WO2013047429A1 - 希土類系焼結磁石用粉末の再生方法および再生装置 - Google Patents

希土類系焼結磁石用粉末の再生方法および再生装置 Download PDF

Info

Publication number
WO2013047429A1
WO2013047429A1 PCT/JP2012/074380 JP2012074380W WO2013047429A1 WO 2013047429 A1 WO2013047429 A1 WO 2013047429A1 JP 2012074380 W JP2012074380 W JP 2012074380W WO 2013047429 A1 WO2013047429 A1 WO 2013047429A1
Authority
WO
WIPO (PCT)
Prior art keywords
crushing
teeth
crushed
crushing teeth
molded body
Prior art date
Application number
PCT/JP2012/074380
Other languages
English (en)
French (fr)
Inventor
昭二 中山
望月 光明
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201280046992.0A priority Critical patent/CN103843086B/zh
Priority to US14/348,099 priority patent/US9463509B2/en
Priority to EP12835343.0A priority patent/EP2765585B1/en
Priority to JP2013536257A priority patent/JP5962662B2/ja
Publication of WO2013047429A1 publication Critical patent/WO2013047429A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/36Adding fluid, other than for crushing or disintegrating by fluid energy the crushing or disintegrating zone being submerged in liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F2009/001Making metallic powder or suspensions thereof from scrap particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • B22F2009/046Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling by cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a method and an apparatus for regenerating rare earth-based sintered magnet alloy powder, in particular, rare earth-based sintered magnet alloy powder (hereinafter sometimes simply referred to as “alloy powder”) after being processed into a compact by press molding. About.
  • alloy powder rare earth-based sintered magnet alloy powder
  • Rare earth sintered magnets such as neodymium / iron / boron (hereinafter sometimes referred to as “RTB-based sintered magnet”) sintered magnets and samarium / cobalt sintered magnets have excellent magnetic properties. It is widely used because it has. In particular, the RTB-based sintered magnet exhibits the highest magnetic energy product among the various known magnets so far and is relatively inexpensive. Used for applications.
  • RTB-based sintered magnet neodymium / iron / boron
  • RTB sintered magnets are obtained by melting (melting) raw materials such as metals and casting the molten metal into a mold by an ingot or strip casting method. After pulverizing a raw material alloy casting material having a desired composition such as a piece to obtain an alloy powder having a predetermined particle size (particle size distribution), the alloy powder is press-molded (press-molding in a magnetic field) to form a compact (pressure Powder), and the molded body is further sintered and heat-treated.
  • a raw material alloy casting material having a desired composition such as a piece to obtain an alloy powder having a predetermined particle size (particle size distribution)
  • the alloy powder is press-molded (press-molding in a magnetic field) to form a compact (pressure Powder), and the molded body is further sintered and heat-treated.
  • a coarse pulverization process for pulverizing the coarse powder into a coarse powder having a large particle diameter
  • a fine pulverization process for further pulverizing the coarse powder into a powder with a desired particle diameter
  • press molding press molding in a magnetic field
  • One is a dry forming method in which the obtained alloy powder is pressed while being dried.
  • the other is, for example, a wet molding method known under the name of HILOP (registered trademark).
  • HILOP registered trademark
  • the molded product obtained is molded because it is in contact with something at the time of handling such as transportation and part of it is chipped and differs from the desired shape, or a crack occurs. Defective product may occur.
  • the molded body is subjected to a cutting process to obtain a molded body of a desired size. You might get. In this case, a part of the general-purpose size compact remains as an end-size compact (hereinafter sometimes referred to as “molded material end material”).
  • Patent Document 1 discloses that after refining a green compact, the obtained recycled alloy powder is mixed with a slurry for obtaining another green compact.
  • the present invention has a particle diameter substantially the same as that of the alloy powder used to obtain the molded body from the molded body obtained by press molding when manufacturing the rare earth sintered magnet, and is oxidized. It is an object of the present invention to provide a method and an apparatus capable of efficiently obtaining a suppressed recycled alloy powder.
  • Aspect 1 of the present invention includes: i) a step of placing a molded body for a rare earth-based sintered magnet containing powder containing a rare earth element in oil; and ii) a plurality of plate-like shapes arranged opposite to each other. Between the first crushed tooth and the plate-shaped second crushed tooth at least a part of which is located between the adjacent first crushed teeth, and at least a part of the molded body and the oil. A step of arranging; iii) so that the first crushed tooth and the second crushed tooth change a portion of the second crushed tooth located between the plurality of adjacent first crushed teeth; And a step of rotating at least one of the plurality of first crushed teeth and the second crushed teeth without contacting each other.
  • step iii) the method according to aspect 1, wherein step iii) is carried out.
  • the first crushing teeth are attached to a first support rod extending in the vertical direction from the rotating shaft, and the second crushing teeth are arranged such that the longitudinal direction is perpendicular to the rotating shaft.
  • the method according to claim 1 or 2 wherein the first disintegrating teeth are rotated by rotating the rotating shaft, the first disintegrating teeth being attached to a second support rod disposed on the surface.
  • a fourth aspect of the present invention is a filtering step of separating a pulverized powder having substantially the same particle size as the powder containing a rare earth element used to obtain the molded body after the steps i) to iii).
  • Aspect 5 of the present invention includes a rare earth element having a particle size substantially the same as that before molding the compact for a rare earth-based sintered magnet comprising a powder containing a rare earth element.
  • a powder regenerating apparatus for rare earth-based sintered magnets for obtaining powder wherein a plurality of plate-like first crushing teeth arranged opposite to each other and at least a portion between adjacent first crushing teeth A plurality of first crushing teeth so as to change a portion of the second crushing tooth located between the adjacent first crushing teeth.
  • a filter apparatus for separating powder containing the rare earth element having a predetermined particle size from shattered the molded body contained in the oil is a reproducing apparatus which comprises a.
  • the first crushing teeth are attached to a first support rod extending in the vertical direction from the rotating shaft, and the second crushing teeth are arranged such that the longitudinal direction is perpendicular to the rotating shaft. It is attached to the 2nd support rod arrange
  • Aspect 7 of the present invention is a plurality of plate-like members attached to the third support bar so as to face each other and a third support bar extending vertically from the rotary shaft below the first support bar.
  • a third crushing tooth wherein a part of the second crushing tooth is movable between the adjacent third crushing teeth, and the third crushing tooth is rotated by rotating the rotating shaft.
  • the present invention from a compact obtained by press forming when producing a rare earth sintered magnet, it has substantially the same particle size as the alloy powder used to obtain the compact, and oxidation is suppressed. It is possible to provide a regeneration method and a regeneration apparatus that can effectively obtain the regenerated alloy powder.
  • FIG. 1 is a side view of an alloy powder recycling apparatus 100 according to the present invention, and shows a case where a crushing apparatus 50 is located outside a tank 70.
  • FIG. It is a side view of the reproduction
  • FIG. 4 is a top view showing the arrangement of the first crushing member 13 and the second crushing member 23.
  • FIG. 3 is a perspective view illustrating a filter device 60.
  • FIG. 7 is a perspective view showing a second filter (tubular filter) 150 disposed in the second filter section 63.
  • FIG. 6 is a top view showing the internal configuration of the second filter section 63, and is an explanatory view showing a state in which a base 151 of the second filter 150 is removed.
  • 4 is a perspective view showing a detailed structure of a rotor 157.
  • FIG. It is a perspective view which illustrates the composition of auxiliary crushing device 85.
  • the particle size of the alloy powder before molding is substantially changed from a molded body such as a defective molding or a molded body end material. It aims to play without. This means that the obtained molded body is crushed without being crushed.
  • the definitions of the terms “substantially without changing the particle size”, “pulverizing the molded body”, and “pulverizing the molded body” are given.
  • substantially no change in particle size means that when the particle size of the target powder (here, the alloy powder used to obtain a compact) is evaluated by D50, the rate of change in the value is positive. It means that it is within minus 10%. More specifically, the difference between the D50 of the alloy powder used to obtain the compact and the D50 of the alloy powder obtained by regenerating the compact is the difference between the D50 of the alloy powder used to obtain the compact. It means within 10%.
  • D50 means a particle size in which the volume is integrated from the smaller particle size of the powder to be measured, and the integrated value of the volume is 50% of the total volume of the powder to be measured. Measurement of the particle size distribution of the powder to be measured for determining D50 can be obtained by particle size measurement using a laser diffraction method in accordance with international standard ISO13320-1.
  • pulverizing the compact means that an external force is applied to the compact to obtain an alloy powder, and the particle size of the obtained powder is the particle diameter of the alloy powder used to obtain the compact. Means that it has changed. That is, since the external force applied to the compact is relatively strong, the alloy powder obtained by pulverization has a small particle size due to the alloy powder constituting the compact being crushed and worn.
  • crushing the compact means that an external powder is applied to the compact to obtain an alloy powder without substantially changing the particle size. That is, in crushing, the external force applied to the compact is sufficient to crush the compact to obtain an alloy powder, and has an appropriate strength that is not so great as to crush or wear the obtained alloy powder. It has become.
  • the inventors of the present application intensively studied a method for crushing the formed body (that is, only crushing without crushing) and suppressing oxidation of the alloy powder obtained by crushing.
  • the inventors of the present application have a plurality of first crushing teeth arranged in a plate shape and facing each other, and a plate-like second crushing tooth arranged between the plurality of first crushing teeth.
  • a first crushing tooth using a crushing device configured to allow oil and at least a part of the molded body to enter between the first crushing tooth and the second crushing tooth. It was found that the object can be achieved by performing crushing by rotating at least one of the first crushing tooth and the second crushing tooth in a state where the first crushing tooth and the second crushing tooth are not in contact with each other.
  • the obtained alloy powder has substantially the same particle size as that before forming, and is therefore sufficiently crushed. Furthermore, it discovered that oxidation could fully be suppressed by implementing a crushing process in oil. Moreover, since the obtained alloy powder for rare earth magnets is in a mixed state with the used oil, that is, in the form of a slurry, it can be used as it is as a slurry used in a wet forming method. It is also possible to dry the obtained slurry to obtain a dry alloy powder and use this dry alloy powder in a dry forming method.
  • FIG. 1 is a side view of an alloy powder recycling apparatus 100 according to the present invention, and shows a case where a crushing apparatus 50 is located outside a tank 70.
  • FIG. 2 is a side view of the alloy powder recycling apparatus 100 according to the present invention, and shows a case where the crushing apparatus 50 is inserted into the tank 70.
