WO2013046609A1 - 調湿装置 - Google Patents

調湿装置 Download PDF

Info

Publication number
WO2013046609A1
WO2013046609A1 PCT/JP2012/005988 JP2012005988W WO2013046609A1 WO 2013046609 A1 WO2013046609 A1 WO 2013046609A1 JP 2012005988 W JP2012005988 W JP 2012005988W WO 2013046609 A1 WO2013046609 A1 WO 2013046609A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
adsorption heat
humidity control
path
Prior art date
Application number
PCT/JP2012/005988
Other languages
English (en)
French (fr)
Inventor
松井 伸樹
植田 裕樹
大久保 英作
尚利 藤田
龍昇 天白
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201280047124.4A priority Critical patent/CN103827590B/zh
Priority to AU2012313765A priority patent/AU2012313765B2/en
Priority to ES12836318.1T priority patent/ES2665310T3/es
Priority to EP12836318.1A priority patent/EP2767772B1/en
Priority to US14/347,946 priority patent/US20140230475A1/en
Publication of WO2013046609A1 publication Critical patent/WO2013046609A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present invention relates to a humidity control apparatus that performs dehumidification and humidification of air using an adsorption heat exchanger carrying an adsorbent.
  • Patent Document 1 discloses a humidity control apparatus including an adsorption heat exchanger that supports an adsorbent.
  • two adsorption heat exchangers are provided in a refrigerant circuit that performs a refrigeration cycle.
  • the refrigerant circuit includes a refrigeration cycle operation in which the first adsorption heat exchanger serves as a radiator and the second adsorption heat exchanger serves as an evaporator, and the first adsorption heat exchanger serves as a radiator.
  • the refrigeration cycle operation in which becomes an evaporator is alternately performed every predetermined time (for example, every 3 minutes).
  • the humidity control device of Patent Document 1 ventilates the indoor space. That is, this humidity control apparatus supplies outdoor air to the indoor space and discharges indoor air to the outdoor space.
  • the humidity control apparatus includes a plurality of open / close dampers. And this humidity control apparatus switches the distribution
  • the air flow path in the humidity control apparatus is such that outdoor air is supplied to the indoor space after passing through the first adsorption heat exchanger, and the indoor air passes to the outdoor space after passing through the second adsorption heat exchanger.
  • the humidity control apparatus of Patent Document 1 performs switching of the refrigeration cycle operation in the refrigerant circuit and switching of the air flow path in conjunction with each other.
  • the humidity control apparatus during the dehumidifying operation supplies the outdoor air dehumidified in the adsorption heat exchanger serving as an evaporator to the indoor space, and removes moisture desorbed from the adsorption heat exchanger serving as a radiator. Exhaust into the outdoor space with room air.
  • the humidity control apparatus during the humidifying operation supplies the outdoor air humidified in the adsorption heat exchanger serving as a radiator to the indoor space, and moisture is deprived of the adsorption heat exchanger serving as an evaporator. Exhaust indoor air into the outdoor space.
  • humidity control that is, a dehumidification amount and a humidification amount per unit time
  • the humidity control capability is controlled by adjusting the operating capacity of the compressor (specifically, the rotational speed of the compressor).
  • the compressor in order for the compressor to operate normally, it is necessary to keep the rotational speed of the compressor above a certain level. That is, there is a lower limit in the adjustment range of the operating capacity of the compressor, and the operating capacity of the compressor cannot be set below the lower limit of the adjustment range. For example, when the lower limit of the adjustment range of the operating capacity of the compressor is 20% of the maximum capacity, the operating capacity of the compressor cannot be set to 10% of the maximum capacity. Therefore, in a humidity control apparatus equipped with a compressor, the humidity control capacity cannot be set below a predetermined lower limit value.
  • the conventional humidity control apparatus even if the operating capacity of the compressor is set to the minimum capacity, the compressor is stopped when the humidity control capacity is excessive.
  • the humidity control apparatus that ventilates the indoor space as well as adjusting the humidity of the air as disclosed in Patent Document 1, it is necessary to continuously ventilate the indoor space even when the compressor is stopped. Therefore, when the humidity control capacity becomes excessive when the compressor is operated, the conventional humidity control device stops the compressor, while supplying the outdoor air to the indoor space and discharging the indoor air to the outdoor space. To continue.
  • the conventional humidity control device does not switch the air flow path. Accordingly, during this operation, outdoor air continues to pass through one of the adsorption heat exchangers and indoor air continues to pass through the other adsorption heat exchanger. For this reason, the outdoor air is supplied to the indoor space as it is without adjusting the temperature and humidity, and the comfort of the indoor space may be impaired.
  • the present invention has been made in view of such points, and an object of the present invention is to provide a refrigeration cycle operation of the refrigerant circuit in a humidity control apparatus that includes the refrigerant circuit and performs dehumidification and humidification of outdoor air supplied to the indoor space.
  • the object is to ensure the comfort of the indoor space by adjusting the temperature and humidity of the outdoor air supplied to the indoor space even in a stopped state.
  • the first invention is directed to a humidity control device.
  • the compressor (53) includes a first adsorption heat exchanger (51) and a second adsorption heat exchanger (52) each carrying an adsorbent, and the first adsorption heat exchanger (51). Becomes a radiator and the second adsorption heat exchanger (52) becomes an evaporator, and the second adsorption heat exchanger (52) becomes a radiator and the first adsorption heat exchange.
  • the switching mechanism (40) alternately sets the air flow path to the first path and the second path, and dehumidifies or humidifies the outdoor air supplied to the indoor space.
  • the air supply fan (26) and the exhaust fan (25) are activated, the compressor (53) of the refrigerant circuit (50) is stopped, and the switching mechanism (40) changes the air flow path every predetermined time.
  • a second operation that alternately sets the first route and the second route is also performed. It is.
  • the humidity controller (10) performs the first operation and the second operation.
  • the compressor (53) of the refrigerant circuit (50) is operated, and the refrigerant circuit (50) alternately performs the first refrigeration cycle operation and the second refrigeration cycle operation. . That is, in the refrigerant circuit (50), every time a predetermined time elapses, the first refrigeration cycle operation and the second refrigeration cycle operation are switched to each other.
  • the adsorption heat exchanger (51, 52) serving as a radiator the adsorbent carried on the surface is heated by the refrigerant, and moisture is desorbed from the adsorbent.
  • the moisture desorbed from the adsorbent is given to the air passing through the adsorption heat exchanger (51, 52).
  • the adsorption heat exchanger (51, 52) serving as an evaporator moisture in the air passing therethrough is adsorbed by the adsorbent.
  • the refrigerant flowing through the adsorption heat exchanger (51, 52) absorbs the heat of adsorption generated when moisture in the air is adsorbed by the adsorbent and evaporates.
  • the switching mechanism (40) switches the air flow path between the first path and the second path. At that time, the switching mechanism (40) switches the air flow path in conjunction with switching of the refrigeration cycle operation in the refrigerant circuit (50). That is, when the operation of the refrigerant circuit (50) is switched from one of the first refrigeration cycle operation and the second refrigeration cycle operation to the other, the air flow path is switched from one of the first path and the second path to the other.
  • the switching mechanism (40) sets the air flow path to the second path when the refrigerant circuit (50) performs the first refrigeration cycle operation, and the refrigerant circuit
  • the switching mechanism (40) sets the air flow path to the first path when the (50) is performing the second refrigeration cycle operation, the dehumidified outdoor air is supplied to the indoor space and is humidified. Is discharged into the outdoor space.
  • the switching mechanism (40) sets the air flow path as the first path when the refrigerant circuit (50) performs the first refrigeration cycle operation,
  • the switching mechanism (40) sets the air flow path to the second path while the refrigerant circuit (50) is performing the second refrigeration cycle operation, the humidified outdoor air is supplied to the indoor space and dehumidified. Indoor air is discharged to the outdoor space.
  • the humidity controller (10) in the humidity controller (10) during the second operation, the compressor (53) of the refrigerant circuit (50) is stopped, while the air supply fan (26) and the exhaust fan (25) are operated. to continue. Even during the second operation, the switching mechanism (40) alternately sets the air flow path to the first path and the second path. Therefore, in the humidity controller (10) during the second operation, the outdoor air is supplied to the indoor space after passing through the first adsorption heat exchanger (51), and the indoor air passes through the second adsorption heat exchanger (52).
  • outdoor air is supplied to the indoor space after passing through the second adsorption heat exchanger (52), and the indoor air is discharged to the outdoor space after passing through the first adsorption heat exchanger (51) Alternately performed.
  • the second operation of the humidity control apparatus (10) will be described by taking as an example the case where the temperature and absolute humidity of the outdoor air are slightly higher than the room air (for example, when the room is cooled in late spring or early autumn). .
  • the humidity control apparatus (10) during the second operation, the outdoor air supplied to the indoor space is cooled and dehumidified.
  • the reason will be described.
  • the explanation starts from the state where the air circulation route is set to the first route. In this state, outdoor air passes through the first adsorption heat exchanger (51), and indoor air passes through the second adsorption heat exchanger (52).
  • the liquid refrigerant remains in the first adsorption heat exchanger (51).
  • the liquid refrigerant present in the first adsorption heat exchanger (51) generates adsorption heat generated when moisture in the outdoor air is adsorbed by the adsorbent. It absorbs and absorbs heat from the outdoor air and evaporates.
  • the second adsorption heat exchanger (52) indoor air having a temperature lower than that of the outdoor air flows. For this reason, the refrigerant evaporated in the first adsorption heat exchanger (51) flows into the second adsorption heat exchanger (52) and condenses. In the second adsorption heat exchanger (52), the adsorbent is heated by the heat of condensation released from the refrigerant, and moisture is desorbed from the adsorbent and applied to the room air. Further, in the second adsorption heat exchanger (52), the heat conveyed from the first adsorption heat exchanger (51) by the refrigerant is released to the indoor air.
  • the air circulation route is switched from the first route to the second route. That is, the air passing through the first adsorption heat exchanger (51) is switched from outdoor air to room air, and the air passing through the second adsorption heat exchanger (52) is switched from room air to outdoor air.
  • moisture is desorbed from the adsorbent of the second adsorption heat exchanger (52) when the air flow path is set to the first path. For this reason, after the air flow path is switched to the second path, moisture contained in the outdoor air is adsorbed to the second adsorption heat exchanger (52).
  • the refrigerant present in the second adsorption heat exchanger (52) absorbs adsorption heat generated when moisture in the outdoor air is adsorbed by the adsorbent, and further absorbs heat from the outdoor air and evaporates. Therefore, in the second adsorption heat exchanger (52), the temperature and absolute humidity of the outdoor air passing therethrough are lowered. As a result, the temperature and absolute humidity of the outdoor air approach the temperature and absolute humidity of the air in the indoor space.
  • the refrigerant evaporated in the second adsorption heat exchanger (52) flows into the first adsorption heat exchanger (51) and condenses.
  • the adsorbent is heated by the condensation heat released from the refrigerant, and moisture is desorbed from the adsorbent. That is, the first adsorption heat exchanger (51) adsorbs moisture in outdoor air when the air circulation path is set to the first path, and the air circulation path is set to the second path. Sometimes releases moisture into room air. Further, in the first adsorption heat exchanger (51), the heat transferred from the second adsorption heat exchanger (52) by the refrigerant is released to the indoor air.
  • the air circulation path is switched again from the second path to the first path. That is, the air passing through the first adsorption heat exchanger (51) is switched from room air to outdoor air, and the air passing through the second adsorption heat exchanger (52) is switched from outdoor air to room air.
  • the first adsorption heat exchanger (51) the outdoor air is cooled and dehumidified.
  • the temperature and absolute humidity of the outdoor air approach the temperature and absolute humidity of the air in the indoor space.
  • the second operation of the humidity control apparatus (10) will be described by taking as an example the case where the temperature and absolute humidity of the outdoor air are slightly lower than the room air (for example, when the room is heated in early spring or late autumn). To do.
  • the humidity control apparatus (10) in the second operation the outdoor air supplied to the indoor space is heated and humidified.
  • the reason will be described.
  • the explanation starts from the state where the air circulation route is set to the first route. In this state, outdoor air passes through the first adsorption heat exchanger (51), and indoor air passes through the second adsorption heat exchanger (52).
  • the liquid refrigerant remains in the second adsorption heat exchanger (52).
  • the liquid refrigerant present in the second adsorption heat exchanger (52) generates adsorption heat generated when moisture in the indoor air is adsorbed by the adsorbent. It absorbs and absorbs heat from room air and evaporates.
  • the refrigerant evaporated in the second adsorption heat exchanger (52) flows into the first adsorption heat exchanger (51) and condenses.
  • the adsorbent is heated by the heat of condensation released from the refrigerant, and moisture is desorbed from the adsorbent and applied to the outdoor air.
  • the heat transferred from the second adsorption heat exchanger (52) by the refrigerant is released to the outdoor air.
  • the air circulation route is switched from the first route to the second route. That is, the air passing through the first adsorption heat exchanger (51) is switched from outdoor air to room air, and the air passing through the second adsorption heat exchanger (52) is switched from room air to outdoor air.
  • moisture is desorbed from the adsorbent of the first adsorption heat exchanger (51) when the air flow path is set to the first path. For this reason, after the air flow path is switched to the second path, moisture contained in the room air is adsorbed to the first adsorption heat exchanger (51).
  • the refrigerant present in the first adsorption heat exchanger (51) absorbs heat of adsorption generated when moisture in the room air is adsorbed by the adsorbent, and further absorbs heat from the room air and evaporates.
  • the second adsorption heat exchanger (52) outdoor air having a temperature lower than that of the indoor air flows. For this reason, the refrigerant evaporated in the first adsorption heat exchanger (51) flows into the second adsorption heat exchanger (52) and condenses. In the second adsorption heat exchanger (52), the adsorbent is heated by the condensation heat released from the refrigerant, and moisture is desorbed from the adsorbent. That is, the second adsorption heat exchanger (52) adsorbs moisture in the indoor air when the air circulation path is set to the first path, and the air circulation path is set to the second path. Sometimes releases moisture to outdoor air.
  • the heat transferred from the first adsorption heat exchanger (51) by the refrigerant is released to the outdoor air. Therefore, in the second adsorption heat exchanger (52), the temperature and absolute humidity of the outdoor air passing therethrough increase. As a result, the temperature and absolute humidity of the outdoor air approach the temperature and absolute humidity of the air in the indoor space.
  • the air circulation path is switched again from the second path to the first path. That is, the air passing through the first adsorption heat exchanger (51) is switched from room air to outdoor air, and the air passing through the second adsorption heat exchanger (52) is switched from outdoor air to room air.
  • the adsorbent adsorbs moisture in the room air, and the refrigerant absorbs heat from the room air.
  • the humidity control apparatus (10) adjusts the temperature and absolute humidity of the outdoor air supplied to the indoor space.
  • the flow rate of the refrigerant flowing between the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52) in the refrigerant circuit (50) during the second operation is the refrigerant circuit ( 50) less than the flow rate of refrigerant circulating.
  • the humidity control capability exhibited by the humidity control device (10) during the second operation is smaller than the humidity control capability exhibited by the humidity control device (10) during the first operation.
  • a second invention includes a controller (90) that adjusts an operating capacity of the compressor (53) in accordance with a humidity control load during the first operation in the first invention, and the controller (90 ) Determines that the humidity control capacity is excessive with respect to the humidity control load even if the operating capacity of the compressor (53) is set to the minimum capacity during the first operation, the humidity control device (10)
  • the operation of the humidity control apparatus (10) is changed to the first operation.
  • the second operation is switched to the first operation.
  • the controller (90) adjusts the operating capacity of the compressor (53) according to the humidity control load.
  • the humidity control capacity of the humidity control device (10) changes.
  • the humidity control load means the dehumidification amount or the humidification amount required for the humidity control device (10).
  • the controller (90) determines that the humidity adjustment capacity is excessive with respect to the humidity adjustment load even if the operation capacity of the compressor (53) is set to the minimum capacity during the first operation. Then, the compressor (53) is stopped and the operation of the humidity control apparatus (10) is switched to the second operation.
  • the humidity control capacity of the humidity control apparatus (10) during the second operation is lower than the humidity control capacity of the humidity control apparatus (10) when the operation capacity of the compressor (53) is the minimum capacity during the first operation.
  • the controller (90) activates the compressor (53) and operates the humidity controller (10). Switch to 1 operation.
  • the refrigerant circuit (50) has an opening between the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52).
  • a variable expansion valve (55) is provided, and the expansion valve (55) is held in a fully open state during the second operation.
  • the expansion valve (55) is kept fully open during the second operation.
  • the gas refrigerant flows between the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52).
  • the switching mechanism (40) alternates the air flow path between the first path and the second path during the second operation.
  • the time interval for switching to is less than the time interval for the switching mechanism (40) to alternately switch the air flow path between the first path and the second path during the first operation.
  • the time interval at which the switching mechanism (40) switches the air flow path alternately between the first route and the second route is such that the time interval during the second operation is less than or equal to the time interval during the first operation. Is set. For example, when the switching mechanism (40) switches the air flow path alternately between the first path and the second path every 3 minutes during the first operation, the air flow path is switched to the time of 3 minutes or less during the second operation. The first path and the second path are alternately switched at intervals.
  • the humidity controller (10) performs the first operation and the second operation.
  • the humidity adjustment capability exhibited by the humidity control apparatus (10) during the second operation is smaller than the humidity adjustment capability exhibited by the humidity adjustment capability during the first operation.
  • the humidity control apparatus (10) of the present invention can supply dehumidified or humidified outdoor air to the indoor space.
  • the temperature and absolute humidity of the outdoor air supplied to the indoor space when the compressor (53) is stopped can be brought close to the temperature and absolute humidity of the air in the indoor space. Therefore, according to the present invention, it is possible to suppress a decrease in comfort caused by supplying outdoor air to the indoor space as it is, and to ensure the comfort of the indoor space even when the compressor (53) is stopped. be able to.
  • the controller (90) performs the operation of the humidity control device (10) as the first operation and the second operation in consideration of the relationship between the humidity control capability of the humidity control device (10) and the humidity control load. Decide which mode to use for driving. Then, the controller (90) operates the humidity controller (10) for the first time when the humidity control capacity is excessive even if the humidity control capacity of the humidity controller (10) is minimized during the first operation. The operation is switched to the second operation. As described above, the humidity control capacity of the humidity control apparatus (10) during the second operation is smaller than the humidity control capacity of the humidity control apparatus (10) during the first operation. Therefore, according to the present invention, the adjustment range of the humidity control capability of the humidity control device (10) can be expanded, and the humidity control device (10) can exhibit appropriate humidity control capability according to various operating conditions. be able to.
  • the expansion valve (55) is provided in the refrigerant circuit (50), and the expansion valve (55) is kept fully open during the second operation. For this reason, the flow rate of the refrigerant flowing back and forth between the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52) can be sufficiently ensured during the second operation, and can be adjusted during the second operation.
  • the humidity control ability exhibited by the humidity device (10) can be enhanced.
  • the switching mechanism (40) switches the air flow path alternately between the first path and the second path during the second operation. It is set to be equal to or less than the time interval at which the air circulation route is alternately switched between the first route and the second route.
  • the amount of moisture exchanged between the adsorption heat exchanger and the air passing through it increases rapidly in a short time after air begins to be supplied to the adsorption heat exchanger, and then gradually decreases. I will do it.
  • the frequency of the switching mechanism (40) alternately switching the air flow path between the first path and the second path is the same during the first operation and during the second operation, or during the first operation. Is higher during the second operation. Therefore, according to this invention, the humidity control capability exhibited by the humidity control apparatus (10) during the second operation can be enhanced.
  • FIG. 1 is a plan view, a right side view, and a left side view showing a schematic structure of a humidity control apparatus according to an embodiment.
  • FIG. 2 is a piping system diagram showing the configuration of the refrigerant circuit, where (A) shows the operation during the first refrigeration cycle operation, and (B) shows the operation during the second refrigeration cycle operation.
  • FIG. 3 is a schematic plan view, right side view, and left side view of the humidity control apparatus showing the air flow during the first batch operation of the dehumidifying operation.
  • FIG. 4 is a schematic plan view, right side view, and left side view of the humidity control apparatus showing the air flow during the second batch operation of the dehumidifying operation.
  • FIG. 1 is a plan view, a right side view, and a left side view showing a schematic structure of a humidity control apparatus according to an embodiment.
  • FIG. 2 is a piping system diagram showing the configuration of the refrigerant circuit, where (A) shows the operation during the first refrigeration cycle operation, and (B)
  • FIG. 5 is a schematic plan view, right side view, and left side view of the humidity control apparatus showing the air flow during the first batch operation of the humidification operation.
  • FIG. 6 is a schematic plan view, right side view, and left side view of the humidity control apparatus showing the air flow during the second batch operation of the humidification operation.
  • FIG. 7 is a schematic plan view, right side view, and left side view of the humidity control apparatus showing a state in which the air flow path is set to the first path during the low-capacity operation.
  • FIG. 8 is a schematic plan view, right side view, and left side view of the humidity control apparatus showing a state in which the air flow path is set to the second path during the low-capacity operation.
  • FIG. 9 is a piping system diagram of a refrigerant circuit showing the flow of refrigerant during low-capacity operation performed when the temperature and absolute humidity of outdoor air are higher than indoor air, and (A) shows the flow path of the air The refrigerant flow when set to the first path is shown, and (B) shows the refrigerant flow when the air circulation path is set to the second path.
  • FIG. 9 shows the flow of refrigerant during low-capacity operation performed when the temperature and absolute humidity of outdoor air are higher than indoor air, and (A) shows the flow path of the air The refrigerant flow when set to the first path is shown, and (B) shows the refrigerant flow when the air circulation path is set to the second path.
  • FIG. 10 is a piping system diagram of a refrigerant circuit showing the flow of refrigerant during low-capacity operation performed when the temperature and absolute humidity of outdoor air are lower than indoor air, and (A) shows the flow path of the air The refrigerant flow when set to the first path is shown, and (B) shows the refrigerant flow when the air circulation path is set to the second path.
  • FIG. 11 is a flowchart showing the control operation performed by the controller.
  • the humidity control apparatus (10) of the present embodiment is for adjusting the humidity of the indoor space and ventilating the indoor space, and adjusting the humidity of the taken outdoor air (OA) to the indoor space and at the same time Exhaust air (RA) into the outdoor space.
  • the humidity control device (10) includes a casing (11).
  • a refrigerant circuit (50) is accommodated in the casing (11).
  • the refrigerant circuit (50) includes a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve (55). It is connected. Details of the refrigerant circuit (50) will be described later.
  • the casing (11) is formed in a rectangular parallelepiped shape that is slightly flat and relatively low in height.
  • the casing (11) is formed with an outside air suction port (24), an inside air suction port (23), an air supply port (22), and an exhaust port (21).
  • the outside air inlet (24) and the inside air inlet (23) are provided in the back panel (13) of the casing (11).
  • the outside air inlet (24) is provided in the lower part of the back panel (13).
  • the inside air suction port (23) is provided in the upper part of the back panel (13).
  • the air supply port (22) is provided in the first side panel (14) of the casing (11). In the first side panel (14), the air supply port (22) is disposed near the end of the casing (11) on the front panel (12) side.
  • the exhaust port (21) is provided in the second side panel (15) of the casing (11). In the second side panel portion (15), the exhaust port (21) is disposed near the end portion on the front panel portion (12) side.
  • an upstream divider plate (71), a downstream divider plate (72), and a central divider plate (73) are provided in the internal space of the casing (11).
  • These partition plates (71 to 73) are all installed upright on the bottom plate of the casing (11), and the internal space of the casing (11) is partitioned from the bottom plate of the casing (11) to the top plate. is doing.
  • the upstream divider plate (71) and the downstream divider plate (72) are parallel to the front panel portion (12) and the rear panel portion (13), and are spaced at a predetermined interval in the longitudinal direction of the casing (11). Has been placed.
  • the upstream divider plate (71) is disposed closer to the rear panel portion (13).
  • the downstream partition plate (72) is disposed closer to the front panel portion (12).
  • the arrangement of the central partition plate (73) will be described later.
  • the space between the upstream divider plate (71) and the back panel (13) is divided into two upper and lower spaces, and the upper space forms the inside air passage (32).
  • the lower space constitutes the outside air passage (34).
  • the inside air passage (32) communicates with the indoor space through a duct connected to the inside air suction port (23).
  • the outside air passage (34) communicates with the outdoor space via a duct connected to the outside air inlet (24).
  • an inside air filter (27), an inside air temperature sensor (91), and an inside air humidity sensor (92) are installed.
  • the room air temperature sensor (91) measures the temperature of the room air flowing through the room air side passage (32).
  • the room air humidity sensor (92) measures the relative humidity of the room air flowing through the room air side passage (32).
  • an outside air filter (28), an outside air temperature sensor (93), and an outside air humidity sensor (94) are installed in the outside air passage (34).
  • the outside air temperature sensor (93) measures the temperature of the outdoor air flowing through the outside air passage (34).
  • the outside air humidity sensor (94) measures the relative humidity of the outdoor air flowing through the outside air passage (34). 3 to 8, the inside air temperature sensor (91), the inside air humidity sensor (92), the outside air temperature sensor (93), and the outside air humidity sensor (94) are not shown.
  • the space between the upstream divider plate (71) and the downstream divider plate (72) in the casing (11) is divided into left and right by the central divider plate (73), and is located on the right side of the central divider plate (73).
  • the space constitutes the first heat exchanger chamber (37), and the space on the left side of the central partition plate (73) constitutes the second heat exchanger chamber (38).
  • a first adsorption heat exchanger (51) is accommodated in the first heat exchanger chamber (37).
  • the second adsorption heat exchanger (52) is accommodated in the second heat exchanger chamber (38).
  • the electric expansion valve (55) of a refrigerant circuit (50) is accommodated in the 1st heat exchanger chamber (37).
  • Each adsorption heat exchanger (51, 52) has an adsorbent supported on the surface of a so-called cross fin type fin-and-tube heat exchanger.
  • Each adsorption heat exchanger (51, 52) is formed in the shape of a rectangular thick plate or a flat rectangular parallelepiped as a whole.
  • Each adsorption heat exchanger (51, 52) has a front face and a rear face parallel to the upstream partition plate (71) and the downstream partition plate (72), and the heat exchanger chamber (37, 38). It is installed in a standing state.
  • the space along the front surface of the downstream partition plate (72) is partitioned vertically, and the upper portion of the vertically partitioned space is the air supply side passage ( 31), and the lower part constitutes the exhaust side passage (33).
  • the upstream partition plate (71) is provided with four open / close dampers (41-44).
  • Each of the dampers (41 to 44) is generally formed in a horizontally long rectangular shape. Specifically, in a part (upper part) facing the room air passage (32) in the upstream partition (71), the first room air damper (41) is attached to the right side of the central partition (73). The second inside air damper (42) is attached to the left side of the central partition plate (73). Moreover, in the part (lower part) which faces an external air side channel
  • the four dampers (41 to 44) provided on the upstream partition plate (71) constitute a switching mechanism (40) for switching the air flow path.
  • the open side damper (72) has four open / close dampers (45 to 48). Each of the dampers (45 to 48) is generally formed in a horizontally long rectangular shape. Specifically, in the part (upper part) facing the supply side passageway (31) in the downstream partition plate (72), the first supply side damper (45) is located on the right side of the central partition plate (73). The second air supply side damper (46) is attached to the left side of the central partition plate (73). Moreover, in the part (lower part) which faces an exhaust side channel
  • the four dampers (45 to 48) provided on the downstream partition plate (72) constitute a switching mechanism (40) for switching the air flow path.
  • the space between the air supply side passage (31) and the exhaust side passage (33) and the front panel portion (12) is divided into left and right by the partition plate (77).
  • the space on the right side of (77) constitutes the air supply fan chamber (36), and the space on the left side of the partition plate (77) constitutes the exhaust fan chamber (35).
  • the air supply fan (26) is accommodated in the air supply fan room (36).
  • the exhaust fan chamber (35) accommodates an exhaust fan (25).
  • the supply fan (26) and the exhaust fan (25) are both centrifugal multiblade fans (so-called sirocco fans).
  • the air supply fan (26) blows out the air sucked from the downstream side partition plate (72) side to the air supply port (22).
  • the exhaust fan (25) blows out the air sucked from the downstream partition plate (72) side to the exhaust port (21).
  • a compressor (53) and a four-way switching valve (54) of the refrigerant circuit (50) are accommodated in the air supply fan chamber (36).
  • the compressor (53) and the four-way selector valve (54) are disposed between the air supply fan (26) and the partition plate (77) in the air supply fan chamber (36).
  • the refrigerant circuit (50) includes a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion. It is a closed circuit provided with a valve (55).
  • the refrigerant circuit (50) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
  • the refrigerant circuit (50) is provided with a plurality of temperature sensors and pressure sensors.
  • the compressor (53) has its discharge side connected to the first port of the four-way switching valve (54) and its suction side connected to the second port of the four-way switching valve (54). .
  • a two-adsorption heat exchanger (52) is arranged.
  • the four-way switching valve (54) includes a first state (the state shown in FIG. 2A) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other.
  • the second port and the fourth port can communicate with each other, and the second port and the third port can communicate with each other in the second state (the state shown in FIG. 2B).
  • the compressor (53) is a hermetic compressor in which a compression mechanism and an electric motor that drives the compression mechanism are housed in a single casing. Alternating current is supplied to the electric motor of the compressor (53) via an inverter. When the output frequency of the inverter (that is, the operating frequency of the compressor) is changed, the rotational speed of the electric motor and the compression mechanism driven thereby changes, and the operating capacity of the compressor (53) changes.
  • the humidity control device (10) is provided with a controller (90) which is a controller (see FIG. 2).
  • the controller (90) receives the measured values of the inside air humidity sensor (92), the inside air temperature sensor (91), the outside air humidity sensor (94), and the outside air temperature sensor (93).
  • the controller (90) receives measurement values of a temperature sensor and a pressure sensor provided in the refrigerant circuit (50). The controller (90) controls the operation of the humidity controller (10) based on these input measurement values.
  • the controller (90) switches the operation of the humidity control device (10) to a dehumidifying operation, a humidifying operation, a low capacity operation and a simple ventilation operation, which will be described later.
  • the controller (90) operates the dampers (41 to 48), the fans (25, 26), the compressor (53), the electric expansion valve (55), and the four-way switching valve (54). To control the operation.
  • the humidity control apparatus (10) of the present embodiment selectively performs a dehumidifying operation, a humidifying operation, a low-capacity operation, and a simple ventilation operation.
  • the dehumidifying operation and the humidifying operation are first operations in which the compressor (53) operates and the switching mechanism (40) switches the air flow path.
  • the low-capacity operation is a second operation in which the compressor (53) stops and the switching mechanism (40) switches the air flow path.
  • the simple ventilation operation is an operation in which both the compressor (53) and the switching mechanism (40) are stopped.
  • the air supply fan (26) and the exhaust fan (25) are operated. Then, the humidity control apparatus (10) supplies the taken outdoor air (OA) to the indoor space as supply air (SA), and discharges the taken indoor air (RA) to the outdoor space as exhaust air (EA).
  • ⁇ Dehumidifying operation> In the humidity control apparatus (10) during the dehumidifying operation, outdoor air is taken as first air from the outside air inlet (24) into the casing (11), and indoor air is taken from the inside air inlet (23) into the casing (11). Is taken in as secondary air. In the refrigerant circuit (50), the compressor (53) operates to adjust the opening of the electric expansion valve (55). Then, the humidity control apparatus (10) during the dehumidifying operation alternately repeats a first batch operation and a second batch operation described later for 3 minutes each.
  • the switching mechanism (40) sets the air flow path to the second path. Specifically, the first inside air damper (41), the second outside air side damper (44), the second air supply side damper (46), and the first exhaust side damper (47) are opened, and the second inside air The side damper (42), the first outside air damper (43), the first air supply side damper (45), and the second exhaust side damper (48) are closed.
  • the refrigerant circuit (50) performs the first refrigeration cycle operation. That is, in the refrigerant circuit (50), the four-way switching valve (54) is set to the first state (the state shown in FIG. 2 (A)), and the first adsorption heat exchanger (51) serves as the condenser and is the second.
  • the adsorption heat exchanger (52) serves as an evaporator.
  • the second adsorption heat exchanger (52) moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air dehumidified in the second adsorption heat exchanger (52) flows through the second air supply damper (46) into the air supply passage (31) and passes through the air supply fan chamber (36). Later, the air is supplied to the indoor space through the air supply port (22).
  • the second air given moisture in the first adsorption heat exchanger (51) flows into the exhaust side passage (33) through the first exhaust side damper (47) and passes through the exhaust fan chamber (35). It is discharged to the outdoor space through the exhaust port (21).
  • the switching mechanism (40) sets the air flow path to the first path. Specifically, the second inside air damper (42), the first outside air side damper (43), the first air supply side damper (45), and the second exhaust side damper (48) are opened, and the first inside air is discharged. The side damper (41), the second outside air side damper (44), the second air supply side damper (46), and the first exhaust side damper (47) are closed.
  • the refrigerant circuit (50) performs the second refrigeration cycle operation. That is, in the refrigerant circuit (50), the four-way switching valve (54) is set to the second state (the state shown in FIG. 2B), and the first adsorption heat exchanger (51) serves as the evaporator and is the second.
  • the adsorption heat exchanger (52) serves as a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air dehumidified in the first adsorption heat exchanger (51) flows into the supply air passage (31) through the first supply air damper (45) and passes through the supply air fan chamber (36). Later, the air is supplied to the indoor space through the air supply port (22).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air given moisture in the second adsorption heat exchanger (52) flows into the exhaust side passage (33) through the second exhaust side damper (48) and passes through the exhaust fan chamber (35). It is discharged to the outdoor space through the exhaust port (21).
  • the switching mechanism (40) sets the air circulation route to the first route. Specifically, the second inside air damper (42), the first outside air side damper (43), the first air supply side damper (45), and the second exhaust side damper (48) are opened, and the first inside air is discharged. The side damper (41), the second outside air side damper (44), the second air supply side damper (46), and the first exhaust side damper (47) are closed.
  • the refrigerant circuit (50) performs the first refrigeration cycle operation. That is, in the refrigerant circuit (50), the four-way switching valve (54) is set to the first state (the state shown in FIG. 2 (A)), and the first adsorption heat exchanger (51) serves as the condenser and is the second.
  • the adsorption heat exchanger (52) serves as an evaporator.
  • the second adsorption heat exchanger (52) moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture in the second adsorption heat exchanger (52) flows into the exhaust side passage (33) through the second exhaust side damper (48) and passes through the exhaust fan chamber (35). It is discharged to the outdoor space through the exhaust port (21).
  • the first adsorption heat exchanger (51) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified in the first adsorption heat exchanger (51) flows into the supply air passage (31) through the first supply air damper (45) and passes through the supply air fan chamber (36). Later, the air is supplied to the indoor space through the air supply port (22).
  • the switching mechanism (40) sets the air circulation route to the second route. Specifically, the first inside air damper (41), the second outside air side damper (44), the second air supply side damper (46), and the first exhaust side damper (47) are opened, and the second inside air The side damper (42), the first outside air damper (43), the first air supply side damper (45), and the second exhaust side damper (48) are closed.
  • the refrigerant circuit (50) performs the second refrigeration cycle operation. That is, in the refrigerant circuit (50), the four-way switching valve (54) is set to the second state (the state shown in FIG. 2B), and the first adsorption heat exchanger (51) serves as the evaporator and is the second.
  • the adsorption heat exchanger (52) serves as a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture in the first adsorption heat exchanger (51) flows into the exhaust side passage (33) through the first exhaust side damper (47) and passes through the exhaust fan chamber (35). It is discharged to the outdoor space through the exhaust port (21).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified in the second adsorption heat exchanger (52) flows into the supply air passage (31) through the second supply air damper (46) and passes through the supply air fan chamber (36). Later, the air is supplied to the indoor space through the air supply port (22).
  • the switching mechanism (40) switches the air flow path.
  • the switching mechanism (40) switches the air flow path alternately between the first path and the second path every 3 minutes. That is, the time interval at which the switching mechanism (40) switches the air flow path during the low-capacity operation is the same as the time interval at which the switching mechanism (40) switches the air flow path during the dehumidifying operation. Since the compressor (53) is stopped, the four-way switching valve (54) may be in either the first state or the second state.
  • the switching mechanism (40) sets the air flow path to the first path
  • the air-side damper (45) and the second exhaust-side damper (48) are opened, and the first inside air-side damper (41), the second outside air-side damper (44), the second air-supply-side damper (46), and The first exhaust side damper (47) is closed.
  • outdoor air is supplied to indoor space after passing a 1st adsorption heat exchanger (51), and indoor air is discharged
  • the switching mechanism (40) sets the air flow path to the second path
  • the air supply side damper (46) and the first exhaust side damper (47) are opened, the second inside air side damper (42), the first outside air side damper (43), and the first air supply side damper (45).
  • the 2nd exhaust side damper (48) will be in a closed state.
  • the outdoor air is supplied to the indoor space after passing through the second adsorption heat exchanger (52), and the indoor air is discharged to the outdoor space after passing through the first adsorption heat exchanger (51).
  • the low-capacity operation of the humidity control apparatus (10) will be described by taking as an example a case where the temperature and absolute humidity of the outdoor air are slightly higher than the room air (for example, when the room is cooled in late spring or early autumn). .
  • the humidity control apparatus (10) during the low-performance operation, the outdoor air supplied to the indoor space is cooled and dehumidified.
  • the reason will be described with reference to FIG.
  • the explanation starts from the state where the air circulation route is set to the first route. As shown in FIG. 9A, in this state, outdoor air passes through the first adsorption heat exchanger (51), and indoor air passes through the second adsorption heat exchanger (52).
  • the liquid refrigerant remains in the first adsorption heat exchanger (51).
  • the liquid refrigerant present in the first adsorption heat exchanger (51) generates adsorption heat generated when moisture in the outdoor air is adsorbed by the adsorbent. It absorbs and absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the first adsorption heat exchanger (51) passes through the electric expansion valve (55), and then flows into the second adsorption heat exchanger (52) to condense.
  • the adsorbent is heated by the heat of condensation released from the refrigerant, and moisture is desorbed from the adsorbent and applied to the room air.
  • the heat conveyed from the first adsorption heat exchanger (51) by the refrigerant is released to the indoor air.
  • the air circulation path is switched from the first path to the second path. That is, as shown in FIG. 9B, the air passing through the first adsorption heat exchanger (51) is switched from the outdoor air to the room air, and the air passing through the second adsorption heat exchanger (52) is changed into the room air. Switch from air to outdoor air.
  • the refrigerant evaporated in the second adsorption heat exchanger (52) passes through the electric expansion valve (55), and then flows into the first adsorption heat exchanger (51) to condense.
  • the adsorbent is heated by the condensation heat released from the refrigerant, and moisture is desorbed from the adsorbent. That is, the first adsorption heat exchanger (51) adsorbs moisture in outdoor air when the air circulation path is set to the first path, and the air circulation path is set to the second path. Sometimes releases moisture into room air. Further, in the first adsorption heat exchanger (51), the heat transferred from the second adsorption heat exchanger (52) by the refrigerant is released to the indoor air.
  • the air circulation path is switched again from the second path to the first path. That is, as shown in FIG. 9A, air passing through the first adsorption heat exchanger (51) is switched from indoor air to outdoor air, and air passing through the second adsorption heat exchanger (52) is outdoor. Switch from air to room air.
  • the outdoor air is cooled and dehumidified in the first adsorption heat exchanger (51). That is, the first adsorption heat exchanger (51) that has released moisture to the indoor air in the state shown in FIG. 9B adsorbs moisture in the outdoor air. Moreover, the refrigerant
  • the low-capacity operation of the humidity control apparatus (10) will be described by taking as an example the case where the temperature and absolute humidity of the outdoor air are slightly lower than the indoor air (for example, when the room is heated in early spring or late autumn) To do.
  • the humidity control apparatus (10) during the low-capacity operation, the outdoor air supplied to the indoor space is heated and humidified.
  • the reason will be described with reference to FIG.
  • the explanation starts from the state where the air circulation route is set to the first route. As shown in FIG. 10A, in this state, outdoor air passes through the first adsorption heat exchanger (51), and indoor air passes through the second adsorption heat exchanger (52).
  • the liquid refrigerant remains in the second adsorption heat exchanger (52).
  • the liquid refrigerant present in the second adsorption heat exchanger (52) generates adsorption heat generated when moisture in the indoor air is adsorbed by the adsorbent. It absorbs and absorbs heat from room air and evaporates.
  • the refrigerant evaporated in the second adsorption heat exchanger (52) flows into the first adsorption heat exchanger (51) and condenses.
  • the adsorbent is heated by the heat of condensation released from the refrigerant, and moisture is desorbed from the adsorbent and applied to the outdoor air.
  • the heat transferred from the second adsorption heat exchanger (52) by the refrigerant is released to the outdoor air.
  • the air circulation path is switched from the first path to the second path. That is, as shown in FIG. 10B, the air passing through the first adsorption heat exchanger (51) is switched from the outdoor air to the indoor air, and the air passing through the second adsorption heat exchanger (52) is changed into the room air. Switch from air to outdoor air.
  • the air flow path is set to the first path (the state shown in FIG. 10A)
  • moisture is desorbed from the adsorbent of the first adsorption heat exchanger (51).
  • the refrigerant present in the first adsorption heat exchanger (51) absorbs heat of adsorption generated when moisture in the room air is adsorbed by the adsorbent, and further absorbs heat from the room air and evaporates.
  • the second adsorption heat exchanger (52) outdoor air having a temperature lower than that of the indoor air flows. For this reason, the refrigerant evaporated in the first adsorption heat exchanger (51) passes through the electric expansion valve (55), and then flows into the second adsorption heat exchanger (52) to condense. In the second adsorption heat exchanger (52), the adsorbent is heated by the condensation heat released from the refrigerant, and moisture is desorbed from the adsorbent. That is, the second adsorption heat exchanger (52) adsorbs moisture in the indoor air when the air circulation path is set to the first path, and the air circulation path is set to the second path. Sometimes releases moisture to outdoor air.
  • the heat transferred from the first adsorption heat exchanger (51) by the refrigerant is released to the outdoor air. Therefore, in the second adsorption heat exchanger (52), the temperature and absolute humidity of the outdoor air passing therethrough increase. As a result, the temperature and absolute humidity of the outdoor air approach the temperature and absolute humidity of the air in the indoor space.
  • the air circulation path is switched again from the second path to the first path. That is, as shown in FIG. 10 (A), air passing through the first adsorption heat exchanger (51) is switched from indoor air to outdoor air, and air passing through the second adsorption heat exchanger (52) is outdoor. Switch from air to room air.
  • the adsorbent adsorbs moisture in the room air, and the refrigerant absorbs heat from the room air. That is, the second adsorption heat exchanger (52) takes moisture and heat from the indoor air.
  • the first adsorption heat exchanger (51) imparts moisture taken from the room air to the outdoor air in the state shown in FIG.
  • coolant from the 2nd adsorption heat exchanger (52) is provided to outdoor air.
  • the temperature and absolute humidity of the outdoor air approach the temperature and absolute humidity of the air in the indoor space.
  • the humidity control device (10) adjusts the temperature and absolute humidity of the outdoor air supplied to the indoor space.
  • the compressor (53) is operated at the flow rate of the refrigerant flowing between the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52). Less than the flow rate of the refrigerant circulating in the refrigerant circuit (50) during the dehumidifying operation or the humidifying operation.
  • the dehumidifying ability exhibited by the humidity control apparatus (10) during the low capacity operation is smaller than the dehumidifying ability exhibited by the humidity control apparatus (10) during the dehumidifying operation.
  • the humidifying ability exhibited by the humidity control apparatus (10) during low-capacity operation is smaller than the humidification ability exhibited by the humidity control apparatus (10) during humidification operation.
  • the switching mechanism (40) is stopped, and the air flow path is fixed to either the first path or the second path.
  • the air circulation path is set to the first path, outdoor air and room air flow in the humidity control apparatus (10) as shown in FIG. That is, the outdoor air is supplied to the indoor space after passing through the first adsorption heat exchanger (51), and the indoor air is discharged to the outdoor space after passing through the second adsorption heat exchanger (52).
  • the air circulation path is set to the second path, outdoor air and room air flow in the humidity control apparatus (10) as shown in FIG. That is, outdoor air is supplied to the indoor space after passing through the second adsorption heat exchanger (52), and indoor air is discharged to the outdoor space after passing through the first adsorption heat exchanger (51).
  • the switching mechanism (40) switches the air flow path every predetermined time during the low-capacity operation
  • the switching mechanism (40) stops and the air flow path is fixed during the simple ventilation operation.
  • the adsorption heat exchanger (51, 52) does not exchange moisture or heat with the air passing therethrough. Therefore, the outdoor air is supplied to the indoor space as it is without adjusting the temperature and humidity. Further, the room air is discharged to the outdoor space as it is without adjusting the temperature and humidity.
  • Controller control action- A control operation performed by the controller (90) will be described.
  • the operation in which the controller (90) selects the operation mode of the humidity controller (10) will be described with reference to the flowchart of FIG.
  • the controller (90) repeatedly performs the control operation shown in FIG. 11 every time a predetermined time (for example, 2 minutes) elapses.
  • step ST1 the controller (90) calculates a target value (target absolute humidity: X_tg) of the absolute humidity of the air supplied to the indoor space from the air supply port (23). At that time, the controller (90) uses the set value X_set of the absolute humidity of the air in the indoor space, the absolute humidity X_oa of the outdoor air, and the absolute humidity X_ra of the indoor air, and the absolute humidity X_ra of the indoor air is the absolute humidity.
  • the value of the target absolute humidity X_tg is set so as to be the set value X_set.
  • the controller (90) calculates the absolute humidity X_oa of the outdoor air using the measured values of the outside temperature sensor (93) and the outside air humidity sensor (94), and the inside air temperature sensor (91) and the inside air humidity sensor (92) The absolute humidity X_ra of the indoor air is calculated using the measured value.
  • the controller (90) calculates the required operating frequency F_n of the compressor (53). At that time, the controller (90) is supplied to the indoor space from the air supply port (23) using the target absolute humidity X_tg calculated in step ST1, the absolute humidity X_oa of the outdoor air, and the absolute humidity X_ra of the indoor air.
  • the operating frequency of the compressor (53) is calculated so that the absolute humidity of the air becomes the target absolute humidity X_tg, and the value is set as the required operating frequency F_n.
  • the operating capacity of the compressor (53) increases as the operating frequency increases, and decreases as the operating frequency decreases.
  • the mass flow rate of the refrigerant circulating in the refrigerant circuit (50) increases, and the heat absorption amount and heat release amount of the refrigerant per unit time in the adsorption heat exchanger (51, 52) are increased.
  • the amount of moisture adsorbed on the adsorption heat exchanger (51, 52) serving as an evaporator increases, and the amount of moisture desorbed from the adsorption heat exchanger (51, 52) serving as a radiator is increased.
  • the amount increases. That is, the humidity control capacity of the humidity control apparatus (10) is increased.
  • the controller (90) adjusts the operating frequency of the compressor (53) so that the absolute humidity of the air supplied from the humidity controller (10) to the indoor space becomes the target absolute humidity X_tg.
  • the controller (90) calculates the minimum operating frequency F_min of the compressor (53). At that time, the controller (90) calculates the lower limit value of the operating frequency of the compressor (53) using the outdoor air temperature T_oa and the absolute humidity X_oa and the indoor air temperature T_ra and the absolute humidity X_ra. Is the minimum operating frequency F_min. In order to ensure the reliability of the compressor (53), it is necessary to keep the operating conditions of the compressor (53) such as the difference between the suction pressure and the discharge pressure within a predetermined range. Therefore, the controller (90) sets the minimum operating frequency F_min of the compressor (53) so that the operating condition of the compressor (53) is within a predetermined range.
  • the controller (90) determines whether or not the absolute humidity X_oa of the outdoor air is a value within the set humidity range (that is, whether or not the condition X_set1 ⁇ X_oa ⁇ X_set2 is satisfied).
  • X_set1 is a lower limit value of the setting range of the absolute humidity of the air in the indoor space
  • X_set2 is an upper limit value of the setting range of the absolute humidity of the air in the indoor space.
  • step ST4 When the condition of step ST4 is satisfied, the absolute humidity of the indoor air is kept within the set range even if the outdoor air is supplied to the indoor space as it is. Therefore, when this condition is satisfied, the controller (90) performs the operation of step ST5. That is, in this case, the controller (90) sets the operation of the humidity control device (10) to the simple ventilation operation.
  • step ST4 when the condition of step ST4 is not satisfied, if the outdoor air is supplied to the indoor space as it is, the absolute humidity of the air in the indoor space is out of the set range. Therefore, if this condition is not satisfied, the controller (90) performs the operation of step ST6.
  • step ST6 the controller (90) compares the required operating frequency F_n of the compressor (53) calculated in step ST2 with the minimum operating frequency F_min of the compressor (53) calculated in step ST3. Specifically, the controller (90) determines whether or not a condition of F_n ⁇ F_min ⁇ A is satisfied.
  • A is a constant less than 1.0, and is set to 0.5, for example.
  • step ST6 the controller (90) performs the operation of step ST7.
  • the absolute humidity X_oa of the outdoor air is out of the set humidity range, and the required operating frequency F_n of the compressor (53) is a relatively high value. It can be determined that the humidity control capacity required for (10) (ie, the humidity control load) is large to some extent. Therefore, in step ST7, the controller (90) sets the operation of the humidity control apparatus (10) to one of the dehumidifying operation and the humidifying operation. At that time, the controller (90) selects either the dehumidifying operation or the humidifying operation based on the setting information input by the user to the remote controller or the like, the absolute humidity of the indoor or outdoor air, and the like.
  • step ST6 when the condition of step ST6 is satisfied during the low-capacity operation, it can be determined that the humidity control of the humidity control apparatus (10) is too small with respect to the humidity control load. Therefore, when the condition of step ST6 is satisfied during the low-capacity operation, the controller (90) starts the compressor (53), and the operation of the humidity control device (10) is changed from the low-capacity operation to the dehumidifying operation or the humidifying operation. Switch.
  • step ST6 when the condition of step ST6 is not satisfied, the controller (90) performs the operation of step ST8.
  • the absolute humidity X_oa of the outdoor air is out of the set humidity range, but the required operating frequency F_n of the compressor (53) is a relatively low value, and the humidity control device ( It can be judged that the humidity control capacity of 10) is excessive with respect to the humidity control load. Therefore, in step ST8, the controller (90) sets the operation of the humidity controller (10) to the low-capacity operation.
  • the controller (90) sets the operating frequency F of the compressor (53) to the minimum operating frequency F_min.
  • Set (F F_min).
  • the controller (90) stops the compressor (53) and switches the operation of the humidity control apparatus (10) from the dehumidifying operation or the humidifying operation to the low-capacity operation.
  • the humidity control apparatus (10) of the present embodiment includes a dehumidifying operation and a humidifying operation in which both the compressor (53) and the switching mechanism (40) are operated, and the switching mechanism (40) is stopped when the compressor (53) is stopped. Perform low-capacity operation that operates. As described above, the humidity control capability exhibited by the humidity control device (10) during the low-capacity operation is smaller than the humidity control capability exhibited by the humidity control device (10) during the dehumidification operation or the humidification operation.
  • the conventional humidity control device (10) that does not perform the low-capacity operation stops the dehumidification operation or the humidification operation when the humidity adjustment capacity obtained in the dehumidification operation or the humidification operation becomes excessive with respect to the humidity adjustment load.
  • Simple ventilation operation was performed.
  • the humidity control capacity of the humidity control device (10) is excessive with respect to the humidity control load, there is usually a certain temperature difference and absolute humidity difference between the air in the outdoor space and the air in the indoor space. Exists.
  • the humidity control apparatus (10) of the present embodiment can execute the low-capacity operation.
  • the humidity control apparatus (10) performs the low capacity operation by stopping the dehumidifying operation and the humidifying operation. Outdoor air is supplied to the indoor space as it is during simple ventilation operation, but outdoor air is supplied to the indoor space after its temperature and absolute humidity are adjusted during low-performance operation.
  • the humidity control capability of the humidity control apparatus (10) becomes excessive with respect to the humidity control load, and the dehumidifying operation and the humidifying operation must be stopped.
  • the temperature and absolute humidity of the outdoor air supplied to the indoor space can be brought close to the temperature and absolute humidity of the air in the indoor space. Therefore, according to the present embodiment, it is possible to avoid a decrease in comfort caused by supplying outdoor air to the indoor space as it is, and to improve the comfort of the indoor space even under operating conditions where the dehumidifying operation or the humidifying operation must be stopped. Sex can be secured.
  • the compressor (53) may be frequently stopped and restarted. That is, when the compressor (53) stops and the humidity control capacity of the humidity control device (10) becomes zero, outdoor air is supplied to the indoor space as it is, and the humidity of the indoor air changes, and the compressor (53) It will be restarted. When the compressor (53) is restarted, the humidity of the room air reaches the target value in a relatively short time, and the compressor (53) is stopped again. And if a stop and restart of a compressor (53) are repeated frequently, possibility that a compressor (53) will be damaged becomes high.
  • the humidity control apparatus (10) of the present embodiment is an operation in which the humidity control capacity of the humidity control apparatus (10) becomes excessive with respect to the humidity control load, and the dehumidifying operation and the humidifying operation must be stopped. Even if the conditions are met, the low capacity operation is performed and the outdoor air supplied to the indoor space is continuously dehumidified or humidified. For this reason, even after the compressor (53) is stopped, a rapid change in the humidity of the room air is suppressed, and it is possible to earn time until the compressor (53) needs to be restarted. Therefore, according to this embodiment, frequent start / stop of the compressor (53) can be avoided, and the reliability of the compressor (53) can be improved.
  • the electric expansion valve (55) is kept fully open in the refrigerant circuit (50) during the low capacity operation. For this reason, the flow rate of the refrigerant flowing back and forth between the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52) can be sufficiently secured during the low-capacity operation.
  • the humidity control ability exhibited by the humidity device (10) can be enhanced.
  • the time interval at which the switching mechanism (40) switches the air flow path during the low-performance operation is the time for the switching mechanism (40) to switch the air flow path during the dehumidifying operation. It may be shorter than the interval. That is, in this embodiment, the time interval at which the switching mechanism (40) switches the air flow path during the low-capacity operation may be set to less than 3 minutes.
  • the amount of moisture exchanged between the adsorption heat exchanger (51, 52) and the air passing therethrough is a short time after the air starts to be supplied to the adsorption heat exchanger (51, 52). It increases rapidly and then gradually decreases.
  • the frequency of the switching mechanism (40) alternately switching the air flow path between the first path and the second path is lower than that during the dehumidifying operation. Is higher. Therefore, according to this modification, the humidity control capability exhibited by the humidity control apparatus (10) during low-capacity operation can be increased.
  • the opening degree of the electric expansion valve (55) of the refrigerant circuit (50) does not have to be fully opened during the low capacity operation. That is, the opening degree of the electric expansion valve (55) during the low-capacity operation can sufficiently secure the flow rate of the refrigerant that goes back and forth between the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52). It is only necessary to set the opening degree to a certain degree, and it is not always necessary to maintain the fully opened state.
  • the present invention is useful for a humidity control apparatus that performs dehumidification and humidification of air using an adsorption heat exchanger carrying an adsorbent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

調湿装置(10)の冷媒回路(50)には、二つの吸着熱交換器(51,52)が設けられる。冷媒回路(50)は、冷媒の循環方向が反転可能となっている。また、調湿装置(10)の切換機構(40)は、室内へ供給される室外空気の流通経路と、室外へ排出される室内空気の流通経路とを切り換える。調湿装置(10)の第1運転では、冷媒の循環方向と空気の流通経路が、所定時間毎に切り換わる。調湿装置(10)の第2運転では、冷媒回路(50)が停止し、空気の流通経路が所定時間毎に切り換わる。第2運転中には、冷媒回路(50)の停止中も温度と湿度を調節された室外空気が室内へ供給され、室内の快適性が確保される。

Description

調湿装置
 本発明は、吸着剤を担持する吸着熱交換器を用いて空気の除湿や加湿を行う調湿装置に関するものである。
 従来より、吸着剤を用いて空気を除湿し又は加湿する調湿装置が知られている。例えば、特許文献1には、吸着剤を担持する吸着熱交換器を備えた調湿装置が開示されている。
 特許文献1の調湿装置では、冷凍サイクルを行う冷媒回路に二つの吸着熱交換器が設けられる。冷媒回路は、第1吸着熱交換器が放熱器となって第2吸着熱交換器が蒸発器となる冷凍サイクル動作と、第2吸着熱交換器が放熱器となって第1吸着熱交換器が蒸発器となる冷凍サイクル動作とを、所定の時間毎(例えば、3分間毎)に交互に行う。
 また、特許文献1の調湿装置は、室内空間の換気を行う。つまり、この調湿装置は、室外空気を室内空間へ供給し、室内空気を室外空間へ排出する。具体的に、この調湿装置は、開閉式のダンパを複数備えている。そして、この調湿装置は、ダンパを開閉することによって、空気の流通経路を切り換える。具体的に、この調湿装置における空気の流通経路は、室外空気が上記第1吸着熱交換器を通過後に室内空間へ供給されて室内空気が上記第2吸着熱交換器を通過後に室外空間へ排出される第1経路と、室外空気が上記第2吸着熱交換器を通過後に室内空間へ供給されて室内空気が上記第1吸着熱交換器を通過後に室外空間へ排出される第2経路とに切り換わる。
 特許文献1の調湿装置は、冷媒回路における冷凍サイクル動作の切り換えと、空気の流通経路の切り換えとを連動して行う。そして、除湿運転中の調湿装置は、蒸発器となっている吸着熱交換器において除湿された室外空気を室内空間へ供給し、放熱器となっている吸着熱交換器から脱離した水分を室内空気と共に室外空間へ排出する。また、加湿運転中の調湿装置は、放熱器となっている吸着熱交換器において加湿された室外空気を室内空間へ供給し、蒸発器となっている吸着熱交換器に水分を奪われた室内空気を室外空間へ排出する。
特開2007-010231号公報
 特許文献1に開示されているような冷媒回路を備える調湿装置では、調湿能力(即ち、単位時間当たりの除湿量や加湿量)の制御が行われる場合がある。調湿能力の制御は、圧縮機の運転容量(具体的には、圧縮機の回転速度)を調節することによって行われる。
 ところが、圧縮機を正常に動作させるには、圧縮機の回転速度をある程度以上に保つ必要がある。つまり、圧縮機の運転容量の調節範囲には下限が存在し、圧縮機の運転容量を調節範囲の下限未満に設定することはできない。例えば、圧縮機の運転容量の調節範囲の下限が最大容量の20%である場合は、圧縮機の運転容量を最大容量の10%に設定することはできない。従って、圧縮機を備えた調湿装置では、その調湿能力を所定の下限値未満には設定できない。
 このため、従来の調湿装置では、圧縮機の運転容量を最低容量に設定しても調湿能力が過剰である場合に、圧縮機を停止させていた。一方、特許文献1に開示されているような空気の湿度調節だけでなく室内空間の換気を行う調湿装置では、圧縮機が停止した状態でも室内空間の換気を継続して行う必要がある。そこで、圧縮機を作動させていると調湿能力が過剰となる場合、従来の調湿装置は、圧縮機を停止させる一方、室内空間へ室外空気の供給と室外空間への室内空気の排出とを継続して行う。
 圧縮機を停止して換気を継続する運転中において、従来の調湿装置は、空気の流通経路の切り換えを行わない。従って、この運転中には、一方の吸着熱交換器を室外空気が通過し続け、他方の吸着熱交換器を室内空気が通過し続ける。このため、室外空気が温度も湿度も調節されずにそのまま室内空間へ供給され、室内空間の快適性が損なわれるおそれがあった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、冷媒回路を備えて室内空間へ供給される室外空気の除湿や加湿を行う調湿装置において、冷媒回路の冷凍サイクル動作が停止した状態でも室内空間へ供給される室外空気の温度と湿度を調節し、室内空間の快適性を確保することにある。
 第1の発明は、調湿装置を対象とする。そして、圧縮機(53)と、それぞれが吸着剤を担持する第1吸着熱交換器(51)及び第2吸着熱交換器(52)とを有し、上記第1吸着熱交換器(51)が放熱器となって上記第2吸着熱交換器(52)が蒸発器となる第1冷凍サイクル動作と、上記第2吸着熱交換器(52)が放熱器となって上記第1吸着熱交換器(51)が蒸発器となる第2冷凍サイクル動作とを行う冷媒回路(50)と、室外空気を室内空間へ供給するための給気ファン(26)と、室内空気を室外空間へ排出するための排気ファン(25)と、空気の流通経路を、室外空気が上記第1吸着熱交換器(51)を通過後に室内空間へ供給されて室内空気が上記第2吸着熱交換器(52)を通過後に室外空間へ排出される第1経路と、室外空気が上記第2吸着熱交換器(52)を通過後に室内空間へ供給されて室内空気が上記第1吸着熱交換器(51)を通過後に室外空間へ排出される第2経路とに切り換える切換機構(40)とを備え、上記給気ファン(26)及び上記排気ファン(25)が作動し、上記冷媒回路(50)が上記第1冷凍サイクル動作と上記第2冷凍サイクル動作とを所定時間毎に交互に行い、上記冷媒回路(50)における冷凍サイクル動作の切り換えに連動して上記切換機構(40)が空気の流通経路を上記第1経路と上記第2経路とに交互に設定し、室内空間へ供給される室外空気を除湿し又は加湿する第1運転と、上記給気ファン(26)及び上記排気ファン(25)が作動し、上記冷媒回路(50)の圧縮機(53)が停止し、上記切換機構(40)が所定時間毎に空気の流通経路を上記第1経路と上記第2経路とに交互に設定する第2運転とを行うものである。
 第1の発明では、調湿装置(10)が第1運転と第2運転とを行う。第1運転中の調湿装置(10)では、冷媒回路(50)の圧縮機(53)が作動し、冷媒回路(50)が第1冷凍サイクル動作と第2冷凍サイクル動作とを交互に行う。つまり、冷媒回路(50)では、所定時間が経過する毎に、第1冷凍サイクル動作と第2冷凍サイクル動作とが相互に切り換わる。放熱器となっている吸着熱交換器(51,52)では、その表面に担持された吸着剤が冷媒によって加熱され、吸着剤から水分が脱離する。吸着剤から脱離した水分は、吸着熱交換器(51,52)を通過する空気に付与される。一方、蒸発器となっている吸着熱交換器(51,52)では、そこを通過する空気中の水分が吸着剤に吸着される。この吸着熱交換器(51,52)を流れる冷媒は、空気中の水分が吸着剤に吸着される際に発生した吸着熱を吸熱して蒸発する。
 第1運転中の調湿装置(10)において、切換機構(40)は、空気の流通経路を第1経路と第2経路とに切り換える。その際、切換機構(40)は、冷媒回路(50)における冷凍サイクル動作の切り換えに連動して、空気の流通経路を切り換える。つまり、冷媒回路(50)の動作が第1冷凍サイクル動作と第2冷凍サイクル動作の一方から他方へ切り換わると、空気の流通経路が第1経路と第2経路の一方から他方へ切り換わる。
 第1運転中の調湿装置(10)において、冷媒回路(50)が第1冷凍サイクル動作を行っているときに切換機構(40)が空気の流通経路を第2経路に設定し、冷媒回路(50)が第2冷凍サイクル動作を行っているときに切換機構(40)が空気の流通経路を第1経路に設定すると、除湿された室外空気が室内空間へ供給され、加湿された室内空気が室外空間へ排出される。また、第1運転中の調湿装置(10)において、冷媒回路(50)が第1冷凍サイクル動作を行っているときに切換機構(40)が空気の流通経路を第1経路に設定し、冷媒回路(50)が第2冷凍サイクル動作を行っているときに切換機構(40)が空気の流通経路を第2経路に設定すると、加湿された室外空気が室内空間へ供給され、除湿された室内空気が室外空間へ排出される。
 第1の発明において、第2運転中の調湿装置(10)では、冷媒回路(50)の圧縮機(53)が停止する一方、給気ファン(26)及び排気ファン(25)は作動し続ける。また、第2運転中においても、切換機構(40)は、空気の流通経路を第1経路と第2経路に交互に設定する。従って、第2運転中の調湿装置(10)は、室外空気が第1吸着熱交換器(51)を通過後に室内空間へ供給されて室内空気が第2吸着熱交換器(52)を通過後に室外空間へ排出される動作と、室外空気が第2吸着熱交換器(52)を通過後に室内空間へ供給されて室内空気が第1吸着熱交換器(51)を通過後に室外空間へ排出される動作とを交互に行う。
 先ず、調湿装置(10)の第2運転について、室外空気の温度と絶対湿度が室内空気に比べて若干高い場合(例えば、晩春や初秋に室内が冷房されている場合)を例に説明する。この場合、第2運転中の調湿装置(10)では、室内空間へ供給される室外空気の冷却と除湿が行われる。ここでは、その理由を説明する。
 空気の流通経路が第1経路に設定された状態から説明を始める。この状態では、室外空気が第1吸着熱交換器(51)を通過し、室内空気が第2吸着熱交換器(52)を通過する。
 圧縮機(53)の停止中においても、第1吸着熱交換器(51)には液冷媒が残存している。室外空気が第1吸着熱交換器(51)を通過すると、第1吸着熱交換器(51)に存在する液冷媒は、室外空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室外空気から吸熱して蒸発する。
 一方、第2吸着熱交換器(52)では、室外空気よりも温度の低い室内空気が流れている。このため、第1吸着熱交換器(51)において蒸発した冷媒は、第2吸着熱交換器(52)へ流入して凝縮する。第2吸着熱交換器(52)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離して室内空気に付与される。また、第2吸着熱交換器(52)では、冷媒によって第1吸着熱交換器(51)から搬送されてきた熱が、室内空気へ放出される。
 その後、空気の流通経路が第1経路から第2経路へ切り換わる。つまり、第1吸着熱交換器(51)を通過する空気が室外空気から室内空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室内空気から室外空気へ切り換わる。
 上述したように、空気の流通経路が第1経路に設定されている状態では、第2吸着熱交換器(52)の吸着剤から水分が脱離する。このため、空気の流通経路が第2経路に切り換わった後は、室外空気に含まれる水分が第2吸着熱交換器(52)に吸着される。第2吸着熱交換器(52)に存在する冷媒は、室外空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室外空気から吸熱して蒸発する。従って、第2吸着熱交換器(52)では、そこを通過する室外空気の温度と絶対湿度が低下する。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。
 一方、第1吸着熱交換器(51)では、室外空気よりも温度の低い室内空気が流れている。このため、第2吸着熱交換器(52)において蒸発した冷媒は、第1吸着熱交換器(51)へ流入して凝縮する。第1吸着熱交換器(51)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離する。つまり、第1吸着熱交換器(51)は、空気の流通経路が第1経路に設定されているときに室外空気中の水分を吸着し、空気の流通経路が第2経路に設定されているときに室内空気へ水分を放出する。また、第1吸着熱交換器(51)では、冷媒によって第2吸着熱交換器(52)から搬送されてきた熱が、室内空気へ放出される。
 その後、第2運転中の調湿装置(10)では、空気の流通経路が第2経路から第1経路へ再び切り換わる。つまり、第1吸着熱交換器(51)を通過する空気が室内空気から室外空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室外空気から室内空気へ切り換わる。そして、上述したように、第1吸着熱交換器(51)では、室外空気が冷却され且つ除湿される。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。また、第2吸着熱交換器(52)では、第1吸着熱交換器(51)から冷媒によって搬送されてきた熱と、空気の流通経路が第2経路に設定されているときに吸着された水分とが、室内空気へ放出される。
 次に、調湿装置(10)の第2運転について、室外空気の温度と絶対湿度が室内空気に比べて若干低い場合(例えば、初春や晩秋に室内が暖房されている場合)を例に説明する。この場合、第2運転中の調湿装置(10)では、室内空間へ供給される室外空気の加熱と加湿が行われる。ここでは、その理由を説明する。
 空気の流通経路が第1経路に設定された状態から説明を始める。この状態では、室外空気が第1吸着熱交換器(51)を通過し、室内空気が第2吸着熱交換器(52)を通過する。
 圧縮機(53)の停止中においても、第2吸着熱交換器(52)には液冷媒が残存している。室内空気が第2吸着熱交換器(52)を通過すると、第2吸着熱交換器(52)に存在する液冷媒は、室内空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室内空気から吸熱して蒸発する。
 一方、第1吸着熱交換器(51)では、室内空気よりも温度の低い室外空気が流れている。このため、第2吸着熱交換器(52)において蒸発した冷媒は、第1吸着熱交換器(51)へ流入して凝縮する。第1吸着熱交換器(51)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離して室外空気に付与される。また、第1吸着熱交換器(51)では、冷媒によって第2吸着熱交換器(52)から搬送されてきた熱が、室外空気へ放出される。
 その後、空気の流通経路が第1経路から第2経路へ切り換わる。つまり、第1吸着熱交換器(51)を通過する空気が室外空気から室内空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室内空気から室外空気へ切り換わる。
 上述したように、空気の流通経路が第1経路に設定されている状態では、第1吸着熱交換器(51)の吸着剤から水分が脱離する。このため、空気の流通経路が第2経路に切り換わった後は、室内空気に含まれる水分が第1吸着熱交換器(51)に吸着される。第1吸着熱交換器(51)に存在する冷媒は、室内空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室内空気から吸熱して蒸発する。
 一方、第2吸着熱交換器(52)では、室内空気よりも温度の低い室外空気が流れている。このため、第1吸着熱交換器(51)において蒸発した冷媒は、第2吸着熱交換器(52)へ流入して凝縮する。第2吸着熱交換器(52)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離する。つまり、第2吸着熱交換器(52)は、空気の流通経路が第1経路に設定されているときに室内空気中の水分を吸着し、空気の流通経路が第2経路に設定されているときに室外空気へ水分を放出する。また、第2吸着熱交換器(52)では、冷媒によって第1吸着熱交換器(51)から搬送されてきた熱が、室外空気へ放出される。従って、第2吸着熱交換器(52)では、そこを通過する室外空気の温度と絶対湿度が上昇する。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。
 その後、第2運転中の調湿装置(10)では、空気の流通経路が第2経路から第1経路へ再び切り換わる。つまり、第1吸着熱交換器(51)を通過する空気が室内空気から室外空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室外空気から室内空気へ切り換わる。そして、上述したように、第2吸着熱交換器(52)では、吸着剤が室内空気中の水分を吸着し、冷媒が室内空気から吸熱する。また、第1吸着熱交換器(51)では、第2吸着熱交換器(52)から冷媒によって搬送されてきた熱と、空気の流通経路が第2経路に設定されているときに吸着された水分とが、室外空気へ付与される。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。
 このように、圧縮機(53)が停止している第2運転中においても、調湿装置(10)では、室内空間へ供給される室外空気の温度と絶対湿度が調節される。ただし、第2運転中の冷媒回路(50)において第1吸着熱交換器(51)と第2吸着熱交換器(52)の間を行き来する冷媒の流量は、第1運転中に冷媒回路(50)を循環する冷媒の流量に比べて少ない。このため、第2運転中の調湿装置(10)が発揮する調湿能力は、第1運転中の調湿装置(10)が発揮する調湿能力に比べて小さくなる。
 第2の発明は、上記第1の発明において、上記第1運転中に上記圧縮機(53)の運転容量を調湿負荷に応じて調節する制御器(90)を備え、上記制御器(90)は、上記第1運転中に上記圧縮機(53)の運転容量を最低容量に設定しても調湿能力が調湿負荷に対して過大であると判断すると、上記調湿装置(10)の運転を上記第1運転から上記第2運転へ切り換え、上記第2運転中に調湿能力が調湿負荷に対して過小であると判断すると、上記調湿装置(10)の運転を上記第2運転から上記第1運転へ切り換えるものである。
 第2の発明では、制御器(90)が圧縮機(53)の運転容量を調湿負荷に応じて調節する。圧縮機(53)の運転容量を変更すると、調湿装置(10)の調湿能力が変化する。なお、調湿負荷とは、調湿装置(10)に要求される除湿量または加湿量を意味する。
 第2の発明において、制御器(90)は、第1運転中に圧縮機(53)の運転容量を最低容量に設定しても調湿能力が調湿負荷に対して過大であると判断すると、圧縮機(53)を停止させて調湿装置(10)の運転を第2運転に切り換える。第2運転中の調湿装置(10)の調湿能力は、第1運転中に圧縮機(53)の運転容量が最低容量であるときの調湿装置(10)の調湿能力よりも低くなる。また、制御器(90)は、第2運転中に調湿能力が調湿負荷に対して過小であると判断すると、圧縮機(53)を起動して調湿装置(10)の運転を第1運転に切り換える。
 第3の発明は、上記第1又は第2の発明において、上記冷媒回路(50)では、上記第1吸着熱交換器(51)と上記第2吸着熱交換器(52)の間に開度可変の膨張弁(55)が設けられ、上記第2運転中には、上記膨張弁(55)が全開状態に保持されるものである。
 第3の発明では、第2運転中に膨張弁(55)が全開状態に保持される。上述したように、第2運転中の冷媒回路(50)では、第1吸着熱交換器(51)と第2吸着熱交換器(52)の間をガス冷媒が行き来する。このため、第1吸着熱交換器(51)と第2吸着熱交換器(52)の間に配置された膨張弁(55)が全開状態に保持されていると、第1吸着熱交換器(51)と第2吸着熱交換器(52)の間を行き来する冷媒が膨張弁(55)を通過する際の圧力損失が低く抑えられる。
 第4の発明は、上記第1~第3のいずれか一つの発明において、上記第2運転中に上記切換機構(40)が空気の流通経路を上記第1経路と上記第2経路とに交互に切り換える時間間隔は、上記第1運転中に上記切換機構(40)が空気の流通経路を上記第1経路と上記第2経路とに交互に切り換える時間間隔以下となっているものである。
 第4の発明において、切換機構(40)が空気の流通経路を第1経路と第2経路とに交互に切り換える時間間隔は、第2運転中における時間間隔が第1運転中における時間間隔以下に設定される。切換機構(40)は、例えば第1運転中に空気の流通経路を3分間毎に第1経路と第2経路に交互に切り換える場合、第2運転中に空気の流通経路を3分間以下の時間間隔で第1経路と第2経路に交互に切り換える。
 本発明では、調湿装置(10)が第1運転と第2運転とを行う。上述したように、第2運転中の調湿装置(10)が発揮する調湿能力は、第1運転中に調湿能力が発揮する調湿能力に比べて小さくなる。このため、従来の調湿装置(10)では圧縮機(53)を停止させて室外空気をそのまま室内空間へ供給せざるを得ない運転条件(即ち、調湿負荷が小さい運転条件)においても、本発明の調湿装置(10)は、除湿し又は加湿した室外空気を室内空間へ供給することができる。このため、圧縮機(53)が停止した状態において室内空間へ供給される室外空気の温度と絶対湿度を、室内空間の空気の温度と絶対湿度に近付けることができる。従って、本発明によれば、室外空気をそのまま室内空間へ供給することに起因する快適性の低下を抑えることができ、圧縮機(53)が停止した状態においても室内空間の快適性を確保することができる。
 上記第2の発明において、制御器(90)は、調湿装置(10)の調湿能力と調湿負荷の関係を考慮して、調湿装置(10)の運転を第1運転と第2運転のどちらに設定するかを決めている。そして、制御器(90)は、第1運転中に調湿装置(10)の調湿能力を最小にしても調湿能力が過剰である場合に、調湿装置(10)の運転を第1運転から第2運転に切り換えている。上述したように、第2運転中の調湿装置(10)の調湿能力は、第1運転中の調湿装置(10)の調湿能力に比べて小さい。従って、この発明によれば、調湿装置(10)の調湿能力の調節範囲を拡大することができ、様々な運転条件に応じた適切な調湿能力を調湿装置(10)に発揮させることができる。
 上記第3の発明では、冷媒回路(50)に膨張弁(55)が設けられ、第2運転中に膨張弁(55)が全開状態に保持される。このため、第2運転中に第1吸着熱交換器(51)と第2吸着熱交換器(52)の間を行き来する冷媒の流量を充分に確保することができ、第2運転中に調湿装置(10)が発揮する調湿能力を高めることができる。
 上記第4の発明において、第2運転中に切換機構(40)が空気の流通経路を第1経路と第2経路とに交互に切り換える時間間隔は、第1運転中に切換機構(40)が空気の流通経路を第1経路と第2経路とに交互に切り換える時間間隔以下に設定される。ここで、吸着熱交換器とそこを通過する空気の間で授受される水分の量は、空気が吸着熱交換器へ供給され始めてから短時間の間に急激に増加し、その後は緩やかに減少してゆく。一方、この発明において、切換機構(40)が空気の流通経路を第1経路と第2経路とに交互に切り換える頻度は、第1運転中と第2運転中とで同じか、第1運転中に比べて第2運転中の方が高くなる。従って、この発明によれば、第2運転中の調湿装置(10)が発揮する調湿能力を高めることができる。
図1は、実施形態の調湿装置の概略構造を示す平面図、右側面図、及び左側面図である。 図2は、冷媒回路の構成を示す配管系統図であって、(A)は第1冷凍サイクル動作中の動作を示し、(B)は第2冷凍サイクル動作中の動作を示す。 図3は、除湿運転の第1バッチ動作中の空気の流れを示す調湿装置の概略の平面図、右側面図、及び左側面図である。 図4は、除湿運転の第2バッチ動作中の空気の流れを示す調湿装置の概略の平面図、右側面図、及び左側面図である。 図5は、加湿運転の第1バッチ動作中の空気の流れを示す調湿装置の概略の平面図、右側面図、及び左側面図である。 図6は、加湿運転の第2バッチ動作中の空気の流れを示す調湿装置の概略の平面図、右側面図、及び左側面図である。 図7は、低能力運転中に空気の流通経路が第1経路に設定された状態を示す調湿装置の概略の平面図、右側面図、及び左側面図である。 図8は、低能力運転中に空気の流通経路が第2経路に設定された状態を示す調湿装置の概略の平面図、右側面図、及び左側面図である。 図9は、室外空気の温度と絶対湿度が室内空気よりも高いときに行われる低能力運転中の冷媒の流れを示す冷媒回路の配管系統図であって、(A)は空気の流通経路が第1経路に設定された場合の冷媒の流れを示し、(B)は空気の流通経路が第2経路に設定された場合の冷媒の流れを示す。 図10は、室外空気の温度と絶対湿度が室内空気よりも低いときに行われる低能力運転中の冷媒の流れを示す冷媒回路の配管系統図であって、(A)は空気の流通経路が第1経路に設定された場合の冷媒の流れを示し、(B)は空気の流通経路が第2経路に設定された場合の冷媒の流れを示す。 図11は、コントローラが行う制御動作を示すフロー図である。
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態の調湿装置(10)は、室内空間の湿度調節と共に室内空間の換気を行うものであり、取り込んだ室外空気(OA)を湿度調節して室内空間へ供給すると同時に、取り込んだ室内空気(RA)を室外空間へ排出する。
   〈調湿装置の全体構成〉
 調湿装置(10)について、図1を参照しながら説明する。なお、ここでの説明で用いる「上」「下」「左」「右」「前」「後」「手前」「奥」は、特にことわらない限り、調湿装置(10)を前面側から見た場合の方向を意味している。
 調湿装置(10)は、ケーシング(11)を備えている。また、ケーシング(11)内には、冷媒回路(50)が収容されている。この冷媒回路(50)には、第1吸着熱交換器(51)、第2吸着熱交換器(52)、圧縮機(53)、四方切換弁(54)、及び電動膨張弁(55)が接続されている。冷媒回路(50)の詳細は後述する。
 ケーシング(11)は、やや扁平で高さが比較的低い直方体状に形成されている。このケーシング(11)には、外気吸込口(24)と、内気吸込口(23)と、給気口(22)と、排気口(21)とが形成されている。
 外気吸込口(24)及び内気吸込口(23)は、ケーシング(11)の背面パネル部(13)に設けられている。外気吸込口(24)は、背面パネル部(13)の下側部分に設けられている。内気吸込口(23)は、背面パネル部(13)の上側部分に設けられている。給気口(22)は、ケーシング(11)の第1側面パネル部(14)に設けられている。第1側面パネル部(14)において、給気口(22)は、ケーシング(11)の前面パネル部(12)側の端部付近に配置されている。排気口(21)は、ケーシング(11)の第2側面パネル部(15)に設けられている。第2側面パネル部(15)において、排気口(21)は、前面パネル部(12)側の端部付近に配置されている。
 ケーシング(11)の内部空間には、上流側仕切板(71)と、下流側仕切板(72)と、中央仕切板(73)とが設けられている。これらの仕切板(71~73)は、何れもケーシング(11)の底板に起立した状態で設置されており、ケーシング(11)の内部空間をケーシング(11)の底板から天板に亘って区画している。
 上流側仕切板(71)及び下流側仕切板(72)は、前面パネル部(12)及び背面パネル部(13)と平行な姿勢で、ケーシング(11)の前後方向に所定の間隔をおいて配置されている。上流側仕切板(71)は、背面パネル部(13)寄りに配置されている。下流側仕切板(72)は、前面パネル部(12)寄りに配置されている。中央仕切板(73)の配置については、後述する。
 ケーシング(11)内において、上流側仕切板(71)と背面パネル部(13)の間の空間は、上下二つの空間に仕切られており、上側の空間が内気側通路(32)を構成し、下側の空間が外気側通路(34)を構成している。内気側通路(32)は、内気吸込口(23)に接続するダクトを介して室内空間と連通している。外気側通路(34)は、外気吸込口(24)に接続するダクトを介して室外空間と連通している。
 内気側通路(32)には、内気側フィルタ(27)と、内気温度センサ(91)と、内気湿度センサ(92)とが設置されている。内気温度センサ(91)は、内気側通路(32)を流れる室内空気の温度を計測する。内気湿度センサ(92)は、内気側通路(32)を流れる室内空気の相対湿度を計測する。一方、外気側通路(34)には、外気側フィルタ(28)と、外気温度センサ(93)と、外気湿度センサ(94)とが設置されている。外気温度センサ(93)は、外気側通路(34)を流れる室外空気の温度を計測する。外気湿度センサ(94)は、外気側通路(34)を流れる室外空気の相対湿度を計測する。なお、図3~8では、内気温度センサ(91)、内気湿度センサ(92)、外気温度センサ(93)、及び外気湿度センサ(94)の図示を省略している。
 ケーシング(11)内における上流側仕切板(71)と下流側仕切板(72)の間の空間は、中央仕切板(73)によって左右に区画されており、中央仕切板(73)の右側の空間が第1熱交換器室(37)を構成し、中央仕切板(73)の左側の空間が第2熱交換器室(38)を構成している。第1熱交換器室(37)には、第1吸着熱交換器(51)が収容されている。第2熱交換器室(38)には、第2吸着熱交換器(52)が収容されている。また、図示しないが、第1熱交換器室(37)には、冷媒回路(50)の電動膨張弁(55)が収容されている。
 各吸着熱交換器(51,52)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器の表面に吸着剤を担持させたものである。各吸着熱交換器(51,52)は、全体として長方形の厚板状あるいは扁平な直方体状に形成されている。そして、各吸着熱交換器(51,52)は、その前面及び背面が上流側仕切板(71)及び下流側仕切板(72)と平行になる姿勢で、熱交換器室(37,38)内に起立した状態で設置されている。
 ケーシング(11)の内部空間において、下流側仕切板(72)の前面に沿った空間は、上下に仕切られており、この上下に仕切られた空間のうち、上側の部分が給気側通路(31)を構成し、下側の部分が排気側通路(33)を構成している。
 上流側仕切板(71)には、開閉式のダンパ(41~44)が四つ設けられている。各ダンパ(41~44)は、概ね横長の長方形状に形成されている。具体的に、上流側仕切板(71)のうち内気側通路(32)に面する部分(上側部分)では、中央仕切板(73)よりも右側に第1内気側ダンパ(41)が取り付けられ、中央仕切板(73)よりも左側に第2内気側ダンパ(42)が取り付けられる。また、上流側仕切板(71)のうち外気側通路(34)に面する部分(下側部分)では、中央仕切板(73)よりも右側に第1外気側ダンパ(43)が取り付けられ、中央仕切板(73)よりも左側に第2外気側ダンパ(44)が取り付けられる。上流側仕切板(71)に設けられた四つのダンパ(41~44)は、空気の流通経路を切り換える切換機構(40)を構成している。
 下流側仕切板(72)には、開閉式のダンパ(45~48)が四つ設けられている。各ダンパ(45~48)は、概ね横長の長方形状に形成されている。具体的に、下流側仕切板(72)のうち給気側通路(31)に面する部分(上側部分)では、中央仕切板(73)よりも右側に第1給気側ダンパ(45)が取り付けられ、中央仕切板(73)よりも左側に第2給気側ダンパ(46)が取り付けられる。また、下流側仕切板(72)のうち排気側通路(33)に面する部分(下側部分)では、中央仕切板(73)よりも右側に第1排気側ダンパ(47)が取り付けられ、中央仕切板(73)よりも左側に第2排気側ダンパ(48)が取り付けられる。下流側仕切板(72)に設けられた四つのダンパ(45~48)は、空気の流通経路を切り換える切換機構(40)を構成している。
 ケーシング(11)内において、給気側通路(31)及び排気側通路(33)と前面パネル部(12)との間の空間は、仕切板(77)によって左右に仕切られており、仕切板(77)の右側の空間が給気ファン室(36)を構成し、仕切板(77)の左側の空間が排気ファン室(35)を構成している。
 給気ファン室(36)には、給気ファン(26)が収容されている。また、排気ファン室(35)には排気ファン(25)が収容されている。給気ファン(26)及び排気ファン(25)は、何れも遠心型の多翼ファン(いわゆるシロッコファン)である。給気ファン(26)は、下流側仕切板(72)側から吸い込んだ空気を給気口(22)へ吹き出す。排気ファン(25)は、下流側仕切板(72)側から吸い込んだ空気を排気口(21)へ吹き出す。
 給気ファン室(36)には、冷媒回路(50)の圧縮機(53)と四方切換弁(54)とが収容されている。圧縮機(53)及び四方切換弁(54)は、給気ファン室(36)における給気ファン(26)と仕切板(77)との間に配置されている。
   〈冷媒回路の構成〉
 図2に示すように、冷媒回路(50)は、第1吸着熱交換器(51)、第2吸着熱交換器(52)、圧縮機(53)、四方切換弁(54)、及び電動膨張弁(55)が設けられた閉回路である。この冷媒回路(50)は、充填された冷媒を循環させることによって、蒸気圧縮冷凍サイクルを行う。また、図示しないが、冷媒回路(50)には、複数の温度センサ及び圧力センサが取り付けられている。
 冷媒回路(50)において、圧縮機(53)は、その吐出側が四方切換弁(54)の第1のポートに、その吸入側が四方切換弁(54)の第2のポートにそれぞれ接続されている。また、冷媒回路(50)では、四方切換弁(54)の第3のポートから第4のポートへ向かって順に、第1吸着熱交換器(51)と、電動膨張弁(55)と、第2吸着熱交換器(52)とが配置されている。
 四方切換弁(54)は、第1のポートと第3のポートが連通して第2のポートと第4のポートが連通する第1状態(図2(A)に示す状態)と、第1のポートと第4のポートが連通して第2のポートと第3のポートが連通する第2状態(図2(B)に示す状態)とに切り換え可能となっている。
 圧縮機(53)は、圧縮機構とそれを駆動する電動機とが一つのケーシングに収容された全密閉型の圧縮機である。この圧縮機(53)の電動機には、インバータを介して交流が供給される。インバータの出力周波数(即ち、圧縮機の運転周波数)を変更すると、電動機とそれによって駆動される圧縮機構の回転速度が変化し、圧縮機(53)の運転容量が変化する。
   〈コントローラの構成〉
 調湿装置(10)には、制御器であるコントローラ(90)が設けられている(図2を参照)。コントローラ(90)には、内気湿度センサ(92)、内気温度センサ(91)、外気湿度センサ(94)、及び外気温度センサ(93)の計測値が入力されている。また、コントローラ(90)には、冷媒回路(50)に設けられた温度センサや圧力センサの計測値が入力されている。コントローラ(90)は、入力されたこれらの計測値に基づいて、調湿装置(10)の運転制御を行う。
 コントローラ(90)は、調湿装置(10)の運転を、後述する除湿運転と加湿運転と低能力運転と単純換気運転とに切り換える。また、コントローラ(90)は、これらの運転中において、各ダンパ(41~48)、各ファン(25,26)、圧縮機(53)、電動膨張弁(55)、及び四方切換弁(54)の動作を制御する。
  -運転動作-
 本実施形態の調湿装置(10)は、除湿運転と、加湿運転と、低能力運転と、単純換気運転とを選択的に行う。除湿運転および加湿運転は、圧縮機(53)が作動し且つ切換機構(40)が空気の流通経路を切り換える第1運転である。低能力運転は、圧縮機(53)が停止し且つ切換機構(40)が空気の流通経路を切り換える第2運転である。単純換気運転は、圧縮機(53)と切換機構(40)の両方が停止する運転である。
 除湿運転、加湿運転、低能力運転、および単純換気運転のそれぞれでは、給気ファン(26)及び排気ファン(25)が作動する。そして、調湿装置(10)は、取り込んだ室外空気(OA)を供給空気(SA)として室内空間へ供給し、取り込んだ室内空気(RA)を排出空気(EA)として室外空間へ排出する。
   〈除湿運転〉
 除湿運転中の調湿装置(10)では、室外空気が外気吸込口(24)からケーシング(11)内へ第1空気として取り込まれ、室内空気が内気吸込口(23)からケーシング(11)内へ第2空気として取り込まれる。また、冷媒回路(50)では、圧縮機(53)が作動し、電動膨張弁(55)の開度が調節される。そして、除湿運転中の調湿装置(10)は、後述する第1バッチ動作と第2バッチ動作を3分間ずつ交互に繰り返し行う。
 先ず、除湿運転の第1バッチ動作について説明する。
 図3に示すように、除湿運転の第1バッチ動作では、切換機構(40)が空気の流通経路を第2経路に設定する。具体的には、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)、及び第1排気側ダンパ(47)が開状態となり、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)、及び第2排気側ダンパ(48)が閉状態となる。また、この第1バッチ動作では、冷媒回路(50)が第1冷凍サイクル動作を行う。つまり、冷媒回路(50)では、四方切換弁(54)が第1状態(図2(A)に示す状態)に設定され、第1吸着熱交換器(51)が凝縮器となって第2吸着熱交換器(52)が蒸発器となる。
 外気側通路(34)へ流入して外気側フィルタ(28)を通過した第1空気は、第2外気側ダンパ(44)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第2吸着熱交換器(52)において除湿された第1空気は、第2給気側ダンパ(46)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内空間へ供給される。
 一方、内気側通路(32)へ流入して内気側フィルタ(27)を通過した第2空気は、第1内気側ダンパ(41)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、冷媒によって加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第1吸着熱交換器(51)において水分を付与された第2空気は、第1排気側ダンパ(47)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外空間へ排出される。
 次に、除湿運転の第2バッチ動作について説明する。
 図4に示すように、除湿運転の第2バッチ動作では、切換機構(40)が空気の流通経路を第1経路に設定する。具体的には、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)、及び第2排気側ダンパ(48)が開状態となり、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)、及び第1排気側ダンパ(47)が閉状態となる。また、この第2バッチ動作では、冷媒回路(50)が第2冷凍サイクル動作を行う。つまり、冷媒回路(50)では、四方切換弁(54)が第2状態(図2(B)に示す状態)に設定され、第1吸着熱交換器(51)が蒸発器となって第2吸着熱交換器(52)が凝縮器となる。
 外気側通路(34)へ流入して外気側フィルタ(28)を通過した第1空気は、第1外気側ダンパ(43)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第1吸着熱交換器(51)において除湿された第1空気は、第1給気側ダンパ(45)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内空間へ供給される。
 一方、内気側通路(32)へ流入して内気側フィルタ(27)を通過した第2空気は、第2内気側ダンパ(42)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、冷媒によって加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第2吸着熱交換器(52)において水分を付与された第2空気は、第2排気側ダンパ(48)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外空間へ排出される。
   〈加湿運転〉
 加湿運転中の調湿装置(10)では、室外空気が外気吸込口(24)からケーシング(11)内へ第2空気として取り込まれ、室内空気が内気吸込口(23)からケーシング(11)内へ第1空気として取り込まれる。また、冷媒回路(50)では、圧縮機(53)が作動し、電動膨張弁(55)の開度が調節される。そして、加湿運転中の調湿装置(10)は、後述する第1バッチ動作と第2バッチ動作を4分間隔で交互に繰り返し行う。
 先ず、加湿運転の第1バッチ動作について説明する。
 図5に示すように、加湿運転の第1バッチ動作では、切換機構(40)が空気の流通経路を第1経路に設定する。具体的には、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)、及び第2排気側ダンパ(48)が開状態となり、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)、及び第1排気側ダンパ(47)が閉状態となる。また、この第1バッチ動作では、冷媒回路(50)が第1冷凍サイクル動作を行う。つまり、冷媒回路(50)では、四方切換弁(54)が第1状態(図2(A)に示す状態)に設定され、第1吸着熱交換器(51)が凝縮器となって第2吸着熱交換器(52)が蒸発器となる。
 内気側通路(32)へ流入して内気側フィルタ(27)を通過した第1空気は、第2内気側ダンパ(42)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第2吸着熱交換器(52)において水分を奪われた第1空気は、第2排気側ダンパ(48)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外空間へ排出される。
 一方、外気側通路(34)へ流入して外気側フィルタ(28)を通過した第2空気は、第1外気側ダンパ(43)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、冷媒によって加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第1吸着熱交換器(51)において加湿された第2空気は、第1給気側ダンパ(45)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内空間へ供給される。
 次に、加湿運転の第2バッチ動作について説明する。
 図6に示すように、加湿運転の第2バッチ動作では、切換機構(40)が空気の流通経路を第2経路に設定する。具体的には、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)、及び第1排気側ダンパ(47)が開状態となり、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)、及び第2排気側ダンパ(48)が閉状態となる。また、この第2バッチ動作では、冷媒回路(50)が第2冷凍サイクル動作を行う。つまり、冷媒回路(50)では、四方切換弁(54)が第2状態(図2(B)に示す状態)に設定され、第1吸着熱交換器(51)が蒸発器となって第2吸着熱交換器(52)が凝縮器となる。
 内気側通路(32)へ流入して内気側フィルタ(27)を通過した第1空気は、第1内気側ダンパ(41)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第1吸着熱交換器(51)において水分を奪われた第1空気は、第1排気側ダンパ(47)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外空間へ排出される。
 一方、外気側通路(34)へ流入して外気側フィルタ(28)を通過した第2空気は、第2外気側ダンパ(44)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、冷媒によって加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第2吸着熱交換器(52)において加湿された第2空気は、第2給気側ダンパ(46)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内空間へ供給される。
   〈低能力運転〉
 低能力運転中の調湿装置(10)では、冷媒回路(50)の圧縮機(53)が停止し、電動膨張弁(55)が全開状態に保持される。また、低能力運転中の調湿装置(10)では、切換機構(40)が空気の流通経路を切り換える。切換機構(40)は、空気の流通経路を、3分間毎に第1経路と第2経路に交互に切り換える。つまり、低能力運転中に切換機構(40)が空気の流通経路を切り換える時間間隔は、除湿運転中に切換機構(40)が空気の流通経路を切り換える時間間隔と同じである。なお、圧縮機(53)は停止しているため、四方切換弁(54)は第1状態と第2状態のどちらであっても構わない。
 図7に示すように、切換機構(40)が空気の流通経路を第1経路に設定している状態では、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)、及び第2排気側ダンパ(48)が開状態となり、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)、及び第1排気側ダンパ(47)が閉状態となる。そして、室外空気が第1吸着熱交換器(51)を通過後に室内空間へ供給され、室内空気が第2吸着熱交換器(52)を通過後に室外空間へ排出される。
 一方、図8に示すように、切換機構(40)が空気の流通経路を第2経路に設定している状態では、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)、及び第1排気側ダンパ(47)が開状態となり、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)、及び第2排気側ダンパ(48)が閉状態となる。そして、室外空気が第2吸着熱交換器(52)を通過後に室内空間へ供給され、室内空気が第1吸着熱交換器(51)を通過後に室外空間へ排出される。
 先ず、調湿装置(10)の低能力運転について、室外空気の温度と絶対湿度が室内空気に比べて若干高い場合(例えば、晩春や初秋に室内が冷房されている場合)を例に説明する。この場合、低能力運転中の調湿装置(10)では、室内空間へ供給される室外空気の冷却と除湿が行われる。ここでは、図9を参照しながら、その理由を説明する。
 空気の流通経路が第1経路に設定された状態から説明を始める。図9(A)に示すように、この状態では、室外空気が第1吸着熱交換器(51)を通過し、室内空気が第2吸着熱交換器(52)を通過する。
 圧縮機(53)の停止中においても、第1吸着熱交換器(51)には液冷媒が残存している。室外空気が第1吸着熱交換器(51)を通過すると、第1吸着熱交換器(51)に存在する液冷媒は、室外空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室外空気から吸熱して蒸発する。
 一方、第2吸着熱交換器(52)では、室外空気よりも温度の低い室内空気が流れている。このため、第1吸着熱交換器(51)において蒸発した冷媒は、電動膨張弁(55)を通過し、その後に第2吸着熱交換器(52)へ流入して凝縮する。第2吸着熱交換器(52)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離して室内空気に付与される。また、第2吸着熱交換器(52)では、冷媒によって第1吸着熱交換器(51)から搬送されてきた熱が、室内空気へ放出される。
 その後、低能力運転中の調湿装置(10)では、空気の流通経路が第1経路から第2経路へ切り換わる。つまり、図9(B)に示すように、第1吸着熱交換器(51)を通過する空気が室外空気から室内空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室内空気から室外空気へ切り換わる。
 上述したように、空気の流通経路が第1経路に設定されている状態(図9(A)の状態)では、第2吸着熱交換器(52)の吸着剤から水分が脱離する。このため、空気の流通経路が第2経路に切り換わった後は、室外空気に含まれる水分が第2吸着熱交換器(52)に吸着される。第2吸着熱交換器(52)に存在する冷媒は、室外空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室外空気から吸熱して蒸発する。従って、第2吸着熱交換器(52)では、そこを通過する室外空気の温度と絶対湿度が低下する。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。
 一方、第1吸着熱交換器(51)では、室外空気よりも温度の低い室内空気が流れている。このため、第2吸着熱交換器(52)において蒸発した冷媒は、電動膨張弁(55)を通過し、その後に第1吸着熱交換器(51)へ流入して凝縮する。第1吸着熱交換器(51)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離する。つまり、第1吸着熱交換器(51)は、空気の流通経路が第1経路に設定されているときに室外空気中の水分を吸着し、空気の流通経路が第2経路に設定されているときに室内空気へ水分を放出する。また、第1吸着熱交換器(51)では、冷媒によって第2吸着熱交換器(52)から搬送されてきた熱が、室内空気へ放出される。
 その後、低能力運転中の調湿装置(10)では、空気の流通経路が第2経路から第1経路へ再び切り換わる。つまり、図9(A)に示すように、第1吸着熱交換器(51)を通過する空気が室内空気から室外空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室外空気から室内空気へ切り換わる。
 上述したように、図9(A)に示す状態では、第1吸着熱交換器(51)において室外空気が冷却され且つ除湿される。つまり、図9(B)に示す状態において室内空気へ水分を放出した第1吸着熱交換器(51)は、室外空気中の水分を吸着する。また、第1吸着熱交換器(51)に存在する冷媒は、室外空気から吸熱する。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。
 また、上述したように、図9(A)に示す状態では、第2吸着熱交換器(52)から室内空気へ水分と熱が放出される。つまり、第2吸着熱交換器(52)では、第1吸着熱交換器(51)から冷媒によって搬送されてきた熱と、空気の流通経路が第2経路に設定されているときに吸着された水分とが、室内空気へ放出される。
 次に、調湿装置(10)の低能力運転について、室外空気の温度と絶対湿度が室内空気に比べて若干低い場合(例えば、初春や晩秋に室内が暖房されている場合)を例に説明する。この場合、低能力運転中の調湿装置(10)では、室内空間へ供給される室外空気の加熱と加湿が行われる。ここでは、図10を参照しながら、その理由を説明する。
 空気の流通経路が第1経路に設定された状態から説明を始める。図10(A)に示すように、この状態では、室外空気が第1吸着熱交換器(51)を通過し、室内空気が第2吸着熱交換器(52)を通過する。
 圧縮機(53)の停止中においても、第2吸着熱交換器(52)には液冷媒が残存している。室内空気が第2吸着熱交換器(52)を通過すると、第2吸着熱交換器(52)に存在する液冷媒は、室内空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室内空気から吸熱して蒸発する。
 一方、第1吸着熱交換器(51)では、室内空気よりも温度の低い室外空気が流れている。このため、第2吸着熱交換器(52)において蒸発した冷媒は、第1吸着熱交換器(51)へ流入して凝縮する。第1吸着熱交換器(51)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離して室外空気に付与される。また、第1吸着熱交換器(51)では、冷媒によって第2吸着熱交換器(52)から搬送されてきた熱が、室外空気へ放出される。
 その後、低能力運転中の調湿装置(10)では、空気の流通経路が第1経路から第2経路へ切り換わる。つまり、図10(B)に示すように、第1吸着熱交換器(51)を通過する空気が室外空気から室内空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室内空気から室外空気へ切り換わる。
 上述したように、空気の流通経路が第1経路に設定されている状態(図10(A)の状態)では、第1吸着熱交換器(51)の吸着剤から水分が脱離する。このため、空気の流通経路が第2経路に切り換わった後は、室内空気に含まれる水分が第1吸着熱交換器(51)に吸着される。第1吸着熱交換器(51)に存在する冷媒は、室内空気中の水分が吸着剤に吸着される際に生じる吸着熱を吸収し、更には室内空気から吸熱して蒸発する。
 一方、第2吸着熱交換器(52)では、室内空気よりも温度の低い室外空気が流れている。このため、第1吸着熱交換器(51)において蒸発した冷媒は、電動膨張弁(55)を通過し、その後に第2吸着熱交換器(52)へ流入して凝縮する。第2吸着熱交換器(52)では、冷媒から放出された凝縮熱によって吸着剤が加熱され、吸着剤から水分が脱離する。つまり、第2吸着熱交換器(52)は、空気の流通経路が第1経路に設定されているときに室内空気中の水分を吸着し、空気の流通経路が第2経路に設定されているときに室外空気へ水分を放出する。また、第2吸着熱交換器(52)では、冷媒によって第1吸着熱交換器(51)から搬送されてきた熱が、室外空気へ放出される。従って、第2吸着熱交換器(52)では、そこを通過する室外空気の温度と絶対湿度が上昇する。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。
 その後、低能力運転中の調湿装置(10)では、空気の流通経路が第2経路から第1経路へ再び切り換わる。つまり、図10(A)に示すように、第1吸着熱交換器(51)を通過する空気が室内空気から室外空気へ切り換わり、第2吸着熱交換器(52)を通過する空気が室外空気から室内空気へ切り換わる。
 上述したように、図10(A)に示す状態では、第2吸着熱交換器(52)では、吸着剤が室内空気中の水分を吸着し、冷媒が室内空気から吸熱する。つまり、第2吸着熱交換器(52)は、室内空気から水分と熱を奪う。
 また、上述したように、図10(A)に示す状態では、第1吸着熱交換器(51)において室外空気が加熱され且つ加湿される。つまり、第1吸着熱交換器(51)は、図10(B)に示す状態において室内空気から奪った水分を、室外空気へ付与する。また、第1吸着熱交換器(51)では、第2吸着熱交換器(52)から冷媒によって搬送されてきた熱が、室外空気へ付与される。その結果、室外空気の温度と絶対湿度が、室内空間の空気の温度と絶対湿度に近付く。
 このように、圧縮機(53)が停止している低能力運転中においても、調湿装置(10)では、室内空間へ供給される室外空気の温度と絶対湿度が調節される。ただし、低能力運転中の冷媒回路(50)において第1吸着熱交換器(51)と第2吸着熱交換器(52)の間を行き来する冷媒の流量は、圧縮機(53)が作動する除湿運転中や加湿運転中に冷媒回路(50)を循環する冷媒の流量に比べて少ない。このため、低能力運転中の調湿装置(10)が発揮する除湿能力は、除湿運転中に調湿装置(10)が発揮する除湿能力に比べて小さくなる。また、低能力運転中の調湿装置(10)が発揮する加湿能力は、加湿運転中の調湿装置(10)が発揮する加湿能力に比べて小さくなる。
   〈単純換気運転〉
 単純換気運転中の調湿装置(10)では、冷媒回路(50)の圧縮機(53)が停止する。また、電動膨張弁(55)は、通常、全閉状態に保持される。
 また、低能力運転中の調湿装置(10)では、切換機構(40)が停止し、空気の流通経路が第1経路と第2経路の何れか一方に固定される。空気の流通経路が第1経路に設定されている場合、調湿装置(10)では、図7に示すように室外空気と室内空気が流れる。つまり、室外空気が第1吸着熱交換器(51)を通過後に室内空間へ供給され、室内空気が第2吸着熱交換器(52)を通過後に室外空間へ排出される。一方、空気の流通経路が第2経路に設定されている場合、調湿装置(10)では、図8に示すように室外空気と室内空気が流れる。つまり、室外空気が第2吸着熱交換器(52)を通過後に室内空間へ供給され、室内空気が第1吸着熱交換器(51)を通過後に室外空間へ排出される。
 低能力運転中には切換機構(40)が空気の流通経路を所定時間毎に切り換えるのに対し、この単純換気運転中には切換機構(40)が停止して空気の流通経路が固定される。このため、単純換気運転中において、吸着熱交換器(51,52)は、そこを通過する空気との間で水分や熱の授受は行わない。従って、室外空気は、温度と湿度を調節されることなく、そのままの状態で室内空間へ供給される。また、室内空気は、温度と湿度を調節されることなく、そのままの状態で室外空間へ排出される。
  -コントローラの制御動作-
 コントローラ(90)が行う制御動作について説明する。ここでは、コントローラ(90)が調湿装置(10)の運転モードを選択する動作について、図11のフロー図を参照しながら説明する。コントローラ(90)は、図11に示す制御動作を、所定の時間(例えば2分間)が経過する毎に繰り返し行う。
 ステップST1において、コントローラ(90)は、給気口(23)から室内空間へ供給される空気の絶対湿度の目標値(目標絶対湿度:X_tg)を算出する。その際、コントローラ(90)は、室内空間の空気の絶対湿度の設定値X_setと、室外空気の絶対湿度X_oaと、室内空気の絶対湿度X_raとを用い、室内空気の絶対湿度X_raが絶対湿度の設定値X_setとなるように、目標絶対湿度X_tgの値を設定する。なお、コントローラ(90)は、外気温度センサ(93)と外気湿度センサ(94)の計測値を用いて室外空気の絶対湿度X_oaを算出し、内気温度センサ(91)と内気湿度センサ(92)の計測値を用いて室内空気の絶対湿度X_raを算出する。
 次のステップST2において、コントローラ(90)は、圧縮機(53)の必要運転周波数F_nを算出する。その際、コントローラ(90)は、ステップST1において算出した目標絶対湿度X_tgと、室外空気の絶対湿度X_oaと、室内空気の絶対湿度X_raとを用い、給気口(23)から室内空間へ供給される空気の絶対湿度が目標絶対湿度X_tgとなるような圧縮機(53)の運転周波数を算出し、その値を必要運転周波数F_nとする。
 ここで、圧縮機(53)の運転容量は、その運転周波数が高いほど大きくなり、その運転周波数が低いほど小さくなる。圧縮機(53)の運転容量が大きくなると、冷媒回路(50)を循環する冷媒の質量流量が増加し、吸着熱交換器(51,52)における単位時間当たりの冷媒の吸熱量や放熱量が増加する。その結果、蒸発器となっている吸着熱交換器(51,52)に吸着される水分の量が増加し、放熱器となっている吸着熱交換器(51,52)から脱離する水分の量が増加する。つまり、調湿装置(10)の調湿能力が増加する。一方、圧縮機(53)の運転容量が小さくなると、冷媒回路(50)を循環する冷媒の質量流量が減少し、吸着熱交換器(51,52)における単位時間当たりの冷媒の吸熱量や放熱量が減少する。その結果、蒸発器となっている吸着熱交換器(51,52)に吸着される水分の量が減少し、放熱器となっている吸着熱交換器(51,52)から脱離する水分の量が減少する。つまり、調湿装置(10)の調湿能力が減少する。そこで、コントローラ(90)は、調湿装置(10)から室内空間へ供給される空気の絶対湿度が目標絶対湿度X_tgとなるように、圧縮機(53)の運転周波数を調節する。
 次のステップST3において、コントローラ(90)は、圧縮機(53)の最低運転周波数F_minを算出する。その際、コントローラ(90)は、室外空気の温度T_oa及び絶対湿度X_oaと、室内空気の温度T_ra及び絶対湿度X_raとを用いて圧縮機(53)の運転周波数の下限値を算出し、その値を最低運転周波数F_minとする。圧縮機(53)の信頼性を確保するには、例えば吸入圧力と吐出圧力の差などの圧縮機(53)の運転条件を、所定の範囲内に収める必要がある。そこで、コントローラ(90)は、圧縮機(53)の運転条件が所定の範囲内となるように、圧縮機(53)の最低運転周波数F_minを設定する。
 次のステップST4において、コントローラ(90)は、室外空気の絶対湿度X_oaが設定湿度範囲内の値か否か(即ち、X_set1<X_oa<X_set2という条件が成立するか否か)を判定する。なお、X_set1は室内空間の空気の絶対湿度の設定範囲の下限値であり、X_set2は室内空間の空気の絶対湿度の設定範囲の上限値である。
 ステップST4の条件が成立している場合は、室外空気をそのまま室内空間へ供給しても、室内空気の絶対湿度は設定範囲内に保たれる。そこで、この条件が成立した場合、コントローラ(90)は、ステップST5の動作を行う。即ち、この場合、コントローラ(90)は、調湿装置(10)の運転を単純換気運転に設定する。
 一方、ステップST4の条件が成立しない場合は、室外空気をそのまま室内空間へ供給すると、室内空間の空気の絶対湿度が設定範囲から外れてしまう。そこで、この条件が成立しない場合、コントローラ(90)は、ステップST6の動作を行う。
 ステップST6において、コントローラ(90)は、ステップST2において算出した圧縮機(53)の必要運転周波数F_nと、ステップST3において算出した圧縮機(53)の最低運転周波数F_minとを比較する。具体的に、コントローラ(90)は、F_n≧F_min×Aという条件が成立するか否かを判定する。なお、Aは、1.0未満の定数であり、例えば0.5に設定される。
 ステップST6の条件が成立している場合、コントローラ(90)は、ステップST7の動作を行う。この条件が成立している場合は、室外空気の絶対湿度X_oaが設定湿度範囲から外れており、しかも圧縮機(53)の必要運転周波数F_nが比較的高い値となっているため、調湿装置(10)に要求されている調湿能力(即ち、調湿負荷)がある程度大きいと判断できる。そこで、ステップST7では、コントローラ(90)が、調湿装置(10)の運転を除湿運転と加湿運転の何れか一方に設定する。その際、コントローラ(90)は、ユーザーがリモコン等へ入力した設定情報や、室内外の空気の絶対湿度などに基づいて、除湿運転と加湿運転の何れか一方を選択する。
 ここで、低能力運転中にステップST6の条件が成立する場合は、調湿装置(10)の調湿が調湿負荷に対して過小であると判断できる。そこで、低能力運転中にステップST6の条件が成立する場合、コントローラ(90)は、圧縮機(53)を起動させ、調湿装置(10)の運転を低能力運転から除湿運転または加湿運転へ切り換える。
 なお、除湿運転中および加湿運転中の調湿装置(10)において、コントローラ(90)は、圧縮機(53)の運転周波数Fを次のように制御する。つまり、圧縮機(53)の必要運転周波数F_nが最低運転周波数F_min以上の場合(F_min≦F_n)の場合、コントローラ(90)は、圧縮機(53)の運転周波数Fを必要運転周波数F_nに設定する(F=F_n)。一方、圧縮機(53)の必要運転周波数F_nが最低運転周波数F_min未満で且つF_min×Aより高い場合(F_min×A<F_n<F_min)の場合、コントローラ(90)は、圧縮機(53)の運転周波数Fを最低運転周波数F_minに設定する(F=F_min)。
 一方、ステップST6の条件が成立していない場合、コントローラ(90)は、ステップST8の動作を行う。この条件が成立していない場合は、室外空気の絶対湿度X_oaが設定湿度範囲から外れているが、圧縮機(53)の必要運転周波数F_nが比較的低い値となっており、調湿装置(10)の調湿能力が調湿負荷に対して過大になっていると判断できる。そこで、ステップST8では、コントローラ(90)が、調湿装置(10)の運転を低能力運転に設定する。
 上述したように、除湿運転中や加湿運転中にF_min×A<F_n<F_minの関係が成立している場合、コントローラ(90)は、圧縮機(53)の運転周波数Fを最低運転周波数F_minに設定する(F=F_min)。そして、この場合にステップST6の条件が成立しない場合は、圧縮機(53)の運転容量を最低容量に設定しても調湿装置(10)の調湿能力が調湿負荷に対して過大であると判断できる。そこで、この場合、コントローラ(90)は、圧縮機(53)を停止させ、調湿装置(10)の運転を除湿運転または加湿運転から低能力運転へ切り換える。
  -実施形態の効果-
 本実施形態の調湿装置(10)は、圧縮機(53)と切換機構(40)の両方が作動する除湿運転および加湿運転と、圧縮機(53)が停止して切換機構(40)が作動する低能力運転とを行う。上述したように、低能力運転中に調湿装置(10)が発揮する調湿能力は、除湿運転中や加湿運転中に調湿装置(10)が発揮する調湿能力に比べて小さい。
 ここで、低能力運転を行わない従来の調湿装置(10)は、除湿運転や加湿運転において得られる調湿能力が調湿負荷に対して過大になると、除湿運転や加湿運転を停止して単純換気運転を行っていた。しかし、調湿装置(10)の調湿能力が調湿負荷に対して過大であっても、室外空間の空気と室内空間の空気との間には、通常、ある程度の温度差と絶対湿度差が存在する。このため、調湿装置(10)の調湿能力が調湿負荷に対して過大になった場合に、直ちに除湿運転や加湿運転を停止して単純換気運転を開始すると、室外空気が温度と絶対湿度を調節されずにそのまま室内空間へ供給されることになり、在室者に不快感を与えるおそれがある。
 これに対し、本実施形態の調湿装置(10)は、低能力運転を実行可能となっている。そして、調湿装置(10)の調湿能力が調湿負荷に対して過大になった場合、調湿装置(10)は、除湿運転や加湿運転を停止して低能力運転を行う。単純換気運転中には室外空気がそのまま室内空間へ供給されるが、低能力運転中には室外空気がその温度と絶対湿度を調節された後に室内空間へ供給される。
 このため、本実施形態の調湿装置(10)によれば、調湿装置(10)の調湿能力が調湿負荷に対して過大になって除湿運転や加湿運転を停止せざるを得ない運転条件においても、室内空間へ供給される室外空気の温度と絶対湿度を、室内空間の空気の温度と絶対湿度に近付けることができる。従って、本実施形態によれば、室外空気をそのまま室内空間へ供給することに起因する快適性の低下を回避でき、除湿運転や加湿運転を停止せざるを得ない運転条件においても室内空間の快適性を確保することができる。
 また、調湿負荷と調湿装置(10)の調湿能力の調節範囲の下限との差が小さい場合は、圧縮機(53)の停止と再起動が頻繁に繰り返されるおそれがある。つまり、圧縮機(53)が停止して調湿装置(10)の調湿能力がゼロになると、室外空気がそのまま室内空間へ供給されて室内空気の湿度が変化し、圧縮機(53)が再起動される。圧縮機(53)が再起動されると、室内空気の湿度が比較的短時間で目標値に到達し、再び圧縮機(53)が停止されることになる。そして、圧縮機(53)の停止と再起動が頻繁に繰り返されると、圧縮機(53)が損傷する可能性が高くなる。
 これに対し、本実施形態の調湿装置(10)は、調湿装置(10)の調湿能力が調湿負荷に対して過大になって除湿運転や加湿運転を停止せざるを得ない運転条件になっても、低能力運転を行って室内空間へ供給される室外空気の除湿または加湿を継続する。このため、圧縮機(53)が停止した後においても、室内空気の湿度の急激な変化が抑えられ、圧縮機(53)の再起動が必要になるまでの時間を稼ぐことができる。従って、本実施形態によれば、圧縮機(53)の頻繁な発停を回避でき、圧縮機(53)の信頼性を向上させることができる。
 また、本実施形態の調湿装置(10)では、低能力運転中に冷媒回路(50)に電動膨張弁(55)が全開状態に保持される。このため、低能力運転中に第1吸着熱交換器(51)と第2吸着熱交換器(52)の間を行き来する冷媒の流量を充分に確保することができ、低能力運転中に調湿装置(10)が発揮する調湿能力を高めることができる。
  -実施形態の変形例-
 本実施形態の調湿装置(10)において、低能力運転中に切換機構(40)が空気の流通経路を切り換える時間間隔は、除湿運転中に切換機構(40)が空気の流通経路を切り換える時間間隔よりも短くてもよい。つまり、本実施形態では、低能力運転中に切換機構(40)が空気の流通経路を切り換える時間間隔が3分未満に設定されていてもよい。
 ここで、吸着熱交換器(51,52)とそこを通過する空気の間で授受される水分の量は、空気が吸着熱交換器(51,52)へ供給され始めてから短時間の間に急激に増加し、その後は緩やかに減少してゆく。一方、本変形例の調湿装置(10)において、切換機構(40)が空気の流通経路を第1経路と第2経路とに交互に切り換える頻度は、除湿運転中に比べて低能力運転中の方が高くなる。従って、本変形例によれば、低能力運転中の調湿装置(10)が発揮する調湿能力を高めることができる。
 また、本実施形態の調湿装置(10)において、低能力運転中に冷媒回路(50)の電動膨張弁(55)の開度は、全開状態でなくてもよい。つまり、低能力運転中における電動膨張弁(55)の開度は、第1吸着熱交換器(51)と第2吸着熱交換器(52)の間を行き来する冷媒の流量を充分に確保できる程度の開度に設定されていればよく、必ずしも全開状態に保持されていなくてもよい。
 以上説明したように、本発明は、吸着剤を担持する吸着熱交換器を用いて空気の除湿や加湿を行う調湿装置について有用である。
 10  調湿装置
 25  排気ファン
 26  給気ファン
 40  切換機構
 50  冷媒回路
 51  第1吸着熱交換器
 52  第2吸着熱交換器
 53  圧縮機
 55  電動膨張弁(膨張弁)
 90  コントローラ(制御器)

Claims (4)

  1.  圧縮機(53)と、それぞれが吸着剤を担持する第1吸着熱交換器(51)及び第2吸着熱交換器(52)とを有し、上記第1吸着熱交換器(51)が放熱器となって上記第2吸着熱交換器(52)が蒸発器となる第1冷凍サイクル動作と、上記第2吸着熱交換器(52)が放熱器となって上記第1吸着熱交換器(51)が蒸発器となる第2冷凍サイクル動作とを行う冷媒回路(50)と、
     室外空気を室内空間へ供給するための給気ファン(26)と、
     室内空気を室外空間へ排出するための排気ファン(25)と、
     空気の流通経路を、室外空気が上記第1吸着熱交換器(51)を通過後に室内空間へ供給されて室内空気が上記第2吸着熱交換器(52)を通過後に室外空間へ排出される第1経路と、室外空気が上記第2吸着熱交換器(52)を通過後に室内空間へ供給されて室内空気が上記第1吸着熱交換器(51)を通過後に室外空間へ排出される第2経路とに切り換える切換機構(40)とを備え、
     上記給気ファン(26)及び上記排気ファン(25)が作動し、上記冷媒回路(50)が上記第1冷凍サイクル動作と上記第2冷凍サイクル動作とを所定時間毎に交互に行い、上記冷媒回路(50)における冷凍サイクル動作の切り換えに連動して上記切換機構(40)が空気の流通経路を上記第1経路と上記第2経路とに交互に設定し、室内空間へ供給される室外空気を除湿し又は加湿する第1運転と、
     上記給気ファン(26)及び上記排気ファン(25)が作動し、上記冷媒回路(50)の圧縮機(53)が停止し、上記切換機構(40)が所定時間毎に空気の流通経路を上記第1経路と上記第2経路とに交互に設定する第2運転とを行う
    ことを特徴とする調湿装置。
  2.  請求項1において、
     上記第1運転中に上記圧縮機(53)の運転容量を調湿負荷に応じて調節する制御器(90)を備え、
     上記制御器(90)は、
      上記第1運転中に上記圧縮機(53)の運転容量を最低容量に設定しても調湿能力が調湿負荷に対して過大であると判断すると、上記調湿装置(10)の運転を上記第1運転から上記第2運転へ切り換え、
      上記第2運転中に調湿能力が調湿負荷に対して過小であると判断すると、上記調湿装置(10)の運転を上記第2運転から上記第1運転へ切り換える
    ことを特徴とする調湿装置。
  3.  請求項1又は2において、
     上記冷媒回路(50)では、上記第1吸着熱交換器(51)と上記第2吸着熱交換器(52)の間に開度可変の膨張弁(55)が設けられ、
     上記第2運転中には、上記膨張弁(55)が全開状態に保持される
    ことを特徴とする調湿装置。
  4.  請求項1において、
     上記第2運転中に上記切換機構(40)が空気の流通経路を上記第1経路と上記第2経路とに交互に切り換える時間間隔は、上記第1運転中に上記切換機構(40)が空気の流通経路を上記第1経路と上記第2経路とに交互に切り換える時間間隔以下となっている
    ことを特徴とする調湿装置。
PCT/JP2012/005988 2011-09-29 2012-09-20 調湿装置 WO2013046609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280047124.4A CN103827590B (zh) 2011-09-29 2012-09-20 调湿装置
AU2012313765A AU2012313765B2 (en) 2011-09-29 2012-09-20 Humidity Control Apparatus
ES12836318.1T ES2665310T3 (es) 2011-09-29 2012-09-20 Aparato de control de humedad
EP12836318.1A EP2767772B1 (en) 2011-09-29 2012-09-20 Humidity control device
US14/347,946 US20140230475A1 (en) 2011-09-29 2012-09-20 Humidity control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011214912A JP5229368B2 (ja) 2011-09-29 2011-09-29 調湿装置
JP2011-214912 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013046609A1 true WO2013046609A1 (ja) 2013-04-04

Family

ID=47994694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005988 WO2013046609A1 (ja) 2011-09-29 2012-09-20 調湿装置

Country Status (7)

Country Link
US (1) US20140230475A1 (ja)
EP (1) EP2767772B1 (ja)
JP (1) JP5229368B2 (ja)
CN (1) CN103827590B (ja)
AU (1) AU2012313765B2 (ja)
ES (1) ES2665310T3 (ja)
WO (1) WO2013046609A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696735B2 (en) * 2013-04-26 2017-07-04 Google Inc. Context adaptive cool-to-dry feature for HVAC controller
GB2545114C (en) * 2014-09-26 2020-07-29 Mitsubishi Electric Corp Dehumidifier
KR101667979B1 (ko) * 2015-06-19 2016-10-21 한국생산기술연구원 제습 및 가습 기능을 갖는 공기조화기와 이를 이용한 제습냉방 및 가습난방 방법
CN109312939B (zh) * 2016-06-27 2021-07-23 大金工业株式会社 调湿装置
KR101973648B1 (ko) 2017-08-07 2019-04-29 엘지전자 주식회사 환기장치의 제어방법
US11035585B2 (en) 2018-05-31 2021-06-15 Carrier Corporation Dehumidification control at part load
JP2020200985A (ja) * 2019-06-10 2020-12-17 ダイキン工業株式会社 調湿ユニット、及び調湿システム
CN114623576B (zh) * 2020-12-10 2024-02-20 广东美的制冷设备有限公司 加湿装置的控制方法、装置、存储介质及空调器
JP7372554B2 (ja) * 2021-03-10 2023-11-01 ダイキン工業株式会社 調湿装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219451A (ja) * 1988-02-26 1989-09-01 Matsushita Refrig Co Ltd 空気調和機の電動膨張弁制御装置
JPH041370U (ja) * 1990-04-20 1992-01-08
JPH0413051A (ja) * 1990-04-27 1992-01-17 Matsushita Electric Ind Co Ltd 空気調和機の圧力制御装置
JP2004353887A (ja) * 2003-05-27 2004-12-16 Daikin Ind Ltd 調湿装置
JP2006329469A (ja) * 2005-05-24 2006-12-07 Daikin Ind Ltd 調湿装置
JP2006329593A (ja) * 2005-05-30 2006-12-07 Daikin Ind Ltd 空調システム
JP2007010231A (ja) 2005-06-30 2007-01-18 Daikin Ind Ltd 調湿装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627588B2 (ja) * 1986-08-08 1994-04-13 ダイキン工業株式会社 空気調和機
CN2034253U (zh) * 1988-03-05 1989-03-15 营口无线电机械厂 一种自动调湿装置
JPH0796844B2 (ja) * 1990-04-18 1995-10-18 ミサワホーム株式会社 ユニット住宅
CN2386359Y (zh) * 1999-03-19 2000-07-05 赵毅 调湿空调器
JP2005164148A (ja) * 2003-12-03 2005-06-23 Daikin Ind Ltd 調湿装置
JP2005283041A (ja) * 2004-03-31 2005-10-13 Daikin Ind Ltd 調湿装置
EP2103810A1 (en) * 2008-03-19 2009-09-23 Siemens Aktiengesellschaft Compressor unit
JP5195216B2 (ja) * 2008-09-19 2013-05-08 ダイキン工業株式会社 調湿システム
PL2333798T3 (pl) * 2009-12-08 2016-01-29 Abb Schweiz Ag Układ wymiennika ciepła dla transformatorów suchych
JP2011158190A (ja) * 2010-02-02 2011-08-18 Panasonic Corp 空気調和機の制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219451A (ja) * 1988-02-26 1989-09-01 Matsushita Refrig Co Ltd 空気調和機の電動膨張弁制御装置
JPH041370U (ja) * 1990-04-20 1992-01-08
JPH0413051A (ja) * 1990-04-27 1992-01-17 Matsushita Electric Ind Co Ltd 空気調和機の圧力制御装置
JP2004353887A (ja) * 2003-05-27 2004-12-16 Daikin Ind Ltd 調湿装置
JP2006329469A (ja) * 2005-05-24 2006-12-07 Daikin Ind Ltd 調湿装置
JP2006329593A (ja) * 2005-05-30 2006-12-07 Daikin Ind Ltd 空調システム
JP2007010231A (ja) 2005-06-30 2007-01-18 Daikin Ind Ltd 調湿装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2767772A4

Also Published As

Publication number Publication date
EP2767772A4 (en) 2016-01-06
EP2767772B1 (en) 2018-03-28
EP2767772A1 (en) 2014-08-20
AU2012313765A1 (en) 2014-05-01
AU2012313765B2 (en) 2015-07-16
JP5229368B2 (ja) 2013-07-03
CN103827590A (zh) 2014-05-28
ES2665310T3 (es) 2018-04-25
JP2013076476A (ja) 2013-04-25
US20140230475A1 (en) 2014-08-21
CN103827590B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5229368B2 (ja) 調湿装置
JP2010151337A (ja) 空調システム
JP2009109091A (ja) 調湿装置
JP2010281476A (ja) 調湿装置
JP6252703B1 (ja) 調湿装置
JP5104971B2 (ja) 調湿換気装置
JP5983235B2 (ja) 調湿装置
JP4590901B2 (ja) 空気調和装置
JP5194719B2 (ja) 調湿装置
JP2010133612A (ja) 空調システム
JP2010078245A (ja) 調湿システム
JP2009109151A (ja) 調湿装置
JP2010085030A (ja) 調湿システム
JP5396799B2 (ja) 調湿システム
JP2011002132A (ja) 調湿システム
JP2010145024A (ja) 空調システム
JP5109595B2 (ja) 調湿装置
JP2010286197A (ja) 調湿装置
JP5906708B2 (ja) 調湿装置
JP2010281502A (ja) 調湿装置
JP2011002131A (ja) 調湿装置
JP2009109115A (ja) 調湿装置
JP5332466B2 (ja) 調湿システム
JP6443402B2 (ja) 調湿装置
JP5071566B2 (ja) 調湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14347946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012836318

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012313765

Country of ref document: AU

Date of ref document: 20120920

Kind code of ref document: A