WO2013042725A1 - アルミニウム製熱交換器の表面処理方法 - Google Patents

アルミニウム製熱交換器の表面処理方法 Download PDF

Info

Publication number
WO2013042725A1
WO2013042725A1 PCT/JP2012/074059 JP2012074059W WO2013042725A1 WO 2013042725 A1 WO2013042725 A1 WO 2013042725A1 JP 2012074059 W JP2012074059 W JP 2012074059W WO 2013042725 A1 WO2013042725 A1 WO 2013042725A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
chemical conversion
group
zirconium
aluminum
Prior art date
Application number
PCT/JP2012/074059
Other languages
English (en)
French (fr)
Inventor
徳純 松井
優子 和田
晃宏 水野
淳介 法華
Original Assignee
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント株式会社 filed Critical 日本ペイント株式会社
Priority to CN201280045677.6A priority Critical patent/CN103917693B/zh
Priority to US14/346,132 priority patent/US9757811B2/en
Publication of WO2013042725A1 publication Critical patent/WO2013042725A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/22Safety or protection arrangements; Arrangements for preventing malfunction for draining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49393Heat exchanger or boiler making with metallurgical bonding

Definitions

  • the present invention relates to a surface treatment method for an aluminum heat exchanger. More specifically, the present invention relates to a surface treatment method for an aluminum heat exchanger that is flux-brazed by a Nocolok brazing method.
  • fins used in automobile air conditioners are usually provided with a plurality of fins arranged at narrow intervals in order to increase the surface area as much as possible, and for supplying refrigerant to these fins.
  • the tubes are intricately arranged.
  • moisture in the atmosphere adheres to the surface of fins and tubes (hereinafter referred to as “fins”) as condensed water when the air conditioner is in operation.
  • fins moisture in the atmosphere adheres to the surface of fins and tubes
  • the attached condensed water becomes a substantially hemispherical water droplet or exists in a bridge shape between the fins, resulting in an increase in ventilation resistance.
  • a hydrophilic treatment is usually performed for the purpose of imparting hydrophilicity to the surface of the fin or the like.
  • a chemical conversion treatment agent containing titanium complex fluoride ion, pentavalent vanadium compound ion and zirconium complex fluoride ion is disclosed as a chemical conversion treatment agent that imparts good corrosion resistance to the surface of aluminum or its alloy material.
  • a chemical conversion treatment agent containing decabanadate ions and zirconium complex fluoride ions corresponding to pentavalent vanadium compound ions is disclosed as a chemical conversion treatment agent that imparts good corrosion resistance to the surface of the aluminum heat exchanger. (See Patent Document 2).
  • an aluminum heat exchanger used for an automobile air conditioner is manufactured by arranging and assembling a plurality of fins and the like and then joining them. At the time of bonding, a strong and dense oxide film is formed on the surface of aluminum, so it is not easy to bond by a brazing method that is not a mechanical bonding method, and it is necessary to devise such as brazing in a vacuum Met.
  • NB method Nocolok brazing method in which brazing in nitrogen gas is frequently used.
  • a flux such as KAlF 4 and K 2 AlF 5 in nitrogen gas.
  • an NB heat exchanger is used as a zirconium complex fluoride ion.
  • a chemical conversion treatment by immersing in a chemical conversion treatment agent containing at least one of titanium complex fluoride ions, and then immersing in a hydrophilization treatment agent containing polyvinyl alcohol, polyoxyalkylene-modified polyvinyl alcohol, an inorganic crosslinking agent, a guanidine compound, and the like.
  • a technique for hydrophilic treatment is disclosed (see Patent Document 3).
  • the surface of the aluminum or aluminum alloy base material is suitable for forming a chemical conversion film.
  • a surface adjustment step, a water washing step, a step of forming a first protective layer comprising a chemical conversion film on the surface of the aluminum or aluminum alloy substrate, a water washing step, a second protective layer which is an organic film on the first protective layer The technique which passes through the process of apply
  • the first protective layer is formed of a chemical conversion treatment solution containing vanadium and at least one metal selected from titanium, zirconium, and hafnium
  • the second protective layer is (1) chitosan. It is formed of a composition containing a derivative and a solubilizer, (2) modified polyvinyl alcohol obtained by graft polymerization of a hydrophilic polymer on the side chain of polyvinyl alcohol, and (3) a water-soluble crosslinking agent.
  • JP 2010-261058 A Japanese translation of PCT publication No. 2004-510882 JP 2006-69197 A JP 2011-161876 A
  • the index of corrosion resistance is white rust
  • the index of moisture resistance is blackening.
  • White rust is a local corrosion phenomenon caused by corrosion factors such as oxygen, water and chloride ions
  • blackening is a general corrosion phenomenon caused by the presence of oxygen, water and heat. is there. Therefore, in an NB heat exchanger for an automotive air conditioner that is exposed to high heat, it is desired to improve the moisture resistance by suppressing the occurrence of blackening as well as the corrosion resistance.
  • Patent Document 1 is not a technique for improving moisture resistance because the processing target is not a heat exchanger in the first place. Moreover, in this technique, since the process target is not a heat exchanger, the hydrophilic treatment is not performed.
  • the technique of patent document 2 is a heat exchanger made from aluminum, examination about moisture resistance is not made at all and it is not a technique which improves moisture resistance. This technique is a technique focused on imparting good corrosion resistance, and no study has been made on the hydrophilization treatment.
  • the technology of Patent Document 3 is a NB heat exchanger for automobile air conditioners, and is a technology that gives good deodorization in addition to good corrosion resistance and hydrophilicity, but is not a technology that focuses on moisture resistance. .
  • Patent Document 3 does not describe an embodiment in which a predetermined amount of vanadium ions is contained in the chemical conversion treatment agent, and the corrosion resistance in Patent Document 3 has a significantly shorter evaluation time than the present invention.
  • the level is lower than that of the present invention.
  • the technology of Patent Document 4 is a heat exchanger made of aluminum or aluminum alloy, and is a technology that imparts long-term hydrophilicity, high corrosion resistance, antibacterial properties, moisture resistance, and deodorization properties.
  • An embodiment in which a guanidine compound is contained in the treatment agent is not described.
  • the corrosion resistance in Patent Document 4 has an evaluation time that is significantly shorter than that of the present invention, and the moisture resistance has an evaluation temperature that is significantly lower than that of the present invention, both of which are lower in level than the present invention. It has become.
  • the present invention has been made in view of the above, and its purpose is to impart excellent corrosion resistance (white rust resistance) and moisture resistance (blackening resistance) to an NB heat exchanger used in an automobile air conditioner. It is to provide a surface treatment method to obtain.
  • the present invention provides a surface treatment method for an aluminum heat exchanger flux-brazed by a Nocolok brazing method, (A)
  • the aluminum heat exchanger includes at least one of zirconium and titanium, and the total content thereof is 5 to 5,000 mass ppm, the vanadium is included and the content is 10 to 1,000 ppm by mass.
  • a chemical conversion treatment with a chemical conversion treatment agent having a pH of 2 to 6 to form a chemical conversion film on the surface thereof (B) An aluminum heat exchanger having a chemical conversion film formed on the surface in the step (a), a hydrophilic resin, at least one of a guanidine compound represented by the following general formula (1) and a salt thereof, A step of contacting with a hydrophilizing agent comprising: ... (1)
  • Y represents —C ( ⁇ NH) — (CH 2 ) m —, —C ( ⁇ O) —NH— (CH 2 ) m — or —C ( ⁇ S) —NH— ( CH 2 ) m- .
  • m represents an integer of 0 to 20
  • n represents a positive integer
  • k represents 0 or 1.
  • X represents hydrogen, amino group, hydroxyl group, methyl group, phenyl group, chlorophenyl group or methylphenyl group (tolyl group).
  • Z represents a polymer represented by hydrogen, amino group, hydroxyl group, methyl group, phenyl group, chlorophenyl group, methylphenyl group (tolyl group) or the following general formula (2) and having a mass average molecular weight of 2 to 1,000,000. . ] ... (2) [In Formula (2), p represents a positive integer. ]
  • (C) A surface treatment method for an aluminum heat exchanger, including the step of baking the aluminum heat exchanger subjected to the contact treatment in the step (b) to form a hydrophilized film on the surface thereof. provide.
  • the guanidine compound and its salt are preferably those having a biguanide structure represented by the following general formula (4) and salts thereof. ... (4)
  • the total amount of zirconium and titanium is 5 to 300 mg / m 2
  • the amount of vanadium is 1 to 150 mg / m 2
  • the coating amount of the hydrophilic coating formed in the step (c) is preferably 0.05 to 5 g / m 2 .
  • the chemical conversion film formed in the step (a) contains both zirconium and titanium.
  • the hydrophilizing agent used in the step (b) further contains at least one selected from the group consisting of phosphoric acid, condensed phosphoric acid, phosphonic acid and derivatives thereof, and lithium ions.
  • the hydrophilic resin in the hydrophilic treatment agent used in the step (b) contains at least one of polyvinyl alcohol and modified polyvinyl alcohol having a saponification degree of 90% or more.
  • a surface treatment method capable of imparting excellent corrosion resistance (white rust resistance) and moisture resistance (blackening resistance) to an NB heat exchanger used in an automobile air conditioner.
  • the surface treatment method according to the present embodiment performs surface treatment of an aluminum heat exchanger that has been flux brazed by the Nocolok brazing method.
  • the surface treatment method according to the present embodiment includes (a) a chemical conversion treatment step, (b) a hydrophilization treatment step, and (c) a baking step.
  • the NB heat exchanger that is the target of the surface treatment method according to the present embodiment is an aluminum heat exchanger that is flux brazed by the NB method.
  • This NB heat exchanger is preferably used for automobile air conditioners.
  • “made of aluminum” means made of aluminum or an aluminum alloy (hereinafter simply referred to as “aluminum”).
  • a plurality of fins are arranged at narrow intervals so as to make the surface area as large as possible, and a refrigerant supply tube is provided on these fins. Arranged intricately. Further, after assembling these fins and the like, brazing is performed using a flux in nitrogen gas, so that flux inevitably remains on the surfaces of the fins and the like. Therefore, the surface state (potential state, etc.) of the fins and the like is not uniform, and it is difficult to obtain a uniform chemical conversion film or a hydrophilic film with a conventional chemical conversion treatment agent.
  • the halogen-type flux normally used by NB method can be used as a flux.
  • halogen-based flux at least one selected from the group consisting of KAlF 4 , K 2 AlF 5 , K 3 AlF 6 , CsAlF 4 , Cs 3 AlF 6 and Cs 2 AlF 5 can be used.
  • the NB heat exchanger includes at least one of zirconium and titanium, and the total content thereof is 5 to 5,000 mass ppm, the vanadium is included, and the content is This is a step of forming a chemical conversion film on the surface by chemical conversion treatment with a chemical conversion treatment agent having 10 to 1,000 ppm by mass and pH of 2 to 6.
  • the NB heat exchanger may be pickled as necessary for the purpose of further improving the chemical conversion treatment effect.
  • the conditions for the pickling treatment are not particularly limited, and the treatment conditions conventionally used as the pickling treatment for the NB heat exchanger can be adopted.
  • zirconium, titanium, and vanadium all exist as various ions such as complex ions. Therefore, in this specification, each content of zirconium, titanium, and vanadium means the value of various ions in terms of metal elements.
  • the chemical conversion treatment agent of the present embodiment contains at least one of zirconium ions and titanium ions and vanadium ions, and is obtained by dissolving at least one of zirconium compounds and titanium compounds and vanadium compounds in water. It is done. That is, the chemical conversion treatment agent of this embodiment is a solution containing at least one of zirconium ions and titanium ions and vanadium ions as active species. As a preferable chemical conversion treatment agent of this embodiment, all of zirconium ions, titanium ions, and vanadium ions are contained as active species.
  • zirconium ions change due to the chemical conversion reaction, and as a result, zirconium precipitates mainly composed of zirconium oxide are deposited on the aluminum surface.
  • zirconium-based compound that is a supply source of zirconium ions include zirconium compounds such as fluorozirconic acid and zirconium fluoride, and salts of lithium, sodium, potassium, ammonium, and the like.
  • a zirconium compound such as zirconium oxide dissolved in a fluoride such as hydrofluoric acid can be used. Since these zirconium compounds have fluorine, they have a function of etching the aluminum surface.
  • Titanium ions change due to the chemical conversion reaction, whereby titanium precipitates mainly composed of titanium oxide are deposited on the aluminum surface. Titanium ions have a lower precipitation pH than the above-mentioned zirconium ions, so that the titanium precipitates are easily precipitated, and the precipitation of the above-mentioned zirconium precipitates and the vanadium precipitates described later can be promoted. The amount of the chemical conversion film to be formed can be increased. Titanium ions can be easily precipitated in the vicinity of the flux remaining on the surface of the NB heat exchanger to precipitate titanium precipitates.
  • titanium compound that is a supply source of titanium ions examples include salts of lithium, sodium, potassium, ammonium and the like in addition to titanium compounds such as fluorotitanic acid and titanium fluoride.
  • a titanium compound such as titanium oxide dissolved in a fluoride such as hydrofluoric acid can be used. Since these titanium compounds contain fluorine like the above zirconium compounds, they have a function of etching the aluminum surface. Moreover, the etching function is higher than that of the above-mentioned zirconium-based compound.
  • a chemical conversion film containing vanadium together with at least one of zirconium and titanium is formed by including at least one of zirconium ions and titanium ions and vanadium ions in the chemical conversion treatment agent.
  • Vanadium ions have the property of precipitating at a lower pH than titanium ions, so that vanadium precipitates mainly composed of vanadium oxide are deposited on the aluminum surface. More specifically, vanadium ions are converted to vanadium oxide by a reduction reaction, and thereby vanadium precipitates are deposited on the aluminum surface.
