WO2018198275A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2018198275A1 WO2018198275A1 PCT/JP2017/016776 JP2017016776W WO2018198275A1 WO 2018198275 A1 WO2018198275 A1 WO 2018198275A1 JP 2017016776 W JP2017016776 W JP 2017016776W WO 2018198275 A1 WO2018198275 A1 WO 2018198275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- heat exchanger
- valve
- compressor
- refrigeration cycle
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 46
- 239000003507 refrigerant Substances 0.000 claims abstract description 241
- 238000010257 thawing Methods 0.000 claims abstract description 77
- 238000005338 heat storage Methods 0.000 claims description 99
- 238000010438 heat treatment Methods 0.000 claims description 65
- 238000002360 preparation method Methods 0.000 claims description 40
- 238000004891 communication Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 25
- 238000001816 cooling Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 7
- 238000004781 supercooling Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/39—Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
- F25B47/025—Defrosting cycles hot gas defrosting by reversing the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/24—Storage receiver heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2111—Temperatures of a heat storage receiver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2116—Temperatures of a condenser
- F25B2700/21162—Temperatures of a condenser of the refrigerant at the inlet of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2116—Temperatures of a condenser
- F25B2700/21163—Temperatures of a condenser of the refrigerant at the outlet of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21174—Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21175—Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
Definitions
- the present invention relates to a refrigeration cycle apparatus, and more particularly, to a refrigeration cycle apparatus that performs a defrosting operation by utilizing a heat storage amount of a heat storage body against frost formation of an outdoor heat exchanger.
- this defrosting operation is to operate the refrigeration cycle apparatus by switching the four-way valve of the refrigeration cycle apparatus to the cooling side, using the heat stored in the indoor air, the indoor heat exchanger, the indoor / outdoor connection piping, and the compressor as a heat source. It was done by.
- Patent Document 1 a heat storage body is provided on the refrigeration cycle circuit.
- the defrosting capacity is increased, the defrosting time is shortened, and the return of the liquid refrigerant to the compressor is prevented.
- the refrigerant pressure passing through the heat accumulator is smaller than necessary during the defrosting operation, the temperature of the refrigerant passing through the heat accumulator is lowered, and more heat is transferred from the heat accumulator to the refrigerant.
- the intake refrigerant temperature rises excessively. Accordingly, there is a problem that the refrigerant temperature discharged from the compressor rises to a protection value (for example, 120 ° C.) or more.
- the refrigerant pressure passing through the heat accumulator is higher than necessary during the defrosting operation, the amount of heat transferred from the heat accumulator to the refrigerant decreases, and the liquid refrigerant is sucked into the compressor without being completely evaporated.
- oil is diluted with a refrigerant and viscosity is lowered, resulting in poor lubrication of the compression mechanism.
- the present invention has been made in order to solve the above-described problems, and provides a refrigeration cycle apparatus characterized by shortening the defrosting time and speeding up the recovery of the heating capacity after returning to the heating operation.
- the purpose is to do.
- the present disclosure relates to a refrigeration cycle apparatus.
- the refrigeration cycle apparatus circulates refrigerant in the forward direction returning to the compressor through the compressor, the indoor heat exchanger, the first expansion valve, the heat storage body, the second expansion valve, and the outdoor heat exchanger, or in the reverse direction.
- the refrigerant circuit includes first to fifth refrigerant pipes, a bypass passage, and a first on-off valve.
- the first refrigerant pipe extends from the outdoor heat exchanger to the indoor heat exchanger via the first expansion valve, the heat storage body, and the second expansion valve.
- the second refrigerant pipe connects between the four-way valve and the indoor heat exchanger.
- the third refrigerant pipe connects between the four-way valve and the outdoor heat exchanger.
- the fourth refrigerant pipe connects the suction port of the compressor and the four-way valve.
- the fifth refrigerant pipe connects the discharge port of the compressor and the four-way valve.
- the bypass passage branches from the first portion connecting the indoor heat exchanger and the first expansion valve in the first refrigerant pipe, and reaches the fourth refrigerant pipe.
- the first on-off valve is provided in the bypass passage.
- the heat storage body is arranged on the refrigerant circuit between the two expansion valves whose opening degree can be adjusted, which is provided on the refrigerant circuit connecting the indoor heat exchanger and the outdoor heat exchanger.
- the heat of the refrigerant can be stored in the heat storage body during the defrost preparation operation, and can be dissipated from the heat storage body to the refrigerant during the defrost operation, so that the heat can be used as a defrost heat source.
- the amount of heat exchange between the heat storage body and the refrigerant can be adjusted by adjusting the pressure of the refrigerant flowing through the heat storage body by the two expansion valves, and the proper operation state of the refrigeration cycle apparatus can be maintained.
- FIG. 2 is a refrigerant circuit diagram of the refrigeration cycle apparatus in Embodiment 1.
- FIG. It is a figure which shows the characteristic of the material used as the thermal storage body. It is a figure which shows the control state of a four-way valve, an expansion valve, and an on-off valve in four operation modes. It is a figure which shows the flow of the refrigerant
- FIG. 6 is a refrigerant circuit diagram of the refrigeration cycle apparatus in Embodiment 2.
- FIG. 6 is a refrigerant circuit diagram of the refrigeration cycle apparatus in Embodiment 3.
- FIG. 6 is a refrigerant circuit diagram of the refrigeration cycle apparatus in Embodiment 3.
- FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
- FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
- the refrigeration cycle apparatus 101 uses a refrigerant, a compressor 1, a four-way valve 2, an indoor heat exchanger 3, a first expansion valve 4a, a heat storage body 5, a second expansion valve 4b, and an outdoor heat exchanger. 6.
- a refrigerant circuit 10 is provided that circulates in the forward direction or the reverse direction back to the compressor 1 through the four-way valve 2 in order.
- the refrigerant circulation direction is changed by the compressor 1 and the indoor heat exchanger 3 and the four-way valve 2 provided between the compressor 1 and the outdoor heat exchanger 6.
- the compressor 1, the four-way valve 2, the outdoor heat exchanger 6, the heat storage body 5, the first expansion valve 4a and the second expansion valve 4b are disposed in the outdoor unit 50, and the indoor heat exchanger 3 is disposed in the indoor unit 51. Is done.
- the heat accumulator 5 is provided on the refrigerant circuit between the two expansion valves 4a and 4b whose opening degree can be adjusted, which is provided on the refrigerant circuit connecting the indoor heat exchanger 3 and the outdoor heat exchanger 6.
- the heat of the refrigerant can be stored in the heat storage body 5 during the defrost preparation operation, and the heat can be dissipated from the heat storage body 5 to the refrigerant during the defrost operation, so that a defrost heat source can be obtained.
- the amount of heat exchange between the heat storage body 5 and the refrigerant can be adjusted, and the proper operation state of the refrigeration cycle apparatus can be maintained. .
- the heat storage body 5 is arranged as a heat source during the defrosting operation.
- the heat storage body 5 is disposed in the refrigerant circuit 10 in the middle of the first refrigerant pipe 21 that connects the indoor heat exchanger 3 and the outdoor heat exchanger 6.
- the first expansion valve 4 a is disposed between the indoor heat exchanger 3 and the heat storage body 5 in the first refrigerant pipe 21.
- the second expansion valve 4 b is disposed between the outdoor heat exchanger 6 and the heat storage body 5 in the first refrigerant pipe 21.
- FIG. 2 is a diagram showing the characteristics of the material used as the heat storage body 5.
- the heat storage body 5 aluminum or an aluminum alloy can be used. Compared to copper and iron, aluminum has an amount of heat storage per volume of about 70%, but it is lightweight and inexpensive, so it is advantageous for product introduction.
- FIG. 2 shows a comparison of specific heat, density and heat capacity per volume for iron, copper and aluminum.
- the refrigerant circuit 10 includes a first refrigerant pipe 21 to a fifth refrigerant pipe 25, a bypass passage 11, and a first on-off valve 41.
- the first refrigerant pipe 21 reaches the outdoor heat exchanger 6 from the indoor heat exchanger 3 via the first expansion valve 4a, the heat storage body 5, and the second expansion valve 4b.
- the second refrigerant pipe 22 connects between the four-way valve 2 and the indoor heat exchanger 3.
- the third refrigerant pipe 23 connects between the four-way valve 2 and the outdoor heat exchanger 6.
- the fourth refrigerant pipe 24 connects the suction port of the compressor 1 and the four-way valve 2.
- the fifth refrigerant pipe 25 connects the discharge port of the compressor 1 and the four-way valve 2.
- the first refrigerant pipe 21 includes a first part, a second part, a third part, and a fourth part.
- the first part (tubes 31 and 32), the first part from the indoor heat exchanger 3 to the first expansion valve 4a.
- the second part (pipe 33) extends from the expansion valve 4a to the heat storage body 5, the third part (pipe 34) extends from the heat storage body 5 to the second expansion valve 4b, and the outdoor heat exchanger 6 extends from the second expansion valve 4b to the fourth.
- a portion (tube 35) is used.
- the bypass passage 11 branches from between the indoor heat exchanger 3 and the first expansion valve 4 a in the first refrigerant pipe 21, is connected to the fourth refrigerant pipe 24, and is connected to the first portion of the first refrigerant pipe 21.
- the pipe 31 connects the indoor heat exchanger 3 to the bypass passage 11
- the pipe 32 connects the bypass passage 11 to the first expansion valve 4 a.
- the first on-off valve 41 is provided in the bypass passage 11.
- the four-way valve 2, the bypass passage 11, and the first on-off valve 41 are disposed in the outdoor unit 50.
- the arrangement of the control device 100 is not particularly limited, but may be arranged in either the outdoor unit 50 or the indoor unit 51, or may be arranged separately from the outdoor unit 50 and the indoor unit 51.
- the four-way valve 2 is configured so that the internal communication state can be set to “first state” and “second state”.
- first state the discharge port of the compressor 1 is communicated with the second refrigerant pipe 22 connected to the indoor heat exchanger 3 inside the four-way valve 2, and the suction port of the compressor 1 is connected to the outdoor heat exchanger 6.
- the third refrigerant pipe 23 is connected to the third refrigerant pipe 23. Since the first state is mainly used during heating, the first state is also referred to as “heating side”.
- the “second state” is a state in which the discharge port of the compressor 1 communicates with the third refrigerant pipe 23 and the suction port of the compressor 1 communicates with the second refrigerant pipe 22 inside the four-way valve 2. Since the second state is mainly used during cooling, the second state is also referred to as “cooling side”.
- FIG. 3 is a diagram illustrating control states of the four-way valve, the expansion valve, and the on-off valve in the four operation modes.
- the four operation modes are a heating operation mode, a defrost preparation operation mode, a defrost operation mode, and a cooling operation mode.
- the point which passes through defrost preparation operation mode is one of the characteristics.
- the four-way valve 2 is set to the first state (heating side) in the heating operation, and is set to the second state (cooling side) in the defrosting operation.
- the four-way valve 2 is set to the first state (heating side) in the defrost preparation operation, and is set to the second state (cooling side) in the cooling operation.
- the on-off valve 41 is set to a closed state in the heating operation, and is set to a fully open state in the defrosting operation.
- the on-off valve 41 is set to a closed state in the defrost preparation operation and the cooling operation.
- the expansion valve 4a In the heating operation, the expansion valve 4a is controlled to be throttled, and the expansion valve 4b is preferably fully opened. In the defrost preparation operation, the expansion valve 4a is preferably fully opened, and the expansion valve 4b is throttled. In the defrosting operation, the expansion valve 4a and the expansion valve 4b are both controlled to be throttled. In the cooling operation, the expansion valve 4a is preferably fully opened, and the expansion valve 4b is throttle-controlled.
- the opening degree of the first expansion valve 4a is made larger than that during the heating operation (the throttle control state is fully opened), and the second The defrosting preparation operation is performed to make the opening degree of the expansion valve 4b smaller than that during heating operation (from the fully open state to the throttle control state), and the first on-off valve 41 is opened during the defrosting operation.
- the flow of the refrigerant will be described in more detail for each operation mode.
- FIG. 4 is a diagram illustrating the flow of the refrigerant during the heating operation.
- the refrigerant passes through the compressor 1, the four-way valve 2, the indoor heat exchanger 3, the expansion valve 4 a, the heat storage body 5, the expansion valve 4 b, and the outdoor heat exchanger 6 in this order, and again passes through the four-way valve 2 to the compressor 1. And so on.
- the on-off valve 41 Since the on-off valve 41 is opened only during the defrosting operation, the refrigerant does not flow into the bypass passage 11 during the heating operation.
- the control device 100 communicates the discharge side of the compressor 1 and the indoor heat exchanger 3, and communicates the outdoor heat exchanger 6 and the suction side of the compressor 1. Switch the four-way valve 2.
- the vapor refrigerant that has been brought to high temperature and pressure in the compressor 1 passes through the four-way valve 2 and flows into the indoor heat exchanger 3.
- the indoor heat exchanger 3 functions as a condenser.
- the high-temperature and high-pressure vapor refrigerant radiates heat to the indoor air introduced into the indoor heat exchanger 3 by an indoor fan (not shown). Thereby, the vapor refrigerant is condensed and becomes a high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant expands by passing through the expansion valve 4 a, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the heat storage body 5.
- the heat storage body 5 After a certain time has elapsed from the start of the heating operation, the heat storage body 5 is in a temperature equilibrium state with the refrigerant flowing through the heat storage body, and heat transfer between the heat storage body 5 and the refrigerant is lost. Then, the refrigerant flows into the expansion valve 4b.
- the expansion valve 4b is basically set to the maximum opening so that the pressure loss before and after the expansion valve 4b is minimized.
- the refrigerant that has passed through the expansion valve 4 b flows into the outdoor heat exchanger 6.
- the outdoor heat exchanger 6 functions as an evaporator at this time.
- the low-temperature and low-pressure gas-liquid two-phase refrigerant absorbs heat from the outdoor air introduced into the outdoor heat exchanger 6 by an outdoor fan (not shown).
- the gas-liquid two-phase refrigerant evaporates and becomes a low-pressure vapor refrigerant.
- the low-pressure vapor refrigerant is sucked into the compressor 1 via the four-way valve 2.
- the refrigerant circulates in the refrigeration cycle in the same process.
- FIG. 5 is a diagram illustrating the flow of the refrigerant during the cooling operation.
- the control device 100 causes the discharge side of the compressor 1 and the outdoor heat exchanger 6 to communicate with each other, and the indoor heat exchanger 3 and the suction side of the compressor 1 to communicate with each other.
- the vapor refrigerant that has been brought to high temperature and pressure in the compressor 1 passes through the four-way valve 2 and flows into the outdoor heat exchanger 6.
- the outdoor heat exchanger 6 functions as a condenser at this time.
- the high-temperature and high-pressure vapor refrigerant radiates heat to the outdoor air introduced into the outdoor heat exchanger 6 by an outdoor fan (not shown). Thereby, the vapor refrigerant is condensed and becomes a high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant expands by passing through the expansion valve 4 b, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the heat storage body 5.
- the heat storage body 5 After a certain period of time has elapsed since the start of the cooling operation, the heat storage body 5 is in a temperature equilibrium state with the refrigerant flowing through the heat storage body, and heat transfer between the heat storage body and the refrigerant is lost. Then, the refrigerant flows into the expansion valve 4a.
- the expansion valve 4a is basically set to the maximum opening so that the pressure loss before and after the expansion valve 4a is minimized.
- the refrigerant that has passed through the expansion valve 4a flows into the indoor heat exchanger 3.
- the indoor heat exchanger 3 functions as an evaporator.
- the low-temperature and low-pressure gas-liquid two-phase refrigerant absorbs heat from indoor air introduced into the indoor heat exchanger 3 by an indoor fan (not shown).
- the gas-liquid two-phase refrigerant evaporates and becomes a low-pressure vapor refrigerant.
- the low-pressure vapor refrigerant is sucked into the compressor 1 via the four-way valve 2.
- the refrigerant circulates in the refrigeration cycle in the same process.
- the heat storage amount of the heat storage body 5 is used to shorten the defrosting time and shorten the heating operation rising time.
- the control device 100 determines that the defrosting operation is necessary when the pressure Ps of the intake refrigerant of the compressor 1, the intake refrigerant temperature of the compressor 1, or the outdoor heat exchanger 6 outlet refrigerant temperature becomes a certain value or less.
- the four-way valve 2 is switched from the heating operation side to the cooling operation side, and the high-temperature and high-pressure vapor refrigerant discharged from the compressor 1 is caused to flow into the outdoor heat exchanger 6, thereby the outdoor heat exchanger.
- a technique for melting 6 frosts is known.
- the compressor 1 may be damaged due to poor lubrication.
- the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 6, and the low-temperature liquid refrigerant that has melted and radiated the frost formed on the outdoor heat exchanger 6 has condensed the refrigerant circuit. It flows in order and flows into the indoor heat exchanger 3.
- the indoor blower stops air blowing to prevent blowing out cold air into the room, and the refrigerant is sucked into the compressor 1 in a two-phase state with the evaporation failure.
- liquid refrigerant suction of the compressor 1 occurs due to poor evaporation of the liquid refrigerant, and the viscosity of the lubricating oil decreases due to mixing with the liquid refrigerant, which may result in poor lubrication.
- the defrosting preparation operation is performed before the transition from the heating operation to the defrosting operation. carry out.
- the direction of the refrigerant flow is the same as that in the heating operation state shown in FIG. 4, but the opening of the expansion valve 4a is made larger than the opening during the heating operation, and the expansion valve 4b The difference is that the opening is made smaller than the opening during heating operation.
- the refrigerant pressure passing through the heat storage body 5 increases and the refrigerant saturation temperature rises, so that the heat storage body 5 can store heat.
- the temperature of the refrigerant flowing out of the indoor heat exchanger 3 during the heating operation is about 40 ° C.
- the heat storage body 5 can store heat up to 40 ° C.
- the opening degree of the expansion valve 4a during the defrost preparation operation is preferably fully opened.
- the start of the defrost preparation operation starts when the pressure Ps of the refrigerant sucked by the compressor 1, the temperature of the refrigerant sucked by the compressor 1, or the temperature of the outlet refrigerant of the outdoor heat exchanger 6 becomes a certain value or less during the heating operation. Alternatively, it may be after a certain time (for example, 60 minutes) of the heating operation time.
- the start of the defrosting preparation operation may be when the room temperature reaches the target temperature during the heating operation.
- the target temperature is a room temperature setting value of the refrigeration cycle apparatus set by the user (user).
- the end of the defrost preparation operation may be when the temperature of the heat storage body 5 is measured and the temperature difference between the heat storage body 5 and the indoor heat exchanger 3 is less than a certain value and it is determined that the heat storage body 5 has sufficiently stored heat. It may be after a certain period of time (for example, after 5 minutes) of the defrost preparation operation.
- the defrost preparation operation may be continued until it is determined that defrosting of the outdoor heat exchanger 6 is necessary. That is, it is not necessary to set the conditions for ending the defrost preparation operation as described above, and the defrost preparation operation may be continued until defrosting starts.
- ⁇ Defrost operation is performed after the defrost preparation operation, except in the case of an operation stop command by the user or an abnormal stop in refrigeration cycle control.
- FIG. 6 is a diagram illustrating the refrigerant flow during the defrosting operation.
- the four-way valve 2 is switched so that the discharge side of the compressor 1 and the outdoor heat exchanger 6 communicate with each other, and the indoor heat exchanger 3 and the suction side of the compressor 1 communicate with each other.
- the valve 41 is opened.
- the vapor refrigerant that has been made high temperature and high pressure by the compressor 1 passes through the four-way valve 2 and flows into the outdoor heat exchanger 6.
- the outdoor heat exchanger 6 functions as a condenser at this time.
- the high-temperature and high-pressure vapor refrigerant radiates and condenses by melting frost on the outdoor heat exchanger 6 and becomes a low-temperature liquid refrigerant.
- the outdoor blower (not shown) is generally stopped during the defrosting operation so that the heat of condensation of the refrigerant is not used for heating the outdoor air but efficiently used for defrosting.
- the low-temperature liquid refrigerant used for defrosting the heat amount passes through the expansion valve 4 b and reaches the heat storage body 5.
- the heat storage body 5 is stored at a high temperature during the defrost preparation operation, and the heat storage body 5 functions as an evaporator.
- the low-temperature liquid refrigerant evaporates by exchanging heat with the heat storage body 5 and becomes a vapor refrigerant.
- the vapor refrigerant that has flowed out of the heat storage body 5 passes through the expansion valve 4 a, passes through the bypass passage 11 and the on-off valve 41, and is sucked into the compressor 1. During the defrosting operation, the refrigerant circulates in the refrigeration cycle in the same process thereafter.
- the refrigerant circuit from the expansion valve 4a to the compressor 1 via the indoor heat exchanger 3 and the four-way valve 2 has a longer piping and larger pressure loss than the bypass passage 11, so that a valve or the like during the defrosting operation is used. Even if it is not closed, the refrigerant hardly flows.
- the opening degree of the expansion valve 4a and the opening degree of the expansion valve 4b are preferably as large as possible. This is because the smaller the pressure loss at the expansion valves 4a and 4b, the higher the refrigerant suction density of the compressor 1 and the greater the amount of refrigerant circulation, thereby reducing the defrosting time.
- the compressor 1 when the compressor 1 employs a differential pressure oil supply method as an internal lubricating oil supply method, the compressor 1 may have a minimum differential pressure required for operation. In this case, it is better to reduce the opening degree of 4b instead of the expansion valve 4a during the defrosting operation. This is because the pressure loss of the refrigerant mainly occurs on the expansion valve 4b side, so that the temperature of the refrigerant passing through the heat storage body 5 is lowered, and the heat release rate and the heat release amount of the heat storage body 5 with respect to the refrigerant are both increased.
- the suction temperature of the compressor 1 when the suction temperature of the compressor 1 is low even though the refrigerant temperature sucked by the compressor 1 is high, the refrigerant temperature discharged from the compressor 1 is equal to or higher than a predetermined protection value (for example, 120 ° C.). May rise to. In this case, it is necessary to temporarily reduce the heat release amount of the heat storage body 5 and to reduce the compressor 1 suction refrigerant temperature to an appropriate temperature. At this time, the temperature of the refrigerant passing through the heat accumulator 5 can be increased by reducing the opening of the expansion valve 4a and increasing the opening of 4b.
- a predetermined protection value for example, 120 ° C.
- the heat storage body 5 by arranging the heat storage body 5 on the refrigerant circuit between the expansion valves 4a and 4b whose opening degree can be adjusted, the refrigerant pressure and temperature passing through the heat storage body 5 can be arbitrarily controlled. Therefore, since the amount of heat exchanged between the heat storage body 5 and the refrigerant can be controlled, a quick defrosting operation and a compressor operation within an appropriate operation range are possible.
- the end of the defrosting operation may be when the refrigerant outlet pipe temperature of the outdoor heat exchanger 6 is measured and becomes higher than a certain temperature (for example, 5 ° C. or more), or after a certain time has elapsed from the start of the defrosting operation (for example, 5 Minutes later).
- a certain temperature for example, 5 ° C. or more
- a certain time has elapsed from the start of the defrosting operation (for example, 5 Minutes later).
- the temperature of the heat storage body 5 is higher than the outdoor air temperature and the heat storage body 5 can be used as a heat collection source for the heating operation, the temperature of the blowout air temperature of the indoor unit 51 is increased during the heating operation. be able to.
- FIG. 7 is a flowchart (first half) for explaining an example of control for operation switching performed by the control device 100.
- FIG. 8 is a flowchart (second half) for explaining an example of control for operation switching performed by the control device 100.
- the control device 100 starts the process of the flowchart of FIG. 7 in response to a heating operation start command from the user's remote controller or the like (S1).
- step S2 the control device 100 controls the four-way valve 2 so that the discharge port of the compressor 1 and the indoor heat exchanger 3 communicate with each other, and the outdoor heat exchanger 6 and the suction port of the compressor 1 communicate with each other. Set up the connection.
- step S3 the control device 100 performs control so that the expansion valve 4b is fully opened and the expansion valve 4a is set to the initial opening degree.
- the indoor heat exchanger 3 functions as a condenser.
- the expansion valve is generally controlled based on the degree of subcooling (subcool: SC) of the indoor heat exchanger.
- subcool control is performed in steps S4 to S7 by adjusting the opening of the expansion valve 4a.
- step S4 the control device 100 determines whether or not the supercooling degree SC of the indoor heat exchanger 3 is equal to or less than a determination value SC1 (first value SC1).
- the control apparatus 100 calculates
- step S4 when SC ⁇ SC1 is satisfied (YES in S4), in step S5, the control device 100 reduces the opening of the expansion valve 4a, and when SC ⁇ SC1 is not satisfied (NO in S4), control is performed in step S6.
- the device 100 increases the opening degree of the expansion valve 4a.
- step S7 the control device 100 determines whether or not the pressure Ps of the refrigerant sucked in the compressor 1 is equal to or lower than the determination pressure Ps1. At this time, the pressure Ps of the refrigerant sucked in the compressor 1 is derived from the pressure value of the pressure sensor LS1 disposed at the suction port of the compressor 1.
- step S7 1) the intake refrigerant temperature Ts of the compressor 1 ⁇ the determination temperature Ts1, 2) the outlet refrigerant temperature Teo of the outdoor heat exchanger 6 ⁇ the determination temperature Teo1, and 3) the heating operation time ⁇ the determination time.
- the temperature value of the thermistor THs installed in the suction pipe of the compressor 1 can be used as the suction refrigerant temperature Ts.
- the temperature value of the thermistor THEo installed in the outlet piping of the outdoor heat exchanger 6 can be used for the outlet refrigerant temperature Teo of the outdoor heat exchanger 6.
- step S7 if the determination condition is not satisfied (NO in S7), the processing after step S4 is performed again. On the other hand, if the determination condition is satisfied in step S7 (YES in S7), the process proceeds to step S8, and the defrost preparation operation is started.
- step S9 the control device 100 fully opens the expansion valve 4a and sets the expansion valve 4b to the initial opening (for example, the opening of the expansion valve 4a during the heating operation). Thus, control is performed.
- the expansion valve is controlled based on the degree of subcooling (subcool: SC) of the indoor heat exchanger, as in the heating operation.
- subcool control is performed in steps S10 to S13 by adjusting the opening of the expansion valve 4b.
- step S10 the control device 100 determines whether or not the supercooling degree SC of the indoor heat exchanger 3 is equal to or less than a determination value SC1. Since the method for calculating the degree of supercooling SC is the same as that in step S4, description thereof will not be repeated.
- step S10 when SC ⁇ SC1 is satisfied (YES in S10), in step S11, the control device 100 reduces the opening of the expansion valve 4b, and when SC ⁇ SC1 is not satisfied (NO in S10), control is performed in step S12.
- the device 100 increases the opening degree of the expansion valve 4b.
- step S13 the control device 100 determines whether or not the temperature Tb of the heat storage body 5 is equal to or higher than the determination temperature Tb1 or whether the defrost preparation operation time is equal to or longer than the determination time M2.
- the temperature Tb of the heat storage body 5 the temperature value of the thermistor THb attached to the heat storage body 5 can be used.
- step S13 when the determination condition is not satisfied (NO in S13), the processes after step S10 are performed again. On the other hand, if the determination condition is satisfied in step S13 (YES in S13), the process proceeds to step S14, and the defrost preparation operation is ended.
- step S15 the control device 100 determines whether or not the pressure Ps of the refrigerant sucked by the compressor 1 is equal to or lower than the second determination pressure value Ps2.
- step S15 two determinations are made: 1) the intake refrigerant temperature Ts of the compressor 1 ⁇ second determination temperature Ts2, and 2) the outlet refrigerant temperature Teo of the outdoor heat exchanger 6 ⁇ second determination temperature Teo2. Any of the conditions may be adopted. Moreover, you may start a defrost operation immediately after completion
- step S15 Until the determination condition in step S15 is satisfied, the defrosting operation is not started, and the heating operation is performed in a state where heat is stored in the heat storage body 5 (NO in S15).
- step S15 the process proceeds to step S16, and the defrosting operation is started.
- step S17 the controller 100 controls the four-way valve 2 so that the discharge port of the compressor 1 and the outdoor heat exchanger 6 communicate with each other, and the indoor heat exchanger 3 and the suction port of the compressor 1 communicate with each other. Set up the connection. Furthermore, in step S ⁇ b> 18, the control device 100 opens the on-off valve 41 provided in the bypass passage 11.
- step S19 the control device 100 performs control so that the expansion valve 4a and the expansion valve 4b are fully opened.
- the indoor heat exchanger 3 functions as an evaporator.
- the control device 100 adjusts the heat release amount from the heat accumulator 5 by adjusting the opening degree of the expansion valve 4a and the expansion valve 4b.
- step S20 the control device 100 acquires the pressure Ps of the suction refrigerant of the compressor 1 from the pressure value of the pressure sensor LS1, and acquires the pressure Pd of the discharge refrigerant of the compressor 1 from the pressure value of the pressure sensor HS1. Then, the refrigerant compression ratio Pd / Ps is calculated, and it is determined whether or not this compression ratio is equal to or less than a determination value R1.
- step S20 When Pd / Ps ⁇ R1 is satisfied in step S20 (YES in S20), the control device 100 reduces the opening of the expansion valve 4b in step S21, and when Pd / Ps ⁇ R1 is not satisfied (NO in S20), In step S22, the control device 100 increases the opening degree of the expansion valve 4b. Subsequent to step S21 or S22, step S23 is performed.
- step S23 the control device 100 acquires the discharge refrigerant temperature Td of the compressor 1 from the detection value of the temperature sensor THd. Then, it is determined whether or not the discharge refrigerant temperature Td of the compressor 1 is equal to or higher than the determination temperature Td1.
- step S23 when Td ⁇ Td1 is established (YES in S23), in step S24, the control device 100 decreases the opening of the expansion valve 4a and increases the opening of the expansion valve 4b.
- Td ⁇ Td1 is established, the heat release from the heat storage body 5 is excessive, so the amount of heat released from the heat storage body 5 is reduced by reducing the opening of the expansion valve 4a.
- step S23 if Td ⁇ Td1 is not satisfied in step S23 (NO in S23), the control device 100 increases the opening of the expansion valve 4a and decreases the opening of the expansion valve 4b in step S25. Subsequent to step S24 or S25, step S26 is performed.
- step S26 the control device 100 acquires the temperature TL of the liquid pipe of the outdoor heat exchanger 6 from the thermistor THL. Control device 100 determines whether temperature TL is equal to or higher than determination temperature TL1 or whether the defrosting operation time is equal to or longer than determination time M3. In step S26, when neither of the two conditions is satisfied (NO in S26), the process returns to step S20. On the other hand, if at least one of the two conditions is satisfied in step S20 (YES in S26), control device 100 proceeds to step S27, closes on-off valve 41, and ends the defrosting operation in step S28. Thereafter, in step S29, the process returns to the heating operation start process.
- the heat storage body 5 by arranging the heat storage body 5 on the refrigerant circuit between the expansion valves 4a and 4b whose opening degree can be adjusted, the refrigerant pressure and temperature passing through the heat storage body 5 can be reduced. Can be controlled arbitrarily. Therefore, since the amount of heat exchanged between the heat storage body 5 and the refrigerant can be controlled, a quick defrosting operation and a compressor operation within an appropriate operation range are possible.
- FIG. 9 is a refrigerant circuit diagram of the refrigeration cycle apparatus in the second embodiment.
- the refrigeration cycle apparatus 101 ⁇ / b> A includes a second opening / closing valve 42 provided in the second refrigerant pipe 22 and a first portion (31 of the first refrigerant pipe 21. , 32) is provided with a third on-off valve 43 provided closer to the indoor heat exchanger 3 than the branching point to the bypass passage 11. Both the second on-off valve 42 and the third on-off valve 43 are opened during the heating operation and closed during the defrosting operation.
- the refrigeration cycle apparatus 101A further includes a first stop valve SV1 provided in the second refrigerant pipe 22 and a second stop valve SV2 provided in the first part (31, 32) of the first refrigerant pipe 21.
- the stop valve is a valve that a construction worker opens and closes with a wrench when the refrigeration cycle apparatus is installed or moved.
- the second on-off valve 42 and the third on-off valve 43 are electromagnetic valves that can be opened and closed during operation of the control device 100A.
- the first stop valve SV1 is provided closer to the indoor heat exchanger 3 than the second on-off valve 42
- the second stop valve SV2 is provided closer to the indoor heat exchanger 3 than the third on-off valve 43.
- the opening / closing valve 42 is provided on the refrigerant circuit between the four-way valve 2 and the indoor heat exchanger 3, and the opening / closing valve 43 is provided on the refrigerant circuit between the indoor heat exchanger 3 and the expansion valve 4a. Is provided.
- the opening / closing valves 42 and 43 are opened during the heating operation, the defrosting preparation operation and the cooling operation, and the opening and closing valves 42 and 43 are closed during the defrosting operation.
- Embodiment 2 it is possible to prevent the refrigerant from becoming excessive in the refrigeration cycle apparatus during the defrosting operation by sealing the refrigerant present in the indoor heat exchanger 3 and the indoor / outdoor connection pipe during the defrosting operation.
- the power and amount of heat for transferring the liquid refrigerant from the outdoor unit to the indoor unit can be reduced during the transition to the heating operation. You can speed up the climb.
- FIG. 10 is a refrigerant circuit diagram of the refrigeration cycle apparatus in the third embodiment.
- the refrigeration cycle apparatus 101B is for driving the compressor 1 or the outdoor blower 6B arranged in contact with the heat storage body 5.
- An inverter module 5B is further provided.
- the inverter module 5B includes, for example, a power device that controls power, such as a power MOSFET or an insulated gate bipolar transistor (IGBT), an intelligent power module (IPM) that includes a drive circuit and a self-protection circuit, and the like. .
- the power element inside the inverter module 5B generates heat in accordance with the flowing current value. In order to prevent thermal runaway, cooling is required so that the power element is below a predetermined temperature (for example, 120 ° C. or lower). By bringing the inverter module 5B into contact with the heat accumulator 5, the inverter module 5B can be cooled and utilized as a defrosting heat source for the inverter element heat generation during the defrosting operation.
- a predetermined temperature for example, 120 ° C. or lower
- Embodiments 1 to 3 it is preferable to control the saturation temperature of the refrigerant sucked in the compressor 1 between ⁇ 20 ° C. and ⁇ 45 ° C. during the defrosting operation.
- the refrigerant saturation temperature of the outdoor heat exchanger 6 during the defrosting operation is about 0 ° C. to + 5 ° C.
- the pressure Ps of the suction refrigerant of the compressor 1 that maximizes the defrosting capacity is, for example, R32, In a refrigerant such as 410A, it exists between ⁇ 20 ° C.
- an electric heater may be provided inside the heat storage body 5 or in contact with the heat storage body 5.
- the defrost heat source can be assisted.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Fluid Mechanics (AREA)
Abstract
冷凍サイクル装置(101)は、冷媒を、圧縮機(1)、室内熱交換器(3)、室外熱交換器(6)、蓄熱体(5)、第1膨張弁(4a)および第2膨張弁(4b)の間で循環させる。冷凍サイクル装置(101)は、バイパス通路(11)と、バイパス通路(11)に設けられた第1開閉弁(41)とを備える。バイパス通路(11)は、第1冷媒管(21)のうちの室内熱交換器(3)と第1膨張弁(4a)とを接続する第1部分(31,32)から分岐し、圧縮機(1)の吸入口と四方弁(2)とを接続する第4冷媒管(24)に至る。除霜運転時に第1開閉弁(41)は開状態とされる。
Description
本発明は、冷凍サイクル装置に関し、特に、室外熱交換器の着霜に対し、蓄熱体の蓄熱量を活用して除霜運転を実施する冷凍サイクル装置に関する。
空気を熱源とした冷凍サイクル装置は、暖房運転時に、外気温度がある温度(例えば7℃)未満になると、室外熱交換器の温度が0℃未満となり、室外熱交換器に着霜が生じる。着霜が生じると室外熱交換器の風路が閉塞し、暖房能力が低下するので、この霜を融かすための除霜運転を定期的に行なう必要がある。
従来、この除霜運転は、室内空気、室内熱交換器、室内外接続配管、および圧縮機の蓄熱量を熱源とし、冷凍サイクル装置の四方弁を冷房側に切替えて冷凍サイクル装置を運転することによって行なっていた。
しかし、この方式では、室内空気を熱源とし、本来暖房運転をすべき室内に冷風を吹き出すので、室内の快適性が損なわれる。また、除霜することで冷媒が冷却され、室内熱交換器、室内外接続配管、および圧縮機を通過する際に、冷媒がそれらの部材から熱を奪う。したがって、除霜運転を終了し暖房運転復帰する際に、それらの部材を再加熱する必要があるので、室内への温風吹き出し温度の上昇が遅延する。
このため、特開2009-287903号公報(特許文献1)に開示された技術では、蓄熱体を冷凍サイクル回路上に設ける。暖房運転中に蓄熱体に蓄熱し、除霜運転時にその蓄熱量を熱源とすることで、除霜能力を増大し、除霜時間を短縮し、かつ圧縮機への液冷媒戻りを防止する。
しかし、上記特開2009-287903号公報に記載の蓄熱体の配置では、除霜運転中に蓄熱体通過冷媒の圧力を調節することができず、蓄熱体からの放熱量と、圧縮機の吸入圧力を調節することができないという課題がある。
具体的には、除霜運転中に蓄熱体を通過する冷媒圧力が必要以上に小さいと、蓄熱体を通過する冷媒温度が低くなり、必要以上の熱量が蓄熱体から冷媒に移動し、圧縮機吸入冷媒温度が過剰に昇温する。これに応じて圧縮機が吐出する冷媒温度が保護値(例えば120℃)以上に上昇してしまうという課題がある。また、除霜運転中に蓄熱体を通過する冷媒圧力が必要以上に高いと、蓄熱体から冷媒への移動熱量が減少し、液冷媒が蒸発しきれずに圧縮機に吸入され、圧縮機内の潤滑油が冷媒により希釈され粘性が低下し、圧縮機構の潤滑不良が生じるという課題がある。
この発明は、上記のような課題を解決するためになされたものであって、除霜時間を短縮し、かつ暖房運転復帰後の暖房能力回復を速めることを特徴とした、冷凍サイクル装置を提供することを目的とする。
本開示は、冷凍サイクル装置に関するものである。冷凍サイクル装置は、冷媒を、圧縮機、室内熱交換器、第1膨張弁、蓄熱体、第2膨張弁、室外熱交換器を順に経て圧縮機に戻る順方向またはその逆方向に循環させる冷媒回路と、冷媒の循環方向を切替える四方弁とを備える。冷媒回路は、第1~第5冷媒管と、バイパス通路と第1開閉弁とを含む。第1冷媒管は、室外熱交換器から第1膨張弁、蓄熱体、および第2膨張弁を経由して室内熱交換器に至る。第2冷媒管は、四方弁と室内熱交換器との間を接続する。第3冷媒管は、四方弁と室外熱交換器との間を接続する。第4冷媒管は、圧縮機の吸入口と四方弁とを接続する。第5冷媒管は、圧縮機の吐出口と四方弁とを接続する。バイパス通路は、第1冷媒管のうちの室内熱交換器と第1膨張弁とを接続する第1部分から分岐し、第4冷媒管に至る。第1開閉弁は、バイパス通路に設けられる。
本発明によれば、室内熱交換器と室外熱交換器を接続する冷媒回路上に設けた、二つの開度調節可能な膨張弁の間の冷媒回路上に、蓄熱体を配置した。この構成により、除霜準備運転時に冷媒の熱を蓄熱体に蓄熱させ、除霜運転時に蓄熱体から冷媒に放熱させ、除霜熱源とすることができる。このとき二つの膨張弁によって、蓄熱体を流れる冷媒圧力を調節することにより、蓄熱体と冷媒間の熱交換量を調節することができ、冷凍サイクル装置の適正な運転状態を保つことができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
実施の形態1.
図1は、実施の形態1における冷凍サイクル装置の冷媒回路図である。
図1は、実施の形態1における冷凍サイクル装置の冷媒回路図である。
図1を参照して、冷凍サイクル装置101は、冷媒を、圧縮機1、四方弁2、室内熱交換器3、第1膨張弁4a、蓄熱体5、第2膨張弁4b、室外熱交換器6、四方弁2を順に経て圧縮機1に戻る順方向またはその逆方向に循環させる冷媒回路10を備える。冷媒の循環方向は、圧縮機1と室内熱交換器3および、圧縮機1と室外熱交換器6の間に設けられた四方弁2によって変更される。圧縮機1、四方弁2、室外熱交換器6、蓄熱体5、第1膨張弁4aおよび第2膨張弁4bは、室外機50に配置され、室内熱交換器3は、室内機51に配置される。
本実施の形態では、室内熱交換器3と室外熱交換器6を接続する冷媒回路上に設けた、二つの開度調節可能な膨張弁4a,4bの間の冷媒回路上に、蓄熱体5を配置し、除霜準備運転時に冷媒の熱を蓄熱体5に蓄熱させ、除霜運転時に蓄熱体5から冷媒に放熱させ、除霜熱源とすることができる。膨張弁4a,4bによって、蓄熱体5を流れる冷媒圧力を調節することにより、蓄熱体5と冷媒間の熱交換量を調節することができ、冷凍サイクル装置の適正な運転状態を保つことができる。
蓄熱体5は、除霜運転時の熱源として配置されている。蓄熱体5は、冷媒回路10において、室内熱交換器3と室外熱交換器6とを結ぶ第1冷媒管21の途中に配置される。第1膨張弁4aは、第1冷媒管21において、室内熱交換器3と蓄熱体5との間に配置される。第2膨張弁4bは、第1冷媒管21において、室外熱交換器6と蓄熱体5との間に配置される。
図2は、蓄熱体5として使用する材料の特性を示す図である。蓄熱体5としては、アルミニウム、またはアルミニウム合金を使用することができる。銅や鉄と比較し、アルミニウムは体積当たりの蓄熱量は70%程度であるが軽量安価のため、製品導入上有利である。図2には、鉄と銅とアルミニウムの比熱、密度および体積当たりの熱容量比較が示される。
再び図1を参照して、冷媒回路10は、第1冷媒管21~第5冷媒管25と、バイパス通路11と第1開閉弁41とを含む。第1冷媒管21は、室内熱交換器3から第1膨張弁4a、蓄熱体5、および第2膨張弁4bを経由して室外熱交換器6に至る。第2冷媒管22は、四方弁2と室内熱交換器3との間を接続する。第3冷媒管23は、四方弁2と室外熱交換器6との間を接続する。第4冷媒管24は、圧縮機1の吸入口と四方弁2とを接続する。第5冷媒管25は、圧縮機1の吐出口と四方弁2とを接続する。
第1冷媒管21は、第1部分、第2部分、第3部分、第4部分を含み、室内熱交換器3から第1膨張弁4aまでを第1部分(管31、32)、第1膨張弁4aから蓄熱体5までを第2部分(管33)、蓄熱体5から第2膨張弁4bまでを第3部分(管34)、第2膨張弁4bから室外熱交換器6を第4部分(管35)とする。バイパス通路11は、第1冷媒管21のうちの室内熱交換器3と第1膨張弁4aとの間から分岐し、第4冷媒管24に接続され、第1冷媒管21の第1部分のうち、室内熱交換器3からバイパス通路11までを管31、バイパス通路11から第1膨張弁4aまでを管32で接続されている。第1開閉弁41は、バイパス通路11に設けられる。
四方弁2、バイパス通路11、第1開閉弁41は、室外機50に配置される。制御装置100は、特に配置は限定されないが、室外機50、室内機51のいずれに配置しても良いし、室外機50、室内機51とは別に配置しても良い。
四方弁2は、内部の連通状態を「第1状態」と「第2状態」に設定することが可能に構成される。「第1状態」は、四方弁2の内部で圧縮機1の吐出口を室内熱交換器3に接続された第2冷媒管22に連通させ、圧縮機1の吸入口を室外熱交換器6に接続された第3冷媒管23に連通させる状態である。この第1状態は、主として暖房時に使用されるので、第1状態を「暖房側」とも記載する。「第2状態」は、四方弁2の内部で圧縮機1の吐出口を第3冷媒管23に連通させ、圧縮機1の吸入口を第2冷媒管22に連通させる状態である。この第2状態は、主として冷房時に使用されるので、第2状態を「冷房側」とも記載する。
制御装置100は、冷凍サイクル装置101を4つの運転モードで制御する。図3は、4つの運転モードにおける四方弁、膨張弁、および開閉弁の制御状態を示す図である。
図3を参照して、4つの運転モードは、暖房運転モード、除霜準備運転モード、除霜運転モード、および冷房運転モードである。本実施の形態では、暖房運転モードから除霜運転モードに移行する際に、除霜準備運転モードを経る点が特徴の一つである。
四方弁2は、暖房運転において第1状態(暖房側)に設定され、除霜運転において第2状態(冷房側)に設定される。また、四方弁2は、除霜準備運転において第1状態(暖房側)に設定され、冷房運転において第2状態(冷房側)に設定される。
開閉弁41は、暖房運転において閉止状態に設定され、除霜運転において全開状態に設定される。また、開閉弁41は、除霜準備運転および冷房運転において閉止状態に設定される。
暖房運転において、膨張弁4aは、絞り制御され、膨張弁4bは、好ましくは全開に制御される。除霜準備運転において、膨張弁4aは、好ましくは全開に制御され、膨張弁4bは、絞り制御される。除霜運転において、膨張弁4aおよび膨張弁4bは、いずれも絞り制御される。冷房運転において、膨張弁4aは、好ましくは全開に制御され、膨張弁4bは、絞り制御される。
以上から分かるように、制御装置100は、暖房運転から、除霜運転に移行する際に、第1膨張弁4aの開度を暖房運転時より大きくし(絞り制御状態から全開とし)、第2膨張弁4bの開度を暖房運転時よりも小さくする(全開状態から絞り制御状態とする)除霜準備運転を実施し、除霜運転時に第1開閉弁41を開とするように構成される。以下において、各運転モードについて冷媒の流れをより詳細に説明する。
(暖房運転)
図4は、暖房運転時の冷媒の流れを示す図である。冷媒は、圧縮機1、四方弁2、室内熱交換器3、膨張弁4a、蓄熱体5、膨張弁4b、室外熱交換器6を順に経て、四方弁2を再度通過し、圧縮機1へと至る。
図4は、暖房運転時の冷媒の流れを示す図である。冷媒は、圧縮機1、四方弁2、室内熱交換器3、膨張弁4a、蓄熱体5、膨張弁4b、室外熱交換器6を順に経て、四方弁2を再度通過し、圧縮機1へと至る。
開閉弁41は除霜運転時のみ開状態とされるので、暖房運転時には冷媒はバイパス通路11には流れない。
暖房運転時は、制御装置100は、図4に示すように、圧縮機1の吐出側と室内熱交換器3が連通し、室外熱交換器6と圧縮機1の吸入側が連通するように、四方弁2を切替える。圧縮機1において高温高圧にされた蒸気冷媒は、四方弁2を通過し、室内熱交換器3に流入する。室内熱交換器3はこの時凝縮器として機能する。高温高圧の蒸気冷媒は、室内送風機(図示せず)により室内熱交換器3に導入された室内空気に対して、放熱を行なう。これにより蒸気冷媒は、凝縮し、高圧の液冷媒となる。
高圧の液冷媒は、膨張弁4aを通過することによって膨張し、低温低圧の気液二相冷媒となり、蓄熱体5に流入する。暖房運転開始から一定時間経過後は、蓄熱体5は蓄熱体内を流れる冷媒と温度平衡状態となり、蓄熱体5と冷媒間での熱の授受は無くなる。そして、冷媒は、膨張弁4bに流入する。暖房運転時、膨張弁4b前後での圧力損失が最小となるように、膨張弁4bは基本的には最大開度に設定される。
膨張弁4bを通過した冷媒は、室外熱交換器6に流入する。室外熱交換器6はこの時蒸発器として機能する。低温低圧の気液二相冷媒は、室外送風機(図示せず)により室外熱交換器6に導入された室外空気から吸熱を行なう。これにより気液二相冷媒は蒸発し、低圧の蒸気冷媒となる。その後、低圧の蒸気冷媒は、四方弁2を経由し、圧縮機1に吸入される。以降同様の過程で冷媒は冷凍サイクルを循環する。
(冷房運転)
図5は、冷房運転時の冷媒の流れを示す図である。冷房運転時は、制御装置100は、図5に示すように、圧縮機1の吐出側と室外熱交換器6が連通し、室内熱交換器3と圧縮機1の吸入側が連通するように、四方弁2を切替える。圧縮機1において高温高圧にされた蒸気冷媒は四方弁2を通過し、室外熱交換器6に流入する。室外熱交換器6はこの時凝縮器として機能する。高温高圧の蒸気冷媒は、室外送風機(図示せず)により室外熱交換器6に導入された室外空気に対して放熱を行なう。これにより蒸気冷媒は凝縮し、高圧の液冷媒となる。
図5は、冷房運転時の冷媒の流れを示す図である。冷房運転時は、制御装置100は、図5に示すように、圧縮機1の吐出側と室外熱交換器6が連通し、室内熱交換器3と圧縮機1の吸入側が連通するように、四方弁2を切替える。圧縮機1において高温高圧にされた蒸気冷媒は四方弁2を通過し、室外熱交換器6に流入する。室外熱交換器6はこの時凝縮器として機能する。高温高圧の蒸気冷媒は、室外送風機(図示せず)により室外熱交換器6に導入された室外空気に対して放熱を行なう。これにより蒸気冷媒は凝縮し、高圧の液冷媒となる。
高圧の液冷媒は、膨張弁4bを通過することによって膨張し、低温低圧の気液二相冷媒となり、蓄熱体5に流入する。冷房運転開始後一定時間経過後は、蓄熱体5は蓄熱体内を流れる冷媒と温度平衡状態となり、蓄熱体と冷媒間での熱の授受は無くなる。そして、冷媒は膨張弁4aに流入する。冷房運転時、膨張弁4a前後での圧力損失が最小となるように、膨張弁4aは基本的には最大開度に設定される。
膨張弁4aを通過した冷媒は、室内熱交換器3に流入する。室内熱交換器3はこの時蒸発器として機能する。低温低圧の気液二相冷媒は、室内送風機(図示せず)により室内熱交換器3に導入された室内空気から吸熱する。これにより気液二相冷媒は、蒸発し、低圧の蒸気冷媒となる。その後、低圧の蒸気冷媒は、四方弁2を経由し、圧縮機1に吸入される。以降同様の過程で冷媒は冷凍サイクルを循環する。
(除霜準備運転)
冷凍サイクル装置の暖房運転時に、外気温度がある温度(例えば7℃)未満になると、室外熱交換器6の温度が0℃未満となり、室外熱交換器6が着霜する。室外熱交換器6が着霜すると、風路が閉塞し暖房能力が低下するため、この霜を融かすための除霜運転を定期的に行なう必要がある。
冷凍サイクル装置の暖房運転時に、外気温度がある温度(例えば7℃)未満になると、室外熱交換器6の温度が0℃未満となり、室外熱交換器6が着霜する。室外熱交換器6が着霜すると、風路が閉塞し暖房能力が低下するため、この霜を融かすための除霜運転を定期的に行なう必要がある。
しかし、除霜運転時が長時間にわたると、室内の快適性が損なわれる。そこで、本実施の形態では、除霜運転時に、除霜時間を短縮し、かつ暖房運転立上り時間を短縮するために蓄熱体5の蓄熱量を活用する。
例えば暖房運転中に、室外熱交換器6のフィンに着霜して、伝熱や通風の抵抗となると、圧縮機1の吸入冷媒の圧力Ps、圧縮機1の吸入冷媒温度、または室外熱交換器6出口冷媒温度が低下する。制御装置100は、圧縮機1の吸入冷媒の圧力Ps、圧縮機1の吸入冷媒温度、または室外熱交換器6出口冷媒温度がある値以下となった場合、除霜運転が必要と判断する。
従来、除霜運転時に、四方弁2を暖房運転側から冷房運転側に切替えて、圧縮機1から吐出された高温高圧の蒸気冷媒を室外熱交換器6に流入させることで、室外熱交換器6の霜を融かす技術が知られている。
しかし、除霜準備運転を実施せずに、四方弁2を暖房側から冷房側に切替えて除霜運転を実施すると、潤滑不良に起因する圧縮機1の故障が発生する恐れがある。
除霜運転時には、圧縮機1から吐出された高温高圧冷媒が室外熱交換器6に流入し、室外熱交換器6の着霜を融かして放熱し凝縮した低温液冷媒が、冷媒回路を順に流れ、室内熱交換器3に流れ込む。このときに、室内送風機は室内への冷風吹き出しを防ぐため送風を停止しており、冷媒は蒸発不良のまま、二相状態で圧縮機1に吸入される。すなわち、除霜準備運転を実施しないと、液冷媒の蒸発不良による圧縮機1の液冷媒吸入が生じ、液冷媒との混合によって潤滑油の粘度が低下するため潤滑不良の可能性がある。
また、圧縮機1が冷媒を二相状態で吸入すると、圧縮機1の吐出冷媒温度が低下するため、除霜運転中に室外熱交換器6に送られる冷媒の温度が低下する。このため、除霜能力が低下するので、除霜運転時間が長くなるという課題もある。
したがって、本実施の形態では、除霜運転の短縮と、除霜運転中の圧縮機に対する液冷媒吸込みを防止するために、暖房運転から除霜運転に移行する前には、除霜準備運転を実施する。
除霜準備運転では、図4に示した暖房運転状態とは、冷媒の流れの方向は同じであるが、膨張弁4aの開度を暖房運転中の開度よりも大きくし、膨張弁4bの開度を暖房運転中の開度よりも小さくする点が異なる。
この操作により、蓄熱体5を通過する冷媒圧力が上昇し、冷媒飽和温度が上昇するため、蓄熱体5に蓄熱をすることができる。暖房運転中に室内熱交換器3から流出する冷媒温度は40℃程度であり、この場合、蓄熱体5は40℃まで蓄熱することができる。除霜準備運転中に、膨張弁4aの前後において圧力損失が生じると冷媒に温度低下が生じるため、蓄熱温度が低下する。このため、除霜準備運転中の膨張弁4aの開度は、全開が好ましい。
除霜準備運転の開始は、暖房運転中に、圧縮機1の吸入冷媒の圧力Ps、圧縮機1の吸入冷媒温度、または室外熱交換器6の出口冷媒温度が、ある値以下となったときでも良いし、暖房運転時間の一定時間(例えば60分間)経過後でもよい。
また、蓄熱体5への蓄熱が完了し、蓄熱体5と蓄熱体5内を通過する冷媒とが熱平衡に至った場合は、蓄熱体5と冷媒間の熱の授受が無くなり、暖房能力や性能に影響を及ぼさなくなる。このため、いずれ必要となる除霜運転に備え、除霜準備運転の開始は、暖房運転中、室内温度が目標温度に至ったとき等であっても良い。なお、目標温度とはユーザー(使用者)が設定した冷凍サイクル装置の室内温度設定値である。
除霜準備運転の終了は、蓄熱体5の温度を測定し、蓄熱体5と室内熱交換器3の温度差がある値以下となり、蓄熱体5に充分蓄熱されたと判断されたときでも良いし、除霜準備運転の一定時間経過後(例えば5分後)でもよい。
また、蓄熱体5への蓄熱が完了し、蓄熱体5と蓄熱体5内を通過する冷媒が熱平衡に至った場合は、蓄熱体と冷媒間の熱の授受が無くなり、暖房能力や性能に影響を及ぼさなくなる。このため、室外熱交換器6の除霜が必要と判定されるまで除霜準備運転が継続されても良い。つまり、上述したような除霜準備運転を終了させる条件を設定しなくても良く、除霜開始するまで除霜準備運転を継続し続けても良い。
ユーザーによる運転停止指令や、冷凍サイクル制御上の異常停止の場合等を除き、除霜準備運転の後には、除霜運転を実施する。
(除霜運転)
図6は、除霜運転時の冷媒の流れを示す図である。除霜運転時は、四方弁2を、圧縮機1の吐出側と室外熱交換器6とが連通し、室内熱交換器3と圧縮機1の吸入側とが連通するように切替えるとともに、開閉弁41を開状態とする。圧縮機1にて高温高圧にされた蒸気冷媒は四方弁2を通過し、室外熱交換器6に流入する。室外熱交換器6はこの時凝縮器として機能する。高温高圧の蒸気冷媒は、室外熱交換器6上の霜を融かすことにより放熱および凝縮し、低温の液冷媒となる。
図6は、除霜運転時の冷媒の流れを示す図である。除霜運転時は、四方弁2を、圧縮機1の吐出側と室外熱交換器6とが連通し、室内熱交換器3と圧縮機1の吸入側とが連通するように切替えるとともに、開閉弁41を開状態とする。圧縮機1にて高温高圧にされた蒸気冷媒は四方弁2を通過し、室外熱交換器6に流入する。室外熱交換器6はこの時凝縮器として機能する。高温高圧の蒸気冷媒は、室外熱交換器6上の霜を融かすことにより放熱および凝縮し、低温の液冷媒となる。
なお、冷媒の凝縮熱が室外空気の加熱に使用されず、除霜に効率的に使用されるようにするため、一般的に除霜運転中は室外送風機(図示せず)を停止する。
熱量を除霜に使用された低温液冷媒は、膨張弁4bを通過し、蓄熱体5に至る。蓄熱体5は除霜準備運転中に高温に蓄熱されており、蓄熱体5は蒸発器として機能する。低温液冷媒は蓄熱体5と熱交換することによって蒸発し、蒸気冷媒となる。
蓄熱体5から流出した蒸気冷媒は、膨張弁4aを通過し、バイパス通路11と開閉弁41を通過し、圧縮機1に吸入される。除霜運転中は、以降同様の過程で冷媒は冷凍サイクルを循環する。
なお、膨張弁4aから室内熱交換器3、四方弁2を経由し圧縮機1に至る冷媒回路は、バイパス通路11と比較し、配管が長く圧力損失も大きいため、除霜運転中に弁等で閉止せずとも冷媒は殆ど流れない。
除霜運転中、膨張弁4aの開度、および膨張弁4bの開度は何れもなるべく大きい方が良い。膨張弁4a、4bでの圧力損失が小さい方が、圧縮機1冷媒吸入密度が大きくなり、冷媒循環量が多くなるため、除霜時間が短縮するからである。
一方、圧縮機1が内部の潤滑油供給方式として差圧給油方式を採用している場合等、圧縮機1には運転に最低限必要な差圧が定められている場合がある。この場合は、除霜運転中は、膨張弁4aではなく、4bの開度を小さくする方が良い。冷媒の圧力損失が主に膨張弁4b側に生じるため、蓄熱体5内を通過する冷媒温度が低くなり、蓄熱体5の冷媒に対する放熱速度と放熱量が何れも増大するためである。
また、圧縮機1の吸入する冷媒温度が高温であるにも関わらず、圧縮機1の吸入圧力が低い場合、圧縮機1が吐出する冷媒温度が予め定められた保護値(例えば120℃)以上まで上昇する場合がある。この場合、蓄熱体5の放熱量を一時的に低下させ、圧縮機1吸入冷媒温度を適正温度まで低下させる必要がある。このとき、膨張弁4aの開度を小さくし、4bの開度を増加させることにより、蓄熱体5を通過する冷媒温度を上昇させることができる。このとき蓄熱体5と蓄熱体5内を通過する冷媒との温度差が小さくなるため、冷媒が蓄熱体5から受け取る熱量が減少し、圧縮機1吸入冷媒温度を適正値にまで低下させることができる。
本実施の形態では、開度調節可能な膨張弁4a、4bの間の冷媒回路上に蓄熱体5を配置することにより、蓄熱体5内を通過する冷媒圧力と温度を任意に制御できる。したがって、蓄熱体5と冷媒間の授受熱量を制御できるため、迅速な除霜運転や、適正動作範囲内での圧縮機の運転が可能となる。
除霜運転の終了は、室外熱交換器6の冷媒流出配管温度を計測し、ある温度以上(例えば5℃以上)となったときでも良いし、除霜運転開始から一定時間経過後(例えば5分後)でもよい。
(除霜運転から暖房運転への移行)
除霜運転から暖房運転への移行の際は、図4の通り、四方弁2を冷房側から暖房側に切替え、開閉弁41を閉止する。また膨張弁4aの開度を小さくし、膨張弁4bは好ましくは全開とする。
除霜運転から暖房運転への移行の際は、図4の通り、四方弁2を冷房側から暖房側に切替え、開閉弁41を閉止する。また膨張弁4aの開度を小さくし、膨張弁4bは好ましくは全開とする。
このとき、膨張弁4aに生じる冷媒の圧力損失は、膨張弁4bに生じる冷媒の圧力損失よりも大きくなるため、蓄熱体5を通過する冷媒圧力は低くなり、蓄熱体5は蒸発器として機能する。
よって、除霜熱源として活用後も、蓄熱体5の温度が室外空気温度より高く、蓄熱体5が暖房運転の採熱源として活用できる場合は、暖房運転時に室内機51の吹き出し空気温度上昇を速めることができる。
図7は、制御装置100が行なう運転切替についての制御の一例を説明するためのフローチャート(前半)である。図8は、制御装置100が行なう運転切替についての制御の一例を説明するためのフローチャート(後半)である。
制御装置100は、ユーザーのリモコン等からの暖房運転開始指令に応答して、図7のフローチャートの処理をスタートさせる(S1)。制御装置100は、ステップS2において、圧縮機1の吐出口と室内熱交換器3とが連通し、かつ室外熱交換器6と圧縮機1の吸入口とが連通するように、四方弁2の接続を設定する。
続いて、ステップS3において、制御装置100は、膨張弁4bを全開とし、膨張弁4aを初期開度とするように、制御を行なう。圧縮機1によって冷媒が循環すると、室内熱交換器3は凝縮器として働く。
暖房運転では、一般に、膨張弁は室内熱交換器の過冷却度(サブクール:SC)に基づいて制御される。本実施の形態では、膨張弁4aの開度を調整することによって、ステップS4~S7においてサブクール制御が行なわれる。
ステップS4において、制御装置100は、室内熱交換器3の過冷却度SCが、判定値SC1(第1の値SC1)以下であるか否かを判断する。このとき、制御装置100は、室内熱交換器3の冷媒の過冷却度SCを次のように求める。まず、圧縮機1の吐出冷媒側の圧力センサHS1の圧力値を取得し、この圧力値に対応する冷媒飽和温度Tdsatを算出する。次に、室内熱交換器3の出口部分に配置したサーミスタTHcoの温度値Tcoを取得する。制御装置100は、2つの温度の差(Tdsat-Tco)を過冷却度SCとする。
ステップS4において、SC≦SC1が成立した場合(S4でYES)、ステップS5において制御装置100は膨張弁4aの開度を減らし、SC≦SC1が成立しない場合(S4でNO)、ステップS6において制御装置100は膨張弁4aの開度を増やす。
ステップS4またはS5の処理に続いて、ステップS7の処理が行なわれる。ステップS7では、制御装置100は、圧縮機1の吸入冷媒の圧力Psが判定圧力Ps1以下であるか否かを判断する。このとき、圧縮機1の吸入冷媒の圧力Psは、圧縮機1の吸入口に配置された圧力センサLS1の圧力値から導出される。
なお、ステップS7の判定に代えて、1)圧縮機1の吸入冷媒温度Ts≦判定温度Ts1、2)室外熱交換器6の出口冷媒温度Teo≦判定温度Teo1、3)暖房運転時間≧判定時間M1、の3つの判定条件のいずれかを採用してもよい。この場合、吸入冷媒温度Tsは、圧縮機1の吸入配管に設置したサーミスタTHsの温度値を用いることができる。また、室外熱交換器6の出口冷媒温度Teoは、室外熱交換器6の出口配管に設置したサーミスタTHeoの温度値を用いることができる。
ステップS7において、判定条件が成立しない場合(S7でNO)、再びステップS4以降の処理が行なわれる。一方、ステップS7において、判定条件が成立した場合(S7でYES)ステップS8に処理が進められ、除霜準備運転が開始される。
除霜準備運転が開始されると、まずステップS9において、制御装置100は、膨張弁4aを全開とし、膨張弁4bを初期開度(たとえば、暖房運転中の膨張弁4aの開度)とするように、制御を行なう。
除霜準備運転でも、暖房運転と同様に、膨張弁は室内熱交換器の過冷却度(サブクール:SC)に基づいて制御される。除霜準備運転では、膨張弁4bの開度を調整することによって、ステップS10~S13においてサブクール制御が行なわれる。
ステップS10において、制御装置100は、室内熱交換器3の過冷却度SCが、判定値SC1以下であるか否かを判断する。過冷却度SCの算出方法は、ステップS4の場合と同様であるので説明は繰り返さない。
ステップS10において、SC≦SC1が成立した場合(S10でYES)、ステップS11において制御装置100は膨張弁4bの開度を減らし、SC≦SC1が成立しない場合(S10でNO)、ステップS12において制御装置100は膨張弁4bの開度を増やす。
ステップS11またはS12の処理に続いて、ステップS13の処理が行なわれる。ステップS13では、制御装置100は、蓄熱体5の温度Tbが判定温度Tb1以上であるか、または、除霜準備運転時間が判定時間M2以上であるかが成立するか否かが判断される。蓄熱体5の温度Tbは、蓄熱体5に取り付けられたサーミスタTHbの温度値を用いることができる。
ステップS13において、判定条件が成立しない場合(S13でNO)、再びステップS10以降の処理が行なわれる。一方、ステップS13において、判定条件が成立した場合(S13でYES)ステップS14に処理が進められ、除霜準備運転が終了される。
次に図8を参照して、ステップS15において、制御装置100は、圧縮機1の吸入する冷媒の圧力Psが第2判定圧力値Ps2以下であるか否かを判断する。
なお、ステップS15の判定に代えて、1)圧縮機1の吸入冷媒温度Ts≦第2判定温度Ts2、2)室外熱交換器6の出口冷媒温度Teo≦第2判定温度Teo2、の2つの判定条件のいずれかを採用してもよい。また、除霜準備運転終了直後に除霜運転を開始しても良い。
ステップS15の判定条件が成立するまでは、除霜運転は開始されず、蓄熱体5に蓄熱された状態で暖房運転される(S15でNO)。ステップS15において判定条件が成立すると、ステップS16に処理が進められ、除霜運転が開始される。
制御装置100は、ステップS17において、圧縮機1の吐出口と室外熱交換器6とが連通し、かつ室内熱交換器3と圧縮機1の吸入口とが連通するように、四方弁2の接続を設定する。さらに、ステップS18において、制御装置100は、バイパス通路11に設けられた開閉弁41を開く。
続いて、ステップS19において、制御装置100は、膨張弁4aおよび膨張弁4bを全開とするように、制御を行なう。圧縮機1によって冷媒が循環すると、室内熱交換器3は蒸発器として働く。
除霜運転では、以下のステップS20~S25において、制御装置100は膨張弁4aおよび膨張弁4bの開度を調整することによって、蓄熱体5からの放熱量を調整する。
まずステップS20において、制御装置100は、圧力センサLS1の圧力値から圧縮機1の吸入冷媒の圧力Psを取得し、圧力センサHS1の圧力値から圧縮機1の吐出冷媒の圧力Pdを取得する。そして、冷媒圧縮比Pd/Psが算出され、この圧縮比が判定値R1以下であるか否かが判断される。
ステップS20において、Pd/Ps≦R1が成立した場合(S20でYES)、ステップS21において制御装置100は膨張弁4bの開度を減らし、Pd/Ps≦R1が成立しない場合(S20でNO)、ステップS22において制御装置100は膨張弁4bの開度を増やす。ステップS21またはS22の処理に続いて、ステップS23の処理が行なわれる。
ステップS23において、制御装置100は、温度センサTHdの検出値から圧縮機1の吐出冷媒温度Tdを取得する。そして、圧縮機1の吐出冷媒温度Tdが判定温度Td1以上であるか否かを判断する。
ステップS23において、Td≧Td1が成立した場合(S23でYES)、ステップS24において制御装置100は膨張弁4aの開度を減らし、かつ膨張弁4bの開度を増やす。Td≧Td1が成立した場合には、蓄熱体5からの放熱が過多であるので、膨張弁4aの開度を減らすことによって蓄熱体5からの放熱量を減少させる。
一方、ステップS23において、Td≧Td1が成立しない場合(S23でNO)、ステップS25において制御装置100は膨張弁4aの開度を増やし、かつ膨張弁4bの開度を減らす。ステップS24またはS25の処理に続いて、ステップS26の処理が行なわれる。
ステップS26では、制御装置100は、室外熱交換器6の液管の温度TLをサーミスタTHLから取得する。制御装置100は、温度TLが判定温度TL1以上であるか、または除霜運転時間が判定時間M3以上となったかを判断する。ステップS26において、2つの条件のいずれも成立しない場合(S26でNO)、ステップS20に処理が戻される。一方、ステップS20において2つの条件の少なくとも一方が成立した場合(S26でYES)、制御装置100は、ステップS27に処理を進め、開閉弁41を閉じ、ステップS28において除霜運転を終了させる。その後、ステップS29において、暖房運転の開始処理に戻る。
以上説明したように、本実施の形態では、開度調節可能な膨張弁4a、4bの間の冷媒回路上に蓄熱体5を配置することにより、蓄熱体5内を通過する冷媒圧力と温度を任意に制御できる。したがって、蓄熱体5と冷媒間の授受熱量を制御できるため、迅速な除霜運転や、適正動作範囲内での圧縮機の運転が可能となる。
実施の形態2.
図9は、実施の形態2における冷凍サイクル装置の冷媒回路図である。図9に示すように、冷凍サイクル装置101Aは、冷凍サイクル装置101の構成に加えて、第2冷媒管22に設けられた第2開閉弁42と、第1冷媒管21の第1部分(31,32)において、バイパス通路11への分岐点よりも室内熱交換器3寄りに設けられた第3開閉弁43とを備える。第2開閉弁42および第3開閉弁43の両方は、暖房運転中に開かれ、除霜運転中に閉止される。
図9は、実施の形態2における冷凍サイクル装置の冷媒回路図である。図9に示すように、冷凍サイクル装置101Aは、冷凍サイクル装置101の構成に加えて、第2冷媒管22に設けられた第2開閉弁42と、第1冷媒管21の第1部分(31,32)において、バイパス通路11への分岐点よりも室内熱交換器3寄りに設けられた第3開閉弁43とを備える。第2開閉弁42および第3開閉弁43の両方は、暖房運転中に開かれ、除霜運転中に閉止される。
冷凍サイクル装置101Aは、第2冷媒管22に設けられた第1ストップバルブSV1と、第1冷媒管21の第1部分(31,32)に設けられた第2ストップバルブSV2とをさらに備える。ストップバルブは、冷凍サイクル装置の設置時や移設時に、工事作業者がレンチで開閉するバルブである。これに対して、第2開閉弁42および第3開閉弁43は、制御装置100Aが運転中に開閉することが可能な電磁弁である。第1ストップバルブSV1は第2開閉弁42よりも室内熱交換器3寄りに設けられ、第2ストップバルブSV2は第3開閉弁43よりも室内熱交換器3寄りに設けられる。
すなわち、本実施の形態では四方弁2と室内熱交換器3との間の冷媒回路上に開閉弁42を設け、室内熱交換器3と膨張弁4aとの間の冷媒回路上に開閉弁43を設ける。本実施の形態では、暖房運転時、除霜準備運転時および冷房運転時には、開閉弁42,43を開き、除霜運転時には開閉弁42,43を閉止する。
除霜運転中に冷媒が過剰となると、除霜運転中に蓄熱体5を通過する液冷媒量が多くなり、蓄熱体5の保有熱量では液冷媒を蒸発させきれずに圧縮機に液冷媒が吸入されてしまう恐れがある。実施の形態2では、除霜運転中に室内熱交換器3と室内外接続配管内に存在する冷媒を封止することにより、除霜運転時に冷凍サイクル装置が冷媒過剰となることを防止できる。
また除霜運転中に、室内熱交換器に冷媒を封止することにより、暖房運転移行時に、液冷媒を室外機から室内機へ搬送する動力と熱量が削減でき、暖房室内機吹出し空気温度の上昇を速めることができる。
実施の形態3.
図10は、実施の形態3における冷凍サイクル装置の冷媒回路図である。図10に示すように、冷凍サイクル装置101Bは、実施の形態1の冷凍サイクル装置101の構成に加えて、蓄熱体5と接触させて配置された、圧縮機1または室外送風機6Bの駆動用のインバータモジュール5Bをさらに備える。インバータモジュール5Bは、たとえば電力を制御するパワーMOSFETや絶縁ゲートバイポーラトランジスタ(IGBT)などのパワーデバイスと、その駆動回路および自己保護回路を内蔵したインテリジェントパワーモジュール(Intelligent Power Module:IPM)等を含むものである。
図10は、実施の形態3における冷凍サイクル装置の冷媒回路図である。図10に示すように、冷凍サイクル装置101Bは、実施の形態1の冷凍サイクル装置101の構成に加えて、蓄熱体5と接触させて配置された、圧縮機1または室外送風機6Bの駆動用のインバータモジュール5Bをさらに備える。インバータモジュール5Bは、たとえば電力を制御するパワーMOSFETや絶縁ゲートバイポーラトランジスタ(IGBT)などのパワーデバイスと、その駆動回路および自己保護回路を内蔵したインテリジェントパワーモジュール(Intelligent Power Module:IPM)等を含むものである。
インバータモジュール5Bの内部のパワー素子は、流れる電流値に応じて発熱する。熱暴走を防ぐためパワー素子が決められた温度以下(例えば120℃以下)となるように冷却が必要とされる。蓄熱体5にインバータモジュール5Bを接触させることで、インバータモジュール5Bの冷却を行ないつつ、除霜運転時にはインバータ素子発熱の除霜熱源としての活用が可能となる。
上記の実施の形態1~3では、除霜運転中に圧縮機1の吸入冷媒の飽和温度を、-20℃から-45℃の間に制御することが好ましい。蓄熱体5の蓄熱量が尽きた場合、圧縮機1の冷媒圧縮仕事のみが除霜熱源となる。除霜運転中の室外熱交換器6の冷媒飽和温度は、0℃から+5℃程度であり、この時に、除霜能力が最大となる圧縮機1の吸入冷媒の圧力Psは、たとえば、R32,410Aのような冷媒では冷媒飽和温度換算で-20℃から-45℃の間に存在する。圧縮機1の吸入冷媒の圧力Psが低いと圧縮機1の吸入冷媒密度が小さくなり、冷媒循環量不足で圧縮機1の仕事が減少し、圧縮機1の吸入冷媒の圧力Psが高いと、圧縮機1前後の冷媒差圧が小さくなり、圧縮機1の仕事が減少するためである。
また、上記の実施の形態1~3において、蓄熱体5内部、若しくは蓄熱体5に接触させて電気ヒータを設けても良い。蓄熱体5の蓄熱量が不足する場合、もしくはスペースやコストの面から蓄熱体5のサイズを大きくとれない場合に、除霜熱源を補助することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1 圧縮機、2 四方弁、3 室内熱交換器、4a,4b 膨張弁、5 蓄熱体、5B インバータモジュール、6 室外熱交換器、6B 室外送風機、10 冷媒回路、11 バイパス通路、21~24 冷媒管、41~43 開閉弁、50 室外機、51 室内機、100 制御装置、101,101A,101B 冷凍サイクル装置、HS1,LS1 圧力センサ、SV1 第1ストップバルブ、SV2 第2ストップバルブ、THL,THb,THco,THeo,THs サーミスタ、THd 温度センサ。
Claims (10)
- 冷媒を、圧縮機、四方弁、室内熱交換器、第1膨張弁、蓄熱体、第2膨張弁、室外熱交換器、前記四方弁を順に経て前記圧縮機に戻る順方向またはその逆方向に循環させる冷媒回路を備え、
前記冷媒回路は、
前記室内熱交換器から前記第1膨張弁、蓄熱体、および前記第2膨張弁を経由して前記室外熱交換器に至る第1冷媒管と、
前記四方弁と前記室内熱交換器との間を接続する第2冷媒管と、
前記四方弁と前記室外熱交換器との間を接続する第3冷媒管と、
前記圧縮機の吸入口と前記四方弁とを接続する第4冷媒管と、
前記第1冷媒管のうちの前記室内熱交換器と前記第1膨張弁とを接続する第1部分から分岐し、前記第4冷媒管に至るバイパス通路と、
前記バイパス通路に設けられた第1開閉弁とを含む、冷凍サイクル装置。 - 前記四方弁は、暖房運転において前記順方向に冷媒を循環させ、除霜運転において前記逆方向に冷媒を循環させるように構成され、
前記暖房運転から、前記除霜運転に移行する際に、前記第1開閉弁を閉じた状態で、前記第1膨張弁の開度を前記暖房運転時より大きくし、かつ前記第2膨張弁の開度を前記暖房運転時よりも小さくする除霜準備運転を実施し、前記除霜運転時に、前記第1開閉弁を開とする、請求項1に記載の冷凍サイクル装置。 - 前記暖房運転中に、前記圧縮機の吸入冷媒の圧力、前記圧縮機の吸入冷媒温度、前記室外熱交換器の出口冷媒温度のいずれか1つが第1の値より小さくなったか、または、前記暖房運転が開始されてから一定時間経過した場合に、前記除霜準備運転を開始する、請求項2に記載の冷凍サイクル装置。
- 前記暖房運転中に、室内温度が使用者の設定した設定値に至った場合に、前記除霜準備運転を開始する、請求項2に記載の冷凍サイクル装置。
- 前記除霜準備運転中に、前記蓄熱体と前記室内熱交換器の温度差が第1の値よりも小さくなった場合、または前記除霜準備運転開始から一定時間が経過した場合に、前記除霜準備運転を終了する、請求項2に記載の冷凍サイクル装置。
- 除霜運転が開始されるまで前記除霜準備運転を継続する、請求項2に記載の冷凍サイクル装置。
- 前記四方弁は、内部の連通状態を第1状態と第2状態に切替えることによって前記冷媒の循環方向を切替えることが可能に構成され、
前記第1状態は、前記圧縮機の吐出口を前記第2冷媒管に連通させ、前記圧縮機の吸入口を前記第3冷媒管に連通させる状態であり、
前記第2状態は、前記圧縮機の吐出口を前記第3冷媒管に連通させ、前記圧縮機の吸入口を前記第2冷媒管に連通させる状態である、請求項2に記載の冷凍サイクル装置。 - 前記第2冷媒管に設けられた第2開閉弁と、
前記第1冷媒管の前記第1部分において、前記バイパス通路への分岐点よりも前記室内熱交換器寄りに設けられた第3開閉弁とを備え、
前記第2開閉弁および前記第3開閉弁の両方は、前記暖房運転中に開かれ、前記除霜運転中に閉止される、請求項2に記載の冷凍サイクル装置。 - 前記第2冷媒管に設けられた第1ストップバルブと、
前記第1冷媒管の前記第1部分に設けられた第2ストップバルブとをさらに備え、
前記第1ストップバルブは前記第2開閉弁よりも前記室内熱交換器寄りに設けられ、
前記第2ストップバルブは前記第3開閉弁よりも前記室内熱交換器寄りに設けられる、請求項8に記載の冷凍サイクル装置。 - 前記蓄熱体と接触させて配置された、前記圧縮機の駆動用のインバータモジュール、または、室外送風機の駆動用のインバータモジュールをさらに備える、請求項1に記載の冷凍サイクル装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019514988A JP6771661B2 (ja) | 2017-04-27 | 2017-04-27 | 冷凍サイクル装置 |
ES17907530T ES2966139T3 (es) | 2017-04-27 | 2017-04-27 | Dispositivo de ciclo de refrigeración |
US16/496,076 US11175082B2 (en) | 2017-04-27 | 2017-04-27 | Refrigeration cycle apparatus with heat storage for use during defrost |
PCT/JP2017/016776 WO2018198275A1 (ja) | 2017-04-27 | 2017-04-27 | 冷凍サイクル装置 |
EP17907530.4A EP3617616B1 (en) | 2017-04-27 | 2017-04-27 | Refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/016776 WO2018198275A1 (ja) | 2017-04-27 | 2017-04-27 | 冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198275A1 true WO2018198275A1 (ja) | 2018-11-01 |
Family
ID=63919600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016776 WO2018198275A1 (ja) | 2017-04-27 | 2017-04-27 | 冷凍サイクル装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11175082B2 (ja) |
EP (1) | EP3617616B1 (ja) |
JP (1) | JP6771661B2 (ja) |
ES (1) | ES2966139T3 (ja) |
WO (1) | WO2018198275A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111380325A (zh) * | 2018-12-31 | 2020-07-07 | 冷王公司 | 用于对运输气候控制系统蒸发器节能除霜的方法和系统 |
WO2020161834A1 (ja) * | 2019-02-06 | 2020-08-13 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2020174684A1 (ja) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | 冷凍サイクル装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111615608B (zh) * | 2018-02-19 | 2022-04-05 | 大金工业株式会社 | 空调装置 |
DE102019212503A1 (de) * | 2019-08-21 | 2021-02-25 | Audi Ag | Verfahren zum Betreiben einer Kälteanlage für ein Fahrzeug mit einem für einen Kälteanlagen-Betrieb betreibbaren Kältemittelkreislauf |
US11976840B2 (en) * | 2021-01-11 | 2024-05-07 | Rheem Manufacturing Company | Devices and systems for air conditioning units having a subcooling line |
US11959690B2 (en) | 2021-12-17 | 2024-04-16 | Trane International Inc. | Thermal storage device for climate control system |
CN115183402B (zh) * | 2022-07-04 | 2024-05-14 | 青岛海尔空调电子有限公司 | 用于空调除霜的控制方法、控制装置和空调器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4628706A (en) * | 1984-09-04 | 1986-12-16 | Neura Elektronics Technische Anlagen Gesellschaft Mbh | Process of defrosting an evaporator of a refrigeration system |
JP2009287903A (ja) | 2008-06-02 | 2009-12-10 | Kansai Electric Power Co Inc:The | 蓄熱式ヒートポンプ装置 |
JP2012083065A (ja) * | 2010-10-14 | 2012-04-26 | Panasonic Corp | 空気調和機 |
JP2013075650A (ja) * | 2011-09-30 | 2013-04-25 | Daikin Industries Ltd | 自動車用温調システム |
JP2013245850A (ja) * | 2012-05-24 | 2013-12-09 | Hitachi Appliances Inc | 空気調和機 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0652142B2 (ja) | 1986-05-16 | 1994-07-06 | 三洋電機株式会社 | 空気調和機 |
JP2902853B2 (ja) * | 1992-04-27 | 1999-06-07 | 三洋電機株式会社 | 空気調和機 |
JPH1123036A (ja) * | 1997-07-04 | 1999-01-26 | Fujitsu General Ltd | 空気調和機 |
JP4974714B2 (ja) * | 2007-03-09 | 2012-07-11 | 三菱電機株式会社 | 給湯器 |
KR101873597B1 (ko) * | 2012-02-23 | 2018-07-31 | 엘지전자 주식회사 | 공기 조화기 |
EP2636548B1 (en) * | 2012-03-05 | 2017-09-06 | Hanon Systems | Heat pump system for vehicle |
DE102012222594B4 (de) * | 2012-12-10 | 2018-05-17 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Betreiben eines Kältemittelkreislaufs als Wärmepumpe sowie als Wärmepumpe betreibbarer Kältemittelkreislauf |
WO2014175151A1 (ja) * | 2013-04-26 | 2014-10-30 | 東芝キヤリア株式会社 | 給湯装置 |
JP6286675B2 (ja) | 2015-02-20 | 2018-03-07 | パナソニックIpマネジメント株式会社 | 空気調和機 |
-
2017
- 2017-04-27 US US16/496,076 patent/US11175082B2/en active Active
- 2017-04-27 ES ES17907530T patent/ES2966139T3/es active Active
- 2017-04-27 WO PCT/JP2017/016776 patent/WO2018198275A1/ja unknown
- 2017-04-27 JP JP2019514988A patent/JP6771661B2/ja active Active
- 2017-04-27 EP EP17907530.4A patent/EP3617616B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4628706A (en) * | 1984-09-04 | 1986-12-16 | Neura Elektronics Technische Anlagen Gesellschaft Mbh | Process of defrosting an evaporator of a refrigeration system |
JP2009287903A (ja) | 2008-06-02 | 2009-12-10 | Kansai Electric Power Co Inc:The | 蓄熱式ヒートポンプ装置 |
JP2012083065A (ja) * | 2010-10-14 | 2012-04-26 | Panasonic Corp | 空気調和機 |
JP2013075650A (ja) * | 2011-09-30 | 2013-04-25 | Daikin Industries Ltd | 自動車用温調システム |
JP2013245850A (ja) * | 2012-05-24 | 2013-12-09 | Hitachi Appliances Inc | 空気調和機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3617616A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111380325A (zh) * | 2018-12-31 | 2020-07-07 | 冷王公司 | 用于对运输气候控制系统蒸发器节能除霜的方法和系统 |
WO2020161834A1 (ja) * | 2019-02-06 | 2020-08-13 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2020174684A1 (ja) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | 冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3617616A4 (en) | 2020-03-04 |
JPWO2018198275A1 (ja) | 2020-02-20 |
JP6771661B2 (ja) | 2020-10-21 |
EP3617616A1 (en) | 2020-03-04 |
ES2966139T3 (es) | 2024-04-18 |
US11175082B2 (en) | 2021-11-16 |
EP3617616B1 (en) | 2023-11-15 |
US20200049392A1 (en) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6771661B2 (ja) | 冷凍サイクル装置 | |
CN211739588U (zh) | 一种可提高换热性能的空调 | |
KR101192346B1 (ko) | 히트 펌프식 급탕장치 | |
JP5595140B2 (ja) | ヒートポンプ式給湯・空調装置 | |
CN111251802B (zh) | 车辆的热管理系统及车辆 | |
KR101155497B1 (ko) | 히트펌프식 급탕장치 | |
MXPA03001817A (es) | Metodo y arreglo para descongelar un sistema de compresion de vapor. | |
JP7105933B2 (ja) | 冷凍装置の室外機およびそれを備える冷凍装置 | |
JP2002107014A (ja) | 空気調和機 | |
CN111251813B (zh) | 车辆的热管理系统及车辆 | |
US20210207834A1 (en) | Air-conditioning system | |
JP2007107771A (ja) | 冷凍サイクル装置 | |
JP2012167860A (ja) | ヒートポンプ式空気調和機およびその除霜方法 | |
JP2010175204A (ja) | 冷凍空調装置 | |
JP2017026171A (ja) | 空気調和装置 | |
CN111251804B (zh) | 车辆的热管理系统及车辆 | |
CN113383201A (zh) | 制冷循环装置 | |
CN206113445U (zh) | 空调系统 | |
KR101173736B1 (ko) | 냉장 및 냉동 복합 공조시스템 | |
JP2015068608A (ja) | 空気調和装置 | |
EP3623724A1 (en) | Heat pump with pre-heating / pre-cooling of heat / cold source | |
KR101272021B1 (ko) | 이원 사이클 히트펌프 냉난방 장치 | |
KR101212686B1 (ko) | 히트 펌프식 급탕장치 | |
JP3164079B2 (ja) | 冷凍装置 | |
KR20200060632A (ko) | 차량용 냉난방 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907530 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019514988 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017907530 Country of ref document: EP Effective date: 20191127 |