WO2013042763A1 - 強化繊維/樹脂繊維複合体、及びその製造方法 - Google Patents

強化繊維/樹脂繊維複合体、及びその製造方法 Download PDF

Info

Publication number
WO2013042763A1
WO2013042763A1 PCT/JP2012/074200 JP2012074200W WO2013042763A1 WO 2013042763 A1 WO2013042763 A1 WO 2013042763A1 JP 2012074200 W JP2012074200 W JP 2012074200W WO 2013042763 A1 WO2013042763 A1 WO 2013042763A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
thermoplastic resin
resin
reinforcing
Prior art date
Application number
PCT/JP2012/074200
Other languages
English (en)
French (fr)
Inventor
朝美 仲井
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to US14/346,401 priority Critical patent/US20140230634A1/en
Priority to EP12833506.4A priority patent/EP2759387B1/en
Priority to JP2013534765A priority patent/JP6014878B2/ja
Publication of WO2013042763A1 publication Critical patent/WO2013042763A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1096Rope or cable structures braided
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0241Fabric incorporating additional compounds enhancing mechanical properties
    • D10B2403/02411Fabric incorporating additional compounds enhancing mechanical properties with a single array of unbent yarn, e.g. unidirectional reinforcement fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to a reinforcing fiber / resin fiber composite as an intermediate material of a long fiber reinforced thermoplastic resin structure and a method for producing the same.
  • Fiber-reinforced thermoplastic resins combining thermoplastic resins and fibers are used in various fields by taking advantage of the excellent characteristics of light weight and high strength. For example, in transportation machines such as automobiles, ships, and airplanes, improvement of fuel consumption and safety is achieved by using a molded product of fiber reinforced thermoplastic resin as a part of a part.
  • a fiber reinforced thermoplastic resin As such a fiber reinforced thermoplastic resin, a fiber reinforced plastic (FRP) obtained by adding a short fiber to a thermoplastic resin has been well known.
  • a thermoplastic resin and a long fiber for example, carbon Attention has been focused on long fiber reinforced thermoplastic resins in combination with reinforced fibers such as fibers.
  • the “long fiber” in the present specification means a fiber (so-called “yarn”) extending in the longitudinal direction.
  • the long fiber reinforced thermoplastic resin is (1) very excellent in impact resistance, (2) excellent in recyclability because it can be melted by heat, and (3) in a short time because it does not undergo chemical changes during molding.
  • the long fiber reinforced thermoplastic resin has a problem that it is difficult to impregnate the long fiber with the thermoplastic resin because the melt viscosity of the thermoplastic resin is very high.
  • the impregnation characteristics of the resin are deteriorated, sufficient strength cannot be expressed in the molded product.
  • the impregnation characteristics of the thermoplastic resin into the long fibers and the interface characteristics between the long fibers and the thermoplastic resin are generally contradictory characteristics.
  • the contact angle of the thermoplastic resin with respect to the long fiber increases (that is, the wettability of the surface of the long fiber deteriorates).
  • the impregnation property decreases.
  • the impregnation characteristics and the interface characteristics are in a trade-off relationship.
  • the impregnation characteristics and the interface characteristics are It is desirable to make them compatible as much as possible.
  • an intermediate material used to produce the long fiber reinforced thermoplastic resin structure It is considered effective to devise the form of.
  • the arrangement and blending of the long fibers and the thermoplastic resin can be adjusted before thermoforming, so that it is easy to control the characteristics of the finished long fiber reinforced thermoplastic resin structure.
  • the “intermediate material” means a composite or mixture of long fibers and a thermoplastic resin.
  • thermoplastic resin tape As an intermediate material for long fiber reinforced thermoplastic resin structures, for example, "carbon fiber reinforced thermoplastic resin tape” has been developed in which a long fiber is impregnated with a thermoplastic resin into a tape shape.
  • carbon fiber reinforced thermoplastic resin tape In Patent Document 1, carbon fiber strands that have been defibrated are immersed in a molten thermoplastic resin bath to impregnate the carbon fibers with a thermoplastic resin, and then the carbon fibers after resin impregnation are used as molding nozzles. By passing it, an elongated carbon fiber reinforced thermoplastic resin tape is formed.
  • the carbon fiber reinforced thermoplastic resin tape is used, for example, by winding it around the surface of a structure to be applied and melting it, and then cooling and solidifying it. As a result, the structure is reinforced.
  • a “mixed yarn for composite materials” in which continuous reinforcing fiber bundles and continuous thermoplastic resin fiber bundles, which are long fibers, are mixed is also known.
  • Patent Document 2 After performing a disentanglement process to the untwisted continuous reinforcing fiber bundle and the untwisted continuous thermoplastic resin fiber bundle, respectively, the two are mixed to obtain a mixed fiber for composite material. It has gained.
  • the composite yarn for composite material for example, one processed into a woven or knitted form is used.
  • the carbon fiber reinforced thermoplastic resin tape of Patent Document 1 long fibers impregnated with a thermoplastic resin extend substantially in parallel along the longitudinal direction. For this reason, the blending ratio of the long fibers and the thermoplastic resin becomes substantially constant at an arbitrary position of the tape. With such an intermediate material in which the blending ratio is substantially fixed, the composition of the long fiber reinforced thermoplastic resin structure as a finished product cannot be precisely controlled depending on the location. Moreover, since it is difficult to control the composition, it is considered difficult to achieve both the impregnation characteristics of the long fibers and the interface characteristics between the long fibers and the thermoplastic resin. Furthermore, the carbon fiber reinforced thermoplastic resin tape can be applied only to a target structure having a flat surface or a simple curved surface.
  • the continuous reinforcing fiber bundle and the continuous thermoplastic resin fiber bundle are simply mixed, the blending ratio of both is precisely controlled along the longitudinal direction. It is difficult. Accordingly, even in Patent Document 2, it is not possible to achieve both the impregnation characteristics of long fibers and the interface characteristics between the long fibers and the thermoplastic resin. Further, the reinforcing fibers may be damaged by friction during the defibrating process of the continuous reinforcing fiber bundle or during the fiber mixing operation of the continuous reinforcing fiber bundle and the continuous thermoplastic resin fiber bundle. Each fiber may be damaged when the composite yarn for composite material is processed into a woven fabric or a knitted fabric. Furthermore, when producing a mixed fiber for composite materials, a part of the fiber may be lost by cutting and dropping during the defibration and blending operations. In such a case, the yield of the final product may be lost. Decreases.
  • a reinforced fiber / resin fiber composite as an optimum intermediate material composed of a reinforced fiber and a resin fiber has not been developed yet.
  • the present invention has been made in view of the above problems, and in order to achieve both different physical properties (for example, impregnation characteristics and interface characteristics) of fibers and resins, the long fibers and the thermoplastic resin fibers in the intermediate material It is an object of the present invention to provide a reinforced fiber / resin fiber composite in which the ratio of the two and the arrangement of both are precisely controlled. Moreover, it aims at establishing the manufacturing method which manufactures such a reinforced fiber / resin fiber composite body efficiently, reliably, and at low cost.
  • the characteristic configuration of the reinforced fiber / resin fiber composite according to the present invention for solving the above problems is as follows: A reinforced fiber / resin fiber composite as an intermediate material for a long fiber reinforced thermoplastic resin structure,
  • the reinforcing fiber is a long fiber extending in the longitudinal direction,
  • the resin fiber has at least two kinds of thermoplastic resin fibers,
  • the at least two kinds of thermoplastic resin fibers are arranged around the reinforcing fibers so as to surround the reinforcing fibers.
  • the interfacial property between the long fiber and the thermoplastic resin is improved while improving the impregnation property of the long fiber. It is important to maintain.
  • it is considered effective to devise the form of the reinforcing fiber / resin fiber composite as an intermediate material.
  • the reinforcing fiber / resin fiber composite of this configuration in the case of using long fibers extending in the longitudinal direction as reinforcing fibers, and when using at least two types of thermoplastic resin fibers as resin fibers, At least two kinds of thermoplastic resin fibers are arranged around the reinforcing fibers so as to surround the reinforcing fibers.
  • thermoplastic resin fibers containing at least two types of thermoplastic resin fibers around the long fibers.
  • thermoplastic resin fibers are appropriately selected as at least two types of thermoplastic resin fibers, for example, the thermoplastic resin fibers surrounding the reinforcing fibers are melted.
  • thermoplastic resin fibers surrounding the reinforcing fibers are melted.
  • the melting of the thermoplastic resin fiber during the thermoforming is a kind of so-called in-situ polymer blend and can be easily performed.
  • the at least two kinds of thermoplastic resin fibers are arranged around the reinforcing fibers in a braid state in which the fibers are combined with each other at a predetermined angle with respect to the longitudinal direction of the long fibers.
  • the long fiber reinforced thermoplastic resin structure In order to achieve higher performance of the long fiber reinforced thermoplastic resin structure, it is considered effective to precisely control the composition of the long fiber reinforced thermoplastic resin structure. For example, if the blending ratio of the reinforcing fiber and the thermoplastic resin and the composition ratio of at least two thermoplastic resins can be freely controlled along the longitudinal direction of the reinforcing fiber, the long fiber reinforced heat that is the finished product can be controlled. It becomes possible to manufacture the plastic resin structure in a form (made to order) according to the purpose of use. In this regard, according to the reinforcing fiber / resin fiber composite of this configuration, in a braid state in which at least two kinds of thermoplastic resin fibers are combined with each other at a predetermined angle with respect to the longitudinal direction of the long fibers (reinforcing fibers).
  • the braiding technique when a plurality of strings (fibers) are assembled, the arrangement of the strings (fibers) and the tension acting on the strings (fibers) can be controlled one by one. For this reason, the reinforced fiber / resin fiber composite of this configuration is particularly effective when it is necessary to precisely control the structure and composition of the finished long fiber reinforced thermoplastic resin structure. Therefore, if the braid technology is used, the physical properties of each resin fiber can be imparted to the long fiber reinforced thermoplastic resin structure after thermoforming in a desired state.
  • thermoplastic resin fibers are preferably selected so that the physical properties of the fibers are complemented each other after thermoforming.
  • the reinforced fiber / resin fiber composite of this configuration when thermoforming using at least two types of thermoplastic resin fibers, the physical properties of each fiber are complemented with each other, so the physical properties of each fiber are balanced. It is possible to obtain a high-performance long fiber reinforced thermoplastic resin structure that is well combined.
  • thermoplastic resin fibers include polylactic acid (PLA) fiber, polyamide (PA) fiber, polycarbonate (PC) fiber, polyoxymethylene (POM) fiber, polypropylene (PP) fiber, and acid-modified polypropylene (MAPP). It is preferably selected from the group consisting of fibers, polyethylene (PE) fibers, polyphenylene sulfide (PPS) fibers, polyether ether ketone ketone (PEEK) fibers, and polyether ketone ketone (PEKK) fibers.
  • PPA polyamide
  • PC polycarbonate
  • POM polyoxymethylene
  • PP polypropylene
  • MAPP acid-modified polypropylene
  • PE polyethylene
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone ketone
  • PEKK polyether ketone ketone
  • thermoplastic resin fibers are polylactic acid (PLA) fiber, polyamide (PA) fiber, polycarbonate (PC) fiber, and polyoxymethylene (POM) fiber.
  • PPA polylactic acid
  • PA polyamide
  • PC polycarbonate
  • POM polyoxymethylene
  • PP Polypropylene
  • MAPP acid-modified polypropylene
  • PE polyethylene
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • PEKK polyether ketone ketone
  • thermoplastic resin fibers are preferably polypropylene (PP) fibers and acid-modified polypropylene (MAPP) fibers.
  • polypropylene (PP) fiber and acid-modified polypropylene (MAPP) fiber are adopted as at least two kinds of thermoplastic resin fibers.
  • PP polypropylene
  • MAPP acid-modified polypropylene
  • thermoplastic resin fibers are preferably polylactic acid (PLA) fibers and polyoxymethylene (POM) fibers.
  • polylactic acid (PLA) fiber and polyoxymethylene (POM) fiber are adopted as at least two kinds of thermoplastic resin fibers.
  • PLM polyoxymethylene
  • the characteristic configuration of the method for producing a reinforced fiber / resin fiber composite according to the present invention for solving the above problems is as follows: A method for producing a reinforced fiber / resin fiber composite as an intermediate material of a long fiber reinforced thermoplastic resin structure,
  • the reinforcing fiber is a long fiber extending in the longitudinal direction,
  • the resin fiber has at least two kinds of thermoplastic resin fibers,
  • a preparatory step in which the at least two types of thermoplastic resin fibers stand by around the reinforcing fibers;
  • the same operational effects as the above-described reinforcing fiber / resin fiber composite can be achieved. That is, when thermoforming is performed using a reinforcing fiber / resin fiber composite in which a hybridized resin fiber containing at least two types of thermoplastic resin fibers exists around the long fiber, at least two types of heat If the thermoplastic resin fiber is appropriately selected, for example, when the thermoplastic resin fiber surrounding the reinforcing fiber is melted, the interface between the reinforcing fiber and the thermoplastic resin is surely impregnated into the reinforcing fiber. Characteristics can be improved. As a result, it is possible to prevent the interface peeling between the two.
  • the melting of the thermoplastic resin fiber during the thermoforming is a kind of so-called in-situ polymer blend and can be easily performed.
  • the manufacturing method of the reinforced fiber / resin fiber composite of this structure utilizes the “braid technology” known as a traditional craft.
  • the braiding technique the arrangement form of the strings (fibers) can be realized in various patterns by devising how to assemble the strings (fibers). Therefore, if braid technology is applied to the production of reinforced fiber / resin fiber composites, the blending ratio of reinforced fiber and thermoplastic resin and the composition ratio of at least two thermoplastic resins can be freely controlled by the way of assembling the yarn. It becomes possible to do.
  • the string (fiber) is not defibrated, so that the fiber is not damaged.
  • the braiding technique when a plurality of strings (fibers) are assembled, the arrangement of the strings (fibers) and the tension acting on the strings (fibers) can be controlled one by one. For this reason, the manufacturing method of the reinforced fiber / resin fiber composite of this configuration is particularly effective when it is necessary to precisely control the structure and composition of the finished long fiber reinforced thermoplastic resin structure. Therefore, if the braid technology is used, the physical properties of each resin fiber can be imparted to the long fiber reinforced thermoplastic resin structure after thermoforming in a desired state.
  • FIG. 1A is a schematic view showing an example of an assembly making machine for producing a reinforced fiber / resin fiber composite of the present invention
  • FIG. 1B is an external view of the reinforced fiber / resin fiber composite.
  • FIG. 2 is a schematic cross-sectional view of a reinforced fiber / resin fiber composite for explaining how to assemble PP fiber and MAPP fiber (braid) with respect to carbon fiber (center yarn), (a) two-layer arrangement, and ( b) It is a figure which shows alternate arrangement
  • FIG. 3 is an appearance photograph and a structural diagram of a carbon fiber / resin fiber composite of an example in which two types of thermoplastic resin fibers are assembled with respect to carbon fibers.
  • FIG. 2 is a schematic cross-sectional view of a reinforced fiber / resin fiber composite for explaining how to assemble PP fiber and MAPP fiber (braid) with respect to carbon fiber (center yarn), (a) two-layer arrangement, and ( b) It is a figure which shows alternate arrangement
  • FIG. 4 is a cross-sectional photograph of the test piece showing the change in the impregnation state depending on the molding time for the two-layer arrangement and the alternate arrangement.
  • FIG. 5 is an example of image data for obtaining the unimpregnated ratio in the carbon fiber, and shows (a) a cross section of the test piece before image processing and (b) a cross section after image processing.
  • FIG. 6 is a graph in which the unimpregnated ratio of each test piece in the two-layer arrangement and the alternate arrangement is plotted with respect to the molding time.
  • FIG. 7 is a graph of measurement data (load-deflection curve) by a three-point bending test of each test piece.
  • the reinforcing fiber / resin fiber composite of the present invention which is an intermediate material of the long fiber reinforced thermoplastic resin structure, is configured as a composite or mixture containing long fibers and thermoplastic resin fibers.
  • Long fibers are composed of multifilaments that are aggregates of monofilaments, and elongated multifilaments extend in the longitudinal direction to form a yarn.
  • Reinforcing fibers for example, carbon fibers, glass fibers, aramid fibers, etc. can be used for the long fibers.
  • thermoplastic resin fibers At least two kinds of fibers are used for the thermoplastic resin fibers. It is desirable to select a combination of thermoplastic resin fibers so that the physical properties of the fibers are mutually complemented after thermoforming. For example, it is selected so that the impregnation property and the interface property are compatible by thermoforming.
  • polypropylene (PP) fibers which are typical thermoplastic resin fibers, are excellent in resin impregnation properties, but have slightly poor interface characteristics (for example, interface shear strength).
  • MAPP polypropylene
  • PP resin and MAPP fiber are combined and hybridized to form a new resin fiber having both characteristics.
  • the lack of physical properties of each fiber is complemented with each other, so that it is possible to realize a material that has both impregnation properties and interface properties and is excellent in both properties.
  • thermoplastic resin fibers are arranged around the long fibers so as to surround the long fibers (reinforcing fibers) for hybridization.
  • “encloses the long fiber” means that at least two types of thermoplastic resin fibers are present so as to overlap the surface of the long fiber, and a part or all of the surface of the long fiber cannot be seen from the outside. It means to make.
  • “arranged around the long fibers” means a state in which the contours of at least two types of thermoplastic resin fibers are in contact with or in the vicinity of the contours of the long fibers in a cross-sectional view of the fibers.
  • the arrangement form of the at least two types of thermoplastic resin fibers with respect to the long fibers is not limited to extending substantially parallel to each other in the longitudinal direction.
  • at least two types of thermoplastic resin fibers with respect to the long fibers are predetermined. It may extend at an angle, or at least two types of thermoplastic resin fibers may be curved and extended while gradually changing their position, or both may be arranged at random. That is, it is only necessary that hybrid resin fibers including at least two kinds of thermoplastic resin fibers exist around the long fibers.
  • the arrangement form of at least two kinds of thermoplastic resin fibers with respect to these long fibers can be realized by various methods, but it is effective to use the “braid technology” described below for hybridization. .
  • the braid technique is known as a traditional Japanese craft, and is a technique for creating a strong and beautiful knitted pattern by knitting a plurality of thin threads (braids) together.
  • a braid is formed in which at least two types of thermoplastic resin fibers serving as braids are arranged around a reinforcing fiber serving as a central thread. Specifically, at least two types of thermoplastic resin fibers are knitted together at a predetermined angle with respect to the longitudinal direction of the reinforcing fibers to form a braid in which at least two types of resin fibers are assembled around the reinforcing fibers.
  • FIG. 1A is a schematic view showing an example of an assembly making machine 100 for producing a reinforced fiber / resin fiber composite 50 of the present invention
  • FIG. 1B is an external view of the reinforced fiber / resin fiber composite 50.
  • the assembly making machine 100 has a center yarn (reinforcing fiber) with respect to a center yarn (reinforcing fiber) 40 serving as a core of the assembly (reinforcing fiber / resin fiber composite 50).
  • the central yarn supplying unit 10 for supplying 15 and the braided yarn supplying unit 20 for supplying the braided yarn (resin fiber) 25 are provided. Prior to formation of the braid, the braid supply unit 20 is on standby around the central yarn supply unit 10 for preparation.
  • the central yarn supply unit 10 and the braid supply unit 20 are provided as a set.
  • one central yarn supply unit 10 and one braid supply unit 20 are set, but a plurality of braid supply units 20 are provided for one central yarn supply unit 10. It is also possible to make a set.
  • the number of braid supply units 20 can be appropriately set according to the structure of the reinforcing fiber / resin fiber composite 50 to be designed.
  • the central yarn supply unit 10 is connected to a roving (not shown) around which the reinforcing fiber is wound, and discharges the reinforcing fiber unwound from the roving as a central yarn 15 from the tip portion 11.
  • the braid supply unit 20 includes a spindle 21 around which the braid 25 is wound, and a rewind bar 22 through which the braid 25 drawn from the spindle 21 passes.
  • the braid supply unit 20 revolves around the central yarn supply unit 10 forming a set. At this time, the relative position of the spindle 21 and the rewind bar 22 changes as viewed from above. Thereby, the braided yarn 25 wound around the spindle 21 is continuously released from the spindle 21 through the rewind bar 22.
  • the dissociated braids 25 are collected so as to surround the periphery of the central yarn 15, and the central yarn supplying unit 10 and the braided yarn supplying unit 20 move on the assembling machine track 30 so that the longitudinal direction of the central yarn 15 is reached.
  • the reinforcing fiber / resin fiber composite 50 (this) as a braid shown in FIG. 1 (b) in which the braid 25 is assembled with the central yarn 15 at the assembly angle ⁇ around the central yarn 40.
  • hybridized fiber composites are sometimes referred to as “hybridized fiber composites”.
  • the finished reinforcing fiber / resin fiber composite 50 is subjected to thermoforming as it is or in a desired shape to obtain a target long fiber reinforced thermoplastic resin structure. Melting of resin fibers during thermoforming is a kind of so-called in-situ polymer blend and can be easily performed.
  • the arrangement of braiding yarns (thermoplastic resin fibers) 25 can be realized in various patterns by devising the way of assembling the braiding yarn 25 with respect to the central yarn 15. Therefore, if the braid technology is applied to the reinforced fiber / resin fiber composite 50 of the present invention, the blending ratio of the reinforced fiber and the thermoplastic resin and the composition ratio of the thermoplastic resin after heat melting can be freely set according to how the yarns are assembled. Can be controlled. As a result, it is possible to manufacture the finished long fiber reinforced thermoplastic resin structure into a form according to the intended use (made to order). In addition, if the braid technique is used, the fiber is not defibrated, and therefore the fiber is not damaged.
  • the braid technology when assembling a plurality of braids, it is possible to control the arrangement of the braids and the tension acting on the braids one by one. For this reason, when it is necessary to precisely control the structure and composition of the long-fiber reinforced thermoplastic resin structure as a finished product, it is particularly effective to use the braid technology. Therefore, if the braid technology is used, the physical properties of each resin fiber can be imparted to the long fiber reinforced thermoplastic resin structure after thermoforming in a desired state.
  • Examples relating to the reinforcing fiber / resin fiber composite (hybridized fiber composite) of the present invention manufactured using the braided technology described above will be described.
  • carbon fibers are used as long fibers that are reinforcing fibers
  • polypropylene (PP) fibers are used as thermoplastic resin fibers
  • acid-modified polypropylene (MAPP) fibers obtained by acid-modifying PP fibers with maleic acid are used.
  • PP fibers are excellent in resin impregnation properties, but interface characteristics (for example, interface shear strength) are slightly inferior.
  • MAPP fiber is slightly inferior in resin impregnation, but has excellent interface characteristics. Therefore, using braid technology, PP fiber and MAPP fiber are assembled on the surface of carbon fiber and hybridized, so that the impregnation characteristics of the thermoplastic resin into the carbon fiber and the interface characteristics between the carbon fiber and the thermoplastic resin I tried to make it compatible.
  • FIG. 2 is a schematic cross-sectional view of a reinforcing fiber / resin fiber composite 50 for explaining how to assemble the PP fiber 25a and the MAPP fiber 25b (braided yarn 25) with respect to the carbon fiber 15a (central yarn 15).
  • a carbon fiber / an intermediate material of the long fiber reinforced thermoplastic resin structure A PP fiber / MAPP fiber composite (hybridized fiber composite) was obtained.
  • the resin fibers were assembled in two ways as shown in FIGS. 2 (a) and 2 (b).
  • FIG. 3 shows an appearance photograph and a structural diagram of a carbon fiber / resin fiber composite of this example in which two types of thermoplastic resin fibers are assembled with respect to carbon fibers.
  • thermoforming is performed using a carbon fiber / resin fiber composite having a two-layer arrangement and an alternating arrangement, and a test piece of a long fiber (carbon fiber) reinforced thermoplastic resin structure (hybridized structure) is prepared. Obtained.
  • the thermoforming conditions for each test piece were a molding temperature of 200 ° C., a molding pressure of 10 MPa, a molding time of 5 minutes, 10 minutes, 20 minutes, and 40 minutes.
  • the cross section of each test piece was observed, and the impregnation state (non-impregnation rate) of the thermoplastic resin with respect to the carbon fiber was evaluated.
  • FIG. 4 is a cross-sectional photograph of the test piece showing the change in the impregnation state depending on the molding time for the two-layer arrangement and the alternate arrangement.
  • the numerical value described in the right corner of each photograph is the unimpregnated rate in the carbon fiber.
  • the non-impregnation rate is determined by the following procedure.
  • FIG. 5 is an example of image data for obtaining the unimpregnated ratio in the carbon fiber, and shows (a) a cross section of the test piece before image processing and (b) a cross section after image processing.
  • the cross-sectional image (a) of the carbon fiber (fiber bundle) is binarized with a predetermined threshold value by image processing to obtain a cross-sectional image (b) in which the white region is the impregnated region S1 and the black region is the non-impregnated region S2.
  • the non-impregnation rate (%) is obtained from the following equation (1).
  • Non-impregnation rate (%) S2 / (S1 + S2) (1)
  • FIG. 6 is a graph in which the unimpregnated rate of each test piece in the two-layer arrangement and the alternate arrangement is plotted with respect to the molding time. From FIG. 6, in any of the two-layer arrangement and the alternate arrangement, the unimpregnated ratio of the thermoplastic resin to the carbon fibers gradually decreased with the lapse of the molding time. That is, it was confirmed that the thermoplastic resin was sufficiently impregnated into the carbon fiber as the molding time passed. Further, in comparison between the two-layer arrangement and the alternate arrangement, it has been found that the two-layer arrangement can provide a material having better impregnation characteristics than the alternate arrangement.
  • a plate-like body having a length of 50 mm, a width of 20 mm, and a thickness of 2 mm was produced by thermoforming.
  • a two-layered carbon fiber / resin fiber composite shown in FIG. 2 and a molded body obtained from the alternately arranged carbon fiber / resin fiber composite were prepared.
  • a molded product obtained from a carbon fiber / PP fiber composite and a carbon fiber / MAPP fiber composite was also prepared.
  • the thermoforming conditions for each test piece were a molding temperature of 200 ° C., a molding pressure of 10 MPa, a molding time of 5 minutes, 10 minutes, 20 minutes, and 40 minutes.
  • FIG. 7 is a graph of measurement data (load-deflection curve) by a three-point bending test of each test piece. Based on the measurement data, the bending elastic modulus E (MPa) and bending stress ⁇ (MPa) of each test piece were estimated using the following formulas (2) and (3). The maximum value of the bending stress ⁇ is defined as the bending strength. In addition, these calculations were performed by the method based on JISK7017.
  • (Hybridized structure) has greatly improved elastic modulus and strength than long fiber reinforced thermoplastic resin structure (non-hybridized structure) molded from carbon fiber / PP fiber composite (Test No. 3) was confirmed.
  • the two-layer carbon fiber / resin fiber composite (Test No. 1) showed the same elastic modulus and strength as the carbon fiber / MAPP fiber composite (Test No. 4).
  • the carbon fiber / resin fiber composite if the resin fiber is formed by using a hybrid of PP fiber and MAPP fiber yarn, the carbon fiber / A high-performance long fiber reinforced thermoplastic resin structure having sufficient strength in the long fiber direction (longitudinal direction) can be obtained while realizing high interface characteristics similar to those of a MAPP fiber composite.
  • the at least two types of resin fibers constituting the carbon fiber / resin fiber composite are made of various combinations of materials in addition to the PP fibers and MAPP fibers described in the above embodiment. It is possible to select.
  • the resin fiber composites include the following combinations of resin fibers, and the properties that can be complemented (compatibility) when each combination is selected are listed.
  • Polylactic acid (PLA) fiber / polyoxymethylene (POM) fiber interfacial characteristics and impregnation / toughness
  • polyamide (PA) fiber / polyoxymethylene (POM) fiber interfacial adhesiveness / abrasion resistance and slidability
  • the hybridized fiber composite produced by the braid technology can be made into various structures according to the target long fiber reinforced thermoplastic resin structure.
  • braids are square braids, flat struts, round struts, and the like, which are traditionally assembled, and hybrid fiber composites can be constructed based on these braids.
  • a reinforcing fiber / resin fiber composite as an intermediate material is produced as a ribbon-like flat string, and this is rolled up and formed into a ring shape. Thereby, a lightweight and high-strength hollow pillar can be manufactured.
  • reinforcing fibers are used for the center yarn 40 and the central yarn 15 and resin fibers are used for the braid 25,
  • the type of fibers to be combined with the center yarn 40, the center yarn 15, and the braid 25 is not particularly limited, and can be appropriately determined according to the reinforcing fiber / resin fiber composite to be produced.
  • the reinforcing fiber / resin fiber composite of the present invention is an intermediate material for a long fiber reinforced thermoplastic resin structure, and can be suitably used in the fields of automobiles, ships, aircraft, and the like.
  • Central thread supply section 11 Tip section 15 Central thread (reinforced fiber) 15a Carbon fiber 20 Braid supply section 21 Spindle 22 Rewind bar 25 Braid (resin fiber) 25a PP fiber 25b MAPP fiber 40 Center yarn (reinforced fiber) 50 Reinforcing fiber / resin fiber composite 100 Assembly machine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 長繊維の含浸特性と、長繊維と熱可塑性樹脂との界面特性とを両立させるべく、中間材料中の長繊維と熱可塑性樹脂繊維との割合、及び両者の配置が精密に制御された強化繊維/樹脂繊維複合体を提供する。 長繊維強化熱可塑性樹脂構造物の中間材料となる強化繊維/樹脂繊維複合体50であって、強化繊維15は長手方向に延在する長繊維であり、樹脂繊維25は少なくとも2種の熱可塑性樹脂繊維を有しており、強化繊維15を包囲するように、少なくとも2種の熱可塑性樹脂繊維を強化繊維15の周囲に配置してある。

Description

強化繊維/樹脂繊維複合体、及びその製造方法
 本発明は、長繊維強化熱可塑性樹脂構造物の中間材料となる強化繊維/樹脂繊維複合体、及びその製造方法に関する。
 熱可塑性樹脂と繊維とを組み合わせた繊維強化熱可塑性樹脂は、軽量且つ高強度であるという優れた特性を生かして、様々な分野で利用されている。例えば、自動車、船舶、航空機等の輸送用機械においては、繊維強化熱可塑性樹脂の成形品を部品の一部として使用することにより、燃費や安全性の向上が図られている。
 このような繊維強化熱可塑性樹脂として、これまで熱可塑性樹脂に短繊維を添加して成形した繊維強化プラスチック(FRP)が良く知られていたが、近年、熱可塑性樹脂と長繊維(例えば、炭素繊維等の強化繊維)とを組み合わせた長繊維強化熱可塑性樹脂が注目されている。ここで、本明細書における「長繊維」とは、長手方向に延在する繊維(いわゆる「糸条」)を意味する。長繊維強化熱可塑性樹脂は、(1)耐衝撃性に非常に優れている、(2)熱溶融可能なためリサイクル性に優れている、(3)成形時に化学変化を伴わないため短時間での成形が可能となる、(4)化学反応がすでに終了しているため成形前の中間材料(プリプレグ)の保管が容易である、(5)熱溶融により形状の変更や融着を容易に行い得る、等の数々の利点を有している。このため、長繊維強化熱可塑性樹脂は、今後、非常に有用な材料として期待されている。
 一方、長繊維強化熱可塑性樹脂は、熱可塑性樹脂の溶融粘度が非常に高いため、長繊維に対して熱可塑性樹脂が含浸し難いという問題がある。樹脂の含浸特性が悪化すると、成形品において十分な強度を発現することができなくなる。また、長繊維強化熱可塑性樹脂においては、長繊維と熱可塑性樹脂との界面特性を向上させることも重要である。界面特性が不十分であると、両者の接着面が剥離して成形品が破損するおそれがある。ここで、長繊維に対する熱可塑性樹脂の含浸特性と、長繊維と熱可塑性樹脂との界面特性とは、一般に相反する特性である。例えば、界面特性を向上させるべく、長繊維に対して酸変性等の表面改質を行うと、長繊維に対する熱可塑性樹脂の接触角が増大し(すなわち、長繊維表面の濡れ性が悪化し)、結果として含浸性が低下する。このように、含浸特性と界面特性とはトレードオフの関係にあるが、長繊維強化熱可塑性樹脂を用いて長繊維強化熱可塑性樹脂構造物を製造する場合においては、含浸特性と界面特性とを出来る限り両立させることが望まれている。
 長繊維に対する熱可塑性樹脂の含浸特性を向上させつつ、長繊維と熱可塑性樹脂との界面特性を良好に維持するためには、長繊維強化熱可塑性樹脂構造物を製造するために使用する中間材料の形態を工夫することが有効と考えられる。中間材料の段階では、長繊維と熱可塑性樹脂との配置や配合を熱成形前に調整できるので、完成品である長繊維強化熱可塑性樹脂構造物の特性を制御し易い。ここで、「中間材料」とは、長繊維と熱可塑性樹脂との複合体や混合物を意味する。
 従来、長繊維強化熱可塑性樹脂構造物の中間材料として、例えば、長繊維である炭素繊維に熱可塑性樹脂を含浸させたものをテープ状に成形した「炭素繊維強化熱可塑性樹脂テープ」が開発されている(例えば、特許文献1を参照)。特許文献1では、解繊させた炭素繊維ストランドを溶融状態にある熱可塑性樹脂浴に潜らせることにより炭素繊維に熱可塑性樹脂を含浸させ、次いで、樹脂含浸後の炭素繊維を成形用のノズルに通すことにより、細長の炭素繊維強化熱可塑性樹脂テープを形成している。この炭素繊維強化熱可塑性樹脂テープの使用方法は、例えば、適用対象となる構造物の表面に巻き付けて溶融させ、その後、冷却し、固化させるというものである。その結果、構造物が補強される。
 また、別の長繊維強化熱可塑性樹脂構造物の中間材料として、長繊維である連続強化繊維束と連続熱可塑性樹脂繊維束とを混繊した「複合材料用混繊糸」も知られている(例えば、特許文献2を参照)。特許文献2では、無撚りの連続強化繊維束、及び無撚りの連続熱可塑性樹脂繊維束に対して夫々解繊処理を施した後、両者を混繊することにより、複合材料用混繊糸を得ている。この複合材料用混繊糸は、例えば、織物や編物の形態に加工したものが使用される。
特開2007-118216号公報 特開平9-324331号公報
 ところが、特許文献1の炭素繊維強化熱可塑性樹脂テープ、及び特許文献2の複合材料用混繊糸においては、技術的及び経済的な点で以下のような問題が存在する。
 特許文献1の炭素繊維強化熱可塑性樹脂テープは、熱可塑性樹脂を含浸させた長繊維が長手方向に沿って略平行に延在することになる。このため、長繊維と熱可塑性樹脂との配合割合は、テープの任意の位置において略一定となる。このような配合割合が略固定された中間材料では、完成品となる長繊維強化熱可塑性樹脂構造物の組成を、場所に応じて精密に制御することができない。また、組成制御が困難なため、長繊維の含浸特性と、長繊維と熱可塑性樹脂との界面特性とを両立させることも難しいと考えられる。さらに、この炭素繊維強化熱可塑性樹脂テープを適用することができるのは、対象となる構造物が平面や単純な曲面を有するものに限定される。複雑な面を有する構造物に対しては、炭素繊維強化熱可塑性樹脂テープを表面に密着させることが困難となるからである。しかも、炭素繊維強化熱可塑性樹脂テープは、その構造上、剛性が過剰になり易く、タック性にも乏しいため、取り扱いが容易ではない。なお、炭素繊維強化熱可塑性樹脂テープを製造するためには、熱可塑性樹脂浴や成形用のノズル等の専用設備が必要となるため、コスト増大を招くことになる。
 特許文献2の複合材料用混繊糸においても、連続強化繊維束と連続熱可塑性樹脂繊維束とを単純に混繊しているだけなので、両者の配合割合を長手方向に沿って精密に制御することは困難である。従って、特許文献2においても、長繊維の含浸特性と、長繊維と熱可塑性樹脂との界面特性とを両立させることはできない。また、連続強化繊維束の解繊処理中や、連続強化繊維束と連続熱可塑性樹脂繊維束との混繊作業中において、強化繊維が摩擦により傷付くおそれがある。複合材料用混繊糸を織物や編物に加工する際にも、各繊維が損傷を受けるおそれがある。さらに、複合材料用混繊糸を製造する場合、解繊作業及び混繊作業の際に繊維の一部が切断及び脱落するなどして失われることがあり、このような場合、最終製品の歩留まりが低下する。
 このように、現状では、長繊維強化熱可塑性樹脂構造物を得るに際し、強化繊維と樹脂繊維とから構成される最適な中間材料としての強化繊維/樹脂繊維複合体は未だ開発されていない。本発明は、上記問題点に鑑みてなされたものであり、繊維や樹脂が有する異なる物性(例えば、含浸特性と界面特性等)を両立させるべく、中間材料中の長繊維と熱可塑性樹脂繊維との割合、及び両者の配置が精密に制御された強化繊維/樹脂繊維複合体を提供することを目的とする。また、そのような強化繊維/樹脂繊維複合体を効率的、確実、且つ低コストで製造する製造方法を確立することを目的とする。
 上記課題を解決するための本発明に係る強化繊維/樹脂繊維複合体の特徴構成は、
 長繊維強化熱可塑性樹脂構造物の中間材料となる強化繊維/樹脂繊維複合体であって、
 前記強化繊維は長手方向に延在する長繊維であり、
 前記樹脂繊維は少なくとも2種の熱可塑性樹脂繊維を有しており、
 前記強化繊維を包囲するように、前記少なくとも2種の熱可塑性樹脂繊維を前記強化繊維の周囲に配置してあることにある。
 背景技術の項目で説明したように、高性能な長繊維強化熱可塑性樹脂構造物を得るためには、長繊維の含浸特性を向上させつつ、長繊維と熱可塑性樹脂との界面特性を良好に維持することが重要となる。このためには、中間材料となる強化繊維/樹脂繊維複合体の形態を工夫することが有効と考えられる。
 この点、本構成の強化繊維/樹脂繊維複合体によれば、強化繊維として長手方向に延在する長繊維を使用するとともに、樹脂繊維として少なくとも2種の熱可塑性樹脂繊維を使用する場合において、強化繊維を包囲するように、少なくとも2種の熱可塑性樹脂繊維を強化繊維の周囲に配置した形態としている。つまり、長繊維の周囲に、少なくとも2種の熱可塑性樹脂繊維を含むハイブリッド化された樹脂繊維が存在している。このような形態の強化繊維/樹脂繊維複合体を用いて熱成形を行う場合、少なくとも2種の熱可塑性樹脂繊維として適宜選択を行えば、例えば、強化繊維を包囲する熱可塑性樹脂繊維が溶融したときに強化繊維の内部まで熱可塑性樹脂を確実に含浸させつつ、強化繊維と熱可塑性樹脂との界面特性を向上させることができる。その結果、両者の界面剥離を防止することができる。なお、この熱成形時における熱可塑性樹脂繊維の溶融は、いわゆるIn-situポリマーブレンドの一種であり、簡単に行うことができる。
 本発明に係る強化繊維/樹脂繊維複合体において、
 前記少なくとも2種の熱可塑性樹脂繊維を、前記長繊維の長手方向に対して所定角度で相互に組み合わした組紐の状態で、前記強化繊維の周囲に配置してあることが好ましい。
 長繊維強化熱可塑性樹脂構造物のさらなる高性能化を達成するためには、長繊維強化熱可塑性樹脂構造物の組成を精密に制御することが有効と考えられる。例えば、強化繊維の長手方向に沿って、強化繊維と熱可塑性樹脂との配合割合や、少なくとも2種の熱可塑性樹脂の組成比を自在にコントロールすることができれば、完成品である長繊維強化熱可塑性樹脂構造物を使用目的に応じた形態に(オーダーメイドで)製造することが可能となる。
 この点、本構成の強化繊維/樹脂繊維複合体によれば、少なくとも2種の熱可塑性樹脂繊維を、長繊維(強化繊維)の長手方向に対して所定角度で相互に組み合わした組紐の状態で、強化繊維の周囲に配置した形態としている。すなわち、伝統工芸として知られている「組紐技術」を利用して、強化繊維の周囲に少なくとも2種の熱可塑性樹脂繊維を組んだものとしている。組紐技術においては、紐(繊維)の組み方を工夫することにより、紐(繊維)の配置形態を様々なパターンで実現することができる。従って、組紐技術を強化繊維/樹脂繊維複合体に適用すれば、強化繊維と熱可塑性樹脂との配合割合や、少なくとも2種の熱可塑性樹脂の組成比を、糸の組み方によって自在にコントロールすることが可能となる。しかも、組紐技術を利用すれば、紐(繊維)を解繊することがないので、繊維が損傷を受けるおそれもない。
 また、組紐技術においては、複数の紐(繊維)を組み上げる際に、紐(繊維)の配置や紐(繊維)に作用するテンションを一本ずつコントロールすることが可能となる。このため、本構成の強化繊維/樹脂繊維複合体は、完成品である長繊維強化熱可塑性樹脂構造物の構造及び組成を精密に制御する必要がある場合において、特に有効である。従って、組紐技術を用いれば、夫々の樹脂繊維が有する物性を熱成形後の長繊維強化熱可塑性樹脂構造物に所望の状態で付与することが可能となる。
 本発明に係る強化繊維/樹脂繊維複合体において、
 前記少なくとも2種の熱可塑性樹脂繊維は、熱成形後に各繊維の物性が相互に補完されるように選択されることが好ましい。
 本構成の強化繊維/樹脂繊維複合体によれば、少なくとも2種の熱可塑性樹脂繊維を使用して熱成形を行うと、各繊維の物性が相互に補完されるので、各繊維の物性をバランスよく兼ね備えた高性能な長繊維強化熱可塑性樹脂構造物を得ることが可能となる。
 本発明に係る強化繊維/樹脂繊維複合体において、
 前記少なくとも2種の熱可塑性樹脂繊維は、ポリ乳酸(PLA)繊維、ポリアミド(PA)繊維、ポリカーボネート(PC)繊維、ポリオキシメチレン(POM)繊維、ポリプロピレン(PP)繊維、酸変性ポリプロピレン(MAPP)繊維、ポリエチレン(PE)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリエーテル・エーテル・ケトン(PEEK)繊維、及びポリエーテル・ケトン・ケトン(PEKK)繊維からなる群から選択されることが好ましい。
 本構成の強化繊維/樹脂繊維複合体によれば、少なくとも2種の熱可塑性樹脂繊維は、ポリ乳酸(PLA)繊維、ポリアミド(PA)繊維、ポリカーボネート(PC)繊維、ポリオキシメチレン(POM)繊維、ポリプロピレン(PP)繊維、酸変性ポリプロピレン(MAPP)繊維、ポリエチレン(PE)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリエーテル・エーテル・ケトン(PEEK)繊維、及びポリエーテル・ケトン・ケトン(PEKK)繊維からなる群から選択されるので、選択された2種の熱可塑性樹脂繊維を使用して熱成形を行うと、各繊維の長所を兼ね備えた高性能な長繊維強化熱可塑性樹脂構造物を得ることが可能となる。
 本発明に係る強化繊維/樹脂繊維複合体において、
 前記少なくとも2種の熱可塑性樹脂繊維は、ポリプロピレン(PP)繊維、及び酸変性ポリプロピレン(MAPP)繊維であることが好ましい。
 本構成の強化繊維/樹脂繊維複合体によれば、少なくとも2種の熱可塑性樹脂繊維として、ポリプロピレン(PP)繊維、及び酸変性ポリプロピレン(MAPP)繊維を採用している。この組み合わせから得られた長繊維強化熱可塑性樹脂構造物では、強化繊維への熱可塑性樹脂の含浸特性を良好に維持しながら、強化繊維と熱可塑性樹脂との界面特性を向上させることができる。
 本発明に係る強化繊維/樹脂繊維複合体において、
 前記少なくとも2種の熱可塑性樹脂繊維は、ポリ乳酸(PLA)繊維、及びポリオキシメチレン(POM)繊維であることが好ましい。
 本構成の強化繊維/樹脂繊維複合体によれば、少なくとも2種の熱可塑性樹脂繊維として、ポリ乳酸(PLA)繊維、及びポリオキシメチレン(POM)繊維を採用している。この組み合わせから得られた長繊維強化熱可塑性樹脂構造物では、強化繊維と熱可塑性樹脂との界面特性を向上させつつ、構造物の靭性を強化することができる。
 上記課題を解決するための本発明に係る強化繊維/樹脂繊維複合体の製造方法の特徴構成は、
 長繊維強化熱可塑性樹脂構造物の中間材料となる強化繊維/樹脂繊維複合体の製造方法であって、
 前記強化繊維は長手方向に延在する長繊維であり、
 前記樹脂繊維は少なくとも2種の熱可塑性樹脂繊維を有しており、
 前記少なくとも2種の熱可塑性樹脂繊維を前記強化繊維の周囲にスタンバイする準備工程と、
 前記強化繊維を包囲するように、前記少なくとも2種の熱可塑性樹脂繊維を前記長手方向に対して所定角度で連続的に相互に組み合わせる組紐工程と、
を包含することにある。
 本構成の強化繊維/樹脂繊維複合体の製造方法によれば、上述した強化繊維/樹脂繊維複合体と同様の作用効果を奏することができる。
 すなわち、長繊維の周囲に、少なくとも2種の熱可塑性樹脂繊維を含むハイブリッド化された樹脂繊維が存在している強化繊維/樹脂繊維複合体を用いて熱成形を行う場合、少なくとも2種の熱可塑性樹脂繊維として適宜選択を行えば、例えば、強化繊維を包囲する熱可塑性樹脂繊維が溶融したときに強化繊維の内部まで熱可塑性樹脂を確実に含浸させつつ、強化繊維と熱可塑性樹脂との界面特性を向上させることができる。その結果、両者の界面剥離を防止することができる。なお、この熱成形時における熱可塑性樹脂繊維の溶融は、いわゆるIn-situポリマーブレンドの一種であり、簡単に行うことができる。
 さらに、本構成の強化繊維/樹脂繊維複合体の製造方法は、伝統工芸として知られている「組紐技術」を利用したものである。組紐技術においては、紐(繊維)の組み方を工夫することにより、紐(繊維)の配置形態を様々なパターンで実現することができる。従って、組紐技術を強化繊維/樹脂繊維複合体の製造に適用すれば、強化繊維と熱可塑性樹脂との配合割合や、少なくとも2種の熱可塑性樹脂の組成比を、糸の組み方によって自在にコントロールすることが可能となる。しかも、組紐技術を利用すれば、紐(繊維)を解繊することがないので、繊維が損傷を受けるおそれもない。
 また、組紐技術においては、複数の紐(繊維)を組み上げる際に、紐(繊維)の配置や紐(繊維)に作用するテンションを一本ずつコントロールすることが可能となる。このため、本構成の強化繊維/樹脂繊維複合体の製造方法は、完成品である長繊維強化熱可塑性樹脂構造物の構造及び組成を精密に制御する必要がある場合において、特に有効である。従って、組紐技術を用いれば、夫々の樹脂繊維が有する物性を熱成形後の長繊維強化熱可塑性樹脂構造物に所望の状態で付与することが可能となる。
図1は、(a)本発明の強化繊維/樹脂繊維複合体を製造するための組物作製機の一例を示した模式図、及び(b)強化繊維/樹脂繊維複合体の外観図である。 図2は、炭素繊維(中央糸)に対するPP繊維及びMAPP繊維(組糸)の組み方を説明するための強化繊維/樹脂繊維複合体の断面模式図であり、(a)二層配置、及び(b)交互配置を示す図である。 図3は、炭素繊維に対して2種の熱可塑性樹脂繊維が組み上げられた実施例の炭素繊維/樹脂繊維複合体の外観写真、及び構造図である。 図4は、二層配置及び交互配置について、成形時間による含浸状態の変化を表した試験片断面写真である。 図5は、炭素繊維における未含浸率を求めるための画像データの一例であり、(a)試験片の画像処理前の断面、及び(b)画像処理後の断面を示す。 図6は、二層配置及び交互配置における各試験片の未含浸率を成形時間に対してプロットしたグラフである。 図7は、各試験片の三点曲げ試験による測定データ(荷重-撓み曲線)のグラフである。
 以下、本発明の強化繊維/樹脂繊維複合体、及びその製造方法に関する実施形態を図1~図6に基づいて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。
<強化繊維/樹脂繊維複合体>
 長繊維強化熱可塑性樹脂構造物の中間材料となる本発明の強化繊維/樹脂繊維複合体は、長繊維と熱可塑性樹脂繊維とを含む複合物又は混合物として構成される。長繊維は、モノフィラメントの集合体であるマルチフィラメントで構成され、細長のマルチフィラメントが長手方向に延在して糸条をなしている。長繊維には、強化繊維(例えば、炭素繊維、ガラス繊維、アラミド繊維等)を用いることができる。
 熱可塑性樹脂繊維には、少なくとも2種の繊維が使用される。熱可塑性樹脂繊維の組み合わせは、熱成形後に各繊維の物性が相互に補完されるようなものを選択することが望ましい。例えば、熱成形により含浸性及び界面特性が両立するように選択される。例えば、代表的な熱可塑性樹脂繊維であるポリプロピレン(PP)繊維は、樹脂の含浸性に優れているが、界面特性(例えば、界面せん断強度)がやや劣っている。一方、PP繊維を酸変性して酸変性ポリプロピレン(MAPP)繊維とすると、界面特性は向上するが、同時に濡れ性が悪化するため、熱可塑性樹脂の含浸性が低下することになる。そこで、PP繊維とMAPP繊維とを組み合わせてハイブリッド化し、両者の特性を兼ね備えた新たな樹脂繊維を構成する。このハイブリッド化繊維であれば、各繊維の物性の不足部分が互いに補完されているので、含浸性及び界面特性が両立し、双方の特性が優れた材料を実現することが可能となる。
 本発明の強化繊維/樹脂繊維複合体では、ハイブリッド化のため、長繊維(強化繊維)を包囲するように、少なくとも2種の熱可塑性樹脂繊維を長繊維の周囲に配置してある。ここで、「長繊維を包囲する」とは、少なくとも2種の熱可塑性樹脂繊維が長繊維の表面に重なり合うように存在し、当該長繊維の表面の一部又は全部を外方から見えない状態にすることをいう。また、「長繊維の周囲に配置」とは、繊維の断面視において、少なくとも2種の熱可塑性樹脂繊維の輪郭が長繊維の輪郭に当接している状態、又は近傍に存在している状態をいう。長繊維に対する少なくとも2種の熱可塑性樹脂繊維の配置形態は、長手方向において互いに略平行に延在しているに限らず、例えば、長繊維に対して少なくとも2種の熱可塑性樹脂繊維が所定の角度で延在していたり、少なくとも2種の熱可塑性樹脂繊維が湾曲して徐々に位置を変えながら延在していたり、あるいは、両者が全くランダムに配置していたりしても構わない。つまり、長繊維の周囲に、少なくとも2種の熱可塑性樹脂繊維を含むハイブリッド化された樹脂繊維が存在していればよい。これらの長繊維に対する少なくとも2種の熱可塑性樹脂繊維の配置形態は、様々な手法により実現することが考えられるが、次に説明する「組紐技術」を利用してハイブリッド化することが有効である。
<組紐技術>
 組紐技術は、日本の伝統工芸として知られており、複数の細い糸(組糸)を相互に編んで織り上げることにより、強靭で且つ美しい編模様を備えた紐を作り上げる技術である。本発明では、中央糸となる強化繊維の周囲に、組糸となる少なくとも2種の熱可塑性樹脂繊維を配置した組物を形成する。具体的には、強化繊維の長手方向に対して少なくとも2種の熱可塑性樹脂繊維を所定角度で相互に編み上げることより、強化繊維の周囲に少なくとも2種の樹脂繊維が組まれた組紐が形成される。
 図1は、(a)本発明の強化繊維/樹脂繊維複合体50を製造するための組物作製機100の一例を示した模式図、及び(b)強化繊維/樹脂繊維複合体50の外観図である。図1(a)に示すように、組物作製機100は、組物(強化繊維/樹脂繊維複合体50)のコアとなる中心糸(強化繊維)40に対して、中央糸(強化繊維)15を供給する中央糸供給部10と、組糸(樹脂繊維)25を供給する組糸供給部20とを備えている。組物の形成に先立ち、準備のため、組糸供給部20は中央糸供給部10の周囲にスタンバイされている。中央糸供給部10と組糸供給部20とはセットで設けられる。図1(a)では、一つの中央糸供給部10と一つの組糸供給部20とがセットにされているが、一つの中央糸供給部10に対して組糸供給部20を複数設けたセットとすることも可能である。組糸供給部20の数は、設計する強化繊維/樹脂繊維複合体50の構造に応じて適宜設定することが可能である。中央糸供給部10は、強化繊維が巻回されたロービング(図示せず)につながっており、ロービングから巻き戻された強化繊維を先端部11から中央糸15として排出する。組糸供給部20は、組糸25が巻回されたスピンドル21と、スピンドル21から引き出された組糸25が経由される巻戻しバー22とを備えている。組糸供給部20は、セットをなす中央糸供給部10の周囲を公転する。このとき、上方視で、スピンドル21と巻戻しバー22との相対位置が変化する。これにより、スピンドル21に巻回された組糸25は、巻戻しバー22を通じてスピンドル21から連続的に解離される。解離された組糸25は、中央糸15の周囲を取り囲むように集められ、中央糸供給部10及び組糸供給部20が組機軌道30を移動することにより中央糸15の長手方向に対して組角度θで相互に組み上げられ、組紐が形成される。中央糸15及び組糸25によって形成された組紐は、中心糸40の周囲を取り囲むように配置される。このようにして、中心糸40の周囲に、中央糸15に対して組糸25が組角度θで組まれた図1(b)に示す組物としての強化繊維/樹脂繊維複合体50(これを「ハイブリッド化繊維複合体」と称する場合がある)が連続的に形成される。出来上がった強化繊維/樹脂繊維複合体50は、そのまま又は所望の形状に整えて熱成形することにより、目的の長繊維強化熱可塑性樹脂構造物を得る。熱成形時における樹脂繊維の溶融は、いわゆるIn-situポリマーブレンドの一種であり、簡単に行うことができる。
 組紐技術においては、中央糸15に対する組糸25の組み方を工夫することにより、組糸(熱可塑性樹脂繊維)25の配置形態を様々なパターンで実現することができる。従って、組紐技術を本発明の強化繊維/樹脂繊維複合体50に適用すれば、強化繊維と熱可塑性樹脂との配合割合や、熱溶融後の熱可塑性樹脂の組成比を、糸の組み方によって自在にコントロールすることができる。その結果、完成品である長繊維強化熱可塑性樹脂構造物を使用目的に応じた形態に(オーダーメイドで)製造することが可能となる。また、組紐技術を利用すれば、繊維を解繊することがないので、繊維が損傷を受けるおそれもない。さらに、組紐技術においては、複数の組糸を組み上げる際に、組糸の配置や組糸に作用するテンションを一本ずつコントロールすることが可能となる。このため、完成品である長繊維強化熱可塑性樹脂構造物の構造及び組成を精密に制御する必要がある場合において、組紐技術を利用することは特に有効である。従って、組紐技術を用いれば、夫々の樹脂繊維が有する物性を熱成形後の長繊維強化熱可塑性樹脂構造物に所望の状態で付与することが可能となる。
 上記の組紐技術を利用して製造した本発明の強化繊維/樹脂繊維複合体(ハイブリッド化繊維複合体)に関する実施例について説明する。本実施例では、強化繊維である長繊維として炭素繊維を使用し、熱可塑性樹脂繊維としてポリプロピレン(PP)繊維、及びPP繊維をマレイン酸を用いて酸変性した酸変性ポリプロピレン(MAPP)繊維を使用した。先に説明したように、PP繊維は、樹脂の含浸性に優れているが、界面特性(例えば、界面せん断強度)がやや劣っている。一方、MAPP繊維は、樹脂の含浸性がやや劣っているが、界面特性には優れている。そこで、組紐技術を利用して、PP繊維及びMAPP繊維を炭素繊維の表面に組み上げてハイブリッド化することにより、炭素繊維への熱可塑性樹脂の含浸特性と、炭素繊維と熱可塑性樹脂との界面特性とを両立させることを試みた。
〔強化繊維/樹脂繊維複合体の組み方〕
 図2は、炭素繊維15a(中央糸15)に対するPP繊維25a及びMAPP繊維25b(組糸25)の組み方を説明するための強化繊維/樹脂繊維複合体50の断面模式図である。本実施例では、1本の炭素繊維15aに対して、16本のPP繊維25a、及び16本のMAPP繊維25bを組み上げることにより、長繊維強化熱可塑性樹脂構造物の中間材料となる炭素繊維/PP繊維/MAPP繊維複合体(ハイブリッド化繊維複合体)を得た。樹脂繊維の組み方は、図2(a)及び(b)に示す2通りを実行した。(a)は、一段目として炭素繊維15aの表面を包囲するようにPP繊維25aのみを組み上げ、次いで、二段目として一段目の上にMAPP繊維25bのみを組み上げたものである。(a)の組み方を「二層配置」と称する。(b)は、一段目として炭素繊維15aの表面を包囲するようにPP繊維25aとMAPP繊維25bとを交互に組み上げ、次いで、二段目として一段目と同様にPP繊維25aとMAPP繊維25bとを交互に組み上げたものである。(b)の組み方を「交互配置」と称する。図3に、炭素繊維に対して2種の熱可塑性樹脂繊維が組み上げられた本実施例の炭素繊維/樹脂繊維複合体の外観写真、及び構造図を示す。
〔含浸特性評価〕
 炭素繊維/樹脂繊維複合体(ハイブリッド化繊維複合体)を熱成形して得られる長繊維強化熱可塑性樹脂構造物(これを「ハイブリッド化構造物」と称する場合がある)の含浸特性について、顕微鏡による断面観察から評価した。
 先ず、二層配置及び交互配置の各構造を有する炭素繊維/樹脂繊維複合体を用いて熱形成を行い、長繊維(炭素繊維)強化熱可塑性樹脂構造物(ハイブリッド化構造物)の試験片を得た。各試験片の熱成形条件は、成形温度200℃、成形圧力10MPa、成形時間5分、10分、20分、40分とした。次に、各試験片の断面を観察し、炭素繊維に対する熱可塑性樹脂の含浸状態(未含浸率)を評価した。図4は、二層配置及び交互配置について、成形時間による含浸状態の変化を表した試験片断面写真である。各写真の右隅に記載されている数値は、炭素繊維における未含浸率である。未含浸率は、以下の手順で求められる。
 図5は、炭素繊維における未含浸率を求めるための画像データの一例であり、(a)試験片の画像処理前の断面、及び(b)画像処理後の断面を示してある。炭素繊維(繊維束)の断面画像(a)を画像処理により、所定の閾値で二値化し、白色領域を含浸領域S1、黒色領域を未含浸領域S2とする断面画像(b)を得る。断面画像(b)から得られたS1及びS2の値を用いて、未含浸率(%)を、以下の式(1)から求める。
   未含浸率(%) = S2/(S1+S2) ・・・ (1)
 図6は、二層配置及び交互配置における各試験片の未含浸率を成形時間に対してプロットしたグラフである。図6より、二層配置及び交互配置のいずれにおいても、成形時間の経過とともに、炭素繊維に対する熱可塑性樹脂の未含浸率が徐々に低下した。すなわち、成形時間の経過とともに、炭素繊維に熱可塑性樹脂が十分に含浸することが確認された。また、二層配置と交互配置との比較では、二層配置の方が交互配置よりも含浸特性に優れた材料が得られることが判明した。特に、二層配置で組み上げた炭素繊維/樹脂繊維複合体を用いて20分以上、好ましくは40分以上熱成形を行うと、炭素繊維の略中心まで熱可塑性樹脂を含浸させることが可能となることが判明した。
〔界面特性評価〕
 炭素繊維/樹脂繊維複合体(ハイブリッド化繊維複合体)を熱成形して得られる長繊維強化熱可塑性樹脂構造物(ハイブリッド化構造物)について、曲げ試験機を用いた三点曲げ試験を実施し、界面特性を評価した。三点曲げ試験により長繊維強化熱可塑性樹脂構造物の長手方向における力学的特性を測定し、弾性率及び強度の値が大きいほど、界面特性が良好であることが間接的に推定できる。
 長繊維強化熱可塑性樹脂構造物の試験片として、長さ50mm、幅20mm、厚み2mmの板状体を熱成形により作製した。試験片には、図2に示した二層配置の炭素繊維/樹脂繊維複合体、及び交互配置の炭素繊維/樹脂繊維複合体から得られた成形体を用意した。また、参考として、炭素繊維/PP繊維複合体、及び炭素繊維/MAPP繊維複合体から得られた成形体も合わせて用意した。各試験片の熱成形条件は、成形温度200℃、成形圧力10MPa、成形時間5分、10分、20分、40分とした。次に、各試験片において、スパン間距離32mmの中央にクロスヘッドスピード1mm/分で負荷を印加し、試験片が破壊されるまで三点曲げ試験を継続した。図7は、各試験片の三点曲げ試験による測定データ(荷重-撓み曲線)のグラフである。この測定データに基づき、以下の式(2)及び式(3)を用いて、各試験片の曲げ弾性率E(MPa)、及び曲げ応力σ(MPa)を見積もった。曲げ応力σの最大値を曲げ強度とする。なお、これらの計算は、JIS K7017に準拠した方法で行った。
   E=L/(4bh)・(ΔF/ΔS) ・・・ (2)
   σ=3FL/(2bh) ・・・ (3)
 L :支点間距離(mm)
 b :試験片の幅(mm)
 h :試験片の厚さ(mm)
 F :荷重(N)
 ΔS:曲げ歪みε’=0.0005及びε”=0.0025に対応する曲げ撓みS’及びS”間の撓みの差(mm)
 ΔF:S’及びS”における夫々の荷重F’とF”との差(N)
 試験結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記結果より、二層配置の炭素繊維/樹脂繊維複合体(試験No.1)、及び交互配置の炭素繊維/樹脂繊維複合体(試験No.2)から成形した長繊維強化熱可塑性樹脂構造物(ハイブリッド化構造物)は、炭素繊維/PP繊維複合体(試験No.3)から成形した長繊維強化熱可塑性樹脂構造物(非ハイブリッド化構造物)よりも弾性率及び強度が大きく向上することが確認された。特に、二層配置の炭素繊維/樹脂繊維複合体(試験No.1)は、炭素繊維/MAPP繊維複合体(試験No.4)に対しても同等の弾性率及び強度を示した。従って、炭素繊維/樹脂繊維複合体において、樹脂繊維としてPP繊維とMAPP繊糸とをハイブリッド化したものを使用して熱成形すれば、MAPP繊維による含浸特性の低下を抑制しながら、炭素繊維/MAPP繊維複合体並みの高い界面特性を実現しつつ、長繊維方向(長手方向)において十分な強度を有する高性能な長繊維強化熱可塑性樹脂構造物を得ることができる。
〔別実施形態〕
 (1)炭素繊維/樹脂繊維複合体(ハイブリッド化繊維複合体)を構成する少なくとも2種の樹脂繊維は、上記実施形態で説明したPP繊維、及びMAPP繊維の他にも種々の組み合わせの材料を選択することが可能である。例えば、樹脂繊維複合体として、以下の樹脂繊維の組合せが挙げられ、各組合せを選択した場合の補完可能(両立可能)な物性について列挙する。
〔1〕ポリ乳酸(PLA)繊維/ポリオキシメチレン(POM)繊維:界面特性及び含浸性/靭性
〔2〕ポリプロピレン(PP)繊維/ポリアミド(PA)繊維(ナイロン繊維):含浸性/界面接着性、低コスト/界面接着性
〔3〕ポリアミド(PA)繊維/ポリオキシメチレン(POM)繊維:界面接着性/耐摩耗性及び摺動性
〔4〕ポリプロピレン(PP)繊維/ポリオキシメチレン(POM)繊維:含浸性/耐摩耗性及び摺動性
〔5〕ポリアミド(PA)繊維/ポリフェニレンサルファイド(PPS)繊維:界面接着性/耐熱性、界面接着性/含浸性
〔6〕ポリプロピレン(PP)繊維/ポリカーボネート(PC)繊維:含浸性/耐衝撃性
〔7〕ポリアミド(PA)繊維/ポリカーボネート(PC)繊維:界面接着性/耐衝撃性
 その他にも樹脂繊維複合体を構成する少なくとも2種の樹脂繊維として、例えば、ポリエチレン(PE)繊維、ポリエーテル・エーテル・ケトン(PEEK)繊維、ポリエーテル・ケトン・ケトン(PEKK)繊維等の熱可塑性樹脂繊維が挙げられる。また、補完可能な熱可塑性樹脂繊維の物性としては、上述した物性の他に、吸水性、耐疲労性、耐薬品性、耐溶剤性、難燃性、電気的特性、耐寒性、耐候性等が挙げられる。
 (2)組紐技術によって作製されるハイブリッド化繊維複合体は、目的の長繊維強化熱可塑性樹脂構造物に応じて、種々の構造物とすることができる。組紐には伝統的な組み方の角打紐、平打紐、丸打紐等が知られているが、これらの組紐をベースとしてハイブリッド化繊維複合体を構成することができる。例えば、自動車のボディの一部であるピラーを製造する場合、中間材料となる強化繊維/樹脂繊維複合体をリボン状の平打紐として作製し、これを環状に巻き上げて成形する。これにより、軽量且つ高強度の中空ピラーを製造することができる。
 (3)組物(強化繊維/樹脂繊維複合体)の作製に際し、上記実施形態では、中心糸40及び中央糸15に強化繊維を使用し、組糸25に樹脂繊維を使用しているが、中心糸40、中央糸15、組糸25に対して、どの種の繊維を組み合わせるかは特に限定されず、作製する強化繊維/樹脂繊維複合体に応じて、適宜決定することができる。例えば、中央糸15に強化繊維を使用し、中心糸40及び組糸25に樹脂繊維を使用することも可能である。
 本発明の強化繊維/樹脂繊維複合体は、長繊維強化熱可塑性樹脂構造物の中間材料となるものであり、自動車、船舶、航空機等の分野において好適に利用することができる。
 10  中央糸供給部
 11  先端部
 15  中央糸(強化繊維)
 15a 炭素繊維
 20  組糸供給部
 21  スピンドル
 22  巻戻しバー
 25  組糸(樹脂繊維)
 25a PP繊維
 25b MAPP繊維
 40  中心糸(強化繊維)
 50  強化繊維/樹脂繊維複合体
 100 組物作製機

Claims (7)

  1.  長繊維強化熱可塑性樹脂構造物の中間材料となる強化繊維/樹脂繊維複合体であって、
     前記強化繊維は長手方向に延在する長繊維であり、
     前記樹脂繊維は少なくとも2種の熱可塑性樹脂繊維を有しており、
     前記強化繊維を包囲するように、前記少なくとも2種の熱可塑性樹脂繊維を前記強化繊維の周囲に配置してある強化繊維/樹脂繊維複合体。
  2.  前記少なくとも2種の熱可塑性樹脂繊維を、前記長繊維の長手方向に対して所定角度で相互に組み合わした組紐の状態で、前記強化繊維の周囲に配置してある請求項1に記載の強化繊維/樹脂繊維複合体。
  3.  前記少なくとも2種の熱可塑性樹脂繊維は、熱成形後に各繊維の物性が相互に補完されるように選択される請求項1又は2に記載の強化繊維/樹脂繊維複合体。
  4.  前記少なくとも2種の熱可塑性樹脂繊維は、ポリ乳酸(PLA)繊維、ポリアミド(PA)繊維、ポリカーボネート(PC)繊維、ポリオキシメチレン(POM)繊維、ポリプロピレン(PP)繊維、酸変性ポリプロピレン(MAPP)繊維、ポリエチレン(PE)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリエーテル・エーテル・ケトン(PEEK)繊維、及びポリエーテル・ケトン・ケトン(PEKK)繊維からなる群から選択される請求項1~3の何れか一項に記載の強化繊維/樹脂繊維複合体。
  5.  前記少なくとも2種の熱可塑性樹脂繊維は、ポリプロピレン(PP)繊維、及び酸変性ポリプロピレン(MAPP)繊維である請求項1~3の何れか一項に記載の強化繊維/樹脂繊維複合体。
  6.  前記少なくとも2種の熱可塑性樹脂繊維は、ポリ乳酸(PLA)繊維、及びポリオキシメチレン(POM)繊維である請求項1~3の何れか一項に記載の強化繊維/樹脂繊維複合体。
  7.  長繊維強化熱可塑性樹脂構造物の中間材料となる強化繊維/樹脂繊維複合体の製造方法であって、
     前記強化繊維は長手方向に延在する長繊維であり、
     前記樹脂繊維は少なくとも2種の熱可塑性樹脂繊維を有しており、
     前記少なくとも2種の熱可塑性樹脂繊維を前記強化繊維の周囲にスタンバイする準備工程と、
     前記強化繊維を包囲するように、前記少なくとも2種の熱可塑性樹脂繊維を前記長手方向に対して所定角度で連続的に相互に組み合わせる組紐工程と、
    を包含する強化繊維/樹脂繊維複合体の製造方法。
PCT/JP2012/074200 2011-09-22 2012-09-21 強化繊維/樹脂繊維複合体、及びその製造方法 WO2013042763A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/346,401 US20140230634A1 (en) 2011-09-22 2012-09-21 Reinforced fiber/resin fiber composite, and method for manufacturing same
EP12833506.4A EP2759387B1 (en) 2011-09-22 2012-09-21 Reinforced fiber / resin fiber composite, and method for manufacturing same
JP2013534765A JP6014878B2 (ja) 2011-09-22 2012-09-21 強化繊維/樹脂繊維複合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011207258 2011-09-22
JP2011-207258 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042763A1 true WO2013042763A1 (ja) 2013-03-28

Family

ID=47914523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074200 WO2013042763A1 (ja) 2011-09-22 2012-09-21 強化繊維/樹脂繊維複合体、及びその製造方法

Country Status (4)

Country Link
US (1) US20140230634A1 (ja)
EP (1) EP2759387B1 (ja)
JP (1) JP6014878B2 (ja)
WO (1) WO2013042763A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061384A1 (ja) * 2012-10-17 2014-04-24 国立大学法人岐阜大学 連続繊維強化熱可塑性樹脂複合材料製造用の強化繊維/樹脂繊維複合体、およびその製造方法
JP2019523161A (ja) * 2016-07-08 2019-08-22 ショマラ・テキスタイルズ・インダストリーズChomarat Textiles Industries 熱可塑性樹脂含浸法での使用に適したテキスタイル強化材
WO2019172208A1 (ja) 2018-03-05 2019-09-12 旭化成株式会社 熱可塑性樹脂コーティング強化繊維複合糸、該複合糸の製造方法、連続繊維強化樹脂成形体、複合材料成形体の製造方法
JP2019167648A (ja) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 一方向性補強繊維シートおよび組紐

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9839253B2 (en) 2014-12-10 2017-12-12 Nike, Inc. Last system for braiding footwear
US20160175075A1 (en) * 2014-12-19 2016-06-23 Luke Lu Bioglass Fiber Dental Implant
CN104652036B (zh) * 2015-03-24 2017-03-29 中国人民解放军国防科学技术大学 一种三维四向混编织物的制备方法
US10060056B1 (en) * 2015-05-04 2018-08-28 A&P Technology, Inc. Interlocking braided structures
FR3036039B1 (fr) * 2015-05-13 2017-06-09 Gymnova Element de prehension d'un equipement sportif
US10060057B2 (en) 2015-05-26 2018-08-28 Nike, Inc. Braiding machine with non-circular geometry
US10280538B2 (en) 2015-05-26 2019-05-07 Nike, Inc. Braiding machine and method of forming an article incorporating a moving object
US10238176B2 (en) 2015-05-26 2019-03-26 Nike, Inc. Braiding machine and method of forming a braided article using such braiding machine
KR101734268B1 (ko) 2015-05-29 2017-05-24 현대자동차 주식회사 고분자 수지 조성물, 고분자 복합재 테이프 및 자동차 프론트 범퍼
US9920462B2 (en) * 2015-08-07 2018-03-20 Nike, Inc. Braiding machine with multiple rings of spools
US10167582B1 (en) * 2016-05-13 2019-01-01 Stryker Corporation Braided filament with particularized strand compositions and methods of manufacturing and using same
JP7203770B2 (ja) 2017-06-15 2023-01-13 アーケマ・インコーポレイテッド 疑似非晶質ポリマーからの半晶質の部品の製造
US11623847B2 (en) * 2020-01-30 2023-04-11 Cortland Company, Inc. Sling
CN112497732B (zh) * 2020-11-26 2022-07-15 哈尔滨工业大学 基于连续纤维增强树脂基预浸料的空间桁架3d打印方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324331A (ja) 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd 複合材料用混繊糸及びその製造法
JP2001073241A (ja) * 1999-07-06 2001-03-21 Fukui Giyomou Kk 複合強化原糸又は紐と、これを用いた編成物及び複合材料並びにその製法と構造体
JP2004115961A (ja) * 2002-09-26 2004-04-15 Du Pont Toray Co Ltd 繊維強化熱可塑性樹脂複合材料
JP2005052987A (ja) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd 繊維補強熱可塑性樹脂複合材料およびその製造方法、ならびにそれを用いた成形体
JP2007046197A (ja) * 2005-08-10 2007-02-22 Kurabo Ind Ltd 繊維強化プラスチック用多軸不織シートおよびその製造方法
JP2007118216A (ja) 2005-10-25 2007-05-17 Toho Tenax Co Ltd 炭素繊維強化熱可塑性樹脂テープ及びその製造方法
JP2009090474A (ja) * 2007-10-04 2009-04-30 Asahi Kasei Fibers Corp 繊維束シートおよび該繊維束シートを一体成形した繊維強化複合材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135180B2 (ja) * 2004-10-29 2008-08-20 福井ファイバーテック株式会社 多方向繊維強化熱可塑性樹脂板及びその製造法並びに製造システムと加圧成形装置
JP2008240170A (ja) * 2007-03-26 2008-10-09 Toho Tenax Co Ltd 熱可塑性樹脂補強用複合糸及びそれを用いた樹脂含有ストランドの製造方法
JP2008266648A (ja) * 2008-05-09 2008-11-06 Du Pont Toray Co Ltd 繊維補強熱可塑性樹脂複合材料およびそれを用いた成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324331A (ja) 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd 複合材料用混繊糸及びその製造法
JP2001073241A (ja) * 1999-07-06 2001-03-21 Fukui Giyomou Kk 複合強化原糸又は紐と、これを用いた編成物及び複合材料並びにその製法と構造体
JP2004115961A (ja) * 2002-09-26 2004-04-15 Du Pont Toray Co Ltd 繊維強化熱可塑性樹脂複合材料
JP2005052987A (ja) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd 繊維補強熱可塑性樹脂複合材料およびその製造方法、ならびにそれを用いた成形体
JP2007046197A (ja) * 2005-08-10 2007-02-22 Kurabo Ind Ltd 繊維強化プラスチック用多軸不織シートおよびその製造方法
JP2007118216A (ja) 2005-10-25 2007-05-17 Toho Tenax Co Ltd 炭素繊維強化熱可塑性樹脂テープ及びその製造方法
JP2009090474A (ja) * 2007-10-04 2009-04-30 Asahi Kasei Fibers Corp 繊維束シートおよび該繊維束シートを一体成形した繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759387A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061384A1 (ja) * 2012-10-17 2014-04-24 国立大学法人岐阜大学 連続繊維強化熱可塑性樹脂複合材料製造用の強化繊維/樹脂繊維複合体、およびその製造方法
JP2019523161A (ja) * 2016-07-08 2019-08-22 ショマラ・テキスタイルズ・インダストリーズChomarat Textiles Industries 熱可塑性樹脂含浸法での使用に適したテキスタイル強化材
WO2019172208A1 (ja) 2018-03-05 2019-09-12 旭化成株式会社 熱可塑性樹脂コーティング強化繊維複合糸、該複合糸の製造方法、連続繊維強化樹脂成形体、複合材料成形体の製造方法
JP2019167648A (ja) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 一方向性補強繊維シートおよび組紐
JP7106918B2 (ja) 2018-03-23 2022-07-27 三菱ケミカル株式会社 一方向性補強繊維シートおよび組紐

Also Published As

Publication number Publication date
EP2759387B1 (en) 2017-09-13
EP2759387A4 (en) 2015-04-15
EP2759387A1 (en) 2014-07-30
US20140230634A1 (en) 2014-08-21
JPWO2013042763A1 (ja) 2015-03-26
JP6014878B2 (ja) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6014878B2 (ja) 強化繊維/樹脂繊維複合体
CN103269845B (zh) 由增强纤维束制成且含单向纤维带的纤维预制件以及复合件
JP6164591B2 (ja) 連続繊維強化熱可塑性樹脂複合材料製造用の強化繊維/樹脂繊維複合体、およびその製造方法
KR20190095292A (ko) 분말 형태의 열가소성 폴리머로 예비 함침된 섬유성 재료를 제조하기 위한 방법
KR20190095291A (ko) 건조 분말 형태의 열가소성 폴리머로 예비 함침된 섬유성 재료를 제조하기 위한 방법
KR20190095293A (ko) 분무에 의해 열가소성 폴리머로 예비 함침된 섬유성 재료를 제조하기 위한 방법
CN106163775A (zh) 制造复合预制件的方法
HUE035531T2 (en) Steel Stranded Reinforced Composites
EP2640559A2 (de) Hybridgarn, verfahren zur herstellung von faser-preforms für faserverbundbauteile, insbesondere hochleistungsfaserverbundbauteile, unter verwendung desselben sowie verfahren zur herstellung von faserverbundbauteilen, insbesondere hochleistungsfaserverbundbauteilen
KR101439150B1 (ko) 탄소연속섬유/열가소성수지섬유 복합사 및 이의 제조방법
Novo et al. Development of a new pultrusion equipment to manufacture thermoplastic matrix composite profiles
US20210237316A1 (en) Fiber preform and method of making the same
WO2017012802A1 (de) Werkstoff mit mindestens zweischichtiger hülle
KR102204244B1 (ko) 섬유강화 복합재료 제조용 복합섬유 원단 및 이를 이용한 섬유강화 복합재료의 성형방법
CN102094273A (zh) 含有连续玻璃纤维的复合纤维制造方法及其设备
JP7106918B2 (ja) 一方向性補強繊維シートおよび組紐
JP2019155730A (ja) フィラメントワインディング(fw)法によるudライクな繊維強化複合シートの製造方法
JP2016526619A (ja) ウィスカーヤーンへの基材注入法によりウィスカー強化されたハイブリッド繊維
DE102019204427B4 (de) Verfahren zur Herstellung von mit Fasern verstärkten Bauteilen aus Kunststoff
CN110770377B (zh) 混纤丝的制造方法、混纤丝以及纺织物或编织物的制造方法
CN204914624U (zh) 纤维定型布
Stolyarov et al. Commingled composites
JP2008240170A (ja) 熱可塑性樹脂補強用複合糸及びそれを用いた樹脂含有ストランドの製造方法
US11873590B1 (en) Carbon fiber—carbon nanotube tow hybrid reinforcement with enhanced toughness
Radford et al. Fused Deposition Technology Applied to Thermoplastic Matrix Placement and Wetout in Filament Winding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833506

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013534765

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012833506

Country of ref document: EP