WO2013047299A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2013047299A1
WO2013047299A1 PCT/JP2012/073981 JP2012073981W WO2013047299A1 WO 2013047299 A1 WO2013047299 A1 WO 2013047299A1 JP 2012073981 W JP2012073981 W JP 2012073981W WO 2013047299 A1 WO2013047299 A1 WO 2013047299A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
battery
active material
electrode active
Prior art date
Application number
PCT/JP2012/073981
Other languages
English (en)
French (fr)
Inventor
田中 忠佳
貴俊 樋口
大北 一成
柳田 勝功
喜田 佳典
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013536202A priority Critical patent/JP5996547B2/ja
Priority to US14/347,430 priority patent/US20140234701A1/en
Priority to CN201280043419.4A priority patent/CN103782439B/zh
Publication of WO2013047299A1 publication Critical patent/WO2013047299A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • cobalt used for the above-mentioned positive electrode active material is a scarce resource, and has problems such as high cost and difficulty in stable supply, and in particular, it is used as a power source for hybrid electric vehicles etc. In the case where a large amount of cobalt is required, the cost as a power supply becomes very high.
  • further improvement in performance and life are desired, and in addition, securing of safety is also important along with such improvement in performance. .
  • Patent No. 3244314 Unexamined-Japanese-Patent No. 2006-318815 Japanese Patent Application Publication No. 2006-196250
  • the battery temperature may increase because the thermal stability of the positive electrode is insufficient. Therefore, it is necessary to change the design of the battery such as setting the charging potential low, and it is not possible to achieve high performance (high capacity) of the battery.
  • the present invention provides a positive electrode active material comprising a lithium-containing transition metal oxide containing nickel and manganese, a positive electrode comprising a metal halide, a negative electrode comprising a negative electrode active material, a non-aqueous solvent, a fluorine-containing lithium salt, And a non-aqueous electrolytic solution having a lithium salt having an oxalate complex as an anion.
  • the present invention provides a positive electrode active material comprising a lithium-containing transition metal oxide containing nickel and manganese, a positive electrode comprising a metal halide, a negative electrode comprising a negative electrode active material, a non-aqueous solvent, a fluorine-containing lithium salt, And a non-aqueous electrolytic solution having a lithium salt having an oxalate complex as an anion.
  • the thermal stability of a nonaqueous electrolyte secondary battery will improve. Therefore, since there is no need to change the design of the battery, such as setting the charge potential low, it is possible to achieve high performance (higher capacity) of the battery, and there is no need to separately provide a safety mechanism for the battery. It is possible to reduce the cost of devices using batteries.
  • the improvement of the thermal stability of the non-aqueous electrolyte secondary battery is considered to be due to the following reasons.
  • the fluorine-containing lithium salt is thermally decomposed to form lithium fluoride (for example, when LiPF 6 is used as the fluorine-containing lithium salt) is thermally decomposed in the LiF and PF 5).
  • a metal halide is added to the positive electrode as in the above configuration, lithium fluoride generated by the thermal decomposition is easily precipitated in the positive electrode, and the surface of the positive electrode active material is coated with lithium fluoride Be done.
  • the contact between the transition metal in the positive electrode active material and the non-aqueous electrolyte is suppressed, the oxidation of the non-aqueous electrolyte is suppressed.
  • the non-aqueous electrolyte and the negative electrode directly contact in a high temperature environment, a reaction product is generated, and the reaction product is transferred to the positive electrode to promote the oxidation reaction of the non-aqueous electrolyte on the positive electrode surface. Be done.
  • the non-aqueous electrolytic solution contains a lithium salt having an oxalate complex as an anion, the lithium salt is reduced at the negative electrode to form a film on the surface of the negative electrode active material. Therefore, direct contact between the non-aqueous electrolyte and the negative electrode can be suppressed, and the amount of reaction product produced can be reduced even under a high temperature environment. As a result, the oxidation of the non-aqueous electrolyte on the surface of the positive electrode due to the transfer of the reaction product to the positive electrode is further suppressed.
  • the reason for limiting the lithium-containing transition metal oxide containing nickel and manganese as the positive electrode active material is as follows.
  • LiNiO 2 lithium-containing transition metal oxide containing only nickel
  • LiNiO 2 has extremely low thermal stability. Therefore, the oxidation of the non-aqueous electrolyte by oxygen desorption from the positive electrode active material is much larger than the oxidation of the non-aqueous electrolyte on the surface of the positive electrode active material due to the catalytic action of the positive electrode active material.
  • the oxidation of the non-aqueous electrolyte can not be sufficiently suppressed, and heat generation can not be suppressed.
  • the thermal stability is higher than that of LiNiO 2 . Therefore, the oxidation of the non-aqueous electrolyte on the surface of the positive electrode active material resulting from the catalytic action of the positive electrode active material is much larger than the oxidation of the non-aqueous electrolyte due to the oxygen desorption from the positive electrode active material. Therefore, if the surface of the positive electrode active material is covered with lithium fluoride, the oxidation of the non-aqueous electrolyte can be suppressed.
  • the effect of the present invention is exhibited also in the case where a lithium-containing transition metal oxide containing cobalt as well as nickel and manganese is used as the positive electrode active material.
  • the lithium-containing transition metal oxide (LiCoO 2 ) containing only cobalt is used as the positive electrode active material, the effect of the present invention is not exhibited. This is because LiCoO 2 has a very small amount of catalytic oxidation reaction of the non-aqueous electrolyte, and covering the surface of the positive electrode active material with lithium fluoride prevents the contact between the positive electrode active material and the non-aqueous electrolyte. Because there is not much meaning.
  • the composition ratio c of cobalt, the composition ratio a of nickel, and the composition ratio b of manganese satisfy the condition of 0 ⁇ c / (a + b) ⁇ 0.65.
  • the reason why the content is satisfied is to reduce the material cost of the positive electrode active material by reducing the proportion of cobalt.
  • the one in which the composition ratio a of nickel and the composition ratio b of manganese satisfy the condition of 0.7 ⁇ a / b ⁇ 2.0 is used.
  • the thermal stability of this lithium-containing transition metal oxide decreases, so the temperature at which the calorific value peaks is low. Safety may be reduced.
  • the value of a / b is less than 0.7, the proportion of manganese is increased, an impurity layer is generated, and the positive electrode capacity is reduced.
  • the lithium-containing transition metal oxide represented by the above general formula when x in the composition ratio of lithium (1 + x) satisfies the condition of 0 ⁇ x ⁇ 0.1 is used, when x> 0, While the output characteristics are improved, when x> 0.1, the amount of alkali remaining on the surface of the lithium-containing transition metal oxide increases, causing gelation of the slurry in the battery preparation process and performing the redox reaction. This is because the amount of transition metal decreases and the positive electrode capacity decreases. It is more preferable that x satisfy the condition of 0.05 ⁇ x ⁇ 0.1.
  • d in the composition ratio (2 + d) of oxygen satisfy the condition of ⁇ 0.1 ⁇ d ⁇ 0.1. This is to prevent the crystal structure of the transition metal oxide from being lost when it is in an oxygen deficient state or an oxygen excess state.
  • the lithium salt containing the oxalate complex is lithium-bis oxalate borate, and the concentration of the lithium-bis oxalate borate relative to the non-aqueous solvent is 0.05 mol / L or more and 0.3 mol / L or less Is desirable.
  • concentration is less than 0.05 mol / l, the effect of adding lithium-bis oxalate borate may be insufficient, while when the concentration is more than 0.3 mol / l, the discharge capacity of the battery is reduced. It is.
