WO2013046650A1 - セラミックグロープラグ - Google Patents

セラミックグロープラグ Download PDF

Info

Publication number
WO2013046650A1
WO2013046650A1 PCT/JP2012/006111 JP2012006111W WO2013046650A1 WO 2013046650 A1 WO2013046650 A1 WO 2013046650A1 JP 2012006111 W JP2012006111 W JP 2012006111W WO 2013046650 A1 WO2013046650 A1 WO 2013046650A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
glow plug
heater
exposed surface
electrode extraction
Prior art date
Application number
PCT/JP2012/006111
Other languages
English (en)
French (fr)
Inventor
雅寛 虎澤
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US14/233,049 priority Critical patent/US9644597B2/en
Priority to JP2013503689A priority patent/JP5632958B2/ja
Priority to KR1020147009231A priority patent/KR101579015B1/ko
Priority to EP12835782.9A priority patent/EP2762783B1/en
Publication of WO2013046650A1 publication Critical patent/WO2013046650A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/027Heaters specially adapted for glow plug igniters

Definitions

  • the present invention relates to a rod-shaped ceramic heater in which a heating element made of a conductive ceramic is embedded and held in a base made of insulating ceramic, and a glow plug including the ceramic heater, and more particularly, connected to the heating element in the base.
  • An electrode lead-out portion extending radially outward from the buried rod-shaped conductive portion and exposed to the outer peripheral surface of the ceramic heater is provided, and an inner portion of a metal outer cylinder that fits and holds the ceramic heater from the radially outer side.
  • the present invention relates to a ceramic glow plug having a structure in which a peripheral surface is electrically connected to the electrode extraction portion.
  • glow plugs used for diesel engine start-up assistance and the like are provided with a cylindrical metal shell, a rod-shaped central shaft, a heater containing a heating element that generates heat when energized, an insulating member, an outer cylinder, a connection terminal, and the like.
  • a metal glow plug using a metal sheath heater as a heater or a ceramic glow plug using a heater as a ceramic heater is used in view of performance and cost required for a diesel engine.
  • this ceramic glow plug generally has the following configuration. That is, a central shaft with one end protruding toward the rear end side is disposed on the inner peripheral side of the metal shell, and a ceramic heater (hereinafter also simply referred to as a heater) is provided on the front end side of the central shaft. A metal outer cylinder is joined to the tip of the metal shell, and a heater is held by the outer cylinder. On the other hand, on the rear end side of the metal shell, the insulating member is inserted into the gap between the middle shaft and the metal shell, and on the rear end side of the insulating member, the connection terminal is fixed to the middle shaft with the insulating member pressed toward the front end side. ing.
  • a method of press-fitting the heater into the outer cylinder can be suitably used for holding the heater.
  • a method of using a lubricant to facilitate press-fitting and heating and removing the lubricant after completion of press-fitting is also used. In this way, a radially inward force acts on the heater from the outer cylinder, and the heater is firmly clamped and held.
  • the above-mentioned ceramic heater is configured such that a heating element made of conductive ceramic is embedded and held in a base made of insulating ceramic.
  • both cathode and anode electrode extraction portions for applying a voltage to the heating element are provided on the rear end side, one electrode extraction portion is electrically connected to the metal shell, and the other electrode extraction portion is It is electrically connected to the central shaft (see, for example, Patent Document 1).
  • This electrical connection is realized by the aforementioned press-fitting.
  • Both electrode extraction portions are connected to both end portions of the heating element by a pair of rod-shaped conductive portions.
  • Both electrode extraction portions and the pair of conductive portions are made of a conductive ceramic like the heating element (see, for example, Patent Document 2).
  • the electrode extraction portion, the conductive portion, and the heating element are collectively referred to as a resistor.
  • JP 2002-364842 A Japanese Patent Laid-Open No. 2007-240080
  • the resistor has a configuration in which the resistor material includes a metal component such as W (tungsten) or Mo (molybdenum) in a larger amount than the base so that the resistor has conductivity. .
  • a resistor has a larger thermal expansion coefficient than a base
  • the improvement in strength due to the action of the compressive stress can be suitably used.
  • the electrode extraction portion is exposed on the outer peripheral surface of the heater. For this reason, tensile stress from the exposed part of the electrode extraction part acts on a part of the substrate around the electrode extraction part (hereinafter, this part is also referred to as an electrode part).
  • this part is also referred to as an electrode part.
  • the integrated assembly of the heater and the outer cylinder is heated to about 300 ° C. Since the outer cylinder is made of metal, its thermal expansion coefficient is much larger than that of the ceramic heater. Therefore, the outer cylinder undergoes thermal expansion due to heating during the removal of the lubricant, and the expansion in the axial direction of the thermal expansion causes a tensile stress in the axial direction of the heater. At this time, the radially inward compressive stress due to the press-fitting and the tensile stress in the axial direction act on the heater. As described above, since the electrode portion of the heater has low strength, the compressive stress and the tensile stress act synergistically, so that the ceramic heater may be damaged starting from the electrode portion.
  • the above-described problem is not limited to the ceramic glow plug in which the heater is press-fitted and held in the outer cylinder, and the heater may be similarly generated in the ceramic glow plug in which the heater is held in the outer cylinder via the brazing material layer. is there.
  • the present invention is a glow plug having a configuration in which a metal outer cylinder holds ceramic heaters having different thermal expansion coefficients between a resistor and a base, and a change in the constituent material of the heater or the outer cylinder To improve resistance to breakage in the electrode part of the ceramic heater that may occur after assembly with the outer cylinder, without changing the dimensions, materials, etc., and without impairing the electrical connection with the outer cylinder at the electrode extraction part Is.
  • the ceramic glow plug of the present invention is A base made of insulating ceramic and having a columnar shape in the axial direction; A heating element made of a conductive ceramic and embedded in the front end portion of the base and generating resistance heat by energization, a conductive portion connected to both ends of the heating element and extending rearward in the axial direction, and the conductive portion A resistor including an electrode extraction portion extending in a radial direction from at least one of the first electrode and exposed to the outer peripheral surface of the base body;
  • the ceramic heater consisting of A ceramic glow plug comprising a metal cylindrical member that holds the ceramic heater therein and that conducts in contact with the exposed surface of the electrode extraction portion,
  • the axial dimension and the circumferential dimension of the exposed surface of the electrode extraction part are both 1.0 to 1.8 mm.
  • the ceramic glow plug of the present invention is Compressive residual stress in a specific region of 0.3 mm from the front end of the exposed surface of the electrode extraction portion of the base body and 0.3 mm from the rear end of the exposed surface, compressive residual stress outside the specific region of the base body
  • the ratio is 50% or more.
  • the ceramic glow plug of the present invention is The axial dimension of the exposed surface of the electrode extraction portion is formed smaller than the circumferential dimension.
  • the ceramic glow plug of the present invention is The shape of the exposed surface of the electrode extraction portion does not have a corner portion.
  • the ceramic glow plug of the present invention is The ceramic heater is press-fitted into the cylindrical member.
  • both the axial dimension and the circumferential dimension on the exposed surface of the electrode extraction portion are 1.0 to 1.8 mm even if the thermal expansion coefficient differs between the resistor and the substrate.
  • the tolerance with respect to breakage of a ceramic heater can be improved, without impairing the electrical connection with the cylindrical member in an electrode extraction part.
  • the thermal expansion coefficient of the resistor is different from the thermal expansion coefficient of the substrate by 0.3 ppm / K or more, the above-described effects can be further exhibited.
  • the ceramic glow plug of configuration 2 the ratio between the compressive residual stress in the specific region and the compressive residual stress outside the specific region of the base (compressed residual stress of the base in the specific region / compressive residual stress outside the specific region). Therefore, the strength of the substrate around the exposed surface can be improved.
  • the resistance to breakage of the ceramic heater can be further improved.
  • the exposed surface of the electrode extraction portion has a shape having no corners, local stress concentration can be avoided, and the strength of the substrate around the exposed surface can be avoided. Can be further improved.
  • the ceramic glow plug in which the ceramic heater is press-fitted into the cylindrical member, it is difficult to achieve both electrical connection with the cylindrical member at the electrode extraction portion and resistance to breakage of the ceramic heater. Therefore, in the ceramic glow plug as in the present configuration 5, the above configurations 1 to 4 are particularly effective.
  • FIG. 1A is a front view of the glow plug 1
  • FIG. 1B is a longitudinal sectional view of the glow plug 1.
  • FIG. 2 is a partially enlarged cross-sectional view centering on the ceramic heater 4.
  • the lower side of the drawing will be described as the front end side of the glow plug 1 (ceramic heater 4), and the upper side will be described as the rear end side.
  • the glow plug 1 includes a metal shell 2, a center shaft 3, a ceramic heater 4, an outer cylinder 5, a connection terminal 6, and the like.
  • the metal shell 2 is formed of a predetermined metal material (for example, an iron-based material such as S45C) and has a shaft hole 7 extending along the direction of the axis CL1.
  • a tapered portion 7 a is formed that tapers toward the front end side.
  • the tip end side of the shaft hole 7 with respect to the tapered portion 7a is formed in a straight shape (so as to have the same inner diameter).
  • a male screw portion 8 for attaching the glow plug 1 to a female screw portion formed in a mounting hole of a cylinder head of the engine is formed on the outer periphery of the central portion of the metal shell 2 in the longitudinal direction.
  • a hook-shaped tool engaging portion 9 having a hexagonal cross section is formed on the outer periphery of the rear end portion of the metal shell 2, and when attaching the glow plug 1 (male screw portion 8) to the mounting hole, A tool used in the tool engaging portion 9 is engaged.
  • the shaft 3 in the metal shell 2 accommodates the middle shaft 3 made of metal and having a round bar shape.
  • a tip small-diameter portion 3 a that is formed to have a smaller diameter than the rear end side is formed at the tip portion of the intermediate shaft 3.
  • the central shaft 3 is connected to the rear end portion of the ceramic heater 4 via a cylindrical ring member 10 formed of a metal material (for example, an iron-based material such as SUS). More specifically, the rear end portion of the ceramic heater 4 is press-fitted into the front end portion of the inner hole 10 a of the ring member 10, and the front end small diameter portion 3 a with respect to the rear end portion of the inner hole 10 a of the ring member 10. In the state in which the intermediate shaft 3 and the ring member 10 are joined by laser welding or the like, the intermediate shaft 3 and the ceramic heater 4 are mechanically and electrically connected via the ring member 10.
  • the metal connection terminal 6 is caulked and fixed to the rear end of the middle shaft 3.
  • an insulating bush 11 made of an insulating material is provided between the front end portion of the connection terminal 6 and the rear end portion of the metal shell 2 in order to prevent direct electrical conduction therebetween. More specifically, the insulating bush 11 includes a flange portion 11a that protrudes radially outward on the rear end side thereof, and a small-diameter portion 11b that is formed with a smaller diameter than the flange portion 11a on the front end side thereof. And have.
  • the insulating bush 11 is provided in a state where the small diameter portion 11b is fitted to the rear end portion of the shaft hole 7 and the flange portion 11a is sandwiched between the connection terminal 6 and the metal shell 2. ing. Furthermore, in order to improve the airtightness in the shaft hole 7, an O-ring 12 made of an insulating material is interposed between the metal shell 2 and the middle shaft 3 and is locked to the tapered portion 7 a. Is provided.
  • a constricted portion 3b is formed on the distal end side of the middle shaft 3 and its outer diameter is reduced toward the distal end side.
  • the constricted portion 3b reduces stress transmitted to the central shaft 3 and the like.
  • the outer cylinder 5 is formed in a cylindrical shape from a predetermined metal material (for example, SUS310). Further, the outer cylinder 5 holds an intermediate portion along the direction of the axis CL ⁇ b> 1 of the ceramic heater 4, and the tip of the ceramic heater 4 is exposed from the tip of the outer cylinder 5. Further, the outer cylinder 5 has a small-diameter portion 5a formed relatively thin on the distal end side, a tapered portion 5b tapering to the distal end side on the rear end side with respect to the small-diameter portion 5a, and the tapered portion 5b.
  • a predetermined metal material for example, SUS310
  • a large diameter portion 5c formed continuously from the rear end and having an outer diameter substantially the same as the outer diameter of the front end of the metal shell 2, and the front end portion of the shaft hole 7 on the rear end side of the large diameter portion 5c. And an engaging portion 5d having an outer diameter substantially the same as the inner diameter. Then, in a state where the engaging portion 5d is fitted to the distal end portion of the shaft hole 7, a melting portion is formed on the contact surface of the metal shell 2 and the outer cylinder 5 by laser welding or the like, An outer cylinder 5 is joined to the metal shell 2.
  • the tapered portion 5b plays a role as a seal for ensuring airtightness with the combustion chamber.
  • the ceramic heater 4 is made of an insulating ceramic, has a round bar-like base body 21 having substantially the same diameter extending in the direction of the axis CL1, and a long thin U-shaped resistor made of conductive ceramic. 22 is held in an embedded state.
  • the outer diameter of the ceramic heater 4 is, for example, 2.5 to 4.0 mm.
  • the resistor 22 includes a pair of rod-like conductive portions 23 and 24 and a connecting portion 25 that connects the tip portions of the conductive portions 23 and 24. Is the heat generating portion 26.
  • the heating portion functions as a so-called heating resistor, and has a substantially U-shaped cross section along the curved surface at the tip portion of the ceramic heater 4 formed in a curved shape. Further, in the present embodiment, the cross-sectional area of the heat generating portion 26 is configured to be smaller than the cross-sectional areas of the conductive portions 23 and 24, and the heat generating portion 26 positively generates heat when energized. It is like that.
  • the connecting portion 25 corresponds to the heating element in the present invention.
  • Si 3 N 4 silicon nitride
  • Si 3 N 4 is mainly used as the insulating ceramic material constituting the base 21.
  • the material constituting the resistor 22 contains silicon nitride as a main component and contains WC (tungsten carbide) (for example, 60 to 70% by mass when the total of silicon nitride and tungsten carbide is 100% by mass).
  • Conductive ceramic material material having conductivity after firing is used.
  • the thermal expansion coefficient of the substrate 21 is, for example, 3.3 to 4.0 ppm / K
  • the thermal expansion coefficient of the resistor 22 is, for example, 3.6 to 4.2 ppm / K.
  • the conductive portions 23 and 24 extend substantially parallel to each other toward the rear end side of the ceramic heater 4.
  • an electrode extraction portion 27 protrudes in the radial direction.
  • the electrode extraction part 27 is exposed on the outer peripheral surface of the ceramic heater 4.
  • the electrode extraction portion 28 protrudes in the radial direction, and the electrode extraction portion 28 is exposed on the outer peripheral surface of the ceramic heater 4.
  • the electrode extraction portion 27 of the one conductive portion 23 is located on the rear end side with respect to the electrode extraction portion 28 of the other conductive portion 24 along the direction of the axis CL1.
  • the exposed portion of the electrode extraction portion 27 is in contact with the inner peripheral surface of the ring member 10.
  • electrical continuity between the middle shaft 3 connected to the ring member 10 and the conductive portion 23 is achieved.
  • the exposed portion of the electrode extraction portion 28 is in contact with the inner peripheral surface of the outer cylinder 5.
  • electrical conduction between the metal shell 2 joined to the outer cylinder 5 and the conductive portion 24 is achieved. That is, in the present embodiment, the central shaft 3 and the metal shell 2 function as an anode / cathode for energizing the heat generating portion 26 of the ceramic heater 4 in the glow plug 1.
  • the electrode extraction part 28 which is the main part of the present invention will be described together with the evaluation results after the description of the manufacturing method.
  • the above-described glow plug 1 is assembled in a mounting hole of a cylinder head of an internal combustion engine. At this time, the outer cylinder 5 comes into contact with the cylinder head, whereby the metal shell 2 is grounded.
  • the ring member 10 is formed by cutting a pipe material made of an iron-based material such as SUS630 into a predetermined length, and arranging the pipe material into a predetermined cylindrical shape.
  • the pipe member made of a predetermined metal material for example, SUS430
  • the surface of the ring member 10 and the outer cylinder 5 is subjected to a plating process such as Au plating.
  • the rear end portion of the separately manufactured ceramic heater 4 is press-fitted into the front end portion of the inner hole 10 a of the ring member 10.
  • the ceramic heater 4 is press-fitted into the inner hole of the outer cylinder 5.
  • the outer cylinder 5 is fixed by being separated in the direction of the axis CL ⁇ b> 1 so as not to contact the ring member 10.
  • an appropriate amount (Paskin M30 (trade name: Kyoeisha Chemical Co., Ltd.)) is applied as a lubricant.
  • the integrated assembly with the cylinder 5 is put into a heating furnace and heated to about 300 ° C. to decompose and remove the lubricant.
  • the pre-manufactured middle shaft 3 is fitted into the rear end portion of the inner hole 10a, and then a laser beam is irradiated along the contact surfaces of the ring member 10 and the middle shaft 3, so that the ring member 10 and the middle shaft 3 are irradiated. Join.
  • the central shaft 3, the ceramic heater 4, the outer cylinder 5, and the ring member 10 are integrally formed.
  • the metal shell 2 is manufactured. That is, the metal shell 2 including the male screw portion 8 and the tool engaging portion 9 is obtained by cutting a pipe material made of a predetermined metal material into a predetermined length and then performing a cutting process or a rolling process. . Moreover, you may perform rust prevention processes, such as plating, as needed.
  • the outer cylinder 5 in which the middle shaft 3 and the ceramic heater 4 are integrated and the metal shell 2 are joined. That is, after the engaging portion 5 d of the outer cylinder 5 is fitted into the shaft hole 7 of the metal shell 2, the laser beam is irradiated along the contact surfaces of the outer cylinder 5 and the metal shell 2. As a result, the melted portion is formed, and the outer cylinder 5 and the metal shell 2 that are integrated with the intermediate shaft 3 and the ceramic heater 4 are joined.
  • the insulating bush 11 and the O-ring 12 are arranged at a predetermined position between the metal shell 2 and the middle shaft 3, and a connection formed in advance at the rear end portion of the middle shaft 3 protruding from the rear end side of the metal shell 2.
  • the glow plug 1 is obtained by crimping and fixing the terminal 6.
  • the shape of the electrode extraction portion 28 is characteristic, but a conventionally known manufacturing method can be used for other configurations. Therefore, it is manufactured through a series of steps of formation of an unfired resistor, integration with a base material, firing, and external polishing (see FIG. 3).
  • the ceramic heater 4 shrinks or deforms during a firing process such as hot pressing, when manufacturing an unfired resistor (resistor before firing) by injection molding, the shape of the electrode extraction portion described later is exhibited. It is formed in consideration of the shrinkage and the like.
  • the ceramic glow plug of the present invention thus manufactured realizes a good electrical connection with the outer cylinder and has excellent performance in breakage resistance. Next, the evaluation test and the result of the ceramic glow plug according to the present invention will be described.
  • test ceramic heaters formed as described above had an outer diameter of 3.1 mm and a length of 42 mm.
  • shape of the exposed surface of the electrode extraction portion of the manufactured test product is a circle or an ellipse. Thus, in this invention, it is set as the shape which does not have a corner
  • the maximum length in each direction is 0.5 mm, 1.0 mm, 1.8 m, 2.0 mm, and 3.0 mm in both the axial direction and the circumferential direction, and a total of 25 patterns of these combinations. An evaluation test was conducted.
  • the outer cylinder used for the ceramic glow plug manufactured in the evaluation test has an outer diameter of 8.0 mm, an inner diameter of 3.05 mm, and a length of 25 mm.
  • the axial length of the portion having the maximum outer diameter of the diameter portion was 4.0 mm.
  • ⁇ Evaluation items are checking whether resistance failure has occurred in the heater as well as resistance to breakage of the heater.
  • the test methods are as follows.
  • the resistance value is measured by energizing the ceramic glow plug, and the resistance value rises by more than 20% from the design resistance value before dropping.
  • the number of test specimens was counted to calculate the incidence of resistance failure.
  • Table 2 In both tests, the symbol “ ⁇ ” indicates that the incidence of defects is 0.1% or less, “ ⁇ ” is 0.1% or more and less than 1%, and “X” is 1% or more.
  • the number of evaluations was 300 in all cases. Therefore, in this evaluation test, the symbol “ ⁇ ” means that no defect has occurred, the symbol “ ⁇ ” has one or two defects, and the symbol “X” has three. It means that the above defects occurred.
  • the failure rate of the heater is extremely low and there is no problem if the shape of the exposed surface of the electrode extraction part is 1.8 mm or less in both the axial direction and the circumferential direction. It was. In addition, it was confirmed that the shape of the exposed surface is preferably 1.0 mm or more for resistance failure. It has been confirmed that similar results to those described above can be obtained when the outer diameter of the ceramic heater is 2.5 to 4.0 mm.
  • Example 4 corresponds to Example 1 described above except that the lubricant removal temperature is different.
  • breakage failure did not occur in Example 4
  • breakage failure occurred in Example 4 of this test in which the lubricant removal temperature was excessively increased.
  • no breakage failure occurred in Examples 5 and 6
  • the shape of the sixth embodiment in which the axial dimension of the exposed surface is smaller than the circumferential dimension is larger than that of the fourth embodiment in which the axial dimension of the exposed surface is larger than the circumferential dimension.
  • the durability against breakage failure improved as it approached.
  • This result confirmed the significance that the axial dimension of the exposed surface was formed smaller than the circumferential dimension. This is presumably because the tensile stress that the exposed surface of the electrode extraction portion applies to the boundary of the exposed surface in the axial direction mainly depends on the axial dimension of the exposed surface.
  • the conductive part contains a larger amount of metal element than the base, the conductive part has a larger thermal expansion coefficient than the base. For this reason, in the cooling stage after firing in the manufacturing process of the heater, the amount of contraction of the conductive portion is larger than that of the substrate, and tensile stress is generated in the substrate.
  • the stress acts as a compressive stress on the surface of the heater (base). Since the compressive stress is acting, the strength in the portion, that is, the base portion where the conductive portion is embedded is apparently improved.
  • the exposed conductive portion contracts so as to pull the surrounding substrate, thereby canceling the compression stress described above. That is, it is difficult to expect the effect of improving the strength due to the compressive stress at the boundary between the exposed surface and the substrate.
  • a configuration is adopted in which the area of the exposed surface is reduced to reduce the proportion of the compressive stress cancelled.
  • the structure in which the area of the exposed surface is reduced improves the strength around the exposed surface. This effect can be more effectively achieved by avoiding the occurrence of local stress concentration by adopting a configuration in which the shape of the exposed surface does not have corners, that is, a shape similar to a circle or an ellipse. is there.
  • Example 1 Example 1 and Comparative Example 1 described above.
  • the surface residual stress of each heater was measured for each heater.
  • As a measuring method an X-ray residual stress measuring method was used, and a 2 ⁇ -sin2 ⁇ -ray method was used.
  • For stress measurement 131.55 ° of ⁇ -Si 3 N 4 (212) having a high peak intensity on the high angle side was used.
  • the collimator had a diameter of 0.5 mm, a 2 ⁇ sampling width of 0.1 °, and a counting time of 1000 seconds.
  • Cr-K ⁇ was used for the X-ray tube.
  • X-rays were irradiated at a plurality of incident angles to obtain diffraction angles.
  • the residual stress was calculated from the slope of the 2 ⁇ -sin2 ⁇ diagram created from the diffraction angle with respect to the incident angle.
  • the residual stress was measured at four points, each having a predetermined distance in the axial direction from the base point, with the boundary between the exposed surface and the substrate at the electrode extraction portion as the base point (see the ST1 and ST2 positions in FIG. 5).
  • the residual stress at the boundary is originally measured.
  • the electrode extraction part on the exposed surface is measured.
  • a diffraction peak is generated due to the constituent material, and accurate 2 ⁇ measurement cannot be performed.
  • the peak intensity is reduced when the collimator diameter is 0.5 mm or less, and reliable stress measurement cannot be performed.
  • the residual stress at the boundary the residual stress at a position of 0.30 mm from the interface having a radius of 0.25 mm or more of the collimator diameter, which is the minimum distance not including the electrode material in the measurement range, was measured.
  • the compression residual stress ratio of the exposed surface boundary with respect to the conductive portion in each sample was 71% in Example 1, 50% in Example 2, and 45% in Comparative Example 1.
  • the conductive portion indicates a position where the stress is sufficiently far from the boundary of the exposed surface and the stress is stable.
  • “not having a corner” is not limited to a circle or an ellipse, and may be, for example, a shape obtained by rounding a substantially rectangular corner. If the magnitude of R at that time, that is, the radius of curvature is 0.1 mm or more, for example, it corresponds to “no corners”.
  • the present invention it is possible to improve the strength of the electrode portion of the ceramic heater without changing the constituent material of the heater or changing the dimensions and materials of the outer cylinder.
  • the present invention does not limit changes in the constituent material of the heater or various changes in the outer cylinder, and can be employed in any glow plug that requires improvement in the strength of the electrode portion of the ceramic heater.
  • the ceramic heater 4 is press-fitted and held in the inner hole of the outer cylinder 5, but the ceramic heater is held in the inner hole of the outer cylinder via a brazing material layer. You may do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)

Abstract

埋設された抵抗体の一部が基体の一部に露出して電極取出部の露出面を形成する構成を備えたセラミックグロープラグであって、電極取出部における抵抗不良を生じさせることなく当該電極取出部近傍における耐折損性を向上させる。導電性セラミックからなる抵抗体は絶縁性セラミックからなる基体の内部に埋設される一方、自身の一部が前記基体の表面へ露出した露出面を有する。当該露出面と埋設された部位とでは基体へ及ぼす応力の相違があり、これに基づき電極取出部付近の耐折損性の低下が懸念されるところ、本発明は露出面の形状を軸方向及び周方向共に1.0mm以上1.8mm以下とすることによって当該問題を解決した。

Description

セラミックグロープラグ
 本発明は導電性セラミックからなる発熱素子が絶縁性セラミックからなる基体に埋設保持されてなる棒状のセラミックヒータ及び当該セラミックヒータを備えるグロープラグに係り、特に、前記発熱素子に接続され前記基体中に埋設された棒状の導電部から径方向外側に延設されセラミックヒータの外周面に露出する電極取出部を具備してなるとともに、前記セラミックヒータを径方向外側から嵌合保持する金属外筒の内周面と前記電極取出部とが導通した構造を有するセラミックグロープラグに関する。
 従来、ディーゼルエンジンの始動補助等に用いられるグロープラグは、筒状の主体金具、棒状の中軸、通電により発熱する発熱素子を内蔵するヒータ、絶縁部材、外筒、接続端子等を備えている。ディーゼルエンジンが要する性能やコスト面からヒータを金属製シースヒータとするメタルグロープラグや、ヒータをセラミックヒータとするセラミックグロープラグが使用されている。
 ところで、このセラミックグロープラグは概略次の構成を備えている。すなわち、主体金具の内周側には後端側へ一端を突出させた中軸が配設され、該中軸の先端側にはセラミックヒータ(以下、単にヒータともいう)が設けられている。また、主体金具の先端部には金属製の外筒が接合され、この外筒によってヒータが保持されている。一方、主体金具の後端側においては、絶縁部材が中軸と主体金具との間隙に挿入され、絶縁部材の後端側には接続端子が絶縁部材を先端側に押圧した状態で中軸に固定されている。ヒータの保持に際してはヒータを外筒へ圧入する手法を好適に用いることができる。このとき、圧入を容易に行うために潤滑剤を用い、圧入を完了した後に当該潤滑剤を加熱して除去する手法も用いられる。こうしてヒータには外筒から径方向内向きの力が作用し強固に締め付けられ、保持される。
 上記セラミックヒータは、導電性セラミックからなる発熱素子が、絶縁性セラミックからなる基体中に埋設されて保持されることで構成されている。この場合において、発熱素子に電圧を印加するための陰極・陽極の両電極取出部が後端側に設けられ、一方の電極取出部は主体金具に電気的に接続され、他方の電極取出部は中軸に電気的に接続される(例えば、特許文献1参照)。この電気的な接続は前述の圧入により実現されている。また、両電極取出部は一対の棒状の導電部により前記発熱素子の両端部に接続されている。両電極取出部及び一対の導電部は発熱素子同様に導電性セラミックから構成される(例えば特許文献2参照)。以降、電極取出部と導電部及び発熱素子を総称して抵抗体ともいう。
特開2002-364842号公報 特開2007-240080号公報
 前記抵抗体については、当該抵抗体が導電性を有するように前記抵抗体の材料にはW(タングステン)やMo(モリブデン)等の金属成分が前記基体に比較して多量に含まれる構成を採る。このため、抵抗体は基体よりも大きい熱膨張係数を有する。熱膨張係数が異なるためセラミックヒータを焼成する際の冷却段階では、抵抗体の収縮量は基体よりも大きい。したがって、基体には軸方向に収縮するように熱応力(引張り応力)が生じる。これによりヒータの表面においては圧縮応力が作用した状態となるため、抵抗体が内在していない基体材料の焼結体と比較すると当該圧縮応力が作用している分だけ、見かけの上では高強度となる。
 抵抗体がヒータの軸方向に沿って一様に存在していれば、上記圧縮応力の作用による強度の向上を好適に利用できる。しかしながら、ヒータの外周面には電極取出部が露出形成されている。このため、基体のうち電極取出部の周囲の部分(以降、この部位を電極部ともいう)では当該電極取出部の露出部位からの引張り応力が作用する。すると、前記した圧縮応力の作用による強度の向上効果が相殺され、電極部は他の部位に比べて低強度となってしまう。
 ところで、ヒータが外筒へ圧入される際に使用された潤滑剤を除去するため、ヒータと外筒の一体組立体は約300℃に加熱される。外筒は金属製であるからその熱膨張係数はセラミックヒータよりも格段に大きい。したがって、潤滑剤除去の際の加熱によって外筒は熱膨張を生じ、この熱膨張のうち軸方向への膨張はヒータの軸方向の引張り応力を引き起こす。このときヒータには前述の圧入による径方向内向きの圧縮応力と、軸方向の引張り応力とが作用することとなる。前述の如くヒータの電極部は低強度となっているから、この圧縮応力と引張り応力とが相乗的に作用するために、当該電極部を起点としてセラミックヒータに破損が生じるおそれがある。
 この破損を防ぐために、外筒の形状やヒータ圧入の際の圧入径差の設計或いは材料の選択により外筒がヒータを締め付ける力を弱くすることが考えられる。しかしながら、部品の公差を小さくすると生産性が損なわれたり、また電気的な接続不良等の問題が懸念されるため、外筒がヒータを締め付ける力を弱くすることは難しい。そこで、ヒータ単体で強度を向上する技術が求められる。
 なお、上述の課題は、ヒータが外筒に圧入保持されるセラミックグロープラグに限られるものではなく、ヒータがロウ材層を介して外筒に保持されるセラミックグロープラグにおいても同様に生じるおそれがある。
 本発明は、斯かる実情に鑑み、抵抗体と基体とで熱膨張係数が異なるセラミックヒータを金属製の外筒が保持する構成を有するグロープラグであって、ヒータの構成材料の変更や外筒の寸法・材料等の変更を行うことなく、また電極取出部における外筒との電気的接続を損なわず、外筒と組み付けた後に生じ得るセラミックヒータの電極部における折損に対する耐性を向上しようとするものである。
 構成1.上記課題を解決するために、本発明のセラミックグロープラグは、
 絶縁性セラミックからなり軸方向に柱状をなす基体と、
 導電性セラミックからなり前記基体の先端部に埋設され通電によって抵抗発熱する発熱素子と、当該発熱素子の両端部に接続され前記軸方向の後方へ向けて延設される導電部と、当該導電部の少なくとも一方から径方向へ向けて延設され前記基体の外周面へ露出する電極取出部とを備えてなる抵抗体と、
からなるセラミックヒータを備え、
 自身の内部に前記セラミックヒータが保持され、前記電極取出部の露出面と接触して導通する金属製の筒状部材とを備えたセラミックグロープラグであって、
 前記電極取出部の露出面の前記軸方向寸法及び前記周方向寸法が共に1.0~1.8mmであることを特徴とする。
 構成2.本発明のセラミックグロープラグは、
 前記基体のうち前記電極取出部の露出面の先端から0.3mm、及び当該露出面の後端から0.3mmの特定領域における圧縮残留応力の、前記基体のうち前記特定領域外における圧縮残留応力に対する比が50%以上であることを特徴とする。
 構成3.本発明のセラミックグロープラグは、
 前記電極取出部の露出面の前記軸方向寸法が前記周方向寸法に対して小さく形成されていることを特徴とする。
 構成4.本発明のセラミックグロープラグは、
 前記電極取出部の露出面の形状は、角部を持たないことを特徴とする。
 構成5.本発明のセラミックグロープラグは、
 前記セラミックヒータは、前記筒状部材の内部に圧入嵌合されることを特徴とする。
 構成1のセラミックグロープラグによれば、抵抗体と基体とで熱膨張係数が異なっていても、電極取出部の露出面における軸方向寸法及び周方向寸法を共に1.0~1.8mmにすることで、電極取出部における筒状部材との電気的接続を損なうことなく、セラミックヒータの折損に対する耐性を向上させることができる。特に、抵抗体の熱膨張係数と基体の熱膨張係数とが0.3ppm/K以上異なる場合に、上記作用効果をより一層発揮することができる。
 構成2のセラミックグロープラグによれば、基体のうち特定領域における圧縮残留応力と特定領域外における圧縮残留応力との比(特定領域における基体の圧縮残留応力/特定領域外における基体の圧縮残留応力)が50%以上であることから、露出面の周囲における基体の強度を向上させることができる。
 構成3のセラミックグロープラグによれば、電極取出部の露出面における軸方向寸法が周方向寸法に対して小さく形成されていることから、セラミックヒータの折損に対する耐性をさらに向上させることができる。
 構成4のセラミックグロープラグによれば、電極取出部の露出面が角部を持たない形状であることから、局所的な応力集中の発生を回避することができ、露出面の周囲における基体の強度をさらに向上させることができる。
 セラミックヒータが筒状部材の内部に圧入嵌合されたセラミックグロープラグでは、電極取出部における筒状部材との電気的接続の確保とセラミックヒータの折損に対する耐性とを両立させることが難しい。このため、本構成5のようなセラミックグロープラグにおいて、上記構成1~4は特に有効である。
本発明のセラミックグロープラグであって、(a)は正面図を、(b)は縦断面図を示すものである。 セラミックヒータを中心に示すグロープラグの部分拡大断面図である。 セラミックヒータの製造方法の工順を示すフローチャートである。 セラミックヒータにおける残留応力の影響を確認すべく測定したグラフである。 本発明の要部である電極取出部の露出面及び残留応力測定領域を説明する図である。
 以下に、一実施形態について図面を参照しつつ説明する。まず、本発明に係るセラミックヒータ4を備えるセラミックグロープラグ1(以下、「グロープラグ1と称す」)について、図1(a),(b)及び図2を参照しつつ説明する。図1(a)は、グロープラグ1の正面図であり、図1(b)は、グロープラグ1の縦断面図である。また、図2は、セラミックヒータ4を中心に示す部分拡大断面図である。尚、図1,2においては、図の下側をグロープラグ1(セラミックヒータ4)の先端側、上側を後端側として説明する。
 図1(a),(b)に示すように、グロープラグ1は、主体金具2、中軸3、セラミックヒータ4、外筒5、接続端子6等を備えている。
 主体金具2は、所定の金属材料(例えば、S45C等の鉄系素材)によって形成されるとともに、軸線CL1方向に沿って延びる軸孔7を有している。当該軸孔7の後端部には、先端側に向けて先細るテーパ部7aが形成されている。また、軸孔7のうち前記テーパ部7aよりも先端側はストレート状に(同一内径を有するように)形成されている。さらに、前記主体金具2の長手方向中央部外周には、グロープラグ1をエンジンのシリンダヘッドの取付孔に形成された雌ねじ部に取付けるための雄ねじ部8が形成されている。併せて、主体金具2の後端部外周には断面六角形状をなす鍔状の工具係合部9が形成されており、前記取付孔にグロープラグ1(雄ねじ部8)を取付ける際には、当該工具係合部9に使用される工具が係合されるようになっている。
 また、主体金具2の軸孔7には、金属製で丸棒状をなす前記中軸3が収容されている。加えて、当該中軸3の先端部には、後端側と比較して小径に形成された先端小径部3aが形成されている。さらに、前記中軸3は、金属材料(例えば、SUS等の鉄系素材)によって形成された円筒状のリング部材10を介して、前記セラミックヒータ4の後端部に対して接続されている。詳述すると、前記リング部材10の内孔10aの先端部に前記セラミックヒータ4の後端部が圧入されるとともに、前記リング部材10の内孔10aの後端部に対して前記先端小径部3aが嵌め込まれた状態で、中軸3及びリング部材10がレーザー溶接等によって接合されることによって、中軸3とセラミックヒータ4とがリング部材10を介して機械的にかつ電気的に接続されている。
 一方で、前記中軸3の後端部には、金属製の前記接続端子6が加締め固定されている。また、当該接続端子6の先端部及び前記主体金具2の後端部間には、両者間における直接的な電気的導通を防止すべく、絶縁性素材よりなる絶縁ブッシュ11が設けられている。より詳しくは、前記絶縁ブッシュ11は、自身の後端側において径方向外側に突出形成されたフランジ部11aと、自身の先端側において前記フランジ部11aよりも細径化して形成された小径部11bとを有している。そして、絶縁ブッシュ11は、前記小径部11bが前記軸孔7の後端部に対して嵌合されるとともに、前記フランジ部11aが前記接続端子6及び主体金具2に挟まれた状態で設けられている。さらに、前記軸孔7内の気密性の向上等を図るべく、前記主体金具2及び前記中軸3の間には、前記テーパ部7aに係止された形で、絶縁性素材からなるOリング12が設けられている。
 さらに、前記中軸3の先端側には、その外径が先端側へと細径化されてなる括れ部3bが形成されている。当該括れ部3bによって、中軸3に伝わる応力の緩和等が図られている。
 加えて、前記外筒5は、所定の金属材料(例えばSUS310)によって筒状に形成されている。また、当該外筒5は、前記セラミックヒータ4の軸線CL1方向に沿った中間部分を保持しており、セラミックヒータ4の先端部は前記外筒5の先端から露出した状態となっている。さらに、前記外筒5は、その先端側に比較的薄肉に形成された小径部5aと、当該小径部5aよりも後端側において先端側へと先細りするテーパ部5bと、当該テーパ部5bの後端から連続して形成され、前記主体金具2の先端の外径と略同一の外径を有する大径部5cと、当該大径部5cの後端側において前記軸孔7の先端部の内径と略同一の外径を有する係合部5dとを備えている。そして、前記係合部5dが前記軸孔7の先端部に嵌合された状態で、レーザー溶接等によって主体金具2及び前記外筒5の当接面に溶融部が形成されることによって、前記外筒5が前記主体金具2に対して接合されている。尚、グロープラグ1を内燃機関に取付けた際には、前記テーパ部5bが燃焼室との気密を確保するシールとしての役割を担うこととなる。
 次に、セラミックヒータ4の詳細について、図2を主として参照しつつ説明する。セラミックヒータ4は、絶縁性セラミックによって構成されるとともに、軸線CL1方向に延びる略同径で丸棒状の基体21を有し、その内部に、導電性セラミックよりなる長細いU字状をなす抵抗体22が埋設状態で保持されている。ここで、セラミックヒータ4の外径は、例えば、2.5~4.0mmである。また、当該抵抗体22は、一対の棒状の導電部23,24と、前記導電部23,24の先端部同士を連結する連結部25とを備え、当該連結部25のうち特に先端側の部分が発熱部26となっている。発熱部は、いわゆる発熱抵抗体として機能し、曲面状に形成されたセラミックヒータ4の先端部分において、その曲面に沿うようにして断面略U字状をなしている。また、本実施形態においては、発熱部26の断面積が導電部23,24の断面積よりも小さくなるようにして構成されており、通電時には、前記発熱部26において積極的に発熱が行われるようになっている。なお、連結部25が本発明における発熱素子に相当する。また、本実施形態では、基体21を構成する絶縁性セラミック材料として、主としてSi(窒化珪素)が用いられる。また、抵抗体22を構成する材料として、窒化珪素を主成分とし、WC(タングステンカーバイト)を含有(例えば、窒化珪素及びタングステンカーバイドの合計を100質量%とした場合、60~70質量%含有)した導電性セラミック材料(焼成後に導電性を有する材料)が用いられる。ここで、基体21の熱膨張係数は、例えば、3.3~4.0ppm/Kであり、抵抗体22の熱膨張係数は、例えば、3.6~4.2ppm/Kとなっている。
 また、前記導電部23,24は、それぞれセラミックヒータ4の後端側に向けて互いに略平行に延設されている。加えて、一方の導電部23の後端寄り位置には、電極取出部27が径方向に突設されている。そして、当該電極取出部27は、セラミックヒータ4の外周面に露出している。同様に、他方の導電部24の後端寄りの位置にも、電極取出部28が径方向に突設されており、当該電極取出部28が、セラミックヒータ4の外周面に露出している。尚、前記一方の導電部23の電極取出部27は、前記軸線CL1方向に沿って、前記他方の導電部24の電極取出部28よりも後端側に位置している。
 加えて、電極取出部27の露出部分は、前記リング部材10の内周面に接触している。その結果、リング部材10に接続された中軸3と前記導電部23との電気的導通が図られている。また、前記電極取出部28の露出部分は、外筒5の内周面に対して接触している。これにより、外筒5に接合された主体金具2と導電部24との電気的導通が図られている。すなわち、本実施形態では、前記中軸3と主体金具2とが、グロープラグ1において、セラミックヒータ4の発熱部26に通電するための陽極・陰極として機能するようになっている。本発明の主要な部位である電極取出部28については製造方法の説明の後に評価結果と共に説明する。
 なお、上述したグロープラグ1は、内燃機関のシリンダヘッドの取付孔に組付けられる。このとき前記外筒5は、前記シリンダヘッドに対して接触し、これにより、主体金具2は接地される。
 次いで、上述したグロープラグ1の製造方法について説明する。尚、特に明記しない部位については、従来公知の方法により製造される。
 まず、SUS630等の鉄系素材からなるパイプ材を所定長さに切断した上で、所定の円筒形状に整えることにより前記リング部材10を形成する。加えて、所定の金属材料(例えば、SUS430)からなるパイプ材を切断し、切削加工を施すことによって、前記小径部5aやテーパ部5b等を備えた外筒5を形成する。さらに、リング部材10及び外筒5の表面に、Auメッキ等のメッキ加工を施す。
 その後、前記リング部材10の内孔10aの先端部に対して、別途製造したセラミックヒータ4の後端部を圧入する。加えて、セラミックヒータ4を前記外筒5の内孔に対して圧入する。このとき、外筒5は、前記リング部材10と接触しないように軸線CL1方向に離間させて固定する。なお、セラミックヒータ4を外筒5へ圧入する際には潤滑剤として(パスキンM30(商品名:共栄社化学(株))を適量塗布する。また、圧入して一体となったセラミックヒータ4と外筒5との一体組立体を加熱炉に投入し、約300℃に加熱して当該潤滑剤の分解除去を行う。
 次いで、前記内孔10aの後端部に対して予め製造した中軸3を嵌め込んだ上で、リング部材10及び中軸3の当接面に沿ってレーザービームを照射し、リング部材10及び中軸3を接合する。これにより、中軸3、セラミックヒータ4、外筒5、及び、リング部材10が一体化して構成されることとなる。
 一方で、主体金具2を製造しておく。すなわち、所定の金属材料からなるパイプ材を所定長さに切断した上で、切削加工や転造加工を施すことで、前記雄ねじ部8や前記工具係合部9を備えた主体金具2を得る。また必要に応じてメッキ等の防錆処理を行ってもよい。
 次に、前記中軸3やセラミックヒータ4等が一体化された外筒5と前記主体金具2とを接合する。すなわち、外筒5の係合部5dを主体金具2の軸孔7に嵌合した上で、前記外筒5及び主体金具2の当接面に沿ってレーザービームを照射する。これにより、前記溶融部が形成され、中軸3やセラミックヒータ4等と一体化された外筒5及び主体金具2が接合される。
 最後に、前記絶縁ブッシュ11及びOリング12を、主体金具2及び中軸3間の所定位置に配置した上で、主体金具2の後端側から突出した中軸3の後端部に予め形成した接続端子6を加締め固定することでグロープラグ1が得られる。
 ここでセラミックヒータ4の製造方法について説明する。本発明のセラミックヒータ4は電極取出部28の形状こそ特徴的であるが、その他の構成については従前公知の製造方法を流用することができる。したがって、未焼成抵抗体の形成、基体材料との一体化、焼成、外形研磨の一連の工程を経て製造される(図3参照)。
 セラミックヒータ4はホットプレス等の焼成工程時に収縮や変形を生じるから、未焼成抵抗体(焼成前の抵抗体)を射出成形にて製造する際は、後述する電極取出部の形状を呈するよう、当該収縮等を考慮して形成する。
 こうして製造される本発明のセラミックグロープラグは、外筒との良好な電気的接続を実現し、かつ耐折損性にも優れた性能を有する。次に本発明によるセラミックグロープラグの評価試験及びその結果について説明する。
 上述したように形成した試験品のセラミックヒータはいずれも外径が3.1mm、長さが42mmであった。なお、製造した試験品の電極取出部の露出面の形状はいずれも円或いは長楕円の形状である。このように本発明では露出面の形状として角部を持たない形状としている。またその寸法は、軸方向、周方向共にそれぞれの方向における長さの最大が、0.5mm,1.0mm,1.8m,2.0mm,3.0mmとし、これらの組み合わせの計25パターンで評価試験を行った。また評価試験に際して製造したセラミックグロープラグに用いた外筒はセラミックヒータの電極取出部と接触する大径部の外径が8.0mm、内径が3.05mm、長さが25mmであり、当該大径部の最大外径を有する部位の軸方向の長さは4.0mmであった。
 評価項目はヒータの折損耐性とともにヒータに抵抗不良が発生したか否かの確認を行っている。試験方法はそれぞれ次の通りである。
[ヒータの折損不良の発生率]
 前述の外筒へセラミックヒータを圧入し、潤滑剤を加熱除去した。室温まで冷却した後にヒータに折損が生じているか否かを確認し、その本数をカウントして折損不良の発生率を算出した。この結果を表1に示す。なお、潤滑剤の除去は、大気雰囲気の加熱炉を用いてで300℃に加熱し、その後室温まで自然冷却する方法を用いた。
[落下による抵抗不良の発生率]
 上記折損不良の試験と同様の手順によりセラミックヒータを外筒へ圧入し、折損が生じていないものを用いて前述の手順によりグロープラグの完成品を製造する。完成したセラミックグロープラグを50cmの高さからコンクリート床へ落下させた後、セラミックグロープラグへ通電して抵抗値を測定し、落下前、すなわち設計抵抗値から20%以上の抵抗値の上昇が生じた試験品の本数をカウントして抵抗不良の発生率を算出した。この結果を表2に示す。なお、両試験とも符号「○」は不良の発生率が0.1%以下、「△」は0.1%以上1%未満、「×」は1%以上であることを示している。また、評価本数はいずれも300本であった。したがって、本評価試験においては符号「○」は不良が1本も発生していないことを意味し、符号「△」は不良の発生が1本又は2本であり、符号「×」は3本以上の不良が発生したことを意味している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの結果に示されるように、ヒータの折損不良については電極取出部の露出面の形状が軸方向、周方向共に1.8mm以下であれば不良の発生率が極めて低く問題のないことがわかった。また抵抗不良については当該露出面の形状が共に1.0mm以上であるとよいことが確認された。なお、セラミックヒータの外径が2.5~4.0mmの場合において、上述の結果と同様な結果が得られることを確認している。
[ヒータ外径依存性確認]
 上述の評価試験におけるヒータの外径に対する依存性について確認した。評価方法は上述の折損不良の発生率を確認した試験と同様であり、電極取出部の露出面の形状を軸方向に1.7mm、周方向に1.0mmとした実施例1~3と、軸方向に2.0mm、周方向に2.0mmとした比較例1~3のそれぞれにつき、ヒータの外径をφ3.1mm、φ3.3mm、φ3.5mmとした計6パターンの試験品を準備して評価試験を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 この評価試験より、セラミックヒータの外径寸法に拠らず、電極取出部の露出面の形状に関して軸方向、周方向共に1.0mm~1.8mmとすることの有意性が確認された。詳細には、露出面の各方向の長さを1.0mm~1.8mmとした実施例1~3についてはヒータの外径寸法がφ3.1mm、φ3.3mm、φ3.5mmのいずれであっても、ヒータの折損不良の発生率が0.01%以下と極めて良好であった。これに対して、露出面の各方向の長さが1.8mmを超えた比較例1~3については、ヒータが細い場合(φ3.3mm以下)には折損不良の発生率が高くなってしまった。この評価試験から、特にヒータの外径がφ3.3mm以下である時にはより一層、本発明が有効に奏効するものであることも確認された。
[露出面寸法比確認]
 次いで、電極取出部の露出面における軸方向寸法と周方向寸法との関係を確認した試験について説明する。評価方法は上述の折損不良の発生率を確認した試験と同様である。ヒータの負荷に対する耐性を確認すべく潤滑剤の除去温度を350℃と過剰に上げてヒータの折損不良の発生率を確認した。結果を表4に示す。なお、露出面における軸方向寸法と周方向寸法との関係性を評価するために実施例4~6の露出面の面積は同一となるよう、それぞれの寸法を設定した。
Figure JPOXMLDOC01-appb-T000004
 実施例4のグロープラグは潤滑剤の除去温度が異なる点を除いて前述の実施例1に相当するものである。前述のヒータ外径依存性確認試験では実施例4には折損不良が生じていなかったのに対して、潤滑剤の除去温度を過剰に上げた本試験の実施例4では折損不良が生じた。これに対して、実施例5及び6では折損不良が生じなかった。この結果から、露出面の軸方向寸法が周方向寸法に対して大きく形成された実施例4よりも、露出面の軸方向寸法が周方向寸法に対して小さく形成された実施例6の形状に近づくにつれて折損不良に対する耐久性が向上していることが確認された。この結果により、露出面の軸方向寸法が周方向寸法に対して小さく形成されることの有意性が確認された。これは、電極取出部の露出面が軸方向において露出面の境界に加える引張り応力が、主に露出面の軸方向寸法に依存しているための影響が生じているためであると考えられる。
 さらに電極取出部の露出面の近傍における、露出面の境界からの距離とヒータの残留応力との関係について検討する。
[残留応力影響確認]
 本発明のセラミックヒータは、導電部が基体に比較して多量の金属元素を含有するため、熱膨張係数も導電部の方が基体に比較して大きく構成されている。このため、ヒータの製造過程における焼成後の冷却段階では導電部の収縮量は基体のそれよりも多く、基体には引張り応力が生じる。ヒータ(基体)の表面では当該応力は圧縮応力として作用する。圧縮応力が作用しているので、当該部位、すなわち内部に導電部が埋設されている基体部位における強度は見かけ上では向上する。一方、導電部が露出された電極取出部(露出面)では、露出した部位の導電部(露出面)がその周囲の基体を引っ張るように収縮するため上述した圧縮応力を相殺してしまう。すなわち、露出面における基体との境界では上述の圧縮応力による強度の向上効果を期待することが難しい。
 そこで本発明では露出面の面積を小さくすることで、上記圧縮応力の相殺される割合を減らす構成を採用している。つまり露出面の面積を小さくする構成により、当該露出面の周囲における強度向上を果たしているのである。この効果は、露出面の形状が角部を持たない構成、すなわち円・楕円に類する形状とすることにより、局所的な応力集中の発生を回避することができ、より一層有効に奏効するものである。
 上記効果を確認する試験を行った。その結果を図4に示す。
 評価試験に用いたサンプルは前述の実施例1と比較例1であった。それぞれのヒータについてヒータ単体の表面残留応力を測定した。測定方法はX線残留応力測定法を用い、2θ-sin2ψ線法を用いた。応力測定には、高角度側でピーク強度が高いβ-Si(212)の131.55°を使用した。コリメーターはφ0.5mm、2θサンプリング幅は0.1°、計数時間は1000秒であった。X線管球にはCr-Kαを用いた。本方法では、複数の入射角でX線を照射し、回折角を得た。入射角に対する回折角から作成した、2θ-sin2ψ線図の傾きから残留応力を算出した。また残留応力の測定は、電極取出部における露出面と基体との境界を基点(図5におけるST1,ST2位置参照)とし、当該基点から軸方向に所定距離それぞれ離れた4点にて行った。
 電極取出部の露出面と基体との境界の残留応力評価の為には、その境界の残留応力を測定するのが本来であるが、境界の残留応力を測定しようとすると露出面における電極取出部の構成材料による回折ピークが生じて、正確な2θ測定が出来ない。また、φ3.1mm程度の円柱状ヒータの側面を測定する為、コリメーター径が0.5mm以下ではピーク強度が低下し、信頼性のある応力測定ができない。そのため、境界の残留応力の目安として、測定範囲に電極材料を含まない最低距離であるコリメーター径の半径0.25mm以上である、界面から0.30mm位置の残留応力を測定した。
 それぞれのサンプルにおける導電部に対する露出面境界の圧縮残留応力比は、実施例1が71%、実施例2が50%であり、比較例1では45%であった。ここで、導電部とは露出面境界から十分に距離があり、応力が安定した位置のことを示す。
 なお、本発明の露出面の形状において「角部を持たない」とは円或いは楕円に限定されるものではなく、例えば略矩形の角部に対してR面取りを行ったような形状でもよい。その際のRの大きさ、すなわち曲率半径を例えば0.1mm以上とすれば「角部を持たない」に相当するのである。
 上記本発明に拠ればヒータの構成材料の変更や外筒の寸法・材料等の変更を行うことなく、当該セラミックヒータの電極部における強度の向上を実現することが可能である。しかしながら、本発明はヒータの構成材料の変更や外筒の各種変更を制限するものではなく、セラミックヒータの電極部の強度を向上が求められる如何なるグロープラグにおいても採用することができる。
 例えば、上記実施形態では、セラミックヒータ4が外筒5の内孔に圧入保持された構成となっているが、セラミックヒータがロウ材層を介して外筒の内孔に保持された構成を採用しても良い。
1   セラミックグロープラグ
2   主体金具
21  基体
22  抵抗体
23,24  導電部
25  連結部
26  発熱部
3   中軸
4   セラミックヒータ
5   外筒

Claims (5)

  1.  絶縁性セラミックからなり軸方向に柱状をなす基体と、
     導電性セラミックからなり前記基体の先端部に埋設され通電によって抵抗発熱する発熱素子と、当該発熱素子の両端部に接続され前記軸方向の後方へ向けて延設される導電部と、当該導電部の少なくとも一方から径方向へ向けて延設され前記基体の外周面へ露出する電極取出部とを備えてなる抵抗体と、
    からなるセラミックヒータを備え、
     自身の内部に前記セラミックヒータが保持され、前記電極取出部の露出面と接触して導通する金属製の筒状部材とを備えたセラミックグロープラグであって、
     前記電極取出部の露出面の前記軸方向寸法及び前記周方向寸法が共に1.0~1.8mmであることを特徴とするセラミックグロープラグ。
  2.  前記基体のうち前記電極取出部の露出面の先端から0.3mm、及び当該露出面の後端から0.3mmの特定領域における圧縮残留応力の、前記基体のうち前記特定領域外における圧縮残留応力に対する比が50%以上であることを特徴とする請求項1に記載のセラミックグロープラグ。
  3.  前記電極取出部の露出面の前記軸方向寸法が前記周方向寸法に対して小さく形成されていることを特徴とする請求項1または2に記載のセラミックグロープラグ。
  4.  前記電極取出部の露出面の形状は、角部を持たないことを特徴とする請求項1から3のいずれか1項に記載のセラミックグロープラグ。
  5.  前記セラミックヒータは、前記筒状部材の内部に圧入嵌合されることを特徴とする請求項1から5のいずれか1項に記載のセラミックグロープラグ。
PCT/JP2012/006111 2011-09-27 2012-09-25 セラミックグロープラグ WO2013046650A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/233,049 US9644597B2 (en) 2011-09-27 2012-09-25 Ceramic glow plug
JP2013503689A JP5632958B2 (ja) 2011-09-27 2012-09-25 セラミックグロープラグ
KR1020147009231A KR101579015B1 (ko) 2011-09-27 2012-09-25 세라믹 글로 플러그
EP12835782.9A EP2762783B1 (en) 2011-09-27 2012-09-25 Ceramic glow plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211145 2011-09-27
JP2011211145 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013046650A1 true WO2013046650A1 (ja) 2013-04-04

Family

ID=47994733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006111 WO2013046650A1 (ja) 2011-09-27 2012-09-25 セラミックグロープラグ

Country Status (5)

Country Link
US (1) US9644597B2 (ja)
EP (1) EP2762783B1 (ja)
JP (1) JP5632958B2 (ja)
KR (1) KR101579015B1 (ja)
WO (1) WO2013046650A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352565B2 (en) * 2012-08-08 2019-07-16 Ngk Spark Plug Co., Ltd. Glow plug
CN105156251A (zh) * 2015-08-27 2015-12-16 扬州市飞鹰电子科技有限公司 一种柴油发动机氧化物陶瓷电热塞及其生产方法
JP6370754B2 (ja) * 2015-09-10 2018-08-08 日本特殊陶業株式会社 セラミックヒータおよびグロープラグ
DE102016108592B4 (de) 2016-05-10 2018-06-28 Borgwarner Ludwigsburg Gmbh Glühkerze und Verfahren zum Herstellen einer Glühkerze
USD906383S1 (en) * 2018-08-17 2020-12-29 Hotset Gmbh Electrical heater for injection-molding machine
KR20230136300A (ko) 2022-03-18 2023-09-26 최윤혜 입김을 이용한 스마트기기 앱 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299009A (ja) * 2001-03-29 2002-10-11 Ngk Spark Plug Co Ltd セラミックヒーター
JP2002364842A (ja) 2001-06-07 2002-12-18 Ngk Spark Plug Co Ltd グロープラグ及びグロープラグの製造方法
JP2006049279A (ja) * 2004-06-29 2006-02-16 Ngk Spark Plug Co Ltd セラミックヒータ、グロープラグ及びセラミックヒータの製造方法
JP2007240080A (ja) 2006-03-09 2007-09-20 Ngk Spark Plug Co Ltd セラミックヒータ及びグロープラグ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332149A (ja) * 1997-03-31 1998-12-15 Ngk Spark Plug Co Ltd セラミックヒータ
JP4559671B2 (ja) * 2001-08-28 2010-10-13 日本特殊陶業株式会社 グロープラグ及びその製造方法
JP3816073B2 (ja) * 2003-01-28 2006-08-30 日本特殊陶業株式会社 グロープラグ及びグロープラグの製造方法
US7705273B2 (en) * 2004-04-07 2010-04-27 Ngk Spark Plug Co., Ltd. Ceramic heater, method of producing the same, and glow plug using a ceramic heater
EP1612486B1 (en) 2004-06-29 2015-05-20 Ngk Spark Plug Co., Ltd Glow plug
WO2007108491A1 (ja) * 2006-03-21 2007-09-27 Ngk Spark Plug Co., Ltd. セラミックヒータ及びグロープラグ
US20100213188A1 (en) * 2006-03-21 2010-08-26 Ngk Spark Plug Co., Ltd. Ceramic heater and glow plug
EP2107854B1 (en) * 2006-05-18 2012-04-11 NGK Spark Plug Co., Ltd. Ceramic heater and glow plug
KR101375989B1 (ko) * 2008-02-20 2014-03-18 니혼도꾸슈도교 가부시키가이샤 세라믹 히터 및 글로우 플러그
EP2701459B1 (en) * 2011-04-19 2018-03-28 NGK Spark Plug Co., Ltd. Ceramic heater and manufacturing method thereof
JP6140955B2 (ja) * 2011-12-21 2017-06-07 日本特殊陶業株式会社 セラミックヒータの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299009A (ja) * 2001-03-29 2002-10-11 Ngk Spark Plug Co Ltd セラミックヒーター
JP2002364842A (ja) 2001-06-07 2002-12-18 Ngk Spark Plug Co Ltd グロープラグ及びグロープラグの製造方法
JP2006049279A (ja) * 2004-06-29 2006-02-16 Ngk Spark Plug Co Ltd セラミックヒータ、グロープラグ及びセラミックヒータの製造方法
JP2007240080A (ja) 2006-03-09 2007-09-20 Ngk Spark Plug Co Ltd セラミックヒータ及びグロープラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762783A4

Also Published As

Publication number Publication date
US20140196680A1 (en) 2014-07-17
KR20140057387A (ko) 2014-05-12
JPWO2013046650A1 (ja) 2015-03-26
KR101579015B1 (ko) 2015-12-18
JP5632958B2 (ja) 2014-11-26
EP2762783A1 (en) 2014-08-06
US9644597B2 (en) 2017-05-09
EP2762783B1 (en) 2019-09-04
EP2762783A4 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5632958B2 (ja) セラミックグロープラグ
US6744015B2 (en) Heater and method for manufacturing the same
JP5525106B2 (ja) セラミックグロープラグ
US8410403B2 (en) Glow plug with improved seal, heater probe assembly therefor and method of construction thereof
CN108352680B (zh) 火花塞
EP1239222A2 (en) Ceramic heater device and method for manufacturing the device
JP6392000B2 (ja) グロープラグ
WO2003052323A1 (fr) Bougie de prechauffage pour moteur diesel et procede de fabrication de ladite bougie de prechauffage
US7034253B2 (en) Ceramic heater with ring member electrically connecting the heater to lead terminal core rod
JP4425017B2 (ja) ヒータ
JP4921039B2 (ja) スパークプラグ
JP6567340B2 (ja) セラミックヒータ及びその製造方法、並びにグロープラグ及びその製造方法
JP6665495B2 (ja) セラミックヒータ
US20180351331A1 (en) Spark plug
JP6944289B2 (ja) グロープラグ
JP4019004B2 (ja) セラミックヒータ及びそれを用いたグロープラグ
JP6101145B2 (ja) ヒータモジュールの製造方法、および、グロープラグの製造方法
JP5301635B2 (ja) スパークプラグ
JP6807660B2 (ja) セラミックヒータ素子、および、セラミックグロープラグ
JP6707404B2 (ja) スパークプラグ
JP2010080452A (ja) セラミックヒーター装置
CN111194511A (zh) 火花塞
JP2019149272A (ja) ヒータ
JP2017111983A (ja) 点火プラグ
JP2011149846A (ja) 圧力センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013503689

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012835782

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14233049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009231

Country of ref document: KR

Kind code of ref document: A