  • FIG. 3 is a side view showing details of the crushing device 50.
  • the regenerating apparatus 100 includes a tank 70, a crushing device 50, a filter device 60, and a lifting device 90. Details of the playback apparatus 100 will be described below.
  • the tank 70 is filled with oil, and a molded body is placed in the oil.
  • the oil may be mineral oil and / or synthetic oil, preferably the same oil used for the slurry used in the wet molding process.
  • the alloy powder to be regenerated is obtained in the form of a slurry. Therefore, by using the same oil as the slurry used for the wet forming of the slurry of the regenerated powder, the obtained slurry is directly wetted with a new formed body. This is because it can be suitably used as a slurry for obtaining by a molding method.
  • slurry is a mixture of solid particles and a liquid, and means a fluid in which the solid particles are suspended in the liquid.
  • the above-mentioned molding defect product and a molded object end material can be mentioned, for example.
  • it may be various molded bodies such as a surplus of a favorable molded body.
  • the molded body may be a molded body obtained by a dry molding method or a molded body obtained by a wet molding method, but is preferably a molded body obtained by a wet molding method. Since the surface of the compact obtained by the dry molding method is exposed to air and oxidation proceeds after molding, the oxygen content of the regenerated alloy powder may increase. Antioxidation measures such as putting in oil may be necessary.
  • the oil of the slurry used covers the surface of the compact and suppresses oxidation after the molding. It can be controlled to be as low as the oxygen concentration of the alloy powder.
  • the tank 70 is preferably configured to be movable, for example, by having wheels as shown in FIGS. 1 and 2.
  • a tank 70 filled with oil is arranged near the press machine that performs the pressing process, and when a defective molding occurs in the pressing process, the defective molding is immediately put into the tank 70.
  • the molding failure product can be stored in oil, and oxidation of the molding failure product can be more reliably suppressed.
  • the tank 70 by placing the tank 70 near a cutting machine that cuts the molded body into a desired shape, and immediately after the molded body end material is generated in the cutting process, the molded body end material is put into the tank 70,
  • the molded body end material can be stored in oil, and oxidation of the molded body end material can be more reliably suppressed.
  • the tank 70 is carried under the crushing device 50 as shown in FIG. 1, and then crushed as shown in FIG. Crushing can be performed by inserting the device 50 into the tank 70.
  • Having such a preferable configuration has an effect of reliably preventing the oxidation of a molding defect product or a molded body end material. Furthermore, it is possible to perform crushing with high productivity because it is not necessary to carry out the work of transferring from a storage container used to store a molding defect product or a molded product end material to the tank in order to perform crushing. It also has an effect.
  • the crushing device 50 is disposed so as to be opposed to each other, and the plate-like first crushing teeth 14 and the plate-like crushing teeth 14 arranged between the adjacent first crushing teeth 14 are arranged.
  • the second crushing teeth 24 are provided, and at least one of the first crushing teeth 14 and the second crushing teeth 24 is not in contact with each other (the first crushing teeth 14 and the second crushing teeth 24 are It can be rotated (or moved) without touching.
  • FIG. 4 is a top view showing the arrangement of the first crushing member 13 and the second crushing member 23 described in detail below.
  • the first crushing member 13 has a first support bar 12 and a plurality of (four in FIG. 3) plate-like first crushing teeth 14 attached to the first support bar 12.
  • the first support rod 12 passes through the substantially central portion of the first crushing teeth 14.
  • the 1st crushing member 13 is attached to the circumference
  • the rotating shaft 40 can rotate, and as a result, the four first crushing members 13 can rotate in the direction of the arrow shown in FIG. 4 (and / or the direction opposite to the arrow).
  • the second crushing member 23 includes a second support bar 22 and a plurality (four in FIG. 3) of plate-like second crushing teeth 24 attached to the second support bar 22.
  • the second support rod 22 passes through the substantially central portion of the second crushing tooth 24.
  • the crushing device 50 has two second crushing members 23, and each second crushing member 23 is located below the first support rod 12, and the second support rods 22 are identical to each other. It is fixed by a fixing member 42A or 42B so as to be aligned on the line.
  • the two second support rods are arranged so as to be perpendicular to the rotating shaft 40.
  • the volume (or overlapping area described later) of the tooth 24 is maximized. This will be described in more detail.
  • the projected area when viewed from the direction parallel to the second support rod 22 at the site of the second crushing tooth 24, hereinafter this projected area is referred to as “overlapping area”) is the largest.
  • the overlapping area decreases, that is, between the adjacent first crushing teeth 14.
  • the part of the second crushing tooth 24 located is changed, and finally the part of the second crushing tooth 24 arranged between the adjacent first crushing teeth 14 is eliminated (the overlapping area becomes zero).
  • the 1st crushing tooth 14 of another 1st crushing member 13 approaches, and the part of the 2nd crushing tooth 24 located between the adjacent 1st crushing teeth 14 is.
  • the overlapping area gradually increases, and the overlapping area becomes maximum at a rotation angle of 90 °.
  • the rotation angle further increases, the overlapping area decreases (between adjacent first crushing teeth 14).
  • the part of the second crushing tooth 24 located in the position changes).
  • the rotating shaft 40 is rotating, the state where there is no overlapping area, the state where the overlapping area increases, and the state where the overlapping area decreases are repeated in this order.
  • the third crushing member 33 has a third support bar 32 and a plurality of plate-like third crushing teeth 34 attached to the third support bar 32 (in FIG. 3, one third support bar 32 is provided). Five third crushing teeth 34 are arranged).
  • the third crushing member 33 is attached around the rotating shaft 40 every 90 °.
  • the third support rod 32 extends from the rotary shaft 40 in the vertical direction.
  • the third support bar 32 is disposed to be positioned below the second support bar 22 (that is, below the first support bar 12).
  • the second crushing tooth 24 positioned between the adjacent third crushing teeth 34 every time the rotating shaft 40 rotates and the third crushing member 33 rotates 90 °.
  • the volume (or overlapping area) of the region is maximized.
  • the overlapping area of the portions of the second crushing teeth 24 located between the adjacent third crushing teeth 34 (in this case, a projection viewed from a direction parallel to the third support rod 32). Area) is the largest.
  • the rotating shaft 40 rotates and the third crushing teeth 34 attached to the third support rod 32 rotate the overlapping area decreases, that is, the second crushing teeth located between the adjacent third crushing teeth 34.
  • the 1st crushing tooth 14 and the 2nd crushing tooth 24 are comprised so that it may not mutually contact.
  • the 3rd crushing tooth 34 and the 2nd crushing tooth 24 are comprised so that it may not mutually contact.
  • the first crushing member 13 and the third crushing member 33 connected to the rotating shaft 40 can rotate around the rotating shaft 40, and the second crushing member 23 is fixed.
  • the crushing member 23 may also be configured to be rotatable.
  • the structure which makes the 2nd crushing member 23 coaxial with the 1st crushing member 13 (or concentric) and can rotate in the opposite direction to the 1st crushing member 13 can be mentioned.
  • the first crushing member 13 and the third crushing member 33 move without contacting the second crushing member 23 by rotating around the rotating shaft 40.
  • the present invention is not limited to this.
  • the first crushing tooth 14 and the second crushing tooth 24 are not in contact with each other so that the portion of the second crushing tooth 24 located between the adjacent first crushing teeth 14 is changed. As long as at least one of the crushed teeth 14 and the second crushed teeth 24 rotates, any configuration can be adopted.
  • the second crushing teeth 24 may be rotated about the two support rods 22 as the rotation axis.
  • the first crushing teeth 14 (and the third crushing teeth 34) are rotated about the rotation shaft 40 as the rotation axis
  • the second crushing teeth 24 are rotated about the second support rod 22 as the rotation axis.
  • the pulverization can be performed more efficiently.
  • the first crushing teeth 14 arranged on the same first support rod 12 are preferably arranged parallel to each other.
  • the second crushing teeth 24 arranged on the same second support rod 22 are preferably arranged parallel to each other.
  • the third crushing teeth 34 arranged on the same third support bar 32 are preferably arranged parallel to each other.
  • the first pulverized tooth 14, the second pulverized tooth 24, and the third pulverized tooth 34 may have any shape as long as they are plate-like, and such shapes include a disk and a polygon including a quadrangle. And an ellipse.
  • the first pulverized tooth 14, the second pulverized tooth 24, and the third pulverized tooth 34 may have a through-hole or a dent penetrating from one surface to the other surface.
  • the distance between the two adjacent first crushing teeth 14 may be appropriately selected depending on the size of the molded defective product or the molded body end material to be crushed.
  • the reproducing apparatus shown in FIGS. 1 to 4 may have a distance of about 25 mm.
  • the distance may be about 10 mm.
  • the distance may be about 10 mm.
  • the crushing device 50 configured in this manner can be moved up and down by the lifting device 90.
  • the elevating device 90 can raise and lower the crushing device 50 using, for example, a wire (not shown) connected to the motor 92.
  • the crushing device 50 is initially pulled up above the tank 70 by the lifting device 90. Then, the crushing device 50 is lowered by the lifting device 90 and inserted into the tank 70. At this time, the first crushing member 13 and the third crushing member 33 (when installed) are rotated about the rotating shaft 40 by rotating the rotating shaft 40 by the motor 46. The crushing device 50 is in contact with a molded body (both oil and molded body are not shown) in the oil in the tank 70. When the crushing device 50 is further lowered, the formed body is roughly crushed by the first crushing member 13 and the second crushing member 23.
  • the descending speed of the crushing device 50 may be appropriately selected according to the capacity of the tank 70, the amount of the molded body put in the tank 70, the size of the molded body, and the like. Moreover, the crushing apparatus 50 may be lowered
  • “rough crushing” means crushing roughly, that is, crushing the compact into a state larger than the particle size of the alloy powder used for forming (a state in which a plurality of alloy powders are collected). To do.
  • the 3rd crushing member 33 it is preferable to provide the 3rd crushing member 33 also in order to perform rough crushing more efficiently. It is because a molded object is roughly crushed in a short time because the lower end part of the crushing apparatus 50 which descend
  • the crushing member 33 instead of providing the third crushing member 33 in combination with the first crushing member 13, even if the third crushing member 33 is arranged as the first crushing member, an effect of efficiently performing the rough crushing is obtained. 3 (that is, without providing the first crushing member 13 shown in FIG. 3), the crushing member 33 (the crushing member disposed below the second crushing member 23) in FIG. Embodiment which uses a crushing member).
  • the lifting device 90 stops, and the crushing device 50 remains at the lowest point.
  • the motor 46 continues to rotate the rotating shaft 40, and the first crushing member 13 and the third crushing member 33 continue to rotate about the rotating shaft 40 as a rotation axis.
