994A (ja) 2014-10-30
EP2778179A2 (en) 2014-09-17
WO2013048144A3 (ko) 2013-05-23
KR20130033996A (ko) 2013-04-04
US20140242870A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
WO2013048144A2 (ko) 물성이 강화된 키토산 및/또는 키틴 복합체 및 그 용도
Ilyas et al. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites
Soni et al. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties
Awadhiya et al. Synthesis and characterization of agarose–bacterial cellulose biodegradable composites
Phomrak et al. Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process
Castro et al. In situ production of nanocomposites of poly (vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking
Rahman et al. Characterization of crystalline cellulose of jute reinforced poly (vinyl alcohol)(PVA) biocomposite film for potential biomedical applications
Zhang et al. A strategy of tailoring polymorphs and nanostructures to construct self-reinforced nonswelling high-strength bacterial cellulose hydrogels
Zhou et al. Sustainable, high-performance, and biodegradable plastics made from chitin
Sundberg et al. Effect of xylan content on mechanical properties in regenerated cellulose/xylan blend films from ionic liquid
Khan et al. Extraction processes for deriving cellulose: A comprehensive review on green approaches
Islam et al. Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers
Athinarayanan et al. Fabrication and cytotoxicity assessment of cellulose nanofibrils using Bassia eriophora biomass
Chen et al. Study on the cross-linking effect of a natural derived oxidized chitosan oligosaccharide on the porcine acellular dermal matrix
Nam et al. Effect of cross-linkable bacterial cellulose nanocrystals on the physicochemical properties of silk sericin films
Hrabalova et al. Fibrillation of flax and wheat straw cellulose: effects on thermal, morphological, and viscoelastic properties of poly (vinylalcohol)/fibre composites
Huang et al. Modification of cellulose nanocrystals as antibacterial nanofillers to fabricate rechargeable nanocomposite films for active packaging
Sudhakar et al. Fabrication and characterization of stimuli responsive scaffold/bio-membrane using novel carrageenan biopolymer for biomedical applications
Fan et al. Biomimetic bridging for reconstructing biomass components toward significantly enhanced films from the full composition of bamboo
Jiao et al. Supramolecular cross-linking affords chitin nanofibril nanocomposites with high strength and water resistance
Peña-Reyes et al. Effect of crosslinking of alginate/pva and chitosan/pva, reinforced with cellulose nanoparticles obtained from agave Atrovirens karw
Li et al. Preparation and properties of nano-cellulose/sodium alginate composite hydrogel
Laborie Bacterial cellulose and its polymeric nanocomposites
Li et al. Preparation, Properties, and Mechanism of Anionic and Cationic Cellulose Nanocrystals/Waterborne Polyurethane Composite Films.
Li et al. Effect of mixing ratio on mechanical properties of mixture of chitin nanofibers and microfibrillated cellulose reinforced PVA hybrid nanocomposites

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14346993

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014533202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012837216

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012837216

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837216

Country of ref document: EP

Kind code of ref document: A2