WO2013047370A1 - 二軸配向ポリエステルフィルム - Google Patents

二軸配向ポリエステルフィルム Download PDF

Info

Publication number
WO2013047370A1
WO2013047370A1 PCT/JP2012/074226 JP2012074226W WO2013047370A1 WO 2013047370 A1 WO2013047370 A1 WO 2013047370A1 JP 2012074226 W JP2012074226 W JP 2012074226W WO 2013047370 A1 WO2013047370 A1 WO 2013047370A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester film
coating layer
layer
polyester
Prior art date
Application number
PCT/JP2012/074226
Other languages
English (en)
French (fr)
Inventor
成裕 増田
泰史 川崎
神田 俊宏
藤田 真人
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2013047370A1 publication Critical patent/WO2013047370A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/08Polyurethanes from polyethers

Definitions

  • the present invention relates to a biaxially oriented polyester film.
  • a base film used for an optical member such as a liquid crystal panel and a plasma display, and a solar cell.
  • the present invention relates to a biaxially oriented polyester film suitable for a back surface protective film.
  • polyester films represented by polyethylene terephthalate, polyethylene naphthalate, and the like.
  • polyester films are often used as back surface protection films for solar cells.
  • polyester films In order to improve heat resistance, mechanical strength, solvent resistance, etc., these polyester films are often used as biaxially oriented films that are oriented and crystallized by biaxial stretching and heat setting. However, since these biaxially oriented polyester films are oriented and crystallized, the film surface is also highly oriented and crystallized, and the adhesiveness with various topcoats is reduced. For this reason, providing an anchor coat layer (easy adhesion layer) for improving adhesiveness is widely performed. In order to form this easy-adhesion layer, a so-called in-line coating method in which an aqueous easy-adhesion layer is applied to the film and then stretched in at least one direction and thermally fixed is often used in the film forming process.
  • scrap that does not become a product such as a part that does not become a by-product when slitting to a predetermined width, or a film roll that breaks before reaching a predetermined length
  • scraps can be reused as raw materials, as described above, the manufacturing cost will be reduced, as well as CO 2 emission reduction and efficient use of petroleum resources.
  • the present invention has been made in view of the above-mentioned circumstances, and the problem to be solved is the adhesiveness between the lens layer, the diffusion layer and the hard coat layer used in the liquid crystal panel, and the EVA sheet of the sealing material of the solar battery cell.
  • the adhesiveness between the lens layer, the diffusion layer and the hard coat layer used in the liquid crystal panel, and the EVA sheet of the sealing material of the solar battery cell In spite of being included as a regenerated raw material generated in the production process of the film, there is little coloration of the film and a decrease in luminance, and it is excellent as a film for the above-mentioned use. 2.
  • the gist of the present invention is that at least one side of a base polyester film has a coating layer by in-line coating containing a polyurethane having at least one of a polycarbonate skeleton or a polyether skeleton and a crosslinking agent, and the total nitrogen amount is 30 ppm.
  • the present invention is a biaxially oriented polyester film characterized by containing 5% by weight or more of a self-regenerating raw material in a base polyester film.
  • the biaxially oriented polyester film of the present invention includes, for example, a lens layer used in a liquid crystal panel, a diffusion layer, a hard coat layer, and an EVA (ethylene-vinyl acetate copolymer) sheet that is a sealing material for solar cells.
  • EVA ethylene-vinyl acetate copolymer
  • it is excellent as a lens sheet, a diffusion sheet, a base film for hard coat film, and a film for protecting the back surface of a solar cell, and contributes to CO 2 emission reduction and efficient use of petroleum resources, and also to economic rationality. It is suitable.
  • the base polyester film constituting the biaxially oriented polyester film of the present invention aromatic polyesters such as polyethylene terephthalate and polyethylene-2,6-naphthalate, and copolymers mainly composed of these resin components are used. And the like.
  • the polyester is a copolymer polyester, it is preferably a copolymer having a third component content of 10 mol% or less.
  • the dicarboxylic acid component of the copolymerized polyester may be one or more selected from isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, and the like. Is mentioned.
  • glycol component examples include one or more selected from ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, ethylene oxide adduct of bisphenol A, and the like.
  • the usage-amount of such a copolymerization component exceeds 10 mol%, the fall of the heat resistance of a film, mechanical strength, solvent resistance, etc. will become remarkable.
  • a film using polyethylene terephthalate as a constituent component and a film using the copolymer polyester are suitable in terms of a balance between characteristics as a base film and cost.
  • the above polyester is obtained by a conventionally known method, for example, by directly reacting a dicarboxylic acid and a diol to obtain a low polymerization degree polyester, or by reacting a lower alkyl ester of a dicarboxylic acid and a diol with a conventionally known transesterification catalyst. Then, it can obtain by the method of superposing
  • a known catalyst such as an antimony compound, a germanium compound, a titanium compound, an aluminum compound, or an iron compound may be used. However, when the amount of the antimony compound is zero or 100 ppm or less as antimony, the film becomes dull.
  • the method of reducing can also be used preferably.
  • these polymerizations can be performed in a molten state to a desired degree of polymerization, or solid phase polymerization can be used in combination.
  • polyester raw materials used in combination with solid phase polymerization for the purpose of reducing the amount of oligomers contained in polyester as a supplementary raw material to supplement the decrease in the intrinsic viscosity of polyester due to the use of recycled raw materials It is preferable to use it.
  • the intrinsic viscosity of the polyester used for the polyester film is usually 0.40 to 0.90 dl / g, preferably 0.45 to 0.85 dl / g. If the intrinsic viscosity is too low, the mechanical strength of the film tends to decrease. Moreover, when intrinsic viscosity is too high, the load in the melt extrusion process at the time of film formation will be large, and there exists a tendency for productivity to fall.
  • the biaxially oriented polyester film of the present invention may be a laminated film in which two or more layers of polyester are laminated by a coextrusion method.
  • the film of three or more layers is composed of two outermost layers and an intermediate layer which may itself be a laminated structure, and the thicknesses of the two outermost layers are each usually 2 ⁇ m or more, preferably 5 ⁇ m or more.
  • the ratio can be usually 1/4 or less, preferably 1/10 or less of the total film thickness.
  • the thickness of the film of both surface layers may be the same, and may differ.
  • the oligomers contained in the polyester film are deposited on the surface of the film due to heat history during film processing, etc., so that it becomes a foreign substance and deteriorates the transparency of the film. It is possible to use polyester that has been removed.
  • the low-oligomerized polyester it is possible to use a polyester polymerized by using the above-described solid phase polymerization together, or a polyester using hot water treatment or steam treatment. These polyesters can be used for the entire film when the film has a single-layer structure, and when the film has a multilayer structure, a low-oligomerized polyester can be used only for both surface layers.
  • the biaxially oriented polyester film of the present invention it is possible to increase the transparency without intentionally adding a filler.
  • inorganic fine particles are used.
  • organic fine particles can be added to the film or deposited.
  • the fine particles to be added to the polyester film are not particularly limited. For example, silicon oxide, calcium carbonate, magnesium carbonate, calcium phosphate, magnesium phosphate, kaolin, talc, alumina, titanium oxide, barium sulfate, etc.
  • Inorganic fine particles, and crosslinked polymer particles such as crosslinked acrylic resin, crosslinked polystyrene resin, thermosetting urea resin, thermosetting phenol resin, thermosetting epoxy resin, and benzoguanamine resin can be exemplified.
  • crosslinked acrylic resin crosslinked polystyrene resin
  • thermosetting urea resin thermosetting phenol resin
  • thermosetting epoxy resin thermosetting epoxy resin
  • benzoguanamine resin in order to obtain a high degree of transparency, it is preferable to use amorphous silica particles having a refractive index relatively close to that of polyester and less void formation in the biaxially oriented polyester film.
  • white pigments such as titanium oxide, zinc oxide, zinc sulfide, and barium sulfate can be used.
  • black or colored other than white or black a black pigment such as carbon black, or an inorganic or organic coloring pigment can be added.
  • the above-mentioned fine particles and pigments can be used singly or in combination of those having an average particle size usually in the range of 0.001 to 5 ⁇ m.
  • the addition amount is usually preferably selected from the range of 0.0005 to 25% by weight.
  • the film haze is preferably 3.0% or less, and preferably 2.5% or less.
  • polyester film of the present invention conventionally known additives such as antioxidants, heat stabilizers, lubricants, fluorescent brighteners and the like may be added as necessary in addition to the above fine particles. I can do it. These additives are preferable because the polyester film has a laminated structure of three or more layers and is added to the intermediate layer in order to prevent the additive from being deposited on the film surface.
  • the thickness of the biaxially oriented polyester film of the present invention is usually 25 ⁇ m or more, preferably 50 ⁇ m or more. When thickness is less than 25 micrometers, it becomes difficult to exhibit the effect of the coloring reduction of a film. On the other hand, the upper limit of the thickness is not particularly limited, but is usually 500 ⁇ m or less, preferably 400 ⁇ m or less.
  • the biaxially oriented polyester film of the present invention is a coating layer (hereinafter referred to as coating layer X) by in-line coating containing a polyurethane having at least one of a polycarbonate skeleton or a polyether skeleton and a crosslinking agent on at least one surface of the base polyester film.
  • the total nitrogen amount is 30 ppm or less, and the base polyester film needs to contain 5% by weight or more of a self-regenerating raw material. This total nitrogen amount is preferably 25 ppm or less, more preferably 20 ppm or less. If the total nitrogen content is 30 ppm or less, even if this film is repeatedly used as a recycled material, the film is less colored.
  • This total nitrogen amount can be measured using a nitrogen measuring device.
  • the nitrogen measuring device thermally decomposes a film sample in the presence of a catalyst, converts nitrogen into nitric oxide, and reacts this nitric oxide gas with ozone, thereby quantifying nitrogen from the intensity of chemiluminescent light. Is.
  • the lower limit of the total nitrogen amount is not particularly defined, the total nitrogen amount does not become 0 ppm because the coating layer X containing the polyurethane is included.
  • a nitrogen measuring device that measures the total amount of nitrogen may have a measurement lower limit value at which a reproducible measurement value is obtained, but may be equal to or lower than this measurement lower limit value.
  • the total amount of nitrogen is such that when only the coating layer X is provided on one side, when the coating layer X is provided on both sides, the coating layer X is provided on one side, and the other side is other than the coating layer X.
  • the polyester does not contain a nitrogen-containing component, but by using a recycled raw material derived from a polyester film having a coating layer containing nitrogen as a part of the raw material, the polyester film itself contains a nitrogen component. Become. And this nitrogen component becomes a factor which colors a polyester film. Therefore, in order to reduce the coloration of the polyester film, it is important to reduce the nitrogen component mixed in the polyester film. Examples of means for this purpose include the following.
  • the ratio of the raw material used for recycling 3 can be increased by an amount corresponding to the amount of nitrogen reduced by means 1 and 2. Therefore, it is important how to reduce the adhesiveness of the coating layer when the nitrogen component in the coating layer is reduced or the thickness of the coating layer is reduced. The coating layer for this will be described next.
  • the biaxially oriented polyester film of the present invention for example, a lens layer used in a flat panel display, a diffusion layer or a hard coat layer, and EVA (ethylene-vinyl acetate copolymer) used as a sealing material for solar cells.
  • the polyurethane having a polycarbonate skeleton or a polyether skeleton is a polyurethane using a compound having a polycarbonate skeleton or a polyether skeleton as a polyol.
  • the polycarbonate polyol used for the polyurethane of the coating layer X can be obtained, for example, by reaction of diphenyl carbonate, dialkyl carbonate, ethylene carbonate, or phosgene with a diol.
  • the diol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, neo
  • Examples include pentyl glycol, 3-methyl-1,5-pentanediol, 3,3-d
  • the polycarbonate polyol is preferably one having a polystyrene-reduced number average molecular weight of 300 to 5,000 as determined by gel permeation chromatography (GPC).
  • Polyether polyols used for the polyurethane of the coating layer X include polyoxyethylene glycol (polyethylene glycol), polyoxypropylene glycol (polypropylene glycol), polyoxytetramethylene glycol (polytetramethylene ether glycol), copolymer polyether polyol ( And block copolymers such as polyoxyethylene glycol and polyoxypropylene glycol, and random copolymers).
  • polyoxytetramethylene glycol is preferable in terms of improving adhesiveness, and is also preferable because of its good hydrolysis resistance.
  • the polyether polyol preferably has a number average molecular weight of 300 to 5,000 in terms of polyethylene glycol by gel permeation chromatography (GPC).
  • the polyurethane using the above-described polycarbonate polyol or polyether polyol has better adhesion and resistance to hydrolysis than the polyurethane using polyester polyol, which is another general-purpose polyol.
  • polycarbonate polyols or polyether polyols may be used alone or in combination of two or more. Further, as described above, these polycarbonate polyols and polyether polyols can be used in combination.
  • polyisocyanate used in the polyurethane of the coating layer X examples include known aliphatic, alicyclic and aromatic polyisocyanates.
  • aliphatic polyisocyanates and alicyclic polyisocyanates are used.
  • the use of isocyanate is preferable because the degree of coloring is small when the film including the coating layer is recycled and melt-molded, and the adhesiveness of the coating layer is excellent.
  • aliphatic polyisocyanate examples include tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2-methylpentane-1,5-diisocyanate, and the like.
  • alicyclic polyisocyanate examples include, for example, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane-4,4′-diisocyanate, hydrogenated biphenyl-4,4′-diisocyanate, 1,4-cyclohexane diisocyanate.
  • hydrogenated tolylene diisocyanate 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane and the like.
  • aromatic polyisocyanate examples include tolylene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 4,4′-dibenzyl diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate and the like can be mentioned.
  • These polyisocyanates may be used alone or in combination of two or more.
  • the amount of polyisocyanate that is the source of nitrogen atoms in the polyurethane, that is, urethane is described above.
  • the amount of bonds and urea bonds is important. For this reason, it is preferable to select the amount of polyisocyanate so that the bond concentration of urethane and urea in the above-mentioned polyurethane is 500 to 3500 (eq / ton), more preferably 700 to 3000 (eq / ton).
  • chain extenders include polyalcohols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol, neopentyl glycol, trimethylol propane, hydrazine, ethylenediamine, piperazine, diethylenetriamine, isophoronediamine, 4,4′-diamino
  • chain extenders include polyalcohols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol, neopentyl glycol, trimethylol propane, hydrazine, ethylenediamine, piperazine, diethylenetriamine, isophoronediamine, 4,4′-diamino
  • polyamines such as diphenylmethane and 4,4′-diaminodicyclohexylmethane, and water.
  • the polyurethane having at least one of a polycarbonate skeleton or a polyether skeleton used for the coating layer (coating layer X) in the present invention is dissolved or dispersed in water containing a water-soluble organic solvent in a proportion of preferably 50% by weight or less. Those that do are preferred.
  • a forced emulsification type using an emulsifier there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the polyurethane, and a water-soluble type.
  • a self-emulsification type in which an ionic group is introduced into a polyurethane skeleton to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency and adhesiveness of the resulting coating layer.
  • examples of the ionic group to be introduced include a carboxylate group, a sulfonate group, a phosphate group, and a phosphonate group as an anionic group, and a quaternary ammonium group as a cationic group.
  • carboxylic acid groups as examples of anionic groups include dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, trimellitic acid- Ammonium salts such as bis (ethylene glycol) esters, lower amine salts, and the like can be preferably used.
  • a quaternized product such as N-alkyl dialkanolamine such as N-methyldiethanolamine or N-ethyldiethanolamine can be preferably used.
  • N-alkyl dialkanolamine such as N-methyldiethanolamine or N-ethyldiethanolamine
  • the counter ion is an organic amine having a boiling point of 150 ° C. or lower such as ammonia or triethylamine
  • the reactivity with an oxazoline-based crosslinking agent described later Is particularly preferable because it is high and becomes a cross-linking point of the coating layer.
  • a resin having an ionic group can be used as a copolymerization component, or a component having an ionic group can be used as one component such as a polyol or a chain extender.
  • the coating layer (coating layer X) in the present invention needs to be used in combination with a crosslinking agent in order to impart heat resistance, heat-resistant adhesiveness, moisture resistance, blocking resistance, etc. to the coating layer.
  • This cross-linking agent is preferably water-soluble or water-dispersible.
  • melamine compounds benzoguanamine compounds, urea compounds, acrylamide compounds, which are methylolated and alkoxymethylolated, epoxy compounds , An isocyanate compound, a carbodiimide compound, an oxazoline compound, a silane coupling agent compound, a titanium coupling agent compound, and the like can be selected.
  • cross-linking agents when the cross-linking agent is water-soluble, it is preferable because the cross-linking reaction proceeds smoothly. Further, a water-soluble cross-linking agent which is an oxazoline compound and is itself a polymer is applied. It is particularly preferable for improving the adhesion of the layer.
  • a water-soluble cross-linking agent which is an oxazoline compound and is itself a polymer is applied. It is particularly preferable for improving the adhesion of the layer.
  • Such an oxazoline-based crosslinking agent is industrially available, for example, under the trade name Epocross (registered trademark) manufactured by Nippon Shokubai Co., Ltd.
  • the amount of these crosslinking agents to be added is the weight ratio of polyurethane to the polyurethane in the coating layer (polyurethane: crosslinking agent), and should be used at a ratio of 95: 5 to 10:90, more preferably 90:10 to 20:80. Is preferred.
  • the total of the polyurethane and the crosslinking agent component described above is preferably present in an amount of 60% by weight or more, and more preferably 80% by weight or more.
  • other resins can be additionally added.
  • the resin component that can be additionally added include polyester resins, acrylic resins, polyvinyl resins, and their graft polymers and polyester polyurethanes.
  • fine particles for example, inorganic particles such as silica, alumina and metal oxide, and organic particles such as crosslinked polymer particles can be used.
  • the size of the fine particles is 150 nm or less, preferably 100 nm or less, and the addition amount in the coating layer is preferably selected in the range of 0.5 to 10% by weight.
  • components other than those described above can be added to the coating layer X as necessary.
  • surfactants for example, surfactants, antifoaming agents, coatability improvers, thickeners, antioxidants, antistatic agents, ultraviolet absorbers and the like. These additives may be used alone or in combination of two or more.
  • the coating layer (coating layer X) in the present invention is formed by using a so-called in-line coating method in which, as a coating solution mainly using water as a medium, it is stretched in at least one direction after being coated on a polyester film and further heat-set.
  • the coating liquid used at this time is a ratio of 50% by weight or less, in addition to water, for the purpose of improving the dispersibility and storage stability, and improving the coating properties and coating film properties. It is possible to add one or more organic solvents compatible with water.
  • any known method can be applied as a method of applying the coating solution to the polyester film as the substrate. Specifically, roll coating method, gravure coating method, micro gravure coating method, reverse coating method, bar coating method, roll brush method, spray coating method, air knife coating method, curtain coating method, die coating method, etc. alone or in combination Can be applied.
  • the coating amount of the coating layer X described above can be selected from the range of 0.003 to 0.15 g / m 2 as the final dry film after biaxial stretching, heat setting, or the like.
  • the coating layer thickness is less than 0.003 g / m 2 , the adhesion may be insufficient.
  • the coating layer thickness exceeds 0.15 g / m 2 , the adhesion is no longer saturated, and the total nitrogen amount is 30 ppm. In many cases, when the film having this coating layer is recycled, there is a concern that the coloring of the film becomes remarkable.
  • the coating layer X described above is excellent in adhesiveness and can often reduce the coating amount.
  • the adhesive amount is often sufficient.
  • the total nitrogen amount can be reduced to 30 ppm or less.
  • coating layer X When the coating layer X described above is provided on only one side, another coating layer (coating layer Y) may be provided on the opposite side.
  • the coating layer Y is provided in the film formation process by an in-line coating method, and is particularly limited if the total nitrogen amount of the polyester film including the coating layer X and the coating layer Y is 30 ppm or less.
  • resin binders such as polyester resins, acrylic resins, polyvinyl resins, polyester polyurethanes, crosslinking agents, inorganic and Examples include organic fine particles, antistatic agents, surfactants and the like.
  • a recycled material derived from a polyester film having the above-mentioned coating layer (coating layer X) (referred to as a self-recycled material) as a base film material. Is 10% by weight or more. By doing so, it contributes to the reduction of CO 2 emissions and the efficient use of petroleum resources, as well as the economic rationality. If more recycled materials are used, the contribution to them and the economic rationality become higher, so the upper limit is not particularly defined.
  • the above-mentioned self-regenerating raw material is mechanically cut and pulverized from the film state to form flakes, but the flakes are once melt-extruded to form chips (pellets), or used as regenerated raw materials as they are.
  • the self-regenerating raw material receives a thermal history, and thus directly regenerated as flakes without chipping (pelletizing). It is preferable to use it as a raw material, and the ratio thereof is 50% by weight or more of the self-regenerating raw material, and it is preferable that all of the self-regenerating raw material is used as flakes.
  • a vent type twin screw extruder as an extruder for producing a polyester film. If a vent type twin-screw extruder is used, even if flakes are directly used as a raw material, it is possible to smoothly perform melt extrusion without causing a material biting failure during extrusion. Further, the flakes are put into an extruder without drying, and when the polyester is in a semi-molten to molten state, a reduced pressure of 40 hectopascals or less, preferably 30 hectopascals or less, more preferably 20 hectopascals or less is passed through the vent port. It can be maintained and degassed to remove moisture. By doing so, it is preferable because the heat drying step can be omitted and the heat history applied to the self-regenerating raw material can be reduced.
  • the above self-regenerating raw material is used for the entire base film when the base polyester film has a single layer configuration, but when the base film has a laminated configuration, Self-regenerating raw materials may be used evenly in the layers, but when blended only in thicker layers or in higher concentrations in the laminated structure, when more self-regenerating raw materials are blended It is preferable in that the adverse effect can be further reduced.
  • the laminated structure is a two-layer structure, it is preferable to blend only in a thicker layer or a higher concentration.
  • the film is constituted by two outermost layers and an intermediate layer which may itself be a laminated structure, but the intermediate layer is set to be the thickest layer.
  • the self-regenerating raw material is blended only in the intermediate layer or blended at a higher concentration.
  • the biaxially oriented polyester film of the present invention as a film including a coating layer, has a y value of 0.3240 or less, preferably 0.3235 when the color tone is measured by the reflection method of the spectroscopic colorimeter.
  • a y value preferably 0.3235 when the color tone is measured by the reflection method of the spectroscopic colorimeter.
  • it is preferably 0.3230 or less.
  • the y value exceeds 0.3240, the film feels yellowish and the brightness is lowered.
  • the manufacturing method of the biaxially oriented polyester film of the present invention will be specifically described, the present invention is not particularly limited to the following examples as long as the gist of the present invention is satisfied.
  • the polyester film has a single layer configuration
  • one melt extruder is used, and when the polyester film has a multilayer configuration, a plurality of melt extruders required according to the stack configuration, and the combined lamination Feed block or multilayer multi-manifold die.
  • a gear pump as a preferable method.
  • the molten polymer is then extruded from the die and rapidly solidified on a rotating cooling drum to obtain a substantially amorphous unoriented sheet.
  • an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed.
  • the unstretched sheet thus obtained is stretched biaxially to form a film.
  • the unstretched sheet is preferably stretched 2 to 6 times at 70 to 145 ° C. in the machine direction (machine direction, MD direction), A longitudinally uniaxially stretched film is used.
  • the coating layer is stretched 2 to 6 times at 90 to 160 ° C. in the transverse direction (direction perpendicular to the machine direction, TD direction), and 160 to 245 Heat treatment is performed at a temperature of 1 to 600 seconds.
  • the above-mentioned coating layer is applied to the unstretched sheet by an in-line coating method and dried, and then the area magnification is 5 to 20 at 70 to 160 ° C. in the longitudinal and lateral directions.
  • a method of performing heat treatment under the same conditions as the sequential biaxial stretching method after simultaneously stretching in the double range can also be used.
  • the biaxially oriented polyester film of the present invention can be produced at low cost including a recycled material, but the film has less yellowness and can maintain high luminance. Moreover, since it has a coating layer (coating layer X), for example, a lens layer used in a liquid crystal panel, a solvent-based or solvent-free actinic radiation curable resin layer used for a diffusion layer, a hard coat layer, etc. It is suitable for a film for optical members because of its excellent adhesiveness with inorganic transparent conductive layers. In addition, it has excellent adhesion to EVA (ethylene-vinyl acetate copolymer) sheets and PVB (polyvinyl butyral) sheets, which are sealing materials for solar cells. It is also suitable for films for laminated glass.
  • coating layer X for example, a lens layer used in a liquid crystal panel, a solvent-based or solvent-free actinic radiation curable resin layer used for a diffusion layer, a hard coat layer, etc. It is suitable for a film for optical members because of its
  • the average particle size was defined as a 50% integrated (weight basis) value in an equivalent spherical distribution measured using a centrifugal sedimentation type particle size distribution analyzer “SA-CP3 type” (manufactured by Shimadzu Corporation).
  • Nitrogen detection sensitivity is measured by appropriately selecting Ultra (low concentration measurement, 1.25 to 10 ppm), High (medium concentration measurement, 2.5 to 75 ppm), and Middle (high concentration measurement, 5 to 200 ppm) for each sample. Then, an average value measured at 10 points was used as a measured value.
  • Color tone reflection method y value of film The color reflection method y value of the film was measured with a spectrocolorimeter “CM-3730d” (manufactured by Konica Minolta). At this time, a C light source was set as the light source.
  • CM-3730d manufactured by Konica Minolta
  • a C light source was set as the light source.
  • the prism layer is molded by pressure bonding to a prism layer molding die roll formed with a reverse shape of a prism type lens (0.05 mm pitch), and at the same time from the opposite side of the prism layer (film substrate side) Ultraviolet irradiation was performed under the conditions of: That is, using a high-pressure mercury lamp having an energy of 160 W / cm, irradiation was performed for 30 seconds at an irradiation distance of 150 mm to cure the prism layer.
  • the film formed by laminating the prism layer prepared above was treated at 80 ° C. and 85% RH for 50 hours, and then subjected to humidity control at 23 ° C. and 50% RH for 24 hours.
  • a cross-cut (25 squares of 2 mm 2 ) reaching the base film is applied to the prism layer, and 18 mm tape (Cello Tape (registered trademark) CT-18 manufactured by Nichiban Co., Ltd.) is pasted on it. After peeling off rapidly at a peeling angle of 180 degrees, the peeled surface is observed and the number of peeled pieces (out of 25 pieces) is counted and classified into the following reference ranks (B and above are practical limits).
  • the EVA film used was 486.00FC (fast-curing type, thickness 0.5 mm) manufactured by Etimax Solar, Germany, and the heat seal conditions were a temperature of 150 ° C. and a pressure of 0.13 MPa for 20 minutes.
  • the laminate film was treated at 80 ° C. and 85% RH for 500 hours, and then subjected to temperature control and humidity control at 23 ° C. and 50% RH for 24 hours.
  • a sample having a length of 300 mm and a width of 15 mm is cut out from a polyester film / EVA film laminate piece having a width of 25 mm.
  • the non-laminated end of the 15 mm width polyester film piece is mounted in a tensile / bending tester (EZGraph manufactured by Shimadzu Corporation).
  • EZGraph tensile / bending tester
  • the force (adhesive strength) required to separate the polyester film / EVA film laminate at an angle of 180 ° and a speed of 100 mm / min was measured for 10 samples, and the average values were classified as follows. did.
  • A Adhesive strength of 50 N / 15 mm width or more
  • B Adhesive strength of 30 N / 15 mm width to less than 50 N / 15 mm width
  • C Adhesive strength of 10 N / 15 mm width to less than 30 N / 15 mm width
  • D Adhesive strength of less than 10 N / 15 mm width
  • Examples and Comparative Examples are shown below, and the method for producing the polyester used in the Examples and Comparative Examples is as follows.
  • ⁇ Manufacture of polyester> ⁇ Method for producing polyester (a)> Using 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol as starting materials, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, the reaction start temperature is set to 150 ° C., and the methanol is distilled off gradually. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated.
  • polyester (b) ⁇ Method for producing polyester (b)>
  • the method for producing polyester (a) after adding 0.04 part of ethyl acid phosphate, 0.3 part of silica particles having an average particle diameter of 2.1 ⁇ m dispersed in ethylene glycol and 0.03 part of antimony trioxide are added.
  • polyester (B) was obtained using the same method as the production method of polyester (A) except that the polycondensation reaction was stopped at the time corresponding to the intrinsic viscosity of 0.66.
  • the obtained polyester (B) had an intrinsic viscosity of 0.66.
  • polyester (c) was obtained using the same method as the method for producing polyester (a) except that germanium oxide in an ethylene glycol solution was used as the polymerization catalyst. In addition, the addition amount of germanium oxide was added so that it might become 100 ppm in polyester as a germanium metal. The intrinsic viscosity of the obtained polyester (c) was 0.68.
  • Polyester (c) was used as a starting material, and solid phase polymerization was performed at 220 ° C. under vacuum to obtain polyester (d).
  • the intrinsic viscosity of the polyester (d) was 0.75.
  • the film was guided to a tenter and stretched 4.0 times at 130 ° C. in the transverse direction, heat fixed at 227 ° C., and then in the cooling zone at the heat fixing outlet.
  • the biaxially oriented polyester film having a thickness of 188 ⁇ m was relaxed by 5% in the transverse direction.
  • the film was slit at both ends to form a film roll having a width of 1000 mm and a length of 1000 m.
  • an end scrap film having a coating layer on one or both sides generated when the film was slit was mechanically cut and pulverized and stored as flakes in a flake tank.
  • the recycled flakes were added as they were to the intermediate layer (B layer) without heating and drying.
  • the addition amount was 30% by weight with respect to the whole film, and the polyester (c), which is the virgin raw material for the B layer, was reduced and added accordingly.
  • Others are performed in exactly the same manner as in the above-described film formation to prepare a biaxially oriented polyester film having a thickness of 188 ⁇ m.
  • the film is slit at both ends to form a 1000 mm wide and 1000 m long film roll, and the both ends of the film are slit.
  • the scrap film generated at that time was similarly used as the flakes as the B layer raw material.
  • the recycling of the scrap film in this manner was repeated, and the film rolls when the virgin resin was recycled three times at first were used as the films of Examples 1 to 5 and Comparative Examples 1 to 4, respectively.
  • Polycarbonate polyurethane (u1) Aqueous dispersion of polycarbonate polyurethane obtained from hydrogenated diphenylmethane diisocyanate, poly (1,6-hexanediol carbonate) having a number average molecular weight of 2000, and dimethylolbutanoic acid neutralized with triethylamine (bonding of urethane and urea) The concentration is 1170 eq / ton).
  • Polycarbonate polyether polyurethane (u2) Using isophorone diisocyanate, poly (1,6-hexanediol carbonate) having a number average molecular weight of 1000, dimethylolbutanoic acid neutralized with polyoxytetramethylene glycol, neopentyl glycol, and triethylamine having a number average molecular weight of 1000 as raw materials
  • An aqueous dispersion of the obtained polycarbonate polyether polyurethane (bonding concentration of urethane and urea is 1710 eq / ton).
  • -Polyether polyurethane (u3): Aqueous dispersion of polyether polyurethane obtained using isophorone diisocyanate, polyoxytetramethylene glycol having a number average molecular weight of 1000, neopentyl glycol, and dimethylolpropionic acid neutralized with triethylamine as raw materials (bonding concentration of urethane and urea is 3110 eq / ton).
  • Polyester polyurethane (u4) An aqueous dispersion of polyester polyurethane obtained by using dimethylolpropionic acid neutralized with hydrogenated diphenyl diisocyanate, polyhexamethylene adipate, neopentyl glycol and triethylamine as a raw material (bonding concentration of urethane and urea is 3260 eq / ton).
  • -Polyester resin (e1): Product name Finetex (registered trademark) ES-670 manufactured by DIC, which is an aqueous dispersion of an aromatic polyester -Crosslinking agent (c1): Methoxymethylol melamine DIC Corporation trade name Beccamin (registered trademark) J101 -Crosslinking agent (c2): Oxazoline-based water-soluble resin cross-linking agent manufactured by Nippon Shokubai Co., Ltd.
  • c1 Product name Finetex (registered trademark) ES-670 manufactured by DIC, which is an aqueous dispersion of an aromatic polyester -Crosslinking agent (c1): Methoxymethylol melamine DIC Corporation trade name Beccamin (registered trademark) J101 -Crosslinking agent (c2): Oxazoline-based water-soluble resin cross-linking agent manufactured by Nippon Shokubai Co., Ltd.
  • the biaxially oriented polyester film of the present invention can be suitably used as, for example, a base film used for an optical member or a solar cell back surface protective film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 液晶パネルで使用されるレンズ層、拡散層やハードコート層、ならびに太陽電池セルの封止材のEVAシートとの接着性に優れた塗布層を有するフィルムであり、当該フィルムの製造工程で発生する再生原料として含むにも関わらず、フィルムの着色や輝度の低下が少なく、上記用途のフィルムとして優れたものであり、CO排出削減、石油資源の効率利用に寄与し、経済的合理性にも適うフィルムを提供する。 基材ポリエステルフィルムの少なくとも片面に、ポリカーボネート骨格またはポリエーテル骨格の少なくとも一つを有するポリウレタンと架橋剤とを含有するインラインコーティングによる塗布層を有する、全窒素量が30ppm以下のフィルムであり、基材ポリエステルフィルム中に自己再生原料を5重量%以上含有する二軸配向ポリエステルフィルム。

Description

二軸配向ポリエステルフィルム
 本発明は、二軸配向ポリエステルフィルムに関するものであり、詳しくは、例えば、液晶パネルやプラズマディスプレイ等の光学用部材(レンズシート、拡散シートやハードコートフィルム等)に用いる基材フィルムや、太陽電池裏面保護用フィルムに好適な二軸配向ポリエステルフィルムに関する。
 液晶ディスプレイやプラズマディスプレイ等のフラットパネルディスプレイによく用いられる部材用のフィルムの一つとして、ポリエチレンテレフタレートやポリエチレンナフタレート等に代表されるポリエステルフィルムがある。
 また、これらのポリエステルフィルムは、太陽電池用の裏面保護用フィルムとしてもよく用いられる。
 これらのポリエステルフィルムは、耐熱性や機械的強度、耐溶剤性など改善するため、多くの場合、二軸延伸および熱固定を施して、配向・結晶化させた二軸配向フィルムとして用いられる。しかしながら、これらの二軸配向ポリエステルフィルムは、配向・結晶化することで、フィルム表面も高度に配向・結晶化が進行していて、各種上塗り剤との接着性が低下している。このため、接着性を改善するためのアンカーコート層(易接着層)を設けることが広く行われている。この易接着層の形成には、フィルムの製膜工程のなかで、フィルムに水性の易接着層を塗布した後、少なくとも一方向に延伸し熱固定を行う、所謂インラインコーティング法がよく用いられる。
 この様な易接着層を有する二軸配向ポリエステルフィルムとして、易接着層にポリカーボネート構造を有するウレタン樹脂を用いたものが提案されている。(引用文献1)このフィルムは、レンズシートのレンズ層に用いられる無溶剤型のUV硬化型樹脂との接着性に優れるものである。
 ところで、近年、世界的規模で広がりを見せている液晶ディスプレイやプラズマディスプレイ等のフラットパネルディスプレイを用いたテレビは、既に日本ではブラウン管ディスプレイを用いたテレビの普及率を凌駕しており、その流れは海外の新興国や途上国にも広がりつつある。これに伴い、液晶パネルやプラズマディスプレイパネルの低価格化が進行しており、それに用いる部材に関しても同様の傾向にある。
 また、太陽電池パネルも同様に世界的規模での実用化が進められているが、更なる普及の鍵になるのは、パネル自体の価格であると言われており、低価格化が進んでいる。
 一方、昨今では、CO排出による温暖化等の地球環境に関する関心の高まりや、石油資源の枯渇に対する危惧から、特に合成樹脂分野では、素材をリサイクル利用することが進められている。従って、フラットパネルディスプレイに用いる光学部材用のフィルムや、太陽電池裏面保護用フィルムに関しても、例えばフィルム生産時に発生するスクラップをリサイクル利用することは、CO排出削減、石油資源の効率利用に寄与すると共に、経済的合理性にも適うものである。
 易接着層を有するポリエステルフィルムを生産する場合には、例えば、所定幅にスリットする際に副生する製品とはならない部分や、所定長に達する前に破断したフィルムロールなどの製品とはならないスクラップが必ず発生する。これらのスクラップを原料として再利用することが出来れば、前述のように、製造コストを下げると共に、CO排出削減、石油資源の効率利用に寄与することになる。
 しかしながら、多くの場合、易接着層を有するポリエステルフィルムのスクラップをリサイクル使用すると、易接着層の影響によって、フィルムに黄味が発生するなどの着色が問題となる。特に、広範囲な用途で接着性に優れるウレタン樹脂を用いた易接着層を有する場合には、着色の問題が非常に顕著となることが多い。また、特に光学部材用フィルムでは、フィルムが透明で且つ厚い場合には、フィルムの輝度が低下すると共に、1枚のフィルムの僅かな着色でも目立ちやすくなるため、改善が求められている。
特開2009-220376号公報
 本発明は、上記実情に鑑みなされたものであり、その解決課題は、液晶パネルで使用されるレンズ層、拡散層やハードコート層、ならびに太陽電池セルの封止材のEVAシートとの接着性に優れた塗布層を有するフィルムであり、当該フィルムの製造工程で発生する再生原料として含むにも関わらず、フィルムの着色や輝度の低下が少なく、上記用途のフィルムとして優れたものであり、CO排出削減、石油資源の効率利用に寄与し、経済的合理性にも適うフィルムを提供することにある。
 本発明者らは、上記の課題に関して鋭意検討を重ねた結果、特定の条件を満たす二軸配向ポリエステルフィルムであれば、上記課題が解決されることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は、基材ポリエステルフィルムの少なくとも片面に、ポリカーボネート骨格またはポリエーテル骨格の少なくとも一つを有するポリウレタンと架橋剤とを含有するインラインコーティングによる塗布層を有する、全窒素量が30ppm以下のフィルムであり、基材ポリエステルフィルム中に自己再生原料を5重量%以上含有することを特徴とする二軸配向ポリエステルフィルムに存する。
 本発明の二軸配向ポリエステルフィルムは、例えば、液晶パネルで使用されるレンズ層、拡散層やハードコート層、ならびに太陽電池セルの封止材であるEVA(エチレン-酢酸ビニル共重合体)シート等との接着性に優れた塗布層を有していると共に、フィルムの製造工程で発生する塗布層を有するポリエステルフィルムを再生原料として含んでいるにも関わらず、着色や輝度の低下が少ない。そのため、レンズシート、拡散シート、ハードコートフィルムの基材フィルムや太陽電池裏面保護用フィルムとして優れたものであると共に、CO排出削減、石油資源の効率利用に寄与し、経済的合理性にも適うものである。
 以下、本発明を詳細に説明する。
 本発明の二軸配向ポリエステルフィルムを構成する基材ポリエステルフィルムとしては、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート等の芳香族ポリエステル、およびこれらの樹脂の構成成分を主成分とする共重合体よりなるもの等が挙げられる。
 ポリエステルが共重合ポリエステルの場合には、第三成分の含有量が10モル%以下の共重合体であることが好ましい。かかる共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、アジピン酸、セバシン酸等から選ばれる一種または二種以上が挙げられる。また、グリコール成分としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールAのエチレンオキサイド付加物等から選ばれる一種または二種以上が挙げられる。なお、こうした共重合成分の使用量が10モル%を超えると、フィルムの耐熱性、機械的強度、耐溶剤性などの低下が顕著となる。
 上記ポリエステルの中でも、ポリエチレンテレフタレートを構成成分としたもの、およびその共重合ポリエステルを用いたフィルムは、基材フィルムとしての特性とコストとのバランス点で好適である。
 なお、上記のポリエステルは、従来公知の方法で、例えばジカルボン酸とジオールとの反応で直接低重合度ポリエステルを得るか、ジカルボン酸の低級アルキルエステルとジオールとを従来公知のエステル交換触媒で反応させた後、重合触媒の存在下で重合を行う方法で得ることが出来る。重合触媒としては、アンチモン化合物、ゲルマニウム化合物、チタン化合物、アルミニウム化合物、鉄化合物等公知の触媒を使用してよいが、アンチモン化合物の量をゼロまたはアンチモンとして100ppm以下とすることにより、フィルムのくすみを低減させる方法も好ましく用いることが出来る。またこれらの重合は、溶融状態で所望の重合度まで重合することも可能であるし、固相重合を併用することも出来る。
 特に、再生原料を使用することでポリエステルの固有粘度が低下するのを補う形で追加使用する原料として、もしくはポリエステルに含まれるオリゴマーの量を減らす目的などで、固相重合を併用したポリエステル原料を用いることが好ましい。
 ポリエステルフィルムに用いるポリエステルの固有粘度は、通常0.40~0.90dl/g、好ましくは0.45~0.85dl/gである。固有粘度が低すぎると、フィルムの機械的強度が低下する傾向にある。また、固有粘度が高すぎると、フィルムの製膜時における溶融押出工程での負荷が大きく、生産性が低下する傾向にある。
 本発明の二軸配向ポリエステルフィルムは、2層以上のポリエステルが共押出法で積層された積層フィルムであってもよい。3層以上のフィルムは、2つの最表層と、それ自体が積層構成であってもよい中間層によって構成されるが、この2つの最表層の厚みは、各々、通常2μm以上、好ましくは5μm以上として、一方で、フィルム総厚みの通常1/4以下、好ましくは1/10以下の割合とすることが出来る。また両表層のフィルムの厚みは同じでもよいし、異なっていてもよい。
 さらに、フィルム加工中の熱履歴などにより、ポリエステルフィルム中に含有しているオリゴマーがフィルムの表面に析出し、これが異物となったりフィルムの透明性を悪化させたりすることを防ぐため、低オリゴマー化したポリエステルを用いることが可能である。
 低オリゴマー化したポリエステルとしては、前述した固相重合を併用して重合したポリエステル、または熱水処理や水蒸気処理を用いたポリエステル等を用いることが出来る。これらのポリエステルは、フィルムが単層構成の場合にはフィルム全体に用い、フィルムが多層構造の場合には、両表層だけに低オリゴマー化したポリエステルを用いることも出来る。
 本発明の二軸配向ポリエステルフィルムにおいては、フィラーをあえて添加しないで透明性を高めることも可能であるし、フィルムとしての滑り性の確保や、工程中での傷発生防止のために、無機微粒子や有機微粒子をフィルム中に添加するか、もしくは析出させることが可能である。ポリエステルフィルム中に添加する微粒子としては特に限定されるものではないが、例示するならば、酸化ケイ素、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、タルク、アルミナ、酸化チタン、硫酸バリウムなどの無機微粒子、ならびに架橋アクリル樹脂、架橋ポリスチレン樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等などの架橋高分子微粒子を挙げることが出来る。これらのなかでも、高度な透明性を得るために、屈折率が比較的ポリエステルに近く、二軸配向ポリエステルフィルム中でのボイド形成が少ない、無定形シリカ粒子を使用することが好ましい。
 また、フィルムが白色で隠蔽性を有するものであることが必要である場合には、酸化チタン、酸化亜鉛、硫化亜鉛、硫酸バリウム等の白色顔料などを使用することが出来る。さらに、フィルムが黒色であることや、白や黒以外に着色されていることが必要である場合には、カーボンブラックなどの黒色顔料や、無機または有機の着色顔料を添加することが出来る。
 上記の微粒子や顔料は、平均粒径として通常0.001~5μmの範囲のものを、一種または二種以上用いることが出来る。またその添加量は、通常0.0005~25重量%の範囲から選択するのが好ましい。
 特にプリズムシート等のフラットパネルディスプレイ部材用などの光学用フィルムに用いる場合には、特に透明性が求められるため、基材ポリエステルフィルム中に微粒子を存在させないことも可能であるし、基材ポリエステルフィルムを3層以上の積層構成として、中間層には微粒子を積極的に添加せずに、両表層だけに微粒子を添加することで、ポリエステルフィルムの透明性を維持しつつ、しかも滑り性を確保する方法も用いることが出来る。特にフィルム厚みが厚い場合(例えば100μm以上)で、フィルムの透明性が求められる場合には、微粒子を存在させないこと、または両表層だけに微粒子を添加することが有効である。このとき、光学部材用のフィルムとして、フィルムヘーズが3.0%以下、好ましくは2.5%以下の透明性であることが好ましい。
 さらに、本発明の二軸配向ポリエステルフィルム中には、上記の微粒子以外に必要に応じて従来から公知の酸化防止剤、熱安定剤、潤滑剤、蛍光増白剤等の添加剤を添加することが出来る。これらの添加剤は、ポリエステルフィルムが3層以上の積層構成であってその中間層に添加することが、フィルム表面に添加剤が析出するのを防ぐことが出来る点で好ましい。
 本発明の二軸配向ポリエステルフィルムの厚みは、通常25μm以上、好ましくは50μm以上である。厚みが25μm未満である場合には、フィルムの着色低減の効果を発揮し難くなる。一方で厚みの上限は特に限定しないが、通常500μm以下、好ましくは400μm以下である。
 本発明の二軸配向ポリエステルフィルムは、基材ポリエステルフィルムの少なくとも片面に、ポリカーボネート骨格またはポリエーテル骨格の少なくとも一つを有するポリウレタンと架橋剤とを含有するインラインコーティングによる塗布層(以下、塗布層Xと称することがある)を有する、全窒素量が30ppm以下のフィルムであり、基材ポリエステルフィルム中に自己再生原料を5重量%以上含有することが必要である。この全窒素量は、好ましくは25ppm以下、さらに好ましくは20ppm以下である。全窒素量が30ppm以下であれば、このフィルムをリサイクル原料として繰り返して使用しても、フィルムの着色が少ないものとなる。
 この全窒素量は、窒素測定装置を用いて測定することが出来る。窒素測定装置は、フィルムサンプルを触媒存在下で熱分解させ、窒素を一酸化窒素に変換し、この一酸化窒素ガスをオゾンと反応させることで、化学発光した光の強度から窒素の定量を行うものである。
 全窒素量の下限は特に定めないが、上記のポリウレタンを含有する塗布層Xを有することから、全窒素量は0ppmとなることはない。しかし、全窒素量を測定する窒素測定装置には、再現性のある測定値が得られる測定下限値を有する場合があるが、この測定下限値以下となってもよい。
 上記全窒素量は、片面に上記塗布層Xのみが設けられた場合、両面に上記塗布層Xが設けられた場合、片面に上記塗布層Xが設けられ、反対面には上記塗布層X以外のインラインコーティングによる塗布層(以下、塗布層Yと称する)が設けられた場合も含めて、基材となるポリエステルフィルム自体と塗布層との、トータルとしての全窒素量を指すものである。
 本来ポリエステルには、窒素含有成分は含まれないが、窒素を含む塗布層を有するポリエステルフィルムに由来する再生原料を、原料の一部として使用することで、ポリエステルフィルム自体に窒素成分を含むこととなる。そしてこの窒素成分がポリエステルフィルムを着色する要因となる。従って、ポリエステルフィルムの着色を低減するには、ポリエステルフィルム中に混入する窒素成分を減らすことが肝要であるが、このための手段としては次のものが挙げられる。
 1.塗布層中の窒素成分を低減させる。
 2.塗布層の厚みを薄くする。
 3.リサイクル使用する原料割合を減らす。
 4.基材となるポリエステルフィルムを厚くする。
 これらのなかで、4の基材となるポリエステルフィルムの厚みに関しては、用途によって既に定まっているため、変更の自由度が少ないのが一般的である。従って、1~3の手段を組み合わせることで、ポリエステルフィルム中に混入する窒素成分を低減することになるが、フィルム中の窒素量は、これらの手段による効果の累積で決まる。
 一方で、1の塗布層中の窒素成分を減らすことと、2の塗布層の厚みを薄くすることは、塗布層の特性、特に接着性に極めて大きな影響を及ぼす要素である。それに対して3のリサイクル使用する原料割合は、1よび2の手段で低減できた窒素量に見合った分だけ、増やすことが出来るようになるのである。従って、塗布層中の窒素成分の低減や、塗布層の厚みを薄くしたときに、如何に塗布層の接着性を低下させないかが重要となる。このための塗布層について次に述べる。
 本発明の二軸配向ポリエステルフィルムの少なくとも片面には、例えばフラットパネルディスプレイで使用されるレンズ層、拡散層やハードコート層、ならびに太陽電池セルの封止材であるEVA(エチレン-酢酸ビニル共重合体)シート等との接着性を付与するために、ポリカーボネート骨格またはポリエーテル骨格の少なくとも一つを有するポリウレタンと架橋剤とを含有するインラインコーティングによる塗布層(塗布層X)を有していることが必要である。ここで、ポリカーボネート骨格またはポリエーテル骨格を有するポリウレタンとは、ポリカーボネート骨格またはポリエーテル骨格を有する化合物を、各々ポリオールとして使用したポリウレタンである。なお、ポリカーボネート骨格とポリエーテル骨格とを同時に有していてもよい。
 塗布層Xのポリウレタンに用いるポリカーボネートポリオールとしては、例えば、ジフェニルカーボネート、ジアルキルカーボネート、エチレンカーボネート、またはホスゲンと、ジオールとの反応などで得られる。ジオールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、3,4-ジメチル-1,6-ヘキサメチレンジオール等が挙げられる。これらの中でも、1,6-ヘキサンジオールを用いたポリカーボネートポリオールは、工業的に入手しやすく、しかも接着性を向上させる点で良好であり、しかも耐加水分解性に関しても良好であるため、好ましい。
 ポリカーボネートポリオールは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量で300~5000のものが好ましい。
 塗布層Xのポリウレタンに用いるポリエーテルポリオールとしては、ポリオキシエチレングリコール(ポリエチレングリコール)、ポリオキシプロピレングリコール(ポリプロピレングリコール)、ポリオキシテトラメチレングリコール(ポリテトラメチレンエーテルグリコール)、共重合ポリエーテルポリオール(ポリオキシエチレングリコールとポリオキシプロピレングリコールなどのブロック共重合体やランダム共重合体など)などが挙げられる。これらの中でも、ポリオキシテトラメチレングリコールが接着性を向上させる点で好適であり、しかも耐加水分解性に関しても良好であるため好ましい。
 ポリエーテルポリオールは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリエチレングリコール換算の数平均分子量で300~5000のものが好ましい。
 上述したポリカーボネートポリオールやポリエーテルポリオールを用いたポリウレタンは、その他の汎用ポリオールであるポリエステルポリオールを用いたポリウレタンよりも、接着性や、加水分解に対する耐性が良好なものとなる。
 これらのポリカーボネートポリオールまたはポリエーテルポリオールは、各々1種類だけを単独で用いてもよいが、2種類以上を併用することも可能である。また、前述したように、これらのポリカーボネートポリオールとポリエーテルポリオールとを併用することも出来る。
 塗布層Xのポリウレタンに用いるポリイソシアネートには、公知の脂肪族、脂環族、芳香族等のポリイソシアネートを挙げることが出来るが、特に本発明においては、脂肪族ポリイソシアネートや、脂環族ポリイソシアネートを用いた場合には、塗布層を含むフィルムをリサイクルして溶融成型する際に着色の程度が少なく、また塗布層の接着性においても優れるため、好ましい。
 脂肪族ポリイソシアネートの具体例として、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート等を挙げることが出来る。
 脂環族ポリイソシアネートの具体例としては、例えば、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタン-4,4’-ジイソシアネート、水添ビフェニル-4,4’-ジイソシアネート、1,4-シクロヘキサンジイソシアネート、水添トリレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン等を挙げることが出来る。
 芳香族ポリイソシアネートの具体例としては、例えば、トリレンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート等を挙げることが出来る。
 またこれらのポリイソシアネートは単独で使用してもよいが、2種以上を混合して使用することも出来る。
 本発明においては、塗布層(塗布層X)中の窒素量を低減させて、かつ優れた接着性を発現させるためには、上述したポリウレタン中の窒素原子の源であるポリイソシアネート量、すなわちウレタン結合やウレア結合の量は重要である。このため、上述のポリウレタン中のウレタンおよびウレアの結合濃度が、500~3500(eq/ton)、さらには700~3000(eq/ton)となるようにポリイソシアネートの量を選択するのが好ましい。
 鎖長延長剤などの例としては、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ネオペンチルグリコール、トリメチロールプロパン等のポリアルコール、ヒドラジン、エチレンジアミン、ピペラジン、ジエチレントリアミン、イソホロンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジシクロヘキシルメタン等のポリアミン、水などが挙げられる。
 本発明における塗布層(塗布層X)に使用する、ポリカーボネート骨格またはポリエーテル骨格の少なくとも一種を有するポリウレタンは、水溶性の有機溶剤を好ましくは50重量%以下の割合で含む水に、溶解または分散するものが好ましい。ポリウレタンを水に溶解または分散させるには、乳化剤を用いる強制乳化型、ポリウレタン中に親水性基を導入する自己乳化型、ならびに水溶型等がある。特に、ポリウレタンの骨格中にイオン性基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性、接着性に優れており好ましい。
 この場合、導入するイオン性基としては、アニオン性基としては、カルボン酸塩基、スルホン酸塩基、リン酸塩基、ホスホン酸塩基等が挙げられ、カチオン性基としては、4級アンモニウム等が挙げられる。例えばアニオン性基としてカルボン酸塩基を例に挙げれば、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、ビス-(2-ヒドロキシエチル)ブタン酸、トリメリット酸‐ビス(エチレングリコール)エステルなどのアンモニウム塩や低級アミン塩等を好ましく用いることが出来る。またカチオン性基の4級アンモニウムについては、N-メチルジエタノールアミン、N-エチルジエタノールアミン等のN-アルキルジアルカノールアミンなどの4級化物を好ましく用いることが出来る。これらのイオン性基の中でも、カルボン酸塩基であって、かつ、カウンターイオンがアンモニアやトリエチルアミン等の沸点が150℃以下の有機アミンである場合には、後述するオキサゾリン系架橋剤などとの反応性が高く、塗布層の架橋点となるので、特に好ましい。
 ポリウレタンにイオン性基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、イオン性基を持つ樹脂を共重合成分として用いたり、ポリオールや鎖延長剤などの一成分としてイオン性基を持つ成分を用いたりすることが出来る。
 本発明におる塗布層(塗布層X)には、上述したポリウレタンの他に、塗布層に耐熱性、耐熱接着性、耐湿性、耐ブロッキング性等を付与するために、架橋剤を併用する必要がある。この架橋剤は、水溶性または水分散性であることが好ましく、具体的には、メチロール化ならびにアルコキシメチロール化したメラミン系化合物やベンゾグアナミン系化合物、尿素系化合物、アクリルアミド系化合物の他、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物、オキサゾリン系化合物、シランカップリング剤系化合物、チタンカップリング剤系化合物などの、少なくとも1種類を選択することが出来る。これらの架橋剤の中でも、架橋剤が水溶性である場合には、架橋反応がスムースに進行するため好ましく、さらにはオキサゾリン系化合物であって、それ自体がポリマーである水溶性架橋剤が、塗布層の接着性を向上させる上で特に好ましい。このようなオキサゾリン系架橋剤は、例えば日本触媒社製の商品名エポクロス(登録商標)として工業的に入手できる。また、これらの架橋剤の添加量は、塗布層中のポリウレタンに対する重量比(ポリウレタン:架橋剤)で、95:5~10:90、さらには90:10~20:80の割合で使用することが好ましい。
 本発明における塗布層(塗布層X)には、以上述べたポリウレタンと架橋剤成分との合計が、60重量%以上、さらには80重量%以上の量で存在していることが好ましい。これらの樹脂成分以外に、付加的にその他の樹脂を添加することが出来る。付加的に添加できる樹脂成分としては、ポリエステル系樹脂、アクリル系樹脂、ポリビニル系樹脂、およびこれらのグラフトポリマー、ポリエステルポリウレタンなどが挙げられる。
 また、本発明では、塗布層Xのブロッキングの防止や滑り性の付与のために、塗布層中に微粒子を添加することも可能である。微粒子としては例えば、シリカやアルミナ、酸化金属等の無機粒子、ならびに架橋高分子粒子などの有機粒子等を用いることが出来る。微粒子の大きさは150nm以下、好ましくは100nm以下で、塗布層中の添加量としては、0.5~10重量%の範囲で選択するのが好ましい。
 その他、塗布層X中には、必要に応じて上記述べた成分以外を添加することが出来る。例えば、界面活性剤、消泡剤、塗布性改良剤、増粘剤、酸化防止剤、帯電防止剤、紫外線吸収剤等である。これらの添加剤は単独で用いてもよいし、二種以上を併用してもよい。
 本発明における塗布層(塗布層X)は、主として水を媒体とした塗布液として、ポリエステルフィルム上に塗布した後に少なくとも一方向に延伸され、さらに熱固定をする、所謂インラインコーティング法を用いて形成させたものであるが、この際に用いる塗布液は、その分散性や保存安定性の向上、ならびに塗布性や塗布膜特性の改善を目的に、水以外に、50重量%以下の割合で、水との相溶性のある有機溶剤の一種または二種以上を加えることも可能である。
 基材となるポリエステルフィルムへの塗布液の塗布方法としては、公知の任意の方法が適用できる。具体的には、ロールコート法、グラビアコート法、マイクログラビアコート法、リバースコート法、バーコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、カーテンコート法、ダイコート法などを単独または組み合わせて適用することが出来る。
 上述した塗布層Xの塗工量は、二軸延伸・熱固定等を施された後の最終的な乾燥皮膜として、0.003~0.15g/mの範囲から選択できる。塗布層厚みが0.003g/m未満では接着性が不十分となることがあり、0.15g/mを超える場合には、もはや接着性は飽和しており、全窒素量が30ppmを超えてしまうことが多く、この塗布層を有するフィルムをリサイクル使用した場合には、フィルムの着色が著しくなることが危惧される。上述の塗布層Xは、接着性に優れていて、塗工量を少なくすることが可能であることが多い。具体的には、塗工量として0.005~0.05、さらには0.005~0.03g/mの範囲であっても、十分な接着性を有していることが多いため、そのような塗布層組成を選択することで、全窒素量を30ppm以下とすることが可能となる。
 上述の塗布層Xが片面だけに設けられた場合は、反対面にはその他の塗布層(塗布層Y)が設けられていてもよい。
 塗布層Yは、インラインコーティング法によりフィルムの製膜工程内で設けられたものであって、塗布層Xおよび塗布層Yを含めたポリエステルフィルムの全窒素量が、30ppm以下であれば、特に限定されるものではないが、例えば易接着性、易滑性や帯電防止性などの付与する目的で、ポリエステル系樹脂、アクリル系樹脂、ポリビニル系樹脂、ポリエステルポリウレタンなどの樹脂バインダー、架橋剤、無機や有機の微粒子、帯電防止剤、界面活性剤等を含有するものなどを例示することが出来る。
 ところで、上述した塗布層を有するポリエステルフィルムを生産する場合には、例えば、所定幅にスリットする際に副生する製品とはならない部分や、所定長に達する前に破断したフィルムロールなどの製品とはならないスクラップが発生することは、前述の通りである。
 本発明においては、基材フィルム原料として、前述の塗布層(塗布層X)を有するポリエステルフィルムに由来する再生原料(自己再生原料と称する)を5重量%以上含有することが必要であり、好ましくは10重量%以上である。こうすることで、CO排出削減、石油資源の効率利用に寄与すると共に、経済的合理性にも適うものとなる。再生原料はより多く使用すれば、よりそれらへの寄与や経済的合理性が高くなるため、上限に関しては特に定めるものではない。但し、再生原料を多量に用いることによって塗布層を含むフィルムの全窒素量が増加し、フィルムの着色が著しくなることや、フィルムの固有粘度低下等の弊害が生じやすくなること、また再生利用すべきスクラップフィルムの発生率等を勘案すると、60重量%が目安となる。
 上述の自己再生原料は、フィルムの状態から機械的に断裁・粉砕してフレークとするが、そのフレークを一旦溶融押出してチップ(ペレット)とするか、またはフレークのまま再生原料として使用する。このとき、塗布層Xを有するフィルムを溶融してチップ化(ペレット化)することで、自己再生原料が熱履歴を受けることとなるため、チップ化(ペレット化)せずにフレークのまま直接再生原料として使用することが好ましく、その割合は、自己再生原料の50重量%以上、さらには自己再生原料の全てが、フレークのままで使用することが好ましい。その場合、ポリエステルフィルムを生産するための押出機は、ベント式の二軸押出機を用いることが好ましい。ベント式二軸押出機を用いれば、フレークを直接原料として使用しても、押出時に原料の食い込み不良を起こさずに、スムースに溶融押出が可能となる。さらにフレークは乾燥を行わずに押出機に投入して、ポリエステルが半溶融~溶融状態となったところで、ベント口を通じて、40ヘクトパスカル以下、好ましくは30ヘクトパスカル以下、さらに好ましくは20ヘクトパスカル以下の減圧を維持して、脱気をして水分を除去することが出来る。このようにすることで、熱乾燥工程を省き、自己再生原料に加わる熱履歴を低減することが可能となるため好ましい。
 上述の自己再生原料は、基材となるポリエステルフィルムが単層構成である場合には、基材フィルム全体に使用されることとなるが、基材フィルムが積層構成である場合には、全ての層に均等に自己再生原料を使用してもよいが、積層構成のなかでより厚みの厚い層にだけ配合するか、またはより高濃度で配合することが、自己再生原料をより多く配合した際にその悪影響をより低減できる点で好ましい。例えば積層構成が2層構成である場合には、どちらか厚みの厚い層にだけ配合するか、またはより高濃度で配合することが好ましい。積層構成が3層以上の場合には、前述したように、フィルムは2つの最表層と、それ自体が積層構成であってもよい中間層によって構成されるが、中間層を最も厚い層に設定して、この中間層だけに自己再生原料を配合するか、またはより高濃度で配合することが好ましい。
 本発明の二軸配向ポリエステルフィルムは、塗布層も含めたフィルムとして、分光側色計の反射法で色調を測定したときのy値が、0.3240以下、好ましくは0.3235であることが好ましく、特に光学部材用フィルムとして用いられる場合には、0.3230以下であることが好ましい。y値が0.3240を超える場合には、フィルムに黄味が感じられ、輝度も低下したものとなる。
 以下、本発明の二軸配向ポリエステルフィルムの製造方法に関して具体的に説明するが、本発明の要旨を満足する限り、本発明は以下の例示に特に限定されるものではない。
 ポリエステルフィルムが単層構成の場合には1台の溶融押出機を使用し、ポリエステルフィルムが多層構成の場合には、その積層構成に応じて必要な複数台の溶融押出機と、それらを合流積層させるフィードブロックまたは多層のマルチマニホールドダイを用いる。公知の手法により乾燥した自己再生原料およびバージンポリエステルチップを一軸押出機に供給するか、または、未乾燥の自己再生原料およびバージンポリエステルチップを減圧系に繋いだベント口を有する二軸押出機に供給し、それぞれのポリマーの融点以上である温度に加熱溶融する。この際、異物を除去するために公知の適切なポリマーフィルターを用いることが好ましい。また、ギアーポンプを用いて溶融ポリマーの脈動を低減するのも、好ましい方法として採用できる。次いで、溶融したポリマーを口金から押出し、回転冷却ドラム上に急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。
 本発明においては、このようにして得られた未延伸シートを二軸方向に延伸してフィルム化する。延伸条件について具体的に述べると、逐次二軸延伸法を用いる場合には、前記未延伸シートを好ましくは縦方向(機械方向、MD方向)に70~145℃で2~6倍に延伸し、縦一軸延伸フィルムとする。次に、前述した塗布層をインラインコーティング法により塗布を行い乾燥した後、横方向(機械方向と直交する方向、TD方向)に90~160℃で2~6倍に延伸を行い、160~245℃で1~600秒間熱処理を行う。同時二軸延伸機を用いる場合には、まず前記未延伸シートに前述した塗布層をインラインコーティング法により塗布を行い乾燥した後、縦方向および横方向に70~160℃で面積倍率として5~20倍の範囲で同時に延伸した後、逐次二軸延伸法と同じ条件で熱処理を行う方法も用いることが出来る。
 さらに、逐次二軸延伸法、同時二軸延伸法に共通で、熱処理の最高温度ゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1~20%弛緩する方法も好ましく採用することも出来る。また、必要に応じて再縦延伸、再横延伸を付加することも可能である。
 本発明の二軸配向ポリエステルフィルムは、再生原料を含み安価に製造することが可能でありながら、フィルムの黄味が少なく、輝度を高く維持することが可能である。しかも塗布層(塗布層X)を有しているため、例えば液晶パネルで使用されるレンズ層、拡散層やハードコート層などに用いられる溶剤系または無溶剤系の活性線硬化樹脂層や、有機や無機の透明導電層などとの接着性に優れているため、光学部材用フィルムに適している。また、太陽電池セル用の封止材であるEVA(エチレン-酢酸ビニル共重合体)シートや、PVB(ポリビニルブチラール)シートなどとの接着性にも優れているため、太陽電池用裏面保護用フィルムや合わせガラス用フィルムにも適するものである。
 以下、実施例および比較例によって本発明をさらに具体的に説明するが、本発明はその趣旨を越えない限り、以下の例に限定されるものではない。なお、フィルムの諸物性の測定および評価方法を以下に示す。
(1)ポリエステルの固有粘度の測定:
 ポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(2)平均粒径(d50:μm)の測定:
 遠心沈降式粒度分布測定装置「SA-CP3型」(島津製作所製)を使用して測定した等価球形分布における積算(重量基準)50%の値を平均粒径とした。
(3)フィルムヘーズ:
 JIS-K-7136に準じて、積分球式濁度計「NDH2000」(日本電色工業社製)により、フィルムヘーズを測定した。
(4)全窒素量分析:
 窒素測定装置「TN-110型」(三菱化学アナリテック社製)に固体用オートサンプルチェンジャーASC-120S(同社製)を接続して用い、塗布層を含むフィルムの全窒素量を分析した。窒素量のキャリブレーションは、テレフタル酸ジメチルと1,5-ジアミノナフタレンとの混合物を用い、N量の検出カウントに対する発生量のマスターカーブを作り、記憶させる。燃焼条件は、炉内温度800℃(INLET 800℃、CATALYST 900℃)にて燃焼し、Nの検出チャートより、プログラム時間内で含有窒素がすべて検出できたことを確認し、このカウント数を積算する。この積算カウントから、マスターカーブにより窒素量を求め、サンプル重量で除して全窒素含有量(重量ppm)とした。窒素検出感度は、サンプル毎にUltra(低濃度測定、1.25~10ppm)、High(中濃度測定、2.5~75ppm)、Middle(高濃度測定、5~200ppm)を適宜選択して測定し、10点測定した平均値をもって測定値とした。
(5)フィルムの色調反射法y値:
 分光測色計「CM-3730d」(コニカミノルタ社製)により、フィルムの色調反射法y値を測定した。このとき光源にはC光源を設定した。測定に際しては、例えば、フィルムの厚みが100μmの時は10枚重ね、125μmの時は8枚重ね、188μmの時は5枚重ね、250μmの時は4枚重ねとして、総厚みが900μmから1000μmになるように複数枚重ね合わせて測定した。
(6)プリズム層との耐湿熱接着性:
 作成した二軸配向ポリエステルフィルムの塗布層(塗布層X)の表面に、下記に示すプリズム層形成用の組成物を塗布液として、ダイコーターで50g/mの厚みで塗布した。その後プリズム型のレンズ(0.05mmピッチ)の逆形状が形成されたプリズム層成型用金型ロールに圧着させてプリズム層を成型すると同時に、プリズム層とは反対側(フィルム基材側)から次の条件で紫外線照射を行った。すなわち、160W/cmのエネルギーの高圧水銀灯を使用し、照射距離150mmにて30秒間照射して硬化させて、プリズム層を作成した。
 <プリズム層形成用塗布液の組成>
 1,9-ノナンジオールジアクリレート 80部
 エチレンオキシド変性ビスフェノールAジメタクリレート 20部
 紫外線反応開始剤 4部
 (チバスペシャルティケミカルズ社製 IRGACURE184)
 上記で作成したプリズム層を積層したフィルムを、80℃、85%RHで50時間処理した後、23℃、50%RHで24時間調温調湿処理を施した。
 上記のプリズム層に、基材フィルムまで達する碁盤目のクロスカット(2mmの升目を25個)を施し、その上に18mmのテープ(ニチバン社製セロテープ(登録商標)CT-18)を貼り付け、180度の剥離角度で急速に剥がした後、剥離面を観察して剥離個数(/25個中)を数えて、次の基準のランクに分類する(B以上が実用限界である)。
 A:剥離個数が0個(/25個中)
 B:剥離個数が1個以上5個未満(/25個中)
 C:剥離面積が5個以上10個未満(/25個中)
 D:剥離面積が10個以上(/25個中)
(8)EVAとの耐湿熱接着性:
 長手方向がMD方向となるように、長さ300mm、幅25mmの二軸配向ポリエステルフィルムの小片を2本切り取った。一方で長さ50mm、幅25mmであるEVAフィルムの1本の小片を切り取り、2本のポリエステルフィルムの小片の塗布層(塗布層X)面でEVAフィルムを挟むように重ねた。これをヒートシール装置(テスター産業株式会社製 TP-701-B)を用いてラミネートした。使用したEVAフィルムは、ドイツ Etimax Solar社製 486.00FC(速硬化タイプ、厚み0.5mm)で、ヒートシール条件は、温度150℃、圧力0.13MPaで、20分間の条件を用いた。ラミネートフィルムを、80℃、85%RHで500時間処理した後、23℃、50%RHで24時間調温調湿処理を施した。
 EVAとの接着強度を測定するため、まず25mmの幅のポリエステルフィルム/EVAフィルムラミネート小片から、長さ300mm、幅15mmのサンプルを切り取る。この15mm幅のポリエステルフィルムの小片のラミネートされていない端部を、引張/曲げ試験機(島津製作所製 EZGraph)の中に取り付ける。引き続き、角度180°、速度100mm/分でこのポリエステルフィルム/EVAフィルムラミネートを分離するために必要な力(接着強度)を10個の試料について測定して、その平均値を下記のように分類にした。
 A:接着強度が50N/15mm幅以上
 B:接着強度が30N/15mm幅~50N/15mm幅未満
 C:接着強度が10N/15mm幅~30N/15mm幅未満
 D:接着強度が10N/15mm幅未満
 以下に実施例および比較例を示すが、これに用いたポリエステルの製造方法は次のとおりである。
〈ポリエステルの製造〉
<ポリエステル(a)の製造方法>
 テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04部を添加した後、三酸化アンチモン0.03部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.68に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステル(a)の極限粘度は0.68であった。
<ポリエステル(b)の製造方法>
 ポリエステル(a)の製造方法において、エチルアシッドフォスフェート0.04部を添加後、エチレングリコールに分散させた平均粒子径2.1μmのシリカ粒子を0.3部、三酸化アンチモン0.03部を加えて、極限粘度0.66に相当する時点で重縮合反応を停止した以外は、ポリエステル(A)の製造方法と同様の方法を用いてポリエステル(B)を得た。得られたポリエステル(B)は、極限粘度0.66であった。
<ポリエステル(c)の製造方法>
 ポリエステル(a)の製造方法において、重合触媒としてエチレングリコール溶液とした酸化ゲルマニウムを使用したこと以外は、ポリエステル(a)の製造方法と同様な方法を用いてポリエステル(c)を得た。なお、酸化ゲルマニウムの添加量は、ゲルマニウム金属としてポリエステル中に100ppmとなるように添加した。得られたポリエステル(c)の固有粘度は0.68であった。
<ポリエステル(d)の製造法>
 ポリエステル(c)を出発原料とし、真空下220℃にて固相重合を行ってポリエステル(d)を得た。ポリエステル(d)の極限粘度は0.75であった。
 実施例1~5、比較例1~4:
 前述のポリエステル(d)、(b)をそれぞれ88重量%、12重量%の割合で混合した混合原料をA層の原料とし、B層の原料としてポリエステル(c)を100重量%使用して、2台のベント式二軸押出機に各々を供給し、それぞれ285℃で溶融し、A層を最外層(表層)、B層を中間層とする2種3層(A/B/A)の層構成となるようにマルチマニホールドダイで積層合流させて溶融押出を行った。これを、静電印加密着法を用いて表面温度を40℃に設定した冷却ロール上で冷却固化して、未延伸シートを得た。この際に、A/B/Aの厚さ構成比が、4/92/4となるように2台の押出機の吐出量を調整した。また各々のメルトラインには、濾過粒子サイズ(初期濾過効率95%)が15μmのステンレス製焼結濾材を用いて異物の濾過を行い、ギアーポンプを設置してメルトポリマーの脈動を低減させた。次いで、ロール周速差を利用してフィルム温度100℃で縦方向に3.2倍延伸した後、表1に示した組成の塗布剤を塗布層Xまたは塗布層Yとして表2に示した組み合わせで、バーコート方式でフィルムの片面または両面に塗布した後、テンターに導いて横方向に130℃で4.0倍延伸し、227℃で熱固定を行った後、熱固定出口のクーリングゾーンにおいて、横方向に5%弛緩し、厚さ188μmの二軸配向ポリエステルフィルムを得た。フィルムは両端部をスリットして1000mm幅で1000m長のフィルムロールとした。
 次に、このフィルムをスリットした際に発生する、片面または両面に塗布層を有する端部のスクラップフィルムを、機械的に断裁・粉砕してフレークとして、フレークタンクに貯めた。ある程度フレークが貯まったところで、この再生フレークを加熱乾燥せずにそのまま中間層(B層)に添加した。このときの添加量は、フィルム全体に対して30重量%となるように添加し、それに合わせてB層のバージン原料であるポリエステル(c)を減じて添加した。その他は上記製膜時と全く同様に行って、厚み188μmの二軸配向ポリエステルフィルムを作成し、フィルムは両端部をスリットして1000mm幅で1000m長のフィルムロールとし、フィルムの両端部をスリットする際に発生したスクラップフィルムをフレークとして同様にB層原料と使用した。このようにスクラップフィルムをリサイクル使用することを繰り返して、最初バージンレジンが3回リサイクル使用された時のフィルムロールを、それぞれ実施例1~5、比較例1~4のフィルムとした。
Figure JPOXMLDOC01-appb-T000001
 
・ポリカーボネートポリウレタン(u1):
 水添ジフェニルメタンジイソシアネート、数平均分子量が2000のポリ(1,6-ヘキサンジオールカーボネート)、トリエチルアミンで中和されたジメチロールブタン酸を原料として得られたポリカーボネートポリウレタンの水分散体(ウレタンおよびウレアの結合濃度は1170eq/ton)。
・ポリカーボネートポリエーテルポリウレタン(u2):
 イソホロンジイソシアネート、数平均分子量が1000のポリ(1,6-ヘキサンジオールカーボネート)、数平均分子量が1000のポリオキシテトラメチレングリコール、ネオペンチルグリコール、トリエチルアミンで中和されたジメチロールブタン酸を原料として得られたポリカーボネートポリエーテルポリウレタンの水分散体(ウレタンおよびウレアの結合濃度は1710eq/ton)。
・ポリエーテルポリウレタン(u3):
 イソホロンジイソシアネート、数平均分子量が1000のポリオキシテトラメチレングリコール、ネオペンチルグリコール、トリエチルアミンで中和されたジメチロールプロピオン酸を原料として得られたポリエーテルポリウレタンの水分散体(ウレタンおよびウレアの結合濃度は3110eq/ton)。
・ポリエステルポリウレタン(u4):
 水添ジフェニルジイソシアネート、ポリヘキサメチレンアジペート、ネオペンチルグリコール、トリエチルアミンで中和されたジメチロールプロピオン酸を原料として得られたポリエステルポリウレタンの水分散体(ウレタンおよびウレアの結合濃度は3260eq/ton)。
・ポリエステル樹脂(e1):
 芳香族ポリエステルの水分散体である、DIC社製 商品名ファインテックス(登録商標)ES-670
・架橋剤(c1):
 メトキシメチロールメラミン DIC社製 商品名ベッカミン(登録商標)J101
・架橋剤(c2):
 オキサゾリン系水溶性樹脂架橋剤 日本触媒社製 商品名エポクロス(登録商標)WS-500
・架橋剤(c3):
 水溶性エポキシ系水溶液 ナガセケムテックス社製 商品名デナコール(登録商標)EX-521
・微粒子(d1):
 コロイダルシリカ微粒子(平均粒径0.07μm)
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 本発明の二軸配向ポリエステルフィルムは、例えば、光学用部材に用いる基材フィルムや、太陽電池裏面保護用フィルムとして、好適に利用することが出来る。

Claims (6)

  1.  基材ポリエステルフィルムの少なくとも片面に、ポリカーボネート骨格またはポリエーテル骨格の少なくとも一つを有するポリウレタンと架橋剤とを含有するインラインコーティングによる塗布層を有する、全窒素量が30ppm以下のフィルムであり、基材ポリエステルフィルム中に自己再生原料を5重量%以上含有することを特徴とする二軸配向ポリエステルフィルム。
  2.  ポリウレタンのウレタンおよびウレアの結合濃度が500~3500(eq/ton)である請求項1に記載の二軸配向ポリエステルフィルム。
  3.  塗布層中のポリウレタン:架橋剤の重量比が95:5~10:90である請求項1又は2に記載の二軸配向ポリエステルフィルム。
  4.  塗布層中のポリウレタンと架橋剤成分との合計量が60重量%以上である請求項1~3の何れかに記載の二軸配向ポリエステルフィルム。
  5.  一方の表面に塗布層を介してレンズ層を有する請求項1~4の何れかに記載の二軸配向ポリエステルフィルム。
  6.  一方の表面に塗布層を介してエチレン-酢酸ビニル樹脂の熱ラミネート層を有する請求項1~4の何れかに記載の二軸配向ポリエステルフィルム。
     
PCT/JP2012/074226 2011-10-01 2012-09-21 二軸配向ポリエステルフィルム WO2013047370A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218798A JP5793390B2 (ja) 2011-03-05 2011-10-01 二軸配向ポリエステルフィルム
JP2011-218798 2011-10-01

Publications (1)

Publication Number Publication Date
WO2013047370A1 true WO2013047370A1 (ja) 2013-04-04

Family

ID=47690193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074226 WO2013047370A1 (ja) 2011-10-01 2012-09-21 二軸配向ポリエステルフィルム

Country Status (2)

Country Link
JP (1) JP5793390B2 (ja)
WO (1) WO2013047370A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287136B2 (ja) * 2013-12-03 2018-03-07 三菱ケミカル株式会社 表面保護フィルム
JP5840265B2 (ja) * 2014-02-25 2016-01-06 三菱樹脂株式会社 積層ポリエステルフィルム
JP5938058B2 (ja) * 2014-04-07 2016-06-22 三菱樹脂株式会社 積層ポリエステルフィルム
JP7290090B2 (ja) * 2019-09-11 2023-06-13 三菱ケミカル株式会社 再生資源由来ポリエステルフィルム及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217893A (ja) * 1995-02-16 1996-08-27 Teijin Ltd 再生フイルム
JP2001302994A (ja) * 2000-04-20 2001-10-31 Toyobo Co Ltd 光学用易接着フィルム
JP2005178313A (ja) * 2003-12-24 2005-07-07 Toyobo Co Ltd 積層ポリエステルフィルムおよびその製造方法
JP2009114306A (ja) * 2007-11-06 2009-05-28 Mitsubishi Polyester Film Copp ポリエステルフィルムの製造方法および保護フィルム
WO2009113259A1 (ja) * 2008-03-13 2009-09-17 三菱樹脂株式会社 ポリエステルフィルム
WO2010026773A1 (ja) * 2008-09-08 2010-03-11 三菱樹脂株式会社 積層ポリエステルフィルム
WO2011034024A1 (ja) * 2009-09-17 2011-03-24 三菱樹脂株式会社 二軸配向ポリエステルフィルム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168297B2 (en) * 2007-04-23 2012-05-01 E. I. Du Pont De Nemours And Company Fluoropolymer coated film, process for forming the same, and fluoropolymer liquid composition
JP4798156B2 (ja) * 2008-03-17 2011-10-19 三菱樹脂株式会社 積層フィルム
JP5416864B2 (ja) * 2008-03-22 2014-02-12 三菱樹脂株式会社 光学用積層ポリエステルフィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217893A (ja) * 1995-02-16 1996-08-27 Teijin Ltd 再生フイルム
JP2001302994A (ja) * 2000-04-20 2001-10-31 Toyobo Co Ltd 光学用易接着フィルム
JP2005178313A (ja) * 2003-12-24 2005-07-07 Toyobo Co Ltd 積層ポリエステルフィルムおよびその製造方法
JP2009114306A (ja) * 2007-11-06 2009-05-28 Mitsubishi Polyester Film Copp ポリエステルフィルムの製造方法および保護フィルム
WO2009113259A1 (ja) * 2008-03-13 2009-09-17 三菱樹脂株式会社 ポリエステルフィルム
WO2010026773A1 (ja) * 2008-09-08 2010-03-11 三菱樹脂株式会社 積層ポリエステルフィルム
WO2011034024A1 (ja) * 2009-09-17 2011-03-24 三菱樹脂株式会社 二軸配向ポリエステルフィルム

Also Published As

Publication number Publication date
JP2013018281A (ja) 2013-01-31
JP5793390B2 (ja) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5734341B2 (ja) 二軸配向ポリエステルフィルム
JP5416864B2 (ja) 光学用積層ポリエステルフィルム
JP5615130B2 (ja) 太陽電池裏面保護材用積層ポリエステルフィルム
JP5467752B2 (ja) 二軸延伸ポリエステルフィルム
KR20120028319A (ko) 적층 폴리에스테르 필름
JP5793390B2 (ja) 二軸配向ポリエステルフィルム
KR20140038990A (ko) 도포 필름
WO2012043000A1 (ja) 太陽電池裏面保護材用ポリエステルフィルム
KR20140032442A (ko) 도포 필름
WO2015102339A1 (ko) 고내열성을 가지는 폴리에스테르 필름
JP2018062120A (ja) 光学用二軸延伸ポリエステルフィルム
JP5014616B2 (ja) 光学用積層ポリエステルフィルム
US10475943B2 (en) White polyester film for a solar cell, sealing sheet for back surface of solar cell using same, and solar cell module
JP2014088043A (ja) 積層ポリエステルフィルム
JP5455315B2 (ja) 積層ポリエステルフィルム
JP5455314B2 (ja) 積層ポリエステルフィルム
JP2013008883A (ja) 太陽電池裏面封止材用ポリエステルフィルム
JP5366414B2 (ja) 積層ポリエステルフィルム
JP2011224852A (ja) 積層ポリエステルフィルム
JP5679021B2 (ja) 太陽電池裏面保護材用積層ポリエステルフィルム
JP2013214778A (ja) 太陽電池裏面保護材用ポリエステルフィルム
JP2011224849A (ja) 積層ポリエステルフィルム
JP2014019007A (ja) 太陽電池裏面封止材
JP2009208340A (ja) 積層ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836955

Country of ref document: EP

Kind code of ref document: A1