  • the number of rotations of the first crushing member 13 and the third crushing member 33 depends on the capacity of the tank 70, the amount of the molded body to be put in the tank 70, the size of the molded body, and the like. What is necessary is just to select suitably, for example, it is about 1-200 rpm.
  • the rotation direction of the 1st crushing member 13 and the 3rd crushing member 33 ie, the rotation direction of the rotating shaft 40
  • the rotational speed of the rotating shaft 40 may be constant or may be changed. For example, the rotation speed is increased with the lowering of the crushing device 50, the rotation speed is increased with the crushing device 50 being lowered most, or the rotation speed is increased when the crushing device 50 is raised. May be.
  • the first crushing member 13 and the third crushing member 33 are rotated for an appropriate period of time, so that in the tank 70, the crushing hardly occurs, and the compact is further crushed and further crushed. Advances.
  • the formed body is coarsely crushed and gradually becomes smaller. And the stirring effect by rotation with the 1st crushing member 13 and the 3rd crushing member 33 is also added, and the molded object which became small enough (sufficiently coarsely crushed) is the 1st crushing tooth 14 and 2nd. It passes between the crushed teeth 24.
  • the first pulverized tooth 14 rotates with the rotary shaft 40 as the rotation axis (that is, the portion of the second pulverized tooth 24 located between the adjacent first pulverized teeth 14 changes). (Which portion of the second crushing teeth 24 is located between the adjacent first crushing teeth 14 has changed).) This is because the first crushing teeth 14 are This means that the second disintegrating teeth 24 that are fixed are moving substantially in parallel. That is, in the embodiment shown in FIGS.
  • the second crushing teeth 24 fixed between the plurality of first crushing teeth 14 facing each other when the first crushing member 13 rotates by approximately 90 ° are arranged.
  • a mixture of oil and a roughly crushed compact is interposed between the first crushed tooth 14 and the second crushed tooth 24.
  • a shearing force is applied to the roughly crushed compact through oil.
  • the shearing force is applied via oil, the first crushed tooth 14 and the second crushed tooth 24 are compared with the diameter of the alloy powder to be obtained by regeneration (for example, D50 is about 2 to 10 ⁇ m). Even if the distance between the two is large, a necessary shearing force can be imparted to the roughly crushed compact (the compact approaching the size of the alloy powder to be regenerated).
  • the stirring in the tank 70 is strengthened, and the roughly crushed compact is more efficiently disposed between the first crushed tooth 14 and the second crushed tooth 24 or the first crushed tooth 24.
  • the third crushing teeth 34 and the second crushing teeth 24 as shown in FIG. 3, (1) providing fins 47 at the bottom of the tank, (2) third support rod It is preferable to implement one or more selected from providing the fin 45 at the end of 32 and (3) providing the rotating blade 48 at the lower end of the rotating shaft 40.
  • filter device 60 various filter devices that can separate particles in the slurry according to the particle diameter may be used.
  • FIG. 5 is a perspective view illustrating the filter device 60.
  • the filter device 60 includes an upper first filter portion 61 and a lower second filter portion 63.
  • the first filter part 61 and the second filter part 63 are partitioned by a punching metal 64 provided at the lower part of the first filter part 61.
  • the punching metal 64 has a function as a first filter for preventing foreign matter and a large molded body from entering the second filter portion.
  • the first filter portion 61 has an opening 65 on the side surface, and can receive a molded body (target alloy powder) crushed from the opening and a mixture of the roughly crushed molded body and oil.
  • FIG. 6 is a perspective view showing the second filter (tubular filter) 150 disposed in the second filter portion 63.
  • the second filter 150 is for a filter that is laminated at a predetermined interval from each other by interval adjusting disks (spacers) 154 arranged at equal intervals on a column 153 arranged between the filter base 151 and the filter base 152.
  • a disk 155 is provided.
  • the distance between the adjacent filter disks 155 can be made larger than the particle size of the alloy powder before forming, such as a defective molding to be crushed or a molded body end material. That is, as will be described later, the coarsely crushed compact and oil mixture is crushed by circulating through the tank 70 ⁇ the filter device 60 ⁇ the tank 70 to become alloy powder.
  • the distance between the adjacent filter disks 155 may be large enough to remove the foreign matter that has not been removed by the first filter 61, and the size and amount of the compact to be crushed or foreign matter mixed therein. It may be set appropriately according to the size of the. As shown in FIG. 6, since the bases 151 and 152 and the filter disk 155 have a through hole in the central portion, the second filter 150 has a gap in the central portion.
  • FIG. 7 is a top view illustrating an internal configuration of the second filter unit 63 and is an explanatory diagram illustrating a state in which the base 151 of the second filter 150 is removed.
  • the pedestal 152 of the second filter 150 is configured to fit on the inner surface of the outer wall of the filter unit 63 inside the second filter unit 63.
  • a rotor 157 whose details will be described later is disposed inside the second filter 150. The rotor 157 is rotationally driven using a motor 62 (see FIG. 2), so that a crushed compact (target alloy powder) that has passed through the punch metal 64 and a roughly crushed compact and oil Apply centrifugal force to the mixture.
  • the crushed compact (alloy powder) that can pass through the gap between the filter disks 155 is discharged to the outside of the second filter 150 as a slurry together with oil.
  • the roughly crushed compact that cannot pass through the gap between the filter disks 155 stays inside the second filter 150 and is not discharged outside the filter 150.
  • FIG. 8 is a perspective view showing the detailed structure of the rotor 157.
  • the rotor 157 includes a disk 571, an annular flat plate (a disk having a through hole in the center) 572, and a plurality of cylinders 573.
  • the disk 571 is located on the base 152 side of the second filter 150 shown in FIG.
  • the rotor 157 has a rotating shaft 574 connected to the motor 62, and the rotor 157 is rotated by the motor 62.
  • crushed compact that is, the regenerated rare earth-based sintered magnet alloy powder
  • the filter device 60 a procedure for separating the crushed compact (that is, the regenerated rare earth-based sintered magnet alloy powder) as a slurry using the filter device 60 will be described.
  • crushing is advanced using the crushing device 50 so that the crushed compact (target alloy powder) and the coarsely crushed compact are mixed in the oil of the tank 70.
  • the valves 81 and 82 connected to the tank 70 and the filter device 60 are opened.
  • the pump 83 the crushed compact (target alloy powder) in the tank 70 and the mixture of the roughly crushed compact and oil pass through the valve 81 and follow the arrow C in FIG. Moved to be introduced into the filter device 60.
  • the mixture of the alloy powder and the roughly crushed compact and oil that has entered the second filter unit 63 is given a centrifugal force by a rotor 157 that is rotated by a motor 62. Then, the alloy powder (crushed compact) that can pass through the gap between the filter disks 155 is discharged to the outside of the second filter 150 as a slurry. The discharged slurry moves along the path indicated by the arrow B shown in FIG.
  • the roughly crushed compact cannot pass through the gap between the filter disks 155 and therefore is not discharged to the outside of the second filter 150. Therefore, the roughly crushed mixture of molded body and oil moves along the arrow A in FIG. 2 from the filter device 60, returns to the tank 70 through the valve 82, and again by the pulverizer 50. Crushed and / or crushed.
  • an auxiliary crushing device 85 may be provided on the upstream side of the filter device 60.
  • the auxiliary crushing device 85 By providing the auxiliary crushing device 85, during the above-described circulation, a part of the roughly crushed molded body is crushed even outside the tank 70, so that the efficiency of crushing can be improved. .
  • FIG. 9 is a perspective view illustrating the configuration of the auxiliary crushing device 85.
  • the auxiliary crushing device 85 has a gear-shaped crushing tooth 123 having two kinds of teeth having different inclinations.
  • the gear-shaped crushing teeth 123 are rotated by a motor. Due to the rotation of the gear-shaped crushing teeth 123, a part of the roughly crushed compact is crushed into alloy powder.
  • the configuration of the auxiliary crushing device 85 is not limited to this.
  • the slurry containing the alloy powder (recycled alloy powder obtained by crushing the compact) recovered from the filter device 60 is used as a slurry used in a wet molding method for manufacturing a new rare earth sintered magnet. preferable. This is because the characteristics of the slurry obtained by suppressing oxidation can be fully utilized. In this case, wet molding may be performed only with the recovered slurry, or wet molding may be performed by mixing with another newly produced slurry.
  • oil may be removed from the recovered slurry to obtain a dried alloy powder.
  • This alloy powder can be used in a dry forming method for producing a new rare earth sintered magnet.
  • dry molding may be performed using only the obtained dried alloy powder, or dry molding may be performed by mixing with another newly produced alloy powder.
  • the composition of the regenerated alloy powder is equal to the composition of the alloy powder used to obtain the compact.
  • the alloy powder used to obtain the compact may be a powder containing a rare earth element, preferably an RTB-based sintered magnet alloy powder, more preferably R—Fe (Co ) -BM system.
  • R is at least one selected from the group consisting of neodymium (Nd), praseodymium (Pr), dysprosium (Dy) and terbium (Tb), and preferably contains at least one of Nd or Pr.
  • R is more preferably one selected from the group consisting of Nd—Dy, Nd—Tb, Nd—Pr—Dy and Nd—Pr—Tb rare earth elements. Containing Dy and / or Tb has an effect of improving the coercive force.
  • the alloy powder may contain a small amount of other rare earth elements such as Ce and La, and may use misch metal or didymium (an alloy containing Nd and Pr as main components).
  • R may not be a pure element and may contain inevitable impurities as long as it is industrially available.
  • the content of R may be a known content, and a preferred range is 25 to 35% by mass. This is because if it is less than 25% by mass, magnetic properties, particularly high coercive force, may not be obtained, and if it exceeds 35% by mass, the residual magnetic flux density may decrease.
  • T may contain Fe as an essential element, and 50% by mass or less may be substituted with Co.
  • Co is effective in improving temperature characteristics and corrosion resistance, and is usually used in a combination of 10 mass% or less of Co and the balance Fe.
  • the content of T occupies the remainder of R and B, R and B (boron), or R, B, and M.
  • the content of B may be a known content, and a preferable range is 0.9 to 1.2% by mass. If it is 0.9 mass% or less, a high coercive force may not be obtained, and if it exceeds 1.2 mass%, the residual magnetic flux density may decrease.
  • a part of B may be substituted with C (carbon).
  • Replacement with C has an effect of improving the corrosion resistance of the magnet.
  • the content in the case of adding B and C is preferably the above-mentioned preferable B concentration range by converting the number of C substitution atoms by the number of B atoms.
  • M element can be added to improve the coercive force.
  • the M element is at least one selected from the group consisting of Al, Si, Ti, V, Cr, Ni, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, and W.
  • the addition amount is preferably 2% by mass or less. If it exceeds 2% by mass, the residual magnetic flux density may decrease.
  • Mn and Cr entering from Fe
  • Al, Si, Cu and the like entering from Fe—B (ferroboron).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Food Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 希土類系焼結磁石を製造する際のプレス成形により得た成形体から、当該成形体を得るのに用いた合金粉末と実質的に同じ粒径を有し、かつ酸化を抑制した再生合金粉末を効率的に得ることができる方法および装置を提供する。 i)希土類元素を含む粉末を含んで成る希土類系焼結磁石用の成形体を油の中に配置する工程と、ii)互いに対向して配置された複数の板状の第1解砕歯と、少なくとも一部分が、隣り合う前記第1解砕歯の間に位置する板状の第2解砕歯との間に、前記成形体の少なくとも一部と前記油とを配置する工程と、iii)前記第1解砕歯と前記第2解砕歯が、前記隣り合う複数の第1解砕歯の間に位置する前記第2解砕歯の部位を変えるように、前記複数の第1解砕歯と前記第2解砕歯の少なくとも一方が、互いに接触することなく、回転する工程と、を含むことを特徴とする希土類元素を含む粉末の再生方法。

Description

希土類系焼結磁石用粉末の再生方法および再生装置
 本発明は希土類系焼結磁石用合金粉末、とりわけプレス成形により成形体に加工した後の希土類系焼結磁石用合金粉末(以下、単に「合金粉末」という場合がある)の再生方法および再生装置に関する。
 ネオジム・鉄・ボロン系(以下、「R-T-B系焼結磁石」という場合がある)焼結磁石およびサマリウム・コバルト系焼結磁石等の希土類系焼結磁石は、優れた磁気特性を有していることから広く用いられている。
 特に、R-T―B系焼結磁石は、これまでに知られている各種磁石の中でも最も高い磁気エネルギー積を示し、かつ比較的安価であることから、各種の電気機器を含む多種多様な用途に用いられている。
 R-T-B系焼結磁石を含む多くの希土類系焼結磁石は、金属等の原料を溶解(溶融)し、溶湯を鋳型に鋳造することにより得たインゴットまたはストリップキャスト法により得た鋳片等の所望の組成を有する原料合金鋳造材を粉砕して所定の粒度(粒度分布)を有する合金粉末を得た後、当該合金粉末をプレス成形(磁場中プレス成形)して成形体(圧粉体)を得て、さらに当該成形体を焼結および熱処理することにより製造される。
 鋳造材から合金粉末を得る際、多くの場合、粒径の大きい粗粉末に粉砕する粗粉砕工程と、粗粉末を所望の粒径の粉末に更に粉砕する微粉砕工程の2つに粉砕工程を用いる。
 また、プレス成形(磁場中プレス成形)の方法は2つに大別される。一方は、得られた合金粉末を乾燥した状態のままプレス成形する乾式成形法である。他方は、例えばHILOP(登録商標)の名称で知られる湿式成形法である。湿式成形法では、合金粉末を油中に分散させたスラリーを形成し、合金粉末をこのスラリーの状態で金型内に供給しプレス成形を行う。
 湿式成形法と乾式成形法のいずれを用いても、得られた成形体が、例えば搬送等のハンドリング時に何かと接触し一部が欠けて所望の形状と異なるため又は亀裂が生ずる等のために成形不良品が発生する場合がある。
 さらに、例えば、プレス成形に用いる金型の種類を増やさないことを目的に、一旦、プレス成形により汎用サイズの成形体を得た後、当該成形体に切断加工を施して所望のサイズの成形体を得る場合がある。この場合、汎用サイズの成形体の一部は端尺サイズの成形体(以下、「成形体端材」という場合がある。)として残ってしまう。
 希土類系焼結磁石に用いる希土類の供給について、価格および量の両方に関する懸念が従来以上に増していることもあり、このような成形不良品および成形体端材を有効に再利用したいとの要望が従来以上に強くなっていた。
 特許文献1は、成形体端材を機械的に押し潰した後、得られた再生合金粉末を別の成形体を得るためのスラリーに混合して用いることを開示している。
特開2004-207578号公報
 しかしながら、特許文献1に記載のように成形体を機械的に押し潰すことにより、再生合金粉末を得ると、成形体が機械的に押し潰される際に合金粉末が粉砕されて得られる再生合金粉末の粒径が、成形体に成形する前の状態(すなわち、鋳造材を粉砕して合金粉末を得た状態)と比較して、小さくなってしまう。
 合金粉末の粒径は最終的に得られる希土類系焼結磁石の磁気特性や焼結後の寸法に大きな影響を与えるため、スラリーに加える再生合金粉末の量は、磁気特性や焼結後の寸法に影響を与えない程度の極微量に制限されるという問題があった。
 さらに、成形体を機械的に押し潰す際に合金粉末が酸化されるという問題もあった。合金粉末の酸素量が多いと、得られた希土類系焼結磁石の磁気特性が低下してしまう場合がある。
 そこで、本願発明は、希土類系焼結磁石を製造する際のプレス成形により得た成形体から、当該成形体を得るのに用いた合金粉末と実質的に同じ粒径を有し、かつ酸化を抑制した再生合金粉末を効率的に得ることができる方法および装置を提供することを目的とする。
 本願発明の態様1は、i)希土類元素を含む粉末を含んで成る希土類系焼結磁石用の成形体を油の中に配置する工程と、ii)互いに対向して配置された複数の板状の第1解砕歯と、少なくとも一部分が、隣り合う前記第1解砕歯の間に位置する板状の第2解砕歯との間に、前記成形体の少なくとも一部と前記油とを配置する工程と、iii)前記第1解砕歯と前記第2解砕歯が、前記隣り合う複数の第1解砕歯の間に位置する前記第2解砕歯の部位を変えるように、前記複数の第1解砕歯と前記第2解砕歯の少なくとも一方が、互いに接触することなく、回転する工程と、を含むことを特徴とする希土類元素を含む粉末の再生方法である。
 本願発明の態様2は、タンク内の前記油に前記成形体を配置した後、該タンク内に前記複数の第1解砕歯と前記第2解砕歯とを挿入して、前記工程ii)および前記工程iii)を実施することを特徴とする態様1に記載の方法である。
 本願発明の態様3は、前記第1解砕歯が回転シャフトから垂直方向に延在する第1支持棒に取り付けられ、前記第2解砕歯が、長手方向が前記回転シャフトに垂直になるように配置された第2支持棒に取り付けられ、前記回転シャフトを回転させることにより前記第1解砕歯を回転させることを特徴とする態様1または2に記載の方法。
 本願発明の態様4は、前記工程i)~iii)の後、前記成形体を得るのに用いた希土類元素を含む粉末と実質的に同じ粒径を有する解砕された粉末を分離するフィルタリング工程を更に含むことを特徴とする態様1~3のいずれかに記載の方法である。
 本願発明の態様5は、希土類元素を含む粉末を含んで成る希土類系焼結磁石用の成形体を解砕して該成形体を成形する前と実質的に同じ粒径を有する希土類元素を含む粉末を得る希土類系焼結磁石用粉末の再生装置であって、互いに対向して配置された複数の板状の第1解砕歯と、少なくとも一部分が、隣り合う前記第1解砕歯の間を移動可能な板状の第2解砕歯とを含み、前記隣り合う第1解砕歯の間に位置する前記第2解砕歯の部位を変えるように、前記複数の第1解砕歯と前記第2解砕歯の少なくとも一方が、互いに接触することなく、回転するよう構成された解砕装置と、前記成形体と油とを内部に貯蔵して移動可能なタンクと、前記タンクの開口からその内部に前記解砕装置を挿入する昇降装置と、前記タンクから送出された前記油中に含まれる砕かれた前記成形体から所定の粒径の前記希土類元素を含む粉末を分離するフィルター装置と、を含むことを特徴とする再生装置である。
 本願発明の態様6は、前記第1解砕歯が回転シャフトから垂直方向に延在する第1支持棒に取り付けられ、前記第2解砕歯が、長手方向が前記回転シャフトに垂直になるように配置された第2支持棒に取り付けられ、前記回転シャフトを回転させることにより前記第1解砕歯を回転させることを特徴とする態様5に記載の装置である。
 本願発明の態様7は、前記第1支持棒より下方で、前記回転シャフトから垂直方向に延在する第3支持棒と、互いに対向するように前記第3支持棒に取り付けられた複数の板状の第3解砕歯と、を更に含み、前記第2解砕歯の一部が隣り合う前記第3解砕歯の間を移動可能で、前記回転シャフトを回転させることにより前記第3解砕歯を回転させて、前記隣り合う第3解砕歯の間に位置する前記第2解砕歯の部位を変えることを特徴とする態様6に記載の装置である。
 本願発明により、希土類系焼結磁石を製造する際のプレス成形により得た成形体から、当該成形体を得るのに用いた合金粉末と実質的に同じ粒径を有し、かつ酸化が抑制された再生合金粉末を効果的に得る再生方法および再生装置を提供できる。
本願発明に係る合金粉末の再生装置100の側面図であり、解砕装置50がタンク70の外に位置する場合を示す。 本願発明に係る合金粉末の再生装置100の側面図であり、解砕装置50がタンク70の内部に挿入されている場合を示す。 解砕装置50の詳細を示す側面図である。 第1解砕部材13と第2解砕部材23との配置を示す上面図である。 フィルター装置60を例示する斜視図である。 第2フィルター部63内に配置されている第2のフィルター(筒状フィルター)150を示す斜視図である。 第2フィルター部63の内部の構成を示す上面図であって、第2のフィルター150の台座151を取り除いた状態を示す説明図である。 ローター157の詳細な構造を示す斜視図である。 補助解砕装置85の構成を例示する斜視図である。
 以下、図面に基づいて本発明の実施形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一の部分又は部材を示す。
 上述のように、本願発明においては例えば成形不良品または成形体端材のような成形体から、成形前の合金粉末(希土類系焼結磁石用合金粉末)をその粒径を実質的に変えることなく再生することを目的とする。
 これは、得られた成形体を粉砕することなく解砕することを意味する。
 ここで、用語「実質的に粒径を変えることなく」、「成形体を解砕する」および「成形体を粉砕する」について、その定義を示しておく。
 用語「実質的に粒径が変わることなく」とは、対象となる粉末(ここでは、成形体を得るのに用いる合金粉末)の粒径をD50で評価した際にその値の変化率がプラスマイナス10%以内であることを意味する。より具体的には、成形体を得るのに用いた合金粉末のD50と成形体を再生して得た合金粉末のD50の差が、成形体を得るのに用いた合金粉末のD50のプラスマイナス10%以内であることを意味する。
 ここで、D50とは測定対象の粉末の粒径の小さい方から体積を積算していき、その体積の積算値が、測定対象の粉末全体の体積の50%になる粒径を意味する。D50を決定するための測定対象の粉末の粒度分布の測定は、国際規格ISO13320-1に準拠したレーザー回折法を用いた粒子径測定により求めることができる。
 本明細書において「成形体を粉砕する」とは、成形体に外力を加えて合金粉末を得ることであって、得られる粉末の粒径が成形体を得るのに用いた合金粉末の粒径から変化していることを意味する。
 すなわち、粉砕により得た合金粉末は、成形体に加える外力が比較的強いために、成形体を構成していた合金粉末が砕かれる及び磨耗すること等によりその粒径が小さくなっている。
 本明細書において、「成形体を解砕する」とは、成形体に外力を加えて、実質的に粒径を変えることなく合金粉末を得ることを意味する。
 すなわち、解砕においては、成形体に加えられる外力が、成形体を破砕して合金粉末を得るのには十分であり、かつ得られた合金粉末を砕く又は磨耗させるほど大きくない適度な強さとなっている。
 本願発明者らは、成形体を解砕する(すなわち、粉砕することなく解砕のみ行う)とともに、解砕により得られた合金粉末の酸化を抑制する方法を鋭意検討した。
 その結果、本願発明者らは、板状でかつ互いに対向して配置された複数の第1解砕歯と、複数の第1解砕歯の間に配置された板状の第2解砕歯とを有し、第1解砕歯と第2解砕歯との間に油と前記成形体の少なくとも一部とが侵入するように構成された解砕装置を用いて、第1解砕歯と第2解砕歯が互いに接触しない状態で、第1解砕歯と第2解砕歯の少なくとも一方を回転させることにより解砕を行うことで目的を達成できることを見出した。
 これにより、得られる合金粉末は、その粒径が実質的に成形前の状態と同じであり、従って十分に解砕されることを見出した。さらに、解砕工程を油中で実施することにより酸化を十分に抑制できることも見出した。
 また、得られる希土類系磁石用合金粉末は、用いた油と混合された状態、すなわちスラリーの形態であるため、そのまま湿式成形法で用いるスラリーとして使用することが可能である。また、得られたスラリーを乾燥して乾燥合金粉末を得て、この乾燥合金粉末を乾式成形法に用いることも可能である。
 以下に本願発明に係る方法および装置を詳述する。
 図1は、本願発明に係る合金粉末の再生装置100の側面図であり、解砕装置50がタンク70の外に位置する場合を示す。
 図2は、本願発明に係る合金粉末の再生装置100の側面図であり、解砕装置50がタンク70の内部に挿入されている場合を示す。
 図3は、解砕装置50の詳細を示す側面図である。
 再生装置100は、タンク70と、解砕装置50と、フィルター装置60と、昇降装置90とを有している。
 以下に再生装置100の詳細について説明する。
(1)タンク
 タンク70は、図示しないが、内部に油が入れられ、その油中に成形体が入れられている。油は、鉱物油および/または合成油を用いてよく、好ましくは湿式成形法で使用するスラリーに用いるのと同じ油を使用する。再生装置100において、再生する合金粉末は、スラリーの形態で得られることから、再生粉末のスラリーが湿式成形に用いるスラリーと同じ油を用いることで、得られたスラリーをそのまま新たな成形体を湿式成形法で得るためのスラリーとして好適に用いることができるからである。
 なお、本明細書において、用語「スラリー」は、固体粒子と液体との混合物であって、固体粒子が液体の中に懸濁している流動体を意味する。
 タンク70内に入れる成形体として、例えば、上述の成形不良品および成形体端材を挙げることができる。しかし、これらに限定されるものではなく、例えば、余剰となった良好な成形体等のような各種の成形体であってよい。
 また、成形体は、乾式成形法により得た成形体であってよく、また湿式成形法により得た成形体であってもよいが、好ましくは湿式成形法により得た成形体である。乾式成形法で得た成形体は、その表面が空気に露出しており、成形後に酸化が進行するため、再生した合金粉末の酸素量が多くなる場合があり、これを避けるために成形後すぐ油中に入れる等の酸化防止策が必要な場合がある。これに対して、湿式成形法により得た成形体は、用いたスラリーの油が成形体表面を覆い、成形後の酸化を抑制するため、得られる再生合金粉末の酸素濃度を容易に、成形前の合金粉末の酸素濃度と同程度に低く制御することができる。
 タンク70は好ましくは、例えば図1および図2に示すように車輪を有する等により、移動可能に構成されている。これにより、例えば、プレス工程を行うプレス機の近くに、油を入れた状態のタンク70を配置し、プレス工程で成形不良品が発生すると、直ちにこの成形不良品をタンク70内に投入することで、成形不良品を油中で保管でき、より確実に成形不良品の酸化を抑制することができる。
 同様に、成形体を所望の形状に切断加工する切断機の近くにタンク70を配置し、切断工程で成形体端材が発生すると直ちにこの成形体端材をタンク70内に投入することで、成形体端材を油中で保管でき、より確実に成形体端材の酸化を抑制することができる。
 そして、ある程度の量の成形不良品または成形体端材がタンク70内に溜まるとタンク70を図1に示すように解砕装置50の下に運び、続いて、図2に示すように解砕装置50をタンク70内に挿入することで、解砕を行うことができる。
 このような好ましい構成を有することで、成形不良品または成形体端材の酸化を確実に防止できるという効果を有する。さらに、解砕を行うために、成形不良品または成形体端材を保管するために用いた保管容器からタンクに移す作業を行う必要がないことから高い生産性で解砕を行うことができるという効果も有する。
(2)解砕装置
 解砕装置50は、互いに対向して配置され、かつ板状の複数の第1解砕歯14と、隣り合う第1解砕歯14の間に配置された板状の第2解砕歯24とを有し、第1解砕歯14と第2解砕歯24の少なくとも一方が、互いに接触することなく(第1解砕歯14と第2解砕歯24とが接触することなく)回転(または移動)できるように構成されている。
 図4は、以下に詳述する第1解砕部材13と第2解砕部材23との配置を示す上面図である。
 図3および図4に示す実施形態では、複数の(図3では4つの)第1解砕部材13が配置されている。第1解砕部材13は、第1支持棒12と、第1支持棒12に取り付けられた複数(図3では4つの)の板状の第1解砕歯14を有する。図3および図4では、第1支持棒12が第1解砕歯14の略中央部を貫通している。そして、図4に示すように、第1解砕部材13は、回転シャフト40の周囲に90°毎に取り付けされている。4つの第1支持棒12は、いずれも回転シャフト40から垂直方向に延在している。回転シャフト40は、回転可能であり、この結果、4つの第1解砕部材13は図4中に示した矢印の方向(および/または矢印と逆の方向)に回転可能である。
 同様に、第2解砕部材23は、第2支持棒22と、第2支持棒22に取り付けられた複数(図3では4つの)の板状の第2解砕歯24とを有する。図3および図4では、第2支持棒22が第2解砕歯24の略中央部を貫通している。解砕装置50は、2つの第2解砕部材23を有しており、それぞれの第2解砕部材23は、第1支持棒12よりも下方で、互いの第2支持棒22が同一直線上に整列するように固定部材42Aまたは42Bにより固定されている。
 また2つの第2支持棒はいずれも回転シャフト40に垂直になるように配置されている。
 そして、図3および図4に示すように、回転シャフト40が回転し、第1解砕部材13が90°回転する毎に、隣り合う第1解砕歯14の間に位置する第2解砕歯24の部位の体積(または後述する重なり面積)が最大となる。
 これをより詳細に説明する。
 図3および図4に示す状態では、隣り合う第1解砕歯14の間に位置している第2解砕歯24の部位の体積(または隣り合う第1解砕歯14の間に位置している第2解砕歯24の部位の第2支持棒22に平行な方向から見た投影面積、以後、この投影面積を「重なり面積」という)が最大となっている。
 回転シャフト40が回転して第1支持棒12に取り付けられた第1解砕歯14が図4の矢印の向きに回転すると重なり面積が減少し、すなわち隣り合う第1解砕歯14の間に位置する第2解砕歯24の部位が変わり、遂には、隣り合う第1解砕歯14の間に配置された第2解砕歯24の部位がなくなる(重なり面積がゼロになる)。そして、回転角度が90°に近づくと、別の第1解砕部材13の第1解砕歯14が近づき、隣り合う第1解砕歯14の間に位置する第2解砕歯24の部分が発生し、そして次第に重なり面積が増加し、回転角度90°で重なり面積が最大になった後、回転角度が更に増加すると重なり面積が減少していく(隣り合う第1解砕歯14の間に位置する第2解砕歯24の部位が変わる)。そして、回転シャフト40が回転している間、このように重なり面積が無い状態、重なり面積が増える状態、重なり面積が減る状態を順に繰り返す。
 好ましくは、図3に示すように、第1解砕部材13に加えて、又は第1解砕部材13に代えて4つの第3解砕部材33が配置されている。第3解砕部材33は、第3支持棒32と、第3支持棒32に取り付けられた複数の板状の第3解砕歯34とを有する(図3では1つの第3支持棒32に5つの第3解砕歯34が配置されている)。そして、第1解砕部材13と同様に、第3解砕部材33は、回転シャフト40の周囲に90°毎に取り付けされている。また、第3支持棒32は、回転シャフト40から垂直方向に延在している。第3支持棒32は、図3に示すように第2支持棒22よりも下方(すなわち、第1支持棒12よりも下方)に位置するように配置されている。
 第1解砕部材13と同様に、回転シャフト40が回転し、第3解砕部材33が90°回転する毎に、隣り合う第3解砕歯34の間に位置する第2解砕歯24の部位の体積(または重なり面積)が最大となる。
 図3に示す状態では、隣り合う第3解砕歯34の間に位置している第2解砕歯24の部位の重なり面積(この場合は第3支持棒32に平行な方向から見た投影面積)が最大となっている。
 回転シャフト40が回転して第3支持棒32に取り付けられた第3解砕歯34が回転すると重なり面積が減少し、すなわち隣り合う第3解砕歯34の間に位置する第2解砕歯24の部位が変わり、遂には、隣り合う第3解砕歯34の間に配置された第2解砕歯24の部分がなくなる(重なり面積がゼロになる)。回転角度が90°に近づくと、別の第3解砕部材33の第3解砕歯34が近づき、隣り合う第3解砕歯34の間に位置する第2解砕歯24の部位が発生し、次第に重なり面積が増加し、重なり面積は、最大になった後減少していく(隣り合う第3解砕歯34の間に位置する第2解砕歯24の部位が変わる)。そして、このように重なり面積が無い状態、重なり面積が増える状態、重なり面積が減る状態を順に繰り返す。
 なお、回転シャフト40が回転しても第1解砕歯14と第2解砕歯24とは、互いに接触しないように構成されている。同様に、回転シャフト40が回転しても第3解砕歯34と第2解砕歯24とは、互いに接触しないように構成されている。
 以上の説明では、回転シャフト40に繋がる第1解砕部材13および第3解砕部材33が回転シャフト40の周りを回転可能であり、第2解砕部材23が固定されているが、第2解砕部材23も回転可能な構成としてよい。例えば、第2解砕部材23を第1解砕部材13と同軸(または同心)でかつ、第1解砕部材13と反対方向に回転可能とする構成を挙げることができる。
 また、図3および図4に示す実施形態では、第1解砕部材13および第3解砕部材33は回転シャフト40を回転軸として回転することにより第2解砕部材23に接触することなく移動しているが、これに限定されるものではない。
 隣り合う第1解砕歯14の間に位置する第2解砕歯24の部位を変えるように、第1解砕歯14と第2解砕歯24が、互いに接触することなく、第1解砕歯14と第2解砕歯24の少なくとも一方が、回転する限り任意の構成をとり得る。
 このような構成として、例えば、上述したように回転シャフト40を回転軸として、第1解砕歯14(および第3解砕歯34)を回転させることに代えて、又はこれに加えて、第2支持棒22を回転軸として第2解砕歯24を回転させてもよい。
 後者の場合、すなわち、回転シャフト40を回転軸として第1解砕歯14(および第3解砕歯34)を回転させ、かつ第2支持棒22を回転軸として第2解砕歯24を回転させる場合、タンク70内で成形体および解砕された成形体をより効果的に撹拌できるため、解砕をより効率的に行うことができる。
 同一の第1支持棒12に配置されている第1解砕歯14は、好ましくは互いに平行に配置されている。同様に、同一の第2支持棒22に配置されている第2解砕歯24は、好ましくは互いに平行に配置されている。さらに同様に、同一の第3支持棒32に配置されている第3解砕歯34は、好ましくは互いに平行に配置されている。また、第1解砕歯14、第2解砕歯24および第3解砕歯34は、板状である限り任意の形状を有してよく、このような形状として円盤、四角形を含む多角形および楕円を例示できる。また、第1解砕歯14、第2解砕歯24および第3解砕歯34は、一方の表面から他方の表面に貫通する貫通孔または窪みを有してよい。
 また、隣り合う2つの第1解砕歯14の間は、主として解砕する成形不良品または成形体端材の大きさによってその距離を適宜選定すればよい。例えば、図1から図4に示す再生装置においては、25mm程度の距離を有してよい。隣り合う2つの第2解砕歯24の間および/または隣り合う2つの第3解砕歯34の間も同様である。これにより、回転シャフト40が回転して、隣り合う2つの第1解砕歯14の間に第2解砕歯24が位置した場合、第1解砕歯14と第2解砕歯24との距離を10mm程度としてよい。隣り合う2つの第3解砕歯34の間に第2解砕歯24が位置した場合も同様に10mm程度としてよい。
 このように構成された解砕装置50は、昇降装置90により上下に移動可能である。昇降装置90は、例えば、モーター92に繋がれたワイヤー(図示せず)を用いて解砕装置50を上昇および下降させることができる。
 次に、タンク70内の油中に配置された成形体を解砕装置50により解砕する手順を説明する。
 図1に示すように、昇降装置90により解砕装置50は、最初、タンク70の上方に引き上げられている。そして、解砕装置50は、昇降装置90により降下し、タンク70内に挿入される。この際、モーター46により、回転シャフト40を回転させることにより、第1解砕部材13と第3解砕部材33(設置されている場合)が、回転シャフト40を回転軸として回転している。
 そして解砕装置50は、タンク70内の油中で成形体(油および成形体とも図示せず)と接触する。さらに、解砕装置50を下降させていくと、成形体は、第1解砕部材13、第2解砕部材23により粗解砕される。
 解砕装置50の降下速度は、タンク70の容量、タンク70内に入れる成形体の量や成形体の大きさ等に応じて適宜選定すればよい。また、解砕装置50は、連続的に降下させてもよいし、断続的に降下させてもよい。
 なお、本明細書において、「粗解砕」とは、粗く砕くこと、すなわち成形体を成形に用いた合金粉末の粒径よりも大きな状態(合金粉末が複数集まった状態)に砕くことを意味する。
 粗解砕をより効率的に行うためにも第3解砕部材33を設けることが好ましい。下降する解砕装置50の下端部が回転する第3解砕部材33となることで、成形体がより短時間で粗解砕されるからである。なお、第1解砕部材13と併せて第3解砕部材33を設ける代わりに、第3解砕部材33を第1解砕部材として配置しても粗解砕を効率的に行う効果を得ることができる(すなわち、図3に記載の第1解砕部材13を設けずに、図3の解砕部材33(第2解砕部材23より下方に配置された解砕部材)を第1解砕部材とする実施形態)。
 そして、解砕装置50が図2に示すように最下点に達すると昇降装置90は停止し、解砕装置50は最下点に留まる。しかし、モーター46は、回転シャフト40を回し続け、第1解砕部材13と第3解砕部材33とは、回転シャフト40を回転軸として回転を続ける。
 第1解砕部材13と第3解砕部材33の回転数、すなわち回転シャフト40の回転速度は、タンク70の容量、タンク70内に入れる成形体の量や成形体の大きさ等に応じて適宜選定すればよく、例えば、1~200rpm程度である。
 また、第1解砕部材13と第3解砕部材33の回転方向、すなわち回転シャフト40の回転方向は、一定であってもよく、また所定の時間が経過する度に反転させてもよい。
 さらに、回転シャフト40の回転速度は、一定であってもよいし、変化させてもよい。例えば、解砕装置50の降下に伴って回転速度を上げたり、解砕装置50が最も降下した状態で回転速度を上げたり、あるいは、解砕装置50を上昇させる際に回転速度を上げたりしてもよい。
 このように第1解砕部材13と第3解砕部材33とを、適当な時間回転させることで、タンク70内では、粉砕がほとんど起こることなく、成形体の粗解砕、さらには解砕が進む。
 解砕装置50を用いることで、粉砕がほとんどなく確実に解砕が進行するメカニズムについて、本願発明者らが現在までに得られている知見に基づいて推定するメカニズムは以下の通りである。
 ただし、この推定メカニズムは本願発明の技術的範囲を制限することを意図するものではないことに留意されたい。
 成形体は、粗解砕されて徐々に小さくなる。そして、第1解砕部材13と第3解砕部材33との回転による撹拌効果も加わり、十分に小さくなった(十分に粗解砕された)成形体は第1解砕歯14と第2解砕歯24との間を通るようになる。
 第1解砕歯14は、上述のように回転シャフト40を回転軸として回転しており(即ち、隣り合う第1解砕歯14の間に位置する前記第2解砕歯24の部位が変化している(第2解砕歯24のどの部分が隣り合う第1解砕歯14の間に位置しているかが変化している。)。)、これは、第1解砕歯14が、固定されている第2解砕歯24に対して概ね平行に移動していることを意味する。すなわち、図3および図4に示す実施形態では、第1解砕部材13が略90°回転する毎に対向する複数の第1解砕歯14間に固定された第2解砕歯24が配置された状態となり、この第1解砕歯14と第2解砕歯24との間には油と粗解砕された成形体との混合物が介在する。この状態で第1解砕歯14が回転、すなわち第2解砕歯24に対して略平行に移動すると、粗解砕された成形体に油を介して剪断力が付与されることとなる。
 剪断力が油を介して付与されることから、再生して得ようとする合金粉末の直径(例えばD50が2~10μm程度)と比べて、第1解砕歯14と第2解砕歯24との間の距離が大きくても、必要な剪断力を粗解砕された成形体(再生して得ようとする合金粉末の大きさに近づいている成形体)に付与することができる。
 この剪断力は、粗解砕された成形体を解砕するには十分な大きさであるが、解砕により得られた合金粉末を粉砕するほどの大きさではない。この結果、粉砕がほとんど起こることなく解砕が進行すると思われる。
 なお、第3解砕部材33が配置されている場合には、同じ解砕のメカニズムが第3解砕歯34と第2解砕歯24との間にも作用していると考えられる。
 なお、タンク70内の撹拌、とりわけタンク70の下部での撹拌を強化し、粗解砕された成形体をより効率的に第1解砕歯14と第2解砕歯24との間または第3解砕歯34と第2解砕歯24との間に供給することを目的に、図3に示すように、(1)タンクの底部にフィン47を設けること、(2)第3支持棒32の末端部にフィン45を設けること、および(3)回転シャフト40の下端に回転羽根48を設けること、から選択される1つ以上を実施することが好ましい。
(3)フィルター装置
 上述のように、解砕装置50を用いて解砕を進めていくと、タンク70の油内には、解砕された成形体(目的とする合金粉末)と粗解砕された成形体とが混在する。
 このため、フィルター装置60を用いて再生された成形体をスラリーとして分離し、残った粗解砕された成形体を解砕装置50で解砕することが好ましい。
 このようなフィルター装置60としては、スラリー中の粒子を粒子径に応じて分離可能な各種フィルター装置を用いてよい。
 図5は、フィルター装置60を例示する斜視図である。
 図5に示すようフィルター装置60は、上方の第1フィルター部61と下方の第2フィルター部63とから成る。第1フィルター部61と第2フィルター部63とは、第1フィルター部61の下部に設けたパンチングメタル64により仕切られている。パンチングメタル64は、第2フィルター部に異物や大きな成形体が侵入するのを防止する第1のフィルターとしての機能を有する。
 第1フィルター部61は、側面に開口65を有し、この開口より解砕された成形体(目的とする合金粉末)および粗解砕された成形体と油との混合物を受け入れることができる。
 図6は、第2フィルター部63内に配置されている第2のフィルター(筒状フィルター)150を示す斜視図である。第2のフィルター150は、フィルター台座151とフィルター台座152との間に配置した支柱153に等間隔で配置した間隔調整用ディスク(スペーサー)154により、互いに所定の間隔を空けて積層されたフィルター用ディスク155を備える。隣り合うフィルター用ディスク155間の距離は、解砕する成形不良品または成形体端材等の、成形前の合金粉末の粒径よりも大きくすることができる。すなわち、後述するように、粗解砕された成形体と油の混合物は、タンク70→フィルター装置60→タンク70と循環することにより、解砕されて合金粉末となる。そのため、隣り合うフィルター用ディスク155間を通過させる際には、ほとんどが成形前の合金粉末の粒径になっている。従って、隣り合うフィルター用ディスク155間の距離は、第1のフィルター61で除去されなかった異物を除去できる程度の大きさでよく、解砕する成形体の大きさ、量あるいは混入している異物の大きさなどに応じて適宜設定してよい。
 図6に示すように台座151、152およびフィルター用ディスク155は中央部に貫通孔を有するため、第2のフィルター150は中央部に空隙を有する構成となっている。
 図7は、第2フィルター部63の内部の構成を示す上面図であって、第2フィルター150の台座151を取り除いた状態を示す説明図である。
 図7に示すように第2フィルター部63の内部では、第2のフィルター150の台座152がフィルター部63の外壁の内面に嵌る構成となっている。第2のフィルター150の内側には、詳細を後述するローター157が配置されている。ローター157が、モーター62(図2参照)を用いて回転駆動することにより、パンチメタル64を通った解砕された成形体(目的とする合金粉末)および粗解砕された成形体と油との混合物に遠心力を付与する。
 そして、フィルター用ディスク155間の間隙を通過することができる解砕された成形体(合金粉末)は、油とともにスラリーとして、第2のフィルター150の外側に排出される。
 一方、フィルター用ディスク155間の間隙を通過することができない粗解砕された成形体は第2のフィルター150の内側の留まり、フィルター150の外側に排出されることはない。
 図8は、ローター157の詳細な構造を示す斜視図である。ローター157は、円盤571、環状の平板(中央部に貫通孔を有する円盤)572および複数の円柱573を有する。円盤571は図6に示す第2のフィルター150の台座152側に位置する。ローター157は、モーター62に接続された回転軸574を有しており、モーター62によりローター157は回転する。
 次に、フィルター装置60を用いて、解砕された成形体(すなわち、再生された希土類系焼結磁石用合金粉末)をスラリーとして分離する手順を説明する。
 上述のように、解砕装置50を用いて解砕を進め、タンク70の油内に、解砕された成形体(目的とする合金粉末)と粗解砕された成形体とが混在するようになる適当な時期にタンク70およびフィルター装置60と接続されたバルブ81および82を開く。ポンプ83を用いることにより、タンク70内の解砕された成形体(目的とする合金粉末)および粗解砕された成形体と油との混合物がバルブ81を通り、図2の矢印Cに沿って移動しフィルター装置60に導入される。
 フィルター装置60の側面の開口65から、フィルター装置60の第1フィルター部61に導入された合金粉末(解砕された成形体)および粗解砕された成形体と油との混合物は、パンチングメタル64を通り、異物を除去されて、第2フィルター部63に入る。
 第2フィルター部63に入った、合金粉末および粗解砕された成形体と油との混合物は、モーター62により回転するローター157により遠心力を付与される。そして、フィルター用ディスク155同士の間の間隙を通り抜けることができる合金粉末(解砕された成形体)は、スラリーとして第2のフィルター150の外側に排出される。この排出されたスラリーは、図2に示す矢印Bの経路に沿って移動し回収される。
 一方、粗解砕された成形体は、フィルター用ディスク155同士の間の間隙を通り抜けることができないため、第2のフィルター150の外側に排出されない。このため、粗解砕された成形体と油との混合物は、フィルター装置60から図2の矢印Aに沿って移動し、バルブ82を通ってタンク70内に戻され、再び解砕装置50により、粗解砕および/または解砕される。
 このように、解砕されて合金粉末となるまで、粗解砕された成形体と油の混合物は、タンク70→バルブ81→ポンプ83→フィルター装置60→バルブ82→タンク70と循環する。
 さらに、効率的に解砕するために、例えば図2に示すように、フィルター装置60より上流側に補助解砕装置85を設けてもよい。
 補助解砕装置85を設けることで、上述の循環の際に、タンク70の外でも粗解砕された成形体の一部が解砕されることから、解砕の効率を向上させることができる。
 図9は、補助解砕装置85の構成を例示する斜視図である。補助解砕装置85は、斜度の異なる2種類の歯を有する歯車状の解砕歯123を有している。歯車状の解砕歯123はモーターにより回転される。この歯車状解砕歯123の回転により、粗解砕された成形体の一部は解砕され合金粉末となる。
 図9の上方より挿入された合金粉末および粗解砕された成形体と油との混合物は、粗解砕された成形体の一部が解砕された後、歯車状の解砕歯123の側方に設けた空間124を介して、補助解砕装置85の外部に排出される。
 補助解砕装置85の構成はこれに限定されるものではない。
 フィルター装置60より回収された合金粉末(成形体を解砕して得た再生合金粉末)を含むスラリーは、新たな希土類系焼結磁石を製造するための湿式成形法に用いるスラリーとして用いることが好ましい。酸化を抑制して得た、スラリーの特性を十分に活かすことができるからである。この場合、回収されたスラリーだけで湿式成形を行ってもよく、また新たに製造した別のスラリーと混合して湿式成形を行ってもよい。
 また、回収したスラリーから油を除去し、乾燥した合金粉末を得てもよい。この合金粉末は新たな希土類系焼結磁石を製造するための乾式成形法に用いることができる。この場合、得られた乾燥した合金粉末だけを用いて乾式成形を行ってもよく、また新たに製造した別の乾燥した合金粉末と混合して乾式成形を行ってもよい。
 なお、当然ではあるが、再生される合金粉末の組成は、成形体を得るのに用いた合金粉末の組成に等しくなる。
 成形体を得るのに用いる合金粉末は、希土類元素を含む粉末であればよく、好ましくは、R-T-B系焼結磁石用合金粉末であることが好ましく、より好ましくはR-Fe(Co)-B-M系である。
 Rは、ネオジム(Nd)、プラセオジム(Pr)、ジスプロシウム(Dy)およびテルビウム(Tb)より成る群から選択される少なくとも1種であり、NdまたはPrの少なくとも一方を含むことが好ましい。Rは更に好ましくは、Nd-Dy、Nd-Tb、Nd-Pr-DyおよびNd-Pr-Tbの希土類元素の組み合わせよりなる群から選択される1つである。Dyおよび/またはTbを含有すると保磁力向上の効果を有する。
 合金粉末は上記元素以外に、少量のCeおよびLa等の他の希土類元素を含有してよく、ミッシュメタルやジジム(NdとPrを主成分とする合金)を用いてもよい。また、Rは純元素でなくてよく、工業上入手できる範囲で不可避不純物を含んでよい。Rの含有量は、既知の含有量であってよく、好ましい範囲として25~35質量%を例示できる。25質量%未満では磁気特性、とりわけ高い保磁力が得られない場合があり、35質量%を超えると残留磁束密度が低下する場合があるからである。
 TはFeを必須の元素として含み、50質量%以下をCoで置換してもよい。Coは温度特性の向上および耐食性の向上に有効であり、通常、10質量%以下のCoと残部Feとの組み合わせにより用いる。Tの含有量は、RとBあるいはRとB(ボロン)あるいはRとBとMとの残部を占める。
 Bの含有量は、公知の含有量でよく、好ましい範囲として、0.9~1.2質量%を例示できる。0.9質量%以下では、高い保磁力が得られない場合があり、1.2質量%を超えると残留磁束密度が低下する場合がある。
 なお、Bの一部をC(炭素)で置換してよい。Cによる置換は、磁石の耐食性を向上させる効果がある。BとCとを添加する場合の含有量は、Cの置換原子数をBの原子数で換算し、上記の好ましいB濃度の範囲とすることが好ましい。
 上記元素に加え、保磁力向上のためにM元素を添加することができる。M元素は、Al、Si、Ti、V、Cr、Ni、Cu、Zn、Ga、Zr、Nb、Mo、In、Sn、Hf、TaおよびWよりなる群から選択される少なくとも1種である。添加量は2質量%以下が好ましい。2質量%を超えると残留磁束密度が低下する場合がある。
 また、不可避的不純物は許容される。例えば、Feから侵入するMnおよびCr、ならびにFe-B(フェロボロン)から侵入するAl、Si、Cu等である。
 本出願は、日本国特許出願、特願第2011-216466号を基礎出願とする優先権主張を伴う。特願第2011-216466号は参照することにより本明細書に取り込まれる。
  12 第1支持棒
  13 第1解砕部材
  14 第1解砕歯
  22 第2支持棒
  23 第2解砕部材
  24 第2解砕歯
  32 第3支持棒
  33 第3解砕部材
  34 第3解砕歯
  40 回転シャフト
  42A、42B 固定部材
  45、47 フィン
  46、62、92 モーター
  48 回転羽根
  50 解砕装置
  60 フィルター装置
  61 第1フィルター部
  63 第2フィルター部
  64 パンチメタル
  65 開口
  70 タンク
  81、82 バルブ
  83 ポンプ
  85 補助解砕装置
  90 昇降装置

Claims (7)

  1.  i)希土類元素を含む粉末を含んで成る希土類系焼結磁石用の成形体を油の中に配置する工程と、
     ii)互いに対向して配置された複数の板状の第1解砕歯と、少なくとも一部分が、隣り合う前記第1解砕歯の間に位置する板状の第2解砕歯との間に、前記成形体の少なくとも一部と前記油とを配置する工程と、
     iii)前記第1解砕歯と前記第2解砕歯が、前記隣り合う複数の第1解砕歯の間に位置する前記第2解砕歯の部位を変えるように、前記複数の第1解砕歯と前記第2解砕歯の少なくとも一方が、互いに接触することなく、回転する工程と、
    を含むことを特徴とする希土類元素を含む粉末の再生方法。
  2.  タンク内の前記油に前記成形体を配置した後、該タンク内に前記複数の第1解砕歯と前記第2解砕歯とを挿入して、前記工程ii)および前記工程iii)を実施することを特徴とする請求項1に記載の方法。
  3.  前記第1解砕歯が回転シャフトから垂直方向に延在する第1支持棒に取り付けられ、前記第2解砕歯が、長手方向が前記回転シャフトに垂直になるように配置された第2支持棒に取り付けられ、前記回転シャフトを回転させることにより前記第1解砕歯を回転させることを特徴とする請求項1または2に記載の方法。
  4.  前記工程i)~iii)の後、前記成形体を得るのに用いた希土類元素を含む粉末と実質的に同じ粒径を有する解砕された粉末を分離するフィルタリング工程を更に含むことを特徴とする請求項1~3のいずれか1項に記載の方法。
  5.  希土類元素を含む粉末を含んで成る希土類系焼結磁石用の成形体を解砕して該成形体を成形する前と実質的に同じ粒径を有する希土類元素を含む粉末を得る希土類系焼結磁石用粉末の再生装置であって、
     互いに対向して配置された複数の板状の第1解砕歯と、少なくとも一部分が、隣り合う前記第1解砕歯の間を移動可能な板状の第2解砕歯とを含み、前記隣り合う第1解砕歯の間に位置する前記第2解砕歯の部位を変えるように、前記複数の第1解砕歯と前記第2解砕歯の少なくとも一方が、互いに接触することなく、回転するよう構成された解砕装置と、
     前記成形体と油とを内部に貯蔵して移動可能なタンクと、
     前記タンクの開口からその内部に前記解砕装置を挿入する昇降装置と、
     前記タンクから送出された前記油中に含まれる砕かれた前記成形体から所定の粒径の前記希土類元素を含む粉末を分離するフィルター装置と、
    を含むことを特徴とする再生装置。
  6.  前記第1解砕歯が回転シャフトから垂直方向に延在する第1支持棒に取り付けられ、前記第2解砕歯が、長手方向が前記回転シャフトに垂直になるように配置された第2支持棒に取り付けられ、前記回転シャフトを回転させることにより前記第1解砕歯を回転させることを特徴とする請求項5に記載の装置。
  7. 前記第1支持棒より下方で、前記回転シャフトから垂直方向に延在する第3支持棒と、
     互いに対向するように前記第3支持棒に取り付けられた複数の板状の第3解砕歯と、
    を更に含み、
     前記第2解砕歯の一部が隣り合う前記第3解砕歯の間を移動可能で、前記回転シャフトを回転させることにより前記第3解砕歯を回転させて、前記隣り合う第3解砕歯の間に位置する前記第2解砕歯の部位を変えることを特徴とする請求項6に記載の装置。
PCT/JP2012/074380 2011-09-30 2012-09-24 希土類系焼結磁石用粉末の再生方法および再生装置 WO2013047429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280046992.0A CN103843086B (zh) 2011-09-30 2012-09-24 稀土系烧结磁铁用粉末的再生方法及再生装置
US14/348,099 US9463509B2 (en) 2011-09-30 2012-09-24 Recycle method and recycle apparatus for powder for rare earth sintered magnet
EP12835343.0A EP2765585B1 (en) 2011-09-30 2012-09-24 Regeneration method and regeneration apparatus for powder for rare earth sintered magnet
JP2013536257A JP5962662B2 (ja) 2011-09-30 2012-09-24 希土類系焼結磁石用粉末の再生方法および再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011216466 2011-09-30
JP2011-216466 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047429A1 true WO2013047429A1 (ja) 2013-04-04

Family

ID=47995461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074380 WO2013047429A1 (ja) 2011-09-30 2012-09-24 希土類系焼結磁石用粉末の再生方法および再生装置

Country Status (5)

Country Link
US (1) US9463509B2 (ja)
EP (1) EP2765585B1 (ja)
JP (1) JP5962662B2 (ja)
CN (1) CN103843086B (ja)
WO (1) WO2013047429A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109013013A (zh) * 2018-08-10 2018-12-18 浙江昊峰建材有限公司 一种新型混凝土砌块回收再生用粉碎装置
CN109107700A (zh) * 2018-09-30 2019-01-01 苏州汇科机电设备有限公司 粉体材料解碎装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125578A1 (ja) * 2010-03-31 2011-10-13 日立金属株式会社 スラリーの再生方法、希土類系焼結磁石の製造方法およびスラリーの再生装置
US10493464B2 (en) * 2014-12-18 2019-12-03 Aaron Engineered Process Equipment, Inc. Rotary mill
CN107160592B (zh) * 2017-06-09 2019-02-19 重庆威星橡胶工业有限公司 冲压式破碎机
CN113663774A (zh) * 2021-08-13 2021-11-19 萍乡鑫森新材料有限责任公司 一种稀土加工用稀土矿石多级粉碎设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115770U (ja) * 1974-07-23 1976-02-04
JPH0483319A (ja) * 1990-07-26 1992-03-17 Kawasaki Steel Corp 希土類磁石の製造方法
JPH10241981A (ja) * 1997-02-28 1998-09-11 Hitachi Metals Ltd 希土類永久磁石の製造方法および希土類永久磁石
JP2004207578A (ja) 2002-12-26 2004-07-22 Hitachi Metals Ltd 成形体の加工方法
JP2005054261A (ja) * 2003-08-07 2005-03-03 Sumitomo Metal Ind Ltd 希土類合金粉末の再生方法およびそれに用いる洗浄装置
JP2005161779A (ja) * 2003-12-05 2005-06-23 Techno Polymer Co Ltd 樹脂リサイクルシステム及び方法
WO2011125578A1 (ja) * 2010-03-31 2011-10-13 日立金属株式会社 スラリーの再生方法、希土類系焼結磁石の製造方法およびスラリーの再生装置
JP2011216466A (ja) 2010-03-15 2011-10-27 Seiko Instruments Inc 端子付電気化学セル及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136907A (ja) 1983-01-25 1984-08-06 Seiko Epson Corp 樹脂結合型希土類磁石の製造方法
US6599450B1 (en) 1999-10-26 2003-07-29 Matsushita Electric Industrial Co., Ltd. Method of producing recycled raw material powder for use in bonded magnet and method of recycling bonded magnet
JP4720003B2 (ja) 2001-04-16 2011-07-13 パナソニック株式会社 希土類磁石のリサイクル方法および希土類ボンド磁石、その希土類ボンド磁石を搭載したモータ
JP4933746B2 (ja) 2005-05-11 2012-05-16 株式会社北川鉄工所 回収砂の再生処理方法およびその装置
PL2007520T3 (pl) * 2006-03-10 2015-02-27 Biomass Conv Llc Układ rozdrabniający do suchych materiałów celulozowych

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115770U (ja) * 1974-07-23 1976-02-04
JPH0483319A (ja) * 1990-07-26 1992-03-17 Kawasaki Steel Corp 希土類磁石の製造方法
JPH10241981A (ja) * 1997-02-28 1998-09-11 Hitachi Metals Ltd 希土類永久磁石の製造方法および希土類永久磁石
JP2004207578A (ja) 2002-12-26 2004-07-22 Hitachi Metals Ltd 成形体の加工方法
JP2005054261A (ja) * 2003-08-07 2005-03-03 Sumitomo Metal Ind Ltd 希土類合金粉末の再生方法およびそれに用いる洗浄装置
JP2005161779A (ja) * 2003-12-05 2005-06-23 Techno Polymer Co Ltd 樹脂リサイクルシステム及び方法
JP2011216466A (ja) 2010-03-15 2011-10-27 Seiko Instruments Inc 端子付電気化学セル及びその製造方法
WO2011125578A1 (ja) * 2010-03-31 2011-10-13 日立金属株式会社 スラリーの再生方法、希土類系焼結磁石の製造方法およびスラリーの再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765585A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109013013A (zh) * 2018-08-10 2018-12-18 浙江昊峰建材有限公司 一种新型混凝土砌块回收再生用粉碎装置
CN109013013B (zh) * 2018-08-10 2021-10-15 浙江昊峰建材有限公司 一种新型混凝土砌块回收再生用粉碎装置
CN109107700A (zh) * 2018-09-30 2019-01-01 苏州汇科机电设备有限公司 粉体材料解碎装置
CN109107700B (zh) * 2018-09-30 2024-01-30 苏州汇科技术股份有限公司 粉体材料解碎装置

Also Published As

Publication number Publication date
CN103843086B (zh) 2016-03-23
US20140239098A1 (en) 2014-08-28
JPWO2013047429A1 (ja) 2015-03-26
CN103843086A (zh) 2014-06-04
EP2765585A4 (en) 2015-07-01
JP5962662B2 (ja) 2016-08-03
US9463509B2 (en) 2016-10-11
EP2765585B1 (en) 2017-06-28
EP2765585A1 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5962662B2 (ja) 希土類系焼結磁石用粉末の再生方法および再生装置
JP6729446B2 (ja) R−t−b系永久磁石
US10807167B2 (en) Slurry recycling method, producing method of rare earth sintered magnet and slurry recycling apparatus
JP2013225533A (ja) R−t−b系焼結磁石の製造方法
CN105845305A (zh) R-t-b系烧结磁铁
JP2013207134A (ja) バルクrh拡散源
EP2884506A1 (en) Method for producing rare-earth sintered magnet and molding device
JP4391985B2 (ja) NdFeB系磁石の製造方法
EP2884505B1 (en) Method for producing rare-earth sintered magnet and molding device
JP2008294468A (ja) NdFeB系磁石の製造方法
JP6060971B2 (ja) 希土類系焼結磁石の製造方法
JP2024049589A (ja) R-t-b系焼結磁石の製造方法
JP2024049587A (ja) R-t-b系焼結磁石の製造方法
JP2024049590A (ja) R-t-b系焼結磁石の製造方法
JP2024049588A (ja) R-t-b系焼結磁石の製造方法
JP2024050380A (ja) 希土類元素含有粉末を再生する方法、および希土類系焼結磁石の製造方法
JP2006152398A (ja) 希土類磁石焼結用敷粉及びそれを用いた希土類磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280046992.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536257

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012835343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14348099

Country of ref document: US

Ref document number: 2012835343

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE