WO2013047488A1 - 自動車用温調システム - Google Patents

自動車用温調システム Download PDF

Info

Publication number
WO2013047488A1
WO2013047488A1 PCT/JP2012/074497 JP2012074497W WO2013047488A1 WO 2013047488 A1 WO2013047488 A1 WO 2013047488A1 JP 2012074497 W JP2012074497 W JP 2012074497W WO 2013047488 A1 WO2013047488 A1 WO 2013047488A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
battery
pressure
temperature
Prior art date
Application number
PCT/JP2012/074497
Other languages
English (en)
French (fr)
Inventor
岡本 昌和
潤一 寺木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2013047488A1 publication Critical patent/WO2013047488A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/00499Heat or cold storage without phase change including solid bodies, e.g. batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an automotive temperature control system, and more particularly to an automotive temperature control system in which an air conditioning refrigerant circuit also serves as a battery cooling refrigerant circuit.
  • an air conditioner disclosed in Patent Document 1 Japanese Patent Application Laid-Open No. 11-23081
  • the air conditioner includes a high pressure side electric expansion valve that depressurizes the high pressure refrigerant to an intermediate pressure, a low pressure side electric expansion valve that depressurizes the intermediate pressure refrigerant to a lower pressure, and a cooler installed between the two electric expansion valves.
  • the cooling motor cools the traveling motor, the motor inverter, and the battery.
  • An object of the present invention is to provide a temperature control system for an automobile in which when the refrigeration load exceeds the capacity of the refrigeration apparatus, the deficiency is compensated by other cold heat.
  • An automotive temperature control system is an automotive temperature control system that performs at least air conditioning and battery temperature control using a single refrigerant circuit, and controls the flow of refrigerant in the refrigerant circuit.
  • a control unit is provided.
  • the refrigerant circuit has a battery temperature adjusting refrigerant path between the air-conditioning evaporator and the radiator.
  • the battery temperature adjustment refrigerant path includes a battery heat exchanger for adjusting the temperature of the battery.
  • the control unit selects and executes a heat storage use mode in which the amount of heat of the battery is used for air conditioning and a normal operation mode in which the amount of heat of the battery is not used for air conditioning according to the refrigeration load.
  • the amount of heat stored in the battery can be used when the refrigeration load increases due to the driving conditions of the vehicle and exceeds the maximum capacity of the automotive temperature control system. Therefore, it is not necessary to increase the size of the device in preparation for the maximum refrigeration load that cannot occur frequently, and the device can be reduced in size and weight. Moreover, since a battery is used as a heat storage source, it is not necessary to provide a separate heat storage source, and cost reduction is achieved.
  • An automotive temperature control system is the automotive temperature control system according to the first aspect, in which the control unit is configured so that the target temperature of the battery is within a predetermined appropriate temperature range. The flow of refrigerant is controlled. Furthermore, a control part sets target temperature in the 1st range in an appropriate temperature range, when heat storage utilization mode is selected. In addition, when the normal operation mode is selected, the control unit sets the target temperature within a proper temperature range and a second range different from the first range.
  • the target temperature of the battery is set to a temperature range in which heat is stored in the battery when the normal operation mode is executed, so that the heat storage means for the battery (for the heat storage use mode) It is no longer necessary to provide a separate, so that the size, weight, and cost can be reduced.
  • the automotive temperature control system is the automotive temperature control system according to the second aspect, and the heat storage use mode includes a heat storage cooling operation mode and a heat storage heating operation mode.
  • the heat storage and cooling operation mode is a mode in which the cooling operation is performed using the amount of heat of the battery.
  • the heat storage heating operation mode is a mode in which the heating operation is performed using the amount of heat of the battery.
  • the normal operation mode includes a normal cooling operation mode and a normal heating operation mode.
  • the normal cooling operation mode is a mode in which the cooling operation is performed without using the amount of heat of the battery.
  • the normal heating operation mode is a mode in which the heating operation is performed without using the amount of heat of the battery.
  • control unit sets the second range to a range including the lowest limit value of the appropriate temperature range. Further, when the normal heating operation mode is selected, the control unit sets the second range to a range including the maximum upper limit value of the appropriate temperature range.
  • An automotive temperature control system is the automotive temperature control system according to the third aspect, in which the controller adjusts the refrigerant pressure in the battery heat exchanger to adjust the temperature of the battery.
  • the controller adjusts the refrigerant pressure in the battery heat exchanger to adjust the temperature of the battery.
  • air conditioning and battery temperature control are performed using a single refrigerant circuit, so the refrigerant pressure in the battery heat exchanger inevitably depends on the high pressure side pressure and the low pressure side pressure of the refrigerant circuit. Is adjusted to any intermediate pressure between. That is, since the degree of freedom of setting the target temperature range of the battery is ensured by the temperature range between the evaporation temperature and the condensation temperature, it is easy to set the target temperature range for each of the heat storage use mode and the normal use mode.
  • An automotive temperature control system is the automotive temperature control system according to the fourth aspect, wherein the battery temperature control refrigerant passages are disposed at two openings on both sides of the battery heat exchanger. It further includes a variable pressure reducer.
  • a control part adjusts the opening degree of two decompressors, and controls the refrigerant
  • the refrigerant pressure in the battery heat exchanger can be adjusted with high accuracy, so that, for example, the temperature of the battery can be maintained in the vicinity of the lower limit value or the upper limit value of the appropriate temperature range. .
  • the automotive temperature control system is the automotive temperature control system according to the fifth aspect, further comprising a fan for blowing air to the condenser during heating operation.
  • the controller performs the defrost operation when detecting or estimating the frost formation of the evaporator during the heating operation.
  • the fan is stopped, the refrigerant flow is switched to the same refrigerant circulation cycle as in the cooling operation, the opening of the decompressor upstream of the battery heat exchanger is reduced, and the downstream of the battery heat exchanger The operation is to fully open the opening of the decompressor.
  • the high-pressure gas refrigerant flows into the frosted evaporator and dissipates heat, so the evaporator is heated and the frost melts.
  • the high-pressure refrigerant that has dissipated heat and is condensed is decompressed by the decompressor on the upstream side of the battery heat exchanger, and flows into the battery heat exchanger. Since the refrigerant in the battery heat exchanger evaporates using the battery as a heat source, the gas refrigerant having a temperature close to the temperature of the air-conditioning space enters the condenser (during heating operation), and the fan is stopped. For this reason, it is possible to prevent an unpleasant situation such as cold air hitting the user.
  • the automotive temperature control system is the automotive temperature control system according to the sixth aspect, and performs a defrosting dehumidifying operation when the control unit receives a dehumidifying command during the defrosting operation.
  • the defrosting dehumidifying operation is an operation in which the opening of the decompressor on the upstream side of the battery heat exchanger is opened and the opening of the decompressor on the downstream side of the battery heat exchanger is reduced.
  • the control unit can throttle the opening of the decompressor on the downstream side of the battery heat exchanger and adjust the throttle amount, so that it is necessary to dehumidify the refrigerant in the evaporator. The amount can be evaporated.
  • An automotive temperature control system is the automotive temperature control system according to the fifth aspect, and includes a first fan that blows air to an evaporator during heating operation, and a condenser during heating operation. And a second fan for blowing air.
  • the controller performs the defrost operation when detecting or estimating the frost formation of the evaporator during the heating operation.
  • the first fan is stopped, the refrigerant flow is the same refrigerant circulation cycle as in the heating operation, the opening of the decompressor upstream of the battery heat exchanger is throttled, and the downstream of the battery heat exchanger is The operation is to fully open the opening of the decompressor.
  • the refrigerant in the battery heat exchanger evaporates using the battery as a heat source and becomes superheated gas refrigerant and enters the evaporator. As a result, the frost attached to the evaporator is melted.
  • the automotive temperature control system is the automotive temperature control system according to the eighth aspect, wherein the control unit reduces the rotational speed of the second fan during the defrost operation.
  • the refrigerant enters the battery heat exchanger while maintaining a high amount of heat by reducing the rotational speed of the second fan and suppressing heat dissipation in the condenser of the refrigerant. Therefore, when it flows into the frosted evaporator, the evaporator is quickly heated to melt the frost.
  • the automotive temperature control system is the automotive temperature control system according to any one of the sixth aspect to the ninth aspect, and the controller performs a defrost preparation operation.
  • the defrost preparation operation is an operation in which the temperature of the battery is held at a predetermined temperature higher than the current temperature for a predetermined time before the defrost operation is executed.
  • the refrigerant in the battery heat exchanger evaporates using the battery as a heat source, becomes superheated gas refrigerant, enters the evaporator, heats the evaporator, and melts frost. The larger the amount of heat, the better. Therefore, it is effective to increase the amount of heat of the battery before the defrost operation by the defrost preparation operation.
  • the amount of heat stored in the battery is used when the refrigeration load increases due to the running conditions of the vehicle and exceeds the maximum capacity of the automotive temperature control system. Can do. Therefore, it is not necessary to increase the size of the device in preparation for the maximum refrigeration load that cannot occur frequently, and the device can be reduced in size and weight. Moreover, since a battery is used as a heat storage source, it is not necessary to provide a separate heat storage source, and cost reduction is achieved.
  • the target temperature of the battery is set to a temperature range in which heat storage to the battery is performed.
  • the temperature of the battery is adjusted so as to be the lowest limit of the appropriate temperature range, thereby preparing for switching to the heat storage cooling operation mode. Can do.
  • the temperature of the battery is adjusted so as to be the maximum upper limit value of the appropriate temperature range, thereby preparing for switching to the heat storage heating operation mode.
  • the refrigerant pressure in the battery heat exchanger is inevitably high in the refrigerant circuit. It is adjusted to any intermediate pressure between the side pressure and the low pressure side pressure. That is, since the degree of freedom of setting the target temperature range of the battery is ensured by the temperature range between the evaporation temperature and the condensation temperature, it is easy to set the target temperature range for each of the heat storage use mode and the normal use mode.
  • the refrigerant pressure in the battery heat exchanger can be accurately adjusted.
  • the temperature of the battery is close to the lower limit value or the upper limit value of the appropriate temperature range. It is also possible to maintain.
  • the high-pressure gas refrigerant flows into the frosted evaporator and dissipates heat, so the evaporator is heated and the frost melts.
  • the high-pressure refrigerant that has dissipated heat and is condensed is decompressed by the decompressor on the upstream side of the battery heat exchanger, and flows into the battery heat exchanger.
  • the gas refrigerant in the battery heat exchanger evaporates using the battery as a heat source, the gas refrigerant having a temperature close to the temperature of the air-conditioning space enters the condenser (during heating operation), and the fan is stopped. For this reason, it is possible to prevent an unpleasant situation such as cold air hitting the user.
  • the controller can throttle the opening of the decompressor on the downstream side of the battery heat exchanger and adjust the throttle amount.
  • the refrigerant can be evaporated by an amount necessary for dehumidification.
  • the refrigerant in the battery heat exchanger evaporates using the battery as a heat source to become superheated gas refrigerant and enters the evaporator. As a result, the frost attached to the evaporator is melted.
  • the refrigerant retains a high amount of heat while performing battery heat exchange. Since it enters the vessel and becomes overheated there, when it flows into the frosted evaporator, the evaporator is quickly heated to melt the frost.
  • the refrigerant in the battery heat exchanger evaporates using the battery as a heat source and becomes superheated gas refrigerant, enters the evaporator and heats the evaporator to melt frost. Therefore, the larger the amount of heat of the battery, the better. Therefore, it is effective to increase the amount of heat of the battery before the defrost operation by the defrost preparation operation.
  • the block diagram of the temperature control system for motor vehicles which concerns on 1st Embodiment of this invention The refrigeration cycle during normal cooling operation shown on the pressure-enthalpy diagram.
  • the block diagram of the other temperature control system for motor vehicles based on a 2nd modification The refrigerating cycle at the time of the defrost operation represented on the pressure-enthalpy diagram in the temperature control system for vehicles which concerns on a 2nd modification.
  • FIG. 1 is a configuration diagram of an automotive temperature control system 10 according to the first embodiment of the present invention.
  • the temperature control system 10 for an automobile is an air conditioning system that can perform a cooling operation and a heating operation, and includes a refrigerant circuit 40, an outside air fan 50, an inside air fan 60, and a control unit 70.
  • (1-2) Refrigerant circuit 40 In the refrigerant circuit 40, the compressor 11, the four-way switching valve 13, the outside air heat exchanger 15, and the inside air heat exchanger 23 are connected in a ring shape.
  • the refrigerant circuit 40 has a battery temperature adjustment refrigerant path 42 that connects the outside air heat exchanger 15 and the inside air heat exchanger 23, and the battery temperature adjustment refrigerant path 42 is connected to the first from the outside air heat exchanger 15 side.
  • a decompressor 25, a battery heat exchanger 27, and a second decompressor 29 are connected.
  • the refrigerant circuit 40 has a drive part cooling refrigerant path 47.
  • a refrigerant branch point O exists between the first pressure reducer 25 and the outside air heat exchanger 15, and a refrigerant branch point exists between the second pressure reducer 29 and the internal air heat exchanger 23. P is present.
  • the drive part cooling refrigerant path 47 connects the branch point O, the branch point P, and the discharge pipe of the compressor 11.
  • a first check valve 31, a refrigerant pump 33, an inverter heat exchanger 35, and a motor heat exchanger 37 are connected in series from the branch point O side to the drive part cooling refrigerant path 47.
  • outside air fan 50 The outside air fan 50 is arranged so as to face the outside air heat exchanger 15, rotates to take in outside air and blow it to the outside air heat exchanger 15, and the refrigerant and outside air in the outside air heat exchanger 15 Promote heat exchange.
  • the inside air fan 60 is a blower generally called a blower.
  • the inside air fan 60 is located on the upstream side of the air passage where the inside air heat exchanger 23 is installed, and blows air from the upstream side of the inside air heat exchanger 23 toward the inside air heat exchanger 23.
  • Control unit 70 The control unit 70 rotates the four-way switching valve 13, the first pressure reducer 25, the second pressure reducer 29, and the electric expansion valve 21, the compressor 11, the refrigerant pump 33, the inside air fan 60, and the outside air fan 50. By controlling the number, the flow of the refrigerant circulating in the refrigerant circuit 40 and the heat exchange amount of the inside air heat exchanger 23, the outside air heat exchanger 15, and the battery heat exchanger 27 are controlled.
  • the four-way switching valve 13 connects the discharge side of the compressor 11 and the gas side of the internal air heat exchanger 23 and connects the suction side of the compressor 11 and the gas side of the outside air heat exchanger 15. Connecting. That is, this is the state indicated by the dotted line in the four-way selector valve 13 of FIG. (2-2) Outside air heat exchanger 15
  • the outside air heat exchanger 15 is a stacked heat exchanger, and can condense (heat radiate in the case of a supercritical refrigerant) or evaporate the refrigerant flowing inside by heat exchange with outside air. Since there are many documents on the stacked heat exchanger, description thereof is omitted here.
  • the outside air heat exchanger 15 is not limited to the stacked heat exchanger, and may be another heat exchanger.
  • (2-3) Inside air heat exchanger 23 The inside air heat exchanger 23 is installed in an air passage that communicates with the air outlet in front of the passenger compartment.
  • the inside air heat exchanger 23 is a stacked heat exchanger, and condenses the refrigerant flowing inside by heat exchange with air taken from the outside of the vehicle or air taken from the passenger compartment (in the case of a supercritical refrigerant, heat is dissipated). Or it can be evaporated.
  • the inside air heat exchanger 23 is not limited to the stacked heat exchanger, and may be another heat exchanger.
  • the battery heat exchanger 27 is a heat exchanger that exchanges heat between the in-vehicle battery 80 that is a power source of a traveling motor of the electric vehicle and the refrigerant circulating in the refrigerant circuit 40.
  • the battery heat exchanger 27 is connected in the middle of a battery temperature adjusting refrigerant path 42 that connects between the outside air heat exchanger 15 and the inside air heat exchanger 23.
  • a first decompressor 25 and a second decompressor 29 are connected to both sides of the battery heat exchanger 27.
  • the first decompressor 25 is a variable opening electric expansion valve, and is connected between the battery heat exchanger 27 and the outside air heat exchanger 15 in the battery temperature adjusting refrigerant path 42.
  • the first decompressor 25 decompresses the high-pressure refrigerant from the outside air heat exchanger 15 to an intermediate pressure between the high pressure and the low pressure during the cooling operation. Further, during the heating operation, the first pressure reducer 25 reduces the refrigerant pressure to a pressure that can be evaporated by the outside air heat exchanger 15.
  • Second decompressor 29 is an electric expansion valve with a variable opening, and is connected between the battery heat exchanger 27 and the internal air heat exchanger 23 in the battery temperature adjusting refrigerant path 42.
  • the second decompressor 29 decompresses the high-pressure refrigerant from the internal air heat exchanger 23 to an intermediate pressure between the high pressure and the low pressure during the heating operation. Further, the second pressure reducer 29 reduces the refrigerant pressure to a pressure at which the internal air heat exchanger 23 can evaporate during the cooling operation.
  • First check valve 31 and second check valve 32 The first check valve 31 passes the refrigerant going from the branch point O to the driving part cooling refrigerant path 47 but does not pass the refrigerant going from the intermediate point Q to the branch point O. Similarly, the second check valve 32 passes the refrigerant from the branch point P to the driving unit cooling refrigerant path 47 but does not pass the refrigerant from the intermediate point Q to the branch point P.
  • the refrigerant pump 33 is configured to pressurize and discharge the refrigerant sucked by the rotation of the rotor.
  • the controller 70 can control the amount of refrigerant flowing through the inverter heat exchanger 35 and the motor heat exchanger 37 by changing the output of the refrigerant pump 33, and as a result, the cooling capacity can be adjusted.
  • the refrigerant pump 33 can cause the refrigerant that has undergone heat exchange in the inverter heat exchanger 35 and the motor heat exchanger 37 to flow to the discharge pipe side of the compressor 11. That is, since the refrigerant is guided not to the compressor 11 but to the discharge pipe, the compressor power does not increase.
  • the inverter heat exchanger 35 is a heat exchanger for adjusting the temperature of the inverter 85.
  • the inverter 85 supplies the traveling motor 87 with an AC output controlled to have a predetermined waveform.
  • the motor heat exchanger 37 is a heat exchanger for adjusting the temperature of the traveling motor 87.
  • the refrigerant pump 33 controls the flow rate so that the outlet refrigerant of the motor heat exchanger 37 becomes superheated gas refrigerant.
  • the inverter heat exchanger 35 and the motor heat exchanger 37 may be an integrated heat exchanger.
  • the suction side of the compressor 11 and the gas side of the internal air heat exchanger 23 are connected.
  • the first decompressor 25 decompresses the high-pressure refrigerant from the outside air heat exchanger 15 to an intermediate pressure between the high pressure and the low pressure.
  • the second pressure reducer 29 reduces the pressure of the intermediate pressure refrigerant to a pressure at which the internal air heat exchanger 23 can evaporate.
  • the outside air heat exchanger 15 functions as a refrigerant condenser
  • the inside air heat exchanger 23 functions as a refrigerant evaporator.
  • the refrigerant pump 33 is output-controlled so that the refrigerant of about 20% of the refrigerant amount circulating in the refrigerant circuit 40 flows from the branch point O into the driving unit cooling refrigerant path 47.
  • FIG. 2 shows a refrigeration cycle during normal cooling operation represented on a pressure-enthalpy diagram.
  • the positions of the letters a to g correspond to the positions of the letters a to g in FIG.
  • the refrigerant flow during the normal cooling operation will be described with reference to FIGS. 1 and 2.
  • the low-pressure refrigerant is sucked into the compressor 11 and is discharged after being compressed to high pressure (between a and b in FIG. 2).
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the outside air heat exchanger 15 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the outside air heat exchanger 15 is condensed by exchanging heat with outside air there (between bc in FIG. 2). About 80% of the high-pressure refrigerant condensed in the outside air heat exchanger 15 is sent to the first pressure reducer 25 and depressurized to an intermediate pressure (between cd in FIG. 2), and then the battery heat exchanger. Enter 27.
  • the refrigerant that has decreased to the intermediate pressure flows through the battery heat exchanger 27 as a two-phase refrigerant.
  • This two-layer refrigerant exchanges heat with the in-vehicle battery 80 via the battery heat exchanger 27 (between de in FIG. 2).
  • the in-vehicle battery 80 is cooled by the battery heat exchanger 27 and adjusted to a predetermined temperature.
  • the opening of the first pressure reducer 25 is appropriately controlled to adjust the intermediate pressure so that the refrigerant temperature in the battery heat exchanger 27 is 25 ° C.
  • the refrigerant exchanges heat with the in-vehicle battery 80 in the battery heat exchanger 27. By this action, the in-vehicle battery 80 is maintained at approximately 30 ° C.
  • the intermediate-pressure refrigerant that has exited the battery heat exchanger 27 is reduced by the second pressure reducer 29 to a pressure at which the inside air heat exchanger 23 can evaporate (between FIGS. 2e-f), and enters the inside air heat exchanger 23.
  • the low-pressure refrigerant that has entered the inside air heat exchanger 23 evaporates by exchanging heat with the air supplied to the passenger compartment (between fa in FIG. 2).
  • the air cooled by the inside air heat exchanger 23 is blown out into the passenger compartment and cools the passenger compartment.
  • the low-pressure refrigerant evaporated in the inside air heat exchanger 23 is again sucked into the compressor 11 through the four-way switching valve 13 (a in FIG. 2).
  • the control unit 70 switches the operation mode from the normal cooling operation to the heat storage cooling operation.
  • the control unit 70 controls the refrigerant pump 33 in the same refrigerant circulation cycle as that in the normal cooling operation, and about 40% of the refrigerant circulating in the refrigerant circuit 40 is the refrigerant passage 47 for driving unit cooling. Adjust to flow into.
  • the control unit 70 fully opens the opening of the first pressure reducer 25.
  • FIG. 3 shows the refrigeration cycle during the regenerative cooling operation shown on the pressure-enthalpy diagram.
  • the refrigerant flow during the normal cooling operation will be described with reference to FIGS. 1 and 3.
  • the low-pressure refrigerant is sucked into the compressor 11 and is discharged after being compressed to high pressure (between a and b in FIG. 3).
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the outside air heat exchanger 15 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the outside air heat exchanger 15 is condensed by exchanging heat with outside air there (between bc in FIG. 3). About 60% of the high-pressure refrigerant condensed in the outside air heat exchanger 15 is sent to the first decompressor 25, but the battery is not decompressed because the opening of the first decompressor 25 is fully open. It is sent to the heat exchanger 27.
  • the vehicle-mounted battery 80 is maintained at 30 ° C. until immediately before the operation mode is switched from the normal cooling operation to the regenerative cooling operation. Since the vehicle-mounted battery 80 has a weight of 200 kg, it is a 30 ° C. heat storage source.
  • the in-vehicle battery 80 is supercooled by exchanging heat with the refrigerant in the battery heat exchanger 27 while maintaining approximately 30 ° C. for a short time (between ce in FIG. 3).
  • the refrigerant that has exited the battery heat exchanger 27 is depressurized by the second pressure reducer 29 to a pressure at which the internal air heat exchanger 23 can evaporate (between ef in FIG. 3), and enters the inside air heat exchanger 23.
  • the low-pressure refrigerant that has entered the inside air heat exchanger 23 exchanges heat with the air supplied to the passenger compartment in the vehicle and evaporates (between fa in FIG. 3).
  • the air cooled by the inside air heat exchanger 23 is blown out into the passenger compartment and cools the passenger compartment.
  • the low-pressure refrigerant evaporated in the inside air heat exchanger 23 is again sucked into the compressor 11 through the four-way switching valve 13 (a in FIG. 3).
  • the first decompressor 25 decompresses the intermediate pressure refrigerant to a pressure at which the outside air heat exchanger 15 can evaporate.
  • the inside air heat exchanger 23 functions as a refrigerant condenser
  • the outside air heat exchanger 15 functions as a refrigerant evaporator.
  • the refrigerant pump 33 is output-controlled so that the refrigerant of about 20% of the amount of refrigerant circulating in the refrigerant circuit 40 flows from the branch point P into the driving unit cooling refrigerant path 47.
  • the low-pressure refrigerant is sucked into the compressor 11 and discharged after being compressed to high pressure.
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the internal air heat exchanger 23 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the inside air heat exchanger 23 condenses by exchanging heat with the air supplied to the passenger compartment.
  • the air heated by the inside air heat exchanger 23 is blown into the passenger compartment and warms the passenger compartment.
  • About 80% of the high-pressure refrigerant condensed in the inside air heat exchanger 23 is sent to the second pressure reducer 29 and reduced to an intermediate pressure, and then enters the battery heat exchanger 27.
  • the refrigerant that has decreased to the intermediate pressure flows through the battery heat exchanger 27 as a two-phase refrigerant.
  • This two-layer refrigerant exchanges heat with the in-vehicle battery 80 via the battery heat exchanger 27.
  • the opening of the second decompressor 29 is appropriately controlled so that the intermediate pressure is adjusted so that the refrigerant temperature in the battery heat exchanger 27 is 25 ° C.
  • the refrigerant exchanges heat with the in-vehicle battery 80 in the battery heat exchanger 27. By this action, the in-vehicle battery 80 is maintained at approximately 30 ° C.
  • the intermediate-pressure refrigerant that has exited the battery heat exchanger 27 is reduced by the first pressure reducer 25 to a pressure at which the outside air heat exchanger 15 can evaporate and enters the outside air heat exchanger 15.
  • the low-pressure refrigerant that has entered the outside air heat exchanger 15 evaporates by exchanging heat with air outside the vehicle.
  • the low-pressure refrigerant evaporated in the outside air heat exchanger 15 is sucked into the compressor 11 again through the four-way switching valve 13.
  • about 20% of the high-pressure refrigerant condensed in the internal air heat exchanger 23 flows from the branch point P into the drive unit cooling refrigerant path 47.
  • This high-pressure liquid refrigerant is increased to the discharge pressure of the compressor 11 by the refrigerant pump 33 and enters the inverter heat exchanger 35 and the motor heat exchanger 37.
  • This refrigerant exchanges heat with the inverter 85 and the traveling motor 87, and maintains the temperatures of the inverter 85 and the traveling motor 87 at temperatures that do not break.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • the control unit 70 switches the operation mode from the normal heating operation to the regenerative heating operation.
  • the control unit 70 causes the refrigerant to flow about 40% of the amount of refrigerant circulating through the refrigerant circuit 40 through the refrigerant pump 33 in the same refrigerant circulation cycle as in the normal heating operation, and flows into the refrigerant cooling passage 47 for driving unit cooling. Control to do.
  • the controller 70 fully opens the opening of the second decompressor 29.
  • the low-pressure refrigerant is sucked into the compressor 11 and discharged after being compressed to high pressure.
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the internal air heat exchanger 23 through the four-way switching valve 13.
  • the high-pressure refrigerant condenses by exchanging heat with the air supplied to the passenger compartment in the interior air heat exchanger 23.
  • the air heated by the inside air heat exchanger 23 is blown into the passenger compartment and warms the passenger compartment.
  • About 60% of the high-pressure refrigerant condensed in the internal air heat exchanger 23 is sent to the second pressure reducer 29.
  • the opening of the second pressure reducer 29 is fully open, the battery is not decompressed. It is sent to the heat exchanger 27.
  • the vehicle-mounted battery 80 is maintained at 30 ° C. until immediately before the operation mode is switched from the normal heating operation to the regenerative heating operation. Since the vehicle-mounted battery 80 has a weight of 200 kg, it is a 30 ° C. heat storage source.
  • the vehicle-mounted battery 80 is supercooled by exchanging heat with the refrigerant in the battery heat exchanger 27 while maintaining approximately 30 ° C. for a short time.
  • the refrigerant that has exited the battery heat exchanger 27 is depressurized by the first decompressor 25 to a pressure at which it can evaporate in the outdoor air heat exchanger 15, and enters the outdoor air heat exchanger 15.
  • the low-pressure refrigerant that has entered the outside air heat exchanger 15 evaporates by exchanging heat with air outside the vehicle.
  • the low-pressure refrigerant evaporated in the outside air heat exchanger 15 is sucked into the compressor 11 again through the four-way switching valve 13.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • the controller 70 detects or estimates that the outside air heat exchanger 15 has formed frost during the heating operation, the controller 70 switches the four-way switching valve 13 to the cooling side and performs the defrosting operation. . That is, during the defrost operation, the four-way switching valve 13 connects the discharge side of the compressor 11 and the gas side of the outside air heat exchanger 15 and connects the suction side of the compressor 11 and the gas side of the inside air heat exchanger 23. Connecting.
  • the controller 70 fully opens the opening of the second pressure reducer 29, the outside air heat exchanger 15 functions as a refrigerant condenser, and the battery heat exchanger 27 and the inside air heat exchanger 23 evaporate the refrigerant. Functions as a vessel.
  • the first decompressor 25 decompresses the high-pressure refrigerant from the outside air heat exchanger 15 to a pressure at which the battery heat exchanger 27 and the inside air heat exchanger 23 can evaporate.
  • the control unit 70 controls the output of the refrigerant pump 33 so that the refrigerant of about 5% of the refrigerant amount circulating in the refrigerant circuit 40 flows into the driving unit cooling refrigerant path 47 from the branch point O.
  • control unit 70 stops the outside air fan 50 and the inside air fan 60.
  • the low-pressure refrigerant is sucked into the compressor 11 and discharged after being compressed to high pressure.
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the outside air heat exchanger 15 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the outside air heat exchanger 15 condenses by exchanging heat with outside air, but since the outside air fan 50 is stopped, the outside air heat exchanger rather than outside air. 15 is condensed by heat exchange with the frost adhering to the frost. Therefore, most of the heat quantity at the time of refrigerant condensation is used for the heat of frost melting, and the frost melts quickly.
  • About 95% of the high-pressure refrigerant condensed in the outside air heat exchanger 15 is decompressed by the first decompressor 25, and the controller 70 opens the first decompressor 25 so that the refrigerant temperature becomes 5 ° C. The temperature is appropriately controlled and enters the battery heat exchanger 27.
  • the refrigerant takes heat from the in-vehicle battery 80 in the battery heat exchanger 27 and evaporates. Since the vehicle-mounted battery 80 has a weight of 200 kg, it is a 30 ° C. heat storage source. Therefore, the in-vehicle battery 80 is maintained at approximately 30 ° C.
  • the refrigerant exiting the battery heat exchanger 27 rises to 15 ° C. and enters the inside air heat exchanger 23. At this time, since the inside air fan 60 is stopped, the air cooled by the heat exchange with the refrigerant in the inside air heat exchanger 23 is not blown out to the passenger compartment.
  • the refrigerant that has exited the indoor air heat exchanger 23 passes through the four-way switching valve 13 and is sucked into the compressor 11 again.
  • (3-6) Defrosting dehumidifying operation mode When dehumidifying action is required during the above defrosting operation, the amount of evaporation in the battery heat exchanger 27 is reduced and the amount of evaporation necessary for dehumidification is generated in the internal air heat exchanger 23
  • the control unit 70 opens the opening of the first pressure reducer 25 more than that during the defrost operation, increases the refrigerant temperature, reduces the evaporation amount in the battery heat exchanger 27, and reduces the second pressure reducer 29. The opening is reduced from the fully open state during the defrost operation to a pressure at which the refrigerant can evaporate in the internal air heat exchanger 23.
  • the cooling amount by the refrigerant in the battery heat exchanger 27 may be reduced or stopped.
  • the in-vehicle battery 80 rises in temperature due to an internal chemical reaction during charging / discharging. Therefore, as a first measure, the second decompressor 29 is fully opened, the temperature of the refrigerant entering the battery heat exchanger 27 is increased, and the cooling amount is decreased.
  • FIG. 4A a configuration diagram of another automobile temperature control system according to the first embodiment
  • the second decompressor 29 is fully closed, and the refrigerant is supplied to the battery heat exchanger 27.
  • the cooling of the in-vehicle battery 80 is stopped so as not to flow.
  • the second pressure reducer 29 is fully closed, the refrigerant does not flow to the outside air heat exchanger 15 (evaporator), and therefore a bypass passage 49 having an on-off valve 491 is provided here.
  • the on-off valve 491 may be controlled to open during the defrost preparation operation.
  • the cooling of the in-vehicle battery 80 is resumed so as to keep the temperature of the in-vehicle battery 80 at the predetermined value.
  • the defrost preparation operation is determined by calculating the time until the defrost operation is started and the time until the vehicle-mounted battery 80 is heated to a predetermined value. In addition, it is good also considering the value of the evaporation saturation temperature Te in the external air heat exchanger 15 with a high correlation with the amount of frost formation as a trigger.
  • FIG. 4B is a graph showing a change in in-vehicle battery temperature from the end of defrost to the start of the next defrost operation through the defrost preparation operation.
  • the evaporation saturation temperature Te gradually decreases with the growth of frost. And when frost grows to some extent, the evaporation saturation temperature Te falls rapidly.
  • the control unit 70 starts a defrost preparation operation, which is a temperature raising process for the in-vehicle battery 80, when the evaporation saturation temperature Te falls below the first predetermined value.
  • the first predetermined value is a value satisfying Te ⁇ outside air temperature ⁇ 10 ° C. and Te ⁇ 5 ° C.
  • the second decompressor 29 is fully closed while the heating operation is being performed.
  • the opening degree of the first decompressor 25 is adjusted to keep the in-vehicle battery 80 cooled so as to keep the temperature of the in-vehicle battery 80 at the first predetermined value.
  • the controller 70 starts the defrosting operation when the evaporation saturation temperature Te further decreases and falls below the second predetermined value.
  • the second predetermined value is a value satisfying Te ⁇ outside air temperature ⁇ 15 ° C. and Te ⁇ 10 ° C.
  • the third predetermined value of the fin temperature Tdef of the outside air heat exchanger 15 is 10 ° C.
  • the control unit 70 performs a heat storage use mode in which the amount of heat of the in-vehicle battery 80 is used for air conditioning and a normal operation mode in which the amount of heat of the in-vehicle battery 80 is not used for air conditioning according to the refrigeration load. Select and execute.
  • the amount of heat stored in the in-vehicle battery 80 can be used when the refrigeration load increases due to the driving conditions of the automobile and exceeds the maximum capacity of the automotive temperature control system 10. Therefore, it is not necessary to increase the size of the device in preparation for the maximum refrigeration load that cannot occur frequently, and the device can be reduced in size and weight. Moreover, since the vehicle-mounted battery 80 is used as a heat storage source, it is not necessary to provide a separate heat storage source, and costs can be reduced.
  • the target temperature of the in-vehicle battery 80 is set to a temperature range in which heat storage to the in-vehicle battery 80 is performed when the normal operation mode is executed, the in-vehicle (for the heat storage use mode) It is not necessary to separately provide a heat storage means for the battery 80, and the size, weight, and cost can be reduced.
  • the automotive temperature control system 10 can be prepared for switching to the regenerative cooling operation mode by adjusting the temperature of the in-vehicle battery 80 so as to be the lowest limit of the appropriate temperature range during the cooling operation. In addition, during the heating operation, the temperature of the battery is adjusted so as to be the maximum upper limit value of the appropriate temperature range, thereby preparing for switching to the heat storage heating operation mode.
  • the control unit 70 controls the refrigerant pressure in the battery heat exchanger 27 by adjusting the opening of the first decompressor 25 and the second decompressor 29. Therefore, the refrigerant pressure in the battery heat exchanger can be adjusted with high accuracy. For example, the battery temperature can be maintained in the vicinity of the lower limit value or the upper limit value of the appropriate temperature range.
  • the refrigerant in the battery heat exchanger 27 evaporates using the in-vehicle battery 80 as a heat source, gas refrigerant having a temperature close to the temperature of the air-conditioning target space enters the inside air heat exchanger 23, and the inside air fan 60 stops. Therefore, it is possible to prevent an unpleasant sensation such as cold air hitting the user.
  • the controller 70 receives a dehumidification command during defrost operation, the controller 70 opens the opening of the first decompressor 25 that is upstream of the battery heat exchanger 27, and A defrosting dehumidifying operation is performed to reduce the opening of the second pressure reducer 29 on the downstream side. Therefore, the refrigerant can be evaporated in the inside air heat exchanger 23 by an amount necessary for dehumidification.
  • the controller 70 performs a defrost preparation operation in which the temperature of the in-vehicle battery 80 is held at a predetermined temperature higher than the current temperature for a predetermined time before executing the defrost operation.
  • the refrigerant in the battery heat exchanger 27 evaporates using the in-vehicle battery 80 as a heat source, becomes a superheated gas refrigerant, enters the evaporator and heats the evaporator to melt frost, and thus the in-vehicle battery 80 has a large amount of heat. Moderate. Therefore, it is effective to increase the amount of heat of the battery before the defrost operation by the defrost preparation operation.
  • the defrost operation temporarily changes the refrigerant circulation cycle to the circulation cycle during the cooling operation.
  • the present invention is not limited to this.
  • the controller 70 detects or estimates that the outside air heat exchanger 15 has been frosted during the heating operation, the controller 70 performs the defrost operation while maintaining the circulation cycle during the heating operation. .
  • control unit 70 controls the output of the refrigerant pump 33 so that the refrigerant of about 5% of the refrigerant amount circulating in the refrigerant circuit 40 flows into the driving unit cooling refrigerant path 47 from the branch point P. Further, the control unit 70 stops the outside air fan 50 and reduces the rotational speed of the inside air fan 60. Further, the control unit 70 restricts the second pressure reducer 29 to a pressure at which the refrigerant can be evaporated by the battery heat exchanger 27. Furthermore, the control unit 70 fully opens the opening of the first pressure reducer 25.
  • FIG. 5 is a refrigeration cycle at the time of defrost operation represented on the pressure-enthalpy diagram in the automotive temperature control system according to the first modification.
  • the defrost operation according to the modification will be described with reference to FIGS. 1 and 5.
  • the low-pressure refrigerant is sucked into the compressor 11 and discharged after being compressed to high pressure (ab in FIG. 5).
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the internal air heat exchanger 23 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the inside air heat exchanger 23 is condensed by exchanging heat with the air supplied to the passenger compartment (between b and f in FIG. 5). However, since the rotation speed of the inside air fan 60 is reduced, the heating capacity is lowered. About 95% of the high-pressure refrigerant condensed in the inside air heat exchanger 23 is depressurized by the second decompressor 29 (between fe in FIG. 5), enters the battery heat exchanger 27, and enters the in-vehicle battery 80. Evaporates by heat exchange (between ec in FIG. 5).
  • the refrigerant takes heat from the in-vehicle battery 80 in the battery heat exchanger 27 and evaporates to become a superheated gas refrigerant.
  • the steam saturation temperature for defrosting is 5 degreeC or more, and 20 degreeC is preferable in order to maintain the vehicle-mounted battery 80 at appropriate temperature.
  • the superheated gas refrigerant exiting the battery heat exchanger 27 enters the outside air heat exchanger 15. At this time, since the inside air fan 60 is stopped, heat exchange is performed with frost adhering to the outside air heat exchanger 15 rather than outside air. Therefore, the frost melts quickly. Part of the superheated gas refrigerant condenses due to heat exchange with frost (between ca in FIG. 5).
  • the refrigerant that has left the outside air heat exchanger 15 passes through the four-way switching valve 13 and is sucked into the compressor 11 again.
  • FIG. 6A is a configuration diagram of an automotive temperature control system according to a second modification.
  • FIG. 7 shows a refrigeration cycle at the time of defrost operation shown on the pressure-enthalpy diagram in the automotive temperature control system according to the second modification.
  • the defrost operation according to the second modification will be described with reference to FIGS. 6A and 7.
  • the refrigerant circuit 40 of the second modification differs from the first modification in that the accumulator 20 is disposed in front of the suction port of the compressor 11. Therefore, the flow of the refrigerant is the same as that in the first modification until the superheated gas refrigerant exiting the battery heat exchanger 27 enters the outside air heat exchanger 15, and therefore the overheated gas refrigerant is the outside air heat exchanger. The flow after entering 15 will be described.
  • the superheated gas refrigerant exchanges heat with the frost adhering to the outside air heat exchanger 15, and a part of the refrigerant is condensed (between c and a in FIG. 7).
  • the refrigerant leaving the outside air heat exchanger 15 is separated into gas and liquid by an accumulator 20 disposed in front of the suction pipe of the compressor 11, and only the gas component is sucked into the compressor 11 (a in FIG. 7). Note that about 5% of the high-pressure refrigerant condensed in the outside air heat exchanger 15 flows from the branch point O into the driving unit cooling refrigerant path 47.
  • the operation control of the refrigerant in the drive unit cooling refrigerant path 47 is the same as that in the heating operation, the description thereof is omitted here.
  • the control unit 70 detects or estimates frost formation in the outside air heat exchanger 15 (evaporator) during heating operation,
  • the outside air fan 50 is stopped, the refrigerant flow is the same refrigerant circulation cycle as in the heating operation, the opening of the second pressure reducer 29 on the upstream side of the battery heat exchanger 27 is throttled, and the downstream side of the battery heat exchanger 27
  • the defrost operation is performed with the opening of the first pressure reducer 25 being fully open.
  • the refrigerant in the battery heat exchanger 27 evaporates using the in-vehicle battery 80 as a heat source and becomes superheated gas refrigerant and enters the outside heat exchanger 15 (evaporator). As a result, the frost attached to the evaporator is quickly melted.
  • FIG. 8 is a configuration diagram of the temperature control system 100 for an automobile according to the second embodiment of the present invention.
  • FIG. 8 is a configuration diagram of the temperature control system 100 for an automobile according to the second embodiment of the present invention.
  • the automobile temperature control system 100 is an air conditioning system capable of cooling operation and heating operation, and includes a refrigerant circuit 140, an outside air fan 50, an inside air fan 60, and a control unit 170. Note that the outside air fan 50 and the inside air fan 60 are the same as those described in the first embodiment, and thus description thereof is omitted here.
  • (1-2) Refrigerant circuit 140 In the refrigerant circuit 140, the compressor 11, the four-way switching valve 13, the outside air heat exchanger 15, and the inside air heat exchanger 23 are connected in an annular shape. Further, two refrigerant paths are formed between the outside air heat exchanger 15 and the inside air heat exchanger 23, one being an air conditioning refrigerant path 41 as a first refrigerant path, and the other being Is a battery temperature adjusting refrigerant path 42 as a second refrigerant path. The battery temperature adjustment refrigerant path 42 is connected in parallel with the air conditioning refrigerant path 41.
  • a main expansion valve 17, a dehumidifying heat exchanger 19, and a dehumidifying expansion valve 121 are connected to the air conditioning refrigerant path 41 from the outside air heat exchanger 15 side. Further, the first pressure reducer 25, the battery heat exchanger 27, and the second pressure reducer 29 are connected to the battery temperature adjusting refrigerant path 42 from the outside air heat exchanger 15 side.
  • the outside air heat exchanger 15 side is referred to as a branch point R
  • the inside air heat exchanger 23 side is referred to as a branch point S. Call.
  • the refrigerant circuit 140 further includes a drive unit cooling refrigerant path 147 as a third refrigerant path.
  • the driving portion cooling refrigerant path 147 is a refrigerant path that connects the branch point T provided between the branch point S and the second decompressor 29 and the discharge pipe of the compressor 11.
  • the first check valve 131, the refrigerant pump 33, the inverter heat exchanger 35, and the motor heat exchanger 37 are connected in series from the branch point T side.
  • the air conditioning refrigerant path 41 and the drive unit cooling refrigerant path 147 are connected by a second check valve 132, and a part of the refrigerant flowing between the branch point R and the main expansion valve 17 is 1
  • the check valve 131 and the refrigerant pump 33 are joined together.
  • the controller 170 includes the four-way switching valve 13, the first pressure reducer 25, the second pressure reducer 29, the valve openings of the main expansion valve 17 and the dehumidifying expansion valve 121, the compressor 11, the refrigerant pump 33, the inside air fan 60, By controlling the rotation speed of the outside air fan 50, the flow of the refrigerant circulating in the refrigerant circuit 140 and the heat exchange amount of the inside air heat exchanger 23, the dehumidifying heat exchanger 19, the outside air heat exchanger 15, and the battery heat exchanger 27 are adjusted. Control.
  • Main expansion valve 17 The main expansion valve 17 is a variable opening-type electric expansion valve, and is connected between the dehumidifying heat exchanger 19 and the outside air heat exchanger 15. The main expansion valve 17 reduces the refrigerant pressure to a pressure that can be evaporated by the dehumidifying heat exchanger 19 and the internal air heat exchanger 23 during the cooling operation. Further, the main expansion valve 17 reduces the refrigerant pressure to a pressure at which the outside air heat exchanger 15 can evaporate during the heating operation.
  • the dehumidifying expansion valve 121 is an electric expansion valve with a variable opening, and is connected between the dehumidifying heat exchanger 19 and the internal air heat exchanger 23. Further, the dehumidifying expansion valve 121 adjusts the amount of pressure reduction so that a predetermined dehumidifying amount is obtained during the heating and dehumidifying operation.
  • (3) Operation of Automotive Temperature Control System 100 (3-1) Normal Cooling Operation Mode In FIG. 3, during the cooling operation, the four-way switching valve 13 is connected to the discharge side of the compressor 11 and the gas side of the outside air heat exchanger 15. And the suction side of the compressor 11 and the gas side of the internal air heat exchanger 23 are connected.
  • the dehumidifying expansion valve 121 has its opening degree expanded to such an extent that the opening degree is fully opened or the refrigerant is not decompressed.
  • the opening of the main expansion valve 17 is adjusted so that the refrigerant pressure is reduced to a pressure that can be evaporated by the dehumidifying heat exchanger 19 and the internal air heat exchanger 23.
  • the first decompressor 25 decompresses the high-pressure refrigerant from the outside air heat exchanger 15 to an intermediate pressure between the high pressure and the low pressure. Further, the second pressure reducer 29 reduces the pressure of the intermediate pressure refrigerant to a pressure at which the internal air heat exchanger 23 can evaporate.
  • the outside air heat exchanger 15 functions as a refrigerant condenser
  • the air conditioning refrigerant path 41 functions as the dehumidifying heat exchanger 19 and the inside air heat exchanger 23 as a refrigerant evaporator
  • the battery temperature adjusting refrigerant path 42 the inside air heat exchanger 23 functions as a refrigerant evaporator.
  • the low-pressure refrigerant is sucked into the compressor 11 and discharged after being compressed to high pressure.
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the outside air heat exchanger 15 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the outside air heat exchanger 15 is condensed by exchanging heat with outside air there.
  • the high-pressure refrigerant condensed in the outside air heat exchanger 15 flows at two branch points R in two directions: an air conditioning refrigerant path 41 and a battery temperature adjusting refrigerant path 42.
  • the high-pressure refrigerant that has flowed into the air conditioning refrigerant path 41 is depressurized by the main expansion valve 17 and enters the dehumidifying heat exchanger 19 and the internal air heat exchanger 23.
  • the dehumidifying heat exchanger 19 and the inside air heat exchanger 23 function as one evaporator because the dehumidifying expansion valve 121 is almost fully open.
  • the high-pressure refrigerant that has flowed into the battery temperature adjusting refrigerant path 42 is sent to the first pressure reducer 25 to be reduced to an intermediate pressure, and then enters the battery heat exchanger 27.
  • the refrigerant that has decreased to the intermediate pressure flows through the battery heat exchanger 27 as a two-phase refrigerant.
  • This two-layer refrigerant exchanges heat with the in-vehicle battery 80 via the battery heat exchanger 27.
  • the in-vehicle battery 80 is cooled by the battery heat exchanger 27 and adjusted to a predetermined temperature.
  • the intermediate pressure is adjusted and the refrigerant temperature is adjusted by appropriately controlling the opening of the first pressure reducer 25. With this action, the in-vehicle battery 80 is adjusted to an arbitrary temperature within the range of 20 ° C. to 40 ° C.
  • the intermediate-pressure refrigerant that has exited the battery heat exchanger 27 is decompressed by the second decompressor 29 to a pressure at which it can evaporate in the interior air heat exchanger 23 and enters the interior air heat exchanger 23.
  • the low-pressure refrigerant that has entered the dehumidifying heat exchanger 19 and the inside air heat exchanger 23 evaporates by exchanging heat with the air supplied to the passenger compartment.
  • the air cooled by the inside air heat exchanger 23 is blown out into the passenger compartment and cools the passenger compartment.
  • the low-pressure refrigerant evaporated in the inside air heat exchanger 23 is again sucked into the compressor 11 through the four-way switching valve 13. Further, a part of the high-pressure liquid refrigerant flows from the air conditioning refrigerant path 41 through the second check valve 132 into the driving section cooling refrigerant path 147.
  • the high-pressure liquid refrigerant is boosted to the discharge pressure of the compressor 11 by the refrigerant pump 33 and enters the inverter heat exchanger 35 and the motor heat exchanger 37.
  • This refrigerant exchanges heat with the inverter 85 and the traveling motor 87, and maintains the temperatures of the inverter 85 and the traveling motor 87 at temperatures that do not break.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • (3-2) Thermal storage cooling operation mode For example, when the electric vehicle climbs a steep slope during normal cooling operation, the rotational speed of the traveling motor 87 is increased, so that the cooling capacity for the inverter 85 and the traveling motor 87 is increased. There is a need. In such a case, the control unit 170 switches the operation mode from the normal cooling operation to the heat storage cooling operation. In the regenerative cooling operation, the control unit 170 causes the refrigerant pump 33 to partially flow into the drive unit cooling refrigerant path 147 through the refrigerant pump 33 in the same refrigerant circulation cycle as in the normal cooling operation. Control. Moreover, in the heat storage cooling operation, the controller 170 fully opens the opening of the first pressure reducer 25.
  • the low-pressure refrigerant is sucked into the compressor 11 and is discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the outside air heat exchanger 15 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the outside air heat exchanger 15 is condensed by exchanging heat with outside air there.
  • the high-pressure refrigerant condensed in the outside air heat exchanger 15 flows at two branch points R in two directions: an air conditioning refrigerant path 41 and a battery temperature adjusting refrigerant path 42.
  • the high-pressure refrigerant that has flowed into the air conditioning refrigerant path 41 is depressurized by the main expansion valve 17 and enters the dehumidifying heat exchanger 19 and the internal air heat exchanger 23.
  • the dehumidifying heat exchanger 19 and the inside air heat exchanger 23 function as one evaporator because the dehumidifying expansion valve 121 is almost fully open.
  • the high-pressure refrigerant that has flowed into the battery temperature adjusting refrigerant path 42 is sent to the first pressure reducer 25.
  • the battery heat exchanger 27 is not decompressed. Sent to.
  • the vehicle-mounted battery 80 is maintained at 30 ° C. until immediately before the operation mode is switched from the normal cooling operation to the regenerative cooling operation. Since the vehicle-mounted battery 80 has a weight of 200 kg, it is a 30 ° C. heat storage source. Therefore, the vehicle-mounted battery 80 is supercooled by exchanging heat with the refrigerant in the battery heat exchanger 27 while maintaining approximately 30 ° C. for a short time.
  • the refrigerant that has exited the battery heat exchanger 27 is depressurized by the second pressure reducer 29 to a pressure at which it can evaporate in the room air heat exchanger 23 and enters the room air heat exchanger 23.
  • the low-pressure refrigerant entering the inside air heat exchanger 23 evaporates by exchanging heat with the air supplied to the passenger compartment.
  • the air cooled by the inside air heat exchanger 23 is blown out into the passenger compartment and cools the passenger compartment.
  • the low-pressure refrigerant evaporated in the inside air heat exchanger 23 is again sucked into the compressor 11 through the four-way switching valve 13.
  • the high-pressure liquid refrigerant flows from the air conditioning refrigerant path 41 through the second check valve 132 into the driving section cooling refrigerant path 147.
  • the high-pressure liquid refrigerant is boosted to the discharge pressure of the compressor 11 by the refrigerant pump 33 and enters the inverter heat exchanger 35 and the motor heat exchanger 37.
  • This refrigerant exchanges heat with the inverter 85 and the traveling motor 87, and maintains the temperatures of the inverter 85 and the traveling motor 87 at temperatures that do not break.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • the four-way switching valve 13 connects the discharge side of the compressor 11 and the gas side of the internal air heat exchanger 23 and the compressor 11. Are connected to the gas side of the outside air heat exchanger 15.
  • the dehumidifying expansion valve 121 has its opening degree expanded to such an extent that the opening degree is fully opened or the refrigerant is not decompressed.
  • the opening of the main expansion valve 17 is adjusted so that the refrigerant pressure is reduced to a pressure that can be evaporated by the outside air heat exchanger 15.
  • the second decompressor 29 decompresses the high-pressure refrigerant from the internal air heat exchanger 23 to an intermediate pressure between the high pressure and the low pressure.
  • the first decompressor 25 decompresses the intermediate pressure refrigerant to a pressure at which the outside air heat exchanger 15 can evaporate.
  • the internal air heat exchanger 23 functions as a refrigerant condenser in the battery temperature adjusting refrigerant path 42
  • the internal air heat exchanger 23 and the dehumidifying heat exchanger 19 function as a refrigerant condenser in the air conditioning refrigerant path 41.
  • the outside air heat exchanger 15 functions as a refrigerant evaporator.
  • the low-pressure refrigerant is sucked into the compressor 11 and discharged after being compressed to high pressure.
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the internal air heat exchanger 23 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the inside air heat exchanger 23 condenses by exchanging heat with the air supplied to the passenger compartment.
  • the air heated by the inside air heat exchanger 23 is blown into the passenger compartment and warms the passenger compartment.
  • the high-pressure refrigerant condensed in the inside air heat exchanger 23 flows in two directions at the branch point S: an air conditioning refrigerant path 41 and a battery temperature adjusting refrigerant path 42.
  • the refrigerant that has flowed into the air conditioning refrigerant path 41 passes through the dehumidifying expansion valve 121 that is substantially fully opened and enters the dehumidifying heat exchanger 19, where it further dissipates heat and enters a supercooled state.
  • the refrigerant exiting the dehumidifying heat exchanger 19 is decompressed by the main expansion valve 17 and enters the outside air heat exchanger 15.
  • the high-pressure refrigerant that has flowed into the battery temperature adjusting refrigerant path 42 is sent to the second decompressor 29 and decompressed to an intermediate pressure, and then enters the battery heat exchanger 27.
  • the refrigerant that has decreased to the intermediate pressure flows through the battery heat exchanger 27 as a two-phase refrigerant.
  • This two-layer refrigerant exchanges heat with the in-vehicle battery 80 via the battery heat exchanger 27.
  • the in-vehicle battery 80 is cooled by the battery heat exchanger 27 and adjusted to a predetermined temperature.
  • the intermediate pressure is adjusted and the refrigerant temperature is adjusted by appropriately controlling the opening of the second pressure reducer 29.
  • the in-vehicle battery 80 is adjusted to an arbitrary temperature within the range of 20 ° C. to 40 ° C.
  • the intermediate-pressure refrigerant that has exited the battery heat exchanger 27 is reduced by the first pressure reducer 25 to a pressure at which the outside air heat exchanger 15 can evaporate, and enters the outside air heat exchanger 15.
  • the low-pressure refrigerant that has entered the outside air heat exchanger 15 evaporates by exchanging heat with air outside the vehicle.
  • the low-pressure refrigerant evaporated in the outside air heat exchanger 15 is sucked into the compressor 11 again through the four-way switching valve 13.
  • the high-pressure liquid refrigerant flows from the branch point T through the first check valve 131 into the drive part cooling refrigerant path 147.
  • the high-pressure liquid refrigerant is boosted to the discharge pressure of the compressor 11 by the refrigerant pump 33 and enters the inverter heat exchanger 35 and the motor heat exchanger 37.
  • This refrigerant exchanges heat with the inverter 85 and the traveling motor 87, and maintains the temperatures of the inverter 85 and the traveling motor 87 at temperatures that do not break.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • the controller 170 fully opens the main expansion valve 17 and adjusts the opening degree of the dehumidifying expansion valve 121 in the same refrigerant circulation cycle as in the heating operation.
  • the high-pressure refrigerant flowing from the branch point S to the air conditioning refrigerant path 41 is depressurized.
  • the dehumidifying expansion valve 121 reduces the refrigerant pressure to a pressure that can be evaporated by the dehumidifying heat exchanger 19 and the outside air heat exchanger 15, and evaporates by absorbing heat from the surroundings in the dehumidifying heat exchanger 19 and the outside air heat exchanger 15. Note that the amount of depressurization is adjusted to adjust the dehumidification amount by appropriately controlling the opening degree of the dehumidifying expansion valve 121.
  • the dehumidifying heat exchanger 19 cools the air passing therethrough, moisture in the air is condensed and dehumidified. Since the dehumidified air is heated by the inside air heat exchanger 23, the dehumidified warm air is blown out into the passenger compartment.
  • the high-pressure refrigerant that has flowed into the battery temperature adjusting refrigerant path 42 is sent to the second decompressor 29 and decompressed to an intermediate pressure, and then enters the battery heat exchanger 27.
  • the refrigerant that has decreased to the intermediate pressure flows through the battery heat exchanger 27 as a two-phase refrigerant. This two-layer refrigerant exchanges heat with the in-vehicle battery 80 via the battery heat exchanger 27.
  • the in-vehicle battery 80 is cooled by the battery heat exchanger 27 and adjusted to a predetermined temperature.
  • the in-vehicle battery 80 is adjusted to an arbitrary temperature within the range of 20 ° C. to 40 ° C. by appropriately controlling the opening degree of the second pressure reducer 29.
  • the intermediate-pressure refrigerant that has exited the battery heat exchanger 27 is reduced by the first pressure reducer 25 to a pressure at which the outside air heat exchanger 15 can evaporate, and enters the outside air heat exchanger 15.
  • the low-pressure refrigerant that has entered the outside air heat exchanger 15 evaporates by exchanging heat with air outside the vehicle.
  • the low-pressure refrigerant evaporated in the outside air heat exchanger 15 is sucked into the compressor 11 again through the four-way switching valve 13. Furthermore, a part of the high-pressure liquid refrigerant flows from the branch point T through the first check valve 131 into the drive part cooling refrigerant path 147.
  • the high-pressure liquid refrigerant is boosted to the discharge pressure of the compressor 11 by the refrigerant pump 33 and enters the inverter heat exchanger 35 and the motor heat exchanger 37.
  • This refrigerant exchanges heat with the inverter 85 and the traveling motor 87, and maintains the temperatures of the inverter 85 and the traveling motor 87 at temperatures that do not break.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • (3-5) Thermal storage heating operation mode For example, when the electric vehicle climbs a steep slope during normal heating operation, the rotation speed of the traveling motor 87 is increased, so that the cooling capacity for the inverter 85 and the traveling motor 87 is increased. There is a need.
  • the control unit 170 switches the operation mode from the normal heating operation to the regenerative heating operation.
  • the control unit 170 causes the refrigerant pump 33 to partially flow into the drive unit cooling refrigerant path 147 through the refrigerant pump 33 in the same refrigerant circulation cycle as in the normal heating operation.
  • the controller 170 fully opens the opening of the second pressure reducer 29.
  • the refrigerant circuit 140 in such a state, the low-pressure refrigerant is sucked into the compressor 11 and is discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 11 is sent to the internal air heat exchanger 23 through the four-way switching valve 13.
  • the high-pressure refrigerant condenses by exchanging heat with the air supplied to the passenger compartment in the interior air heat exchanger 23.
  • the air heated by the inside air heat exchanger 23 is blown into the passenger compartment and warms the passenger compartment.
  • the high-pressure refrigerant condensed in the inside air heat exchanger 23 flows in two directions at the branch point S: an air conditioning refrigerant path 41 and a battery temperature adjusting refrigerant path 42.
  • the refrigerant that has flowed into the air conditioning refrigerant path 41 passes through the dehumidifying expansion valve 121 that is substantially fully opened and enters the dehumidifying heat exchanger 19, where it further dissipates heat and enters a supercooled state.
  • the refrigerant exiting the dehumidifying heat exchanger 19 is decompressed by the main expansion valve 17 and enters the outside air heat exchanger 15.
  • the high-pressure refrigerant that has flowed into the battery temperature adjusting refrigerant path 42 is sent to the second pressure reducer 29.
  • the battery heat exchanger 27 is not decompressed. Sent to.
  • the vehicle-mounted battery 80 is maintained at 30 ° C. until immediately before the operation mode is switched from the normal heating operation to the regenerative heating operation. Since the vehicle-mounted battery 80 has a weight of 200 kg, it is a 30 ° C. heat storage source. Therefore, the vehicle-mounted battery 80 is supercooled by exchanging heat with the refrigerant in the battery heat exchanger 27 while maintaining approximately 30 ° C. for a short time.
  • the refrigerant that has exited the battery heat exchanger 27 is depressurized by the first decompressor 25 to a pressure at which it can evaporate in the outdoor air heat exchanger 15 and enters the outdoor air heat exchanger 15.
  • the low-pressure refrigerant that has entered the outside air heat exchanger 15 evaporates by exchanging heat with air outside the vehicle.
  • the low-pressure refrigerant evaporated in the outside air heat exchanger 15 is sucked into the compressor 11 again through the four-way switching valve 13. Furthermore, a part of the high-pressure liquid refrigerant flows from the branch point T through the first check valve 131 into the drive part cooling refrigerant path 147.
  • the high-pressure liquid refrigerant is boosted to the discharge pressure of the compressor 11 by the refrigerant pump 33 and enters the inverter heat exchanger 35 and the motor heat exchanger 37.
  • This refrigerant exchanges heat with the inverter 85 and the traveling motor 87, and maintains the temperatures of the inverter 85 and the traveling motor 87 at temperatures that do not break.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • (3-6) Defrosting operation mode When the controller 170 detects or estimates that the outside air heat exchanger 15 has formed frost during the heating operation, the control unit 170 switches the four-way switching valve 13 to the cooling side and performs the defrosting operation. . That is, during the defrost operation, the four-way switching valve 13 connects the discharge side of the compressor 11 and the gas side of the outside air heat exchanger 15 and connects the suction side of the compressor 11 and the gas side of the inside air heat exchanger 23. Connecting. Further, the controller 170 fully opens the opening of the dehumidifying expansion valve 121 or expands the opening to such an extent that the refrigerant is not decompressed.
  • the opening of the main expansion valve 17 is adjusted so that the refrigerant pressure is reduced to a pressure that can be evaporated by the dehumidifying heat exchanger 19 and the internal air heat exchanger 23. Further, the control unit 170 fully opens the opening of the second decompressor 29.
  • the first decompressor 25 decompresses the high-pressure refrigerant from the outside air heat exchanger 15 to a pressure at which the battery heat exchanger 27 and the inside air heat exchanger 23 can evaporate.
  • the outside air heat exchanger 15 functions as a refrigerant condenser, and in the air conditioning refrigerant path 41, the dehumidifying heat exchanger 19 and the inside air heat exchanger 23 function as a refrigerant evaporator, and the battery temperature adjusting refrigerant path 42. Then, the battery heat exchanger 27 and the inside air heat exchanger 23 function as a refrigerant evaporator.
  • control unit 170 controls the output of the refrigerant pump 33 so that a part of the refrigerant amount circulating in the refrigerant circuit 140 flows into the driving unit cooling refrigerant path 147 from the branch point R. Further, the control unit 170 stops the outside air fan 50 and the inside air fan 60. In the refrigerant circuit 140 in such a state, the low-pressure refrigerant is sucked into the compressor 11 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 11 is sent to the outside air heat exchanger 15 through the four-way switching valve 13.
  • the high-pressure refrigerant sent to the outside air heat exchanger 15 condenses by exchanging heat with outside air, but since the outside air fan 50 is stopped, the outside air heat exchanger rather than outside air. 15 is condensed by heat exchange with the frost adhering to the frost. Therefore, most of the heat quantity at the time of refrigerant condensation is used for the heat of frost melting, and the frost melts quickly.
  • the high-pressure refrigerant condensed in the outside air heat exchanger 15 flows at two branch points R in two directions: an air conditioning refrigerant path 41 and a battery temperature adjusting refrigerant path 42.
  • the high-pressure refrigerant that has flowed into the air conditioning refrigerant path 41 is depressurized by the main expansion valve 17 and enters the dehumidifying heat exchanger 19 and the internal air heat exchanger 23.
  • the dehumidifying heat exchanger 19 and the inside air heat exchanger 23 function as one evaporator because the dehumidifying expansion valve 121 is almost fully open.
  • the high-pressure refrigerant that has flowed into the battery temperature adjusting refrigerant path 42 is decompressed by the first decompressor 25 and enters the battery heat exchanger 27.
  • the refrigerant takes heat from the in-vehicle battery 80 in the battery heat exchanger 27 and evaporates.
  • the opening of the first pressure reducer 25 is controlled as appropriate by the controller 170 so that the refrigerant temperature becomes 5 ° C.
  • the in-vehicle battery 80 is maintained at approximately 30 ° C.
  • the refrigerant exiting the battery heat exchanger 27 rises to 15 ° C. and enters the inside air heat exchanger 23.
  • the inside air fan 60 is stopped, the air cooled by the heat exchange with the refrigerant in the inside air heat exchanger 23 is not blown out to the passenger compartment.
  • the refrigerant that has exited the indoor air heat exchanger 23 passes through the four-way switching valve 13 and is sucked into the compressor 11 again.
  • a part of the high-pressure refrigerant condensed in the outside air heat exchanger 15 flows from the branch point R into the driving unit cooling refrigerant path 147.
  • This high-pressure liquid refrigerant is increased to the discharge pressure of the compressor 11 by the refrigerant pump 33 and enters the inverter heat exchanger 35 and the motor heat exchanger 37.
  • This refrigerant exchanges heat with the inverter 85 and the traveling motor 87, and maintains the temperatures of the inverter 85 and the traveling motor 87 at temperatures that do not break.
  • the refrigerant that has exited the motor heat exchanger 37 enters the discharge pipe side of the compressor 11.
  • the defrost preparation mode in the first embodiment is applied to the defrost preparation mode in the second embodiment.
  • the 2nd decompressor. 29 is fully closed so that the refrigerant does not flow to the battery heat exchanger 27, and cooling of the in-vehicle battery 80 is stopped.
  • the second pressure reducer 29 is fully closed, the refrigerant does not flow to the outside air heat exchanger 15 (evaporator). Therefore, in FIG. 6B, a bypass passage 49 having an on-off valve 491 is provided. The on-off valve 491 may be controlled to open during the defrost preparation operation.
  • the automotive temperature control system 100 includes the refrigerant circuit 140 in addition to the features of the automotive temperature control system 10 according to the first embodiment.
  • the battery temperature adjusting refrigerant path 42 is provided. Therefore, separately from the air conditioning, the temperature of the battery heat exchanger 27 can be adjusted to any temperature between the evaporation temperature and the condensation temperature, and the in-vehicle battery 80 can be adjusted to an appropriate temperature.
  • the automotive temperature control system of the present invention when the refrigeration load exceeds the capacity of the refrigeration apparatus, the insufficiency is compensated by the cold energy of the in-vehicle battery. Therefore, it is not necessary to provide a separate heat storage source, and the cost can be reduced. Therefore, it is useful not only for electric vehicles but also for hybrid vehicles.

Abstract

 冷凍負荷が冷凍装置の能力を超えたときに、他の冷熱で不足分を補うようにした自動車用温調システムを提供する。自動車用温調システム(10)では、制御部(70)が、車載バッテリ(80)の熱量を空気調和に利用する蓄熱利用モード、及び車載バッテリ(80)の熱量を空気調和に利用しない通常運転モードを、冷凍負荷に応じて選択し実行する。例えば、自動車の走行条件によって冷凍負荷が増大し自動車用温調システム(10)の最大能力を超えるような場合に、車載バッテリ(80)に蓄えられた熱量を利用することができる。

Description

自動車用温調システム
 本発明は、自動車用温調システムに関し、特に、空気調和用の冷媒回路が少なくともバッテリ冷却用の冷媒回路を兼ねている自動車用温調システムに関する。
 従来、電気自動車等の温調システムとして、特許文献1(特開平11-23081号公報)に開示されているような空調装置が広く知られている。この空調装置は、高圧冷媒を中間圧力まで減圧する高圧側電気膨張弁と、中間圧冷媒をさらに低圧圧力まで減圧する低圧側電気膨張弁と、その両電気膨張弁の間に設置される冷却器とを備えており、その冷却器によって、走行用モータ、モータ用インバータおよびバッテリを冷却している。
 しかしながら、上記のような空調装置では、頻繁には起こりえない最大冷凍負荷にさえも対応できるように冷凍機器を設計する傾向にあり、それが装置の大型化、高コスト化の要因となっている。
 本発明の課題は、冷凍負荷が冷凍装置の能力を超えたときに、他の冷熱で不足分を補うようにした自動車用温調システムを提供することにある。
 本発明の第1観点に係る自動車用温調システムは、1つの冷媒回路を用いて少なくとも空気調和とバッテリの温調とを行なう自動車用温調システムであって、冷媒回路の冷媒の流れを制御する制御部を備えている。冷媒回路は、空気調和用の蒸発器及び放熱器との間に、バッテリ温調用冷媒路を有している。バッテリ温調用冷媒路は、バッテリの温調を行なうバッテリ熱交換器を含んでいる。制御部は、バッテリの熱量を空気調和に利用する蓄熱利用モード、及びバッテリの熱量を空気調和に利用しない通常運転モードを、冷凍負荷に応じて選択し実行する。
 この自動車用温調システムでは、自動車の走行条件によって冷凍負荷が増大し自動車用温調システムの最大能力を超えるような場合に、バッテリに蓄えられた熱量を利用することができる。それゆえ、頻繁には起こりえない最大冷凍負荷に備えて機器を大型化する必要がなくなり、装置の小型・軽量化が図れる。また、バッテリを蓄熱源として利用するので、別に蓄熱源を備える必要がなく、コスト低減が図られる。
 本発明の第2観点に係る自動車用温調システムは、第1観点に係る自動車用温調システムであって、制御部が、バッテリの目標温度が所定の適正温度範囲内になるように冷媒回路の冷媒の流れを制御している。さらに、制御部は、蓄熱利用モードを選択したとき目標温度を適正温度範囲内の第1範囲内に設定する。また、制御部は、通常運転モードを選択したとき目標温度を適正温度範囲内で且つ第1範囲と異なる第2範囲へ設定する。
 この自動車用温調システムでは、通常運転モードを実行時にバッテリの目標温度が、バッテリへの蓄熱が行なわれるような温度範囲に設定されるので、(蓄熱利用モードのための)バッテリへの蓄熱手段を別に備える必要がなくなり、小型化、軽量化、及び低コスト化が図られる。
 本発明の第3観点に係る自動車用温調システムは、第2観点に係る自動車用温調システムであって、蓄熱利用モードが蓄熱冷房運転モードと蓄熱暖房運転モードとを含んでいる。蓄熱冷房運転モードは、バッテリの熱量を利用して冷房運転を行うモードである。蓄熱暖房運転モードは、バッテリの熱量を利用して暖房運転を行うモードである。また、通常運転モードは、通常冷房運転モードと通常暖房運転モードとを含んでいる。通常冷房運転モードは、バッテリの熱量を利用せずに冷房運転を行うモードである。通常暖房運転モードは、バッテリの熱量を利用せずに暖房運転を行うモードである。また、制御部は、通常冷房運転モードを選択したとき、第2範囲を適正温度範囲の最下限値を含む範囲に設定する。さらに、制御部は、通常暖房運転モードを選択したとき、第2範囲を適正温度範囲の最上限値を含む範囲に設定する。
 この自動車用温調システムでは、冷房運転時に、バッテリを適正温度範囲の最下限値になるように温調しておくことによって、蓄熱冷房運転モードへの切り換えに備えることができる。また、暖房運転時に、バッテリを適正温度範囲の最上限値になるように温調しておくことによって、蓄熱暖房運転モードへの切り換えに備えることができる。
 本発明の第4観点に係る自動車用温調システムは、第3観点に係る自動車用温調システムであって、制御部が、バッテリ熱交換器内の冷媒圧力を調節して、バッテリの温調を行なう。
 この自動車用温調システムでは、1つの冷媒回路を用いて空気調和とバッテリの温調とを行なうので、必然的にバッテリ熱交換器内の冷媒圧力は冷媒回路の高圧側圧力と低圧側圧力との間の任意の中間圧力に調節される。つまり、バッテリの目標温度範囲の設定自由度が、蒸発温度と凝縮温度との間の温度範囲分だけ確保されるので、蓄熱利用モード及び通常使用モードそれぞれ目標温度範囲の設定が容易である。
 本発明の第5観点に係る自動車用温調システムは、第4観点に係る自動車用温調システムであって、バッテリ温調用冷媒路が、バッテリ熱交換器の両側に配置される2つの開度可変の減圧器をさらに含んでいる。制御部は、2つの減圧器の開度を調節して、バッテリ熱交換器内の冷媒圧力を制御する。
 この自動車用温調システムでは、バッテリ熱交換器内の冷媒圧力を精度よく調節できるので、例えば、バッテリの温度を適正温度範囲の下限値の近傍または上限値の近傍に維持することも可能である。
 本発明の第6観点に係る自動車用温調システムは、第5観点に係る自動車用温調システムであって、暖房運転時の凝縮器に送風するファンをさらに備えている。制御部は、暖房運転時に蒸発器の着霜を検知または推定したとき、デフロスト運転を行う。デフロスト運転は、ファンを停止し、冷媒の流れを冷房運転時と同じ冷媒循環サイクルへ切り換え、バッテリ熱交換器の上流側となる減圧器の開度を絞り、バッテリ熱交換器の下流側となる減圧器の開度を全開とする、運転である。
 この自動車用温調システムでは、先ず、高圧ガス冷媒が着霜した蒸発器に流入して放熱するので、蒸発器が加熱され霜が融解する。放熱して凝縮した高圧冷媒は、バッテリ熱交換器の上流側となる減圧器で減圧され、バッテリ熱交換器へ流入する。バッテリ熱交換器内の冷媒は、バッテリを熱源として蒸発するので、(暖房運転時の)凝縮器へは空調対象空間の温度に近い温度のガス冷媒が入り込み、さらに、ファンが停止していることもあって、ユーザーに冷風が当たるなどの不快感を誘発するような事態は防止される。
 本発明の第7観点に係る自動車用温調システムは、第6観点に係る自動車用温調システムであって、制御部が、デフロスト運転時に除湿指令を受けたとき、デフロスト時除湿運転を行う。デフロスト時除湿運転は、バッテリ熱交換器の上流側となる減圧器の開度を開き、バッテリ熱交換器の下流側となる減圧器の開度を絞る、運転である。
 この自動車用温調システムでは、制御部は、バッテリ熱交換器の下流側となる減圧器の開度を絞り、その絞り量を調節することができるので、蒸発器内で冷媒を除湿に必要な量だけ蒸発させることができる。
 本発明の第8観点に係る自動車用温調システムは、第5観点に係る自動車用温調システムであって、暖房運転時の蒸発器に送風する第1ファンと、暖房運転時の凝縮器に送風する第2ファンとをさらに備えている。制御部は、暖房運転時に蒸発器の着霜を検知または推定したとき、デフロスト運転を行う。デフロスト運転は、第1ファンを停止し、冷媒の流れを暖房運転時と同じ冷媒循環サイクルで、バッテリ熱交換器の上流側となる減圧器の開度を絞り、バッテリ熱交換器の下流側となる減圧器の開度を全開とする、運転である。
 この自動車用温調システムでは、バッテリ熱交換器内の冷媒は、バッテリを熱源として蒸発して過熱ガス冷媒となって蒸発器に入り込む。その結果、蒸発器に付着した霜が融解する。
 本発明の第9観点に係る自動車用温調システムは、第8観点に係る自動車用温調システムであって、制御部が、デフロスト運転時、第2ファンの回転数を低下させる。
 この自動車用温調システムでは、第2ファンの回転数を低下させ、冷媒の凝縮器での放熱を抑制することによって、冷媒は、高い熱量を保有したままバッテリ熱交換器に入り、そこで過熱状態となるので、着霜した蒸発器に流入したときに蒸発器を素早く加熱して霜を融解する。
 本発明の第10観点に係る自動車用温調システムは、第6観点から第9観点のいずれか1つに係る自動車用温調システムであって、制御部が、デフロスト準備運転を行う。デフロスト準備運転は、デフロスト運転を実行する前に、バッテリの温度を現在の温度よりも高い所定温度で所定時間だけ保持する、運転である。
 この自動車用温調システムでは、バッテリ熱交換器内の冷媒は、バッテリを熱源として蒸発して過熱ガス冷媒となって蒸発器に入り込み蒸発器を加熱して霜を融解するのであるから、バッテリの熱量は大きいほどよい。それゆえ、デフロスト準備運転によって、デフロスト運転前にバッテリの熱量を高めることが有効である。
 本発明の第1観点に係る自動車用温調システムでは、自動車の走行条件によって冷凍負荷が増大し自動車用温調システムの最大能力を超えるような場合に、バッテリに蓄えられた熱量を利用することができる。それゆえ、頻繁には起こりえない最大冷凍負荷に備えて機器を大型化する必要がなくなり、装置の小型・軽量化が図れる。また、バッテリを蓄熱源として利用するので、別に蓄熱源を備える必要がなく、コスト低減が図られる。
 本発明の第2観点に係る自動車用温調システムでは、通常運転モードを実行時にバッテリの目標温度が、バッテリへの蓄熱が行なわれるような温度範囲に設定されるので、(蓄熱利用モードのための)バッテリへの蓄熱手段を別に備える必要がなくなり、小型化、軽量化、及び低コスト化が図られる。
 本発明の第3観点に係る自動車用温調システムでは、冷房運転時に、バッテリを適正温度範囲の最下限値になるように温調しておくことによって、蓄熱冷房運転モードへの切り換えに備えることができる。また、暖房運転時に、バッテリを適正温度範囲の最上限値になるように温調しておくことによって、蓄熱暖房運転モードへの切り換えに備えることができる。
 本発明の第4観点に係る自動車用温調システムでは、1つの冷媒回路を用いて空気調和とバッテリの温調とを行なうので、必然的にバッテリ熱交換器内の冷媒圧力は冷媒回路の高圧側圧力と低圧側圧力との間の任意の中間圧力に調節される。つまり、バッテリの目標温度範囲の設定自由度が、蒸発温度と凝縮温度との間の温度範囲分だけ確保されるので、蓄熱利用モード及び通常使用モードそれぞれ目標温度範囲の設定が容易である。
 本発明の第5観点に係る自動車用温調システムでは、バッテリ熱交換器内の冷媒圧力を精度よく調節できるので、例えば、バッテリの温度を適正温度範囲の下限値の近傍または上限値の近傍に維持することも可能である。
 本発明の第6観点に係る自動車用温調システムでは、先ず、高圧ガス冷媒が着霜した蒸発器に流入して放熱するので、蒸発器が加熱され霜が融解する。放熱して凝縮した高圧冷媒は、バッテリ熱交換器の上流側となる減圧器で減圧され、バッテリ熱交換器へ流入する。バッテリ熱交換器内の冷媒は、バッテリを熱源として蒸発するので、(暖房運転時の)凝縮器へは空調対象空間の温度に近い温度のガス冷媒が入り込み、さらに、ファンが停止していることもあって、ユーザーに冷風が当たるなどの不快感を誘発するような事態は防止される。
 本発明の第7観点に係る自動車用温調システムでは、制御部は、バッテリ熱交換器の下流側となる減圧器の開度を絞り、その絞り量を調節することができるので、蒸発器内で冷媒を除湿に必要な量だけ蒸発させることができる。
 本発明の第8観点に係る自動車用温調システムでは、バッテリ熱交換器内の冷媒は、バッテリを熱源として蒸発して過熱ガス冷媒となって蒸発器に入り込む。その結果、蒸発器に付着した霜が融解する。
 本発明の第9観点に係る自動車用温調システムでは、第2ファンの回転数を低下させ、冷媒の凝縮器での放熱を抑制することによって、冷媒は、高い熱量を保有したままバッテリ熱交換器に入り、そこで過熱状態となるので、着霜した蒸発器に流入したときに蒸発器を素早く加熱して霜を融解する。
 本発明の第10観点に係る自動車用温調システムでは、バッテリ熱交換器内の冷媒は、バッテリを熱源として蒸発して過熱ガス冷媒となって蒸発器に入り込み蒸発器を加熱して霜を融解するのであるから、バッテリの熱量は大きいほどよい。それゆえ、デフロスト準備運転によって、デフロスト運転前にバッテリの熱量を高めることが有効である。
本発明の第1実施形態に係る自動車用温調システムの構成図。 圧力-エンタルピ線図上に表した通常冷房運転時の冷凍サイクル。 圧力-エンタルピ線図上に表した蓄熱冷房運転時の冷凍サイクル。 第1実施形態に係る他の自動車用温調システムの構成図。 デフロスト終了からデフロスト準備運転を経て次のデフロスト運転開始に至るまでの車載バッテリ温度の変化を表すグラフ。 第1変形例に係る自動車用温調システムにおける圧力-エンタルピ線図上に表したデフロスト運転時の冷凍サイクル。 第2変形例に係る自動車用温調システムの構成図。 第2変形例に係る他の自動車用温調システムの構成図。 第2変形例に係る自動車用温調システムにおける圧力-エンタルピ線図上に表したデフロスト運転時の冷凍サイクル。 本発明の第2実施形態に係る自動車用温調システムの構成図。
 以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 <第1実施形態>
 (1)自動車用温調システム10の概要
 (1-1)全体構成
 図1は、本発明の第1実施形態に係る自動車用温調システム10の構成図である。図1において、自動車用温調システム10は、冷房運転及び暖房運転が可能な空気調和システムであり、冷媒回路40と、外気ファン50と、内気ファン60と、制御部70とを備えている。
 (1-2)冷媒回路40
 冷媒回路40では、圧縮機11、四路切換弁13、外気熱交換器15、及び内気熱交換器23が環状に繋がっている。また、冷媒回路40は、外気熱交換器15と内気熱交換器23とを繋ぐバッテリ温調用冷媒路42を有しており、バッテリ温調用冷媒路42には外気熱交換器15側から第1減圧器25、バッテリ熱交換器27及び第2減圧器29が接続されている。
 さらに、冷媒回路40は駆動部冷却用冷媒路47を有している。具体的には、第1減圧器25と外気熱交換器15との間には冷媒の分岐点Oが存在し、第2減圧器29と内気熱交換器23との間には冷媒の分岐点Pが存在する。駆動部冷却用冷媒路47は、分岐点Oと、分岐点Pと、圧縮機11の吐出管とを繋いでいる。駆動部冷却用冷媒路47には、分岐点O側から第1逆止弁31、冷媒ポンプ33、インバータ熱交換器35、及びモータ熱交換器37が直列に接続されている。また、第1逆止弁31及び冷媒ポンプ33の中間点Qと、分岐点Pとは、第2逆止弁32を含む冷媒路で繋がっている。
 (1-3)外気ファン50
 外気ファン50は、外気熱交換器15に対面するように配置されており、回転することによって車外空気を取り込んで外気熱交換器15に送風し、外気熱交換器15内の冷媒と車外空気との熱交換を促進する。
 (1-4)内気ファン60
 内気ファン60は、一般にはブロアと呼ばれる送風機である。この内気ファン60は、内気熱交換器23が設置された風路の上流側に位置し、内気熱交換器23の上流側から内気熱交換器23に向って送風する。
 (1-5)制御部70
 制御部70は、四路切換弁13、第1減圧器25、第2減圧器29、及び電動膨張弁21の弁開度、圧縮機11、冷媒ポンプ33、内気ファン60、外気ファン50の回転数を制御して、冷媒回路40を循環する冷媒の流れや、内気熱交換器23、外気熱交換器15、バッテリ熱交換器27の熱交換量を制御する。
 (2)詳細構成
 (2-1)圧縮機11、及び四路切換弁13
 圧縮機11は、ガス冷媒を吸入して圧縮する。四路切換弁13は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える。冷房運転時、四路切換弁13は、圧縮機11の吐出側と外気熱交換器15のガス側とを接続するとともに圧縮機11の吸入側と内気熱交換器23のガス側とを接続する。つまり、図1の四路切換弁13内の実線で示された状態である。
 また、暖房運転時、四路切換弁13は、圧縮機11の吐出側と内気熱交換器23のガス側とを接続するとともに圧縮機11の吸入側と外気熱交換器15のガス側とを接続する。つまり、図1の四路切換弁13内の点線で示された状態である。
 (2-2)外気熱交換器15
 外気熱交換器15は、積層型熱交換器であって、車外空気との熱交換によって内部を流れる冷媒を凝縮(超臨界冷媒の場合は放熱)又は蒸発させることができる。積層型熱交換器については多くの文献が存在するので、ここでは説明を省略する。なお、外気熱交換器15は積層型熱交換器に限定されるものではなく、他の熱交換器であってもよい。
 (2-3)内気熱交換器23
 内気熱交換器23は、車内乗車室前面の吹出口と通じる風路内に設置される。この内気熱交換器23は、積層型熱交換器であって、車外から取り入れた空気または車内乗車室から取り入れた空気との熱交換によって内部を流れる冷媒を凝縮(超臨界冷媒の場合は放熱)又は蒸発させることができる。なお、内気熱交換器23は積層型熱交換器に限定されるものではなく、他の熱交換器であってもよい。
 (2-4)バッテリ熱交換器27
 バッテリ熱交換器27は、電気自動車の走行用モータなどの電源である車載バッテリ80と冷媒回路40を循環する冷媒との間で熱交換を行なわせる熱交換器である。バッテリ熱交換器27は、外気熱交換器15と内気熱交換器23との間を繋ぐバッテリ温調用冷媒路42の途中に接続されている。また、バッテリ熱交換器27の両側には、第1減圧器25および第2減圧器29が接続されている。
 (2-5)第1減圧器25
 第1減圧器25は、開度可変式の電動膨張弁であって、バッテリ温調用冷媒路42のうちのバッテリ熱交換器27と外気熱交換器15との間に接続されている。第1減圧器25は、冷房運転時、外気熱交換器15からの高圧冷媒を高圧圧力と低圧圧力との間の中間圧力まで減圧する。また、暖房運転時、第1減圧器25は冷媒圧力を外気熱交換器15で蒸発可能な圧力まで減圧する。
 (2-6)第2減圧器29
 第2減圧器29は、開度可変式の電動膨張弁であって、バッテリ温調用冷媒路42のうちのバッテリ熱交換器27と内気熱交換器23との間に接続されている。第2減圧器29は、暖房運転時、内気熱交換器23からの高圧冷媒を高圧圧力と低圧圧力との間の中間圧力まで減圧する。また、第2減圧器29は、冷房運転時、冷媒圧力を内気熱交換器23で蒸発可能な圧力まで減圧する。
 (2-7)第1逆止弁31及び第2逆止弁32
 第1逆止弁31は、分岐点Oから駆動部冷却用冷媒路47に向おうとする冷媒を通すが、中間点Qから分岐点Oに向おうとする冷媒を通さない。同様に、第2逆止弁32は、分岐点Pから駆動部冷却用冷媒路47に向おうとする冷媒を通すが、中間点Qから分岐点Pに向おうとする冷媒を通さない。
 (2-8)冷媒ポンプ33
 冷媒ポンプ33は、ローターの回転により吸い込んだ冷媒を昇圧して吐出するように構成されている。制御部70が、冷媒ポンプ33の出力を変更することによって、インバータ熱交換器35、及びモータ熱交換器37に流れる冷媒量を制御することができ、その結果、冷却能力を調整することができる。また、冷媒ポンプ33によって、インバータ熱交換器35、及びモータ熱交換器37において熱交換が行われた冷媒を圧縮機11の吐出管側に流すことができる。つまり、冷媒が圧縮機11内ではなく吐出管に導かれるので、圧縮機動力が増加しない。
 (2-9)インバータ熱交換器35及びモータ熱交換器37
 インバータ熱交換器35は、インバータ85を温調するための熱交換器である。インバータ85は、走行モータ87に所定の波形に制御された交流出力を供給する。また、モータ熱交換器37は、走行モータ87を温調するための熱交換器である。
 インバータ85及び走行モータ87は冷却しなければ温度が上昇し続け破損するが、例えば100℃以下に保持すれば破損しないので、それらの冷却には高圧液冷媒を利用すればよい。それゆえ、冷媒ポンプ33は、モータ熱交換器37の出口冷媒が過熱ガス冷媒となるように流量を制御する。なお、インバータ熱交換器35とモータ熱交換器37とは一体の熱交換器であってもよい。
 (3)自動車用温調システム10の動作
 (3-1)通常冷房運転モード
 図1において、通常冷房運転時、四路切換弁13は、圧縮機11の吐出側と外気熱交換器15のガス側とを接続するとともに圧縮機11の吸入側と内気熱交換器23のガス側とを接続する。また、第1減圧器25は、外気熱交換器15からの高圧冷媒を高圧圧力と低圧圧力との間の中間圧力まで減圧する。また、第2減圧器29は、中間圧冷媒を内気熱交換器23で蒸発可能な圧力まで減圧する。その結果、外気熱交換器15が冷媒の凝縮器として機能し、内気熱交換器23が冷媒の蒸発器として機能する。また、冷媒ポンプ33は、冷媒回路40を循環する冷媒量の20%程度の冷媒が分岐点Oから駆動部冷却用冷媒路47に流入するように出力制御される。
 また、図2は、圧力-エンタルピ線図上に表した通常冷房運転時の冷凍サイクルである。図2において、英字a~gの各位置は、図1の英字a~gの各位置に対応している。以下、図1及び図2を参照しながら通常冷房運転時の冷媒流れについて説明する。
 冷媒回路40において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される(図2のa-b間)。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、外気熱交換器15に送られる。
 外気熱交換器15に送られた高圧の冷媒は、そこで車外空気と熱交換を行って凝縮する(図2のb-c間)。外気熱交換器15において凝縮した高圧の冷媒のうち約80%の冷媒が、第1減圧器25に送られて中間圧力まで減圧された後(図2のc-d間)、バッテリ熱交換器27に入る。
 中間圧まで低下した冷媒は2相冷媒となってバッテリ熱交換器27を流れる。この2層冷媒は、バッテリ熱交換器27を介して車載バッテリ80と熱交換する(図2のd-e間)。車載バッテリ80は、バッテリ熱交換器27によって冷却され所定温度に調節される。なお、本実施形態では、バッテリ熱交換器27での冷媒温度が25℃になるように、第1減圧器25の開度が適宜制御され、中間圧力が調節される。冷媒は、バッテリ熱交換器27において、車載バッテリ80と熱交換する。この作用によって車載バッテリ80はほぼ30℃に維持される。
 バッテリ熱交換器27を出た中間圧の冷媒は、第2減圧器29によって内気熱交換器23で蒸発可能な圧力まで減圧され(図2e-f間)、内気熱交換器23に入る。内気熱交換器23に入った低圧の冷媒は、そこで車内乗車室へ供給する空気と熱交換を行って蒸発する(図2のf-a間)。内気熱交換器23で冷却された空気は、車内乗車室に吹き出され車内乗車室を冷却する。内気熱交換器23において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される(図2のa)。
 他方、外気熱交換器15において凝縮した高圧の冷媒のうち約20%の冷媒が、分岐点Oから駆動部冷却用冷媒路47に流入する。この高圧の液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し(図2のc-g)、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る(図2のg)。
 (3-2)蓄熱冷房運転モード
 例えば、通常冷房運転中に、電気自動車が急な坂道を登るような場合、走行モータ87の回転数を上げるので、インバータ85及び走行モータ87に対する冷却能力を上げる必要がある。
 このような場合、制御部70は、運転モードを通常冷房運転から蓄熱冷房運転へ切り換える。蓄熱冷房運転では、制御部70は、通常冷房運転時と同じ冷媒循環サイクルで、冷媒ポンプ33を制御し、冷媒回路40を循環する冷媒量の40%程度の冷媒が駆動部冷却用冷媒路47に流入するように調整する。また、蓄熱冷房運転では、制御部70は第1減圧器25の開度を全開にする。
 また、図3は、圧力-エンタルピ線図上に表した蓄熱冷房運転時の冷凍サイクルである。以下、図1及び図3を参照しながら通常冷房運転時の冷媒流れについて説明する。
 冷媒回路40において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される(図3のa-b間)。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、外気熱交換器15に送られる。
 外気熱交換器15に送られた高圧の冷媒は、そこで車外空気と熱交換を行って凝縮する(図3のb-c間)。外気熱交換器15において凝縮した高圧の冷媒のうち約60%の冷媒は、第1減圧器25に送られるが、第1減圧器25の開度が全開であるので、減圧されることなくバッテリ熱交換器27に送られる。
 運転モードが通常冷房運転から蓄熱冷房運転へ切り換えられる直前まで、車載バッテリ80は30℃に維持されている。車載バッテリ80は、重さ200kgもあるので、30℃の蓄熱源である。したがって、車載バッテリ80は短時間であれば、ほぼ30℃を維持したまま、バッテリ熱交換器27内の冷媒と熱交換して過冷却となる(図3のc-e間)。
 バッテリ熱交換器27を出た冷媒は、第2減圧器29によって内気熱交換器23で蒸発可能な圧力まで減圧され(図3のe-f間)、内気熱交換器23に入る。内気熱交換器23に入った低圧の冷媒は、そこで車内乗車室へ供給する空気と熱交換を行って蒸発する(図3のf-a間)。内気熱交換器23で冷却された空気は、車内乗車室に吹き出され車内乗車室を冷却する。内気熱交換器23において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される(図3のa)。
 他方、外気熱交換器15において凝縮した高圧の冷媒のうち約40%の冷媒が、分岐点Oから駆動部冷却用冷媒路47に流入する。つまり、蓄熱暖房運転では、通常冷房運転時の2倍の冷媒量を駆動部冷却用冷媒路47に流入させて、インバータ85及び走行モータ87を冷却することになる。
 この高圧の液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し(図3のc-g)、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る(図3のg)。
 (3-3)通常暖房運転モード
 図1において、暖房運転時、四路切換弁13は、圧縮機11の吐出側と内気熱交換器23のガス側とを接続するとともに圧縮機11の吸入側と外気熱交換器15のガス側とを接続する。また、第2減圧器29は、内気熱交換器23からの高圧冷媒を高圧圧力と低圧圧力との間の中間圧力まで減圧する。また、第1減圧器25は、中間圧冷媒を外気熱交換器15で蒸発可能な圧力まで減圧する。その結果、内気熱交換器23が冷媒の凝縮器として機能し、外気熱交換器15が冷媒の蒸発器として機能する。また、冷媒ポンプ33は、冷媒回路40を循環する冷媒量の20%程度の冷媒が分岐点Pから駆動部冷却用冷媒路47に流入するように出力制御される。
 このような状態の冷媒回路40において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、内気熱交換器23に送られる。
 内気熱交換器23に送られた高圧の冷媒は、そこで車内乗車室へ供給する空気と熱交換を行って凝縮する。内気熱交換器23で加熱された空気は、車内乗車室に吹き出され車内乗車室を暖める。内気熱交換器23において凝縮した高圧の冷媒のうち約80%の冷媒は、第2減圧器29に送られて中間圧力まで減圧された後、バッテリ熱交換器27に入る。
 中間圧まで低下した冷媒は2相冷媒となってバッテリ熱交換器27を流れる。この2層冷媒は、バッテリ熱交換器27を介して車載バッテリ80と熱交換する。なお、本実施形態では、バッテリ熱交換器27での冷媒温度が25℃になるように、第2減圧器29の開度が適宜制御され、中間圧力が調節される。冷媒は、バッテリ熱交換器27において、車載バッテリ80と熱交換する。この作用によって車載バッテリ80はほぼ30℃に維持される。
 バッテリ熱交換器27を出た中間圧の冷媒は、第1減圧器25によって外気熱交換器15で蒸発可能な圧力まで減圧され、外気熱交換器15に入る。外気熱交換器15に入った低圧の冷媒は、そこで車外の空気と熱交換を行って蒸発する。外気熱交換器15において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 他方、内気熱交換器23において凝縮した高圧の冷媒のうち約20%の冷媒が、分岐点Pから駆動部冷却用冷媒路47に流入する。この高圧の液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-4)蓄熱暖房運転モード
 例えば、通常暖房運転中に、電気自動車が急な坂道を登るような場合、走行モータ87の回転数を上げるので、インバータ85及び走行モータ87に対する冷却能力を上げる必要がある。
 このような場合、制御部70は、運転モードを通常暖房運転から蓄熱暖房運転へ切り換える。蓄熱暖房運転では、制御部70は、通常暖房運転時と同じ冷媒循環サイクルで、冷媒ポンプ33を、冷媒回路40を循環する冷媒量の40%程度の冷媒が駆動部冷却用冷媒路47に流入するように制御する。また、蓄熱暖房運転では、制御部70は第2減圧器29の開度を全開にする。
 このような状態の冷媒回路40において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、内気熱交換器23に送られる。
 高圧の冷媒は、内気熱交換器23で車内乗車室へ供給する空気と熱交換を行いて凝縮する。内気熱交換器23で加熱された空気は、車内乗車室に吹き出され車内乗車室を暖める。内気熱交換器23において凝縮した高圧の冷媒のうち約60%の冷媒は、第2減圧器29に送られるが、第2減圧器29の開度が全開であるので、減圧されることなくバッテリ熱交換器27に送られる。
 運転モードが通常暖房運転から蓄熱暖房運転へ切り換えられる直前まで、車載バッテリ80は30℃に維持されている。車載バッテリ80は、重さ200kgもあるので、30℃の蓄熱源である。したがって、車載バッテリ80は短時間であれば、ほぼ30℃を維持したまま、バッテリ熱交換器27内の冷媒と熱交換して過冷却となる。
 バッテリ熱交換器27を出た冷媒は、第1減圧器25によって外気熱交換器15で蒸発可能な圧力まで減圧され、外気熱交換器15に入る。外気熱交換器15に入った低圧の冷媒は、そこで車外の空気と熱交換を行って蒸発する。外気熱交換器15において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 他方、内気熱交換器23において凝縮した高圧の冷媒のうち約40%の冷媒が、分岐点Pから駆動部冷却用冷媒路47に流入する。つまり、蓄熱暖房運転では、通常暖房運転時の2倍の冷媒量を駆動部冷却用冷媒路47に流入させて、インバータ85及び走行モータ87を冷却することになる。
 この高圧の液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-5)デフロスト運転モード
 制御部70は、暖房運転時、外気熱交換器15に着霜したことを検知、若しくは推定したとき、四路切換弁13を冷房側へ切り換え、デフロスト運転を行う。つまり、デフロスト運転時、四路切換弁13は、圧縮機11の吐出側と外気熱交換器15のガス側とを接続するとともに圧縮機11の吸入側と内気熱交換器23のガス側とを接続する。
 また、制御部70は、第2減圧器29の開度を全開にするので、外気熱交換器15が冷媒の凝縮器として機能し、バッテリ熱交換器27及び内気熱交換器23が冷媒の蒸発器として機能する。第1減圧器25は、外気熱交換器15からの高圧冷媒をバッテリ熱交換器27及び内気熱交換器23で蒸発可能な圧力まで減圧する。
 また、制御部70は、冷媒回路40を循環する冷媒量の5%程度の冷媒が分岐点Oから駆動部冷却用冷媒路47に流入するように冷媒ポンプ33の出力を制御する。さらに、制御部70は、外気ファン50および内気ファン60を停止させる。
 このような状態の冷媒回路40において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、外気熱交換器15に送られる。
 外気熱交換器15に送られた高圧の冷媒は、本来なら、車外空気と熱交換を行って凝縮するのであるが、外気ファン50が停止しているので、車外空気よりもむしろ外気熱交換器15に付着している霜との熱交換によって凝縮する。それゆえ、冷媒凝縮時の熱量のほとんどが霜融解熱に利用され、霜がすばやく融解する。
 外気熱交換器15において凝縮した高圧の冷媒のうち約95%の冷媒は、第1減圧器25で減圧され、冷媒温度が5℃になるように、制御部70によって第1減圧器25の開度が制適宜制御されて、バッテリ熱交換器27に入る。冷媒は、バッテリ熱交換器27で車載バッテリ80から熱を奪って蒸発する。車載バッテリ80は、重さ200kgもあるので、30℃の蓄熱源である。したがって、車載バッテリ80はほぼ30℃に維持される。
 バッテリ熱交換器27を出た冷媒は、15℃まで温度上昇して内気熱交換器23に入る。このとき、内気ファン60は停止しているので、内気熱交換器23内の冷媒と熱交換して冷やされた空気が車内乗車室に吹き出されることはない。内気熱交換器23を出た冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 他方、外気熱交換器15において凝縮した高圧の冷媒のうち約5%の冷媒が、分岐点Oから駆動部冷却用冷媒路47に流入する。この高圧の液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-6)デフロスト時除湿運転モード
 上記デフロスト運転中に除湿作用が必要となった場合、バッテリ熱交換器27での蒸発量を減らし、除湿に必要な蒸発量を内気熱交換器23で発生させる。
 具体的には、制御部70は、第1減圧器25の開度を上記デフロスト運転時よりも開き、冷媒温度を上げて、バッテリ熱交換器27での蒸発量を減らし、第2減圧器29の開度を上記デフロスト運転時の全開状態から冷媒が内気熱交換器23で蒸発可能な圧力となるように絞る。
 これによって、外気熱交換器15の除霜、車載バッテリ80の温調、及び車内乗車室の除湿が行われる。
 (3-7)デフロスト準備運転モード
 上記デフロスト運転は、車載バッテリ80を熱源として利用するので、デフロスト運転前に車載バッテリ80を加温するためのデフロスト準備運転を行うのが好ましい。例えば、暖房通常運転時は、車載バッテリ80を30℃に調温しているが、デフロスト準備運転では、車載バッテリ80を準備温度(例えば、40℃)まで加温する。
 具体的には、車載バッテリ80は、充放電の際の内部の化学反応によって温度上昇するため、バッテリ熱交換器27での冷媒による冷却量を減少または止めればいい。その結果、車載バッテリ80は、充放電の際の内部の化学反応によって温度上昇する。
そこで、第1の方策としては、第2減圧器29を全開にして、バッテリ熱交換器27に入る冷媒温度を上げ、冷却量を減少させる。
 第2の方策としては、図4A(第1実施形態に係る他の自動車用温調システムの構成図)に示すように、第2減圧器29を全閉にしてバッテリ熱交換器27へ冷媒が流れないようにし、車載バッテリ80の冷却を止める。また、第2減圧器29を全閉にすると外気熱交換器15(蒸発器)に冷媒が流れなくなるので、ここでは、開閉弁491を有するバイパス路49が設けられている。開閉弁491は、デフロスト準備運転時に開動作するように制御すればよい。
 なお、デフロスト運転開始前に、車載バッテリ80の温度が準備温度に達したときは、車載バッテリ80の温度をその所定値に保つように、車載バッテリ80の冷却を再開する。
 デフロスト準備運転は、デフロスト運転を開始するまでの時間と車載バッテリ80を所定値まで昇温するまでの時間を算出して決定する。なお、着霜量との相関が高い、外気熱交換器15における蒸発飽和温度Teの値をトリガーとしても良い。
 図4Bは、デフロスト終了からデフロスト準備運転を経て次のデフロスト運転開始に至るまでの車載バッテリ温度の変化を表すグラフである。以下、図4Bを参照しながら、外気温度2℃での運転を想定したときの動作を説明する。
 制御部70は、デフロスト運転終了後、蒸発飽和温度Te=-4℃で通常暖房運転を開始する。蒸発飽和温度Teは、霜の成長とともに徐々に低下する。そして、ある程度まで霜が成長したとき、蒸発飽和温度Teは急激に低下する。
 上記の特徴を利用して、制御部70は、蒸発飽和温度Teが第1所定値を下回った時、車載バッテリ80の昇温処理であるデフロスト準備運転を開始する。なお、第1所定値は、Te<外気温度-10℃、且つTe<-5℃を満たす値である。デフロスト準備運転は、暖房運転のまま、第2減圧器29が全閉される。但し、車載バッテリ80の温度が第1所定値に達したときは、車載バッテリ80の温度を第1所定値に保つように、第1減圧器25の開度を調節し車載バッテリ80の冷却を再開する。
 制御部70は、蒸発飽和温度Teがさらに低下し第2所定値を下回ったとき、デフロスト運転を開始する。なお、第2所定値は、Te<外気温度-15℃、且つTe<-10℃を満たす値である。外気熱交換器15のフィン温度Tdefが、第3所定値を超えたときデフロスト運転を終了し、通常暖房運転に復帰する。なお、外気熱交換器15のフィン温度Tdefの第3所定値は、10℃である。その際、車載バッテリ80の温度が通常暖房運転時の適正温度(例えば、30℃)に達していない場合は、デフロスト準備運転と同じ制御を行い、準備温度(例えば、40℃)以上になったら車載バッテリ80の冷却を開始する。
 (4)第1実施形態の特徴
 (4-1)
 自動車用温調システム10では、制御部70が、車載バッテリ80の熱量を空気調和に利用する蓄熱利用モード、及び車載バッテリ80の熱量を空気調和に利用しない通常運転モードを、冷凍負荷に応じて選択し実行する。例えば、自動車の走行条件によって冷凍負荷が増大し自動車用温調システム10の最大能力を超えるような場合に、車載バッテリ80に蓄えられた熱量を利用することができる。それゆえ、頻繁には起こりえない最大冷凍負荷に備えて機器を大型化する必要がなくなり、装置の小型・軽量化が図れる。また、車載バッテリ80を蓄熱源として利用するので、別に蓄熱源を備える必要がなく、コスト低減が図れる。
 (4-2)
 自動車用温調システム10では、通常運転モードを実行時に車載バッテリ80の目標温度が、車載バッテリ80への蓄熱が行なわれるような温度範囲に設定されるので、(蓄熱利用モードのための)車載バッテリ80への蓄熱手段を別に備える必要がなくなり、小型化、軽量化、及び低コスト化が図られる。
 (4-3)
 自動車用温調システム10では、冷房運転時に、車載バッテリ80を適正温度範囲の最下限値になるように温調しておくことによって、蓄熱冷房運転モードへの切り換えに備えることができる。また、暖房運転時に、バッテリを適正温度範囲の最上限値になるように温調しておくことによって、蓄熱暖房運転モードへの切り換えに備えることができる。
 (4-4)
 自動車用温調システム10では、1つの冷媒回路40を用いて空気調和と車載バッテリ80の温調とを行なうので、必然的にバッテリ熱交換器27内の冷媒圧力は冷媒回路40の高圧側圧力と低圧側圧力との間の任意の中間圧力に調節される。その結果、車載バッテリ80の目標温度範囲の設定自由度が、蒸発温度と凝縮温度との間の温度範囲分だけ確保されるので、蓄熱利用モード及び通常使用モードそれぞれ目標温度範囲の設定が容易である。
 (4-5)
 自動車用温調システム10では、制御部70が、第1減圧器25及び第2減圧器29の開度を調節して、バッテリ熱交換器27内の冷媒圧力を制御する。それゆえ、バッテリ熱交換器内の冷媒圧力を精度よく調節でき、例えば、バッテリの温度を適正温度範囲の下限値の近傍または上限値の近傍に維持することも可能である。
 (4-6)
 自動車用温調システム10では、制御部70が、暖房運転時に蒸発器の着霜を検知または推定したとき、内気ファン60を停止し、冷媒の流れを冷房運転時と同じ冷媒循環サイクルへ切り換え、バッテリ熱交換器27の上流側となる第1減圧器25の開度を絞り、バッテリ熱交換器27の下流側となる第2減圧器29の開度を全開とする、デフロスト運転を行う。バッテリ熱交換器27内の冷媒は、車載バッテリ80を熱源として蒸発するので、内気熱交換器23へは空調対象空間の温度に近い温度のガス冷媒が入り込み、さらに、内気ファン60が停止していることもあって、ユーザーに冷風が当たるなどの不快感を誘発するような事態は防止される。
 (4-7)
 自動車用温調システム10では、制御部70が、デフロスト運転時に除湿指令を受けたとき、バッテリ熱交換器27の上流側となる第1減圧器25の開度を開き、バッテリ熱交換器27の下流側となる第2減圧器29の開度を絞る、デフロスト時除湿運転を行う。それゆえ、内気熱交換器23内で冷媒を除湿に必要な量だけ蒸発させることができる。
 (4-8)
 自動車用温調システム10では、制御部70が、デフロスト運転を実行する前に、車載バッテリ80の温度を現在の温度よりも高い所定温度で所定時間だけ保持する、デフロスト準備運転を行う。バッテリ熱交換器27内の冷媒は、車載バッテリ80を熱源として蒸発して過熱ガス冷媒となって蒸発器に入り込み蒸発器を加熱して霜を融解するのであるから、車載バッテリ80の熱量は大きいほどよい。それゆえ、デフロスト準備運転によって、デフロスト運転前にバッテリの熱量を高めることが有効である。
 (5)第1実施形態の変形例
 (5-1)第1変形例
 第1実施形態に係る自動車用温調システム10では、デフロスト運転は、一旦、冷媒の循環サイクルを冷房運転時の循環サイクルに切り換えているが、これに限定されるものではない。本変形例に係る空調室内機では、制御部70は、暖房運転時、外気熱交換器15に着霜したことを検知、若しくは推定したとき、暖房運転時の循環サイクルのままでデフロスト運転を行う。
 具体的には、制御部70は、冷媒回路40を循環する冷媒量の5%程度の冷媒が分岐点Pから駆動部冷却用冷媒路47に流入するように冷媒ポンプ33の出力を制御する。さらに、制御部70は、外気ファン50を停止させ、内気ファン60の回転数を低下させる。また、制御部70は、第2減圧器29を冷媒がバッテリ熱交換器27で蒸発可能な圧力まで絞る。さらに、制御部70は、第1減圧器25の開度を全開にする。
 図5は、第1変形例に係る自動車用温調システムにおける圧力-エンタルピ図上に表したデフロスト運転時の冷凍サイクルである。以下、図1及び図5を参照しながら変形例に係るデフロスト運転について説明する。
 冷媒回路40において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される(図5のa-b)。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、内気熱交換器23に送られる。
 内気熱交換器23に送られた高圧の冷媒は、車内乗車室に供給する空気と熱交換を行って凝縮する(図5のb-f間)。但し、内気ファン60の回転数が低減されているので暖房能力は低下する。
 内気熱交換器23において凝縮した高圧の冷媒のうち約95%の冷媒は、第2減圧器29で減圧され(図5のf-e間)、バッテリ熱交換器27に入り、車載バッテリ80との熱交換によって蒸発する(図5のe-c間)。つまり、冷媒は、バッテリ熱交換器27で車載バッテリ80から熱を奪って蒸発し、過熱ガス冷媒となる。なお、除霜のための蒸気飽和温度は5℃以上であり、車載バッテリ80を適正温度に維持するには20℃が好ましい。
 バッテリ熱交換器27を出た過熱ガス冷媒は、外気熱交換器15に入る。このとき、内気ファン60は停止しているので、車外空気よりもむしろ外気熱交換器15に付着している霜と熱交換する。それゆえ、霜がすばやく融解する。なお、過熱ガス冷媒の一部は霜との熱交換によって一部凝縮する(図5のc-a間)。外気熱交換器15を出た冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 (5-2)第2変形例
 なお、上記のように外気熱交換器15で一部凝縮した冷媒を圧縮機11に吸入させることは、圧縮機11にとっては好ましいことではないので、圧縮機11の吸入口手前にアキュームレータを配置して気液分離し、ガス冷媒のみ圧縮機11に戻すことが好ましい。
 図6Aは、第2変形例に係る自動車用温調システムの構成図である。また、図7は、第2変形例に係る自動車用温調システムにおける圧力-エンタルピ図上に表したデフロスト運転時の冷凍サイクルである。
 以下、図6A及び図7を参照しながら第2変形例に係るデフロスト運転について説明する。図6Aにおいて、第2変形例の冷媒回路40は、圧縮機11の吸入口手前にアキュームレータ20が配置されていることが、第1変形例と異なる。それゆえ、冷媒の流れについては、バッテリ熱交換器27を出た過熱ガス冷媒が外気熱交換器15に入るところまでは、第1変形例と同じであるので、過熱ガス冷媒が外気熱交換器15に入った後の流れを説明する。
 過熱ガス冷媒は、外気熱交換器15に付着している霜との間で熱交換し、一部は凝縮する(図7のc-a間)。外気熱交換器15を出た冷媒は、圧縮機11の吸入管手前に配置されたアキュームレータ20で気液分離され、ガス成分のみが圧縮機11に吸入される(図7のa)。
 なお、外気熱交換器15において凝縮した高圧の冷媒のうち約5%の冷媒が、分岐点Oから駆動部冷却用冷媒路47に流入する。駆動部冷却用冷媒路47における冷媒の操作制御については、暖房運転時と同じであるので、ここでは説明を省略する。
 以上のように、第1変形例および第2変形例に係る自動車用温調システム10では、制御部70が暖房運転時に外気熱交換器15(蒸発器)の着霜を検知または推定したとき、外気ファン50を停止し、冷媒の流れを暖房運転時と同じ冷媒循環サイクルで、バッテリ熱交換器27の上流側となる第2減圧器29の開度を絞り、バッテリ熱交換器27の下流側となる第1減圧器25の開度を全開とする、デフロスト運転を行う。それゆえ、バッテリ熱交換器27内の冷媒は、車載バッテリ80を熱源として蒸発して過熱ガス冷媒となって外気熱交換器15(蒸発器)に入り込む。その結果、蒸発器に付着した霜が素早く融解する。
 また、制御部70が、デフロスト運転時、内気ファン60の回転数を低下させる。冷媒の内気熱交換器23(凝縮器)での放熱が抑制され、冷媒は、高い熱量を保有したままバッテリ熱交換器27に入り、そこで過熱状態となるので、着霜した外気熱交換器15(蒸発器)に流入したときに外気熱交換器15を素早く加熱して霜を融解する。
 <第2実施形態>
 (1)自動車用温調システム100の概要
 (1-1)全体構成
 図8は、本発明の第2実施形態に係る自動車用温調システム100の構成図である。図8において、自動車用温調システム100は、冷房運転及び暖房運転が可能な空気調和システムであり、冷媒回路140と、外気ファン50と、内気ファン60と、制御部170とを備えている。なお、外気ファン50及び内気ファン60は、第1実施形態で説明した内容と同じであるので、ここで説明を省略する。
 (1-2)冷媒回路140
 冷媒回路140では、圧縮機11、四路切換弁13、外気熱交換器15、及び内気熱交換器23が環状に繋がっている。また、外気熱交換器15と内気熱交換器23との間には、両者を繋ぐ2つの冷媒路が形成されており、一方は第1冷媒路としての空気調和用冷媒路41であり、他方は第2冷媒路としてのバッテリ温調用冷媒路42である。バッテリ温調用冷媒路42は、空気調和用冷媒路41と並列に接続されている。
 空気調和用冷媒路41には、外気熱交換器15側からメイン膨張弁17、除湿熱交換器19、除湿用膨張弁121が接続されている。また、バッテリ温調用冷媒路42には、外気熱交換器15側から第1減圧器25、バッテリ熱交換器27及び第2減圧器29が接続されている。なお、説明の便宜上、空気調和用冷媒路41とバッテリ温調用冷媒路42との接続点のうち、外気熱交換器15側を分岐点Rと呼び、内気熱交換器23側を分岐点Sと呼ぶ。
 また、冷媒回路140は、第3冷媒路としての駆動部冷却用冷媒路147をさらに有している。駆動部冷却用冷媒路147は、分岐点Sと第2減圧器29との間に設けられた分岐点Tと圧縮機11の吐出管とを繋ぐ冷媒路である。駆動部冷却用冷媒路147では、分岐点T側から第1逆止弁131、冷媒ポンプ33、インバータ熱交換器35、及びモータ熱交換器37が直列に接続されている。
 また、空気調和用冷媒路41と駆動部冷却用冷媒路147とは第2逆止弁132によって連絡されており、分岐点Rとメイン膨張弁17との間を流れる冷媒の一部が、第1逆止弁131と冷媒ポンプ33との間で合流するようになっている。
 (1-3)制御部170
 制御部170は、四路切換弁13、第1減圧器25、第2減圧器29、メイン膨張弁17及び除湿用膨張弁121の弁開度、圧縮機11、冷媒ポンプ33、内気ファン60、外気ファン50の回転数を制御して、冷媒回路140を循環する冷媒の流れや、内気熱交換器23、除湿熱交換器19、外気熱交換器15、バッテリ熱交換器27の熱交換量を制御する。
 (2)詳細構成
 圧縮機11、及び四路切換弁13、外気熱交換器15、除湿熱交換器19、内気熱交換器23、第1減圧器25、バッテリ熱交換器27、第2減圧器29、冷媒ポンプ33、インバータ熱交換器35及びモータ熱交換器37は、第1実施形態で説明した内容と同じであるので、ここでは詳細説明を省略する。
 (2-1)メイン膨張弁17
 メイン膨張弁17は、開度可変式の電動膨張弁であり、除湿熱交換器19と外気熱交換器15との間に接続されている。メイン膨張弁17は、冷房運転時には冷媒圧力を除湿熱交換器19及び内気熱交換器23で蒸発可能な圧力まで減圧する。また、メイン膨張弁17は、暖房運転時には冷媒圧力を外気熱交換器15で蒸発可能な圧力まで減圧する。
 (2-2)除湿用膨張弁121
 除湿用膨張弁121は、開度可変式の電動膨張弁であり、除湿熱交換器19と内気熱交換器23との間に接続される。また、除湿用膨張弁121は、暖房除湿運転時には、所定の除湿量となるように、減圧量を調整する。
 (3)自動車用温調システム100の動作
 (3-1)通常冷房運転モード
 図3において、冷房運転時、四路切換弁13は、圧縮機11の吐出側と外気熱交換器15のガス側とを接続するとともに圧縮機11の吸入側と内気熱交換器23のガス側とを接続する。
 また、除湿用膨張弁121は、開度を全開、若しくは冷媒を減圧しない程度にまで開度を拡大している。メイン膨張弁17は、冷媒圧力を除湿熱交換器19及び内気熱交換器23で蒸発可能な圧力まで減圧するように開度調節される。
 また、第1減圧器25は、外気熱交換器15からの高圧冷媒を高圧圧力と低圧圧力との間の中間圧力まで減圧する。また、第2減圧器29は、中間圧冷媒を内気熱交換器23で蒸発可能な圧力まで減圧する。その結果、外気熱交換器15が冷媒の凝縮器として機能し、空気調和用冷媒路41では除湿熱交換器19及び内気熱交換器23が冷媒の蒸発器として機能し、バッテリ温調用冷媒路42では内気熱交換器23が冷媒の蒸発器として機能する。
 このような状態の冷媒回路において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、外気熱交換器15に送られる。
 外気熱交換器15に送られた高圧の冷媒は、そこで車外空気と熱交換を行って凝縮する。外気熱交換器15において凝縮器した高圧の冷媒は、分岐点Rにおいて空気調和用冷媒路41とバッテリ温調用冷媒路42の2方向に分かれて流れる。
 空気調和用冷媒路41に流れた高圧の冷媒は、メイン膨張弁17によって減圧され、除湿熱交換器19及び内気熱交換器23に入る。除湿熱交換器19及び内気熱交換器23は、除湿用膨張弁121がほぼ全開となっているので、一つの蒸発器として機能する。
 他方、バッテリ温調用冷媒路42に流れた高圧の冷媒は、第1減圧器25に送られて中間圧力まで減圧された後、バッテリ熱交換器27に入る。中間圧まで低下した冷媒は2相冷媒となってバッテリ熱交換器27を流れる。この2層冷媒は、バッテリ熱交換器27を介して車載バッテリ80と熱交換する。車載バッテリ80は、バッテリ熱交換器27によって冷却され所定温度に調節される。なお、本実施形態では、第1減圧器25の開度を適宜制御することによって、中間圧力が調整され、冷媒温度が調整される。この作用により車載バッテリ80を20℃~40℃の範囲内の任意温度に調節している。バッテリ熱交換器27を出た中間圧の冷媒は、第2減圧器29によって内気熱交換器23で蒸発可能な圧力まで減圧され、内気熱交換器23に入る。
 除湿熱交換器19及び内気熱交換器23に入った低圧の冷媒は、そこで車内乗車室へ供給する空気と熱交換を行って蒸発する。内気熱交換器23で冷却された空気は、車内乗車室に吹き出され車内乗車室を冷却する。内気熱交換器23において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 さらに、空気調和用冷媒路41から第2逆止弁132を介して高圧液冷媒の一部が駆動部冷却用冷媒路147に流入する。この高圧液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-2)蓄熱冷房運転モード
 例えば、通常冷房運転中に、電気自動車が急な坂道を登るような場合、走行モータ87の回転数を上げるので、インバータ85及び走行モータ87に対する冷却能力を上げる必要がある。
 このような場合、制御部170は、運転モードを通常冷房運転から蓄熱冷房運転へ切り換える。蓄熱冷房運転では、制御部170は、通常冷房運転時と同じ冷媒循環サイクルで、冷媒ポンプ33を、冷媒回路140を循環する冷媒量の一部が駆動部冷却用冷媒路147に流入するように制御する。また、蓄熱冷房運転では、制御部170は第1減圧器25の開度を全開にする。
 このような状態の冷媒回路140において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、外気熱交換器15に送られる。
 外気熱交換器15に送られた高圧の冷媒は、そこで車外空気と熱交換を行って凝縮する。外気熱交換器15において凝縮器した高圧の冷媒は、分岐点Rにおいて空気調和用冷媒路41とバッテリ温調用冷媒路42の2方向に分かれて流れる。
 空気調和用冷媒路41に流れた高圧の冷媒は、メイン膨張弁17によって減圧され、除湿熱交換器19及び内気熱交換器23に入る。除湿熱交換器19及び内気熱交換器23は、除湿用膨張弁121がほぼ全開となっているので、一つの蒸発器として機能する。
 他方、バッテリ温調用冷媒路42に流れた高圧の冷媒は、第1減圧器25に送られるが、第1減圧器25の開度が全開であるので、減圧されることなくバッテリ熱交換器27に送られる。
 運転モードが通常冷房運転から蓄熱冷房運転へ切り換えられる直前まで、車載バッテリ80は30℃に維持されている。車載バッテリ80は、重さ200kgもあるので、30℃の蓄熱源である。したがって、車載バッテリ80は短時間であれば、ほぼ30℃を維持したまま、バッテリ熱交換器27内の冷媒と熱交換して過冷却となる。
 バッテリ熱交換器27を出た冷媒は、第2減圧器29によって内気熱交換器23で蒸発可能な圧力まで減圧され、内気熱交換器23に入る。
 内気熱交換器23に入った低圧の冷媒は、そこで車内乗車室へ供給する空気と熱交換を行って蒸発する。内気熱交換器23で冷却された空気は、車内乗車室に吹き出され車内乗車室を冷却する。内気熱交換器23において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 さらに、空気調和用冷媒路41から第2逆止弁132を介して高圧液冷媒の一部が駆動部冷却用冷媒路147に流入する。この高圧液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-3)暖房運転時の冷媒の流れ
 図8において、暖房運転時、四路切換弁13は、圧縮機11の吐出側と内気熱交換器23のガス側とを接続するとともに圧縮機11の吸入側と外気熱交換器15のガス側とを接続する。
 また、除湿用膨張弁121は、開度を全開、若しくは冷媒を減圧しない程度にまで開度を拡大している。メイン膨張弁17は、冷媒圧力を外気熱交換器15で蒸発可能な圧力まで減圧するように開度調節される。
 また、第2減圧器29は、内気熱交換器23からの高圧冷媒を高圧圧力と低圧圧力との間の中間圧力まで減圧する。また、第1減圧器25は、中間圧冷媒を外気熱交換器15で蒸発可能な圧力まで減圧する。その結果、バッテリ温調用冷媒路42では内気熱交換器23が冷媒の凝縮器として機能し、空気調和用冷媒路41では内気熱交換器23及び除湿熱交換器19が冷媒の凝縮器として機能する。外気熱交換器15は冷媒の蒸発器として機能する。
 このような状態の冷媒回路において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、内気熱交換器23に送られる。
 内気熱交換器23に送られた高圧の冷媒は、そこで車内乗車室へ供給する空気と熱交換を行って凝縮する。内気熱交換器23で加熱された空気は、車内乗車室に吹き出され車内乗車室を暖める。
 内気熱交換器23において凝縮器した高圧の冷媒は、分岐点Sにおいて空気調和用冷媒路41とバッテリ温調用冷媒路42との2方向に分かれて流れる。
 空気調和用冷媒路41に流れた冷媒は、ほぼ全開状態の除湿用膨張弁121を通過して除湿熱交換器19に入り、そこでさらに放熱して過冷却状態となる。除湿熱交換器19を出た冷媒は、メイン膨張弁17によって減圧され、外気熱交換器15に入る。
 他方、バッテリ温調用冷媒路42に流れた高圧の冷媒は、第2減圧器29に送られて中間圧力まで減圧された後、バッテリ熱交換器27に入る。中間圧まで低下した冷媒は2相冷媒となってバッテリ熱交換器27を流れる。この2層冷媒は、バッテリ熱交換器27を介して車載バッテリ80と熱交換する。車載バッテリ80は、バッテリ熱交換器27によって冷却され所定温度に調節される。なお、本実施形態では、第2減圧器29の開度を適宜制御することによって、中間圧力が調整され、冷媒温度が調整される。この作用により車載バッテリ80を20℃~40℃の範囲内の任意温度に調節している。バッテリ熱交換器27を出た中間圧の冷媒は、第1減圧器25によって外気熱交換器15で蒸発可能な圧力まで減圧され、外気熱交換器15に入る。
 外気熱交換器15に入った低圧の冷媒は、そこで車外の空気と熱交換を行って蒸発する。外気熱交換器15において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 さらに、分岐点Tから第1逆止弁131を介して高圧液冷媒の一部が駆動部冷却用冷媒路147に流入する。この高圧液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-4)暖房除湿運転モード
 暖房除湿運転では、制御部170は、上記暖房運転時と同じ冷媒循環サイクルで、メイン膨張弁17を全開にし、除湿用膨張弁121の開度を調節し、分岐点Sから空気調和用冷媒路41に流れる高圧の冷媒を減圧する。除湿用膨張弁121は冷媒圧力を除湿熱交換器19及び外気熱交換器15で蒸発可能な圧力まで減圧し、除湿熱交換器19及び外気熱交換器15においてその周囲から吸熱して蒸発する。なお、除湿用膨張弁121の開度を適宜制御することによって、減圧量を調整し除湿量を調整する。
 除湿熱交換器19は、通過する空気を冷却するので、その空気中の水分が凝縮し除湿される。除湿された空気は、内気熱交換器23によって加熱されるので、車内乗車室には除湿された暖かい空気が吹き出される。
 他方、バッテリ温調用冷媒路42に流れた高圧の冷媒は、第2減圧器29に送られて中間圧力まで減圧された後、バッテリ熱交換器27に入る。中間圧まで低下した冷媒は2相冷媒となってバッテリ熱交換器27を流れる。この2層冷媒は、バッテリ熱交換器27を介して車載バッテリ80と熱交換する。車載バッテリ80は、バッテリ熱交換器27によって冷却され所定温度に調節される。なお、本実施形態では、第2減圧器29の開度を適宜制御することによって、車載バッテリ80を20℃~40℃の範囲内の任意温度に調節している。バッテリ熱交換器27を出た中間圧の冷媒は、第1減圧器25によって外気熱交換器15で蒸発可能な圧力まで減圧され、外気熱交換器15に入る。
 外気熱交換器15に入った低圧の冷媒は、そこで車外の空気と熱交換を行って蒸発する。外気熱交換器15において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 さらに、分岐点Tから第1逆止弁131を介して高圧液冷媒の一部が駆動部冷却用冷媒路147に流入する。この高圧液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-5)蓄熱暖房運転モード
 例えば、通常暖房運転中に、電気自動車が急な坂道を登るような場合、走行モータ87の回転数を上げるので、インバータ85及び走行モータ87に対する冷却能力を上げる必要がある。
 このような場合、制御部170は、運転モードを通常暖房運転から蓄熱暖房運転へ切り換える。蓄熱暖房運転では、制御部170は、通常暖房運転時と同じ冷媒循環サイクルで、冷媒ポンプ33を、冷媒回路140を循環する冷媒量の一部が駆動部冷却用冷媒路147に流入するように制御する。また、蓄熱暖房運転では、制御部170は第2減圧器29の開度を全開にする。
 このような状態の冷媒回路140において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、内気熱交換器23に送られる。高圧の冷媒は、内気熱交換器23で車内乗車室へ供給する空気と熱交換を行いて凝縮する。内気熱交換器23で加熱された空気は、車内乗車室に吹き出され車内乗車室を暖める。
 内気熱交換器23において凝縮器した高圧の冷媒は、分岐点Sにおいて空気調和用冷媒路41とバッテリ温調用冷媒路42との2方向に分かれて流れる。
 空気調和用冷媒路41に流れた冷媒は、ほぼ全開状態の除湿用膨張弁121を通過して除湿熱交換器19に入り、そこでさらに放熱して過冷却状態となる。除湿熱交換器19を出た冷媒は、メイン膨張弁17によって減圧され、外気熱交換器15に入る。
 他方、バッテリ温調用冷媒路42に流れた高圧の冷媒は、第2減圧器29に送られるが、第2減圧器29の開度が全開であるので、減圧されることなくバッテリ熱交換器27に送られる。
 運転モードが通常暖房運転から蓄熱暖房運転へ切り換えられる直前まで、車載バッテリ80は30℃に維持されている。車載バッテリ80は、重さ200kgもあるので、30℃の蓄熱源である。したがって、車載バッテリ80は短時間であれば、ほぼ30℃を維持したまま、バッテリ熱交換器27内の冷媒と熱交換して過冷却となる。
 バッテリ熱交換器27を出た冷媒は、第1減圧器25によって外気熱交換器15で蒸発可能な圧力まで減圧され、外気熱交換器15に入る。外気熱交換器15に入った低圧の冷媒は、そこで車外の空気と熱交換を行って蒸発する。外気熱交換器15において蒸発した低圧の冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 さらに、分岐点Tから第1逆止弁131を介して高圧液冷媒の一部が駆動部冷却用冷媒路147に流入する。この高圧液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-6)デフロスト運転モード
 制御部170は、暖房運転時、外気熱交換器15に着霜したことを検知、若しくは推定したとき、四路切換弁13を冷房側へ切り換え、デフロスト運転を行う。つまり、デフロスト運転時、四路切換弁13は、圧縮機11の吐出側と外気熱交換器15のガス側とを接続するとともに圧縮機11の吸入側と内気熱交換器23のガス側とを接続する。
 また、制御部170は、除湿用膨張弁121の開度を全開にし、若しくは冷媒を減圧しない程度にまで開度を拡大する。メイン膨張弁17は、冷媒圧力を除湿熱交換器19及び内気熱交換器23で蒸発可能な圧力まで減圧するように開度調節される。また、制御部170は、第2減圧器29の開度を全開にする。第1減圧器25は、外気熱交換器15からの高圧冷媒をバッテリ熱交換器27及び内気熱交換器23で蒸発可能な圧力まで減圧する。それゆえ、外気熱交換器15が冷媒の凝縮器として機能し、空気調和用冷媒路41では除湿熱交換器19及び内気熱交換器23が冷媒の蒸発器として機能し、バッテリ温調用冷媒路42ではバッテリ熱交換器27及び内気熱交換器23が冷媒の蒸発器として機能する。
 また、制御部170は、冷媒回路140を循環する冷媒量の一部が分岐点Rから駆動部冷却用冷媒路147に流入するように冷媒ポンプ33の出力を制御する。さらに、制御部170は、外気ファン50および内気ファン60を停止させる。
 このような状態の冷媒回路140において、低圧の冷媒は、圧縮機11に吸入され、高圧に圧縮された後に吐出される。圧縮機11から吐出された高圧の冷媒は、四路切換弁13を通じて、外気熱交換器15に送られる。
 外気熱交換器15に送られた高圧の冷媒は、本来なら、車外空気と熱交換を行って凝縮するのであるが、外気ファン50が停止しているので、車外空気よりもむしろ外気熱交換器15に付着している霜との熱交換によって凝縮する。それゆえ、冷媒凝縮時の熱量のほとんどが霜融解熱に利用され、霜がすばやく融解する。外気熱交換器15において凝縮器した高圧の冷媒は、分岐点Rにおいて空気調和用冷媒路41とバッテリ温調用冷媒路42の2方向に分かれて流れる。
 空気調和用冷媒路41に流れた高圧の冷媒は、メイン膨張弁17によって減圧され、除湿熱交換器19及び内気熱交換器23に入る。除湿熱交換器19及び内気熱交換器23は、除湿用膨張弁121がほぼ全開となっているので、一つの蒸発器として機能する。
 他方、バッテリ温調用冷媒路42に流れた高圧の冷媒は、第1減圧器25で減圧され、バッテリ熱交換器27に入る。冷媒は、バッテリ熱交換器27で車載バッテリ80から熱を奪って蒸発する。その際、冷媒温度が5℃になるように、制御部170によって第1減圧器25の開度が制適宜制御される。この作用によって車載バッテリ80はほぼ30℃に維持される。
 バッテリ熱交換器27を出た冷媒は、15℃まで温度上昇して内気熱交換器23に入る。このとき、内気ファン60は停止しているので、内気熱交換器23内の冷媒と熱交換して冷やされた空気が車内乗車室に吹き出されることはない。内気熱交換器23を出た冷媒は、四路切換弁13を経て、再び、圧縮機11に吸入される。
 また、外気熱交換器15において凝縮した高圧の冷媒の一部が、分岐点Rから駆動部冷却用冷媒路147に流入する。この高圧の液冷媒は、冷媒ポンプ33によって圧縮機11の吐出圧力まで昇圧され、インバータ熱交換器35、及びモータ熱交換器37に入る。この冷媒は、インバータ85及び走行モータ87と熱交換し、インバータ85及び走行モータ87それぞれの温度を破損しない温度に維持する。モータ熱交換器37を出た冷媒は、圧縮機11の吐出管側に入る。
 (3-7)デフロスト準備運転モード
 第2実施形態におけるデフロスト準備モードは、第1実施形態におけるデフロスト準備モードを適用する。
 但し、先に説明した第1実施形態の第2の方策を適用するときは、図6B(第2変形例に係る他の自動車用温調システムの構成図)に示すように、第2減圧器29を全閉にしてバッテリ熱交換器27へ冷媒が流れないようにし、車載バッテリ80の冷却を止める。また、第2減圧器29を全閉にすると外気熱交換器15(蒸発器)に冷媒が流れなくなるので、図6Bでは、開閉弁491を有するバイパス路49が設けられている。開閉弁491は、デフロスト準備運転時に開動作するように制御すればよい。
 (4)特徴
 以上のように、第2実施形態に係る自動車用温調システム100は、第1実施形態に係る自動車用温調システム10の特徴に加えて、冷媒回路140が空気調和用冷媒路41とは別にバッテリ温調用冷媒路42とを有しているという特徴がある。それゆえ、空気調和とは別に、バッテリ熱交換器27の温度を蒸発温度と凝縮温度との間の任意の温度に調節することができ、車載バッテリ80を適温に調節することができる。
 以上のように、本発明の自動車用温調システムによれば、冷凍負荷が冷凍装置の能力を超えたときに、車載バッテリの冷熱で不足分を補う。それゆえ、別に蓄熱源を備える必要がなく、コスト低減が図られる。それゆえ、電気自動車だけに限らず、ハイブリット自動車にも有用である。
10,100 自動車用温調システム
25 第1減圧器
27 バッテリ熱交換器
29 第2減圧器
40,140 冷媒回路
41 空気調和用冷媒路
42 バッテリ温調用冷媒路
50 外気ファン(第1ファン)
60 内気ファン(第2ファン)
70,170 制御部
80 車載バッテリ
特開平11-23081号公報

Claims (10)

  1.  1つの冷媒回路(40)を用いて少なくとも空気調和とバッテリ(80)の温調とを行なう自動車用温調システムであって、
     前記冷媒回路(40)の冷媒の流れを制御する制御部(70)を備え、
     前記冷媒回路(40)は、空気調和用の蒸発器及び放熱器との間に、前記バッテリ(80)の温調を行なうバッテリ熱交換器(27)を含むバッテリ温調用冷媒路(42)を有し、
     前記制御部(70)は、前記バッテリ(80)の熱量を空気調和に利用する蓄熱利用モード、及び前記バッテリ(80)の熱量を空気調和に利用しない通常運転モードを、冷凍負荷に応じて選択し実行する、
    自動車用温調システム(10)。
  2.  前記制御部(70)は、前記バッテリ(80)の目標温度が所定の適正温度範囲内になるように前記冷媒回路(40)の冷媒の流れを制御しており、
     さらに、前記制御部(70)は、
     前記蓄熱利用モードを選択したとき前記目標温度を前記適正温度範囲内の第1範囲内に設定し、
     前記通常運転モードを選択したとき前記目標温度を前記適正温度範囲内で且つ前記第1範囲と異なる第2範囲へ設定する、
    請求項1に記載の自動車用温調システム(10)。
  3.  前記蓄熱利用モードは、
     前記バッテリ(80)の熱量を利用して冷房運転を行う蓄熱冷房運転モードと、
     前記バッテリ(80)の熱量を利用して暖房運転を行う蓄熱暖房運転モードと、
    を含み、
     前記通常運転モードは、
     前記バッテリ(80)の熱量を利用せずに冷房運転を行う通常冷房運転モードと、
     前記バッテリ(80)の熱量を利用せずに暖房運転を行う通常暖房運転モードと、
    を含み、
     前記制御部(70)は、
     通常冷房運転モードを選択したとき、前記第2範囲を前記適正温度範囲の最下限値を含む範囲に設定し、
     通常暖房運転モードを選択したとき、前記第2範囲を前記適正温度範囲の最上限値を含む範囲に設定する、
    請求項2に記載の自動車温調システム(10)。
  4.  前記制御部(70)は、前記バッテリ熱交換器(27)内の冷媒圧力を調節して、前記バッテリ(80)の温調を行なう、
    請求項3に記載の自動車用温調システム(10)。
  5.  前記バッテリ温調用冷媒路(42)は、前記バッテリ熱交換器(27)の両側に配置される2つの開度可変の減圧器(25,29)をさらに含み、
     前記制御部(70)は、2つの前記減圧器(25,29)の開度を調節して、前記バッテリ熱交換器(27)内の冷媒圧力を制御する、
    請求項4に記載の自動車用温調システム(10)。
  6.  暖房運転時の前記凝縮器に送風するファン(60)をさらに備え、
     前記制御部(70)は、暖房運転時に前記蒸発器の着霜を検知または推定したとき、前記ファン(60)を停止し、冷媒の流れを冷房運転時と同じ冷媒循環サイクルへ切り換え、前記バッテリ熱交換器(27)の上流側となる前記減圧器(25)の開度を絞り、前記バッテリ熱交換器(27)の下流側となる前記減圧器(29)の開度を全開とする、デフロスト運転を行う、
    請求項5に記載の自動車用温調システム(10)。
  7.  前記制御部(70)は、前記デフロスト運転時に除湿指令を受けたとき、前記バッテリ熱交換器(27)の上流側となる前記減圧器(25)の開度を開き、前記バッテリ熱交換器(27)の下流側となる前記減圧器(29)の開度を絞る、デフロスト時除湿運転を行う、
    請求項6に記載の自動車用温調システム(10)。
  8.  暖房運転時の前記蒸発器に送風する第1ファン(50)と、
     暖房運転時の前記凝縮器に送風する第2ファン(60)と、
    をさらに備え、
     前記制御部(70)は、暖房運転時に前記蒸発器の着霜を検知または推定したとき、前記第1ファン(50)を停止し、冷媒の流れを暖房運転時と同じ冷媒循環サイクルで、前記バッテリ熱交換器(27)の上流側となる前記減圧器(29)の開度を絞り、前記バッテリ熱交換器(27)の下流側となる前記減圧器(25)の開度を全開とする、デフロスト運転を行う、
    請求項5に記載の自動車用温調システム(10)。
  9.  前記制御部(70)は、前記デフロスト運転時、前記第2ファン(60)の回転数を低下させる、
    請求項8に記載の自動車用温調システム(10)。
  10.  前記制御部(70)は、
     前記デフロスト運転を実行する前に、前記バッテリ(80)の温度を現在の温度よりも高い所定温度で所定時間だけ保持する、デフロスト準備運転を行う。
    請求項6から請求項9のいずれか1項に記載の自動車用温調システム(10)。
PCT/JP2012/074497 2011-09-30 2012-09-25 自動車用温調システム WO2013047488A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218386A JP5370453B2 (ja) 2011-09-30 2011-09-30 自動車用温調システム
JP2011-218386 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047488A1 true WO2013047488A1 (ja) 2013-04-04

Family

ID=47995520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074497 WO2013047488A1 (ja) 2011-09-30 2012-09-25 自動車用温調システム

Country Status (2)

Country Link
JP (1) JP5370453B2 (ja)
WO (1) WO2013047488A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557361A (en) * 2016-12-08 2018-06-20 Arrival Ltd Thermal Management test system
CN108973587A (zh) * 2018-06-29 2018-12-11 珠海格力电器股份有限公司 一种汽车热泵空调系统和控制方法
CN111380325A (zh) * 2018-12-31 2020-07-07 冷王公司 用于对运输气候控制系统蒸发器节能除霜的方法和系统
CN113165480A (zh) * 2018-11-29 2021-07-23 株式会社电装 车载冷却系统的控制装置和车载冷却系统
CN114401853A (zh) * 2019-09-18 2022-04-26 三电高新技术株式会社 车用空调装置
WO2024067409A1 (zh) * 2022-09-29 2024-04-04 深蓝汽车科技有限公司 一种汽车热泵系统、热管理方法及汽车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220712A (ja) * 2012-04-16 2013-10-28 Denso Corp 車載機器温調装置
WO2018198275A1 (ja) * 2017-04-27 2018-11-01 三菱電機株式会社 冷凍サイクル装置
JP7481309B2 (ja) 2021-10-25 2024-05-10 トヨタ自動車株式会社 車両および車両の制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290622A (ja) * 1996-04-24 1997-11-11 Denso Corp 車両用空調装置
JP2001105843A (ja) * 1999-10-12 2001-04-17 Nippon Soken Inc バッテリ冷却装置
JP2001213151A (ja) * 2000-02-03 2001-08-07 Denso Corp 車両用空調装置
JP2006170469A (ja) * 2004-12-13 2006-06-29 Daikin Ind Ltd 電装品ユニットおよび空気調和機
JP2009085526A (ja) * 2007-10-01 2009-04-23 Daikin Ind Ltd 空気調和装置
WO2009133707A1 (ja) * 2008-04-30 2009-11-05 ダイキン工業株式会社 ヒートポンプ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724610B2 (ja) * 2011-05-13 2015-05-27 株式会社デンソー 車両用冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290622A (ja) * 1996-04-24 1997-11-11 Denso Corp 車両用空調装置
JP2001105843A (ja) * 1999-10-12 2001-04-17 Nippon Soken Inc バッテリ冷却装置
JP2001213151A (ja) * 2000-02-03 2001-08-07 Denso Corp 車両用空調装置
JP2006170469A (ja) * 2004-12-13 2006-06-29 Daikin Ind Ltd 電装品ユニットおよび空気調和機
JP2009085526A (ja) * 2007-10-01 2009-04-23 Daikin Ind Ltd 空気調和装置
WO2009133707A1 (ja) * 2008-04-30 2009-11-05 ダイキン工業株式会社 ヒートポンプ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557361A (en) * 2016-12-08 2018-06-20 Arrival Ltd Thermal Management test system
GB2557361B (en) * 2016-12-08 2020-09-02 Arrival Ltd Thermal Management test system
CN108973587A (zh) * 2018-06-29 2018-12-11 珠海格力电器股份有限公司 一种汽车热泵空调系统和控制方法
CN113165480A (zh) * 2018-11-29 2021-07-23 株式会社电装 车载冷却系统的控制装置和车载冷却系统
CN111380325A (zh) * 2018-12-31 2020-07-07 冷王公司 用于对运输气候控制系统蒸发器节能除霜的方法和系统
CN114401853A (zh) * 2019-09-18 2022-04-26 三电高新技术株式会社 车用空调装置
CN114401853B (zh) * 2019-09-18 2024-04-09 三电高新技术株式会社 车用空调装置
WO2024067409A1 (zh) * 2022-09-29 2024-04-04 深蓝汽车科技有限公司 一种汽车热泵系统、热管理方法及汽车

Also Published As

Publication number Publication date
JP5370453B2 (ja) 2013-12-18
JP2013075650A (ja) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5370453B2 (ja) 自動車用温調システム
JP6855281B2 (ja) 車両用空気調和装置
US11525611B2 (en) Refrigeration cycle device for vehicle
CN107923662B (zh) 热泵系统
CN108430813B (zh) 车用空调装置
JP6015636B2 (ja) ヒートポンプシステム
JP6201434B2 (ja) 冷凍サイクル装置
JP6332560B2 (ja) 車両用空調装置
JP2013060066A (ja) 自動車用温調システム
JP6011375B2 (ja) 冷凍サイクル装置
JP5786615B2 (ja) 自動車用温調システム
WO2015025905A1 (ja) 車両用空気調和装置
US20220234416A1 (en) Refrigeration cycle device
WO2013039047A1 (ja) 自動車用温調システム
JP2013060065A (ja) 自動車用温調システム
JP2018091536A (ja) 冷凍サイクル装置
JP2014126209A (ja) 冷凍サイクル装置
WO2019116781A1 (ja) 車両用暖房装置
CN112424006B (zh) 车辆用空调装置
WO2021187005A1 (ja) 車両用空気調和装置
JP6544287B2 (ja) 空調装置
JP7431637B2 (ja) 車両用空気調和装置
JP2012076589A (ja) 車両用空調装置
JP7476779B2 (ja) 車両用空調装置
WO2017022421A1 (ja) ヒートポンプシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837418

Country of ref document: EP

Kind code of ref document: A1