WO2013047072A1 - 液浸上層膜形成用組成物及びレジストパターン形成方法 - Google Patents

液浸上層膜形成用組成物及びレジストパターン形成方法 Download PDF

Info

Publication number
WO2013047072A1
WO2013047072A1 PCT/JP2012/071919 JP2012071919W WO2013047072A1 WO 2013047072 A1 WO2013047072 A1 WO 2013047072A1 JP 2012071919 W JP2012071919 W JP 2012071919W WO 2013047072 A1 WO2013047072 A1 WO 2013047072A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
liquid immersion
composition
polymer
Prior art date
Application number
PCT/JP2012/071919
Other languages
English (en)
French (fr)
Inventor
一憲 草開
希佳 田中
孝弘 羽山
島 基之
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2013536101A priority Critical patent/JP5935807B2/ja
Publication of WO2013047072A1 publication Critical patent/WO2013047072A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/387Esters containing sulfur and containing nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]

Definitions

  • the present invention relates to a composition for forming a liquid immersion upper layer film and a method for forming a resist pattern.
  • an immersion exposure method in which exposure is performed by filling a space between a lens and a resist film with an immersion medium such as pure water or a fluorine-based inert liquid is expanding.
  • This immersion exposure method has the advantage that the numerical aperture (NA) of the lens can be increased and high resolution can be obtained.
  • the resist pattern forming method by the immersion exposure method has problems such as elution of the photoresist composition into the immersion medium and generation of pattern defects due to droplets remaining on the resist film surface.
  • a method for improving such inconvenience and improving scanning speed a method of providing a liquid immersion upper layer film on a resist film is known (Japanese Patent Laid-Open No. 2006-91798, International Publication No. 2008/47678 pamphlet). And International Publication No. 2009/41270 pamphlet).
  • Such a liquid immersion upper layer film is required to have superior water repellency in order to satisfy the above requirements, but on the other hand, due to its excellent water repellency, a bridge defect in which a part of resist patterns are connected to each other. Further, development defects such as blob defects due to adhesion of development residues may be caused, and as a result, the accuracy of the pattern shape of the resist pattern may be reduced.
  • the present invention has been made on the basis of the circumstances as described above, and its purpose is to provide basic characteristics as a liquid immersion upper layer film such as water repellency and solubility in a developer, and bridge defects in resist pattern formation.
  • An object of the present invention is to provide a composition for forming a liquid immersion upper layer film that can suppress development defects such as blob defects and can form a resist pattern having an excellent pattern shape.
  • the invention made to solve the above problems is [A] a polymer component containing the polymer (A1) (hereinafter also referred to as “[A] polymer component”), and [B] a solvent,
  • the polymer (A1) is a composition for forming a liquid immersion upper layer film having a structural unit (I) containing a group represented by the following formula (1).
  • R 1 is an alkali-dissociable group
  • R 2 is an (n + 1) -valent linking group
  • A is —CO—O— *, —SO 2 —O— *, An oxygen atom or —NR 3 —
  • R 3 is a hydrogen atom or an alkali-dissociable group
  • * represents a site bonded to R 1 , provided that when A is an oxygen atom, A in R 2
  • n is an integer of 1 to 3.
  • n is 2 or more, a plurality of R 1 and A are the same or different. May be.
  • the composition for forming a liquid immersion upper layer film of the present invention contains a polymer (A1).
  • the polymer (A1) contains a group having an alkali-dissociable group represented by the above formula (1)
  • the liquid immersion upper film formed from the liquid immersion upper film forming composition has water repellency. Excellent and good solubility in an alkali developer.
  • the alkali-dissociable group is dissociated, so that the fluorine atom content in the liquid immersion upper layer film is lowered, and it is assumed that the affinity for the alkali developer is improved.
  • development defects such as bridge defects and blob defects in resist pattern formation can be suppressed, and a resist pattern having an excellent pattern shape can be formed.
  • the structural unit (I) is preferably represented by the following formula (2).
  • R 5 represents a hydrogen atom, a methyl group, a hydroxymethyl group or a trifluoromethyl group.
  • R 4 represents —CO—O—, —O—CO—O—, —O—, —SO 2 —, —CO—NH—, or —SO 2 NH—, where n, R 1, and R 2 have the same meaning as in the above formula (1).
  • the liquid immersion upper film formed from the liquid immersion upper film forming composition is superior in water repellency and has better solubility in an alkali developer. Become.
  • development defects such as bridge defects and blob defects in resist pattern formation can be more effectively suppressed, and a resist pattern that is more excellent in pattern shape can be formed.
  • the alkali dissociable group for R 1 is preferably a monovalent hydrocarbon group having 1 to 20 carbon atoms, a group represented by the following formula (3), or a group represented by the following formula (4).
  • R 6 to R 9 are a hydrogen atom, a fluorine atom, or a perfluoroalkyl group, provided that at least one of R 6 to R 9 is a fluorine atom or a perfluoroalkyl group.
  • R 10 is a hydrogen atom, a fluorine atom or a monovalent organic group.
  • a is 0 or 1.
  • b is an integer of 0 to 5.
  • R 11 is a fluorine atom or a monovalent organic group that may contain a fluorine atom. However, when b is 2 or more, the plurality of R 11 may be the same or different.
  • the liquid immersion upper film formed from the liquid immersion upper film forming composition is excellent in water repellency and has sufficient basic characteristics as a liquid immersion upper film. Can be satisfied. Moreover, it becomes possible by using the said composition for liquid immersion upper layer film formation to form the resist pattern which is excellent in pattern shape.
  • the content ratio of the structural unit (I) in the polymer component is preferably 0.1 mol% or more and 50 mol% or less with respect to all the structural units constituting the [A] polymer component.
  • the content ratio of the structural unit (I) is preferably 0.1 mol% or more and 50 mol% or less with respect to all the structural units constituting the [A] polymer component.
  • the polymer component contains at least one group selected from the group consisting of a fluorinated alkyl group and a fluorinated hydroxyalkyl group in the same or different polymer as the polymer (A1), and the above formula It is preferable to further have the structural unit (II) not containing the group represented by (1).
  • the polymer component further has a structural unit (II) containing a fluorine atom, the liquid immersion upper film formed from the liquid immersion upper film forming composition has further excellent water repellency. The basic characteristics as a liquid immersion upper film can be sufficiently satisfied.
  • the polymer component is at least one group selected from the group consisting of a carboxy group, a sulfo group and a group represented by the following formula (11) in the same or different polymer as the polymer (A1). It is preferable to contain.
  • R 23 is a hydrogen atom, a halogen atom, a nitro group, an alkyl group, a monovalent alicyclic hydrocarbon group, an alkoxy group, an acyl group, an aralkyl group or an aryl group.
  • R 24 is —C ( ⁇ O) —R 25 , —S ( ⁇ O) 2 —R 26 , —R 27 —CN or —R 28 —NO 2.
  • R 25 and R 26 each independently represents a hydrogen atom, an alkyl group, a fluorinated alkyl group, 1 A valent alicyclic hydrocarbon group, an alkoxy group, a cyano group, a cyanomethyl group, an aralkyl group or an aryl group, provided that R 25 or R 26 and R 23 are bonded to each other to form a ring structure.
  • R 27 and R 28 is each independently a single bond, a methylene group or an alkylene group having 2 to 5 carbon atoms.
  • the solvent preferably contains an ether solvent. Since the resist film is difficult to dissolve in an ether solvent, the resist film surface is eroded by the solvent in the composition for forming an upper liquid immersion film when the composition for forming the upper liquid film is applied on the resist film. Can prevent the inconvenience.
  • the resist pattern forming method of the present invention comprises: (1) forming a resist film on the substrate; (2) A step of laminating an immersion upper film on the resist film using the composition for forming an immersion upper film; (3) immersion exposure of the resist film on which the liquid immersion upper layer film is laminated by irradiation of radiation through a photomask; and (4) a step of developing the immersion exposed resist film.
  • the resist pattern forming method development defects such as bridge defects and blob defects can be suppressed, and a resist pattern that is superior in pattern shape can be formed.
  • a liquid immersion upper film sufficiently satisfying basic characteristics such as water repellency and solubility in a developer can be formed, and resist pattern formation can be performed.
  • Development defects such as bridge defects and blob defects can be suppressed, and a resist pattern having an excellent pattern shape can be formed. Therefore, they can be suitably used for lithography processes in the manufacture of electronic devices that will be increasingly miniaturized in the future.
  • composition for forming an immersion upper layer film of the present invention contains [A] a polymer component and [B] a solvent.
  • the composition for forming a liquid immersion upper layer film may contain an optional component in addition to the [A] polymer component and the [B] solvent, as long as the effects of the present invention are not impaired.
  • each component will be described in detail.
  • the polymer component includes a polymer (A1).
  • This polymer (A1) is a polymer having a structural unit (I) containing a group represented by the above formula (1).
  • the polymer component may consist of only the polymer (A1), and may contain a polymer (A2) having no structural unit (I) in addition to the polymer (A1). .
  • the polymer component may contain one or more polymers.
  • the polymer component contains a group having an alkali-dissociable group represented by the above formula (1)
  • the liquid immersion upper film formed from the liquid immersion upper film forming composition has water repellency.
  • the solubility in an alkali developer is good. As a result, development defects such as bridge defects and blob defects in resist pattern formation can be suppressed, and a resist pattern having an excellent pattern shape can be formed.
  • the polymer component is selected from the group consisting of a fluorinated alkyl group and a fluorinated hydroxyalkyl group in addition to the structural unit (I) in the same or different polymer as the polymer (A1).
  • the [A] polymer component may have another structural unit other than these structural units, unless the effect of this invention is impaired.
  • the [A] polymer component may have each structural unit individually by 1 type, and may have 2 or more types.
  • the polymer (A1) contains at least one group selected from the group consisting of a fluorinated alkyl group and a fluorinated hydroxyalkyl group, in addition to the structural unit (I), and in the formula (1) It is preferable to further have a structural unit (II) that does not contain the represented group.
  • the polymer (A1) may have other structural units in addition to these structural units as long as the effects of the present invention are not impaired.
  • the polymer (A1) may have each structural unit individually by 1 type, and may have 2 or more types.
  • At least one structural unit (III) selected from the group consisting of a sulfo group, a carboxy group and a group represented by the above formula (11) is used. It is preferable to have.
  • the immersion upper layer In the film-forming composition when the polymer (A2) different from the polymer (A1) contains a highly polar sulfo group, carboxy group or group represented by the above formula (11), the immersion upper layer In the film-forming composition, the polymer (A1) component having high water repellency can be unevenly distributed on the surface of the liquid immersion upper layer film. Thereby, the liquid immersion upper film formed from the liquid immersion upper film forming composition can sufficiently satisfy basic characteristics such as water repellency. Further, when the polymer (A2) contains a highly polar sulfo group, carboxy group or group represented by the above formula (11), the polymer (A2) is excellent in solubility in alkali during alkali development and has the effect of suppressing defects during development. Is expensive.
  • the polymer (A2) When the polymer (A2) has the structural unit (III), it contains at least one group selected from the group consisting of a fluorinated alkyl group and a fluorinated hydroxyalkyl group in addition to the structural unit (III), and It is preferable to further have a structural unit (II) that does not contain a group represented by the above formula (1).
  • the polymer (A2) may have other structural units as long as the effects of the present invention are not impaired.
  • the polymer (A2) may have each structural unit individually by 1 type, and may have 2 or more types. Hereinafter, each structural unit will be described in detail.
  • the structural unit (I) is a structural unit containing a group represented by the above formula (1).
  • the structural unit (I) may have one or a plurality of groups represented by the above formula (1) in the structural unit, or may have a plurality of types.
  • R 1 is an alkali dissociable group.
  • R 2 is an (n + 1) -valent linking group.
  • A is —CO—O— *, —SO 2 —O— *, an oxygen atom or —NR 3 —.
  • R 3 is a hydrogen atom or an alkali dissociable group. * Indicates a site binding to R 1. However, when A is an oxygen atom, the site directly connected to A in R 2 is not a carbonyl group or a sulfonyl group.
  • n is an integer of 1 to 3. However, when n is 2 or more, the plurality of R 1 and A may be the same or different.
  • the alkali dissociable group represented by R 1 is a group that is dissociated by an alkali developer used in the development step of the resist pattern forming method, and does not contain a fluorine atom even if it contains a fluorine atom.
  • it may be a monovalent hydrocarbon group having 1 to 20 carbon atoms, a group represented by the above formula (3), or a group represented by the above formula (4). Is preferred.
  • the alkali dissociable group for R 1 is the specific group, the water repellency of the liquid immersion upper film formed from the liquid immersion upper film forming composition can be improved.
  • the alkali dissociable group contains a fluorine atom
  • the alkali dissociable group containing the fluorine atom is dissociated by the alkali developer, so that the fluorine atom content is reduced, and bridge defects, blob defects, etc. Development defects can be further suppressed.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 1 include an alkyl group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, and 6 to 20 carbon atoms. And aromatic hydrocarbon groups.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, n-butyl group, i-butyl group, n-pentyl group, i-pentyl group, n-hexyl group, i- A hexyl group etc. are mentioned.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, and the like.
  • Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group.
  • the monovalent hydrocarbon group is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • R 6 to R 9 are a hydrogen atom, a fluorine atom or a perfluoroalkyl group. However, at least one of R 6 to R 9 is a fluorine atom or a perfluoroalkyl group.
  • R 10 is a hydrogen atom, a fluorine atom or a monovalent organic group.
  • Examples of the perfluoroalkyl group represented by R 6 to R 9 include a trifluoromethyl group, a perfluoroethyl group, a perfluoro n-propyl group, a perfluoro i-propyl group, a perfluoro n-butyl group, Examples thereof include a perfluoro i-butyl group, a perfluoro t-butyl group, and a perfluorocyclohexylmethyl group.
  • Examples of the monovalent organic group represented by R 10 include an alkyl group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms. Is mentioned.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, n-butyl group, i-butyl group, n-pentyl group, i-pentyl group, n-hexyl group, i- A hexyl group etc. are mentioned.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, and the like.
  • Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the group represented by the above formula (3) include 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoroethyl group, 2 , 2,3,3,4,4,4-hexafluoroethyl group, 1,1,1-trifluoro-2-propyl group, 1,1,1,3,3,3-hexafluoro-2-propyl group Etc.
  • 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoroethyl group, 1,1,1,3,3,3-hexafluoro-2-propyl group Is preferred.
  • a is 0 or 1.
  • b is an integer of 0 to 5.
  • R 11 is a monovalent organic group which may contain a fluorine atom or a fluorine atom. However, when b is 2 or more, the plurality of R 11 may be the same or different. Further, at least one R 11 is preferably a fluorine atom or a monovalent organic group containing a fluorine atom.
  • Examples of the monovalent organic group optionally containing a fluorine atom represented by R 11 include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an acyl group having 1 to 10 carbon atoms. And an acyloxy group having 1 to 10 carbon atoms. Note that some or all of the hydrogen atoms contained in these groups may be substituted with fluorine atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms include the same groups as the alkyl group having 1 to 10 carbon atoms represented by R 1 .
  • alkoxy group having 1 to 10 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, and t-butoxy group.
  • acyl group having 1 to 10 carbon atoms examples include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, trioyl group and caproyl group.
  • acyloxy group having 1 to 10 carbon atoms examples include an acetoxy group, an ethylyloxy group, a butyryloxy group, a t-butyryloxy group, a t-amylyloxy group, an n-hexane carbonyloxy group, and an n-octane carbonyloxy group. It is done.
  • A is preferably 1.
  • b is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 1 and 2.
  • Examples of the group represented by the above formula (4) include phenyl group, tolyl group, fluorophenyl group, fluorobenzyl group, difluorobenzyl group, trifluoromethylbenzyl group and the like. Among these, a difluorobenzyl group and a trifluoromethylbenzyl group are preferable.
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • R 7 , R 9 and R 10 in the above formula (3) are fluorine atoms or trifluoromethyl groups
  • R 6 is a hydrogen atom.
  • a group in which R 8 is a hydrogen atom or a trifluoromethyl group, or a fluorinated benzyl group is more preferable.
  • Examples of the (n + 1) -valent linking group represented by R 2 include (n + 1) -valent hydrocarbon groups having 1 to 20 carbon atoms, (n + 1) -valent fluorinated hydrocarbon groups having 1 to 20 carbon atoms, And —O—, —S—, —COO—, —OCO—, —SO 2 —, —CO—, a group formed by combining these, and the like.
  • Examples of the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms include an (n + 1) -valent linear or branched hydrocarbon group having 1 to 10 carbon atoms, and an (n + 1) -valent hydrocarbon group having 4 to 20 carbon atoms. Examples thereof include alicyclic hydrocarbon groups and (n + 1) -valent aromatic hydrocarbon groups having 6 to 20 carbon atoms.
  • Examples of the (n + 1) -valent linear or branched hydrocarbon group having 1 to 10 carbon atoms include (n + 1) hydrogen atoms from alkanes such as methane, ethane, propane, butane, pentane, hexane, and octane. Examples include groups other than atoms. Of these, a methylene group, a methanetriyl group, an ethanetriyl group, and an i-propanetetrayl group are preferable.
  • Examples of the (n + 1) -valent alicyclic hydrocarbon group having 4 to 20 carbon atoms include: A group obtained by removing (n + 1) hydrogen atoms from a monocyclic saturated hydrocarbon such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, methylcyclohexane, ethylcyclohexane; A group obtained by removing (n + 1) hydrogen atoms from a monocyclic unsaturated hydrocarbon such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclopentadiene, cyclohexadiene, cyclooctadiene, cyclodecadiene; Bicyclo [2.2.1] heptane, bicyclo [2.2.2]
  • 0 2,7 a group obtained by removing (n + 1) hydrogen atoms from a polycyclic saturated hydrocarbon such as dodecane or adamantane; Bicyclo [2.2.1] heptene, bicyclo [2.2.2] octene, tricyclo [5.2.1.0 2,6 ] decene, tetracyclo [6.2.1.1 3,6 . And a group obtained by removing (n + 1) hydrogen atoms from a polycyclic unsaturated hydrocarbon such as 0 2,7 ] dodecene.
  • Examples of the (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms include groups obtained by removing (n + 1) hydrogen atoms from aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene, and anthracene. Is mentioned.
  • the (n + 1) -valent fluorinated hydrocarbon group having 1 to 20 carbon atoms includes at least part of the hydrogen atoms of the groups exemplified as the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms. And a group substituted with a fluorine atom.
  • At least one selected from the group consisting of these hydrocarbon groups and fluorinated hydrocarbon groups and —O—, —S—, —COO—, —OCO—, —SO 2 —, —CO—.
  • the group formed by combining with the above group the ring structure of the alicyclic hydrocarbon group and the fluorinated alicyclic hydrocarbon group has —O—, —S—, —COO—, —OCO—, —SO 2 —.
  • those containing at least one group selected from the group consisting of -CO- are examples of the group consisting of -CO-.
  • Examples of the ring structure composed of —O— and a hydrocarbon group having 1 to 20 carbon atoms include cyclic ether structures having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of -S- and a hydrocarbon group having 1 to 20 carbon atoms include cyclic thioether structures having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of the above -COO- and a hydrocarbon group having 1 to 20 carbon atoms include a lactone structure having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of —CO— and a hydrocarbon group having 1 to 20 carbon atoms include cyclic ketone structures having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of the —SO 2 — and the hydrocarbon group having 1 to 20 carbon atoms include a cyclic sulfonyl structure having 3 to 8 carbon atoms.
  • the alkali dissociable group for R 3 when the group represented by A is —NR 3 — is not particularly limited as long as it is a group dissociable by an alkali developer used in the development step of the resist pattern forming method. Examples thereof include the same groups as the alkali dissociable group represented by R 1 above.
  • the above A is preferably —CO—O—.
  • the structural unit (I) is preferably a structural unit represented by the above formula (2) (hereinafter also referred to as “structural unit (I-1)”).
  • R 5 represents a hydrogen atom, a methyl group, a hydroxymethyl group or a trifluoromethyl group.
  • R 4 is —CO—O—, —O—CO—O—, —O—, —SO 2 —, —CO—NH— or —SO 2 NH—.
  • R 1 and R 2 are as defined in the above formula (1).
  • Examples of the structural unit (I) include structural units represented by the following formulas (1-1) to (1-15).
  • R 5 has the same meaning as in the above formula (2).
  • Examples of the monomer that gives the structural unit (I) include compounds represented by the following formulas.
  • the content ratio of the structural unit (I) in the polymer component is usually 0.1 mol% or more and 50 mol% or less with respect to all the structural units constituting the [A] polymer component, preferably Is 0.3 mol% or more and 20 mol% or less, more preferably 0.5 mol% or more and 10 mol% or less.
  • the liquid immersion upper layer film formed from the liquid immersion upper layer film-forming composition has further excellent water repellency, and 50 mol % Or less
  • the [A] polymer component is excellent in solubility in an alkali developer and also excellent in peeling resistance.
  • the content ratio of the structural unit (I) in the polymer (A1) is preferably from 0.1 mol% to 30 mol%, more preferably from 0.5 mol% to 20 mol%, and more preferably from 1 mol% to 10 mol. % Or less is more preferable.
  • the liquid immersion upper layer film obtained from the liquid immersion upper layer film-forming composition sufficiently satisfies the water repellency, and has bridge defects and blobs in resist pattern formation. Development defects such as defects can be further suppressed.
  • the structural unit (II) includes at least one group selected from the group consisting of a fluorinated alkyl group and a fluorinated hydroxyalkyl group, and does not include the group represented by the formula (1). .
  • the polymer component further has a structural unit (II) containing a fluorine atom, the liquid immersion upper film formed from the liquid immersion upper film forming composition has further excellent water repellency. The basic characteristics as a liquid immersion upper film can be sufficiently satisfied.
  • structural unit (II) examples include structural units represented by the following formulas (5) to (7) (hereinafter also referred to as “structural units (II-1) to (II-3)”).
  • R ⁇ 12 > is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group.
  • R 13 is a divalent linking group.
  • R 14 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • R 15 is a fluorinated alkyl group having 1 to 10 carbon atoms or a fluorinated alicyclic hydrocarbon group having 3 to 10 carbon atoms.
  • R 16 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • R 17 is a divalent linking group.
  • R 18 is a fluorinated alkyl group having 1 to 20 carbon atoms.
  • examples of the divalent linking group represented by R 13 include, for example, a linear or branched divalent hydrocarbon group having 1 to 12 carbon atoms, and 2 having 4 to 12 carbon atoms. Valent alicyclic hydrocarbon groups, groups formed by combining these, and the like.
  • Examples of the linear or branched divalent hydrocarbon group having 1 to 12 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, and an i-butylene group. N-pentylene group, i-pentylene group and the like. Of these, a divalent hydrocarbon group having 1 to 3 carbon atoms is preferable, and a methylene group, an ethylene group, an n-propylene group, and an i-propylene group are more preferable.
  • Examples of the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms include monocyclic alicyclic hydrocarbon groups such as cyclobutylene group, cyclopentylene group, cyclohexylene group and cyclooctylene group; norbornylene And a polycyclic alicyclic hydrocarbon group having a 2- to 4-membered ring such as a group and an adamantylene group. Of these, norbornylene group and adamantylene group are preferable.
  • examples of the fluorinated alkyl group having 1 to 10 carbon atoms represented by R 15 include a methyl group, an ethyl group, a propyl group, an n-butyl group, an i-butyl group, and an n-pentyl group. And a group in which at least one hydrogen atom of an alkyl group such as i-pentyl group, n-hexyl group and i-hexyl group is substituted with a fluorine atom.
  • Examples of the fluorinated alicyclic hydrocarbon group having 3 to 10 carbon atoms represented by R 15 include a hydrogen atom contained in a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, and the like. And a group in which at least one of is substituted with a fluorine atom.
  • examples of the divalent linking group represented by R 17 include the same groups as those exemplified as the divalent linking group represented by R 13 .
  • Examples of the fluorinated alkyl group having 1 to 20 carbon atoms represented by R 18 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and an n-pentyl group.
  • At least one hydrogen atom of an alkyl group such as a group, i-pentyl group, n-hexyl group, i-hexyl group, n-decyl group, i-decyl group, n-dodecyl group, i-dodecyl group, etc. is a fluorine atom And a group substituted with.
  • Examples of the structural unit (II-1) include structural units represented by the following formulas (2-1) to (2-8).
  • R 12 has the same meaning as in the above formula (5).
  • Examples of the structural unit (II-2) include structural units represented by the following formulas (2-9) to (2-14).
  • R 14 has the same meaning as in the above formula (6).
  • Examples of the structural unit (II-3) include structural units represented by the following formulas (2-15) to (2-17).
  • R 16 has the same meaning as in the above formula (7).
  • Examples of the monomer that gives the structural unit (II) include compounds represented by the following formulas.
  • the content ratio of the structural unit (II) in the polymer component is preferably 30 mol% or more and less than 100 mol%, preferably 40 mol% or more and 99 mol% with respect to all the structural units constituting the [A] polymer component. 0.5 mol% or less is more preferable, and 50 mol% or more and 99 mol% or less is more preferable. [A] By making the content rate of structural unit (II) in a polymer component into the said range, it is excellent by the water repellency and removability of the liquid immersion upper layer film formed from the said liquid immersion upper layer film formation composition.
  • the content ratio of the structural unit (II) is preferably 40 mol% or more and less than 100 mol%, more preferably 60 mol% or more and less than 100 mol%, 80 mol% or more and less than 10 mol% is more preferable.
  • the content of the structural unit (II) is preferably 30 mol% or more and less than 100 mol%, more preferably 40 mol% or more and 99.5 mol% or less. Preferably, it is 50 mol% or more and 99 mol% or less.
  • the structural unit (III) is a structural unit containing at least one group selected from the group consisting of a carboxy group, a sulfo group, and a group represented by the above formula (11).
  • structural unit (III-1) the structural unit containing a sulfo group
  • structural unit (III-1-1) a structural unit represented by the following formula (8) (hereinafter referred to as “structural unit”). (III-1-1) ”) and the like.
  • R 19 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • R 20 is a single bond or a divalent linking group.
  • Examples of the divalent linking group represented by R 20 include an oxygen atom, a sulfur atom, a divalent linear or branched hydrocarbon group having 1 to 6 carbon atoms, and a divalent group having 4 to 12 carbon atoms. And an alicyclic hydrocarbon group, a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, a carbonyl group, an ester group, —NH—, a group formed by combining these groups, and the like.
  • Examples of the divalent linear or branched hydrocarbon group having 1 to 6 carbon atoms include a methylene group, an ethanediyl group, a propanediyl group, and a butanediyl group.
  • Examples of the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms include a cyclobutanediyl group, a cyclopentanediyl group, a cyclohexanediyl group, a norbornylene group, and an adamantylene group.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms include a phenylene group and a naphthylene group.
  • Examples of the structural unit (III-1-1) include a structural unit represented by the following formula.
  • R 19 has the same meaning as in the above formula (8).
  • structural units derived from vinyl sulfonic acid and structural units derived from (meth) acryloylaminopropyl sulfonic acid are preferred.
  • Examples of the monomer that gives the structural unit (III-1-1) include compounds represented by the following formulas.
  • structural unit (III) examples of the structural unit containing a carboxy group include a structural unit represented by the following formula (9) (hereinafter referred to as “structural unit”). (Also referred to as “(III-2-1)”), a structural unit represented by the following formula (10) (hereinafter also referred to as “structural unit (III-2-2)”), and the like.
  • R 21 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 22 is a divalent linking group.
  • Examples of the divalent linking group represented by R 22 include a linear or branched divalent hydrocarbon group having 1 to 6 carbon atoms, and a divalent alicyclic hydrocarbon having 4 to 12 carbon atoms. Groups, divalent aromatic hydrocarbon groups having 6 to 12 carbon atoms, groups formed by combining these groups with ester groups, and the like.
  • Examples of the structural unit (III-2-1) include a structural unit represented by the following formula.
  • R ⁇ 21 > is synonymous with the said Formula (9).
  • Examples of the monomer that provides the structural unit (III-2-1) or the structural unit (III-2-2) include compounds represented by the following formulas.
  • structural unit (III) the structural unit containing the group represented by the above formula (11) (hereinafter also referred to as “structural unit (III-3)”) will be described.
  • R 23 represents a hydrogen atom, a halogen atom, a nitro group, an alkyl group, a monovalent alicyclic hydrocarbon group, an alkoxy group, an acyl group, an aralkyl group or an aryl group. Some or all of the hydrogen atoms of the alkyl group, alicyclic hydrocarbon group, alkoxy group, acyl group, aralkyl group and aryl group may be substituted.
  • R 24 is —C ( ⁇ O) —R 25 , —S ( ⁇ O) 2 —R 26 , —R 27 —CN or —R 28 —NO 2 .
  • R 25 and R 26 are each independently a hydrogen atom, an alkyl group, a fluorinated alkyl group, a monovalent alicyclic hydrocarbon group, an alkoxy group, a cyano group, a cyanomethyl group, an aralkyl group or an aryl group. However, R 25 or R 26 and R 23 may be bonded to each other to form a ring structure.
  • R 27 and R 28 are each independently a single bond, a methylene group or an alkylene group having 2 to 5 carbon atoms.
  • the halogen atom represented by R 23 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom and a chlorine atom are preferable.
  • Examples of the alkyl group represented by R 23 include linear alkyl groups such as methyl group, ethyl group, n-propyl group, and n-butyl group; i-propyl group, i-butyl group, sec- Examples thereof include branched alkyl groups such as a butyl group and a t-butyl group.
  • the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms.
  • Examples of the monovalent alicyclic hydrocarbon group represented by R 23 include a monocyclic alicyclic hydrocarbon group such as a cyclopentyl group and a cyclohexyl group; an adamantyl group, a norbornyl group, a tetracyclodecanyl group, and the like. And the polycyclic alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • the alkoxy group is preferably an alkoxy group having 1 to 20 carbon atoms.
  • the acyl group is preferably an acyl group having 2 to 20 carbon atoms.
  • Examples of the aralkyl group represented by R 23 include a benzyl group, a phenethyl group, and a naphthylmethyl group.
  • the aralkyl group is preferably an aralkyl group having 7 to 12 carbon atoms.
  • Examples of the aryl group represented by R 23 include a phenyl group, a tolyl group, a dimethylphenyl group, a 2,4,6-trimethylphenyl group, and a naphthyl group.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms.
  • Examples of the substituent that the alkyl group, monovalent alicyclic hydrocarbon group, alkoxy group, acyl group, aralkyl group and aryl group represented by R 23 may have include a fluorine atom and a chlorine atom. And halogen atoms such as hydroxyl group, nitro group, cyano group and the like.
  • R 23 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms from the viewpoint of balancing the solubility of the developer in the upper layer film formed from the immersion film forming composition and the resistance to peeling.
  • an alkoxy group having 1 to 5 carbon atoms and an acyl group having 2 to 5 carbon atoms are preferable, and a hydrogen atom, a methyl group, an ethyl group, and an acetyl group are more preferable.
  • R 24 is —C ( ⁇ O) —R 25 and —S ( ⁇ O) 2 —R 26
  • the alkyl group represented by R 25 and R 26 a monovalent alicyclic hydrocarbon group, and an alkoxy group as the aralkyl group and the aryl group, for example, such as the same groups as those exemplified as the respective groups of R 23 can be mentioned.
  • the fluorinated alkyl group represented by R 25 and R 26 include groups in which at least one of the hydrogen atoms of the groups exemplified as the alkyl group for R 23 is substituted with a fluorine atom.
  • R 25 and R 26 a hydrogen atom and an alkyl group are preferable, and a hydrogen atom, a methyl group, and an ethyl group are more preferable.
  • the group containing a ring structure formed by combining R 25 or R 26 and R 23 with each other includes a carbon atom to which R 25 or R 26 and R 23 are bonded, and having an oxo group.
  • a divalent alicyclic hydrocarbon group of 5 to 12 is preferred.
  • R 27 and R 28 are preferably a single bond, a methanediyl group or an ethanediyl group.
  • the structural unit (III-3) is derived from, for example, a (meth) acrylic acid ester derivative, a (meth) acrylamide derivative, a vinyl ether derivative, an olefin derivative, or a styrene derivative having the group represented by the above formula (11). Examples include structural units.
  • the structural unit derived from a (meth) acrylic acid ester derivative is preferable. That is, the structural unit (III-3) is preferably a structural unit represented by the following formula (12) (hereinafter also referred to as “structural unit (III-3-1)”).
  • R 23 and R 24 is as defined in the above formula (11). m is an integer of 1 to 3. If R 23 and R 24 are a plurality of each of the plurality of R 23 and R 24 may be the same as or different from each other.
  • R 30 is a (m + 1) -valent linking group.
  • R 29 is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • R 29 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer giving the structural unit (III-3).
  • Examples of the (m + 1) -valent linking group represented by R 30 include an alkanediyl group, a divalent alicyclic hydrocarbon group, and an alkenediyl group as a divalent linking group (when n is 1). And arenediyl groups. Note that some or all of the hydrogen atoms contained in these groups may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, a cyano group, or the like.
  • alkanediyl group examples include a methanediyl group, an ethanediyl group, a propanediyl group, a butanediyl group, a hexanediyl group, and an octanediyl group.
  • the alkanediyl group is preferably an alkanediyl group having 1 to 8 carbon atoms.
  • divalent alicyclic hydrocarbon group examples include monocyclic alicyclic hydrocarbon groups such as cyclopentanediyl group and cyclohexanediyl group; and polycyclic alicyclic groups such as norbornanediyl group and adamantanediyl group. A hydrocarbon etc. are mentioned.
  • the divalent alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 5 to 12 carbon atoms.
  • alkenediyl group examples include an ethenediyl group, a propenediyl group, and a butenediyl group.
  • the alkenediyl group is preferably an alkenediyl group having 2 to 6 carbon atoms.
  • Examples of the arenediyl group include a phenylene group, a tolylene group, and a naphthylene group.
  • a phenylene group As the above arenediyl group, an arenediyl group having 6 to 15 carbon atoms is preferable.
  • R 30 is preferably an alkanediyl group, a divalent alicyclic hydrocarbon group, an alkanediyl group having 1 to 4 carbon atoms, or a divalent alicyclic hydrocarbon group having 6 to 11 carbon atoms. Is more preferable.
  • R 30 is a divalent alicyclic hydrocarbon group, it is preferable from the viewpoint of improving the water repellency of the resulting upper layer film.
  • structural unit (III-3-1) structural units represented by the following formulas (12-1) to (12-10) are preferable, and a structural unit represented by the following formula (12-7) is more preferable. .
  • R 29 has the same meaning as in the above formula (12).
  • the content ratio of the structural unit (III) in the polymer component is preferably 0 mol% to 40 mol%, preferably 0.5 mol% to the total structural unit constituting the [A] polymer component. 30 mol% is more preferable, and 1 mol% to 25 mol% is more preferable. [A] By making the content rate of structural unit (III) in a polymer component into the said range, the removability and peeling resistance of the liquid immersion upper film formed from the said liquid immersion upper film formation composition improve.
  • the content ratio of the structural unit (III) is 0.1 mol% or more when the polymer (A2) contains the structural unit (II). 20 mol% or less is preferable, 0.5 mol% or more and 10 mol% or less is more preferable, and 1 mol% or more and 5 mol% or less is more preferable.
  • the content of the structural unit (III) is preferably 70 mol% or more and 100 mol% or less, more preferably 90 mol% or more and 100 mol% or less. preferable.
  • the polymer (A1) component having high water repellency is added to the surface of the liquid upper film. Can be unevenly distributed. Accordingly, the liquid immersion upper layer film formed from the liquid immersion upper layer film forming composition can sufficiently satisfy basic characteristics such as water repellency and has excellent peeling resistance. Moreover, since it is excellent in the solubility to the alkali at the time of alkali development by making the content rate of structural unit (III) into the said range, the effect of the defect suppression at the time of image development is high.
  • the polymer component includes other structural units such as propyl (meth) acrylate and butyl (meth) acrylate for the purpose of improving water repellency, (You may have the structural unit derived from alkyl (meth) acrylates, such as a lauryl acrylate. Further, for the purpose of controlling the molecular weight of the polymer, the glass transition point, the solubility in a solvent, and the like, it may have a structural unit having an acid dissociable group that can be removed by the action of an acid.
  • the polymers (A1)) and (A2) can be produced, for example, by polymerizing monomers corresponding to predetermined respective structural units in a suitable solvent using a radical polymerization initiator.
  • a method of dropping a solution containing a monomer and a radical initiator into a reaction solvent or a solution containing the monomer to cause a polymerization reaction a solution containing the monomer, and a solution containing the radical initiator
  • a method of dropping a reaction solvent or a monomer-containing solution into a polymerization reaction, a plurality of types of solutions containing each monomer, and a solution containing a radical initiator It is preferable to synthesize by a method such as a method of dropping it into a reaction solvent or a solution containing a monomer to cause a polymerization reaction.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, 2-butanone, 4-methyl-2-p
  • the reaction temperature in the polymerization may be appropriately determined according to the type of radical initiator, but is usually 40 ° C to 150 ° C, preferably 50 ° C to 120 ° C.
  • the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • radical initiator used in the polymerization examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2 -Cyclopropylpropionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2-methylpropionitrile) and the like. Two or more of these initiators may be mixed and used.
  • the polymer obtained by the polymerization reaction is preferably recovered by a reprecipitation method. That is, after completion of the polymerization reaction, the target resin is recovered as a powder by introducing the polymerization solution into a reprecipitation solvent.
  • a reprecipitation solvent alcohols or alkanes can be used alone or in admixture of two or more.
  • the polymer can be recovered by removing low-molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
  • the weight average molecular weight (Mw) of the polymers (A1) and (A2) by gel permeation chromatography (GPC) is preferably 1,000 to 100,000, more preferably 2,000 to 50,000. 30,000 to 30,000 is more preferable.
  • the ratio (Mw / Mn) of Mw and number average molecular weight (Mn) of the polymers (A1) and (A2) is usually 1 to 5, preferably 1 to 3, and more preferably 1 to 2.
  • Mw and Mn are GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL, or more from Tosoh), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass. %, A sample injection amount of 100 ⁇ L, and a column temperature of 40 ° C., using a differential refractometer as a detector and a value measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard.
  • GPC gel permeation chromatography
  • the composition for forming a liquid immersion upper layer film contains a [B] solvent.
  • the solvent is not particularly limited as long as the [A] polymer component and the optional component can be dissolved.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and mixed solvents thereof.
  • alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, 4-methyl-2-pentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol , N-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-te
  • ether solvents include polyhydric alcohol partial alkyl ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, ethylene glycol diethyl ether, and diethylene glycol dimethyl ether; Polyhydric alcohol partial alkyl ether acetate solvents such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate; Aliphatic ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, butyl methyl ether, butyl ethyl ether, diisoamyl ether, hexyl methyl ether, octyl methyl ether, cyclopentyl methyl ether, dicyclopentyl ether,
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n- Examples include hexyl ketone, di-i-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvents include N, N′-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, Examples thereof include N-methylpropionamide and N-methylpyrrolidone.
  • ester solvents include diethyl carbonate, propylene carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec sec -Butyl, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n-nonyl acetate, acetoacetic acid Methyl, ethyl acetoacetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether a
  • hydrocarbon solvent examples include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane and cyclohexane.
  • Aliphatic hydrocarbon solvents such as methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
  • Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propyl
  • ether solvents and alcohol solvents are preferable, and ether solvents are more preferable, from the viewpoint that elution of the resist film components hardly occurs.
  • a monoalcohol solvent is preferable, an alcohol solvent having 4 to 8 carbon atoms is more preferable, an alcohol solvent having 5 or 6 carbon atoms is more preferable, and 4-methyl-2-pentanol is particularly preferable.
  • the ether solvent an aliphatic ether solvent is preferable, an aliphatic ether solvent having 6 to 12 carbon atoms is more preferable, an aliphatic ether solvent having 9 to 11 carbon atoms is further preferable, and diisoamyl ether is particularly preferable. .
  • These solvents may be used alone or in combination of two or more.
  • the composition for forming a liquid immersion upper layer film may contain an optional component as long as the effects of the present invention are not impaired.
  • the optional component include a surfactant that can improve the coating property of the composition for forming a liquid immersion upper layer film on a resist film.
  • composition for forming a liquid immersion upper layer film can be prepared, for example, by mixing the [A] polymer component and, if necessary, the optional component in the [B] solvent at a predetermined ratio.
  • composition for forming a liquid immersion upper layer film can be prepared and used in a state of being dissolved or dispersed in an appropriate [B] solvent.
  • the resist pattern forming method of the present invention comprises: (1) forming a resist film on the substrate; (2) A step of laminating an immersion upper film on the resist film using the composition for forming an immersion upper film; (3) immersion exposure of the resist film on which the liquid immersion upper layer film is laminated by irradiation of radiation through a photomask; and (4) a step of developing the immersion exposed resist film. Each step will be described in detail below.
  • a resist film is formed on the substrate.
  • This step is usually performed by applying a photoresist composition to the substrate.
  • a photoresist composition for example, a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
  • an organic or inorganic lower antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
  • the thickness of the resist film to be formed is usually 0.01 ⁇ m to 1 ⁇ m, preferably 0.01 ⁇ m to 0.5 ⁇ m.
  • the solvent in the coating film may be volatilized by pre-baking (PB) as necessary.
  • PB pre-baking
  • the heating conditions for PB are appropriately selected depending on the composition of the photoresist composition, but are usually about 30 ° C. to 200 ° C., preferably 50 ° C. to 150 ° C.
  • a protective film disclosed in, for example, Japanese Patent Laid-Open No. 5-188598 can be provided on the resist layer.
  • an immersion protective film disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-352384 can be provided on the resist layer.
  • Step (2) the liquid immersion upper layer film is laminated on the resist film formed in step (1) using the liquid immersion upper layer film forming composition.
  • the immersion liquid and the resist film are not in direct contact with each other, so that the immersion liquid penetrates into the resist film, resulting in the lithography performance of the resist film. It is effectively prevented that the lens of the projection exposure apparatus is contaminated by a component that is reduced or is eluted from the resist film into the immersion liquid.
  • a method for laminating the liquid immersion upper layer film a method similar to the method for forming the resist film can be adopted except that the liquid immersion upper layer film forming composition is used instead of the resist composition.
  • the thickness of the immersion upper layer film is preferably as close as possible to an odd multiple of ⁇ / 4m (where ⁇ is the wavelength of radiation and m is the refractive index of the protective film). By doing in this way, the reflection suppression effect in the upper interface of a resist film can be enlarged.
  • Step (3) the resist film on which the liquid immersion upper layer film is laminated is subjected to liquid immersion exposure by irradiation with radiation through a photomask.
  • an immersion medium is disposed between the immersion upper layer film and the lens, and exposure light is applied to the resist film and the immersion upper layer film through the immersion medium and a mask having a predetermined pattern. This is done by irradiating.
  • the immersion medium a liquid having a higher refractive index than air is usually used. Specifically, water is preferably used, and pure water is more preferably used. In addition, you may adjust pH of immersion liquid as needed.
  • a state where the immersion medium is interposed that is, in a state where the immersion medium is filled between the lens of the exposure apparatus and the upper immersion film, a mask having a predetermined pattern is irradiated with radiation from the exposure apparatus. Then, the liquid immersion upper layer film and the photoresist film are exposed.
  • the radiation used for this exposure can be appropriately selected according to the type of resist film or immersion upper layer film.
  • visible rays can be used for example, visible rays; ultraviolet rays such as g rays and i rays; Various radiations such as ultraviolet rays; X-rays such as synchrotron radiation; and charged particle beams such as electron beams can be used.
  • an ArF excimer laser (wavelength 193 nm) and a KrF excimer laser (wavelength 248 nm) are preferable.
  • the exposure light irradiation conditions for example, the radiation dose, can be appropriately set according to the composition of the photoresist composition and / or the composition for forming an immersion upper layer film, the type of additive, and the like.
  • PEB post-exposure baking
  • Step (4) This step is a step of developing the resist film subjected to immersion exposure in the step (3) to form a resist pattern.
  • the liquid immersion upper layer film is formed by the liquid immersion upper layer film forming composition. Therefore, with the developer during development, or with the cleaning liquid when cleaning after development, The liquid immersion upper layer film can be easily removed. That is, no separate peeling process is required to remove the liquid immersion upper layer film.
  • Examples of the developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine.
  • Tetraalkylammonium hydroxides such as triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene
  • TMAH tetramethylammonium hydroxide
  • pyrrole tetraethylammonium hydroxide
  • piperidine choline
  • An alkaline aqueous solution in which at least one alkaline compound such as 1,5-diazabicyclo- [4.3.0] -5-nonane is dissolved is preferable.
  • tetraalkylammonium hydroxide aqueous solutions are more preferable.
  • a water-soluble organic solvent such as alcohols such as methanol and ethanol, or a surfactant
  • a surfactant when developing using alkaline aqueous solution, it is preferable to wash with water after image development, and you may dry after washing with water.
  • Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using Tosoh GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) under the following conditions.
  • the degree of dispersion (Mw / Mn) was calculated from the measurement results of Mw and Mn.
  • Eluent Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • 13 C-NMR analysis 13 C-NMR analysis was performed using JNM-EX270 manufactured by JEOL Ltd. and acetone-d 6 as a measurement solvent. The content of each structural unit in the polymer was calculated from the area ratio of peaks corresponding to each structural unit in the spectrum obtained by 13 C-NMR.
  • the polymerization liquid was obtained by cooling until it became 30 degrees C or less. Subsequently, after concentrating the obtained copolymer liquid to 44 g, it moved to the separatory funnel. The separatory funnel was charged with 44 g of methanol and 220 g of n-hexane to carry out separation and purification. After separation, the lower layer solution was recovered. The recovered lower layer liquid and 220 g of n-hexane were added to carry out separation and purification. After separation, the lower layer solution was recovered. The recovered lower layer solution was replaced with 4-methyl-2-pentanol to obtain a solution containing the polymer component (A-1).
  • the solid content concentration of the solution containing the polymer component (A-1) is calculated from the mass of the residue after 0.5 g of the polymer solution is placed on an aluminum dish and heated on a hot plate heated to 155 ° C. for 30 minutes. Then, the value of the solid content concentration was used for the subsequent preparation of the protective film-forming composition solution and the yield calculation.
  • Mw of the obtained polymer (A-1) was 10,500
  • Mw / Mn was 1.53
  • the yield was 80%.
  • the content ratio of each structural unit derived from the compound (M-1), the compound (M-5) and the compound (M-8) was 5.0: 34.7: 60. .3 (mol%).
  • This lower layer solution was diluted with isopropanol to 100 g, and again transferred to a separatory funnel. Thereafter, 50 g of methanol and 600 g of n-hexane were put into the above separatory funnel, separation and purification were performed, and the lower layer liquid was recovered after separation.
  • the recovered lower layer solution was replaced with 4-methyl-2-pentanol, and the total amount was adjusted to 250 g. After the adjustment, 250 g of water was added for separation and purification. After separation, the upper layer liquid was recovered. The recovered upper layer liquid was replaced with 4-methyl-2-pentanol to obtain a solution containing the polymer (A2-1).
  • Mw of the obtained polymer (A2-1) was 8,000, Mw / Mn was 1.51, and the yield was 80%.
  • the content ratios of the structural units derived from (M-5) and (M-11) were 98 mol% and 2 mol%, respectively.
  • Example 1 [A] 20 parts by mass of polymer (A1-1) as a polymer component, 80 parts by mass of polymer (A2-1), and [B] 1,000 parts by mass of (B-1) as a solvent and (B -2) After mixing 4,000 parts by mass and stirring for 2 hours, the mixture was filtered through a filter having a pore size of 0.2 ⁇ m to obtain the composition for forming an immersion upper layer film of Example 1.
  • Examples 2 to 14 and Comparative Example 1 Each composition for forming an immersion upper layer film was obtained in the same manner as in Example 1 except that the components of the types and amounts described in Table 5 were mixed.
  • a photoresist composition for forming a resist film was prepared by the following method.
  • the content ratio of each structural unit derived from the compound (RM-1), the compound (RM-2) and the compound (RM-3) was 53.0: 37.2: 9. 0.8 (mol%).
  • content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.
  • a composition ( ⁇ ) was prepared.
  • Each liquid upper layer film forming composition is spin-coated on an 8-inch silicon wafer with CLEAN TRACK ACT8 (manufactured by Tokyo Electron), and PB is performed at 90 ° C. for 60 seconds to form a liquid immersion upper layer film with a film thickness of 90 nm. did.
  • the film thickness was measured using Lambda Ace VM90 (Dainippon Screen).
  • the liquid immersion upper layer film was subjected to paddle development for 60 seconds using a 2.38 mass% TMAH aqueous solution, spin-dried by shaking, and the wafer surface was observed. At this time, if there was no residue and the film was developed, the dissolution performance in the developer was “A (good)”, and if the residue was observed, it was “B (bad)”.
  • Each composition for forming a liquid immersion upper layer film was spin-coated on an 8-inch silicon wafer, and PB was performed at 90 ° C. for 60 seconds on a hot plate to form a liquid immersion upper film having a thickness of 30 nm. Thereafter, using DSA-10 (manufactured by KRUS), the receding contact angle was measured immediately under an environment of 23 ° C., humidity 45%, and normal pressure. That is, the wafer stage position of DSA-10 was adjusted, and the wafer was set on the adjusted stage. Next, water was injected into the needle, and the position of the needle was finely adjusted to an initial position where water droplets can be formed on the set wafer.
  • a lower antireflection film composition (ARC29A, manufactured by Brewer Science) was applied in advance so as to form a lower antireflection film having a film thickness of 77 nm using the CLEAN TRACK ACT8.
  • a photoresist composition ( ⁇ ) was spin-coated on the lower antireflection film, and PB was performed at 115 ° C. for 60 seconds to form a resist film having a thickness of 205 nm.
  • each liquid immersion upper film forming composition was applied onto the resist film to form a liquid immersion upper film.
  • the liquid immersion upper layer side was stacked so as to come into contact with the ultrapure water in the silicon rubber sheet of the prepared wafer, and kept in that state for 10 seconds.
  • the peak intensity of the anion part of the photoacid generator in ultrapure water was measured using LC-MS (liquid chromatograph mass spectrometer, LC part: SERIES1100 manufactured by AGILENT, MS part: Mariner manufactured by Perseptive Biosystems, Inc.). The measurement conditions were as follows. At that time, the peak intensity of the 1 ppb, 10 ppb, and 100 ppb aqueous solutions of the photoacid generator was measured under the following measurement conditions to prepare a calibration curve, and the elution amount was calculated from the peak intensity using this calibration curve.
  • each peak intensity of the 1 ppb, 10 ppb, and 100 ppb aqueous solutions of the acid diffusion control agent is measured under the following measurement conditions to create a calibration curve, and the calibration curve is used to calculate the acid diffusion control agent from the peak intensity.
  • the amount of elution was calculated. When the elution amount is 5.0 ⁇ 10 ⁇ 12 mol / cm 2 or less, the elution suppression performance of the photoresist composition is “A (good)”, 5.0 ⁇ 10 ⁇ 12 mol / cm 2. If it was larger than "B (defect)".
  • a 12-inch silicon wafer surface is spin-coated with a lower antireflection film (ARC66, manufactured by Nissan Chemical) using Lithius Pro-i (manufactured by Tokyo Electron), and then subjected to PB (205 ° C., 60 seconds) to form a film.
  • PB 205 ° C., 60 seconds
  • a lower antireflection film having a thickness of 105 nm was formed.
  • a photoresist composition ( ⁇ ) was spin-coated using CLEAN TRACK ACT12, PB was performed at 100 ° C. for 60 seconds, and cooled at 23 ° C. for 30 seconds to form a resist film having a thickness of 100 nm. Thereafter, each liquid immersion upper film forming composition was applied onto the resist film to form a liquid immersion upper film.
  • a mask having a pattern dimension of 40 nm line / 84 nm pitch is a mask for projecting a pattern of 40 nm line / 84 nm pitch.
  • a 2.38 mass% TMAH aqueous solution was used as a developer at the GP nozzle of the developing cup.
  • Paddle development was performed for 10 seconds and rinsed with ultrapure water.
  • An evaluation substrate on which a resist pattern was formed was obtained by spin-drying at 2,000 rpm for 15 seconds. At this time, the exposure amount at which a resist pattern having a 45 nm line / 90 nm pitch was formed in a mask having a pattern dimension of 45 nm line / 90 nm pitch was determined as the optimum exposure amount.
  • a 12-inch silicon wafer surface is spin-coated with a lower antireflection film (ARC66, manufactured by Nissan Chemical) using Lithius Pro-i (manufactured by Tokyo Electron), and then subjected to PB (205 ° C., 60 seconds) to form a film.
  • PB 205 ° C., 60 seconds
  • a lower antireflection film having a thickness of 105 nm was formed.
  • the photoresist composition ( ⁇ ) was spin-coated using the CLEAN TRACK ACT12, PB was performed at 100 ° C. for 60 seconds, and cooled at 23 ° C. for 30 seconds to form a resist film having a thickness of 100 nm. .
  • each liquid immersion upper film forming composition was applied onto the resist film to form a liquid immersion upper film.
  • an ArF immersion exposure apparatus S610C, manufactured by NIKON
  • exposure was performed through a mask for projecting a pattern of 45 nm line / 90 nm pitch under the optical conditions of NA: 1.30 and Crosspore (
  • the dimension of the pattern projected by the mask is referred to as the “pattern dimension.”
  • a mask having a pattern dimension of 40 nm line / 84 nm pitch is a mask for projecting a pattern of 40 nm line / 84 nm pitch.
  • PEB was performed on the above-mentioned Lithius Pro-i hot plate at 100 ° C.
  • TMAH aqueous solution was used as a developer at the GP nozzle of the developing cup. Paddle development was performed for 10 seconds and rinsed with ultrapure water. An evaluation substrate on which a resist pattern was formed was obtained by spin-drying at 2,000 rpm for 15 seconds. At this time, the exposure amount at which a resist pattern having a 45 nm line / 90 nm pitch was formed in a mask having a pattern dimension of 45 nm line / 90 nm pitch was determined as the optimum exposure amount. When a resist pattern having a 45 nm / 90 nm pitch was formed, the case where no bridge defect was found was designated as “A (good)”, and the case where it was seen was designated as “B (defective)”.
  • each liquid immersion upper layer film-forming composition was spin coated, and PB (90 ° C., 60 seconds) was performed to form a liquid immersion upper layer film having a thickness of 30 nm.
  • PB 90 ° C., 60 seconds
  • exposure was performed through a mask for projecting a pattern of 45 nm line / 90 nm pitch.
  • PEB was performed on the above-mentioned Lithius Pro-i hot plate at 100 ° C. for 60 seconds and cooled at 23 ° C. for 30 seconds, a 2.38 mass% TMAH aqueous solution was used as a developer at the GP nozzle of the developing cup.
  • Paddle development was performed for 10 seconds and rinsed with ultrapure water.
  • An evaluation substrate on which a resist pattern was formed was obtained by spin-drying at 2,000 rpm for 15 seconds.
  • the exposure amount for forming a line-and-space pattern (1L1S) having a line width of 90 nm in a one-to-one line width was determined as the optimum exposure amount.
  • a scanning electron microscope CG-4000, manufactured by Hitachi Instruments
  • S-4800 manufactured by Hitachi Keiki Co., Ltd.
  • the line width Lb in the middle in the height direction of the pattern formed on the substrate and the line width La in the upper part of the pattern are measured, and when 0.9 ⁇ La / Lb ⁇ 1.1, the case of “A ( The case where “good”, La / Lb ⁇ 0.9, or La / Lb> 1.1 was evaluated as “B (defect)”.
  • a liquid immersion upper film sufficiently satisfying basic characteristics such as water repellency and solubility in a developer can be formed, and bridge defects and blobs in resist pattern formation can be formed.
  • Development defects such as defects can be suppressed, and a resist pattern having an excellent pattern shape can be formed. Therefore, they can be suitably used for lithography processes in the manufacture of electronic devices that will be increasingly miniaturized in the future.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)

Abstract

 本発明は、[A]重合体(A1)を含む重合体成分、及び[B]溶媒を含有し、重合体(A1)が、下記式(1)で表される基を含む構造単位(I)を有する液浸上層膜形成用組成物である。下記式(1)中、Rは、アルカリ解離性基である。Rは、(n+1)価の連結基である。Aは、-CO-O-*、-SO-O-*、酸素原子又は-NR-である。Aが酸素原子であるとき、RのAに直結する部位が、カルボニル基又はスルホニル基となる場合はない。

Description

液浸上層膜形成用組成物及びレジストパターン形成方法
 本発明は、液浸上層膜形成用組成物及びレジストパターン形成方法に関する。
 半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、リソグラフィー工程におけるパターンの微細化が要求されている。現在、例えばArFエキシマレーザーを用いて線幅90nm程度の微細なパターンを形成することができるが、今後はさらに微細なパターン形成が要求される。
 このような要求に対し、レンズとレジスト膜との間を純水やフッ素系不活性液体等の液浸媒体で満たして露光を行う液浸露光法の利用が拡大しつつある。この液浸露光法によれば、レンズの開口数(NA)の拡大が可能となり高い解像性が得られるといった利点がある。
 しかし、上記液浸露光法によるレジストパターン形成方法においては、フォトレジスト組成物の液浸媒体への溶出、レジスト膜表面に残存する液滴によるパターン欠陥の発生等の不都合がある。かかる不都合を改善すると共に、スキャンスピードの向上等を図る技術として、レジスト膜上に液浸上層膜を設ける方法が知られている(特開2006-91798号公報、国際公開第2008/47678号パンフレット及び国際公開第2009/41270号パンフレット参照)。このような液浸上層膜には、上記要求を満足するために、より優れた撥水性が要求されるが、一方でその優れた撥水性のために、レジストパターン同士の一部が繋がるブリッジ欠陥、現像残渣の付着によるブロッブ欠陥等の現像欠陥等の発生を招くおそれがあり、ひいては、レジストパターンのパターン形状の正確性を低下させるおそれがある。
特開2006-91798号公報 国際公開第2008/47678号パンフレット 国際公開第2009/41270号パンフレット
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、撥水性、現像液に対する溶解性等の液浸上層膜としての基本特性を備え、かつレジストパターン形成におけるブリッジ欠陥、ブロッブ欠陥等の現像欠陥等を抑制することができ、優れたパターン形状を有するレジストパターンを形成することが可能な液浸上層膜形成用組成物を提供することである。
 上記課題を解決するためになされた発明は、
 [A]重合体(A1)を含む重合体成分、(以下、「[A]重合体成分」ともいう)、及び
 [B]溶媒
を含有し、
 重合体(A1)が、下記式(1)で表される基を含む構造単位(I)を有する液浸上層膜形成用組成物である。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは、アルカリ解離性基である。Rは、(n+1)価の連結基である。Aは、-CO-O-*、-SO-O-*、酸素原子又は-NR-である。Rは、水素原子又はアルカリ解離性基である。*は、Rに結合する部位を示す。但し、Aが酸素原子であるとき、RのAに直結する部位が、カルボニル基又はスルホニル基となる場合はない。nは、1~3の整数である。但し、nが2以上の場合、複数のR及びAは、それぞれ同一でも異なっていてもよい。)
 本発明の液浸上層膜形成用組成物は、重合体(A1)を含有する。重合体(A1)が、上記式(1)で表されるアルカリ解離性基を有する基を含むことで、当該液浸上層膜形成用組成物から形成される液浸上層膜は、撥水性に優れ、かつアルカリ現像液に対する溶解性が良好となる。また、アルカリ現像後は、アルカリ解離性基が解離するため、液浸上層膜中のフッ素原子含有率が下がり、アルカリ現像液に対する親和性が向上すると推察される。その結果、レジストパターン形成におけるブリッジ欠陥、ブロッブ欠陥等の現像欠陥を抑制することができ、パターン形状に優れるレジストパターンを形成することが可能となる。
 上記構造単位(I)は、下記式(2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、Rは、水素原子、メチル基、ヒドロキシメチル基又はトリフルオロメチル基である。Rは、-CO-O-、-O-CO-O-、-O-、-SO-、-CO-NH-又は-SONH-である。n、R及びRは、上記式(1)と同義である。)
 上記構造単位(I)が上記特定構造を有することで、当該液浸上層膜形成用組成物から形成される液浸上層膜は、撥水性により優れ、かつアルカリ現像液に対する溶解性がより良好となる。また、レジストパターン形成におけるブリッジ欠陥、ブロッブ欠陥等の現像欠陥をより効果的に抑制することができ、パターン形状により優れるレジストパターンを形成することが可能となる。
 上記Rのアルカリ解離性基は、炭素数1~20の1価の炭化水素基、下記式(3)で表される基又は下記式(4)で表される基であるとよい。
Figure JPOXMLDOC01-appb-C000007
(式(3)中、R~Rは、水素原子、フッ素原子又はパーフルオロアルキル基である。但し、R~Rの少なくとも1つは、フッ素原子又はパーフルオロアルキル基である。R10は、水素原子、フッ素原子又は1価の有機基である。
 式(4)中、aは、0又は1である。bは、0~5の整数である。R11は、フッ素原子、又はフッ素原子を含んでいてもよい1価の有機基である。但し、bが2以上の場合、複数のR11は、同一でも異なっていてもよい。)
 上記Rのアルカリ解離性基が、上記特定構造であると、当該液浸上層膜形成用組成物から形成される液浸上層膜は撥水性に優れ、液浸上層膜としての基本特性を十分満足することができる。また、当該液浸上層膜形成用組成物を用いることで、パターン形状により優れるレジストパターンを形成することが可能となる。
 [A]重合体成分における上記構造単位(I)の含有割合は、[A]重合体成分を構成する全構造単位に対して、0.1モル%以上50モル%以下であることが好ましい。構造単位(I)の含有割合を0.1モル%以上とすることで、当該液浸上層膜形成用組成物から形成される液浸上層膜は、さらに優れた撥水性を有し、50モル%以下とすることで、[A]重合体成分のアルカリ現像液への溶解性に優れると共に、剥がれ耐性にも優れる。
 [A]重合体成分は、重合体(A1)と同一又は異なる重合体中に、フッ素化アルキル基及びフッ素化ヒドロキシアルキル基からなる群より選択される少なくとも1種の基を含み、かつ上記式(1)で表される基を含まない構造単位(II)をさらに有することが好ましい。[A]重合体成分が、フッ素原子を含む構造単位(II)をさらに有することで、当該液浸上層膜形成用組成物から形成される液浸上層膜は、さらに優れた撥水性を有し、液浸上層膜としての基本特性を十分満足することができる。
 [A]重合体成分は、重合体(A1)と同一又は異なる重合体中に、カルボキシ基、スルホ基及び下記式(11)で表される基からなる群より選択される少なくとも1種の基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(11)中、R23は、水素原子、ハロゲン原子、ニトロ基、アルキル基、1価の脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基又はアリール基である。上記アルキル基、脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有する水素原子の一部又は全部は置換されていてもよい。R24は、-C(=O)-R25、-S(=O)-R26、-R27-CN又は-R28-NOである。R25及びR26は、それぞれ独立して、水素原子、アルキル基、フッ素化アルキル基、1価の脂環式炭化水素基、アルコキシ基、シアノ基、シアノメチル基、アラルキル基又はアリール基である。但し、R25又はR26とR23とが互いに結合して環構造を形成していてもよい。R27及びR28は、それぞれ独立して、単結合、メチレン基又は炭素数2~5のアルキレン基である。)
 [A]重合体成分が極性の高いスルホ基、カルボキシ基又は上記式(11)で表される基を含むことで、当該液浸上層膜形成用組成物から形成される液浸上層膜の除去性及び剥がれ耐性が向上する。その結果、当該液浸上層膜形成用組成物を用いると、ブリッジ欠陥、ブロッブ欠陥等の現像欠陥をさらに抑制することができ、パターン形状により優れるレジストパターンを形成することが可能となる。
 [B]溶媒は、エーテル系溶媒を含むことが好ましい。レジスト膜はエーテル系溶媒には溶解し難いため、当該液浸上層膜形成用組成物をレジスト膜上に塗布した際に、液浸上層膜形成用組成物中の溶媒によりレジスト膜表面が侵食されるという不都合を防止することができる。
 本発明のレジストパターン形成方法は、
(1)基板上にレジスト膜を形成する工程、
(2)当該液浸上層膜形成用組成物を用い、上記レジスト膜上に液浸上層膜を積層する工程、
(3)フォトマスクを介する放射線の照射により、上記液浸上層膜が積層されたレジスト膜を液浸露光する工程、及び
(4)上記液浸露光されたレジスト膜を現像する工程
を有する。
 当該レジストパターン形成方法によると、ブリッジ欠陥、ブロッブ欠陥等の現像欠陥を抑制することができ、パターン形状により優れるレジストパターンを形成することができる。
 本発明の液浸上層膜形成用組成物及びレジストパターン形成方法によると、撥水性、現像液に対する溶解性等の基本特性を十分満足した液浸上層膜を形成することができ、かつレジストパターン形成におけるブリッジ欠陥、ブロッブ欠陥等の現像欠陥を抑制することができ、パターン形状に優れるレジストパターンを形成することが可能となる。従って、これらは、今後ますます微細化が進行する電子デバイス製造におけるリソグラフィー工程に好適に用いることができる。
<液浸上層膜形成用組成物>
 本発明の液浸上層膜形成用組成物は、[A]重合体成分及び[B]溶媒を含有する。当該液浸上層膜形成用組成物は、本発明の効果を損なわない限り、[A]重合体成分、[B]溶媒に加えて、任意成分を含有していてもよい。以下、各成分について詳述する。
<[A]重合体成分>
 [A]重合体成分は、重合体(A1)を含む。この重合体(A1)は、上記式(1)で表される基を含む構造単位(I)を有する重合体である。[A]重合体成分は、重合体(A1)のみからなっていてもよく、重合体(A1)以外にも、構造単位(I)を有さない重合体(A2)を含んでいてもよい。[A]重合体成分は、重合体を1種又は2種以上含んでいてもよい。
 [A]重合体成分が、上記式(1)で表されるアルカリ解離性基を有する基を含むことで、当該液浸上層膜形成用組成物から形成される液浸上層膜は、撥水性に優れ、かつアルカリ現像液に対する溶解性が良好となる。その結果、レジストパターン形成におけるブリッジ欠陥、ブロッブ欠陥等の現像欠陥を抑制することができ、パターン形状に優れるレジストパターンを形成することが可能となる。
 また、[A]重合体成分は、重合体(A1)と同一又は異なる重合体中に、上記構造単位(I)に加えて、フッ素化アルキル基及びフッ素化ヒドロキシアルキル基からなる群より選択される少なくとも1種の基を含み、かつ上記式(1)で表される基を含まない構造単位(II)、及び/又はスルホ基、カルボキシ基及び上記式(11)で表される基からなる群より選択される少なくとも1種の構造単位(III)をさらに有することが好ましい。また、[A]重合体成分は、本発明の効果を損なわない限り、これらの構造単位以外にその他の構造単位を有してもよい。なお、[A]重合体成分は、各構造単位を1種単独で有していてもよいし、2種以上有していてもよい。
 重合体(A1)としては、上記構造単位(I)に加えて、フッ素化アルキル基及びフッ素化ヒドロキシアルキル基からなる群より選択される少なくとも1種の基を含み、かつ上記式(1)で表される基を含まない構造単位(II)をさらに有することが好ましい。また、重合体(A1)は、本発明の効果を損なわない限り、これらの構造単位以外にその他の構造単位を有してもよい。なお、重合体(A1)は、各構造単位を1種単独で有していてもよいし、2種以上有していてもよい。
 構造単位(I)を有さない重合体(A2)としては、スルホ基、カルボキシ基及び上記式(11)で表される基からなる群より選択される少なくとも1種の構造単位(III)を有することが好ましい。
 [A]重合体成分において、重合体(A1)とは互いに異なる重合体(A2)が極性の高いスルホ基、カルボキシ基又は上記式(11)で表される基を含むと、当該液浸上層膜形成用組成物において、撥水性の高い重合体(A1)成分を液浸上層膜表面に偏在化させることができる。それにより、当該液浸上層膜形成用組成物から形成される液浸上層膜は、撥水性等の基本特性を十分に満足することができる。また、重合体(A2)が、極性の高いスルホ基、カルボキシ基又は上記式(11)で表される基を含むと、アルカリ現像時のアルカリへの可溶性に優れ、現像時の欠陥抑制の効果が高い。重合体(A2)が構造単位(III)を有する場合、この構造単位(III)以外に、フッ素化アルキル基及びフッ素化ヒドロキシアルキル基からなる群より選択される少なくとも1種の基を含み、かつ上記式(1)で表される基を含まない構造単位(II)をさらに有することが好ましい。また、重合体(A2)は、本発明の効果を損なわない限り、その他の構造単位を有していてもよい。なお、重合体(A2)は、各構造単位を1種単独で有していてもよいし、2種以上を有していてもよい。
 以下、各構造単位について、詳述する。
[構造単位(I)]
 構造単位(I)は、上記式(1)で表される基を含む構造単位である。構造単位(I)は、構造単位中に上記式(1)で表される基を1個又は複数個有していてもよく、複数種有していてもよい。
 上記式(1)中、Rは、アルカリ解離性基である。Rは、(n+1)価の連結基である。Aは、-CO-O-*、-SO-O-*、酸素原子又は-NR-である。Rは、水素原子又はアルカリ解離性基である。*は、Rに結合する部位を示す。但し、Aが酸素原子であるとき、RのAに直結する部位が、カルボニル基又はスルホニル基となる場合はない。nは、1~3の整数である。但し、nが2以上の場合、複数のR及びAは、それぞれ同一でも異なっていてもよい。
 上記Rで表されるアルカリ解離性基としては、レジストパターン形成方法の現像工程において用いられるアルカリ現像液によって解離する基であって、フッ素原子を含むものであっても、フッ素原子を含まないものであってもよく、特に限定されないが、炭素数1~20の1価の炭化水素基、上記式(3)で表される基、又は上記式(4)で表される基であることが好ましい。上記Rのアルカリ解離性基が上記特定の基であることで、当該液浸上層膜形成用組成物から形成される液浸上層膜の撥水性を向上させることができる。また、アルカリ解離性基がフッ素原子を含む場合、現像工程においては、アルカリ現像液によりフッ素原子を含む上記アルカリ解離性基が解離するため、フッ素原子含有率が低減し、ブリッジ欠陥、ブロッブ欠陥等の現像欠陥をさらに抑制することができる。
 上記Rで表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~10のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~20の芳香族炭化水素基等が挙げられる。
 上記炭素数1~10のアルキル基としては、例えばメチル基、エチル基、プロピル基、n-ブチル基、i-ブチル基、n-ペンチル基、i-ペンチル基、n-へキシル基、i-へキシル基等が挙げあれる。
 上記炭素数4~20の脂環式炭化水素基としては、例えばシクロブチル基、シクロペンチル基、シクロへキシル基、ノルボルニル基、アダマンチル基等が挙げられる。
 上記炭素数6~20の芳香族炭化水素基としては、例えばフェニル基、ナフチル基等が挙げられる。
 上記1価の炭化水素基としては、これらの中で、炭素数1~10のアルキル基が好ましく、メチル基、エチル基がより好ましく、メチル基がさらに好ましい。
 上記式(3)中、R~Rは、水素原子、フッ素原子又はパーフルオロアルキル基である。但し、R~Rの少なくとも1つは、フッ素原子又はパーフルオロアルキル基である。R10は、水素原子、フッ素原子又は1価の有機基である。
 上記R~Rで表されるパーフルオロアルキル基としては、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロn-プロピル基、パーフルオロi-プロピル基、パーフルオロn-ブチル基、パーフルオロi-ブチル基、パーフルオロt-ブチル基、パーフルオロシクロヘキシルメチル基等が挙げられる。
 上記R10で表される1価の有機基としては、例えば炭素数1~10のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~20の芳香族炭化水素基等が挙げられる。
 上記炭素数1~10のアルキル基としては、例えばメチル基、エチル基、プロピル基、n-ブチル基、i-ブチル基、n-ペンチル基、i-ペンチル基、n-へキシル基、i-へキシル基等が挙げあれる。
 上記炭素数4~20の脂環式炭化水素基としては、例えばシクロブチル基、シクロペンチル基、シクロへキシル基、ノルボルニル基、アダマンチル基等が挙げられる。
 上記炭素数6~20の芳香族炭化水素基としては、例えばフェニル基、ナフチル基等が挙げられる。
 上記式(3)で表される基としては、例えば、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロエチル基、2,2,3,3,4,4,4-ヘキサフルオロエチル基、1,1,1-トリフルオロ2-プロピル基、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基等が挙げられる。これらの中で、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基が好ましい。
 上記式(4)中、aは、0又は1である。bは、0~5の整数である。R11は、フッ素原子又はフッ素原子を含んでいてもよい1価の有機基である。但し、bが2以上の場合、複数のR11は同一でも異なっていてもよい。また、少なくとも1つのR11は、フッ素原子又はフッ素原子を含む1価の有機基であることが好ましい。
 上記R11で表されるフッ素原子を含んでいてもよい1価の有機基としては、例えば炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアシル基、炭素数1~10のアシロキシ基等が挙げられる。なお、これらの基が有する水素原子の一部又は全部は、フッ素原子で置換されていてもよい。
 上記炭素数1~10のアルキル基としては、例えば上記Rで表される炭素数1~10のアルキル基と同様の基等が挙げられる。
 上記炭素数1~10のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基等が挙げられる。
 上記炭素数1~10のアシル基としては、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、トリオイル基、カプロイル基等が挙げられる。
 上記炭素数1~10のアシロキシ基としては、例えばアセトキシ基、エチリルオキシ基、ブチリルオキシ基、t-ブチリルオキシ基、t-アミリルオキシ基、n-ヘキサンカルボニロキシ基、n-オクタンカルボニロキシ基等が挙げられる。
 aとしては、1が好ましい。bとしては、0~3の整数が好ましく、0~2の整数がより好ましく、1及び2がさらに好ましい。
 上記式(4)で表される基としては、フェニル基、トリル基、フルオロフェニル基、フルオロベンジル基、ジフルオロベンジル基、トリフルオロメチルベンジル基等が挙げられる。これらの中で、ジフルオロベンジル基、トリフルオロメチルベンジル基が好ましい。
 上記Rとしては、これらのうち、炭素数1~4のアルキル基、上記式(3)においてR、R及びR10がフッ素原子又はトリフルオロメチル基であり、Rが水素原子であり、Rが水素原子又はトリフルオロメチル基である基、フッ素化ベンジル基がさらに好ましい。
 上記Rで表される(n+1)価の連結基としては、例えば炭素数1~20の(n+1)価の炭化水素基、炭素数1~20の(n+1)価のフッ素化炭化水素基、-O-、-S-、-COO-、-OCO-、-SO-、-CO-、これらを組み合わせてなる基等が挙げられる。
 炭素数1~20の(n+1)価の炭化水素基としては、炭素数1~10の(n+1)価の直鎖状又は分岐状の炭化水素基、炭素数4~20の(n+1)価の脂環式炭化水素基、炭素数6~20の(n+1)価の芳香族炭化水素基等が挙げられる。
 上記炭素数1~10の(n+1)価の直鎖状又は分岐状の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン等のアルカンから、(n+1)個の水素原子を除いた基等が挙げられる。これらのうち、メチレン基、メタントリイル基、エタントリイル基、i-プロパンテトライル基が好ましい。
 上記炭素数4~20の(n+1)価の脂環式炭化水素基としては、例えば、
 シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等の単環式飽和炭化水素から、(n+1)個の水素原子を除いた基;
 シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等の単環式不飽和炭化水素から、(n+1)個の水素原子を除いた基;
 ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等の多環式飽和炭化水素から、(n+1)個の水素原子を除いた基;
 ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等の多環式不飽和炭化水素から、(n+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数6~20の(n+1)価の芳香族炭化水素基としては、例えばベンゼン、トルエン、キシレン、ナフタレン、アントラセン等の芳香族炭化水素から、(n+1)個の水素原子を除いた基等が挙げられる。
 また、炭素数1~20の(n+1)価のフッ素化炭化水素基としては、上記の炭素数1~20の(n+1)価の炭化水素基で例示された基の水素原子の少なくとも一部がフッ素原子で置換された基を挙げられる。
 また、これらの炭化水素基及びフッ素化炭化水素基と、-O-、-S-、-COO-、-OCO-、-SO-、-CO-、からなる群より選択される少なくとも1種の基とを組み合わせてなる基としては、脂環式炭化水素基及びフッ素化脂環式炭化水素基の環構造に-O-、-S-、-COO-、-OCO-、-SO-及び-CO-からなる群より選択される少なくとも1種の基が含まれるもの等が挙げられる。
 上記-O-と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状エーテル構造等を挙げることができる。
 上記-S-と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状チオエーテル構造等をあげることができる。
 上記-COO-と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8のラクトン構造等を挙げることができる。
 上記-CO-と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状ケトン構造等を挙げることができる。
 上記-SO-と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状スルホニル構造等をあげることができる。
 上記Aで表される基が-NR-である場合のRのアルカリ解離性基としては、レジストパターン形成方法の現像工程において用いられるアルカリ現像液によって解離する基であれば特に限定されないが、例えば上記Rで表されるアルカリ解離性基と同様の基等が挙げられる。
 上記Aとしては、-CO-O-であることが好ましい。
 構造単位(I)としては、上記式(2)で表される構造単位(以下、「構造単位(I-1)」ともいう)であることが好ましい。上記式(2)中、Rは、水素原子、メチル基、ヒドロキシメチル基又はトリフルオロメチル基である。Rは、-CO-O-、-O-CO-O-、-O-、-SO-、-CO-NH-又は-SONH-である。n、R及びRは、上記式(1)と同義である。
 構造単位(I)としては、例えば下記式(1-1)~(1-15)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 上記式(1-1)~(1-15)中、Rは、上記式(2)と同義である。
 これらのうち、上記式(1-1)~(1-4)で表される構造単位、上記式(1-8)で表される構造単位及び上記式(1-11)~(1-15)で表される構造単位が好ましい。
 構造単位(I)を与える単量体としては、例えば下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 [A]重合体成分における構造単位(I)の含有割合としては、[A]重合体成分を構成する全構造単位に対して、通常、0.1モル%以上50モル%以下であり、好ましくは0.3モル%以上20モル%以下であり、より好ましくは0.5モル%以上10モル%以下である。構造単位(I)の含有割合を0.1モル%以上とすることで、当該液浸上層膜形成用組成物から形成される液浸上層膜は、さらに優れた撥水性を有し、50モル%以下とすることで、[A]重合体成分のアルカリ現像液への溶解性に優れると共に、剥がれ耐性にも優れる。
 重合体(A1)における構造単位(I)の含有割合としては、0.1モル%以上30モル%以下が好ましく、0.5モル%以上20モル%以下がより好ましく、1モル%以上10モル%以下がさらに好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該液浸上層膜形成用組成物から得られる液浸上層膜は、撥水性を十分満足し、かつレジストパターン形成におけるブリッジ欠陥、ブロッブ欠陥等の現像欠陥をより抑制することができる。
[構造単位(II)]
 構造単位(II)は、フッ素化アルキル基及びフッ素化ヒドロキシアルキル基からなる群より選択される少なくとも1種の基を含み、かつ上記式(1)で表される基を含まない構造単位である。[A]重合体成分が、フッ素原子を含む構造単位(II)をさらに有することで、当該液浸上層膜形成用組成物から形成される液浸上層膜は、さらに優れた撥水性を有し、液浸上層膜としての基本特性を十分満足することができる。
 構造単位(II)としては、例えば下記式(5)~(7)で表される構造単位(以下、「構造単位(II-1)~(II-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記式(5)中、R12は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。R13は、2価の連結基である。
 上記式(6)中、R14は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。R15は、炭素数1~10のフッ素化アルキル基又は炭素数3~10のフッ素化脂環式炭化水素基である。
 上記式(7)中、R16は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。R17は、2価の連結基である。R18は、炭素数1~20のフッ素化アルキル基である。
 上記式(5)中、R13で表される2価の連結基としては、例えば、炭素数1~12の直鎖状又は分岐状の2価の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、これらを組み合わせてなる基等が挙げられる。
 上記炭素数1~12の直鎖状又は分岐状の2価の炭化水素基としては、例えば、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、i-ブチレン基、n-ペンチレン基、i-ペンチレン基等が挙げられる。これらのうち、炭素数1~3の2価の炭化水素基が好ましく、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基がより好ましい。
 上記炭素数4~12の2価の脂環式炭化水素基としては、例えばシクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基等の単環の脂環式炭化水素基;ノルボルニレン基、アダマンチレン基等の2~4員環を有する多環の脂環式炭化水素基等が挙げられる。これらのうち、ノルボルニレン基及びアダマンチレン基が好ましい。
 上記式(6)中、R15で表される炭素数1~10のフッ素化アルキル基としては、例えばメチル基、エチル基、プロピル基、n-ブチル基、i-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、i-ヘキシル基等のアルキル基が有する水素原子の少なくとも1つがフッ素原子で置換された基等が挙げられる。
 上記R15で表される炭素数3~10のフッ素化脂環式炭化水素基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、ノルボルニル基、アダマンチル基等が有する水素原子の少なくとも1つがフッ素原子で置換された基等が挙げられる。
 上記式(7)中、R17で表される2価の連結基としては、例えば上記R13で表される2価の連結基として例示した基と同様の基等が挙げられる。
 上記R18で表される炭素数1~20のフッ素化アルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、i-ヘキシル基、n-デシル基、i-デシル基、n-ドデシル基、i-ドデシル基等のアルキル基が有する水素原子の少なくとも1つがフッ素原子で置換された基等が挙げられる。
 構造単位(II-1)としては、例えば下記式(2-1)~(2-8)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式(2-1)~(2-8)中、R12は、上記式(5)と同義である。
 これらの中で、上記式(2-4)及び(2-8)で表される構造単位が好ましい。
 構造単位(II-2)としては、例えば下記式(2-9)~(2-14)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式(2-9)~(2-14)中、R14は、上記式(6)と同義である。
 これらの中で、上記式(2-9)及び(2-11)で表される構造単位が好ましい。
 構造単位(II-3)としては、例えば下記式(2-15)~(2-17)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式(2-15)~(2-17)中、R16は、上記式(7)と同義である。
 これらの中で、上記式(2-15)で表される構造単位が好ましい。
 構造単位(II)を与える単量体としては、例えば下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 [A]重合体成分における構造単位(II)の含有割合としては、[A]重合体成分を構成する全構造単位に対して、30モル%以上100モル%未満が好ましく、40モル%以上99.5モル%以下がより好ましく、50モル%以上99モル%以下がさらに好ましい。[A]重合体成分における構造単位(II)の含有割合を上記範囲とすることで、当該液浸上層膜形成用組成物から形成される液浸上層膜の撥水性及び除去性により優れる。
 重合体(A1)が構造単位(II)を含む場合には、構造単位(II)の含有割合は、40モル%以上100モル%未満が好ましく、60モル%以上100モル%未満がより好ましく、80モル%以上10モル%未満がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、当該液浸上層膜形成用組成物から得られる液浸上層膜は、撥水性を十分満足することができる。
 重合体(A2)が構造単位(II)を含む場合には、構造単位(II)の含有割合は、30モル%以上100モル%未満が好ましく、40モル%以上99.5モル%以下がより好ましく、50モル%以上99モル%以下がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、当該液浸上層膜形成用組成物から得られる液浸上層膜の撥水性等の基本特性を十分に満足することができる。
[構造単位(III)]
 構造単位(III)は、カルボキシ基、スルホ基及び上記式(11)で表される基からなる群より選択される少なくとも1種の基を含む構造単位である。
 構造単位(III)のうち、スルホ基を含む構造単位(以下、「構造単位(III-1)」ともいう)としては、例えば下記式(8)で表される構造単位(以下、「構造単位(III-1-1)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記式(8)中、R19は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。R20は、単結合又は2価の連結基である。
 上記R20で表される2価の連結基としては、例えば酸素原子、硫黄原子、炭素数1~6の2価の直鎖状又は分岐状の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、炭素数6~12の2価の芳香族炭化水素基、カルボニル基、エステル基、-NH-、これらの基を組み合わせてなる基等が挙げられる。
 上記炭素数1~6の2価の直鎖状又は分岐状の炭化水素基としては、例えばメチレン基、エタンジイル基、プロパンジイル基、ブタンジイル基等が挙げられる。
 上記炭素数4~12の2価の脂環式炭化水素基としては、例えばシクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルニレン基、アダマンチレン基等が挙げられる。
 上記炭素数6~12の2価の芳香族炭化水素基としては、例えばフェニレン基、ナフチレン基等が挙げられる。
 構造単位(III-1-1)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 
 上記式中、R19は上記式(8)と同義である。
 これらの中で、ビニルスルホン酸に由来する構造単位、(メタ)アクリロイルアミノプロピルスルホン酸に由来する構造単位が好ましい。
 構造単位(III-1-1)を与える単量体としては、下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 構造単位(III)のうち、カルボキシ基を含む構造単位(以下、「構造単位(III-2)」ともいう)としては、例えば下記式(9)で表される構造単位(以下、「構造単位(III-2-1)」ともいう)、下記式(10)で表される構造単位(以下、「構造単位(III-2-2)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 上記式(9)及び(10)中、R21は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R22は、2価の連結基である。
 上記R22で表される2価の連結基としては、例えば炭素数1~6の直鎖状若しくは分岐状の2価の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、炭素数6~12の2価の芳香族炭化水素基、これらの基とエステル基を組み合わせてなる基等が挙げられる。
 上記炭素数1~6の直鎖状若しくは分岐状の2価の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、炭素数6~12の2価の芳香族炭化水素基については、上記R20で表されるそれぞれの基についての説明を適用できる。
 構造単位(III-2-1)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 上記式中、R21は、上記式(9)と同義である。
 これらの中で、カルボキシシクロヘキシル(メタ)アクリレートに由来する構造単位が好ましい。
 構造単位(III-2-1)又は構造単位(III-2-2)を与える単量体としては、例えば下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 次に、構造単位(III)のうち、上記式(11)で表される基を含む構造単位(以下、「構造単位(III-3)」ともいう)について説明する。
 上記式(11)中、R23は、水素原子、ハロゲン原子、ニトロ基、アルキル基、1価の脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基又はアリール基である。上記アルキル基、脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有する水素原子の一部又は全部は置換されていてもよい。R24は、-C(=O)-R25、-S(=O)-R26、-R27-CN又は-R28-NOである。R25及びR26は、それぞれ独立して、水素原子、アルキル基、フッ素化アルキル基、1価の脂環式炭化水素基、アルコキシ基、シアノ基、シアノメチル基、アラルキル基又はアリール基である。但し、R25又はR26とR23とが互いに結合して環構造を形成していてもよい。R27及びR28は、それぞれ独立して、単結合、メチレン基又は炭素数2~5のアルキレン基である。
 上記R23で表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。この中で、フッ素原子及び塩素原子が好ましい。
 上記R23で表されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖状のアルキル基;i-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等の分岐状のアルキル基等が挙げられる。上記アルキル基としては、炭素数1~20のアルキル基が好ましい。
 上記R23で表される1価の脂環式炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基等の単環の脂環式炭化水素基;アダマンチル基、ノルボルニル基、テトラシクロデカニル基等の多環の脂環式炭化水素基等が挙げられる。上記脂環式炭化水素基としては、炭素数3~20の脂環式炭化水素基が好ましい。
 上記R23で表されるアルコキシ基としては、例えば、メトキシ基、エトキシ基等が挙げられる。上記アルコキシ基としては、炭素数1~20のアルコキシ基が好ましい。
 上記R23で表されるアシル基としては、例えば、アセチル基、プロピオニル基等が挙げられる。上記アシル基としては、炭素数2~20のアシル基が好ましい。
 上記R23で表されるアラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。上記アラルキル基としては、炭素数7~12のアラルキル基が好ましい。
 上記R23で表されるアリール基としては、例えば、フェニル基、トリル基、ジメチルフェニル基、2,4,6-トリメチルフェニル基、ナフチル基等が挙げられる。上記アリール基としては、炭素数6~10のアリール基が好ましい。
 上記R23で表されるアルキル基、1価の脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有していてもよい置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基等が挙げられる。
 上記R23としては、当該液浸上層膜形成用組成物から形成される上層膜の現像液溶解性と剥がれ耐性とをバランスさせる観点から、この中でも、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基及び炭素数2~5のアシル基が好ましく、水素原子、メチル基、エチル基、アセチル基がさらに好ましい。
 R24が-C(=O)-R25及び-S(=O)-R26の場合、R25及びR26で表されるアルキル基、1価の脂環式炭化水素基、アルコキシ基、アラルキル基及びアリール基としては、例えば、上記R23のそれぞれの基として例示したものと同様の基等が挙げられる。また、R25及びR26で表されるフッ素化アルキル基としては、例えば、上記R23のアルキル基として例示した基の水素原子の少なくとも1つがフッ素原子で置換された基等が挙げられる。これらの中でも、R25及びR26としては、水素原子、アルキル基が好ましく、水素原子、メチル基、エチル基がより好ましい。
 上記R25又はR26とR23とが互いに結合して形成する環構造を含む基としては、R25又はR26とR23とがそれぞれ結合する炭素原子を含み、かつオキソ基を有する炭素数5~12の2価の脂環式炭化水素基が好ましい。
 R24が、-R27-CN及び-R28-NOの場合、R27及びR28としては、単結合、メタンジイル基又はエタンジイル基が好ましい。
 上記式(11)で表される基としては、下記式(11-1)~(11-8)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(11-1)~(11-8)中、*は結合部位を示す。
 構造単位(III-3)としては、例えば、上記式(11)で表される基を有する(メタ)アクリル酸エステル誘導体、(メタ)アクリルアミド誘導体、ビニルエーテル誘導体、オレフィン誘導体又はスチレン誘導体等に由来する構造単位等が挙げられる。この中で、(メタ)アクリル酸エステル誘導体由来の構造単位が好ましい。すなわち、構造単位(III-3)としては、下記式(12)で表される構造単位(以下、「構造単位(III-3-1)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000023
 上記式(12)中、R23及びR24は、上記式(11)と同義である。mは、1~3の整数である。R23及びR24がそれぞれ複数の場合、複数のR23及びR24はそれぞれ同一でも異なっていてもよい。R30は、(m+1)価の連結基である。R29は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。
 上記R29としては、構造単位(III-3)を与える単量体の共重合性等の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
 上記R30で表される(m+1)価の連結基としては、例えば、2価の連結基(nが1の場合)としては、アルカンジイル基、2価の脂環式炭化水素基、アルケンジイル基、アレーンジイル基等が挙げられる。なお、これらの基が有する水素原子の一部又は全部は、フッ素原子や塩素原子等のハロゲン原子、シアノ基等で置換されていてもよい。
 上記アルカンジイル基としては、例えば、メタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基、ヘキサンジイル基、オクタンジイル基等が挙げられる。上記アルカンジイル基としては、炭素数1~8のアルカンジイル基が好ましい。
 上記2価の脂環式炭化水素基としては、例えば、シクロペンタンジイル基、シクロヘキサンジイル基等の単環の脂環式炭化水素基;ノルボルナンジイル基、アダマンタンジイル基等の多環の脂環式炭化水素等が挙げられる。上記2価の脂環式炭化水素基としては、炭素数5~12の脂環式炭化水素基が好ましい。
 上記アルケンジイル基としては、例えば、エテンジイル基、プロペンジイル基、ブテンジイル基等が挙げられる。上記アルケンジイル基としては、炭素数2~6のアルケンジイル基が好ましい。
 上記アレーンジイル基としては、例えば、フェニレン基、トリレン基、ナフチレン基等が挙げられる。上記アレーンジイル基としては、炭素数6~15のアレーンジイル基が好ましい。
 これらのうち、R30としては、アルカンジイル基、2価の脂環式炭化水素基が好ましく、炭素数1~4のアルカンジイル基、炭素数6~11の2価の脂環式炭化水素基がより好ましい。R30が2価の脂環式炭化水素基である場合は、得られる上層膜の撥水性を高めることができる観点から好ましい。
 構造単位(III-3-1)としては、下記式(12-1)~(12-10)で表される構造単位が好ましく、下記式(12-7)で表される構造単位がより好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記式(12-1)~(12-10)中、R29は、上記式(12)と同義である。
 [A]重合体成分における構造単位(III)の含有割合としては、[A]重合体成分を構成する全構造単位に対して、0モル%~40モル%が好ましく、0.5モル%~30モル%がより好ましく、1モル%~25モル%がさらに好ましい。[A]重合体成分における構造単位(III)の含有割合を上記範囲とすることで、当該液浸上層膜形成用組成物から形成される液浸上層膜の除去性及び剥がれ耐性が向上する。
 重合体(A2)が構造単位(III)を含む場合において、構造単位(III)の含有割合としては、重合体(A2)が構造単位(II)を含む場合には、0.1モル%以上20モル%以下が好ましく、0.5モル%以上10モル%以下がより好ましく、1モル%以上5モル%以下がさらに好ましい。重合体(A2)が構造単位(II)を含まない場合には、構造単位(III)の含有割合としては、70モル%以上100モル%以下が好ましく、90モル%以上100モル%以下がより好ましい。構造単位(III)の含有割合を上記範囲とすることで、当該液浸上層膜形成用組成物から得られる液浸上層膜において、撥水性の高い重合体(A1)成分を液浸上層膜表面に偏在化させることができる。それにより、当該液浸上層膜形成用組成物から形成される液浸上層膜は、撥水性等の基本特性を十分に満足することができると共に、剥がれ耐性にも優れる。また、構造単位(III)の含有割合を上記範囲とすることで、アルカリ現像時のアルカリへの可溶性に優れるため、現像時の欠陥抑制の効果が高い。
[その他の構造単位]
 [A]重合体成分は、構造単位(I)~(III)以外に、その他の構造単位として、例えば撥水性を向上させる目的で、(メタ)アクリル酸プロピルや(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル等の(メタ)アクリル酸アルキルに由来する構造単位を有していてもよい。また、重合体の分子量、ガラス転移点、溶媒への溶解性などを制御する目的で、酸の作用により脱離可能な酸解離性基を有する構造単位等を有していてもよい。
<重合体(A1)及び(A2)の合成方法>
 重合体(A1))及び(A2)は、例えば所定の各構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な溶媒中で重合することにより製造できる。例えば、単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、各々の単量体を含有する複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等の方法で合成することが好ましい。
 上記重合に使用される溶媒としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。
 上記重合における反応温度は、ラジカル開始剤の種類に応じて適宜決定すればよいが、通常40℃~150℃であり、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間であり、1時間~24時間が好ましい。
 上記重合に使用されるラジカル開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオニトリル)等が挙げられる。これらの開始剤は2種以上を混合して使用してもよい。
 重合反応により得られた重合体は、再沈殿法により回収することが好ましい。すなわち、重合反応終了後、重合液を再沈溶媒に投入することにより、目的の樹脂を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を混合して使用することができる。再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して、重合体を回収することもできる。
 重合体(A1)及び(A2)のゲルパーミエーションクロマトグラフィー(GPC)による重量平均分子量(Mw)としては、1,000~100,000が好ましく、2,000~50,000がより好ましく、3,000~30,000がさらに好ましい。重合体(A1)及び(A2)のMwを上記特定範囲とすることで、膜減りを抑制し、得られるパターンのLWRを優れた値とすることができる。
 重合体(A1))及び(A2)のMwと数平均分子量(Mn)との比(Mw/Mn)としては、通常1~5であり、1~3が好ましく、1~2がより好ましい。Mw/Mnをこのような特定範囲とすることで、膜減りを抑制し、得られるパターンのLWRを優れた値とすることができる。
 なお、本明細書においてMw及びMnは、GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本、以上東ソー製)を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した値をいう。
<[B]溶媒>
 当該液浸上層膜形成用組成物は[B]溶媒を含有する。[B]溶媒としては[A]重合体成分及び任意成分を溶解できれば特に限定されない。[B]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒及びその混合溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、4-メチル-2-ペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
 エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。これらのうち、4-メチル-2-ペンタノールが好ましい。
 エーテル系溶媒としては、例えば
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル等の多価アルコール部分アルキルエーテル系溶媒;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコール部分アルキルエーテルアセテート系溶媒;
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、ジイソアミルエーテル、ヘキシルメチルエーテル、オクチルメチルエーテル、シクロペンチルメチルエーテル、ジシクロペンチルエーテル等の脂肪族エーテル系溶媒;
 アニソール、フェニルエチルエーテル等の脂肪族-芳香族エーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環状エーテル系溶媒等が挙げられる。これらのうち、ジイソアミルエーテルが好ましい。
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等が挙げられる。
 エステル系溶媒としては、例えばジエチルカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、i-プロピルベンゼン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。
 これらのうち、レジスト膜成分の溶出が起こり難いという観点から、エーテル系溶媒及びアルコール系溶媒が好ましく、エーテル系溶媒がより好ましい。アルコール系溶媒としては、モノアルコール系溶媒が好ましく、炭素数4~8のアルコール系溶媒がより好ましく、炭素数5又は6のアルコール系溶媒がさらに好ましく、4-メチル-2-ペンタノールが特に好ましい。エーテル系溶媒としては、脂肪族エーテル系溶媒が好ましく、炭素数6~12の脂肪族エーテル系溶媒がより好ましく、炭素数9~11の脂肪族エーテル系溶媒がさらに好ましく、ジイソアミルエーテルが特に好ましい。これらの溶媒は単独で使用してもよく2種以上を併用してもよい。
<任意成分>
 当該液浸上層膜形成用組成物は、[A]重合体成分、及び[B]溶媒以外に、本発明の効果を損なわない範囲で、任意成分を含有することができる。任意成分としては、例えば当該液浸上層膜形成用組成物のレジスト膜上への塗布性を向上させることができる界面活性剤等が挙げられる。
<当該液浸上層膜形成用組成物の調製方法>
 当該液浸上層膜形成用組成物は、例えば[B]溶媒中で[A]重合体成分、必要に応じて任意成分を所定の割合で混合することにより調製できる。また、当該液浸上層膜形成用組成物は、適当な[B]溶媒に溶解又は分散させた状態に調製され使用され得る。
<レジストパターン形成方法>
 本発明のレジストパターン形成方法は、
(1)基板上にレジスト膜を形成する工程、
(2)当該液浸上層膜形成用組成物を用い、上記レジスト膜上に液浸上層膜を積層する工程、
(3)フォトマスクを介する放射線の照射により、上記液浸上層膜が積層されたレジスト膜を液浸露光する工程、及び
(4)上記液浸露光されたレジスト膜を現像する工程
を有する。以下各工程について詳述する。
[(1)工程]
 本工程では、基板上にレジスト膜を形成する。本工程は通常、フォトレジスト組成物を基板に塗布することにより行われる。基板としては、例えばシリコンウェハ、アルミニウムで被覆されたウェハ等の従来公知の基板を使用できる。また、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の下層反射防止膜を基板上に形成してもよい。
 塗布方法としては、例えば回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。なお、形成されるレジスト膜の膜厚としては、通常0.01μm~1μmであり、0.01μm~0.5μmが好ましい。
 フォトレジスト組成物を塗布した後、必要に応じてプレベーク(PB)によって塗膜中の溶媒を揮発させてもよい。PBの加熱条件としては、上記フォトレジスト組成物の配合組成によって適宜選択されるが、通常30℃~200℃程度であり、50℃~150℃が好ましい。
 また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するために、例えば特開平5-188598号公報等に開示されている保護膜をレジスト層上に設けることもできる。さらに、レジスト層からの酸発生剤等の流出を防止するために、例えば特開2005-352384号公報等に開示されている液浸用保護膜をレジスト層上に設けることもできる。なお、これらの技術は併用できる。
[工程(2)]
 本工程では、当該液浸上層膜形成用組成物を用い、工程(1)で形成したレジスト膜上に液浸上層膜を積層する。本工程では、液浸上層膜形成用組成物を塗布した後、焼成することが好ましい。このようにレジスト膜上に液浸上層膜を積層することによって、液浸液とレジスト膜とが直接接触しなくなるため、液浸液がレジスト膜に浸透することに起因してレジスト膜のリソグラフィ性能が低下したり、レジスト膜から液浸液に溶出した成分によって投影露光装置のレンズが汚染されたりすることが効果的に防止される。液浸上層膜を積層する方法は、上記レジスト組成物に代えて当該液浸上層膜形成用組成物を用いること以外は、上記レジスト膜を形成する方法と同様の方法を採用することができる。
 液浸上層膜の厚さは、λ/4m(但し、λ:放射線の波長、m:保護膜の屈折率)の奇数倍にできる限り近づけることが好ましい。このようにすることで、レジスト膜の上側界面における反射抑制効果を大きくすることができる。
[工程(3)]
 本工程では、フォトマスクを介する放射線の照射により、上記液浸上層膜が積層されたレジスト膜を液浸露光する。この液浸露光は、液浸上層膜とレンズとの間に液浸媒体を配置し、この液浸媒体と所定のパターンを有するマスクとを介して、レジスト膜及び液浸上層膜に露光光を照射することにより行われる。
 液浸媒体としては、通常、空気より屈折率の高い液体を使用する。具体的には、水を用いることが好ましく、純水を用いることがさらに好ましい。なお、必要に応じて液浸液のpHを調整してもよい。この液浸媒体を介在させた状態で、すなわち、露光装置のレンズと液浸上層膜との間に液浸媒体を満たした状態で、露光装置から放射線を照射し、所定のパターンを有するマスクを介して液浸上層膜及びフォトレジスト膜を露光する。
 この露光(液浸露光)に用いる放射線は、レジスト膜や液浸上層膜の種類に応じて適宜選択することができ、例えば、可視光線;g線、i線等の紫外線;エキシマレーザ等の遠紫外線;シンクロトロン放射線等のX線;電子線等の荷電粒子線等の各種放射線を用いることができる。この中でも、ArFエキシマレーザ(波長193nm)及びKrFエキシマレーザ(波長248nm)が好ましい。また、露光光の照射条件、例えば放射線量は、フォトレジスト組成物及び/又は液浸上層膜形成用組成物の配合組成、添加剤の種類等に応じて適宜設定することができる。
 また、露光後にポストエクスポージャーベーク(PEB)を行なうことが好ましい。PEBを行なうことにより、上記フォトレジスト組成物中の酸解離性基の解離反応を円滑に進行できる。PEBの加熱条件としては、通常30℃~200℃であり、50℃~170℃が好ましい。
[工程(4)]
 本工程は、(3)工程において液浸露光されたレジスト膜を現像してレジストパターンを形成する工程である。当該レジストパターンの形成方法においては、当該液浸上層膜形成用組成物によって液浸上層膜を形成しているため、現像中には現像液によって、又は現像後に洗浄を行う場合には洗浄液によって、液浸上層膜を容易に除去することができる。すなわち、液浸上層膜を除去するために、別途の剥離工程を必要としない。
 上記現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド類、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノナン等のアルカリ性化合物を少なくとも1種溶解したアルカリ性水溶液が好ましい。この中でも、テトラアルキルアンモニウムヒドロキシド類の水溶液がより好ましい。
 現像液には、例えば、メタノール、エタノール等のアルコール類等の水溶性有機溶媒や、界面活性剤を適量添加することもできる。なお、アルカリ性水溶液を用いて現像した場合には、現像後に水洗することが好ましく、水洗後、乾燥してもよい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各物性値の測定方法を下記に示す。
[重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)]
 重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー製のGPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を使用し、以下の条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
 溶離液:テトラヒドロフラン
 流量:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
13C-NMR分析]
 13C-NMR分析は、日本電子製JNM-EX270を使用し、測定溶媒として、アセトン-dを使用して行った。重合体における各構造単位の含有率は、13C-NMRで得られたスペクトルにおける各構造単位に対応するピークの面積比から算出した。
<[A]重合体成分の合成>
 重合体(A1)及び重合体(A2)の合成に用いた単量体を下記に示す。
Figure JPOXMLDOC01-appb-C000025
[合成例1]
 構造単位(I)を与える化合物(M-1)0.62g(5モル%)、構造単位(II)を与える化合物(M-5)6.90g(35モル%)及び化合物(M-8)5.49g(60モル%)、並びに重合開始剤2,2’-アゾビス-(2-メチルプロピオン酸メチル)1.00gをメチルエチルケトン40.00gに溶解させた単量体溶液を準備し、30分間窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱し、滴下漏斗を用い、予め準備しておいた単量体溶液を3時間かけて滴下した。滴下終了後、さらに3時間反応を続けた。30℃以下になるまで冷却することにより重合液を得た。
 次いで、得られた共重合液を44gに濃縮した後、分液漏斗に移した。この分液漏斗にメタノール44g及びn-ヘキサン220gを投入し、分離精製を実施した。分離後、下層液を回収した。回収した下層液に及びn-ヘキサン220gを投入し、分離精製を実施した。分離後、下層液を回収した。回収した下層液を4-メチル-2-ペンタノールに置換し、重合体成分(A-1)を含む溶液を得た。その重合体溶液0.5gをアルミ皿にのせ、155℃に加熱したホットプレート上で30分間加熱した後の残渣の質量から上記重合体成分(A-1)を含む溶液の固形分濃度を算出し、その固形分濃度の値をその後の保護膜形成用組成物溶液の調製と収率計算に用いた。得られた重合体(A-1)のMwは10,500、Mw/Mnは1.53、収率は80%であった。また、13C-NMR分析の結果、化合物(M-1)、化合物(M-5)及び化合物(M-8)に由来する各構造単位の含有割合は、5.0:34.7:60.3(モル%)であった。
[合成例2~11]
 表1に記載の単量体を所定量使用した以外は、合成例1と同様に操作して重合体(A-2)~(A-10)及び(a-1)を得た。また、得られた各重合体の各構造単位の含有割合、Mw、Mw/Mn比、収率(%)を表2に示す。なお、表1及び表2中の「-」は、該当する単量体を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
<重合体(A2)の合成>
[合成例12]
 構造単位(II)を与える化合物(M-5)60.57g(85モル%)、及び重合開始剤2,2’-アゾビス-(2-メチルプロピオン酸メチル)4.53gをイソプロパノール40.00gに溶解させた単量体溶液を準備した。
 一方、温度計及び滴下漏斗を備えた200mLの三つ口フラスコにイソプロパノール50gを投入し、30分間窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱し、滴下漏斗を用い、予め準備しておいた単量体溶液を2時間かけて滴下した。滴下終了後、さらに1時間反応を行い、構造単位(III)を与える化合物(M-11)3.19g(15モル%)のイソプロパノール溶液10gを30分かけて滴下した。その後、さらに1時間反応を行った後、30℃以下になるまで冷却することにより重合液を得た。
 得られた上記重合液を150gに濃縮した後、分液漏斗に移した。この分液漏斗にメタノール50gとn-ヘキサン600gを投入し、分離精製を実施した。分離後、下層液を回収した。この下層液をイソプロパノールで希釈して100gとし、再度、分液漏斗に移した。その後、メタノール50gとn-ヘキサン600gを上記分液漏斗に投入して、分離精製を実施し、分離後、下層液を回収した。回収した下層液を4-メチル-2-ペンタノールに置換し、全量を250gに調整した。調整後、水250gを加えて分離精製を実施し、分離後、上層液を回収した。回収した上層液は、4-メチル-2-ペンタノールに置換し、重合体(A2-1)を含む溶液を得た。得られた重合体(A2-1)のMwは8,000、Mw/Mnは1.51であり、収率は80%であった。また、(M-5)及び(M-11)に由来する各構造単位の含有割合は、それぞれ98モル%及び2モル%であった。
[合成例13~17]
 表3に記載の単量体を所定量使用した以外は、合成例12と同様に操作して重合体(A2-2)~(A2-6)を得た。また、得られた各重合体の各構造単位の含有割合、Mw、Mw/Mn比、収率(%)を表4に示す。なお、表3及び表4中の「-」は、該当する単量体を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
<液浸上層膜形成用組成物の調製>
 液浸上層膜形成用組成物の調製に用いた[B]溶媒について以下に示す。
[[B]溶媒]
 (B-1):4-メチル-2-ペンタノール
 (B-2):ジイソアミルエーテル
[実施例1]
 [A]重合体成分としての重合体(A1-1)20質量部、重合体(A2-1)80質量部、並びに[B]溶媒としての(B-1)1,000質量部及び(B-2)4,000質量部を混合し、2時間撹拌した後、孔径0.2μmのフィルターでろ過することにより、実施例1の液浸上層膜形成用組成物を得た。
[実施例2~14及び比較例1]
 下記表5に記載した種類及び量の各成分を混合した以外は、実施例1と同様にして、各液浸上層膜形成用組成物を得た。
<フォトレジスト組成物の調製>
 レジスト膜形成のためのフォトレジスト組成物を以下の方法により調製した。
<フォトレジスト組成物用重合体の合成>
[合成例18]
 下記化合物(RM-1)53.93g(50モル%)、化合物(RM-2)35.38g(40モル%)、化合物(RM-3)10.69g(10モル%)を2-ブタノン200gに溶解し、さらにジメチル2,2’-アゾビス(2-メチルプロピオネート)5.58gを投入した単量体溶液を準備し、100gの2-ブタノンを投入した500mLの三口フラスコを30分窒素パージした。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2,000gのメタノールへ投入し、析出した白色粉末をろ別した。ろ別された白色粉末を2回400gずつのメタノールを用いてスラリー状にして洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体(P-1)を得た(74g、収率74%)。この重合体(P-1)はMwが6,900、Mw/Mn=1.70であった。また、13C-NMR分析の結果、化合物(RM-1)、化合物(RM-2)及び化合物(RM-3)に由来する各構造単位の含有割合は、53.0:37.2:9.8(モル%)であった。なお、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
Figure JPOXMLDOC01-appb-C000030
<フォトレジスト組成物の調製>
[合成例19]
 重合体(P-1)100質量部、酸発生剤としてトリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート1.5質量部及び1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート6質量部、酸拡散制御剤としてR-(+)-(tert-ブトキシカルボニル)-2-ピペリジンメタノール0.65質量部を混合し、この混合物に、溶媒として、プロピレングリコールモノメチルエーテルアセテート2,900質量部、シクロヘキサノン1,250質量部及びγ-ブチロラクトン100質量部を加えて、全固形分濃度を5質量%に調整し、孔径30nmのフィルターでろ過することにより、フォトレジスト組成物(α)を調製した。
<評価>
 上記実施例及び比較例で得られた各液浸上層膜形成用組成物を用いて液浸上層膜を形成し、以下に示す各種評価を行った。評価結果は、表5に合わせて示す。なお、表5中の「-」は、その項目の評価を行わなかったことを示す。
[溶解性]
 各液浸上層膜形成用組成物を30分間撹拌した。その後、目視で白濁している場合を「B(不良)」とし、白濁せずに溶解している場合を「A(良好)」と評価した。なお、溶解性試験が×となったものについてはその他の評価を行わなかった。
[現像液に対する溶解性]
 CLEAN TRACK ACT8(東京エレクトロン製)にて8インチシリコンウェハ上に、各液浸上層膜形成用組成物をスピンコートし、90℃で60秒PBを行い、膜厚90nmの液浸上層膜を形成した。膜厚はラムダエースVM90(大日本スクリーン製)を用いて測定した。上記液浸上層膜に対して、2.38質量%TMAH水溶液を用いて60秒間パドル現像し、振り切りによりスピンドライした後、ウエハ表面を観察した。このとき、残渣がなく現像されていれば、現像液に対する溶解性能が「A(良好)」であり、残渣が観察されれば「B(不良)」とした。
[後退接触角(°)]
 8インチシリコンウェハ上に、各液浸上層膜形成用組成物をスピンコートし、ホットプレート上で90℃、60秒PBを行い、膜厚30nmの液浸上層膜を形成した。その後、DSA-10(KRUS製)を使用して、速やかに、23℃、湿度45%、常圧の環境下で、後退接触角を測定した。すなわち、DSA-10のウェハステージ位置を調整し、この調整したステージ上に上記ウェハをセットした。次に、針に水を注入し、上記セットしたウェハ上に水滴を形成可能な初期位置に針の位置を微調整した。その後、この針から水を排出させてウェハ上に25μLの水滴を形成し、一旦、この水滴から針を引き抜き、再び初期位置に針を引き下げて水滴内に配置した。続いて、10μL/minの速度で90秒間、針によって水滴を吸引すると同時に接触角を毎秒1回、合計90回測定した。このうち、接触角の測定値が安定した時点から20秒間の接触角についての平均値を算出して後退接触角(°)とした。後退接触角が90°に近い程、液浸上層膜の撥水性が高いことを示す。
[フォトレジスト組成物の溶出量の評価]
 上記CLEAN TRACK ACT8を用いて、100℃、60秒のHMDS(ヘキサメチルジシラザン)処理を行った8インチシリコンウェハ上の中心部に、中央部が直径11.3cmの円形状にくり抜かれたシリコンゴムシート(クレハエラストマー製、厚み;1.0mm、形状;1辺30cmの正方形)を載せた。次いで、シリコンゴム中央部のくり抜き部に10mLホールピペットを用いて超純水10mLを満たした。
 一方、予め、下層反射防止膜用組成物(ARC29A、ブルワー・サイエンス製)を、上記CLEAN TRACK ACT8を用いて膜厚77nmの下層反射防止膜を形成するように塗布した。次いで、フォトレジスト組成物(α)を下層反射防止膜上にスピンコートし、115℃、60秒でPBすることにより膜厚205nmのレジスト膜を形成した。その後、レジスト膜上に、各液浸上層膜形成用組成物を塗布して液浸上層膜を形成した。液浸上層膜側が、上記準備したウエハのシリコンゴムシート内の超純水に接触するように重ね、その状態のまま10秒間保った。その後、超純水をガラス注射器にて回収し、これを分析用サンプルとした。なお、実験終了後の超純水の回収率は95%以上であった。
 超純水中の光酸発生剤のアニオン部のピーク強度を、LC-MS(液体クロマトグラフ質量分析計、LC部:AGILENT製 SERIES1100、MS部:Perseptive Biosystems,Inc.製 Mariner)を用いて下記の測定条件で測定した。その際、上記光酸発生剤の1ppb、10ppb、100ppb水溶液のピーク強度を、下記の測定条件で測定して検量線を作成し、この検量線を用いて上記ピーク強度から溶出量を算出した。また、同様にして、酸拡散制御剤の1ppb、10ppb、100ppb水溶液の各ピーク強度を下記測定条件で測定して検量線を作成し、この検量線を用いて上記ピーク強度から酸拡散制御剤の溶出量を算出した。その溶出量が5.0×10-12mol/cm以下であった場合に、フォトレジスト組成物の溶出の抑制性能が「A(良好)」、5.0×10-12mol/cmよりも大きかった場合に「B(不良)」とした。
(測定条件)
 使用カラム;「CAPCELL PAK MG」、資生堂製、1本
 流量;0.2mL/分
 流出溶媒:水/メタノール(3/7)に0.1質量%のギ酸を添加したもの
 測定温度;35℃
[ブロッブ欠陥]
 12インチシリコンウェハ表面に、下層反射防止膜(ARC66、日産化学製)をLithius Pro-i(東京エレクトロン製)を使用してスピンコートした後、PB(205℃、60秒)を行うことにより膜厚105nmの下層反射防止膜を形成した。次いで、CLEAN TRACK ACT12を使用してフォトレジスト組成物(α)をスピンコートし、100℃、60秒でPBを行い、23℃で30秒間冷却することにより膜厚100nmのレジスト膜を形成した。その後、レジスト膜上に、各液浸上層膜形成用組成物を塗布して液浸上層膜を形成した。
 次に、ArF液浸露光装置(S610C、NIKON製)を使用し、NA:1.30、Crosspoleの光学条件にて、45nmライン/90nmピッチのパターンを投影するためのマスクを介して露光した(以下、マスクによって投影されるパターンの寸法をそのマスクの「パターン寸法」と呼ぶ。例えば、パターン寸法が40nmライン/84nmピッチのマスクとは40nmライン/84nmピッチのパターンを投影するためのマスクのことを指す)。上記Lithius Pro-iのホットプレート上で100℃、60秒の条件でPEBを行い、23℃で30秒間冷却した後、現像カップのGPノズルにて、2.38質量%TMAH水溶液を現像液としてパドル現像を10秒間行い、超純水でリンスした。2,000rpm、15秒間振り切りでスピンドライすることにより、レジストパターンが形成された評価用基板を得た。このとき、パターン寸法が45nmライン/90nmピッチのマスクにおいて、45nmライン/90nmピッチのレジストパターンが形成される露光量を最適露光量とした。45nm/90nmピッチのレジストパターンが形成される際、未露光部におけるブロッブ欠陥が200個以下の場合を「A(良好)」とし、200個を超えた場合を「B(不良)」と評価した。
[ブリッジ欠陥]
 12インチシリコンウェハ表面に、下層反射防止膜(ARC66、日産化学製)をLithius Pro-i(東京エレクトロン製)を使用してスピンコートした後、PB(205℃、60秒)を行うことにより膜厚105nmの下層反射防止膜を形成した。次いで、上記CLEAN TRACK ACT12を使用してフォトレジスト組成物(α)をスピンコートし、100℃、60秒でPBを行い、23℃で30秒間冷却することにより膜厚100nmのレジスト膜を形成した。その後、レジスト膜上に、各液浸上層膜形成用組成物を塗布して液浸上層膜を形成した。
 次に、ArF液浸露光装置(S610C、NIKON製)を使用し、NA:1.30、Crosspoleの光学条件にて、45nmライン/90nmピッチのパターンを投影するためのマスクを介して露光した(以下、マスクによって投影されるパターンの寸法をそのマスクの「パターン寸法」と呼ぶ。例えば、パターン寸法が40nmライン/84nmピッチのマスクとは40nmライン/84nmピッチのパターンを投影するためのマスクのことを指す)。上記Lithius Pro-iのホットプレート上で100℃、60秒の条件でPEBを行い、23℃で30秒間冷却した後、現像カップのGPノズルにて、2.38質量%TMAH水溶液を現像液としてパドル現像を10秒間行い、超純水でリンスした。2,000rpm、15秒間振り切りでスピンドライすることにより、レジストパターンが形成された評価用基板を得た。このとき、パターン寸法が45nmライン/90nmピッチのマスクにおいて、45nmライン/90nmピッチのレジストパターンが形成される露光量を最適露光量とした。45nm/90nmピッチのレジストパターンが形成される際、ブリッジ欠陥が見られなかった場合を「A(良好)」、見られた場合を「B(不良)」とした。
[剥がれ耐性]
 基板として、HMDS処理をしていない8インチシリコンウェハを用いた。上記基板上に、各液浸上層膜樹脂組成物を上記CLEAN TRACK ACT8にて、スピンコートした後に90℃、60秒の条件でPBを行い、膜厚30nmの液浸上層膜を得た。その後、上記CLEAN TRACK ACT8にて純水によるリンスを60秒間行い、振り切りによる乾燥を行った。目視によりリンス後に中心部でハガレが観測された場合を「C(不良)」、エッジ部でのみハガレが観測された場合を「B(やや良好)」とし、ハガレが観測されない場合を「A(良好)」と評価した。
[パターン形状]
 高解像度のレジストパターンが形成されるか否かを評価するため本評価を行った。まず、12インチシリコンウェハ上に、上記Lithius Pro-iを使用して、下層反射防止膜用組成物(ARC66、日産化学製)をスピンコートし、PB(205℃、60秒)を行うことにより膜厚105nmの下層反射防止膜を形成した。形成した下層反射防止膜上に、フォトレジスト組成物(α)をスピンコートし、PB(100℃、60秒)を行うことにより膜厚100nmのレジスト膜を形成した。
 形成したレジスト膜上に、各液浸上層膜形成用組成物をスピンコートし、PB(90℃、60秒)を行うことにより膜厚30nmの液浸上層膜を形成した。ArF液浸露光装置(S610C、NIKON製)を使用し、45nmライン/90nmピッチのパターンを投影するためのマスクを介して露光した。上記Lithius Pro-iのホットプレート上で100℃、60秒の条件でPEBを行い、23℃で30秒間冷却した後、現像カップのGPノズルにて、2.38質量%TMAH水溶液を現像液としてパドル現像を10秒間行い、超純水でリンスした。2,000rpm、15秒間振り切りでスピンドライすることにより、レジストパターンが形成された評価用基板を得た。
 形成されたレジストパターンについて、線幅90nmのライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とした。なお、測定には走査型電子顕微鏡(CG-4000、日立計測器製)を使用した。また、線幅90nmライン・アンド・スペースパターンの断面形状を、走査型電子顕微鏡(S-4800、日立計測器製)にて観察した。基板上に形成されたパターンの高さ方向における中間での線幅Lbと、パターン上部での線幅Laを測定し、0.9≦La/Lb≦1.1であった場合を「A(良好)」、La/Lb<0.9、又はLa/Lb>1.1であった場合を「B(不良)」と評価した。
Figure JPOXMLDOC01-appb-T000031
 表5に示す通り、実施例1~14の液浸上層膜形成用組成物によれば、撥水性、現像液に対する溶解性、剥がれ耐性等の基本特性を十分満足する液浸上層膜を形成することができた。また、実施例1~14の液浸上層膜形成用組成物によれば、レジストパターン形成において、ブリッジ欠陥及びブロッブ欠陥が抑制され、パターン形状にも優れていた。
 本発明の液浸上層膜形成用組成物によると、撥水性、現像液に対する溶解性等の基本特性を十分満足した液浸上層膜を形成することができ、かつレジストパターン形成におけるブリッジ欠陥、ブロッブ欠陥等の現像欠陥を抑制することが可能となり、パターン形状に優れるレジストパターンを形成することができる。従って、これらは、今後ますます微細化が進行する電子デバイス製造におけるリソグラフィー工程に好適に用いることができる。

Claims (8)

  1.  [A]重合体(A1)を含む重合体成分、及び
     [B]溶媒
    を含有し、
     重合体(A1)が、下記式(1)で表される基を含む構造単位(I)を有する液浸上層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、アルカリ解離性基である。Rは、(n+1)価の連結基である。Aは、-CO-O-*、-SO-O-*、酸素原子又は-NR-である。Rは、水素原子又はアルカリ解離性基である。*は、Rに結合する部位を示す。但し、Aが酸素原子であるとき、RのAに直結する部位が、カルボニル基又はスルホニル基となる場合はない。nは、1~3の整数である。但し、nが2以上の場合、複数のR及びAは、それぞれ同一でも異なっていてもよい。)
  2.  上記構造単位(I)が、下記式(2)で表される請求項1に記載の液浸上層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、水素原子、メチル基、ヒドロキシメチル基又はトリフルオロメチル基である。Rは、-CO-O-、-O-CO-O-、-O-、-SO-、-CO-NH-又は-SONH-である。n、R及びRは、上記式(1)と同義である。)
  3.  上記Rのアルカリ解離性基が、炭素数1~20の1価の炭化水素基、下記式(3)で表される基、又は下記式(4)で表される基である請求項1又は請求項2に記載の液浸上層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R~Rは、水素原子、フッ素原子又はパーフルオロアルキル基である。但し、R~Rの少なくとも1つは、フッ素原子又はパーフルオロアルキル基である。R10は、水素原子、フッ素原子又は1価の有機基である。
     式(4)中、aは、0又は1である。bは、0~5の整数である。R11は、フッ素原子、又はフッ素原子を含んでいてもよい1価の有機基である。但し、bが2以上の場合、複数のR11は、同一でも異なっていてもよい。)
  4.  [A]重合体成分における上記構造単位(I)の含有割合が、[A]重合体成分を構成する全構造単位に対して、0.1モル%以上50モル%以下である請求項1又は請求項2に記載の液浸上層膜形成用組成物。
  5.  [A]重合体成分が、重合体(A1)と同一又は異なる重合体中に、フッ素化アルキル基及びフッ素化ヒドロキシアルキル基からなる群より選択される少なくとも1種の基を含み、かつ上記式(1)で表される基を含まない構造単位(II)をさらに有する請求項1又は請求項2に記載の液浸上層膜形成用組成物。
  6.  [A]重合体成分が、重合体(A1)と同一又は異なる重合体中に、カルボキシ基、スルホ基及び下記式(11)で表される基からなる群より選択される少なくとも1種の基を含む構造単位(III)をさらに有する請求項1又は請求項2に記載の液浸上層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(11)中、R23は、水素原子、ハロゲン原子、ニトロ基、アルキル基、1価の脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基又はアリール基である。上記アルキル基、脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有する水素原子の一部又は全部は置換されていてもよい。R24は、-C(=O)-R25、-S(=O)-R26、-R27-CN又は-R28-NOである。R25及びR26は、それぞれ独立して、水素原子、アルキル基、フッ素化アルキル基、1価の脂環式炭化水素基、アルコキシ基、シアノ基、シアノメチル基、アラルキル基又はアリール基である。但し、R25又はR26とR23とが互いに結合して環構造を形成していてもよい。R27及びR28は、それぞれ独立して、単結合、メチレン基又は炭素数2~5のアルキレン基である。)
  7.  [B]溶媒が、エーテル系溶媒を含む請求項1又は請求項2に記載の液浸上層膜形成用組成物。
  8. (1)基板上にレジスト膜を形成する工程、
    (2)請求項1又は請求項2に記載の液浸上層膜形成用組成物を用い、上記レジスト膜上に液浸上層膜を積層する工程、
    (3)フォトマスクを介する放射線の照射により、上記液浸上層膜が積層されたレジスト膜を液浸露光する工程、及び
    (4)上記液浸露光されたレジスト膜を現像する工程
    を有するレジストパターン形成方法。
PCT/JP2012/071919 2011-09-28 2012-08-29 液浸上層膜形成用組成物及びレジストパターン形成方法 WO2013047072A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536101A JP5935807B2 (ja) 2011-09-28 2012-08-29 液浸上層膜形成用組成物及びレジストパターン形成方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011213522 2011-09-28
JP2011-213522 2011-09-28
JP2012080611 2012-03-30
JP2012-080611 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013047072A1 true WO2013047072A1 (ja) 2013-04-04

Family

ID=47995120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071919 WO2013047072A1 (ja) 2011-09-28 2012-08-29 液浸上層膜形成用組成物及びレジストパターン形成方法

Country Status (2)

Country Link
JP (1) JP5935807B2 (ja)
WO (1) WO2013047072A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016027A1 (ja) * 2013-07-31 2015-02-05 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2016212420A (ja) * 2015-05-12 2016-12-15 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC フォトレジストトップコート組成物及びフォトレジスト組成物を処理する方法
CN109988478A (zh) * 2017-12-31 2019-07-09 罗门哈斯电子材料有限责任公司 光致抗蚀剂面涂层组合物和处理光致抗蚀剂组合物的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940731B2 (en) * 2018-06-30 2024-03-26 Rohm And Haas Electronic Materials Llc Photoresist topcoat compositions and methods of processing photoresist compositions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316307A (ja) * 2006-05-25 2007-12-06 Fujifilm Corp 保護膜形成組成物及びそれを用いたパターン形成方法
JP2007316581A (ja) * 2005-11-29 2007-12-06 Shin Etsu Chem Co Ltd レジスト保護膜材料及びパターン形成方法
JP2008046515A (ja) * 2006-08-19 2008-02-28 Daicel Chem Ind Ltd レジスト保護膜形成用樹脂組成物及びそれを用いたパターン形成方法
JP2009205132A (ja) * 2008-01-31 2009-09-10 Shin Etsu Chem Co Ltd レジスト保護膜材料及びパターン形成方法
JP2010134006A (ja) * 2008-12-02 2010-06-17 Shin-Etsu Chemical Co Ltd レジスト保護膜材料及びパターン形成方法
JP2010275498A (ja) * 2009-06-01 2010-12-09 Central Glass Co Ltd 含フッ素化合物、含フッ素高分子化合物、レジスト組成物、トップコート組成物及びパターン形成方法
JP2011227290A (ja) * 2010-04-20 2011-11-10 Tokyo Ohka Kogyo Co Ltd 保護膜形成用材料及びレジストパターン形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048515A (ja) * 2006-08-11 2008-02-28 Sharp Corp スイッチング電源装置
US8663903B2 (en) * 2009-04-21 2014-03-04 Central Glass Company, Limited Top coating composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316581A (ja) * 2005-11-29 2007-12-06 Shin Etsu Chem Co Ltd レジスト保護膜材料及びパターン形成方法
JP2007316307A (ja) * 2006-05-25 2007-12-06 Fujifilm Corp 保護膜形成組成物及びそれを用いたパターン形成方法
JP2008046515A (ja) * 2006-08-19 2008-02-28 Daicel Chem Ind Ltd レジスト保護膜形成用樹脂組成物及びそれを用いたパターン形成方法
JP2009205132A (ja) * 2008-01-31 2009-09-10 Shin Etsu Chem Co Ltd レジスト保護膜材料及びパターン形成方法
JP2010134006A (ja) * 2008-12-02 2010-06-17 Shin-Etsu Chemical Co Ltd レジスト保護膜材料及びパターン形成方法
JP2010275498A (ja) * 2009-06-01 2010-12-09 Central Glass Co Ltd 含フッ素化合物、含フッ素高分子化合物、レジスト組成物、トップコート組成物及びパターン形成方法
JP2011227290A (ja) * 2010-04-20 2011-11-10 Tokyo Ohka Kogyo Co Ltd 保護膜形成用材料及びレジストパターン形成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016027A1 (ja) * 2013-07-31 2015-02-05 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JPWO2015016027A1 (ja) * 2013-07-31 2017-03-02 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2016212420A (ja) * 2015-05-12 2016-12-15 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC フォトレジストトップコート組成物及びフォトレジスト組成物を処理する方法
CN109988478A (zh) * 2017-12-31 2019-07-09 罗门哈斯电子材料有限责任公司 光致抗蚀剂面涂层组合物和处理光致抗蚀剂组合物的方法
KR20190082662A (ko) * 2017-12-31 2019-07-10 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 포토레지스트 탑코트 조성물 및 포토레지스트 조성물의 처리 방법
KR102314297B1 (ko) * 2017-12-31 2021-10-18 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 포토레지스트 탑코트 조성물 및 포토레지스트 조성물의 처리 방법

Also Published As

Publication number Publication date
JP5935807B2 (ja) 2016-06-15
JPWO2013047072A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
KR102070057B1 (ko) 포토레지스트 조성물, 화합물 및 그의 제조 방법
JP5742563B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
KR102010092B1 (ko) 포토레지스트 조성물 및 레지스트 패턴 형성 방법
JP5928347B2 (ja) パターン形成方法
JP6390726B2 (ja) 重合体
WO2013137157A1 (ja) フォトレジスト組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
KR102109377B1 (ko) 포토레지스트 조성물 및 레지스트 패턴 형성 방법
JP5724791B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2012114963A1 (ja) ネガ型パターン形成方法及びフォトレジスト組成物
JP5935807B2 (ja) 液浸上層膜形成用組成物及びレジストパターン形成方法
JP6616755B2 (ja) フォトリソグラフィのためのオーバーコート組成物及び方法
JP5737211B2 (ja) 液浸上層膜形成用組成物及びレジストパターン形成方法
WO2017057203A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP5783111B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP5655579B2 (ja) 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
JP2017181696A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2016167050A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2015099311A (ja) ネガ型レジストパターン形成方法
JP2013083935A (ja) フォトレジスト組成物及びその製造方法、並びにレジストパターン形成方法
JP6232893B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、及びブロック共重合体
JP5560854B2 (ja) 感放射線性樹脂組成物およびそれに用いる重合体
WO2012046581A1 (ja) パターン形成方法及び感放射線性樹脂組成物
JP2016224123A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
KR20130034616A (ko) 포토레지스트 조성물 및 그의 제조 방법, 및 레지스트 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837059

Country of ref document: EP

Kind code of ref document: A1