  • Vanadium precipitates are deposited on segregates on the aluminum surface where zirconium precipitates and titanium precipitates are unlikely to be formed, unlike zirconium precipitates or titanium precipitates that have the property of covering the entire surface except for a part of the aluminum surface. It has the characteristic that it is easy to do.
  • the chemical conversion treatment agent of this embodiment compared with the conventional chemical conversion treatment agent not containing vanadium ions, the chemical conversion treatment having a dense and high covering property mainly due to zirconium precipitates, titanium precipitates and vanadium precipitates.
  • a film can be formed. Vanadium precipitates exhibit the self-healing effect as in the case of conventional chromium films and have excellent film-forming properties when zirconium and titanium coexist.
  • vanadium ions are appropriately eluted from the vanadium precipitate, and the eluted vanadium ions oxidize and passivate the aluminum surface to self-repair and maintain good corrosion resistance.
  • the vanadium ion is not coexisting with zirconium ion or titanium ion, the vanadium precipitate is difficult to precipitate, and even if the vanadium precipitate is precipitated, the vanadium ion is eluted in a large amount from the precipitate. Such self-healing effects cannot be obtained.
  • a chemical conversion film containing zirconium, titanium, and vanadium is formed by including zirconium ions, titanium ions, and vanadium ions in the chemical conversion treatment agent.
  • an active treatment agent containing all of zirconium ions, titanium ions and vanadium ions as active species, a chemical film having a denser and higher covering property can be formed even in the vicinity of the flux.
  • a divalent to pentavalent vanadium compound can be used.
  • vanadium compounds do not have fluorine, they do not have a function of etching the aluminum surface.
  • a tetravalent or pentavalent vanadium compound is preferable, and specifically, vanadyl sulfate (tetravalent) and ammonium metavanadate (pentavalent) are preferably used.
  • the total content of zirconium ions and titanium ions is 5 to 5,000 mass ppm in terms of metal, and the content of vanadium ions is 10 to 1, in terms of metal. 000 mass ppm.
  • the zirconium content is preferably 5 to 3,000 ppm by mass
  • the titanium content is preferably 5 to 500 ppm by mass
  • the vanadium content is Is preferably 10 to 500 ppm by mass.
  • the pH of the chemical conversion treatment agent of this embodiment is 2 to 6, preferably 3 to 5. If pH is 2 or more, a chemical conversion film can be formed without causing excessive etching by the chemical conversion treatment agent, and excellent corrosion resistance and moisture resistance can be obtained. If the pH is 6 or less, a chemical conversion film having a sufficient film amount can be formed without insufficient etching, and excellent corrosion resistance and moisture resistance can be obtained.
  • pH of a chemical conversion treatment agent can be adjusted using common acids and alkalis, such as a sulfuric acid, nitric acid, and ammonia.
  • the chemical conversion treatment agent of the present embodiment is for the purpose of improving rust prevention properties, metal ions such as manganese, zinc, cerium, trivalent chromium, magnesium, strontium, calcium, tin, copper, iron and silicon compounds, phosphonic acid, Phosphorus compounds such as phosphoric acid and condensed phosphoric acid, as well as various silane couplings such as phenolic resins, polyacrylic acid and polyacrylic acid derivatives, and anti-corrosive agents such as polyallylamine, aminosilane and epoxysilane for improving adhesion An agent or the like may be included.
  • metal ions such as manganese, zinc, cerium, trivalent chromium, magnesium, strontium, calcium, tin, copper, iron and silicon compounds, phosphonic acid, Phosphorus compounds such as phosphoric acid and condensed phosphoric acid, as well as various silane couplings such as phenolic resins, polyacrylic acid and polyacrylic acid derivatives, and anti-corrosive agents
  • the chemical conversion treatment agent of this embodiment may contain 50 to 5,000 mass ppm of aluminum ions and 1 to 100 mass ppm of free fluorine ions.
  • Aluminum ions are also eluted from the aluminum to be treated into the chemical conversion treatment agent. Apart from that, the chemical conversion treatment reaction can be promoted by positively adding aluminum ions.
  • the chemical conversion film which has the more excellent corrosion resistance can be formed by setting free fluorine ion concentration higher than before. From the viewpoint of further enhancing the above effects, a more preferable content of aluminum ions is 100 to 3,000 ppm by mass, and a more preferable content is 200 to 2,000 ppm by mass.
  • a more preferable content of free fluorine ions is 5 to 80 ppm by mass, and a more preferable content is 15 to 50 ppm by mass.
  • Examples of a supply source of aluminum ions include aluminum nitrates such as aluminum nitrate, aluminum sulfate, aluminum fluoride, aluminum oxide, alum, aluminum silicate and sodium aluminate, and fluoroaluminum salts such as sodium fluoroaluminate.
  • Sources of free fluorine ions include hydrofluoric acid and salts thereof such as hydrofluoric acid, ammonium hydrofluoride, zirconium hydrofluoric acid and titanium hydrofluoric acid; sodium fluoride, zirconium fluoride and fluoride Metal fluorides such as titanium; ammonium fluoride and the like.
  • hydrofluoric acid and salts thereof such as hydrofluoric acid, ammonium hydrofluoride, zirconium hydrofluoric acid and titanium hydrofluoric acid; sodium fluoride, zirconium fluoride and fluoride Metal fluorides such as titanium; ammonium fluoride and the like.
  • zirconium fluoride, titanium fluoride, or the like is used as a supply source of free fluorine ions, these also serve as a supply source of zirconium ions or titanium ions.
  • the method of chemical conversion treatment of the present embodiment is not particularly limited, and any method such as a spray method or an immersion method may be used.
  • the temperature of the chemical conversion treatment agent is preferably 50 to 70 ° C., more preferably 55 to 65 ° C.
  • the chemical conversion treatment time is preferably 20 to 900 seconds, more preferably 30 to 600 seconds. By satisfy
  • the total amount of zirconium and titanium is preferably 5 to 300 mg / m 2 , and the amount of vanadium is 1 to 150 mg / m 2. m 2 is preferable. By satisfying these, excellent corrosion resistance and moisture resistance can be obtained.
  • the ratio of the amount of zirconium and the amount of titanium varies depending on the surface state of the NB heat exchanger to be treated, particularly the amount of segregated material, the total amount of these may be within the above range.
  • the amount of zirconium, titanium and vanadium in the chemical conversion film can be calculated from the measurement results of an X-ray fluorescence analyzer “XRF-1700” (manufactured by Shimadzu Corporation) after bonding the fins so as to be 10 mm ⁇ 10 mm or more.
  • the (b) hydrophilization treatment step of the present embodiment represents the NB heat exchanger having a chemical conversion film formed on the surface in the above (a) chemical conversion treatment step, represented by a hydrophilic resin and a general formula (1) described later. And a hydrophilizing agent containing at least one of a guanidine compound and a salt thereof.
  • the hydrophilic treatment agent of the present embodiment is an aqueous solution or aqueous dispersion containing a hydrophilic resin in an aqueous solvent and containing at least one of a guanidine compound represented by the following general formula (1) and a salt thereof. .
  • the hydrophilic resin of the present embodiment is not particularly limited, but is water-soluble or water-dispersible hydrophilic having at least one of a hydroxyl group, a carboxyl group, an amide group, an amino group, a sulfonic acid group, and an ether group in the molecule. Preferably, it is a functional resin. Moreover, it is preferable that the hydrophilic resin of the present embodiment can form a hydrophilic film such that the contact angle with water droplets is 40 ° or less from the viewpoint of obtaining good hydrophilicity.
  • hydrophilic resins include polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, sodium polyvinyl sulfonate, polystyrene sulfonic acid, polyacrylamide, carboxymethyl cellulose, chitosan, polyethylene oxide, water-soluble nylon, and polymers of these.
  • a monomer copolymer, an acrylic polymer having a polyoxyethylene chain such as 2-methoxypolyethylene glycol methacrylate / 2-hydroxylethyl acrylate copolymer, and the like are preferably used. These may be used alone or in combination of two or more.
  • the above-mentioned hydrophilic resin has excellent hydrophilicity and water resistance, has no odor of itself, and has a characteristic that odorous substances are difficult to adsorb. For this reason, according to the hydrophilization processing agent containing said hydrophilic resin, the obtained hydrophilic film is excellent in hydrophilic property and deodorizing property, and even if it exposes to a water droplet or flowing water, it does not deteriorate easily.
  • the hydrophilic coating since an inorganic substance such as silica having a dusty odor and a residual monomer component adsorbing an odorous substance are difficult to be exposed, excellent deodorizing properties can be obtained.
  • the hydrophilic resin of the present embodiment preferably has a number average molecular weight in the range of 1,000 to 1,000,000.
  • the number average molecular weight is 1,000 or more, the film properties such as hydrophilicity, deodorizing property, and film forming property are good. Further, when the number average molecular weight is 1,000,000 or less, the viscosity of the hydrophilizing agent does not become too high, and workability and film properties are improved.
  • a more preferred number average molecular weight is in the range of 10,000 to 200,000.
  • the number average molecular weight in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
  • polyvinyl alcohol is preferable from the viewpoint of excellent hydrophilicity and deodorization property, and among them, polyvinyl alcohol having a saponification degree of 90% or more and modified polyvinyl alcohol are particularly preferable. By using at least one of these, excellent hydrophilicity and deodorizing properties can be obtained. A more preferable degree of saponification is 95% or more.
  • modified polyvinyl alcohol include polyoxyalkylene-modified polyvinyl alcohol in which 0.01 to 20% of the pendant group is a polyoxyalkylene ether group represented by the following general formula (3). ... (3) [In the above formula (3), n represents an integer of 1 to 500, R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom or a methyl group. ]
  • the polyoxyalkylene-modified group is preferably 0.1 to 5% of the pendant group, and the polymerization degree n of the polyoxyalkylene-modified group is 3 to 30. preferable. By satisfying these, good hydrophilicity can be obtained due to the hydrophilicity of the polyoxyalkylene-modified group.
  • the polyoxyalkylene-modified polyvinyl alcohol include ethylene oxide-modified polyvinyl alcohol.
  • the content of the hydrophilic resin in the hydrophilic treatment agent is not particularly limited, but is preferably 10 to 99% by mass, more preferably 30 to 95% by mass in the solid content of the hydrophilic treatment agent. is there. Thereby, favorable hydrophilicity and deodorizing property are obtained.
  • the guanidine compound contained in the hydrophilic treatment agent of the present embodiment is represented by the following general formula (1).
  • the guanidine compound contains a large amount of nitrogen, it has a characteristic that it adheres well to at least one of zirconium and titanium and a chemical conversion film containing vanadium, and is thin with a thickness of approximately 0.1 ⁇ m. It has the property of being easily adsorbed on the aluminum surface through the chemical conversion film. Therefore, by mix
  • the hydrophilization treatment agent of this embodiment can provide excellent corrosion resistance and excellent moisture resistance by blending a guanidine compound.
  • the flux brazed aluminum heat exchanger is subjected to a chemical conversion treatment with a chemical conversion treatment agent containing at least one of zirconium and titanium and vanadium, and then a hydrophilic resin, the guanidine compound, and its Since it is treated with a hydrophilizing agent containing at least one of the salts, a two-stage rust prevention treatment is applied, and as a result, even if the flux is partially present, the aluminum heat The entire surface of the exchanger has a sufficient rust prevention effect.
  • n represents an integer of 0 to 20
  • n represents a positive integer
  • k represents 0 or 1.
  • X represents hydrogen, an amino group, a hydroxyl group, a methyl group, a phenyl group, a chlorophenyl group, or a methylphenyl group (tolyl group).
  • Z represents a polymer represented by hydrogen, amino group, hydroxyl group, methyl group, phenyl group, chlorophenyl group, methylphenyl group (tolyl group) or the following general formula (2) and having a mass average molecular weight of 2 to 1,000,000. . ] ... (2) [In Formula (2), p represents a positive integer. ]
  • Examples of the guanidine compound include guanidine, aminoguanidine, guanylthiourea, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, polyhexamethylenebiguanide, polyhexaethylene.
  • Examples include biguanides, polypentamethylene biguanides, polypentaethylene biguanides, polyvinyl biguanides, polyallyl biguanides, and the like.
  • Examples of salts of guanidine compounds include organic acid salts of the above guanidine compounds such as phosphates, hydrochlorides, sulfates, acetates and gluconates.
  • the total amount of the guanidine compound salt is preferably in the range of 0.01 to 100 in terms of molar ratio to the total amount of the guanidine compound and the salt thereof. Thereby, good corrosion resistance and moisture resistance are obtained.
  • the number average molecular weight of the guanidine compound and its salt of the present embodiment is preferably in the range of 59 to 1,000,000.
  • the minimum molecular weight of the guanidine compound is 59, and water-solubilization is possible when the number average molecular weight is 1,000,000 or less. And moisture resistance is obtained.
  • the lower limit of the number average molecular weight is more preferably 300, and even more preferably 500.
  • the upper limit is more preferably 100,000, and further preferably 20,000.
  • guanidine compound and its salt of the present embodiment have an effect of obtaining excellent corrosion resistance and moisture resistance, among the guanidine compounds represented by the above general formulas (1) and (2) and their salts, Among them, a guanidine compound having a biguanide structure represented by the following general formula (4) and a salt thereof are preferable. ... (4)
  • Examples of the guanidine compound having a biguanide structure and a salt thereof include polyhexamethylene biguanide, 1-o-tolylbiguanide, chlorhexidine gluconate and a salt thereof, and the like. These may be used alone or in combination of two or more.
  • the total content of the guanidine compound and its salt in the present embodiment is preferably 1 to 40% by mass with respect to the solid content of the hydrophilizing agent. Thereby, excellent corrosion resistance and moisture resistance are obtained. Further, from the viewpoint of further enhancing this effect, the content is more preferably 5 to 30% by mass.
  • the hydrophilization treatment agent of this embodiment further includes at least one selected from the group consisting of phosphoric acid, condensed phosphoric acid, phosphonic acid and derivatives thereof, and lithium ions.
  • the hydrophilic treatment agent of the present embodiment contains a phosphorus compound such as phosphoric acid, condensed phosphoric acid, phosphonic acid, and derivatives thereof, so that a hydrophilic film containing these phosphorus compounds is formed on the aluminum surface.
  • a phosphorus compound such as phosphoric acid, condensed phosphoric acid, phosphonic acid, and derivatives thereof, so that a hydrophilic film containing these phosphorus compounds is formed on the aluminum surface.
  • the eluted aluminum reacts with the phosphorus compound in the hydrophilized film to form aluminum phosphate and insolubilize it, thereby further elution of aluminum over a long period of time. Therefore, excellent corrosion resistance and moisture resistance can be obtained.
  • the phosphorus compound examples include phosphoric acid, polyphosphoric acid, tripolyphosphoric acid, metaphosphoric acid, ultraphosphoric acid, phytic acid, phosphinic acid, hydroxyethylidene diphosphonic acid, nitrilotris (methylenephosphonic acid), and phosphonobutanetricarboxylic acid.
  • PBTC ethylenediaminetetra (methylenephosphonic acid), tetrakis (hydroxymethyl) phosphonium salt, acrylic phosphone copolymer, and the like.
  • the content of the phosphorus compound is preferably 0.05 to 25% by mass with respect to the solid content of the hydrophilic treatment agent. Thereby, excellent corrosion resistance and moisture resistance are obtained. Further, from the viewpoint of further enhancing this effect, the content is more preferably 0.1 to 10% by mass.
  • the hydrophilization treatment agent of this embodiment can obtain excellent corrosion resistance and moisture resistance by the following mechanism by including lithium ions. That is, the alkali metal ions such as potassium ions remaining in the halogen-based flux remaining on the surface of the NB heat exchanger and the lithium ions from the hydrophilized film perform, for example, an ion exchange reaction represented by the following formula (5), whereby the flux A poorly soluble film is formed at the interface between the residue and the hydrophilized film. Thereby, as a result of the formed poorly soluble film suppressing the elution of aluminum from the aluminum surface, excellent corrosion resistance and moisture resistance are obtained. Since lithium ions remain in the hydrophilized film for a long period of time, the above effect is maintained for a long period of time. [In the above formula (5), the combination of x and y is such that x is 1, y is 4, x is 2, y is 5 or x is 3, and y is 6. ]
  • the lithium ion supply source is not particularly limited as long as it is a lithium compound capable of generating lithium ions in the hydrophilization treatment agent.
  • lithium hydroxide, lithium sulfate, lithium carbonate, lithium nitrate, lithium acetate examples include lithium oxide, lithium lactate, lithium phosphate, lithium oxalate, lithium silicate, and lithium metasilicate.
  • lithium hydroxide, lithium sulfate, and lithium carbonate are preferable from the viewpoint of little influence on odor. These may be used alone or in combination of two or more.
  • the lithium ion content is preferably 0.01 to 25% by mass in terms of metal with respect to the solid content of the hydrophilizing agent. Thereby, excellent corrosion resistance and moisture resistance are obtained. Further, from the viewpoint of further enhancing this effect, it is more preferably 0.05 to 5% by mass.
  • the hydrophilic treatment agent of this embodiment may contain a crosslinking agent as needed from the viewpoint of improving the water resistance of the hydrophilic coating.
  • a crosslinking agent an inorganic crosslinking agent or an organic crosslinking agent that reacts with a hydroxyl group of polyvinyl alcohol or modified polyvinyl alcohol can be used.
  • the inorganic crosslinking agent include silica compounds such as silicon dioxide, zirconium compounds such as zircon ammonium fluoride and zircon ammonium carbonate, metal chelate compounds such as titanium chelate, and metal salts such as Ca, Al, Mg, Fe, and Zn. .
  • these inorganic crosslinking agents also have the effect of reducing the contact angle of water by forming minute irregularities on the surface of the hydrophilic coating.
  • the organic crosslinking agent include melamine resin, phenol resin, epoxy compound, blocked isocyanate compound, oxazoline compound, carbodiimide compound and the like. These may be used alone or in combination of two or more.
  • the content of these crosslinking agents is preferably 0.1 to 50% by mass with respect to the solid content of the hydrophilic treatment agent. Thereby, the outstanding water resistance is obtained. Further, from the viewpoint of further enhancing this effect, the content is more preferably 0.5 to 30% by mass.
  • the hydrophilic treatment agent of this embodiment may contain a dispersing agent, a rust preventive agent, a pigment, a silane coupling agent, an antibacterial agent (preservative), a lubricant, a deodorizing agent, and the like as optional components. It does not specifically limit as a dispersing agent, Various surfactant and dispersing resin are mentioned. It does not specifically limit as a rust preventive agent, For example, a tannic acid, an imidazole compound, a triazine compound, a triazole compound, a hydrazine compound, a zirconium compound etc. are mentioned. Among these, a zirconium compound is preferable from the viewpoint of obtaining excellent corrosion resistance and moisture resistance.
  • the zirconium compound is not particularly limited, and examples thereof include alkali metal fluorozirconates such as K 2 ZrF 6 , soluble fluorozirconates such as fluorozirconates such as (NH 4 ) 2 ZrF 6 , and fluorozirconates such as H 2 ZrF 6.
  • alkali metal fluorozirconates such as K 2 ZrF 6
  • soluble fluorozirconates such as fluorozirconates such as (NH 4 ) 2 ZrF 6
  • fluorozirconates such as H 2 ZrF 6.
  • Examples include acids, zirconium fluoride, and zirconium oxide.
  • the pigment is not particularly limited, and for example, inorganic such as titanium oxide, zinc oxide, zirconium oxide, calcium carbonate, barium sulfate, alumina, kaolin clay, carbon black, iron oxide (Fe 2 O 3 , Fe 3 O 4 etc.) In addition to pigments, various colored
  • the silane coupling agent can increase the affinity between the hydrophilic resin and the pigment and improve the adhesion between them.
  • the silane coupling agent is not particularly limited. For example, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, N— [2- (Vinylbenzylamino) ethyl] -3-aminopropyltrimethoxysilane and the like.
  • the silane coupling agent may be a condensate or a polymer.
  • the antibacterial agent is not particularly limited, and examples thereof include 2- (4-thiazolyl) benzimidazole, zinc pyrithione, and benzoisothiazoline.
  • the content of the optional component is preferably 0.01 to 50% by mass in total with respect to the solid content of the hydrophilic treatment agent. Thereby, each effect is exhibited, without inhibiting the effect of a hydrophilic treatment agent. From the viewpoint of further enhancing each effect, the content is more preferably 0.1 to 30% by mass.
  • the aqueous solvent which has water as a main component is preferable.
  • the organic solvent is not particularly limited as long as it is generally used for paints and the like and can uniformly mix water, and examples thereof include alcohol-based, ketone-based, ester-based and ether-based organic solvents.
  • the content of these organic solvents is preferably 0.01 to 5% by mass in the hydrophilic treatment agent.
  • the hydrophilization treatment agent of this embodiment may contain a pH adjuster from a viewpoint of a stability improvement.
  • the pH adjuster examples include general acids and alkalis such as sulfuric acid, nitric acid, and ammonia.
  • the hydrophilizing agent of the present embodiment preferably has a solid content concentration of 1 to 11% by mass from the viewpoints of workability, uniformity and thickness of the hydrophilized film to be formed, economy, and the like. More preferably, it is ⁇ 5% by mass.
  • the NB heat exchanger subjected to the chemical conversion treatment in the (a) chemical conversion treatment step is preferably subjected to a water washing treatment by a conventionally known method.
  • examples of the method for bringing the hydrophilizing agent having the above-described configuration into contact with the NB heat exchanger having a chemical conversion film formed on the surface include an immersion method, a spray method, a coating method, and the like. In view of the complex structure of the vessel, the dipping method is preferred.
  • the immersion time is usually preferably about 10 seconds at room temperature. After the immersion, the amount of the hydrophilic film can be controlled by adjusting the amount of the wet film by air blow.
  • the (c) baking process of this embodiment is a process of forming a hydrophilic coating on the surface of the NB heat exchanger that has been hydrophilicized in the above-described (b) hydrophilization process by baking.
  • the baking temperature is preferably a baking temperature at which the temperature of the NB heat exchanger itself is 140 to 160 ° C., and the baking time is preferably 2 to 120 minutes. Thereby, a hydrophilized film can be formed reliably.
  • the coating amount of the hydrophilic coating formed in the baking step (c) of this embodiment is preferably 0.05 to 5 g / m 2 .
  • the coating amount of the hydrophilic coating is determined by using the conversion factor calculated from the relationship between the hydrophilic coating amount of the standard coating sample and the amount of organic carbon contained therein, using the TOC device “TOC-VCS” (manufactured by Shimadzu Corporation). It can be calculated from the measurement result.
  • a chemical conversion treatment agent was prepared by blending and mixing the respective components so that the contents of zirconium, titanium, and vanadium and the pH were as shown in Tables 1 and 2. Note that fluorozirconic acid was used as the zirconium supply source, fluorotitanic acid was used as the titanium supply source, and vanadyl sulfate was used as the vanadium supply source.
  • hydrophilizing agent According to a conventionally known preparation method, the contents of the hydrophilic resin, the guanidine compound represented by the general formula (1), the phosphorus compound, the lithium ion, and the additive are as shown in Tables 1 and 2. Each component was blended and mixed to prepare a hydrophilic treatment agent.
  • the heat exchanger was washed with water for 30 seconds and then immersed in the hydrophilic treatment agent prepared as described above at room temperature for 10 seconds. After immersion, the wet film amount was adjusted by air blow. Next, a test heat exchanger was manufactured by performing a baking process for 5 minutes at a baking temperature at which the temperature of the heat exchanger itself was 150 ° C. in a drying furnace.
  • the area of the white rust generating part is 10% or more and less than 20%.
  • 7 The area of the white rust generation part is 20% or more and less than 30%.
  • 6 The area of the white rust generating part is 30% or more and less than 40%.
  • 5 The area of the white rust generating part is 40% or more and less than 50%.
  • 4 The area of the white rust generating part is 50% or more and less than 60%.
  • 3 The area of the white rust generating part is 60% or more and less than 70%.
  • the area of the white rust generating part is 70% or more and less than 80%.
  • 1 The area of the white rust generating part is 80% or more and less than 90%.
  • the X-ray fluorescence analyzer was prepared by laminating the fins so that the amount of zirconium, titanium and vanadium in the chemical conversion film formed on the surface of the test heat exchanger produced in each example and comparative example was 10 mm ⁇ 10 mm or more. It was calculated from the measurement result of “XRF-1700” (manufactured by Shimadzu Corporation).
  • the coating amount of the hydrophilic coating formed on the surface of the test heat exchanger produced in each example and comparative example is a conversion factor calculated from the relationship between the hydrophilic coating amount of the standard coating sample and the amount of organic carbon contained therein.
  • the coating amount of the hydrophilic coating formed on the surface of the test heat exchanger produced in each example and comparative example is a conversion factor calculated from the relationship between the hydrophilic coating amount of the standard coating sample and the amount of organic carbon contained therein.
  • Tables 1 and 2 collectively show the compositions of the chemical conversion treatment agent and the hydrophilization treatment agent prepared in each Example and Comparative Example and the evaluation results of the test heat exchangers produced in each Example and Comparative Example.
  • each component in Tables 1 and 2 Details of each component in Tables 1 and 2 are as follows.
  • the Zr concentration represents the zirconium content in the chemical conversion treatment agent (concentration in terms of metal elements of various ions)
  • the Ti concentration represents the titanium content in the chemical conversion treatment agent (metal elements of various ions).
  • the V concentration represents the vanadium content in the chemical conversion treatment agent (the metal element equivalent concentration of various ions).
  • the content of each component in the hydrophilic treatment agent represents the content of each component relative to the solid content of the hydrophilic treatment agent.
  • PBTC represents phosphonobutanetricarboxylic acid.
  • Polyvinyl alcohol has a saponification degree of 99% and a number average molecular weight of 60,000.
  • the saponification degree of ethylene oxide-modified polyvinyl alcohol is 99%, the number average molecular weight is 20,000, and the content ratio of polyoxyethylene groups (the ratio of polyvinyl alcohol to all pendant groups) is 3%. is there.
  • the number average molecular weight of carboxymethylcellulose is 10,000.
  • the number average molecular weight of sodium polyvinyl sulfonate is 20,000.
  • the number average molecular weight of polyacrylic acid is 20,000.
  • Silica is an inorganic cross-linking agent made of anhydrous silica, and the average diameter of the primary particles is 10 nm.
  • the phenol resin is an organic crosslinking agent made of a resol type phenol resin, and its number average molecular weight is 300.
  • the condensed phosphoric acid is tripolyphosphoric acid.
  • the NB heat exchanger includes at least one of zirconium and titanium, and the total content thereof is 5 to 5,000 mass ppm, the vanadium is included and the content is 10 to 1,000 mass ppm,
  • a hydrophilic resin, at least one of the guanidine compound represented by the general formula (1) and a salt thereof After the chemical conversion treatment with a chemical conversion treatment agent having a pH of 2 to 6 to form a chemical conversion film, a hydrophilic resin, at least one of the guanidine compound represented by the general formula (1) and a salt thereof, It was confirmed that corrosion resistance (white rust resistance) and moisture resistance (blackening resistance) superior to conventional ones can be obtained by contacting with a hydrophilization treatment agent containing and baking to form a hydrophilic coating.
  • the surface treatment method for an aluminum heat exchanger of the present invention is preferably applied to the surface treatment of NB heat exchangers for automobile air conditioners.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

自動車エアコンに用いられるNB熱交換器に対して、優れた耐食性(耐白錆性)及び耐湿性(耐黒変性)を付与し得る表面処理方法を提供すること。 (a)NB製熱交換器を、ジルコニウム及びチタニウムのうち少なくとも一方を含み且つその含有量が合計で5~5,000質量ppm、バナジウムを含み且つその含有量が10~1,000質量ppm、並びに、pHが2~6である化成処理剤で化成処理することで、その表面に化成皮膜を形成する工程と、(b)前記(a)工程で表面に化成皮膜が形成されたNB熱交換器を、親水性樹脂と、グアニジン化合物及びその塩のうち少なくとも一方と、を含む親水化処理剤と接触させる工程と、(c)前記(b)工程で接触処理されたNB熱交換器を、焼き付け処理することで、その表面に親水化皮膜を形成する工程と、を含む。

Description

アルミニウム製熱交換器の表面処理方法
 本発明は、アルミニウム製熱交換器の表面処理方法に関する。詳しくは、ノコロックろう付け法によりフラックスろう付けされたアルミニウム製熱交換器の表面処理方法に関する。
 自動車エアコンに用いられるアルミニウム製熱交換器は、熱交換効率向上の観点から、通常、その表面積を可能な限り大きくすべく複数のフィンが狭い間隔で配置されるとともに、これらのフィンに冷媒供給用のチューブが入り組んで配置される。このような複雑な構造の熱交換器では、エアコン稼動時に大気中の水分がフィンやチューブ(以下、「フィン等」という。)の表面に凝縮水として付着する。ところが、フィン等の表面の濡れ性が劣る場合には、付着した凝縮水が略半球状の水滴となったりフィン間にブリッジ状に存在する等して通風抵抗が増大する結果、排気のスムーズな流れが阻害されて熱交換効率が低下するという問題がある。そのため、通常、フィン等の表面に親水性を付与する目的で、親水化処理が施されている。
 また、フィン等を構成するアルミニウムやその合金は、本来、防錆性に優れる材料である。しかしながら、フィン等の表面に凝縮水が長時間滞留すると、局部的に酸素濃淡電池が形成されて腐食反応が進行し、さらにそこに大気中の汚染成分が付着して濃縮されると、腐食反応が促進される。腐食反応により生じた生成物、例えば白錆は、フィン等の表面に堆積することで熱交換特性が阻害される他、送風機により大気中に排出される等の問題がある。
 そのため、白錆の発生を抑制して耐食性を向上させる技術が種々提案されている。例えば、アルミニウムやその合金材料の表面に対して良好な耐食性を付与する化成処理剤として、チタニウム錯フッ化物イオン、5価バナジウム化合物イオン及びジルコニウム錯フッ化物イオンを含む化成処理剤が開示されている(特許文献1参照)。
 また、アルミニウム製熱交換器の表面に対して良好な耐食性を付与する化成処理剤として、5価バナジウム化合物イオンに相当するデカバナジン酸イオン及びジルコニウム錯フッ化物イオンを含む化成処理剤が開示されている(特許文献2参照)。
 ところで、自動車エアコンに用いられるアルミニウム製熱交換器は、上述のようにして複数のフィン等を配置して組み立てた後、それらを接合することで作製される。接合に際しては、アルミニウムの表面には強固で緻密な酸化皮膜が形成されているため、機械的な接合法ではないろう付け法による接合は容易ではなく、真空中でろう付けする等の工夫が必要であった。
 これに対して、近年、表面の酸化皮膜を効果的に除去する手段として、ハロゲン系フラックスを用いたフラックスろう付け法が開発され、中でも、ろう付けの管理が容易で加工費が安価である観点から、窒素ガス中でろう付けするノコロックろう付け法(以下、「NB法」という。)が多用されている。このNB法では、複数のフィン等を配置して組み立てた後、窒素ガス中で、KAlF及びKAlF等のフラックスを用いてフィン等をろう付けする。
 しかしながら、NB法により作製されたアルミニウム製熱交換器(以下、「NB熱交換器」という。)は、フィン等の表面にフラックスが不可避的に残存する。すると、フィン等の表面状態(電位状態等)が不均一となる結果、その後の処理により均一な化成皮膜や親水化皮膜を得ることができず、良好な耐食性及び親水性が得られない、という問題があった。
 そこで、良好な耐食性及び親水性に加えて、自動車エアコン用途として重要な特性である良好な防臭性をも付与するNB熱交換器の表面処理方法として、NB熱交換器を、ジルコニウム錯フッ化物イオン及びチタニウム錯フッ化物イオンのうち少なくも一方を含む化成処理剤に浸漬して化成処理した後、ポリビニルアルコール、ポリオキシアルキレン変性ポリビニルアルコール、無機架橋剤及びグアニジン化合物等を含む親水化処理剤に浸漬して親水化処理する技術が開示されている(特許文献3参照)。
 また、アルミニウム又はアルミニウム合金基材の表面の親水性、高耐食性、抗菌性及び防臭性を長期間に亘り保持できる表面処理方法として、アルミニウム又はアルミニウム合金基材表面を化成皮膜の形成に適した状態にする表面調整工程、水洗工程、前記アルミニウム又はアルミニウム合金基材の表面に化成皮膜からなる第1保護層を形成する工程、水洗工程、前記第1保護層上に有機皮膜である第2保護層を塗布する工程、及び乾燥工程を順次経る技術が開示されている(特許文献4参照)。この技術では、前記第1保護層を、バナジウムと、チタン、ジルコニウム及びハフニウムから選ばれる少なくとも1種以上の金属とを含有する化成処理液で形成し、前記第2保護層を、(1)キトサン誘導体及び可溶化剤と、(2)ポリビニルアルコールの側鎖に親水性ポリマーがグラフト重合してなる変性ポリビニルアルコールと、(3)水溶性架橋剤とを含有する組成物で形成する。
特開2010-261058号公報 特表2004-510882号公報 特開2006-69197号公報 特開2011-161876号公報
 ところで、近年、自動車エアコン用のNB熱交換器では、耐食性の向上に加えて、耐湿性の向上が重要となっている。ここで、上述したように耐食性の指標は白錆であるのに対して、耐湿性の指標は黒変である。白錆は、酸素、水及び塩化物イオン等の腐食因子により発生する局部的な腐食現象であるのに対して、黒変は、酸素、水及び熱の存在により発生する全面的な腐食現象である。そのため、高熱に晒される環境下にある自動車エアコン用のNB熱交換器では、耐食性とともに黒変の発生を抑制して耐湿性を向上させることが望まれる。
 しかしながら、特許文献1の技術は、処理対象がそもそも熱交換器ではなく、耐湿性を向上させる技術ではない。また、この技術では、処理対象が熱交換器ではないため、親水化処理は行われない。
 特許文献2の技術は、処理対象はアルミニウム製熱交換器であるものの、耐湿性についての検討は何らなされておらず、耐湿性を向上させる技術ではない。また、この技術は良好な耐食性の付与に焦点を絞った技術であり、親水化処理については何ら検討がなされていない。
 特許文献3の技術は、処理対象が自動車エアコン用のNB熱交換器であり、良好な耐食性及び親水性に加えて良好な防臭性を付与する技術であるが、耐湿性に着目した技術ではない。そのため、特許文献3の技術では、耐湿性についての検討は何らなされておらず、優れた耐湿性は得られない。また、特許文献3には、化成処理剤中にバナジウムイオンを所定量含有させた実施態様については記載されておらず、特許文献3における耐食性は、その評価時間が本発明と比べて大幅に短く、本発明よりもレベルの低いものとなっている。
 特許文献4の技術は、処理対象がアルミニウム製又はアルミニウム合金製の熱交換器であり、長期間の親水性、高耐食性、抗菌性、耐湿性及び防臭性を付与する技術であるが、親水化処理剤中にグアニジン化合物を含有させた実施態様については記載されていない。また、特許文献4における耐食性は、その評価時間が本発明と比べて大幅に短く、また耐湿性は、その評価温度が本発明と比べて大幅に低く、いずれも本発明よりもレベルの低いものとなっている。
 以上の通り、自動車エアコンに用いられるNB熱交換器に対して、優れた耐食性(耐白錆性)及び耐湿性(耐黒変性)を付与し得る表面処理方法については、これまでのところ確立されていないのが現状である。
 本発明は上記に鑑みてなされたものであり、その目的は、自動車エアコンに用いられるNB熱交換器に対して、優れた耐食性(耐白錆性)及び耐湿性(耐黒変性)を付与し得る表面処理方法を提供することにある。
 上記目的を達成するため本発明は、ノコロックろう付け法によりフラックスろう付けされたアルミニウム製熱交換器の表面処理方法であって、
(a)前記アルミニウム製熱交換器を、ジルコニウム及びチタニウムのうち少なくとも一方を含み且つその含有量が合計で5~5,000質量ppm、バナジウムを含み且つその含有量が10~1,000質量ppm、並びに、pHが2~6である化成処理剤で化成処理することで、その表面に化成皮膜を形成する工程と、
(b)前記(a)工程で表面に化成皮膜が形成されたアルミニウム製熱交換器を、親水性樹脂と、下記一般式(1)で表されるグアニジン化合物及びその塩のうち少なくとも一方と、を含む親水化処理剤と接触させる工程と、
Figure JPOXMLDOC01-appb-C000004
                            ・・・(1)
[式(1)中、Yは、-C(=NH)-(CH-、-C(=O)-NH-(CH-又は-C(=S)-NH-(CH-を表わす。mは、0~20の整数を表し、nは、正の整数を表わし、kは、0又は1を表わす。Xは、水素、アミノ基、水酸基、メチル基、フェニル基、クロロフェニル基又はメチルフェニル基(トリル基)を表わす。Zは、水素、アミノ基、水酸基、メチル基、フェニル基、クロロフェニル基、メチルフェニル基(トリル基)又は下記一般式(2)で表され且つ質量平均分子量が200~100万の重合体を表す。]
Figure JPOXMLDOC01-appb-C000005
                           ・・・(2)
[式(2)中、pは、正の整数を表す。]
(c)前記(b)工程で接触処理されたアルミニウム製熱交換器を、焼き付け処理することで、その表面に親水化皮膜を形成する工程と、を含むアルミニウム製熱交換器の表面処理方法を提供する。
 上記グアニジン化合物及びその塩が下記一般式(4)で表されるビグアニド構造を有するもの及びその塩であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
                           ・・・(4)
 上記(a)工程で形成される化成皮膜において、ジルコニウムの量及びチタニウムの量の合計が5~300mg/mであり、且つバナジウムの量が1~150mg/mであり、
 上記(c)工程で形成される親水化皮膜の皮膜量が0.05~5g/mであることが好ましい。
 上記(a)工程で形成される化成皮膜が、ジルコニウム及びチタニウムのいずれをも含むことが好ましい。
 上記(b)工程で用いる親水化処理剤が、リン酸、縮合リン酸、ホスホン酸及びそれらの誘導体並びにリチウムイオンからなる群より選ばれる少なくとも1種をさらに含むことが好ましい。
 上記(b)工程で用いる親水化処理剤中の親水性樹脂が、ケン化度が90%以上のポリビニルアルコール及び変性ポリビニルアルコールのうち少なくとも一方を含むものであることが好ましい。
 本発明によれば、自動車エアコンに用いられるNB熱交換器に対して、優れた耐食性(耐白錆性)及び耐湿性(耐黒変性)を付与し得る表面処理方法を提供できる。
 本実施形態に係る表面処理方法は、ノコロックろう付け法によりフラックスろう付けされたアルミニウム製熱交換器の表面処理を行うものである。本実施形態に係る表面処理方法は、(a)化成処理工程と、(b)親水化処理工程と、(c)焼き付け工程と、を含む。
[熱交換器]
 本実施形態に係る表面処理方法の処理対象であるNB熱交換器は、NB法によりフラックスろう付けされたアルミニウム製熱交換器である。このNB熱交換器は、自動車エアコン用途として好ましく用いられる。ここで、「アルミニウム製」とは、アルミニウム又はアルミニウム合金(以下、単に「アルミニウム」という。)から成ることを意味する。
 上述したように、NB熱交換器は、熱交換効率向上の観点から、その表面積を可能な限り大きくすべく複数のフィンが狭い間隔で配置されるとともに、これらのフィンに冷媒供給用のチューブが入り組んで配置される。また、これらのフィン等を組み立てた後、窒素ガス中で、フラックスを用いてろう付けが行われるため、フィン等の表面にフラックスが不可避的に残存する。そのため、フィン等の表面状態(電位状態等)が不均一となっており、従来の化成処理剤では、均一な化成皮膜や親水化皮膜を得ることが困難なものである。
 なお、フラックスとしては、NB法で通常用いられるハロゲン系のフラックスを用いることができる。ハロゲン系のフラックスとしては、KAlF、KAlF、KAlF、CsAlF、CsAlF及びCsAlFからなる群より選ばれる少なくとも1種を用いることができる。
[(a)化成処理工程]
 本実施形態の(a)化成処理工程は、NB熱交換器を、ジルコニウム及びチタニウムのうち少なくとも一方を含み且つその含有量が合計で5~5,000質量ppm、バナジウムを含み且つその含有量が10~1,000質量ppm、並びに、pHが2~6である化成処理剤で化成処理することで、その表面に化成皮膜を形成する工程である。
 なお、化成処理する前に、化成処理効果をより一層向上させる目的で、必要に応じてNB熱交換器を酸洗処理してもよい。酸洗処理の条件は特に限定されず、NB熱交換器の酸洗処理として従来用いられている処理条件を採用できる。
 ここで、本実施形態の化成処理剤では、ジルコニウム、チタニウム及びバナジウムは、いずれも錯イオン等の各種イオンとして存在する。そのため、本明細書において、ジルコニウム、チタニウム及びバナジウムの各含有量は、各種イオンの金属元素換算の値を意味する。
 本実施形態の化成処理剤は、ジルコニウムイオン及びチタニウムイオンのうち少なくとも一方と、バナジウムイオンと、を含み、ジルコニウム系化合物及びチタニウム系化合物のうち少なくとも一方とバナジウム系化合物を水に溶解することで得られる。即ち、本実施形態の化成処理剤は、ジルコニウムイオン及びチタニウムイオンのうち少なくとも一方とバナジウムイオンを活性種とする溶液である。本実施形態の好ましい化成処理剤としては、ジルコニウムイオン、チタニウムイオン及びバナジウムイオンの全てを活性種として含有する。
 ジルコニウムイオンは化成反応により変化し、これにより、アルミニウム表面に酸化ジルコニウムを主体としたジルコニウム析出物が析出する。ジルコニウムイオンの供給源であるジルコニウム系化合物としては、フルオロジルコニウム酸、フッ化ジルコニウム等のジルコニウム化合物の他、これらのリチウム、ナトリウム、カリウム、アンモニウム等の塩が挙げられる。また、酸化ジルコニウム等のジルコニウム化合物をフッ化水素酸等のフッ化物で溶解させたものを用いることもできる。これらのジルコニウム系化合物は、フッ素を有するため、アルミニウム表面をエッチングする機能を有する。
 チタニウムイオンは化成反応により変化し、これにより、アルミニウム表面に酸化チタニウムを主体としたチタニウム析出物が析出する。チタニウムイオンは、沈殿pHが上記のジルコニウムイオンよりも低いため、チタニウム析出物自体が析出し易いうえ、上述のジルコニウム析出物や後述のバナジウム析出物の析出を促進できる結果、主としてこれら析出物から形成される化成皮膜の皮膜量を増加させることができる。また、チタニウムイオンは、NB熱交換器の表面に残存するフラックスの近傍にも容易に沈殿してチタニウム析出物を析出させることができる。
 チタニウムイオンの供給源であるチタニウム系化合物としては、フルオロチタン酸、フッ化チタン等のチタニウム化合物の他、これらのリチウム、ナトリウム、カリウム、アンモニウム等の塩が挙げられる。また、酸化チタニウム等のチタニウム化合物をフッ化水素酸等のフッ化物で溶解させたものを用いることもできる。これらのチタニウム系化合物は、上記のジルコニウム系化合物と同様にフッ素を有するため、アルミニウム表面をエッチングする機能を有する。また、そのエッチング機能は、上記のジルコニウム系化合物よりも高い。
 本実施形態では、化成処理剤中に、ジルコニウムイオン及びチタニウムイオンのうち少なくとも一方とバナジウムイオンを含むことにより、ジルコニウム及びチタニウムのうち少なくとも一方とともに、バナジウムを含有する化成皮膜が形成される。バナジウムイオンは、チタニウムイオンよりも低いpHで沈殿する特性を有し、これにより、アルミニウム表面に酸化バナジウムを主体としたバナジウム析出物が析出する。より詳しくは、バナジウムイオンは、還元反応によって酸化バナジウムに変換され、これにより、アルミニウム表面にバナジウム析出物が析出する。
 バナジウム析出物は、アルミニウム表面の一部を除いて全体的に被覆する特性を有するジルコニウム析出物やチタニウム析出物と異なり、ジルコニウム析出物やチタニウム析出物が形成され難いアルミニウム表面の偏析物上に析出し易い特性を有する。これにより、本実施形態の化成処理剤によれば、バナジウムイオンを含まない従来の化成処理剤に比して、主としてジルコニウム析出物、チタニウム析出物及びバナジウム析出物によって緻密で高い被覆性を有する化成皮膜を形成できる。
 また、バナジウム析出物は、ジルコニウムやチタニウムが共存することで、従来のクロム皮膜と同様に自己修復効果を発揮し、皮膜形成性に優れる特性を有する。即ち、バナジウム析出物から微量のバナジウムイオンが適度に溶出し、溶出したバナジウムイオンがアルミニウム表面を酸化して不動態化することで自己修復し、良好な耐食性が維持される。一方、バナジウムイオンがジルコニウムイオンやチタニウムイオンとの共存下でない場合には、バナジウム析出物が析出し難く、バナジウム析出物が析出したとしてもその析出物からバナジウムイオンが多量に溶出してしまい、上記のような自己修復効果は得られない。
 本実施形態では、好ましくは、化成処理剤中に、ジルコニウムイオン、チタニウムイオン及びバナジウムイオンを含むことにより、ジルコニウム、チタニウム及びバナジウムを含む化成皮膜が形成される。ジルコニウムイオン、チタニウムイオン及びバナジウムイオンの全てを活性種として含有する活性処理剤を用いることにより、フラックスの近傍においても、より緻密で高い被覆性を有する化成皮膜を形成することができる。
 バナジウム系化合物としては、2~5価のバナジウム化合物を用いることができる。具体的には、メタバナジン酸、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、五酸化バナジウム、オキシ三塩化バナジウム、硫酸バナジル、硝酸バナジル、燐酸バナジル、酸化バナジウム、二酸化バナジウム、バナジウムオキシアセチルアセトネート、塩化バナジウム等が挙げられる。これらバナジウム系化合物は、フッ素を有していないため、アルミニウム表面をエッチングする機能は無い。
 本実施形態では、4価又は5価のバナジウム化合物が好ましく、具体的には硫酸バナジル(4価)及びメタバナジン酸アンモニウム(5価)が好ましく用いられる。
 上述したように本実施形態の化成処理剤では、ジルコニウムイオン及びチタニウムイオンの含有量の合計が金属換算で5~5,000質量ppmであり、バナジウムイオンの含有量が金属換算で10~1,000質量ppmである。これらを満たすことにより、後述する親水化処理との組み合わせによる相乗効果によって、NB熱交換器の耐食性(耐白錆性)及び耐湿性(耐黒変性)が大幅に向上するとともに、良好な親水性及び防臭性が得られる。
 また、上記の効果がさらに高められる観点から、ジルコニウムの含有量は5~3,000質量ppmであることが好ましく、チタニウムの含有量は5~500質量ppmであることが好ましく、バナジウムの含有量は10~500質量ppmであることが好ましい。
 また、上述したように本実施形態の化成処理剤のpHは、2~6であり、好ましくは3~5である。pHが2以上であれば化成処理剤によるエッチング過多を起こさずに化成皮膜を形成でき、優れた耐食性及び耐湿性が得られる。またpHが6以下であれば、エッチング不足とならずに十分な皮膜量の化成皮膜を形成でき、優れた耐食性及び耐湿性が得られる。なお、化成処理剤のpHは、硫酸、硝酸、アンモニア等の一般的な酸やアルカリを用いて調整できる。
 本実施形態の化成処理剤は、防錆性を向上する目的で、マンガン、亜鉛、セリウム、3価クロム、マグネシウム、ストロンチウム、カルシウム、スズ、銅、鉄及び珪素化合物等の金属イオン、ホスホン酸、リン酸及び縮合リン酸等のリン化合物、並びに、フェノール樹脂、ポリアクリル酸及びポリアクリル酸誘導体等の防錆剤や、密着性向上のためのポリアリルアミン、アミノシラン及びエポキシシラン等の各種シランカップリング剤等を含んでいてもよい。
 また、本実施形態の化成処理剤は、アルミニウムイオンを50~5,000質量ppm含み、遊離フッ素イオンを1~100質量ppm含んでいてもよい。
 アルミニウムイオンは、処理対象のアルミニウムからも化成処理剤中に溶出するが、それとは別に、アルミニウムイオンを積極的に添加することで化成処理反応を促進できる。また、従来よりも遊離フッ素イオン濃度を高く設定することで、より優れた耐食性を有する化成皮膜を形成できる。
 上記の効果がさらに高められる観点から、アルミニウムイオンのより好ましい含有量は100~3,000質量ppmであり、さらに好ましい含有量は200~2,000質量ppmである。同様に、遊離フッ素イオンのより好ましい含有量は5~80質量ppmであり、さらに好ましい含有量は15~50質量ppmである。
 アルミニウムイオンの供給源としては、硝酸アルミニウム、硫酸アルミニウム、フッ化アルミニウム、酸化アルミニウム、明礬、珪酸アルミニウム及びアルミン酸ナトリウム等のアルミン酸塩や、フルオロアルミニウム酸ナトリウム等のフルオロアルミニウム塩が挙げられる。
 遊離フッ素イオンの供給源としては、フッ化水素酸、フッ化水素アンモニウム、ジルコニウムフッ化水素酸及びチタニウムフッ化水素酸等のフッ化水素酸並びにその塩;フッ化ナトリウム、フッ化ジルコニウム及びフッ化チタニウム等の金属フッ化物;フッ化アンモニウム等が挙げられる。遊離フッ素イオンの供給源としてフッ化ジルコニウムやフッ化チタニウム等を用いた場合は、これらはジルコニウムイオンやチタニウムイオンの供給源ともなることになる。
 本実施形態の化成処理の方法は特に限定されず、スプレー法や浸漬法等のいずれの方法でもよい。化成処理剤の温度は、好ましくは50~70℃であり、より好ましくは55~65℃である。また、化成処理の時間は、好ましくは20~900秒であり、より好ましくは30~600秒である。これら満たすことにより、優れた耐食性及び耐湿性を有する化成皮膜を形成できる。
 以上のようにしてNB熱交換器の表面に形成される本実施形態の化成皮膜では、ジルコニウム及びチタニウムの合計量は5~300mg/mであることが好ましく、バナジウムの量は1~150mg/mであることが好ましい。これらを満たすことにより、優れた耐食性及び耐湿性が得られる。なお、ジルコニウム量とチタニウム量の比率は、処理するNB熱交換器の表面状態、特に偏析物の量等によって変動するが、これらの合計量が上記範囲内であればよい。なお、化成皮膜中のジルコニウム量、チタニウム量及びバナジウム量は、フィンを10mm×10mm以上となるように張り合わせ、蛍光X線分析装置「XRF-1700」(島津製作所製)の測定結果から算出できる。
[(b)親水化処理工程]
 本実施形態の(b)親水化処理工程は、上記の(a)化成処理工程で表面に化成皮膜が形成されたNB熱交換器を、親水性樹脂と、後述する一般式(1)で表されるグアニジン化合物及びその塩のうち少なくとも一方と、を含む親水化処理剤と接触させる工程である。
 本実施形態の親水化処理剤は、水系溶媒中に親水性樹脂を含むとともに、下記一般式(1)で表されるグアニジン化合物及びその塩のうち少なくとも一方を含む水系溶液又は水系分散液である。
 本実施形態の親水性樹脂としては、特に限定されないが、分子内に水酸基、カルボキシル基、アミド基、アミノ基、スルホン酸基及びエーテル基のうち少なくともいずれかを有する水溶性又は水分散性の親水性樹脂であることが好ましい。また、本実施形態の親水性樹脂は、良好な親水性が得られる観点から、水滴との接触角が40°以下となるような親水化皮膜を形成できるものであることが好ましい。
 具体的な親水性樹脂としては、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリビニルスルホン酸ナトリウム、ポリスチレンスルホン酸、ポリアクリルアミド、カルボキシメチルセルロース、キトサン、ポリエチレンオキサイド、水溶性ナイロン、これらの重合体を形成するモノマーの共重合体、2-メトキシポリエチレングリコールメタクリレート/アクリル酸2-ヒドロキシルエチル共重合体等のポリオキシエチレン鎖を有するアクリル系重合体等が好ましく用いられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 上記の親水性樹脂は、優れた親水性及び耐水性を有するとともに、それ自体の臭気が無く、臭気物質が吸着し難い特性を有する。このため、上記の親水性樹脂を含む親水化処理剤によれば、得られる親水化皮膜は親水性及び防臭性に優れ、水滴や流水に曝されても劣化し難い。また、この親水化皮膜によれば、埃臭を有するシリカ等の無機物や、臭気物質を吸着した残存モノマー成分が露出し難いため、優れた防臭性が得られる。
 本実施形態の親水性樹脂は、数平均分子量が1,000~100万の範囲内であることが好ましい。数平均分子量が1,000以上であれば、親水性、防臭性、造膜性等の皮膜物性が良好となる。また、数平均分子量が100万以下であれば、親水化処理剤の粘度が高くなりすぎることがなく、作業性や皮膜物性が良好となる。より好ましい数平均分子量は、1万~20万の範囲内である。なお、本明細書における数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定された標準ポリスチレン換算の値である。
 上記の親水性樹脂のうち、優れた親水性及び防臭性の観点から、ポリビニルアルコールが好ましく、中でも、ケン化度が90%以上のポリビニルアルコール及び変性ポリビニルアルコールが特に好ましい。これらのうち少なくとも一方を用いることにより、優れた親水性及び防臭性が得られる。より好ましいケン化度は、95%以上である。
 変性ポリビニルアルコールとしては、ペンダント基中の0.01~20%が、下記一般式(3)で表されるポリオキシアルキレンエーテル基であるポリオキシアルキレン変性ポリビニルアルコールが挙げられる。
Figure JPOXMLDOC01-appb-C000007
                            ・・・(3)
[上記式(3)中、nは1~500の整数を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、Rは水素原子又はメチル基を表す。]
 上記のポリオキシアルキレン変性ポリビニルアルコールにおいて、ポリオキシアルキレン変性基がペンダント基中の0.1~5%であることが好ましく、ポリオキシアルキレン変性基の重合度nは、3~30であることが好ましい。これらを満たすことにより、ポリオキシアルキレン変性基の親水性によって、良好な親水性が得られる。ポリオキシアルキレン変性ポリビニルアルコールとしては、例えばエチレンオキサイド変性ポリビニルアルコールが挙げられる。
 本実施形態では、親水化処理剤中の親水性樹脂の含有量は特に限定されないが、好ましくは親水化処理剤の固形分中10~99質量%であり、より好ましくは30~95質量%である。これにより、良好な親水性及び防臭性が得られる。
 本実施形態の親水化処理剤中に含まれるグアニジン化合物は、下記一般式(1)で表される。このように、グアニジン化合物は窒素を多く含むため、ジルコニウム及びチタニウムのうち少なくとも一方と、バナジウムを含有する化成皮膜に対して良好に密着する特性を有し、さらには厚みがおよそ0.1μmで薄い化成皮膜を介してアルミニウム表面に吸着し易い特性を有する。そのため、親水化処理剤中にグアニジン化合物を配合することにより、化成皮膜と親水化処理皮膜とでアルミニウム又はアルミニウム合金基材を被覆することができ、黒変の発生を抑制できる。即ち、本実施形態の親水化処理剤は、グアニジン化合物を配合することで、良好な耐食性を付与できるとともに優れた耐湿性を付与できる。
 また、本実施形態では、フラックスろう付けされたアルミニウム製熱交換器にジルコニウム及びチタニウムのうち少なくとも一方とバナジウムを含有する化成処理剤で化成処理を施した後、親水性樹脂と該グアニジン化合物及びその塩のうち少なくとも一方とを含む親水化処理剤で処理するため、二段階の防錆処理が施されていることとなり、フラックスが部分的に存在する状態であっても、結果的に、アルミ熱交換器の全面が充分な防錆効果が得られたものとなる。
 化成皮膜がジルコニウム、チタニウム及びバナジウムの全てを含有する場合においては、グアニジン化合物を含有する親水化皮膜と、ジルコニウム、チタニウム及びバナジウムの全てを含有する化成皮膜との密着性が特に良好となるためと推察されるが、フラックスの近傍を含め、アルミニウム又はアルミニウム合金基材の全面において耐湿性を著しく向上させる効果が見出されており、より好ましい。
Figure JPOXMLDOC01-appb-C000008
                            ・・・(1)
[式(1)中、Yは、-C(=NH)-(CH-、-C(=O)-NH-(CH-、又は-C(=S)-NH-(CH-を表わす。mは、0~20の整数を表し、nは、正の整数を表わし、kは、0又は1を表わす。Xは、水素、アミノ基、水酸基、メチル基、フェニル基、クロロフェニル基又はメチルフェニル基(トリル基)を表わす。Zは、水素、アミノ基、水酸基、メチル基、フェニル基、クロロフェニル基、メチルフェニル基(トリル基)又は下記一般式(2)で表され且つ質量平均分子量が200~100万の重合体を表す。]
Figure JPOXMLDOC01-appb-C000009
                           ・・・(2)
[式(2)中、pは、正の整数を表す。]
 上記のグアニジン化合物としては、例えば、グアニジン、アミノグアニジン、グアニルチオ尿素、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ポリヘキサメチレンビグアニド、ポリヘキサエチレンビグアニド、ポリペンタメチレンビグアニド、ポリペンタエチレンビグアニド、ポリビニルビグアニド、ポリアリルビグアニド等が挙げられる。
 また、グアニジン化合物の塩としては、上記のグアニジン化合物の、リン酸塩、塩酸塩、硫酸塩、酢酸塩及びグルコン酸塩等の有機酸塩が挙げられる。グアニジン化合物の塩の合計量は、グアニジン化合物及びその塩の合計量に対して、モル比で0.01~100の範囲内であることが好ましい。これにより、良好な耐食性及び耐湿性が得られる。
 本実施形態のグアニジン化合物及びその塩は、数平均分子量が59~100万の範囲内であることが好ましい。上記の一般式(1)に示されるように、グアニジン化合物の分子量の最小は59であり、数平均分子量が100万以下であれば水溶化が可能となり、この範囲内であれば、良好な耐食性及び耐湿性が得られる。この効果がより高められる観点から、数平均分子量の下限値は、300であることがより好ましく、500であることがさらに好ましい。一方、上限値は、10万であることがより好ましく、2万であることがさらに好ましい。
 本実施形態のグアニジン化合物及びその塩としては、優れた耐食性及び耐湿性が得られる効果を有することから、上記一般式(1)、(2)で表されるグアニジン化合物及びその塩のうち、分子中に下記一般式(4)で表されるビグアニド構造を有するグアニジン化合物及びその塩であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
                           ・・・(4)
 上記のビグアニド構造を有するグアニジン化合物及びその塩としては、例えば、ポリヘキサメチレンビグアニド、1-o-トリルビグアニド、グルコン酸クロルヘキシジン及びその塩等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 本実施形態のグアニジン化合物及びその塩の含有量の合計は、親水化処理剤の固形分に対して1~40質量%であることが好ましい。これにより、優れた耐食性及び耐湿性が得られる。また、この効果がより高められる観点から、5~30質量%であることがより好ましい。
 本実施形態の親水化処理剤は、リン酸、縮合リン酸、ホスホン酸及びそれらの誘導体並びにリチウムイオンからなる群より選ばれる少なくとも1種をさらに含むことが好ましい。
 本実施形態の親水化処理剤は、リン酸、縮合リン酸、ホスホン酸及びそれらの誘導体といったリン系化合物を含むことにより、これらリン系化合物を含む親水化皮膜がアルミニウム表面に形成される。これにより、アルミニウム表面からアルミニウムが溶出した場合でも、溶出したアルミニウムが親水化皮膜中のリン系化合物と反応してリン酸アルミニウムを形成して不溶化することで、さらなるアルミニウムの溶出を長期間に亘って抑制でき、優れた耐食性及び耐湿性が得られる。
 上記リン系化合物としては、例えば、リン酸、ポリリン酸、トリポリリン酸、メタリン酸、ウルトラリン酸、フィチン酸、ホスフィン酸、ヒドロキシエチリデンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸(以下、「PBTC」という。)、エチレンジアミンテトラ(メチレンホスホン酸)、テトラキス(ヒドロキシメチル)ホスホニウム塩、アクリルホスホン共重合体等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 リン系化合物の含有量は、親水化処理剤の固形分に対して0.05~25質量%であることが好ましい。これにより、優れた耐食性及び耐湿性が得られる。また、この効果がより高められる観点から、0.1~10質量%であることがより好ましい。
 また、本実施形態の親水化処理剤は、リチウムイオンを含むことで以下のようなメカニズムにより、優れた耐食性及び耐湿性が得られる。
 即ち、NB熱交換器の表面に残存するハロゲン系フラックス中のカリウムイオン等のアルカリ金属イオンと、親水化皮膜からのリチウムイオンが例えば下記式(5)に示すイオン交換反応を行うことで、フラックス残渣と親水化皮膜との界面に難溶性の皮膜が形成される。これにより、形成された難溶性の皮膜がアルミニウム表面からのアルミニウムの溶出を抑制する結果、優れた耐食性及び耐湿性が得られる。なお、リチウムイオンは親水化皮膜中に長期間に亘って残存するため、上記の効果は長期間に亘って維持される。
Figure JPOXMLDOC01-appb-C000011
[上記式(5)中、x及びyの組み合わせは、xが1でyが4、xが2でyが5又はxが3でyが6である。]
 上記リチウムイオンの供給源としては、親水化処理剤中でリチウムイオンを生成し得るリチウム化合物であれば特に限定されず、例えば、水酸化リチウム、硫酸リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、クエン酸リチウム、乳酸リチウム、リン酸リチウム、シュウ酸リチウム、珪酸リチウム、メタ珪酸リチウム等が挙げられる。中でも、臭気に対する影響が少ない観点から、水酸化リチウム、硫酸リチウム、炭酸リチウムが好ましい。これらは、単独で用いてもよく、2種以上を併用してもよい。
 リチウムイオンの含有量は、親水化処理剤の固形分に対して金属換算で0.01~25質量%であることが好ましい。これにより、優れた耐食性及び耐湿性が得られる。また、この効果がより高められる観点から、0.05~5質量%であることがより好ましい。
 本実施形態の親水化処理剤は、親水化皮膜の耐水性を向上させる観点から、必要に応じて架橋剤を含んでもよい。架橋剤としては、ポリビニルアルコールや変性ポリビニルアルコールの水酸基と反応する無機架橋剤や有機架橋剤を用いることができる。
 無機架橋剤としては、二酸化珪素等のシリカ化合物、ジルコンフッ化アンモニウムやジルコン炭酸アンモニウム等のジルコニウム化合物、チタンキレート等の金属キレート化合物、Ca、Al、Mg、Fe、Zn等の金属塩等が挙げられる。これら無機架橋剤は、耐水性の向上の他、親水化皮膜の表面に微小の凹凸を形成して水の接触角を低下させる効果もある。
 有機架橋剤としては、メラミン樹脂、フェノール樹脂、エポキシ化合物、ブロック化イソシアネート化合物、オキサゾリン化合物、カルボジイミド化合物等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 これら架橋剤の含有量は、親水化処理剤の固形分に対して0.1~50質量%であることが好ましい。これにより、優れた耐水性が得られる。また、この効果がより高められる観点から、0.5~30質量%であることがより好ましい。
 本実施形態の親水化処理剤は、任意成分として、分散剤、防錆剤、顔料、シランカップリング剤、抗菌剤(防腐剤)、潤滑剤、消臭剤等を含んでもよい。
 分散剤としては特に限定されず、各種界面活性剤や分散樹脂が挙げられる。
 防錆剤としては特に限定されず、例えば、タンニン酸、イミダゾール化合物、トリアジン化合物、トリアゾール化合物、ヒドラジン化合物、ジルコニウム化合物等が挙げられる。中でも、優れた耐食性及び耐湿性が得られる観点から、ジルコニウム化合物が好ましい。ジルコニウム化合物としては特に限定されず、例えば、KZrF等のアルカリ金属フルオロジルコネート、(NHZrF等のフルオロジルコネート等の可溶性フルオロジルコネート、HZrF等のフルオロジルコン酸、フッ化ジルコニウム、酸化ジルコニウム等が挙げられる。
 顔料としては特に限定されず、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、炭酸カルシウム、硫酸バリウム、アルミナ、カオリンクレー、カーボンブラック、酸化鉄(Fe、Fe等)等の無機顔料の他、有機顔料等の各種着色顔料等が挙げられる。
 シランカップリング剤は、親水性樹脂と上記顔料の親和性を高め、両者の密着性を向上させることができる。シランカップリング剤としては特に限定されず、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-[2-(ビニルベンジルアミノ)エチル]-3-アミノプロピルトリメトキシシラン等が挙げられる。シランカップリング剤は、縮合物又は重合物でもよい。
 抗菌剤(防腐剤)としては特に限定されず、例えば、2-(4-チアゾリル)ベンズイミダゾール、ジンクピリチオン、ベンゾイソチアゾリン等が挙げられる。
 上記任意成分の含有量は、親水化処理剤の固形分に対して合計で0.01~50質量%であることが好ましい。これにより、親水化処理剤の効果を阻害することなくそれぞれの効果が発揮される。各効果がより高められる観点から、0.1~30質量%であることがより好ましい。
 親水化処理剤の溶媒としては特に限定されないが、廃液処理等の観点から水を主体とする水系溶媒が好ましい。また、造膜性を向上させ、より均一で平滑な皮膜を形成できる観点から、有機溶剤を併用してもよい。有機溶剤としては、塗料等に一般的に用いられ、水を均一に混合するものであれば特に限定されず、例えばアルコール系、ケトン系、エステル系、エーテル系の有機溶剤が挙げられる。これら有機溶剤の含有量は、親水化処理剤中に0.01~5質量%であることが好ましい。
 また、本実施形態の親水化処理剤は、安定性向上の観点から、pH調整剤を含んでもよい。pH調整剤としては、硫酸、硝酸、アンモニア等の一般的な酸やアルカリが挙げられる。
 本実施形態の親水化処理剤は、作業性、形成される親水化皮膜の均一性や厚さ、経済性等の観点から、その固形分濃度が1~11質量%であることが好ましく、2~5質量%であることがより好ましい。
 本実施形態の(b)親水化処理工程では、親水化処理に先立って、(a)化成処理工程で化成処理されたNB熱交換器を従来公知の方法で水洗処理することが好ましい。
 また、上述した構成を備える親水化処理剤を、表面に化成皮膜が形成されたNB熱交換器に接触させる方法としては、浸漬法、スプレー法、塗布法等が挙げられる、中でも、NB熱交換器の複雑な構造を考慮すると、浸漬法が好ましい。浸漬時間は、通常、室温で10秒間程度とすることが好ましい。浸漬後、エアブローによりウェット膜量を調整することで、親水化皮膜量を制御できる。
[(c)焼き付け工程]
 本実施形態の(c)焼き付け工程は、上述の(b)親水化処理工程で親水化処理されたNB熱交換器を焼き付け処理することで、その表面に親水化皮膜を形成する工程である。
 焼き付け温度は、NB熱交換器自体の温度が140~160℃となる焼き付け温度であることが好ましく、焼き付け時間は、2~120分であることが好ましい。これにより、親水化皮膜を確実に形成することができる。
 本実施形態の(c)焼き付け工程で形成される親水化皮膜の皮膜量は、0.05~5g/mであることが好ましい。親水化皮膜の皮膜量がこの範囲内であれば、優れた耐食性及び耐湿性が得られるとともに、優れた耐水性及び防臭性が得られる。なお、親水化皮膜の皮膜量は、標準皮膜サンプルの親水化皮膜量とこれに含まれる有機炭素量の関係から算出した換算係数を用いて、TOC装置「TOC-VCS」(島津製作所製)の測定結果から算出できる。
 本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。なお、特に断りがない限り、部、%及びppmは、全て質量基準である。
<実施例1~23及び比較例1~6>
[化成処理剤の調製]
 従来公知の調製方法に従って、ジルコニウム、チタニウム及びバナジウムの含有量並びにpHが、表1及び表2に示す通りとなるように各成分を配合して混合することにより、化成処理剤を調製した。なお、ジルコニウム供給源としてはフルオロジルコニウム酸を用い、チタニウム供給源としてはフルオロチタン酸を用い、バナジウム供給源としては硫酸バナジルを用いた。
[親水化処理剤の調製]
 従来公知の調製方法に従って、親水性樹脂、上記の一般式(1)で表されるグアニジン化合物、リン系化合物、リチウムイオン及び添加剤の含有量が、表1及び表2に示す通りとなるように各成分を配合して混合することにより、親水化処理剤を調製した。
[試験熱交換器の作製]
 熱交換器として、KAlF及びKAlFのフラックスでろう付けされた自動車エアコン用のアルミニウム製熱交換器(NB熱交換器)を用いた。この熱交換器のフィン表面におけるフラックス量は、Kとして50mg/mであった。この熱交換器を、硫酸1%と、KAlF及びKAlFのフラックス0.4%を含む酸浴中に、40℃にて20秒間浸漬して酸洗浄を実施した。
 酸洗浄後、熱交換器を、上述のようにして調製した化成処理剤中に50℃にて60秒間浸漬することで、化成処理を実施した。
 化成処理後、熱交換器を30秒間水洗した後、上述のようにして調製した親水化処理剤中に室温で10秒間浸漬した。浸漬後、エアブローによりウェット皮膜量を調整した。
 次いで、乾燥炉にて、熱交換器自体の温度が150℃となる焼き付け温度で5分間焼付け処理を実施することで、試験熱交換器を作製した。
<評価>
 各実施例及び比較例で作製した試験熱交換器について、以下に示す物性評価を行った。
[耐食性(耐白錆性)]
 各実施例及び比較例で作製した試験熱交換器について、JIS Z 2371に基づいた耐食性(耐白錆性)の評価を実施した。具体的には、各実施例及び比較例で作製した試験熱交換器に対して、5%食塩水を35℃にて噴霧した後、2,000時間経過後の白錆発生部の面積を、下記の評価基準に従って目視で評価した。
(評価基準)
10:白錆発生無し。
9:白錆は見られたが、白錆発生部の面積が10%未満。
8:白錆発生部の面積が10%以上20%未満。
7:白錆発生部の面積が20%以上30%未満。
6:白錆発生部の面積が30%以上40%未満。
5:白錆発生部の面積が40%以上50%未満。
4:白錆発生部の面積が50%以上60%未満。
3:白錆発生部の面積が60%以上70%未満。
2:白錆発生部の面積が70%以上80%未満。
1:白錆発生部の面積が80%以上90%未満。
[耐湿性(耐黒変性)]
 各実施例及び比較例で作製した試験熱交換器に対して、温度70℃、湿度98%以上の雰囲気下で2,000時間の耐湿試験を実施した。試験後の黒変発生部の面積を、上記耐食性の評価基準に準じて目視で評価した。なお、黒変は、最終的には白錆に変化する特性を有するため、黒変発生部の面積には白錆発生部の面積を加えた。
[親水性]
 各実施例及び比較例で作製した試験熱交換器を、流水に72時間接触させた後、水滴との接触角を測定した。接触角の測定は、自動接触角計「CA-Z」(協和界面化学社製)を用いて実施した。接触角が小さいほど親水性は高く、接触角が40°以下であれば、親水性が良好であると評価される。
[臭気]
 各実施例及び比較例で作製した試験熱交換器を、水道水の流水に72時間接触させた後、その臭気を下記の評価基準で評価した。臭気が1.5以下であれば、防臭性が良好であると評価される。
(評価基準)
0:無臭。
1:微かに臭いを感じる。
2:楽に臭いを感じる。
3:明らかに臭いを感じる。
4:強い臭いを感じる。
5:非常に強い臭いを感じる。
[皮膜量]
 各実施例及び比較例で作製した試験熱交換器の表面に形成された化成皮膜中のジルコニウム量、チタニウム量及びバナジウム量は、フィンを10mm×10mm以上となるように張り合わせ、蛍光X線分析装置「XRF-1700」(島津製作所製)の測定結果から算出した。
 各実施例及び比較例で作製した試験熱交換器の表面に形成された親水化皮膜の皮膜量は、標準皮膜サンプルの親水化皮膜量とこれに含まれる有機炭素量の関係から算出した換算係数を用いて、TOC装置「TOC-VCS」(島津製作所製)の測定結果から算出した。
 各実施例及び比較例で調製した化成処理剤及び親水化処理剤の組成と、各実施例及び比較例で作製した試験熱交換器の評価結果をまとめて表1及び表2に示した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表1及び表2における各成分の詳細は、次の通りである。
 (1)化成処理剤において、Zr濃度は、化成処理剤中のジルコニウム含有量(各種イオンの金属元素換算濃度)を表し、Ti濃度は、化成処理剤中のチタニウム含有量(各種イオンの金属元素換算濃度)を表し、V濃度は、化成処理剤中のバナジウム含有量(各種イオンの金属元素換算濃度)を表す。
 (2)親水化処理剤中の各成分の含有量は、親水化処理剤の固形分に対する各成分の含有量を表す。
 (3)PBTCは、ホスホノブタントリカルボン酸を表す。
 (4)ポリビニルアルコールのケン化度は99%であり、その数平均分子量は60,000である。
 (5)エチレンオキサイド変性ポリビニルアルコールのケン化度は99%であり、その数平均分子量は20,000であり、ポリオキシエチレン基の含有割合(ポリビニルアルコールの全ペンダント基に対する割合)は3%である。
 (6)カルボキシメチルセルロースの数平均分子量は、10,000である。
 (7)ポリビニルスルホン酸ナトリウムの数平均分子量は、20,000である。
 (8)ポリアクリル酸の数平均分子量は、20,000である。
 (9)シリカは、無水シリカからなる無機架橋剤であり、その1次粒子の平均径は10nmである。
 (10)フェノール樹脂は、レゾール型フェノール樹脂からなる有機架橋剤であり、その数平均分子量は300である。
 (11)縮合リン酸は、トリポリリン酸である。
 表1及び表2に示した通り、実施例1~23いずれも、比較例1~6と比べて耐食性及び耐湿性に優れており、親水性及び臭気(防臭性)も遜色無く良好であることが分かった。この結果から、NB熱交換器を、ジルコニウム及びチタニウムのうち少なくとも一方を含み且つその含有量が合計で5~5,000質量ppm、バナジウムを含み且つその含有量が10~1,000質量ppm、並びに、pHが2~6である化成処理剤で化成処理して化成皮膜を形成した後、親水性樹脂と、上記一般式(1)で表されるグアニジン化合物及びその塩のうち少なくとも一方と、を含む親水化処理剤と接触させ、焼き付けて親水化皮膜を形成することにより、従来よりも優れた耐食性(耐白錆性)及び耐湿性(耐黒変性)が得られることが確認された。
 本発明のアルミニウム製熱交換器の表面処理方法によれば、フィン等の表面にフラックスが残存する熱交換器に対しても優れた耐食性(耐白錆性)及び耐湿性(耐黒変性)を付与できるため、本発明の表面処理方法は、自動車エアコン用のNB熱交換器の表面処理に好ましく適用される。

Claims (6)

  1.  ノコロックろう付け法によりフラックスろう付けされたアルミニウム製熱交換器の表面処理方法であって、
    (a)前記アルミニウム製熱交換器を、ジルコニウム及びチタニウムのうち少なくとも一方を含み且つその含有量が合計で5~5,000質量ppm、バナジウムを含み且つその含有量が10~1,000質量ppm、並びに、pHが2~6である化成処理剤で化成処理することで、その表面に化成皮膜を形成する工程と、
    (b)前記(a)工程で表面に化成皮膜が形成されたアルミニウム製熱交換器を、親水性樹脂と、下記一般式(1)で表されるグアニジン化合物及びその塩のうち少なくとも一方と、を含む親水化処理剤と接触させる工程と、
    Figure JPOXMLDOC01-appb-C000001
                             ・・・(1)
    [式(1)中、Yは、-C(=NH)-(CH-、-C(=O)-NH-(CH-、又は-C(=S)-NH-(CH-を表わす。mは、0~20の整数を表し、nは、正の整数を表わし、kは、0又は1を表わす。Xは、水素、アミノ基、水酸基、メチル基、フェニル基、クロロフェニル基又はメチルフェニル基(トリル基)を表わす。Zは、水素、アミノ基、水酸基、メチル基、フェニル基、クロロフェニル基、メチルフェニル基(トリル基)又は下記一般式(2)で表され且つ質量平均分子量が200~100万の重合体を表す。]
    Figure JPOXMLDOC01-appb-C000002
                            ・・・(2)
    [式(2)中、pは、正の整数を表す。]
    (c)前記(b)工程で接触処理されたアルミニウム製熱交換器を、焼き付け処理することで、その表面に親水化皮膜を形成する工程と、を含むアルミニウム製熱交換器の表面処理方法。
  2.  前記グアニジン化合物及びその塩が下記一般式(4)で表されるビグアニド構造を有するもの及びその塩である請求項1に記載のアルミニウム製熱交換器の表面処理方法。
    Figure JPOXMLDOC01-appb-C000003
                            ・・・(4)
  3.  前記(a)工程で形成される化成皮膜において、ジルコニウムの量及びチタニウムの量の合計が5~300mg/mであり、且つバナジウムの量が1~150mg/mであり、
     前記(c)工程で形成される親水化皮膜の皮膜量が0.05~5g/mである請求項1又は2に記載のアルミニウム製熱交換器の表面処理方法。
  4.  前記(a)工程で形成される化成皮膜が、ジルコニウム及びチタニウムのいずれをも含む請求項1から3いずれか1項に記載のアルミニウム製熱交換器の表面処理方法。
  5.  前記(b)工程で用いる親水化処理剤が、リン酸、縮合リン酸、ホスホン酸及びそれらの誘導体並びにリチウムイオンからなる群より選ばれる少なくとも1種をさらに含む請求項1から4いずれか1項に記載のアルミニウム製熱交換器の表面処理方法。
  6.  前記(b)工程で用いる親水化処理剤中の親水性樹脂が、ケン化度が90%以上のポリビニルアルコール及び変性ポリビニルアルコールのうち少なくとも一方を含むものである請求項1から5いずれか1項に記載のアルミニウム製熱交換器の表面処理方法。
PCT/JP2012/074059 2011-09-21 2012-09-20 アルミニウム製熱交換器の表面処理方法 WO2013042725A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280045677.6A CN103917693B (zh) 2011-09-21 2012-09-20 铝制热交换器的表面处理方法
US14/346,132 US9757811B2 (en) 2011-09-21 2012-09-20 Method for treating surface of aluminum heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011205809A JP6184051B2 (ja) 2011-09-21 2011-09-21 アルミニウム製熱交換器の表面処理方法
JP2011-205809 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042725A1 true WO2013042725A1 (ja) 2013-03-28

Family

ID=47914485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074059 WO2013042725A1 (ja) 2011-09-21 2012-09-20 アルミニウム製熱交換器の表面処理方法

Country Status (5)

Country Link
US (1) US9757811B2 (ja)
JP (1) JP6184051B2 (ja)
CN (1) CN103917693B (ja)
CZ (1) CZ306707B6 (ja)
WO (1) WO2013042725A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164314A (zh) * 2013-04-03 2015-12-16 日涂表面处理化工有限公司 化成处理剂和金属表面处理方法
US9879345B2 (en) 2012-03-09 2018-01-30 Nippon Paint Surf Chemicals Co., Ltd. Chemical conversion agent and chemical conversion coating film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013437B1 (fr) * 2013-11-20 2015-12-18 Valeo Systemes Thermiques Revetement pour echangeur de chaleur
CN104451643B (zh) * 2014-11-14 2017-08-18 深圳市钝化技术有限公司 一种铝合金无铬钝化液及其制备方法
CN109312469A (zh) * 2016-06-22 2019-02-05 凯密特尔有限责任公司 包含钢、镀锌钢、铝、镁和/或锌镁合金的金属表面的防腐蚀预处理的改进方法
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
RU2754068C2 (ru) * 2016-09-15 2021-08-25 Хеметалл Гмбх Улучшенный способ антикоррозионной предварительной обработки металлической поверхности, представляющей собой сталь, оцинкованную сталь, алюминий, алюминиевый сплав, магниевый и/или цинко-магниевый сплав
US11293104B2 (en) * 2017-06-27 2022-04-05 Bulk Chemicals, Inc. Inorganic non-chrome aqueous treatment composition and process for coating metal surfaces
CN108456878B (zh) * 2018-03-08 2019-07-16 东北大学 一种纳米颗粒表面改性提升转化膜性能方法
KR102299498B1 (ko) * 2019-09-06 2021-09-08 현대자동차주식회사 열교환기 튜브용 코팅 조성물 및 이를 이용한 열교환기용 튜브의 코팅 방법
CN110747454A (zh) * 2019-11-19 2020-02-04 安徽鑫发铝业有限公司 一种用于空气净化器外壳的铝型材的生产方法
CN115216759B (zh) * 2022-07-09 2024-02-23 重庆理工大学 一种亲水化学转化成膜液及铝合金表面处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069197A (ja) * 2004-08-06 2006-03-16 Nippon Paint Co Ltd フラックスろう付けされたアルミ熱交換器の表面処理方法
JP2009034589A (ja) * 2007-07-31 2009-02-19 Kobe Steel Ltd アルミニウム系金属材料製フィン材の製造方法、及び当該製造方法により製造されるアルミニウム系金属材料製フィン材
JP2011131206A (ja) * 2009-11-30 2011-07-07 Nippon Paint Co Ltd アルミニウム材製熱交換器の耐食処理方法
JP2011161876A (ja) * 2010-02-15 2011-08-25 Nippon Parkerizing Co Ltd 表面処理皮膜を有するアルミニウム又はアルミニウム合金材料及びその表面処理方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788588B2 (ja) 1988-02-15 1995-09-27 日本ペイント株式会社 アルミニウム又はその合金の表面処理剤及び処理浴
CA1333043C (en) * 1988-02-15 1994-11-15 Nippon Paint Co., Ltd. Surface treatment chemical and bath for aluminium and its alloy
JPH11131254A (ja) * 1997-10-24 1999-05-18 Nippon Parkerizing Co Ltd アルミニウム含有金属材料の表面処理方法
JP4102028B2 (ja) 1998-10-15 2008-06-18 日本パーカライジング株式会社 金属材料の親水化処理剤、親水化処理液、親水化処理方法、金属材料および熱交換器
JP3992173B2 (ja) 1998-10-28 2007-10-17 日本パーカライジング株式会社 金属表面処理用組成物及び表面処理液ならびに表面処理方法
US6361833B1 (en) 1998-10-28 2002-03-26 Henkel Corporation Composition and process for treating metal surfaces
JP4008620B2 (ja) 1999-06-04 2007-11-14 カルソニックカンセイ株式会社 アルミニウム合金製熱交換器
JP3860697B2 (ja) * 1999-12-27 2006-12-20 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
US6736908B2 (en) 1999-12-27 2004-05-18 Henkel Kommanditgesellschaft Auf Aktien Composition and process for treating metal surfaces and resulting article
US20030209293A1 (en) 2000-05-11 2003-11-13 Ryousuke Sako Metal surface treatment agent
CN1210356C (zh) * 2000-05-11 2005-07-13 日本巴卡莱近估股份有限公司 金属表面处理剂、金属表面处理方法及表面处理金属材料
JP3851106B2 (ja) 2000-05-11 2006-11-29 日本パーカライジング株式会社 金属表面処理剤、金属表面処理方法及び表面処理金属材料
JP3474866B2 (ja) 2000-05-12 2003-12-08 日本ペイント株式会社 熱交換器の親水化処理方法および親水化処理された熱交換器
US20030168127A1 (en) 2000-08-21 2003-09-11 Kazunari Hamamura Surface preparation agent and surface preparation method
JP3844643B2 (ja) 2000-08-21 2006-11-15 日本パーカライジング株式会社 下地処理剤、及び下地処理方法
US20030098091A1 (en) 2000-10-02 2003-05-29 Opdycke Walter N. Shortened process for imparting corrosion resistance to aluminum substrates
US6613390B2 (en) * 2000-12-19 2003-09-02 United Technologies Corporation Compound, non-chromium conversion coatings for aluminum alloys
JP2002275650A (ja) 2001-03-15 2002-09-25 Kansai Paint Co Ltd 親水化処理された熱交換器アルミニウムフィン材
EP1324274A3 (en) 2001-12-28 2005-11-02 Matsushita Electric Industrial Co., Ltd. Vehicle information recording system
JP4176026B2 (ja) 2003-02-17 2008-11-05 日本ペイント株式会社 防錆剤
JP2005008975A (ja) 2003-06-20 2005-01-13 Nippon Paint Co Ltd 金属表面処理方法、表面処理アルミニウム系金属、及び、親水処理の前処理方法
JP3836093B2 (ja) 2003-07-18 2006-10-18 電気化学工業株式会社 表面処理剤、該表面処理剤を用いたアルミニウム製熱交換器用フィン材及びその製造方法
EP1624274B1 (en) 2004-08-06 2007-07-11 Nippon Paint Co., Ltd. Surface treatment method for flux-brazed aluminum-made heat exchanger
JP5241075B2 (ja) 2006-03-06 2013-07-17 日本パーカライジング株式会社 金属材料表面処理用のノンクロメート水系表面処理剤
ES2659926T3 (es) 2006-09-08 2018-03-20 Chemetall Gmbh Método de tratamiento superficial de metal base, material metálico tratado por el método de tratamiento superficial y método de recubrimiento del material metálico
JP2008088552A (ja) 2006-09-08 2008-04-17 Nippon Paint Co Ltd 金属基材の表面処理方法、当該表面処理方法により処理されてなる金属材料、及び当該金属材料の塗装方法。
TW200837156A (en) 2007-02-22 2008-09-16 Kansai Paint Co Ltd Coating agent for forming titanium/zirconium film, method for forming titanium/zirconium film and metal substrate coated with titanium/zirconium film
JP5160866B2 (ja) 2007-11-29 2013-03-13 Jfeスチール株式会社 表面処理溶融Zn−Al系合金めっき鋼板
JP5563236B2 (ja) 2009-04-30 2014-07-30 日本パーカライジング株式会社 クロムフリー化成処理液、化成処理方法及び化成処理物品
JP5485616B2 (ja) 2009-08-21 2014-05-07 関西ペイント株式会社 アルミニウムフィン材用の下地処理剤
JP5577782B2 (ja) 2010-03-24 2014-08-27 Jfeスチール株式会社 表面処理鋼板
JP5537233B2 (ja) 2010-03-31 2014-07-02 日本ペイント株式会社 アルミニウム材熱交換器の耐食処理方法
ES2773898T3 (es) 2010-06-09 2020-07-15 Chemetall Gmbh Agente inorgánico libre de cromo para tratamiento de superficie metálica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069197A (ja) * 2004-08-06 2006-03-16 Nippon Paint Co Ltd フラックスろう付けされたアルミ熱交換器の表面処理方法
JP2009034589A (ja) * 2007-07-31 2009-02-19 Kobe Steel Ltd アルミニウム系金属材料製フィン材の製造方法、及び当該製造方法により製造されるアルミニウム系金属材料製フィン材
JP2011131206A (ja) * 2009-11-30 2011-07-07 Nippon Paint Co Ltd アルミニウム材製熱交換器の耐食処理方法
JP2011161876A (ja) * 2010-02-15 2011-08-25 Nippon Parkerizing Co Ltd 表面処理皮膜を有するアルミニウム又はアルミニウム合金材料及びその表面処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879345B2 (en) 2012-03-09 2018-01-30 Nippon Paint Surf Chemicals Co., Ltd. Chemical conversion agent and chemical conversion coating film
CN105164314A (zh) * 2013-04-03 2015-12-16 日涂表面处理化工有限公司 化成处理剂和金属表面处理方法
US10138559B2 (en) 2013-04-03 2018-11-27 Nippon Paint Surf Chemicals Co., Ltd. Chemical conversion agent and metal surface treatment method

Also Published As

Publication number Publication date
JP2013067828A (ja) 2013-04-18
JP6184051B2 (ja) 2017-08-23
CZ2014179A3 (cs) 2014-06-18
US20140223740A1 (en) 2014-08-14
CN103917693A (zh) 2014-07-09
CN103917693B (zh) 2016-07-06
CZ306707B6 (cs) 2017-05-17
US9757811B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
JP6184051B2 (ja) アルミニウム製熱交換器の表面処理方法
JP6105979B2 (ja) アルミニウム製熱交換器の表面処理方法
JP5794512B2 (ja) アルミニウム材製熱交換器の耐食処理方法
EP1624274B1 (en) Surface treatment method for flux-brazed aluminum-made heat exchanger
JP4688602B2 (ja) フラックスろう付けされたアルミ熱交換器の表面処理方法
JP5537233B2 (ja) アルミニウム材熱交換器の耐食処理方法
JP4008620B2 (ja) アルミニウム合金製熱交換器
EP1447460B1 (en) Rust prevention coating agent and method of rust-proofing
JP5616669B2 (ja) アルミニウム基材用耐食処理剤、及びそれを用いたアルミニウム基材の耐食処理方法
JP2005002370A (ja) アルミニウム系基材の表面処理方法及び表面処理基材
WO2014163166A1 (ja) アルミニウム製熱交換器の表面処理方法
JP2011153745A (ja) 熱交換器の表面処理方法、表面処理剤、及びアルミニウム製熱交換器
JP2002285140A (ja) 親水化処理剤、親水化処理方法及び親水化処理されたアルミニウム材又はアルミニウム合金材
CN108660450B (zh) 铝制热交换器的表面处理方法
JP4176026B2 (ja) 防錆剤
KR20170000199A (ko) 알루미늄계 기재의 표면 처리 방법 및 표면 처리 기재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14346132

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PV2014-179

Country of ref document: CZ

122 Ep: pct application non-entry in european phase

Ref document number: 12833273

Country of ref document: EP

Kind code of ref document: A1