  • the halogen of the metal halide is preferably fluorine or chlorine, and the metal is preferably lithium (Li), sodium (Na), magnesium (Mg), calcium (Ca) or zirconium (Zr).
  • the metal halide is at least one selected from the group consisting of LiF, NaF, MgF 2 , CaF 2 , ZrF 4 , LiCl, NaCl, MgCl 2 , CaCl 2 , and ZrCl 4. . That is, the metal halide is not limited to using LiF or the like alone, and for example, LiF and LiCl may be mixed and used.
  • the metal halide is not limited to the above LiF and the like, and, for example, aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), tantalum (Ta), tin (Sn), tungsten (W), potassium (K), barium (Ba) or strontium (Sr) chloride, fluoride, bromide, iodide may be used, and further, the above-mentioned bromide of Li, Na, Mg, Ca or Zr, iodide, etc. It may be.
  • the ratio of the metal halide to the positive electrode active material is desirably 0.1% by mass or more and 5.0% by mass or less. When the ratio is less than 0.1% by mass, the addition effect of the metal halide may be insufficient. However, when the ratio is more than 5.0% by mass, the amount of the positive electrode active material is reduced by that amount. This is because the capacity is reduced.
  • the lithium salt having the above oxalato complex as an anion is not limited to LiBOB [lithium-bis oxalate borate] shown in the examples described later, and C 2 O 4 2- is coordinated to the central atom Lithium salt having an anion, for example, Li [M (C 2 O 4 ) x R y ] (wherein, M is a transition metal, an element selected from Group IIIb, Group IVb, Group Vb of the Periodic Table, R Is a group selected from a halogen, an alkyl group and a halogen-substituted alkyl group, x can be a positive integer, and y can be 0 or a positive integer.
  • M is a transition metal, an element selected from Group IIIb, Group IVb, Group Vb of the Periodic Table
  • x can be a positive integer
  • LiBOB Li [B (C 2 O 4) F 2]
  • Li [P (C 2 O 4) F 4] Li [P (C 2 O 4 ) 2 F 2].
  • LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , and LiAsF 6 are exemplified.
  • an electrolyte salt a lithium salt containing a fluorine-containing lithium salt and a lithium salt other than a fluorine-containing lithium salt [P, B, O, S, N, Cl, one or more elements (for example, LiClO 4 Etc.) may be used.
  • the above lithium-containing transition metal oxides include boron (B), fluorine (F), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), vanadium (V), iron ( Fe), copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo), tantalum (Ta), zirconium (Zr), tin (Sn), tungsten (W), sodium (Na), potassium ( K) at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca) may be included.
  • the negative electrode active material is not particularly limited as long as it can occlude and release lithium reversibly, for example, a carbon material, a metal or alloy material to be alloyed with lithium, a metal oxide, etc. It can be used. From the viewpoint of material cost, it is preferable to use a carbon material as the negative electrode active material.
  • a carbon material for example, natural graphite, artificial graphite, mesophase pitch carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon Fullerenes, carbon nanotubes, etc.
  • MCF mesophase pitch carbon fiber
  • MCMB mesocarbon microbeads
  • coke hard carbon Fullerenes
  • carbon nanotubes etc.
  • non-aqueous solvent used for the above-mentioned non-aqueous electrolytic solution known ones conventionally used can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, etc.
  • a linear carbonate such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate can be used.
  • a mixed solvent of a cyclic carbonate and a chain carbonate as a non-aqueous solvent having a low viscosity and a low melting point and a high lithium ion conductivity.
  • the volume ratio of cyclic carbonate to linear carbonate in this mixed solvent is preferably regulated in the range of 2: 8 to 5: 5.
  • an ionic liquid can also be used as a non-aqueous solvent of a non-aqueous electrolytic solution, and in this case, the cationic species and the anionic species are not particularly limited, but low viscosity, electrochemical stability, hydrophobicity From the viewpoint of the combination, a combination using a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation as the cation and a fluorine-containing imide type anion as the anion is particularly preferable.
  • a separator used for the non-aqueous electrolyte secondary battery of the present invention is a material that prevents short circuit due to contact between the positive electrode and the negative electrode and impregnates the non-aqueous electrolyte to obtain lithium ion conductivity It is not particularly limited.
  • a separator made of polypropylene or polyethylene, a multilayer separator of polypropylene-polyethylene, or the like can be used.
  • the mixture was weighed so that the mass ratio of lithium fluoride, the conductive agent and the binder was 91: 1: 5: 3, and these were kneaded to prepare a positive electrode mixture slurry.
  • the ratio of lithium fluoride to the positive electrode active material is 1.1% by mass.
  • the above positive electrode material mixture slurry is applied to both sides of a positive electrode current collector made of aluminum foil, dried, and then rolled by a rolling roller, and a positive electrode is produced by attaching an aluminum current collector tab. did.
  • the average particle diameter of a positive electrode active material is a value of the median diameter obtained by the particle size distribution measurement by the laser diffraction method. Also in the following examples, the average particle size was measured by the same method.
  • Electrolytic salt fluorine-containing lithium salt
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • LiBOB lithium-bis oxalate borate
  • a polyethylene separator was disposed between the positive electrode and the negative electrode produced as described above, and wound spirally to produce a spiral electrode body.
  • the electrode assembly is disposed in an aluminum laminate outer package, and the non-aqueous electrolyte is poured into the outer package, and then the outer package is sealed to obtain a non-aqueous electrolyte secondary battery (theoretical capacity). : 16 mAh) was produced.
  • the battery thus produced is hereinafter referred to as Battery A.
  • Example 1 A battery was fabricated in the same manner as in Example 1 except that lithium fluoride was not added at the time of preparation of the positive electrode, and LiBOB was not added to the non-aqueous electrolytic solution.
  • the ratio of the positive electrode active material, the conductive agent, and the binder was 92: 5: 3 in mass ratio.
  • the battery produced in this manner is hereinafter referred to as battery Z1.
  • Example 2 A battery was fabricated in the same manner as in Example 1 except that lithium carbonate was added instead of lithium fluoride at the time of preparation of the positive electrode, and LiBOB was not added to the non-aqueous electrolyte.
  • the ratio of the positive electrode active material, lithium carbonate, the conductive agent, and the binder was 91: 1: 5: 3 by mass ratio.
  • the battery produced in this manner is hereinafter referred to as battery Z2.
  • Example 3 A battery was fabricated in the same manner as in Example 1 except that lithium phosphate was added instead of lithium fluoride at the time of preparation of the positive electrode, and LiBOB was not added to the non-aqueous electrolytic solution.
  • the ratio of the positive electrode active material, the lithium phosphate, the conductive agent, and the binder was 91: 1: 5: 3 in mass ratio.
  • the battery produced in this manner is hereinafter referred to as battery Z3.
  • Example 4 A battery was fabricated in the same manner as in Example 1 except that LiBOB was not added to the non-aqueous electrolyte.
  • the battery produced in this manner is hereinafter referred to as battery Z4.
  • Example 5 A battery was fabricated in the same manner as in Example 1 except that lithium fluoride was not added at the time of preparation of the positive electrode. In the preparation of the positive electrode, the ratio of the positive electrode active material, the conductive agent, and the binder was 92: 5: 3 in mass ratio. The battery produced in this manner is hereinafter referred to as battery Z5.
  • LiPF 6 as the electrolyte salt when decomposed into LiF and PF 5 by heat, easily LiF is deposited on the surface of the cathode active material in the positive electrode containing lithium fluoride. Therefore, the surface of the positive electrode active material is coated with LiF, and the contact between the transition metal in the positive electrode active material and the non-aqueous electrolyte is prevented. As a result, it is considered that the oxidation of the non-aqueous electrolyte was suppressed and the calorific value was reduced.
  • the battery Z5 in which LiBOB is added to the electrolytic solution when comparing the battery Z1 and the battery Z5 in which the lithium compound is not added to the positive electrode, the battery Z5 in which LiBOB is added to the electrolytic solution generates heat compared to the battery Z1 in which the LiBOB is not added to the electrolytic solution. It can be seen that the amount has hardly decreased. However, in the battery A in which lithium fluoride is added to the positive electrode and LiBOB is added to the electrolytic solution, lithium fluoride is added to the positive electrode, but compared to battery Z4 in which LiBOB is not added to the electrolytic solution. It was found that the calorific value was further suppressed.
  • Second Embodiment Example 1 A battery was produced in the same manner as the example of the first example except that the positive electrode active material was produced as follows.
  • the battery produced in this manner is hereinafter referred to as battery B1.
  • the average particle size of the positive electrode active material was about 13 ⁇ m.
  • Example 2 The ratio of the positive electrode active material, lithium fluoride, the conductive agent, and the binder was 90: 2: 5: 3 in mass ratio (ratio of lithium fluoride to positive electrode active material is 2.2 mass)
  • a battery was manufactured in the same manner as in Example 1 of the second example except that%) was used. The battery fabricated in this manner is hereinafter referred to as Battery B2.
  • Example 3 The ratio of the positive electrode active material, the lithium fluoride, the conductive agent, and the binder was 89: 3: 5: 3 in mass ratio (the ratio of lithium fluoride to the positive electrode active material is 3.4 mass).
  • a battery was manufactured in the same manner as in Example 1 of the second example except that%) was used. The battery fabricated in this manner is hereinafter referred to as Battery B3.
  • Example 4 A battery was fabricated in the same manner as in Example 1 of the second example above, except that sodium fluoride was added instead of lithium fluoride when producing the positive electrode.
  • the battery produced in this manner is hereinafter referred to as battery B4.
  • Example 5 A battery was fabricated in the same manner as in Example 1 of the second example above, except that lithium chloride was added instead of lithium fluoride at the time of preparation of the positive electrode.
  • the battery produced in this manner is hereinafter referred to as battery B5.
  • Example 2 A battery was fabricated in the same manner as Example 1 of the second example except that lithium fluoride was not added at the time of preparation of the positive electrode.
  • the battery produced in this manner is hereinafter referred to as battery Y.
  • the battery B1 in which lithium fluoride is added to the positive electrode is compared to the battery Y in which lithium fluoride is not added to the positive electrode.
  • the calorific value was decreased, and it was found that the thermal stability was improved.
  • similar effects were confirmed for the batteries B2 and B3 in which the ratio of lithium fluoride to the positive electrode active material was increased to 2.2% by mass and 3.4% by mass, respectively.
  • the ratio of lithium fluoride to the positive electrode active material is too high, the positive electrode capacity decreases, so it is desirable to regulate the ratio to 5% by mass or less.
  • the thermal stability is improved if the substance to be added to the positive electrode is not limited to lithium fluoride, but if it is an alkali metal halide such as sodium fluoride or lithium chloride.
  • the electrolyte salt LiPF 6 is decomposed into LiF and PF 5 by heat, the positive electrode contains an alkali metal halide such as lithium fluoride, sodium fluoride or lithium chloride.
  • LiF is easily deposited on the surface of the positive electrode active material. Therefore, the surface of the positive electrode active material is coated with LiF, and the contact between the transition metal in the positive electrode active material and the non-aqueous electrolyte is prevented. As a result, it is considered that the oxidation of the non-aqueous electrolyte was suppressed and the calorific value was reduced.
  • Example 1 A battery was fabricated in the same manner as in Example 1 of the second example above, except that magnesium chloride was added instead of lithium fluoride at the time of preparation of the positive electrode.
  • the battery thus produced is hereinafter referred to as a battery C1.
  • Example 2 A battery was produced in the same manner as in Example 1 of the second example except that calcium fluoride was added instead of lithium fluoride at the time of preparation of the positive electrode.
  • the battery produced in this manner is hereinafter referred to as battery C2.
  • Example 3 A battery was fabricated in the same manner as in Example 1 of the second example above, except that calcium chloride was added instead of lithium fluoride at the time of preparation of the positive electrode.
  • the battery thus produced is hereinafter referred to as a battery C3.
  • Example 4 A battery was fabricated in the same manner as in Example 1 of the second example above, except that zirconium fluoride was added instead of lithium fluoride at the time of preparation of the positive electrode.
  • the battery thus produced is hereinafter referred to as a battery C4.
  • lithium fluoride, sodium fluoride, lithium chloride added batteries B1, B4, B5 to the positive electrode as well as magnesium chloride, calcium fluoride, calcium chloride, zirconium fluoride added to the positive electrode
  • the heat generation peak intensity was reduced as compared with the battery Y, and it was recognized that the thermal stability was improved. Therefore, as materials to be added to the positive electrode, not only alkali metal halides such as lithium fluoride, sodium fluoride and lithium chloride but also metal halides such as magnesium chloride, calcium fluoride, calcium chloride and zirconium fluoride It can be seen that the thermal stability is improved.
  • the electrolyte salt LiPF 6 when the electrolyte salt LiPF 6 is decomposed into LiF and PF 5 by heat, it contains metal halides such as magnesium chloride, calcium fluoride, calcium chloride and zirconium fluoride.
  • metal halides such as magnesium chloride, calcium fluoride, calcium chloride and zirconium fluoride.
  • LiF is easily deposited on the surface of the positive electrode active material. Therefore, the surface of the positive electrode active material is coated with LiF, and the contact between the transition metal in the positive electrode active material and the non-aqueous electrolyte is prevented. As a result, it is considered that the oxidation of the non-aqueous electrolyte was suppressed and the calorific value was reduced.
  • the contact between the transition metal in the positive electrode active material and the non-aqueous electrolyte can be further suppressed.
  • the oxidation of the non-aqueous electrolyte was further suppressed and the calorific value was further reduced.
  • the batteries R1 and R2 were subjected to charge and discharge and temperature elevation in the same manner as in the experiment of the first embodiment, and the calorific value at 160 to 240 ° C. was examined. The results are shown in Table 4.
  • the calorific value of the battery R2 is represented by an index when the calorific value of the battery R1 is 100.
  • the positive electrode active material the use of LiNiO 2, LiNiO 2 has a very low thermal stability. Therefore, the oxidation of the non-aqueous electrolyte by oxygen desorption from the positive electrode active material is much larger than the oxidation of the non-aqueous electrolyte on the surface of the positive electrode active material due to the catalytic action of the positive electrode active material. For this reason, even if the surface of the positive electrode active material is covered with lithium fluoride, the oxidation of the non-aqueous electrolytic solution can not be suppressed, so the heat generation can not be suppressed.
  • the present invention can be applied to, for example, a drive power source of a mobile information terminal such as a mobile phone, a notebook computer, a PDA, etc., in particular, an application requiring a high capacity.
  • a drive power source of a mobile information terminal such as a mobile phone, a notebook computer, a PDA, etc.
  • an application requiring a high capacity in particular, an application requiring a high capacity.
  • it can also be expected to be deployed in applications where the operating environment of batteries such as electric vehicles and power tools is severe.

Abstract

 熱的安定性を向上させることにより、高性能化(高容量化)とコストダウンとを図ることができる非水電解質二次電池を提供することを目的としている。 ニッケルとマンガンとが含まれたリチウム含有遷移金属酸化物を備える正極活物質、及び金属ハロゲン化物を有する正極と、負極活物質を有する負極と、非水系溶媒、フッ素含有リチウム塩、及びオキサレート錯体をアニオンとするリチウム塩を有する非水電解液と、を備えることを特徴とする。

Description

非水電解質二次電池
 本発明は非水電解質二次電池に関するものである。
 近年、携帯電話、ノートパソコン等のモバイル機器の小型化・軽量化が著しく進行しており、また多機能化に伴って消費電力も増加しており、これらの電源として使用される非水電解質二次電池においても、軽量化及び高容量化の要望が高まっている。
 また、近年においては、車両からの排ガスによる環境問題を解決するため、自動車のガソリンエンジンと電気モーターとを併用したハイブリッド型電気自動車の開発が進められている。そして、このような用途の電源としては、一般にニッケル-水素蓄電池が広く用いられているが、より高容量かつ高出力な電源として、非水電解質二次電池を利用することが検討されている。この非水電解質二次電池における正極活物質としては、コバルト酸リチウム(LiCoO)等のコバルトを主成分とするリチウム含有遷移金属酸化物が主に用いられている。
 しかし、上記の正極活物質に使用されるコバルトは稀少な資源であり、コストが高くつくと共に、安定した供給が困難になる等の問題があり、特に、ハイブリッド型電気自動車等の電源として使用する場合には、多量のコバルトが必要になって、電源としてのコストが非常に高くなる。
 加えて、上記非水電解質二次電池においては、さらなる高性能化及び高寿命化が望まれるところであり、しかも、このような高性能化に伴って、安全性の確保も重要となってきている。
 このようなことを考慮して、以下に示す提案がなされている。
(1)正極活物質として、LiNiCo(ただし、MはAl、Mn、Sn、In、Fe、Cu、Mg、Ti、Zn、Moから成る群から選択される少なくとも一種の金属であり、且つ0<a<1.3、0.02≦b≦0.5、0.02≦d/c+d≦0.9、1.8<e<2.2の範囲であって、更にb+c+d=1であり、0.34<cである)で表されるリチウム含有遷移金属酸化物を用いる提案(下記特許文献1参照)。
(2)正極活物質であるリチウム含有遷移金属酸化物粒子の表面に、リチウム化合物を被覆する提案(下記特許文献2参照)。
(3)リチウム含有遷移金属酸化物を正極活物質に用いた電池の非水電解液に、オキサレート錯体をアニオンとするリチウム塩を添加する提案(下記特許文献3参照)。
特許第3244314号公報 特開2006―318815号公報 特開2006-196250号公報
 しかしながら、上記提案であっても正極における熱安定性が不十分であるため、電池温度が上昇することがある。このため、充電電位を低く設定する等の電池の設計変更が必要となって、電池の高性能化(高容量化)を図ることができない。一方、電池温度が上昇した場合を考慮して、電池の安全機構を別途設けることも考えられるが、これでは、電池や電池を使用する機器のコストアップを招来するという課題を有していた。
 本発明は、ニッケルとマンガンとが含まれたリチウム含有遷移金属酸化物を備える正極活物質、及び金属ハロゲン化物を有する正極と、負極活物質を有する負極と、非水系溶媒、フッ素含有リチウム塩、及びオキサレート錯体をアニオンとするリチウム塩を有する非水電解液と、を備えることを特徴とする。
 本発明によれば、電池の熱的安定性を向上できるといった優れた効果を奏する。
 本発明は、ニッケルとマンガンとが含まれたリチウム含有遷移金属酸化物を備える正極活物質、及び金属ハロゲン化物を有する正極と、負極活物質を有する負極と、非水系溶媒、フッ素含有リチウム塩、及びオキサレート錯体をアニオンとするリチウム塩を有する非水電解液と、を備えることを特徴とする。
 上記構成であれば、非水電解質二次電池の熱安定性が向上する。したがって、充電電位を低く設定する等の電池の設計変更が不要なので、電池の高性能化(高容量化)を図ることができ、且つ、電池の安全機構を別途設ける必要もないので、電池や電池を使用する機器のコストダウンを図ることができる。
 ここで、非水電解質二次電池の熱安定性が向上するのは、以下に示す理由によるものと考えられる。
 非水電解質二次電池が高温(一般に、200℃以上)となった場合に、フッ素含有リチウム塩が熱分解してフッ化リチウムを生じる(例えば、フッ素含有リチウム塩としてLiPFを用いた場合には、LiFとPFとに熱分解する)。この場合、上記構成の如く、正極に金属ハロゲン化物が添加されていれば、上記熱分解によって生成したフッ化リチウムが正極中で析出し易くなって、正極活物質の表面がフッ化リチウムで被覆される。この結果、正極活物質中の遷移金属と非水電解液との接触が抑制されるので、非水電解液の酸化が抑えられる。
 また、高温環境下において非水電解液と負極とが直接接触すると、反応生成物を生じ、この反応生成物が正極に移動することにより、正極表面での非水電解液での酸化反応が促進される。しかしながら、非水電解液にオキサレート錯体をアニオンとするリチウム塩が含まれていれば、該リチウム塩は負極において還元されて、負極活物質の表面に被膜を形成する。したがって、非水電解液と負極とが直接接触するのを抑えることができるので、高温環境下においても反応生成物の生成量が減少する。この結果、該反応生成物が正極に移動することに起因する正極表面での非水電解液の酸化が、より一層抑制される。
 ここで、正極活物質としてニッケルとマンガンとが含まれたリチウム含有遷移金属酸化物に限定するのは、以下に示す理由による。
 正極活物質として、ニッケルのみが含まれたリチウム含有遷移金属酸化物(LiNiO)を用いた場合、LiNiOは熱安定性が極めて低い。したがって、正極活物質の触媒作用に起因する正極活物質表面での非水電解液の酸化よりも、正極活物質からの酸素脱離による非水電解液の酸化がはるかに大きくなる。このため、金属ハロゲン化物を添加して、正極活物質の表面をフッ化リチウムで被覆しても、非水電解液の酸化を十分に抑制できず、発熱を抑制することができない。これに対して、正極活物質として、ニッケルの他にマンガンが含まれたリチウム含有遷移金属酸化物を用いた場合、上記LiNiOに比べて熱安定性が高くなる。したがって、正極活物質からの酸素脱離による非水電解液の酸化よりも、正極活物質の触媒作用に起因する正極活物質表面での非水電解液の酸化の方がはるかに大きくなる。このため、正極活物質の表面をフッ化リチウムで被覆すれば、非水電解液の酸化を抑制できるからである。
 尚、正極活物質として、ニッケルとマンガンとの他にコバルトをも含むリチウム含有遷移金属酸化物を用いた場合についても本発明の作用効果が発揮される。しかし、正極活物質として、コバルトのみ含むリチウム含有遷移金属酸化物(LiCoO)を用いた場合には本発明の作用効果は発揮されない。これは、LiCoOでは触媒作用による非水電解液の酸化反応が極めて少なく、正極活物質の表面をフッ化リチウムで被覆することにより、正極活物質と非水電解液との接触を妨げても、余り意味がないからである。
 上記リチウム含有遷移金属酸化物として、一般式Li1+xNiMnCo2+d(式中、x,a,b,c,dはx+a+b+c=1、0.7≦a+b、0<x≦0.1、0≦c/(a+b)<0.65、0.7≦a/b≦2.0、-0.1≦d≦0.1)で表され、層状構造を有する酸化物を用いることが望ましい。
 上記一般式に示されるリチウム含有遷移金属酸化物において、コバルトの組成比cと、ニッケルの組成比aと、マンガンの組成比bとが、0≦c/(a+b)<0.65の条件を満たすものを用いるのは、コバルトの割合を少なくして、正極活物質の材料コストを低減させるためである。
 また、上記一般式に示されるリチウム含有遷移金属酸化物において、ニッケルの組成比aとマンガンの組成比bとが、0.7≦a/b≦2.0の条件を満たすものを用いるのは、以下に示す理由による。即ち、a/bの値が2.0を超えてニッケルの割合が多くなった場合には、このリチウム含有遷移金属酸化物における熱安定性が低下するため、発熱量がピークとなる温度が低くなって安全性が低下することがある。一方、a/bの値が0.7未満になると、マンガンの割合が多くなり、不純物層が生じて正極容量が低下するからである。
 更に、上記一般式に示されるリチウム含有遷移金属酸化物において、リチウムの組成比(1+x)におけるxが0<x≦0.1の条件を満たすものを用いるのは、x>0になると、その出力特性が向上する一方、x>0.1になると、このリチウム含有遷移金属酸化物の表面に残留するアルカリが多くなって、電池作製工程においてスラリーにゲル化が生じると共に、酸化還元反応を行う遷移金属量が低下して、正極容量が低下するためである。尚、xは0.05≦x≦0.1の条件を満たす方が、より好ましい。
 加えて、上記一般式に示されるリチウム含有遷移金属酸化物において、酸素の組成比(2+d)におけるdが-0.1≦d≦0.1の条件を満たすようにするのは、上記リチウム含有遷移金属酸化物が酸素欠損状態や酸素過剰状態になって、その結晶構造が損なわれるのを防止するためである。
 上記オキサレート錯体を含むリチウム塩がリチウム-ビスオキサレートボレートであり、上記非水系溶媒に対する該リチウム-ビスオキサレートボレートの濃度が、0.05モル/リットル以上0.3モル/リットル以下であることが望ましい。
 上記濃度が0.05モル/リットル未満ではリチウム-ビスオキサレートボレートの添加効果が不十分となる場合がある一方、上記濃度が0.3モル/リットルを超えると電池の放電容量が低下するからである。
 上記金属ハロゲン化物のハロゲンが、フッ素又は塩素であることが望ましく、金属はリチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)又はジルコニウム(Zr)であることが望ましい。具体的には、上記金属ハロゲン化物がLiF、NaF、MgF、CaF、ZrF、LiCl、NaCl、MgCl、CaCl、ZrClから成る群から選択される少なくとも1種であることが望ましい。即ち、金属ハロゲン化物は、LiF等を単独で用いることに限定するのではなく、例えば、LiFとLiClとを混合して用いても良い。
 尚、金属ハロゲン化物は、上記LiF等に限定するものではなく、例えば、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、錫(Sn)、タングステン(W)、カリウム(K)、バリウム(Ba)、又はストロンチウム(Sr)の塩化物、フッ化物、臭化物、ヨウ化物であっても良く、更に、上述したLi、Na、Mg、Ca又はZrの臭化物、ヨウ化物であっても良い。
 上記正極活物質に対する上記金属ハロゲン化物の割合が、0.1質量%以上5.0質量%以下であることが望ましい。
 上記割合が0.1質量%未満では金属ハロゲン化物の添加効果が不十分となる場合がある一方、上記割合が5.0質量%を超えるとその分だけ正極活物質の量が減るため、正極容量が低下するからである。
(その他の事項)
(1)上記のオキサラト錯体をアニオンとするリチウム塩としては、後述の実施例に示すLiBOB〔リチウム-ビスオキサレートボレート〕に限定するものではなく、中心原子にC 2-が配位したアニオンを有するリチウム塩、例えば、Li[M(C](式中、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C)F]、Li[P(C)F]、Li[P(C]等がある。尚、高温環境下においても負極の表面に安定な被膜を形成するためには、LiBOBを用いることが最も好ましい。
(2)上記フッ素含有リチウム塩としては、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、及びLiAsFが例示される。また、電解質塩としては、フッ素含有リチウム塩に、フッ素含有リチウム塩以外のリチウム塩〔P、B、O、S、N、Clの中の一種類以上の元素を含むリチウム塩(例えば、LiClO等)〕を加えたものを用いても良い。
(3)上記リチウム含有遷移金属酸化物には、ホウ素(B)、フッ素(F)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、バナジウム(V)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、ジルコニウム(Zr)、錫(Sn)、タングステン(W)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)からなる群から選択される少なくとも一種が含まれていてもよい。
(4)上記負極活物質としては、リチウムを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば、炭素材料や、リチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができる。尚、材料コストの観点からは、負極活物質に炭素材料を用いることが好ましく、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブ等を用いることができ、特に、高率充放電特性を向上させる観点からは、黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることが好ましい。
(5)上記非水電解液に用いる非水系溶媒としては、従来から使用されている公知のものを用いることができ、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比は、2:8~5:5の範囲に規制することが好ましい。
 更に、非水電解液の非水系溶媒としてイオン性液体を用いることもでき、この場合、カチオン種、アニオン種については特に限定されるものではないが、低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、ピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしては、フッ素含有イミド系アニオンを用いた組合せが特に好ましい。
(6)本発明の非水電解質二次電池に用いるセパレータとしては、正極と負極との接触による短絡を防ぎ、かつ非水電解液を含浸して、リチウムイオン伝導性が得られる材料であれば特に限定されるものではない。例えば、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン-ポリエチレンの多層セパレータ等を用いることができる。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
             〔第1実施例〕
(実施例)
[正極の作製]
 先ず、共沈法により作製した[Ni0.35Mn0.30Co0.35](OH)とLiCOとを所定比で混合した後、空気中にて900℃で10時間焼成することで、正極活物質であるLi1.06[Ni0.33Mn0.28Co0.33]Oを作製した。該正極活物質の平均粒子径は約12μmであった。次に、上記正極活物質と、フッ化リチウムと、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンを溶解させたN-メチル-2-ピロリドン溶液とを、正極活物質とフッ化リチウムと導電剤と結着剤との質量比が91:1:5:3となるように秤量し、これらを混練して正極合剤スラリーを調製した。このように、正極活物質に対するフッ化リチウムの割合は、1.1質量%となっている。
 次いで、上記正極合剤スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、更にアルミニウム製の集電タブを取り付けることにより正極を作製した。尚、正極活物質の平均粒子径は、レーザー回折法による粒度分布測定で得られたメジアン径の値である。また、下記実施例においても同様の方法で平均粒子径を測定した。
[負極の作製]
 先ず、増粘剤としてのCMC(カルボキシメチルセルロース)を水に溶解した溶液に、負極活物質としての黒鉛粉末を投入して攪拌混合した後、バインダーとしてのSBR(スチレンブタジエンゴム)を混合して負極合剤スラリーを調製した。尚、負極合剤スラリー調製時において、黒鉛とCMCとSBRとの質量比は、98:1:1とした。次に、上記負極合剤スラリーを、銅箔からなる負極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、更にニッケル製の集電タブを取り付けることにより負極を作製した。
[非水電解液の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、体積比が3:3:4となるように混合した溶媒に、電解質塩(フッ素含有リチウム塩)としてのLiPFを1モル/リットル溶解させ、更に、ビニレンカーボネートを1質量%の割合で溶解させた。その後、オキサレート錯体をアニオンとするリチウム塩としてのLiBOB〔リチウム-ビスオキサレートボレート〕を0.1モル/リットルとなるよう溶解させることにより非水電解液を調製した。
[非水電解質二次電池の作製]
 上記のように作製した正極と負極との間にポリエチレン製のセパレータを配置して渦巻き状に巻回して渦巻状の電極体を作製した。次に、この電極体をアルミニウムラミネート製の外装体内に配置し、更に、上記非水電解液を上記外装体内に注液した後、外装体を封止して非水電解質二次電池(理論容量:16mAh)を作製した。
 このようにして作製した電池を、以下、電池Aと称する。
(比較例1)
 正極作製時にフッ化リチウムを添加せず、且つ、非水電解液にLiBOBを添加しないこと以外は、上記実施例1と同様にして電池を作製した。尚、正極作製時において、正極活物質と導電剤と結着剤との比率は、質量比で92:5:3とした。
 このようにして作製した電池を、以下、電池Z1と称する。
(比較例2)
 正極作製時にフッ化リチウムの代わりに炭酸リチウムを添加し、且つ、非水電解液にLiBOBを添加しないこと以外は、上記実施例1と同様にして電池を作製した。尚、正極作製時において、正極活物質と炭酸リチウムと導電剤と結着剤との比率は、質量比で91:1:5:3とした。
 このようにして作製した電池を、以下、電池Z2と称する。
(比較例3)
 正極作製時にフッ化リチウムの代わりにリン酸リチウムを添加し、且つ、非水電解液にLiBOBを添加しないこと以外は、上記実施例1と同様にして電池を作製した。尚、正極作製時において、正極活物質とリン酸リチウムと導電剤と結着剤との比率は、質量比で91:1:5:3とした。
 このようにして作製した電池を、以下、電池Z3と称する。
(比較例4)
 非水電解液にLiBOBを添加しないこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Z4と称する。
(比較例5)
 正極作製時にフッ化リチウムを添加しないこと以外は、上記実施例1と同様にして電池を作製した。尚、正極作製時において、正極活物質と導電剤と結着剤との比率は、質量比で92:5:3とした。
 このようにして作製した電池を、以下、電池Z5と称する。
(実験)
 上記電池A、Z1~Z5を下記条件で充放電し、満充電の状態でラミネートを開封した後、電極体を取り出して熱量測定用の耐圧容器に入れ、昇温速度1.0℃/分で、30℃から300℃まで昇温させた。この際、160~240℃の発熱量を、熱量計(Setaram社製熱量計C80)を用いて調べたので、その結果を表1に示す。尚、各電池の発熱量は、電池Z1の発熱量を100としたときの指数で表している。
・充放電条件
 充電電流(1/4)Itで電池電圧4.1Vまで定電流充電を行い、電池電圧4.1Vにて充電電流が(1/20)Itになるまで定電圧充電し、15分間休止後、(1/4)Itで電池電圧2.5Vまで放電を行うという充放電サイクルを2回行った。その後、充電電流(1/4)Itで電池電圧4.1Vまで定電流充電を行い、電池電圧4.1Vにて充電電流が(1/20)Itになるまで定電圧充電するという条件である。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、電解液にLiBOBが添加されていない電池Z1~Z4を比較した場合、正極にフッ化リチウムが添加された電池Z4は、正極にフッ化リチウムが添加されていない電池Z1と比較して発熱量が減少しており、熱安定性が向上していることが認められた。一方、正極にリチウム化合物が添加されているが、そのリチウム化合物が各々、炭酸リチウム、リン酸リチウムである電池Z2、Z3は、上記Z1と比較して、発熱量がほとんど減少していないことが認められた。以上のことから、正極に添加するリチウム化合物としは、炭酸リチウムやリン酸リチウムではなく、フッ化リチウムであることが必要となる。この理由の詳細は定かではないが、電解質塩であるLiPFが、熱によりLiFとPFに分解した際に、フッ化リチウムを含む正極中では正極活物質表面にLiFが析出し易くなる。このため、正極活物質の表面がLiFで被覆されて、正極活物質中の遷移金属と非水電解液との接触が妨げられる。この結果、非水電解液の酸化が抑制されて、発熱量が減少したと考えられる。
 一方、正極にリチウム化合物が添加されていない電池Z1と電池Z5を比較した場合、電解液にLiBOBが添加された電池Z5は、電解液にLiBOBが添加されていない電池Z1と比較して、発熱量がほとんど減少していないことがわかる。しかしながら、正極にフッ化リチウムが添加され、且つ、電解液にLiBOBが添加された電池Aは、正極にフッ化リチウムが添加されているが、電解液にLiBOBが添加されていない電池Z4に比べて、発熱量が一層抑制されていることが認められた。これは、正極にフッ化リチウムが添加され、且つ、電解液にLiBOBが含まれていれば、LiBOBの負極における還元により、負極活物質の表面に皮膜が形成されるからである。したがって、非水電解液と負極とが直接接触するのを抑えることができるので、高温環境下においても、反応生成物の量が減少する。この結果、該反応生成物が正極に移動することに起因する正極表面での非水電解液の酸化が、より一層抑制されるからである。
 以上のことから、本発明の効果を発揮するには、正極にフッ化リチウムが添加され、且つ、電解液にLiBOBが添加されることが必要であることがわかる。
             〔第2実施例〕
(実施例1)
 下記のように正極活物質を作製したこと以外は、上記第1実施例の実施例と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池B1と称する。
 共沈法により作製した[Ni0.5Mn0.3Co0.2](OH)とLiCOとを所定比で混合した後、これらを空気中にて930℃で10時間焼成することにより、Li1.04[Ni0.48Mn0.29Co0.19]Oで表される正極活物質を作製した。尚、該正極活物質の平均粒子径は約13μmであった。
(実施例2)
 正極活物質とフッ化リチウムと導電剤と結着剤との比率が、質量比で90:2:5:3となるようにした(正極活物質に対するフッ化リチウムの割合を、2.2質量%とした)こと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池B2と称する。
(実施例3)
 正極活物質とフッ化リチウムと導電剤と結着剤との比率が、質量比で89:3:5:3となるようにした(正極活物質に対するフッ化リチウムの割合を、3.4質量%とした)こと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池B3と称する。
(実施例4)
 正極作製時にフッ化リチウムの代わりにフッ化ナトリウムを添加したこと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池B4と称する。
(実施例5)
 正極作製時にフッ化リチウムの代わりに塩化リチウムを添加したこと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池B5と称する。
(比較例)
 正極作製時にフッ化リチウムを添加しないこと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Yと称する。
(実験)
 上記第1実施例の実験と同様にして、上記電池B1~B5、Yの充放電と昇温とを行い、発熱量を調べたので、その結果を表2に示す。但し、第1実施例の実験では160~240℃での発熱量を調べたが、本実験では160~300℃での発熱量を調べた(即ち、より高温域での発熱量を調べた)。尚、各電池の発熱量は、電池Yの発熱量を100としたときの指数で表している。
Figure JPOXMLDOC01-appb-T000002
 上記表2から明らかなように、より高温域での発熱量の比較においても、正極にフッ化リチウムが添加された電池B1は、正極にフッ化リチウムが添加されていない電池Yと比較して、発熱量が減少しており、熱安定性が向上していることが認められた。また、正極活物質に対するフッ化リチウムの割合を、各々2.2質量%、3.4質量%と増加させた電池B2、B3についても同様の効果が確認された。但し、正極活物質に対するフッ化リチウムの割合が高過ぎると正極容量が低下するため、当該割合は5質量%以下に規制するのが望ましい。
 また、正極にフッ化ナトリウムや塩化リチウムを添加した電池B4、B5でも、電池Yと比較して、発熱量が減少しており、熱安定性が向上していることが認められた。したがって、正極に添加する物質としてはフッ化リチウムに限らず、フッ化ナトリウムや塩化リチウム等のアルカリ金属ハロゲン化物であれば、熱安定性が向上することがわかる。この理由の詳細は定かではないが、電解質塩であるLiPFが、熱によりLiFとPFに分解した際に、フッ化リチウム、フッ化ナトリウム、塩化リチウム等のアルカリ金属ハロゲン化物を含む正極中では、正極活物質表面にLiFが析出し易くなる。このため、正極活物質の表面がLiFで被覆されて、正極活物質中の遷移金属と非水電解液との接触が妨げられる。この結果、非水電解液の酸化が抑制されて、発熱量が減少したと考えられる。
 尚、正極に塩化リチウムを添加した電池B5では、発熱量の減少が特に大きくなっている。この理由の詳細は定かではないが、塩化リチウムを添加した場合には、上述したLiPFの分解によるLiFの析出に加えて、以下に示す反応が生じているためと考えられる。即ち、燃焼過程において発生したHOとLiPFとが反応したときにはHFが生じるが、塩化リチウムが存在する場合には、HFとLiClとが反応してLiFが生じる。このため、正極活物質表面にLiFがより析出し易い状態となるので、正極活物質の表面がLiFで一層覆われることによるものと考えられる。
             〔第3実施例〕
(実施例1)
 正極作製時にフッ化リチウムの代わりに塩化マグネシウムを添加したこと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池C1と称する。
(実施例2)
 正極作製時にフッ化リチウムの代わりにフッ化カルシウムを添加したこと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池C2と称する。
(実施例3)
 正極作製時にフッ化リチウムの代わりに塩化カルシウムを添加したこと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池C3と称する。
(実施例4)
 正極作製時にフッ化リチウムの代わりにフッ化ジルコニウムを添加したこと以外は、上記第2実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池C4と称する。
(比較例)
 上記第2実施例の比較例と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Yと称する。
(実験)
 上記第1実施例の実験と同様にして、上記電池C1~C4、Yの充放電と昇温とを行い、メイン発熱ピークのピーク高さ、即ち、特に正極と電解液の反応による発熱が顕著である温度での発熱量(発熱ピーク強度)を調べたので、その結果を表3に示す。尚、電池C1~C4の発熱ピーク強度は、上記電池Yの発熱ピーク強度を100としたときの指数で表している。また、表3には、上述した電池B1、B4、B5の発熱ピーク強度についても併せて示す。
Figure JPOXMLDOC01-appb-T000003
 上記表3から明らかなように、正極にフッ化リチウム、フッ化ナトリウム、塩化リチウム添加した電池B1、B4、B5だけでなく、正極に塩化マグネシウム、フッ化カルシウム、塩化カルシウム、フッ化ジルコニウムを添加した電池C1~C4でも、電池Yと比較して、発熱ピーク強度が低下しており、熱安定性が向上していることが認められた。したがって、正極に添加する物質としてはフッ化リチウム、フッ化ナトリウム、塩化リチウム等のアルカリ金属ハロゲン化物だけでなく、塩化マグネシウム、フッ化カルシウム、塩化カルシウム、フッ化ジルコニウム等の金属ハロゲン化物であれば、熱安定性が向上することがわかる。この理由の詳細は定かではないが、電解質塩であるLiPFが、熱によりLiFとPFに分解した際に、塩化マグネシウム、フッ化カルシウム、塩化カルシウム、フッ化ジルコニウム等の金属ハロゲン化物を含む正極中では、正極活物質表面にLiFが析出し易くなる。このため、正極活物質の表面がLiFで被覆されて、正極活物質中の遷移金属と非水電解液との接触が妨げられる。この結果、非水電解液の酸化が抑制されて、発熱量が減少したと考えられる。
 尚、正極に塩化物を添加した電池C1、C3では、発熱ピーク強度の減少が特に大きくなっている。この理由の詳細は定かではないが、塩化物を添加した場合には、上述したLiPFの分解によるLiFの析出に加えて、以下に示す反応が生じているためと考えられる。即ち、燃焼過程において発生したHOとLiPFとが反応したときにはHFが生じるが、塩化物が存在する場合には、2HFとMgCl、CaClとが反応してMgFや、CaFが生じ、当該フッ化物は、上記LiFと同様、正極活物質表面に析出し、正極活物質を被覆する。したがって、正極活物質中の遷移金属と非水電解液との接触を一層抑制することができる。この結果、非水電解液の酸化がより抑制されて、発熱量が更に減少したと考えられる。
              〔参考例〕
(参考例1)
 正極作製時にフッ化リチウムを添加せず、且つ、正極活物質としてLiCoOを用いたこと以外は、上記第1実施例の実施例と同様にして電池を作製した。尚、正極作製時において、正極活物質と導電剤と結着剤との比率は、質量比で92:5:3とした。
 このようにして作製した電池を、以下、電池R1と称する。
(参考例2)
 正極活物質としてLiCoOを用いたこと以外は、上記第1実施例の実施例と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池R2と称する。
(実験)
 上記電池R1、R2を、上記第1実施例の実験と同様にして充放電と昇温とを行い、160~240℃の発熱量を調べたので、その結果を表4に示す。尚、電池R2の発熱量は、電池R1の発熱量を100としたときの指数で表している。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、正極にフッ化リチウムを添加した電池R2と、正極にフッ化リチウムを添加していない電池R1とを比較すると、発熱量にほとんど差異がないことが認められた。これは、ニッケルを含むリチウム含有遷移金属酸化物ではその触媒作用により、非水電解液の酸化が進行するが、LiCoOでは触媒作用による非水電解液の酸化が極めて少ない。このため、正極活物質の表面をフッ化リチウムで被覆することにより、正極活物質と非水電解液との接触を妨げても余り意味がないからである。
 尚、正極活物質として、LiNiOを用いた場合、LiNiOは熱安定性が極めて低い。したがって、正極活物質の触媒作用に起因する正極活物質表面での非水電解液の酸化よりも、正極活物質からの酸素脱離による非水電解液の酸化がはるかに大きくなる。このため、正極活物質の表面をフッ化リチウムで被覆しても、非水電解液の酸化を抑制できないので、発熱を抑制することができない。
 本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、電気自動車や電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。

Claims (7)

  1.  ニッケルとマンガンとが含まれたリチウム含有遷移金属酸化物を備える正極活物質、及び金属ハロゲン化物を有する正極と、
     負極活物質を有する負極と、
     非水系溶媒、フッ素含有リチウム塩、及びオキサレート錯体をアニオンとするリチウム塩を有する非水電解液と、
     を備えることを特徴とする非水電解質二次電池。
  2.  上記リチウム含有遷移金属酸化物として、一般式Li1+xNiMnCo2+d(式中、x,a,b,c,dはx+a+b+c=1、0.7≦a+b、0<x≦0.1、0≦c/(a+b)<0.65、0.7≦a/b≦2.0、-0.1≦d≦0.1)で表され、層状構造を有する酸化物を用いる、請求項1に記載の非水電解質二次電池。
  3.  上記オキサレート錯体を含むリチウム塩がリチウム-ビスオキサレートボレートであり、上記非水系溶媒に対する該リチウム-ビスオキサレートボレートの濃度が、0.05モル/リットル以上0.3モル/リットル以下である、請求項1又は2に記載の非水電解質二次電池。
  4.  上記金属ハロゲン化物のハロゲンが、フッ素又は塩素である、請求項1~3の何れか1項に記載の非水電解質二次電池。
  5.  上記金属ハロゲン化物の金属が、Li、Na、Mg、Ca又はZrである、請求項1~4の何れか1項に記載の非水電解質二次電池。
  6.  上記金属ハロゲン化物が、LiF、NaF、CaF、ZrF、LiCl、CaCl、及びMgClから成る群から選択される少なくとも1種である、請求項4又は5に記載の非水電解質二次電池。
  7.  上記正極活物質に対する上記金属ハロゲン化物の割合が、0.1質量%以上5.0質量%以下である、請求項1~6の何れか1項に記載の非水電解質二次電池。
PCT/JP2012/073981 2011-09-28 2012-09-20 非水電解質二次電池 WO2013047299A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013536202A JP5996547B2 (ja) 2011-09-28 2012-09-20 非水電解質二次電池
US14/347,430 US20140234701A1 (en) 2011-09-28 2012-09-20 Non-aqueous electrolyte secondary battery
CN201280043419.4A CN103782439B (zh) 2011-09-28 2012-09-20 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011212016 2011-09-28
JP2011-212016 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047299A1 true WO2013047299A1 (ja) 2013-04-04

Family

ID=47995331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073981 WO2013047299A1 (ja) 2011-09-28 2012-09-20 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20140234701A1 (ja)
JP (2) JP2013084547A (ja)
CN (1) CN103782439B (ja)
WO (1) WO2013047299A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896835B1 (ko) * 2017-04-10 2018-09-10 군산대학교산학협력단 비스(옥살레이트)보레이트를 음이온으로 갖는 전해질 염을 함유하는 전해액 조성물 또는 이를 포함하는 전기이중층 커패시터

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2751866B1 (en) 2011-09-02 2016-12-14 E. I. du Pont de Nemours and Company Fluorinated electrolyte compositions
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
EP2856540A1 (en) 2012-06-01 2015-04-08 E. I. Du Pont de Nemours and Company Lithium- ion battery
WO2013180783A1 (en) 2012-06-01 2013-12-05 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
HUE046573T2 (hu) 2013-04-04 2020-03-30 Solvay Nemvizes elektrolit készítmények
US10096864B2 (en) 2013-07-01 2018-10-09 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP6020490B2 (ja) 2014-03-03 2016-11-02 トヨタ自動車株式会社 リチウムイオン二次電池の正極、及びリチウムイオン二次電池の製造方法
CN106935799B (zh) * 2017-03-17 2018-10-12 江苏润寅石墨烯科技有限公司 一种稳定的镍钴锰酸锂三元锂电池正极片及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192721A (ja) * 1993-11-18 1995-07-28 Sanyo Electric Co Ltd 非水系電池
JPH11250914A (ja) * 1998-03-04 1999-09-17 Sony Corp 非水電解液二次電池
JP2006196250A (ja) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd リチウム二次電池
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
JP2010232001A (ja) * 2009-03-27 2010-10-14 Hitachi Ltd リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010012586A1 (en) * 1995-10-23 2001-08-09 Kuochih Hong Method to make nickel positive electrodes and batteries using same
AU2003280635A1 (en) * 2002-11-01 2004-05-25 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US20060121352A1 (en) * 2002-11-18 2006-06-08 Kejha Joseph B Cathode compositions and method for lithium-ion cell construction having a lithum compound additive, eliminating irreversible capacity loss
CN100449850C (zh) * 2004-02-27 2009-01-07 三洋电机株式会社 锂二次电池
JP5036141B2 (ja) * 2005-06-13 2012-09-26 パナソニック株式会社 非水電解液二次電池
US20080226983A1 (en) * 2007-03-16 2008-09-18 Sony Corporation Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5319899B2 (ja) * 2007-08-23 2013-10-16 株式会社東芝 非水電解液電池
TW200941804A (en) * 2007-12-12 2009-10-01 Umicore Nv Homogeneous nanoparticle core doping of cathode material precursors
JP2009224307A (ja) * 2008-02-22 2009-10-01 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP5023120B2 (ja) * 2009-08-28 2012-09-12 シャープ株式会社 非水電解質電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192721A (ja) * 1993-11-18 1995-07-28 Sanyo Electric Co Ltd 非水系電池
JPH11250914A (ja) * 1998-03-04 1999-09-17 Sony Corp 非水電解液二次電池
JP2006196250A (ja) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd リチウム二次電池
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
JP2010232001A (ja) * 2009-03-27 2010-10-14 Hitachi Ltd リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896835B1 (ko) * 2017-04-10 2018-09-10 군산대학교산학협력단 비스(옥살레이트)보레이트를 음이온으로 갖는 전해질 염을 함유하는 전해액 조성물 또는 이를 포함하는 전기이중층 커패시터

Also Published As

Publication number Publication date
CN103782439B (zh) 2016-06-08
US20140234701A1 (en) 2014-08-21
JPWO2013047299A1 (ja) 2015-03-26
JP2013084547A (ja) 2013-05-09
CN103782439A (zh) 2014-05-07
JP5996547B2 (ja) 2016-09-21

Similar Documents

Publication Publication Date Title
JP6072688B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP5996547B2 (ja) 非水電解質二次電池
JP5128018B1 (ja) 非水電解質二次電池
JP6102934B2 (ja) 非水電解質二次電池及び非水電解質二次電池用正極活物質
US20110195309A1 (en) Nonaqueous electrolyte secondary battery
US20090239146A1 (en) Non- Aqueous electrolyte secondary battery
WO2011016553A1 (ja) 非水電解質二次電池
JP2011070789A (ja) 非水電解質二次電池
JP5991718B2 (ja) 非水電解質二次電池の正極活物質及び非水電解質二次電池
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
JP6252593B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US9716268B2 (en) Nonaqueous electrolyte secondary battery
JP2014011023A (ja) 非水電解質二次電池
JP2014060029A (ja) 非水電解質二次電池
WO2022102682A1 (ja) 非水二次電池用電解液及びそれを用いた非水二次電池、並びに非水二次電池の放電方法
KR20090091053A (ko) 비수전해질 이차 전지 및 그의 제조 방법
WO2013054676A1 (ja) 非水溶液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536202

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347430

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835278

Country of ref document: EP

Kind code of ref document: A1