WO2013042549A1 - 検体検査自動化システム - Google Patents

検体検査自動化システム Download PDF

Info

Publication number
WO2013042549A1
WO2013042549A1 PCT/JP2012/072791 JP2012072791W WO2013042549A1 WO 2013042549 A1 WO2013042549 A1 WO 2013042549A1 JP 2012072791 W JP2012072791 W JP 2012072791W WO 2013042549 A1 WO2013042549 A1 WO 2013042549A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
automation system
holder
test automation
transport path
Prior art date
Application number
PCT/JP2012/072791
Other languages
English (en)
French (fr)
Inventor
賢一 安澤
幸司 鴨志田
正志 圷
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP12833779.7A priority Critical patent/EP2759838B1/en
Priority to US14/238,615 priority patent/US9645161B2/en
Priority to CN201280039591.2A priority patent/CN103733073B/zh
Priority to JP2013534661A priority patent/JP5778777B2/ja
Publication of WO2013042549A1 publication Critical patent/WO2013042549A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N2035/0094Scheduling optimisation; experiment design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0462Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0467Switching points ("aiguillages")
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control

Definitions

  • the present invention relates to a specimen test automation system for processing specimens such as blood and urine in clinical tests.
  • Containers containing specimens such as blood and urine are loaded on a carrier for transporting specimens one by one or a plurality of specimens called racks or specimen container holders, and supplied to the specimen test automation system.
  • This sample is centrifuged according to the test item to be measured and the contents of the pretreatment, and the capping process is performed to remove the cap of the container, and the process of separating this sample into one or more other containers according to the use, that is, the parent sample to the child Dispensing processing to sample containers, processing to attach barcode labels to child sample containers, plugging processing to plug child sample containers, classification storage processing for sorting parent samples and child samples according to subsequent processing, child sample rack Is carried out to the automatic analyzer to analyze and measure the child sample.
  • Devices having functions of these processes are connected by a plurality of transport lines to constitute a specimen test automation system.
  • an actual sample and an empty holder are replaced by a plurality of processing units. For example, when transferring a sample that has been input in batches to the holder, or when transferring a sample that has been subjected to centrifugation from the centrifuge bucket to the holder, the child sample created by the child sample dispensing process is loaded on the holder. In such a case, it is necessary to supply an empty holder for loading the sample container to each processing unit. If this holder supply process is not performed quickly, the processing speed of the entire specimen test automation system will decrease.
  • Patent Document 2 in order to reduce the installation area of a large number of sample racks, a certain number of sample racks are collectively installed in a tray, and this tray is arranged in multiple stages in both the sample rack supply unit and the recovery unit, and is driven up and down. It is described that the sample rack is supplied and recovered by the elevator mechanism of the above.
  • Patent Document 3 mentions a method in which a device is connected to an endless transfer line and a sample rack to be used is used.
  • Patent Document 4 discloses a specimen test automation system in which a dedicated empty holder transport line for transporting an empty holder is provided separately from a line for transporting a sample, and an empty holder can be supplied to each processing unit as necessary. Yes.
  • Patent Document 3 reuses the sample rack while looping the sample rack transport line in the system, a large number of sample racks are not required.
  • the empty sample rack and the sample rack on which the sample is placed pass through the same transport line, congestion occurs in the transport line, and it is difficult to construct a system with a high processing speed. Also, it is inevitable that transport control is complicated, such as the need to distinguish between an empty sample rack and a sample rack on which a sample is placed.
  • Patent Document 4 can avoid the problems disclosed in Patent Documents 1 to 3.
  • the empty holder peripheral circuit is configured as one peripheral circuit through all the processing units, depending on the position of the processing unit, it is necessary to transport almost the entire circumference of the peripheral circuit before supplying the empty holder. was there. For this reason, the time until the empty holder is supplied to the desired processing unit is long, and there is a possibility that the processing unit waits for the empty holder to arrive, so-called depletion.
  • the empty holder supply method disclosed in Patent Document 4 removes some units from the system. It was difficult to take workarounds such as disconnecting.
  • the empty holder peripheral circuit is composed of a plurality of loop conveyance paths, and an empty holder stopper is installed in each loop conveyance path, so that the physical from each stopper to each processing unit is achieved.
  • An object of the present invention is to provide a specimen test automation system that can keep a short distance short and shorten the supply time of an empty holder.
  • the objective is to realize an automated sample test system that enables business continuity by disconnecting when a failure occurs.
  • the configuration of the present invention for achieving the above goal is as follows.
  • the empty holder conveyance path includes a plurality of loop conveyance paths in which the conveyance paths are arranged in a loop shape. It is characterized by being connected.
  • the processing unit can be provided with a necessary apparatus group, and a specimen test automation system that can handle various processes can be constructed.
  • description regarding the breakdown of the processing units is omitted, but any processing unit does not affect the scope of the present invention.
  • the empty holder supply to each processing unit can be performed without delay, and the operation is continued by disconnecting when a failure occurs. Can be realized.
  • FIG. 1 is a block diagram showing an example of a configuration in which an embodiment of a sample test automation system according to the present invention is adopted.
  • the sample test automation system shown in FIG. 1 includes processing units 101 to 107.
  • An empty holder line 111 that circulates the empty holder and a sample transport line 112 that grips and transports an actual sample outside the empty holder so as to connect these processing units 101 to 107 are connected to a processing unit that requires an empty holder.
  • the empty holder line 111 and the sample transport line 112 are connected by a supply line 114 for supplying an empty holder.
  • loops 1 to 3 are configured, and each loop connects the loop 1 and the loop 2 and the loop 2 and the loop 3 by the mini line 113, respectively.
  • Each of the loops 1 to 3 includes empty holder stoppers 121 to 123 for retaining and storing the empty holder 301 on the empty holder line 111.
  • an empty holder line 111, a sample transport line 112, a mini line 113, a supply line 114, and an operation unit 201 for controlling the empty holder stoppers 121 to 123 are provided, and a communication means 202 with each line and each stopper is provided. ing.
  • the empty holder 301 is stored on the empty holder line constituting any one of the loops by the empty holder stoppers 121 to 123 installed on the empty holder line 111.
  • processing units 101 to 107 and a larger number of processing units are configured by various processing devices according to the operation needs of the laboratory.
  • FIG. 2 is an example of a partially enlarged view of the empty holder line of the loop 1 shown in FIG.
  • the empty holder 301 flowing on the empty holder line 111 is blocked by the empty holder stopper 121 as in FIG.
  • a full detection sensor 251 for detecting that a sufficient amount of empty holders are stored in the empty holder stopper 121 and a depletion detection sensor 252 for detecting that the empty holder 301 is exhausted are provided. The same applies to stoppers installed in other loops, although not shown.
  • the operation unit collects the detection information from the stopper of each loop via the communication means 202, and instructs the empty holder line to pass the empty holder between the loops as necessary. Specifically, the stopper detected by the full detection sensor 251 is instructed to open the stopper so that the empty holder is carried out. This prevents the empty holders from being biased and accumulated in some loops, and at the same time avoids the loops becoming full and the line stagnating.
  • the setting of whether or not the number of empty holders stored on each loop is sufficient may be changeable depending on the type of processing unit connected to the loop through the supply line. For example, the amount of holders required in a dispensing processing unit is constant, whereas in the input unit, a large amount of holders are required at the timing after the sample is input, but at other timings. Almost no holder supply is required.
  • the control unit stores information on the necessary amount of holders based on the characteristics of these processing units, and adjusts the holder accumulation amount between each loop based on the stored information on the necessary amount of holders, the output of the sensor, and the like. good. Further, the information on the necessary amount of the holder may be provided with a screen display that can be set on the operator side.
  • FIG. 3 shows an embodiment in which the number of empty holders to be stored in each stopper can be set on the screen of the operation unit.
  • the maximum number of empty holder parameters 802 can be set for each stopper, and the operation unit monitors and controls each stopper in operation based on this set value.
  • the empty holder stopper 122 is set so that a maximum of 10 empty holders can be stored. Then, when there are 20 empty holders on the loop where the empty holder stopper 122 is installed, the empty holder stopper 122 is opened and the empty holder is delivered to another stopper, or the empty holder stopper 122 is given priority. An empty holder is supplied to each processing unit.
  • the empty holder stopper 122 is installed by opening the empty holder stopper 121 or the empty holder stopper 123. Control to supply a holder on the loop.
  • the number of holders that can be stored for each stopper may be controlled so as to be changed by specific logic. For example, when an operator puts a large amount of samples into the loading unit, a large number of empty holders are required for mounting the samples, so the number of holders accumulated on the loop that supplies the holder to the loading unit is increased. You may adjust as follows. Similarly, the centrifuge unit requires a relatively large number of holders every predetermined time interval (about 20 minutes) required for one centrifugation process. Therefore, you may adjust so that the number of holders accumulate
  • the operator may be provided with a screen on which the timing and time interval at which the holder is required in a specific processing unit can be set in advance. Then, the number of holders held in the loop may be controlled based on the signal received from each processing unit. For example, a method of receiving the end time of the centrifuge process from the centrifuge unit and the number of specimens carried out from the centrifuge unit, and controlling the number of holders held in the loop in real time based on these information Is assumed.
  • empty holders are constantly entering and exiting each loop, and the number of holders managed for each loop is constantly changing.
  • the ideal number of holders to be stored in each stopper is set in advance so that the values can be as close to these values as possible before starting system operation or when the number of processed samples is decreasing and stabilizing even during operation.
  • the unit controls the empty holder.
  • the holder 302 carrying the sample is often transported on the sample transport line 112 and is transported from the management jurisdiction of the loop 11 to the management jurisdiction of the loop 12 (FIG. 4).
  • This state means that one holder has disappeared from the loop 11, and therefore, the controller moves the empty holder conveyance line so that one empty holder 301 is conveyed from the loop 12 to the loop 11 as the holder carrying the specimen is moved. You may control.
  • the holder 302 on which the actual specimen is mounted becomes the empty holder 301 when the processing on the specimen is completed, and is collected in the loop. With this mechanism, the empty holder is placed in each loop at almost all timings. An average amount of 301 can be maintained.
  • FIG. 5 shows another embodiment of the present invention.
  • a plurality of automatic analyzers 403 and 404 are connected in parallel to the sample test automation system.
  • An empty holder conveyance line for supplying an empty holder to the sample test automation system is formed by a loop 21, a loop 22, and a loop 23.
  • the empty holder transport line is formed by three loops, but the empty holder transport line may be formed by a larger number of loops.
  • the three loops 21 to 23 are respectively provided with empty holder stoppers 124, 125 and 126 at positions immediately before the branch portion.
  • a mini line 116 for forming a loop is provided between the loop 23 and the branching portion.
  • the automatic analyzer 403 is connected to the sample test automation system via a connection buffer 401 installed at the end of the loop 22.
  • the connection buffer 401 In the connection buffer 401, the process of transferring a sample from one holder as a carrier used in the sample test automation system to a rack as a carrier (not shown) used in the automatic analyzer 403, and one holder from a rack (not shown) It is assumed that return processing is performed. Therefore, in the case where one holder as a carrier used in the sample test automation system can be used in common with the carrier of the automatic analyzer 403, it is considered that the connection buffer 401 is not necessary.
  • connection buffer 402 and the automatic analyzer 404 are installed at the end of the loop 23 in the same manner as the connection buffer 401 and the automatic analyzer 403.
  • the automatic analyzer 403 and the automatic analyzer 404 may be a specimen test automation system that considers the state in which the test items to be measured overlap, but the description is omitted because it is not directly related to the present invention.
  • FIG. 5 the main transport line for gripping and transporting the actual specimen is not shown, but the actual apparatus naturally includes the main transport line.
  • processing units 101 to 107 are provided with supply lines for supplying empty holders to a plurality of processing units (not shown).
  • the relationship between the processing units 101 to 107 and the loops is as described above. Therefore, the description about the processing unit is also omitted.
  • the system of FIG. 5 is characterized in that a branching section is provided on the empty holder conveyance line, and the loop 22 corresponds to the automatic analyzer 403 and the loop 23 corresponds to the automatic analyzer 404.
  • partial operation may be referred to as “degenerate operation”, but as with the offline setting described above, partial operation may be intentionally performed according to the operation needs of the laboratory, regardless of system troubles. This can be called “degenerate operation”. For example, in a 24-hour laboratory, only some units and some loops may be driven in the night / holiday mode.
  • the minimum structural unit of the loop may be a single processing unit.
  • 1 loop 1 processing unit can be obtained, and the processing units can be individually separated.
  • the loops are individually isolated. Therefore, in practice, it is desirable to form one loop with a minimum number of processing unit groups that enable system operation.
  • the processing unit group in charge forms a first loop (loop 21 in FIG. 5), and second, third,... Loops (loops 22 and 23 in FIG. 5) are formed for each connection buffer of the analysis unit. Is desirable.
  • the empty holder opened by opening the empty holder stopper 124 of the loop 21 is supplied to the processing unit connected to the loop 21 by the supply line or the loop 22. Which is supplied is determined by a branching unit provided in the branching unit. Similarly, the empty holder opened by opening the empty holder stopper 125 of the loop 22 is supplied to the processing unit connected to the loop 22 by the supply line or the loop 23. The empty holder opened by opening the empty holder stopper 126 of the loop 23 is supplied to the processing unit connected to the loop 23 by the supply line or the loop 21. These stoppers are turned on and off based on instructions from the operation unit.
  • FIG. 6 shows an embodiment in which the offline setting can be performed on the screen of the operation unit.
  • an offline instruction can be set for each loop.
  • the operation unit issues an online / offline switching instruction for each loop based on these set values.
  • the screen example illustrates that offline setting is performed for the loop 22 in which the check box is checked.
  • the screen example illustrates a relatively easy screen layout in which there is a setting line of one line for each loop.
  • a system configuration diagram as shown in FIG. A setting method of displaying a reduced version on the screen and directly selecting a loop to be set off-line from the screen is also expected to be adopted as an embodiment.
  • the setting is for each loop, but the setting may be for each processing unit.
  • the loop including the set processing unit is implemented so as to be offline.
  • the empty holder supply to each processing unit can be performed without delay even if the length of the circulating path is extended, and it is possible to realize business continuity by disconnecting when a failure occurs. It becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 キャリアとして1本ホルダを使用する検体検査自動化システムにおいて、周回する経路長が延びても処理ユニットへの空ホルダ供給を遅延することなく行うことができ、また、障害の発生時に切り離し等を行うことによる業務継続を実現した検体検査自動化システムを提供する。複数の処理ユニットを組み合わせたシステムにおいて、空ホルダの周回路を持ち、システム内全ての処理ユニットをひと筆書きのように周回できる機構と、周回路上に空ホルダを蓄えるストッパを備え、処理ユニットからの空ホルダ要求を受けて、周回路上に設けたストッパを制御する機構を備え、空ホルダ周回路を複数のループ構成とし、ループごとにストッパを備える検体検査自動化システムにより、空ホルダ供給を効率よく行うとともに、縮退運転によるシステム運用の簡便性を向上する。

Description

検体検査自動化システム
 本発明は臨床検査において血液や尿等の検体を処理する検体検査自動化システムに関する。
 臨床検査において血液や尿等の検体を自動分析装置で分析する場合、検体の遠心分離、各自動分析装置の専用容器への検体の分注、バーコードラベル等の検体容器への貼付等、依頼内容により各種の前処理が発生する。多くの病院や検査センター等で、検査の省力化・効率化のためにこのような前処理を自動的に行う、検体検査自動化システムが導入されている。
 血液や尿等の検体が入った容器は、ラックや検体容器ホルダなどと呼ばれる検体を1本または複数本ずつ搬送するためのキャリアに積載し検体検査自動化システムに供給される。この検体は、測定する検査項目および前処理内容により、遠心分離処理し、容器の栓を外す開栓処理、用途に応じてこの検体をひとつ以上の別の容器へ取り分ける処理、すなわち親検体から子検体容器への分注処理、子検体容器にバーコードラベルを貼り付ける処理、子検体容器に栓をする閉栓処理、親検体や子検体をその後の処理に応じて仕分ける分類収納処理、子検体ラックを自動分析装置へ搬送して子検体を分析測定する処理等が実施される。これらの各処理の機能を有する装置が複数の搬送ラインによって結び付けられ検体検査自動化システムを構成している。
 キャリアとして1本ホルダを使用する検体検査自動化システムにおいては、複数の処理ユニットで実際の検体と空ホルダの載せ替えの行為を行うことになる。例えば、バッチで投入された検体をホルダに載せ替える場合や、遠心分離処理の終了した検体を遠心分離用バケットからホルダに載せ替える場合、子検体分注処理によって作成された子検体をホルダに積載する場合などにおいては、検体容器を積載するための空のホルダを各処理ユニットに供給する必要がある。このホルダ供給処理が迅速に行われないと、検体検査自動化システム全体の処理スピードが低下してしまう。
 検体検査自動化システムにラックまたはホルダを供給する方式としてはたとえば特許文献1に記載されているように、検体種別に応じた処理を行うために大量の検体ラックを予め装置にセットする方式が知られている。
 特許文献2では、大量の検体ラックの設置面積を低減するため、検体ラックをある一定の数をまとめてトレイに設置し、このトレイを検体ラック供給部・回収部共に多段に配置し、上下駆動のエレベータ機構により検体ラックの供給・回収をすることが述べられている。
 特許文献3ではエンドレス化した搬送ラインに装置を連結し、使用する検体ラックを使い回す方式が挙げられている。
 特許文献4には検体を搬送するラインとは別に空ホルダを搬送する専用の空ホルダ搬送ラインを設けておき、必要に応じて各処理ユニットに空ホルダを供給できる検体検査自動化システムが開示されている。
特許3618067号公報 特開2007-309675号公報 特開平8-122337号公報 WO2011/040197
 上記特許文献1および特許文献2に記載された方法は、大量の検体を処理するために検査を行う検体分だけ検体ラックを準備する必要があり、これに伴い、システムの大型化・複雑化は避けられない。また、オペレータはシステムの使用前に大量の検体ラックを補充しなければならない手間を伴っていた。
 また、特許文献3はシステム内で検体ラックの搬送ラインをループしながら、検体ラック再利用を行うので大量の検体ラックは必要としない。ただし、空の検体ラックと検体が載った検体ラックが同じ搬送ラインを通ることになるので搬送ラインに渋滞が発生し、処理速度の高いシステムを構築することが困難である。また空の検体ラックと、検体が載った検体ラックの識別が必要であるなど、搬送制御についても複雑化が避けられなかった。
 特許文献4に記載された方式は、上記特許文献1~3に開示された課題を回避することができる。しかし、空ホルダ周回路が全ての処理ユニットを経由しながら、ひとつの周回路として構成されていたため、処理ユニットの位置によっては空ホルダを供給するまでに、周回路のほぼ全周を搬送する必要があった。このため、空ホルダが所望の処理ユニットに供給されるまでの時間が長く、処理ユニット側では空ホルダの到着待ち、いわゆる枯渇が発生する可能性があった。さらに、検体検査自動化システムの一部に障害が起きた場合や、システム全体の稼動を継続できない事態となった場合に、特許文献4に開示された空ホルダ供給方法では一部のユニットをシステムから切り離す等の回避策をとることが難しかった。
 本発明ではこの従来の問題を解決するため、空ホルダ周回路を複数のループ搬送路から構成し、各ループ搬送路に空ホルダストッパを設置することにより、各ストッパから各処理ユニットまでの物理的な距離を短く保ち、空ホルダの供給時間を短縮することが可能な検体検査自動化システムを提供することを目的とする。
 さらに、空ホルダを必要とする複数の処理ユニットに対し、迅速に空ホルダを供給し、各処理ユニットでホルダの枯渇を抑止する検体検査自動化システムを提供することを目的とする。
 さらに、障害の発生時に切り離し等を行って業務継続を可能とする検体検査自動化システムを実現することを目的とする。
 上記目標を達成するための本発明の構成は以下の通りである。
 すなわち、複数の処理ユニットと、前記複数の処理ユニットにおいて処理すべき検体を搭載したホルダを搬送する主搬送路と、検体を搭載していない前記ホルダを搬送する空ホルダ搬送路と、前記空ホルダ搬送路上のホルダを前記処理ユニットまたは前記主搬送路に供給する供給手段と、を備えた検体検査自動化システムにおいて、前記空ホルダ搬送路は、搬送路がループ状に配置されたループ搬送路が複数連結されて形成されていることを特徴としている。
 なお、該システム利用施設である検査室の運用形態に合わせて、前記処理ユニットには必要となる装置群を揃え、様々な処理に対応可能な検体検査自動化システムを構築することができる。本明細書においては、前記処理ユニットの内訳に関する記載を省略するが、あらゆる処理ユニットについて本発明の実施範囲には影響を及ぼさない。
 本発明を採用した検体検査自動化システムにおいて、周回する経路長が延びても各処理ユニットへの空ホルダ供給を遅延することなく行うことができ、また、障害の発生時に切り離し等を行って業務継続を実現することができる。
検体検査自動化システムの構成例を表すブロック図である。 ストッパで貯蓄するホルダを検知するセンサの構成例を表すブロック図である。 各ストッパで貯蓄すべき、空ホルダ数を設定する操作部の画面例である。 ループの管理管轄間で、実際の検体を把持したホルダと空ホルダを交換するシステムの構成例を表すブロック図である。 複数台の自動分析装置を接続する検体検査自動化システムのループ構成例を表すブロック図である。 ループをオフライン設定する操作部の画面例である。
 以下に図面を用いて本発明の実施態様を説明する。
 図1は本発明の検体検査自動化システムの一実施形態を採用した一構成例を表すブロック図である。
 図1に示す検体検査自動化システムは、処理ユニット101~107によって構成している。これらの処理ユニット101~107を結ぶように、空ホルダを周回する空ホルダライン111と、その外側に実際の検体を把持して搬送する検体搬送ライン112を備え、空ホルダが必要な処理ユニットへ空ホルダを供給する供給ライン114によって、空ホルダライン111と検体搬送ライン112を接続している。
 図1の例示では、ループ1~3を構成し、各ループはミニライン113によって、ループ1とループ2とを、またループ2とループ3とを、それぞれ接続している。各ループ1~3には、空ホルダライン111上に空ホルダ301をせき止めて貯蓄するための空ホルダストッパ121~123を備えている。
 また、空ホルダライン111、検体搬送ライン112、ミニライン113、供給ライン114および各空ホルダストッパ121~123を制御するための操作部201を備え、各ラインおよび各ストッパとの通信手段202を備えている。
 空ホルダ301は、空ホルダライン111上に設置した空ホルダストッパ121~123によって、いずれかのループを構成する空ホルダライン上に貯蓄される。
 なお、図1では詳しい内訳を省略しているが、処理ユニット101~107、およびそれ以上の数の処理ユニットは、検査室の運用ニーズに応じて種々の処理装置によって構成される。
 図2は、図1で示すループ1の空ホルダラインを一部拡大した実施例図である。空ホルダライン111上を流れる空ホルダ301を、空ホルダストッパ121でせき止めるのは図1と同様である。空ホルダストッパ121に十分な量の空ホルダが貯蓄されていることを検知するための満杯検知センサ251と、空ホルダ301が枯渇したことを検知するための枯渇検知センサ252を備える。他のループに設置するストッパについても図示しないが同様とする。
 操作部は通信手段202を経て各ループのストッパからこれらの検知情報を収集し、必要に応じて各ループ間での空ホルダ受け渡しを空ホルダラインへ指示する。具体的には、満杯検知センサ251が検知したストッパには、空ホルダを搬出するよう当該ストッパを開放するよう指示が出される。これによって、一部のループに空ホルダが偏って蓄積されるのを防止するのと同時に、ループが満杯になってラインが停滞してしまうことを回避する。
 また、枯渇検知センサ252を検知したストッパが位置するループではホルダの枯渇が予想されるため、当該ストッパ以外のストッパを開放するよう指示が出される。これによって、他のループから空ホルダが供給されることとなる。
 なお、各ループ上に貯蓄された空ホルダの個数が十分か否かの設定は、ループと供給ラインで接続されている処理ユニットの種別によって変更可能としても良い。例えば、分注処理ユニットなどで必要となるホルダの量は、コンスタントであるのに対し、投入ユニットなどでは、検体が投入された後のタイミングでは大量のホルダを必要とするが、その他のタイミングではホルダの供給はほぼ必要ない。制御部はこれら処理ユニットの特性に基づくホルダ必要量の情報を記憶しておき、記憶されたホルダ必要量の情報、センサの出力等に基づき、各ループ間でのホルダ蓄積量を調整しても良い。また、これらのホルダ必要量の情報はオペレータ側で設定できるような画面表示を備えていても良い。
 図3には、各ストッパで貯蓄すべき空ホルダの数を操作部の画面で設定することを可能とする実施例を図示している。
 パラメータ設定画面801では、ストッパごとに空ホルダの最大数パラメータ802を設定可能とし、操作部はこの設定値をもとに稼動中の各ストッパを監視し制御する。例えば、空ホルダストッパ122に対しては最大で空ホルダが10個貯蓄可能となるように設定する。すると、空ホルダストッパ122が設置されたループ上に20個の空ホルダが存在する場合には空ホルダストッパ122を開放して他のストッパに空ホルダを受け渡すか、空ホルダストッパ122から優先的に各処理ユニットに空ホルダを供給する。一方で、空ホルダストッパ122が設置されたループ上に2個しか空ホルダが貯蓄されていない場合には、空ホルダストッパ121または空ホルダストッパ123を開放して空ホルダストッパ122が設置されているループ上にホルダを供給するように制御する。
 ストッパごとに貯蓄可能なホルダの個数は、特定のロジックで変更するように制御しても良い。たとえば、オペレータが大量の検体を投入ユニットに投入した場合には、検体を搭載するための空ホルダが大量に必要となるため、投入ユニットにホルダを供給するループ上に蓄積するホルダ数を多くするよう調整しても良い。同様に、遠心分離ユニットは、一回の遠心分離処理に要する所定の時間間隔(約20分)毎に比較的多くのホルダを必要とする。そのため、遠心分離ユニットにホルダを供給するループ上に蓄積するホルダ数を多くするよう調整しても良い。
 このように、タイミングに応じて必要とするホルダ数が変化する場合には、オペレータが、予め特定の処理ユニットでホルダが必要となるタイミングや時間間隔を設定できるような画面を備えていても良いし、各処理ユニットから受信する信号に基づいてループに保持するホルダ数を制御しても良い。例えば、遠心処理ユニットから遠心処理の終了時刻と、それに伴い当該遠心処理ユニットから搬出される検体の個数を受信し、これらの情報に基づいてループに保持されるホルダ数をリアルタイムに制御する方式などが想定される。
 検体検査自動化システムの稼動中は、空ホルダが絶えず各ループを出入りしており、ループごとのホルダ管理数は常に変動している。しかし、各ストッパで貯蓄する理想的なホルダ数を予め設定し、システムの稼動開始前や、稼動中でも処理検体数が減って安定化しつつある状態の時など、なるべくこれらの値に近づくよう、操作部では空ホルダの制御を行う。
 この他にも、検体検査自動化システムでは、検体を搭載したホルダ302が検体搬送ライン112上を搬送され、ループ11の管理管轄内からループ12の管理管轄内へ搬送されることが多々ある(図4参照)。この状態は、ループ11からホルダがひとつ無くなったことを意味するので、検体を搭載したホルダの移動に伴い、ループ12からループ11へ空ホルダ301をひとつ搬送するよう制御部が空ホルダ搬送ラインを制御しても良い。 
 実際の検体を搭載したホルダ302は、検体に対する処理が終われば空ホルダ301となってループに回収されることになるので、このような仕組みをもってすれば、ほぼ全てのタイミングで各ループに空ホルダ301の平均的な量を維持することができる。
 図5に本発明の他の実施例を示す。
 本実施例では検体検査自動化システムに対して複数の自動分析装置403、404が並列に接続されている。またこの検体検査自動化システムに空ホルダを供給する空ホルダ搬送ラインは、ループ21、ループ22、ループ23により形成されている。なお、本実施例では3つのループで空ホルダ搬送ラインを構成しているが、より多数のループにより空ホルダ搬送ラインが形成されているとしても良い。
 3つのループ21~23には、それぞれ空ホルダストッパ124、125および126を、分岐部のすぐ手前の位置に備えている。なお、ループ23と分岐部の間には、ループを構成するためのミニライン116を備えている。
 自動分析装置403はループ22の末端に設置された接続バッファ401を介して検体検査自動化システムに接続されている。該接続バッファ401では、検体検査自動化システムで使用するキャリアとしての1本ホルダから、自動分析装置403で使用する図示しないキャリアとしてのラックへの検体の載せ替え処理、および図示しないラックから1本ホルダへの戻し処理を行うことを想定している。したがって、検体検査自動化システムで使用するキャリアとしての1本ホルダが、自動分析装置403のキャリアと共通して利用できる形態である場合においては、接続バッファ401の必要性はなくなることが考えられる。
 接続バッファ402と自動分析装置404は、接続バッファ401と自動分析装置403と同様に、ループ23の末端に設置されている。
 この時、自動分析装置403と自動分析装置404とでは、測定する検査項目の重複している状態を考慮した検体検査自動化システムが考えられるが、本発明とは直接関係しないため記載を省略する。
 なお、図5においては、実際の検体を把持して搬送する主搬送ラインを図示していないが、実際の装置では当然ながら主搬送ラインを具備するものとする。
 また、図5のループ21~23には、図示していない複数の処理ユニットに空ホルダを供給する供給ラインをそれぞれ設けられているが、処理ユニット101~107とループの関係については上記の通りであるので処理ユニットに関する記述も省略する。
 図5のシステムでは、空ホルダ搬送ライン上に分岐部を設け、自動分析装置403にループ22が、自動分析装置404にループ23が対応するように構成しているのが特徴である。これにより、全体のシステムとしては稼動させつつ、一部の自動分析装置をオフラインとしたい場合には、停止させたい自動分析装置と、当該自動分析装置とセットとなるループをひとつのまとまりとして扱い、一時的にオフライン設定とすることで、部分的に稼動を停止することが可能となる。
 例として、自動分析装置404での分析を継続しつつ、自動分析装置403での測定およびループ22に接続された処理ユニットを停止させる場合について説明する。この場合は、自動分析装置403に接続される接続バッファ401を停止するとともに、ループ22を、ループ21およびループ23から切り離す。これによって、ループ21とループ23に接続している処理ユニット、および自動分析装置404の稼動を止めることなく、自動分析装置403とループ22の処理ユニットだけを選択的に停止することが可能となる。
 また、何らかの原因により一方の自動分析装置が故障した場合にも同様に、ループを構成する単位でシステムから切り離せば、故障していないユニットの部分稼動を継続することが可能となる。このような部分稼動を「縮退運転」と呼ぶ場合があるが、前記したオフライン設定のように、システムのトラブルとは関係なく、検査室の運用ニーズに応じて意図的に部分稼動をとることも「縮退運転」と呼んで差し支えない。例えば、24時間稼動の検査室において、夜間・休日モードとして一部のユニットおよび一部のループのみが駆動する状態としても良い。
 ここで、ループの構成について説明する。ループの最小構成単位は、ひとつの処理ユニット単体とすることも可能である。この場合には、1ループ=1処理ユニットとすることができ、処理ユニットを個々に切り離すことが可能となる。しかしこのように細かい単位でループを形成すると、ループが個々に孤立してしまうため、実用的には、システム稼動が成り立つ必要最小限の処理ユニット群によって一つのループを構成することが望ましい。例えば、投入ユニット、開栓ユニット、遠心分離ユニット、子検体分注ユニット、閉栓ユニット、分類ユニット、収納ユニット、分析ユニット、バッファ、からなる検体検査自動化システムの場合であれば、「前処理」を担当する処理ユニット群で第一のループ(図5のループ21)を構成し、分析ユニットの接続バッファ毎に第二、第三・・・のループ(図5のループ22、23)を形成するのが望ましい。
 ループ21の空ホルダストッパ124を開放することにより開放された空ホルダは、ループ21に供給ラインによって接続された処理ユニット、あるいはループ22に対して供給される。いずれに供給されるかは、分岐部に備わる分岐ユニットによって決定される。同様に、ループ22の空ホルダストッパ125を開放することにより開放された空ホルダは、ループ22に供給ラインによって接続された処理ユニット、あるいはループ23に対して供給される。また、ループ23の空ホルダストッパ126を開放することにより開放された空ホルダは、ループ23に供給ラインによって接続された処理ユニット、あるいはループ21に対して供給される。これらのストッパのON/OFFは操作部からの指示に基づいて相互に連携をとるものとする。
 図6は、前記オフライン設定を操作部の画面で可能とする実施例を図示している。
 オフライン設定画面803では、ループごとにオフライン指示を設定可能とする。操作部は、これらの設定値をもとに、各ループに対するオンライン/オフラインの切り替え指示を行う。該画面例では、チェックボックスにチェックが入っているループ22に対して、オフライン設定を行っていることを例示している。
 なお、該画面例では、ループごとに1行の設定欄がある、という比較的安易な画面レイアウトを例示しているが、ユーザの理解を助けるため、図5に示したようなシステム構成図を縮小したものを画面に掲出した上で、オフライン設定するループを画面上から直接選択する、という設定方法も実施例として採用が見込まれる。
 また、該画面例では、ループごとの設定であるが、処理ユニットごとの設定でも良い。この場合には、設定した処理ユニットを含むループがオフライン対象となるように実装することが想定される。
 以上の検体検査自動化システムの実施例により、次のような効果が得られる。
 検体検査自動化システムにおいて、周回する経路長が延びても各処理ユニットへの空ホルダ供給を遅延することなく行うことができ、また、障害の発生時に切り離し等を行って業務継続を実現することが可能となる。
1~3、11、12、21~23 ループ
101~109 処理ユニット
111、115 空ホルダライン
112 検体搬送ライン
113、116 ミニライン
114 供給ライン
121~126 空ホルダストッパ
201 操作部
202 通信手段
251 満杯検知センサ
252 枯渇検知センサ
301 空ホルダ
302 検体を搭載したホルダ
401、402 接続バッファ
403、404 自動分析装置
801、802 パラメータ設定画面
803、804 オフライン設定画面

Claims (12)

  1.  複数の処理ユニットと、
     前記複数の処理ユニットにおいて処理すべき検体を搭載したホルダを搬送する主搬送路と、
     検体を搭載していない前記ホルダを搬送する空ホルダ搬送路と、
     前記空ホルダ搬送路上のホルダを前記処理ユニットまたは前記主搬送路に供給する供給手段と、を備えた検体検査自動化システムにおいて、
     前記空ホルダ搬送路は、搬送路がループ状に配置されたループ搬送路が複数連結されて形成されている検体検査自動化システム。
  2.  請求項1記載の検体検査自動化システムにおいて、
     前記ループ状搬送路上の一部に複数のホルダをまとめて停止させるストッパを備えた検体検査自動化システム。
  3.  請求項2記載の検体検査自動化システムにおいて、
     前記空ホルダ搬送路を形成するループ搬送路毎に、少なくとも1つずつの前記供給手段を備える検体検査自動化システム。
  4.  請求項1記載の検体検査自動化システムにおいて、
     前記空ホルダ搬送ラインは第一のループ搬送路と、前記第一のループ搬送路に隣接して設けられた第二のループ搬送路と、を含む複数のループ搬送路からなり、
     前記第一のループ搬送路上にあるホルダを、当該第一のループ搬送路に備わる供給手段、もしくは前記第二のループ搬送路に搬送する制御部を備える検体検査自動化システム。
  5.  請求項2記載の検体検査自動化システムにおいて、
     前記ストッパによって停止しているホルダの個数を検知するセンサを備えた検体検査自動化システム。
  6.  請求項5記載の検体検査自動化システムにおいて、
     前記センサは、前記ストッパによって停止しているホルダの個数が、所定の個数範囲におさまっているか否かを検知する検体検査自動化システム。
  7.  請求項6記載の検体検査自動化システムにおいて、
     前記ストッパにより停止しているホルダの個数が所定の範囲に収まっていない場合、隣接する他のループ搬送路から当該ストッパが設けられているループ搬送路にホルダを搬送する制御部を備える検体検査自動化システム。
  8.  請求項6記載の検体検査自動化システムにおいて、
     前記ストッパにより停止しているホルダの最適な個数範囲を、前記空ホルダ搬送ラインを形成するループ搬送路毎に設定する設定手段を備える検体検査自動化システム。
  9.  請求項7記載の検体検査自動化システムにおいて、
     前記設定手段は、ループ搬送路から搬送されるホルダが供給される処理ユニットの種別、当該検体検査自動化システムの稼動時間帯に基づいて最適な個数範囲を設定可能な検体検査自動化システム。
  10.  請求項6記載の検体検査自動化システムにおいて、
     前記複数の処理ユニットは、前記第一のループ搬送路からホルダを供給する第一の処理ユニットグループと、前記第二のループ搬送路からホルダを供給する第二の処理ユニットグループを含む、複数の処理ユニットグループからなり、
     前記主搬送路は、前記複数の処理ユニットグループ間で検体を搭載したホルダを搬送し、前記制御部は、前記第一の処理ユニットグループから前記第二の処理ユニットグループへ前記主搬送路を用いてn個のホルダを搬送した場合、前記第二のループ搬送路から前記第一のループ搬送路へn個のホルダを供給するよう制御する検体検査自動化システム。
  11.  請求項10記載の検体検査自動化システムにおいて、
     前記複数のユニットグループのうち、特定のユニットグループを指定可能な指定手段と、前記指定手段で指定されたユニットグループに含まれる処理ユニット、および当該ユニットグループにホルダを供給するループ搬送路を、システムから切り離す手段を備えた検体検査自動化システム。
  12.  請求項4記載の検体検査自動化システムにおいて、
     前記第一のループ搬送路からホルダを供給する第一のユニットグループと、
     前記第一のユニットグループとは異なる機能を有し、前記第二のループ搬送路からホルダを供給する第二のユニットグループを含む、複数のユニットグループからなる検体検査自動化システム。
PCT/JP2012/072791 2011-09-20 2012-09-06 検体検査自動化システム WO2013042549A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12833779.7A EP2759838B1 (en) 2011-09-20 2012-09-06 Sample inspection automation system
US14/238,615 US9645161B2 (en) 2011-09-20 2012-09-06 Sample inspection automation system
CN201280039591.2A CN103733073B (zh) 2011-09-20 2012-09-06 样本检查自动化系统
JP2013534661A JP5778777B2 (ja) 2011-09-20 2012-09-06 検体検査自動化システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-204047 2011-09-20
JP2011204047 2011-09-20

Publications (1)

Publication Number Publication Date
WO2013042549A1 true WO2013042549A1 (ja) 2013-03-28

Family

ID=47914325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072791 WO2013042549A1 (ja) 2011-09-20 2012-09-06 検体検査自動化システム

Country Status (5)

Country Link
US (1) US9645161B2 (ja)
EP (1) EP2759838B1 (ja)
JP (1) JP5778777B2 (ja)
CN (1) CN103733073B (ja)
WO (1) WO2013042549A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064540A1 (ja) * 2013-11-01 2015-05-07 株式会社日立ハイテクノロジーズ 検体移載装置及び検体処理システム
WO2015093354A1 (ja) * 2013-12-19 2015-06-25 株式会社 日立ハイテクノロジーズ 検体前処理接続装置および当該装置を備えたシステム
WO2017051642A1 (ja) * 2015-09-25 2017-03-30 株式会社日立ハイテクノロジーズ 検体検査自動化システム
JP2018017606A (ja) * 2016-07-28 2018-02-01 株式会社日立ハイテクノロジーズ 検体検査自動化システム
WO2018034095A1 (ja) * 2016-08-18 2018-02-22 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよびその制御方法
WO2018168438A1 (ja) * 2017-03-16 2018-09-20 株式会社日立ハイテクノロジーズ 試料容器移載装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734291A4 (en) * 2017-12-25 2021-09-22 Hitachi High-Tech Corporation SAMPLE PROCESSING SYSTEM

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234228A (ja) * 1994-02-25 1995-09-05 Hitachi Ltd 検体搬送システム
JPH08122337A (ja) 1994-10-24 1996-05-17 Toshiba Corp 自動分析装置
JPH09236608A (ja) * 1996-02-29 1997-09-09 Mitsubishi Kagaku B C L:Kk 検体分注・分類装置
JPH11500224A (ja) * 1995-02-16 1999-01-06 スミスクライン・ビーチャム・コーポレイション 装置と方法
JP3059194U (ja) * 1998-11-19 1999-07-02 シグマ精器株式会社 採血管搬送システム
JP2000074925A (ja) * 1998-08-28 2000-03-14 Hitachi Ltd 自動分析方法及び装置
JP2002357612A (ja) * 2001-06-01 2002-12-13 Hitachi Ltd 検体処理システム
JP3618067B2 (ja) 1999-11-17 2005-02-09 株式会社日立製作所 検体振分け装置
JP2005156196A (ja) * 2003-11-21 2005-06-16 Hitachi Eng Co Ltd 検体搬送装置および検体搬送方法
JP2007309675A (ja) 2006-05-16 2007-11-29 Olympus Corp サンプルラック供給回収装置
JP2010175513A (ja) * 2009-02-02 2010-08-12 Hitachi High-Technologies Corp 検体前処理システム
WO2011040197A1 (ja) 2009-09-30 2011-04-07 株式会社日立ハイテクノロジーズ 検体検査自動化システム
WO2011142182A1 (ja) * 2010-05-14 2011-11-17 株式会社日立ハイテクノロジーズ 自動分析システムおよび装置管理サーバ
WO2012043261A1 (ja) * 2010-09-28 2012-04-05 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよびその制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623415A (en) 1995-02-16 1997-04-22 Smithkline Beecham Corporation Automated sampling and testing of biological materials
DE69942220D1 (de) 1998-07-27 2010-05-20 Hitachi Ltd Verfahren zur Handhabung von Körperflüssigkeitsproben und Analysevorrichtung. die diese verwendet
WO2001051929A1 (fr) * 2000-01-12 2001-07-19 Hitachi, Ltd. Analyseur automatique et dispositif de transfert de portoir
NL1015304C2 (nl) * 2000-05-25 2001-11-27 Labiron Systems B V Samenstel voor het geautomatiseerd uitvoeren van pre-analyse- werkzaamheden.
CN201707340U (zh) * 2010-04-29 2011-01-12 山东博科生物产业有限公司 轨道式全自动生化分析仪
JP6190380B2 (ja) * 2011-11-07 2017-08-30 ベックマン コールター, インコーポレイテッド 等分機システムおよびワークフロー

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234228A (ja) * 1994-02-25 1995-09-05 Hitachi Ltd 検体搬送システム
JPH08122337A (ja) 1994-10-24 1996-05-17 Toshiba Corp 自動分析装置
JPH11500224A (ja) * 1995-02-16 1999-01-06 スミスクライン・ビーチャム・コーポレイション 装置と方法
JPH09236608A (ja) * 1996-02-29 1997-09-09 Mitsubishi Kagaku B C L:Kk 検体分注・分類装置
JP2000074925A (ja) * 1998-08-28 2000-03-14 Hitachi Ltd 自動分析方法及び装置
JP3059194U (ja) * 1998-11-19 1999-07-02 シグマ精器株式会社 採血管搬送システム
JP3618067B2 (ja) 1999-11-17 2005-02-09 株式会社日立製作所 検体振分け装置
JP2002357612A (ja) * 2001-06-01 2002-12-13 Hitachi Ltd 検体処理システム
JP2005156196A (ja) * 2003-11-21 2005-06-16 Hitachi Eng Co Ltd 検体搬送装置および検体搬送方法
JP2007309675A (ja) 2006-05-16 2007-11-29 Olympus Corp サンプルラック供給回収装置
JP2010175513A (ja) * 2009-02-02 2010-08-12 Hitachi High-Technologies Corp 検体前処理システム
WO2011040197A1 (ja) 2009-09-30 2011-04-07 株式会社日立ハイテクノロジーズ 検体検査自動化システム
WO2011142182A1 (ja) * 2010-05-14 2011-11-17 株式会社日立ハイテクノロジーズ 自動分析システムおよび装置管理サーバ
WO2012043261A1 (ja) * 2010-09-28 2012-04-05 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよびその制御方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064540A1 (ja) * 2013-11-01 2015-05-07 株式会社日立ハイテクノロジーズ 検体移載装置及び検体処理システム
US10150620B2 (en) 2013-11-01 2018-12-11 Hitachi High-Technologies Corporation Sample transfer device and sample processing system
WO2015093354A1 (ja) * 2013-12-19 2015-06-25 株式会社 日立ハイテクノロジーズ 検体前処理接続装置および当該装置を備えたシステム
CN105637371A (zh) * 2013-12-19 2016-06-01 株式会社日立高新技术 检体前处理连接装置及具备该装置的系统
JPWO2015093354A1 (ja) * 2013-12-19 2017-03-16 株式会社日立ハイテクノロジーズ 検体前処理接続装置および当該装置を備えたシステム
US9651571B2 (en) 2013-12-19 2017-05-16 Hitachi High-Technologies Corporation Specimen pre-processing connection device and system provided with device
JPWO2017051642A1 (ja) * 2015-09-25 2018-07-05 株式会社日立ハイテクノロジーズ 検体検査自動化システム
WO2017051642A1 (ja) * 2015-09-25 2017-03-30 株式会社日立ハイテクノロジーズ 検体検査自動化システム
US10684302B2 (en) 2015-09-25 2020-06-16 Hitachi High-Tech Corporation Specimen inspection automation system
JP2018017606A (ja) * 2016-07-28 2018-02-01 株式会社日立ハイテクノロジーズ 検体検査自動化システム
WO2018034095A1 (ja) * 2016-08-18 2018-02-22 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよびその制御方法
JPWO2018034095A1 (ja) * 2016-08-18 2019-06-13 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよびその制御方法
US11073527B2 (en) 2016-08-18 2021-07-27 Hitachi High-Tech Corporation Automated sample inspection system and method for controlling same
WO2018168438A1 (ja) * 2017-03-16 2018-09-20 株式会社日立ハイテクノロジーズ 試料容器移載装置
JPWO2018168438A1 (ja) * 2017-03-16 2020-01-16 株式会社日立ハイテクノロジーズ 試料容器移載装置
US11415587B2 (en) 2017-03-16 2022-08-16 Hitachi High-Tech Corporation Sample container transfer device

Also Published As

Publication number Publication date
EP2759838A4 (en) 2015-04-29
US9645161B2 (en) 2017-05-09
US20140208872A1 (en) 2014-07-31
CN103733073B (zh) 2015-07-08
EP2759838B1 (en) 2019-12-11
CN103733073A (zh) 2014-04-16
JPWO2013042549A1 (ja) 2015-03-26
EP2759838A1 (en) 2014-07-30
JP5778777B2 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5778777B2 (ja) 検体検査自動化システム
JP5520385B2 (ja) 検体検査自動化システムおよびその制御方法
JP6169337B2 (ja) 検体検査自動化システムおよび検体の搬送方法
US10150620B2 (en) Sample transfer device and sample processing system
EP2296819B1 (en) Centrifuge loading process within an automated laboratory system
JP6220781B2 (ja) 遠心分離装置、遠心分離装置を備えた前処理システムおよび当該システムの制御方法
JP6230915B2 (ja) 検体移戴装置及びシステム
JP6307446B2 (ja) 遠心分離システム、検体前処理システム、制御方法
EP3517972B1 (en) Sample test automation system
US20120174687A1 (en) Automated sample processing system
CN103635809A (zh) 自动分析系统
JP3646531B2 (ja) 検体搬送システム
JP6426569B2 (ja) 検体検査システム
JP6210891B2 (ja) 自動分析装置
JP6710558B2 (ja) 検体搬送システムおよび検体検査システム
JP5000945B2 (ja) 検体搬送システム
EP3502709B1 (en) Automated sample inspection system and method for controlling same
JPWO2014112259A1 (ja) 検体処理システム
JPH11304815A (ja) 搬送システム
WO2019138700A1 (ja) 検体処理システム
CN112345776A (zh) 一种样本分析系统、装置及样本的测试方法
JP6946415B2 (ja) 試料容器移載装置
JP2011027486A (ja) 検体処理装置
JP2018180003A (ja) 検体処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534661

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012833779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14238615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE