WO2013040811A1 - 防震断变形记录式屈曲约束支撑及其制造方法 - Google Patents

防震断变形记录式屈曲约束支撑及其制造方法 Download PDF

Info

Publication number
WO2013040811A1
WO2013040811A1 PCT/CN2011/080558 CN2011080558W WO2013040811A1 WO 2013040811 A1 WO2013040811 A1 WO 2013040811A1 CN 2011080558 W CN2011080558 W CN 2011080558W WO 2013040811 A1 WO2013040811 A1 WO 2013040811A1
Authority
WO
WIPO (PCT)
Prior art keywords
bobbin
core
plate
ratchet
fixed
Prior art date
Application number
PCT/CN2011/080558
Other languages
English (en)
French (fr)
Inventor
李国强
孙飞飞
李天际
郭小康
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to US13/696,501 priority Critical patent/US8789319B2/en
Priority to JP2013534152A priority patent/JP5456212B2/ja
Publication of WO2013040811A1 publication Critical patent/WO2013040811A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/028Earthquake withstanding shelters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49625Openwork, e.g., a truss, joist, frame, lattice-type or box beam
    • Y10T29/49627Frame component

Definitions

  • the present invention relates to a buckling restraint support member for use in the field of structural engineering, and more particularly to an anti-seismic deformation recordable buckling restraint support and a method of manufacturing the same. Background technique
  • the steel support frame structure has good seismic performance, but in the event of a strong earthquake, the steel support frame structure is subjected to reciprocating earthquake action, and the ordinary steel support is subject to compression buckling, which in turn reduces the seismic capacity of the structure, which is very unfavorable to structural safety.
  • the buckling restraint supports the axial pressure without buckling, the tensile and compressive bearing capacity is equivalent, the hysteresis curve is full, and the energy consumption and low cycle fatigue performance are good.
  • Constrained buckling energy dissipation The concept of support was first proposed by Yoshino et al. in 1971, and an experimental study of the buckling buckling with the shear wall as the outer constraint was carried out.
  • the buckling restraint support cannot record the cumulative deformation and the maximum deformation in the earthquake, and cannot provide a basis for the post-earthquake repair to replace the buckling restraint support; nor can it solve the asymmetry problem of the herringbone support tension and compression, so that the inside of the beam will be larger Additional shear forces are very detrimental to structural safety. Summary of the invention
  • the problem to be solved by the present invention is to provide an anti-seismic and off-deformation recording type buckling restraint support and a method of manufacturing the same that overcome the above problems in the prior art.
  • the anti-seismic and deformation recording type buckling restraint support of the invention comprises a steel tube concrete outer sleeve, a core plate is arranged in the outer tube of the steel tube concrete, a core stiffener is arranged at the end of the core board, and a support deformation recording device is also included, and the deformation deformation record is supported.
  • the device comprises two tooth plates, a ratchet wheel, a first bobbin and a second bobbin. The two tooth plates are fixed on the core stiffeners, and the ratchets are connected with the concrete-filled steel tubular outer sleeves, and each of the tooth plates is provided with a length direction.
  • the pawls on the two tooth plates are opposite in direction, and the two sides of the ratchet respectively mesh with the pawls on the two tooth plates
  • the first bobbin is fixed on the axis of the ratchet
  • the second bobbin is fixed on the stiffener of the core plate
  • one end of the cord is wound on the second bobbin
  • the other end of the cord is fixed on the first bobbin, when When the core plate is deformed, the two toothed plates are moved relative to the outer tube of the concrete filled steel tube, and the pawl drives the ratchet wheel and the first bobbin to rotate in one direction and a part of the wire on the second bobbin is wound on the first bobbin.
  • the tooth plate of the present invention is provided with a mounting groove along the length direction, the pawl is located in the mounting groove, each pawl includes a first side and a second side, and the tops of the first side and the second side intersect at a sharp angle
  • the root of the first side is connected to the first pin shaft, the first pin shaft is connected to a telescopic mechanism, the telescopic mechanism is located in a telescopic slot, and a pin chute along the depth direction of the telescopic slot is disposed in the telescopic slot. Both ends of the first pin can slide in the pin chute; the root of the second side is connected to the second pin, and the second pin is fixedly mounted in the mounting groove.
  • the inner side of the tooth plate of the present invention is provided with a pointer chute along the length direction, and the support deformation recording device further comprises two hands, two hands are respectively located on two sides of the ratchet, and the two ends of each of the hands are inserted Set in the pointer chute on the two tooth plates.
  • One end of the core stiffener of the present invention is located outside the outer tube of the concrete filled steel tube, and the supporting deformation recording device is disposed on the core stiffener outside the outer sleeve of the concrete filled steel tube.
  • a ratchet cover is disposed above the ratchet of the present invention, and one end of the first bobbin is fixed in a bearing disposed on the ratchet cover at the other end of the ratchet, and the ratchet cover is fixedly connected to the end of the concrete filled steel tube sleeve.
  • a plurality of cables are symmetrically distributed in the outer sleeve of the steel tube concrete, and both ends of the cable are fixed on the core stiffeners at both ends of the core plate.
  • the cable of the present invention is threaded into a sleeve.
  • the two ends of the steel tube concrete outer sleeve of the present invention are respectively provided with two front and rear sealing plates, and a fixing plate is arranged between the two sealing plates, and the fixing plate is fixed on the core plate stiffening rib, and the cable passes through the front sealing plate. And fixed by the anchor plate.
  • the invention provides a method for manufacturing a shock-proof and deformation-deformed recording buckling constraint support, comprising the following steps:
  • the support deformation recording device comprising two tooth plates, a ratchet wheel and a first bobbin, a second bobbin, fixing the two tooth plates on the core plate stiffener, the ratchet and the rear
  • the sealing plate is fixedly connected, and the ratchet is placed between the two tooth plates, the teeth on the ratchet mesh with the teeth of the pawl on the tooth plate, the ratchet rotates under the driving of the tooth plate, the first wire shaft is fixed on the ratchet, the second wire shaft The wire is fastened on the core stiffener and the wire is wound on the second bobbin, and the end of the wire is fixed on the first bobbin.
  • the invention provides an anti-seismic deformation deformation recording buckling restraining support and a manufacturing method thereof, wherein the supporting deformation recording device can record the cumulative plastic deformation and the maximum deformation experienced by the buckling constraint support under the earthquake, in order to determine the degree of support damage It provides a reliable basis for whether it needs to be replaced after the earthquake.
  • the cable has the function of compensating for the tension and compression.
  • the invention has higher safety and better mechanical properties than the ordinary buckling restraint support, can prevent the buckling constraint from supporting the adverse effects of the fatigue fracture on the structure, and can record the cumulative deformation and the maximum deformation of the buckling restraint support.
  • FIG. 1 is a schematic view showing the structure of an embodiment of the present invention.
  • Figure 2 is a side elevational view taken along the line A-A of Figure 1.
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1.
  • Figure 4 is a cross-sectional view taken along line C-C of Figure 1.
  • Figure 5 is a schematic cross-sectional view of the D-D of Figure 1.
  • Figure 6 is a schematic view showing the structure of the core board of the present invention.
  • Fig. 7 is a schematic view of the support deformation recording device.
  • Figure 8 is a connection diagram of the first bobbin and the second bobbin.
  • Fig. 9 is a longitudinal sectional view of the mounting groove.
  • Figure 10 is a cross-sectional view showing a portion of the mounting groove.
  • Figure 11 is a schematic view of the cooperation of the ratchet and the tooth plate.
  • Figure 12 is a schematic view of a broken line for tension and compression of the present invention. detailed description
  • a specific structural diagram of the anti-seismic and deformation recording type buckling restraint support of the present invention comprises a concrete-filled steel tubular outer sleeve 1 , a core plate 2 is arranged in the outer tube of the steel tube concrete, and a core plate is arranged at the end of the core plate.
  • the stiffener 8 further includes a support deformation recording device 5 including two tooth plates 51, a ratchet 55, a first bobbin 58 and a second bobbin 56 (see Figs. 7 and 8), and two tooth plates 51.
  • the ratchet 55 is connected to the concrete-filled concrete outer sleeve 1 , and each of the tooth plates 51 is provided with a row of pawls 53 in the longitudinal direction, and the pawls on the two tooth plates are opposite in direction, and the sides of the ratchet Engaging with the pawl 53 of the two tooth plates respectively, the first bobbin 58 is fixed on the axis of the ratchet, the second bobbin 56 is fixed on the core stiffener 8 , and one end of the cord is wound on the second bobbin. The other end of the wire is fixed on the first bobbin.
  • the two tooth plates are driven to move relative to the concrete-filled concrete sleeve 1.
  • the pawl drives the ratchet and the first bobbin to rotate in one direction and the second bobbin Part of the wire is wound around the first spool on.
  • the core plate is subjected to the tensile deformation to drive the tooth plate to move, and the tooth plate driving the ratchet and the first bobbin rotates the wire on the second bobbin to the first
  • the accumulated deformation amount is recorded by winding the bobbin by the bobbin, and the degree of damage of the buckling constraint support is judged according to the accumulated deformation amount recorded, and data support is provided for whether or not the replacement is necessary after the earthquake.
  • the specific structure of the support deformation recording apparatus of the present invention is: the tooth plate 51 is provided with a mounting groove 512 along the length direction, and the mounting groove 512 is provided with a depth along the mounting groove 512.
  • the telescopic mechanism of the telescopic direction, the pawl 53 is placed in the mounting groove and connected to the telescopic mechanism.
  • the ratchet pushes the pawl into the mounting groove; when the ratchet rotates over the pawl, the telescopic mechanism bounces the pawl back to the original position; and the two tooth plates ensure that the ratchet always presses one The direction is rotated, and the amount of deformation of the buckling constraint support is accumulated.
  • each pawl 53 includes a first side 531 and a second side 532, and the tops of the first side 531 and the second side 532 intersect at a tip.
  • the first side surface 531 is connected to the first pin shaft 515.
  • the first pin shaft 515 is connected to a telescopic mechanism.
  • the telescopic mechanism is located in a telescopic slot.
  • the telescopic slot is provided with a pin shaft sliding along the depth direction of the telescopic slot.
  • the telescopic mechanism includes a spring 511 and a card 514.
  • the spring 511 is disposed along the depth direction of the telescopic groove. One end of the spring 511 is fixed to the bottom of the telescopic groove, and the other end is fixed to the card 514.
  • the first pin 515 is disposed in front of the card 514.
  • the spring When the second side 532 of the pawl is pressed, the spring can be compressed to cause the pawl 53 to enter the mounting groove, and then the spring 511 springs the pawl back through the card 514 and the first pin 515; when the pawl is first When the side surface 531 is pressed, the second pin shaft is fixed, so that the pawl is rotated by the ratchet.
  • the telescopic structure is not limited to the above structure, and only needs to satisfy the fact that the pawl is retracted into the installation groove without hindering the ratchet rotation when the pressure is applied, and the ratchet can be engaged with the ratchet when the pawl is not pressed.
  • the working process of the supporting deformation recording device is: when the core plate is deformed under pressure, assuming that the two tooth plates move downward, the first side surface 531 of the pawl on the right tooth plate contacts the ratchet 55, the spine The claw 53 does not retract the dial ratchet 55 to rotate clockwise, and the second side 532 of the pawl on the left tooth plate contacts the ratchet, and the pawl is pressed back into the mounting groove 512 to rotate the ratchet normally; When the tension is deformed, the two tooth plates move upward, and the pawl 53 on the right tooth plate becomes the second side and contacts the ratchet 55.
  • the supporting deformation recording device always rotates the ratchet clockwise, winding the wire on the second bobbin onto the first bobbin, and recording the cumulative deformation of the support.
  • the inside of the two tooth plates 51 are respectively provided with a pointer chute 513 along the length direction.
  • the support deformation recording device 5 further includes two hands 54 (see FIG. 7), and the two hands 54 are respectively located on both sides of the ratchet 55, and each The two ends of the root pointer are inserted into the pointer chutes 513 of the two tooth plates.
  • the core plate moves relative to the outer tube of the concrete filled steel tube, the pointer slides in the pointer chute 513 under the pushing of the ratchet 55 and stops at the maximum. Location. And the scale of the record length is engraved in the pointer chute.
  • the ratchet is fixedly connected with the outer tube of the concrete filled steel tube, and the tooth plate is fixedly connected with the stiffener of the core plate, so when the core plate moves relative to the outer sleeve of the concrete filled steel tube, the pointer moves in the pointer chute and stops at the core plate movement. At the maximum position, therefore, by reading the stop scale value of the pointer on both sides in the pointer chute, the maximum deformation value of the buckling constraint support and the maximum deformation value of the compression can be obtained.
  • a ratchet cover 52 is disposed above the ratchet wheel 55.
  • One end of the first bobbin 58 is fixed in a bearing on the ratchet wheel and the other end is disposed on the ratchet cover 52.
  • the ratchet cover 52 passes through the magnet block 57 and the concrete tube concrete tube sleeve. The ends of 1 are fixedly connected.
  • a plurality of cables 3 are symmetrically distributed in the outer sleeve of the concrete-filled steel tube, and both ends of the cable 3 pass through the anchor.
  • the core stiffener 8 is fixed at both ends of the core board.
  • the end of the CFST outer sleeve is provided with two front and rear sealing plates 9, and a fixing plate is arranged between the two sealing plates 9.
  • the cable passes through the front sealing plate and the fixing plate 6, and is fixed by the anchor.
  • the fixing plate 6 is placed in front of the anchoring device 7 to prevent the cable from retracting, to provide additional tensile load-bearing force for the support, and to drill holes along the length of the fixing plate so that the cable can pass through and be freely deformed.
  • the cable 3 is threaded into a casing 4, and the casing 4 is made of a PVC pipe and positioned before the concrete is poured, so that the end of the casing penetrates into the internal hole of the fixing plate in front of the anchor.
  • the cable 3 is inserted into the sleeve 4 to prevent the cable from The infused lightweight concrete bonds and loses its original function.
  • the cable is a high-strength steel strand or a fiber-reinforced polymer material line.
  • the mechanism of the tension and compression asymmetry is as follows: Due to the pressure, the support section becomes larger, the friction of the core plate increases and the Poisson effect occurs, resulting in an increase in the bearing capacity; while the tension is reduced, the support section becomes smaller and the core plate is The reduction in friction causes the support bearing capacity to decrease.
  • the solid line in the schematic diagram is a buckling constraint support fold line without a cable, wherein the tension line and the pressure fold line are asymmetrical, and the broken line is the tension line after the addition of the cable, after the cable is pulled The tension line and the pressure line are symmetrical.
  • the compensation point can be adjusted by setting the free deformation length of the cable as needed.
  • the core plate 2 is provided with core stiffeners 8 at both ends thereof, and the core stiffener includes a stiffener 8b parallel to the core, and a stiffener 8a perpendicular to the core, composed of two stiffeners
  • the cross shape improves the support of the core board.
  • a compressible delaminating adhesive layer 11 is disposed around the core plate, and the compressible delaminated adhesive layer may be a polystyrene foam board or the like.
  • An anti-seismic buckling restraint support of the present invention includes: a core material portion, a concrete-filled steel tubular outer sleeve portion, a dual-function portion, and a recording support deformation portion.
  • the core material portion comprises a core plate 2 and a core plate end stiffening rib 8;
  • the outer portion of the steel tube concrete sleeve is composed of square steel pipe and concrete;
  • the dual function portion comprises a cable 3, a sleeve 4 and an anchor 7 except for the portion
  • the utility model has the function of preventing shock and breaking, and also has the function of compensating for the asymmetry of the tension and compression;
  • the recording deformation deformation portion is composed of the support deformation recording device 5 for measuring the cumulative deformation and the maximum deformation.
  • the outer tube of the concrete-filled steel tube 1 and the core plate 2 are separated by a compressible delamination adhesive material 11 .
  • the cable 3 is placed in the sleeve 4, and both ends thereof are fixed to the core stiffeners 8 at both ends of the core plate by anchors, and a certain degree of slack is left, and the slack length of the cable is according to the expected deformation of the support under the large earthquake.
  • the requirement for the amount and compensation of the tension and compression asymmetry is determined to ensure that the tensile load bearing loss is supported by the cable when the core plate is broken in the large earthquake, and the formation of the weak layer of the structure is avoided.
  • the support deformation recording device 5 can record the cumulative plastic deformation and maximum deformation experienced by the support under the earthquake, and provide a reliable basis for judging the degree of support damage and whether it needs to be replaced after the earthquake.
  • the inner wall of the outer sleeve of the square steel tube is closely attached to the stiffener of the core board, and the longitudinal distance of the core stiffener and the outer sleeve of the square steel tube is the compression distance of the support.
  • the invention has higher safety and better mechanical performance than the ordinary buckling restraint support, can prevent the adverse effects of the support fatigue fracture on the structure, and can record the cumulative deformation and the maximum deformation of the support.
  • the invention relates to a method for manufacturing a shock-proof and deformation-deformed recording buckling restraint support, comprising the following steps: (1) making a core plate portion: welding the core plate 2 and the stiffener 8b parallel to the core plate with a butt weld, the core The plate 2 is welded to the stiffener 8a perpendicular to the core plate by fillet welds; (2) welding the fixing plate 6 and the core stiffener 8 by fillet welds, and drilling holes in the fixing plate 6;
  • ratchet 55 is connected to the rear sealing plate, and the ratchet is placed between the two tooth plates, the teeth on the ratchet mesh with the pawls on the tooth plate, the ratchet rotates under the driving of the tooth plate, and the first wire shaft 58 is fixed on the ratchet 55.
  • the second bobbin 56 is fixed to the core stiffener 8 and the wire is wound on the second bobbin, and the end of the cord is fixed on the first bobbin.
  • the specific manufacturing method of the support deformation recording device is as follows: (1) opening a mounting groove along the longitudinal axis of the tooth plate 51, arranging a plurality of expansion grooves in the installation groove, and engraving the pin chute along the depth direction of the expansion groove, and The pointer slot 513 is engraved on the top of the tooth plate; the second pin 516 is fixed on the mounting groove adjacent to the telescopic slot; (2) the spring 511 is placed in the telescopic slot, and the card 514 is placed at the front end of the spring (3) The first pin 515 is placed in the corresponding pin chute, and the pawl 53 made of the steel sheet is fixed on the first pin and the second pin; (4) the two tooth plates 51 respectively Connected to the core stiffener 8 by fillet welds, the two teeth 51 are positioned to position the pointer 54 at a predetermined position; (5) the second spool 56 is fixed to the core stiffener 8; (6) Fixing the ratchet 55 with the first bobbin 58 and winding one end

Abstract

防震断变形记录式屈曲约束支撑及其制造方法,其包括钢管混凝土外套筒(1),钢管混凝土外套筒内设有芯板(2),芯板端部设有芯板加劲肋(8),还包括支撑变形记录装置(5),该装置包括两个齿板(51)、棘轮(55)、第一线轴(58)和第二线轴(56),两个齿板固定在芯板加劲肋上,且其长度方向上的棘爪(53)朝向相反,棘轮与钢管混凝土外套筒固定相连,棘轮设在两个齿板之间并与棘轮上的齿与棘爪相啮合,第一线轴固定在棘轮上,第二线轴固定在芯板加劲肋上;双功能部分由钢索、PVC套管和锚具组成,该部分除具有防止支撑芯板达到疲劳极限后受拉断裂的功能,还具有补偿拉压不对称的功能。该支撑比普通屈曲约束支撑具有更高的安全性,并可记录屈曲约束支撑的累积变形和最大变形。

Description

防震断变形记录式屈曲约束支撑及其制造方法 技术领域
本发明涉及一种用于结构工程领域的屈曲约束支撑构件, 特别是涉及一种防震 断变形记录式屈曲约束支撑及其制造方法。 背景技术
钢支撑框架结构有着较好的抗震性能, 但在遭遇强烈地震时, 钢支撑框架结构 承受往复地震作用, 普通钢支撑易发生受压屈曲, 进而使结构的抗震能力下降, 对 结构安全十分不利。屈曲约束支撑承受轴向压力不会发生屈曲、受拉与受压承载力 相当、滞回曲线饱满、 具有良好的耗能能力和低周疲劳性能等优点。 约束屈曲耗能 支撑的概念最早在 1971年由 Yoshino等人提出, 并进行了以剪力墙为外约束的约 束屈曲支撑的试验研究。此后大量学者对各种形式屈曲约束支撑构件的受力性能进 行了研究。此外, 还有一些学者针对采用屈曲约束支撑的结构的整体抗震性能进行 了研究。 除美国和日本外, 我国大陆和台湾地区在屈曲约束支撑的研究和使用方面 已取得了很多成果。
但传统屈曲约束支撑的核心在达到其疲劳极限后, 将发生受拉断, 丧失受拉承 载力, 导致结构形成薄弱层, 使结构负担加重, 结构破坏加速。 现有技术中屈曲约 束支撑无法记录在地震中的累积变形与最大变形,不能为震后修复更换屈曲约束支 撑提供依据; 亦不能解决人字形支撑拉压不对称问题, 使得梁内部会产生较大附加 剪力, 对结构安全十分不利。 发明内容
本发明所要解决的问题是提供一种防震断变形记录式屈曲约束支撑及其制造 方法, 克服现有技术中存在的上述问题。
本发明防震断变形记录式屈曲约束支撑, 包括钢管混凝土外套筒, 钢管混凝土 外套筒内设有芯板, 芯板端部设有芯板加劲肋, 还包括支撑变形记录装置, 支撑变 形记录装置包括两个齿板、棘轮、 第一线轴和第二线轴, 两个齿板固定在所述芯板 加劲肋上, 棘轮与钢管混凝土外套筒相连, 每个齿板的长度方向上设有一排棘爪, 两个齿板上的棘爪方向相反, 所述棘轮两侧分别与两个齿板上的棘爪相啮合, 所述 第一线轴固定在棘轮的轴心上, 所述第二线轴固定在所述芯板加劲肋上, 线绳的一 端缠绕在第二线轴上, 线绳的另一端固定在第一线轴上, 当所述芯板变形时, 带动 两齿板相对于钢管混凝土外套筒运动,棘爪驱动棘轮及第一线轴单向转动并将第二 线轴上的部分线绳缠绕到第一线轴上。
本发明所述齿板上沿长度方向设有安装槽, 所述棘爪位于安装槽内, 每个棘爪 包括第一侧面和第二侧面, 第一侧面和第二侧面的顶部相交成尖角, 第一侧面的根 部与第一销轴相连, 第一销轴与一伸縮机构相连, 所述伸縮机构位于一伸縮槽内, 在伸縮槽内设有沿伸縮槽深度方向的销轴滑槽,第一销轴的两端可在所述销轴滑槽 内滑动; 第二侧面的根部与第二销轴相连, 第二销轴固定安装在安装槽内。
本发明所述齿板内侧沿长度方向各设有一道指针滑槽,所述支撑变形记录装置 还包括两根指针, 两根指针分别位于所述棘轮的两侧, 并每根指针的两端插设在两 个齿板上的指针滑槽内。
本发明所述芯板加劲肋的一端位于所述钢管混凝土外套筒的外部,所述支撑变 形记录装置设在钢管混凝土外套筒外的芯板加劲肋上。
本发明所述棘轮上方设有棘轮盖,所述第一线轴的一端固定在棘轮上另一端设 在棘轮盖上的轴承内, 所述棘轮盖与所述钢管混凝土套筒端部固定相连。
本发明在所述钢管混凝土外套筒内对称分布多根拉索,拉索的两端固定在所述 芯板两端的芯板加劲肋上。
本发明所述拉索穿设在一套管内。
本发明所述钢管混凝土外套筒的两端各设有前后两块封板,并在两封板间设置 固定板, 固定板固定在芯板加劲肋上, 所述拉索穿过前封板和固定板后通过锚具固 定。
本发明一种制作防震断变形记录式屈曲约束支撑的方法, 包括以下步骤:
( 1 ) 制作芯板部分: 将芯板与平行于芯板的加劲肋用对接焊缝焊接在一起, 芯板与垂直于芯板的加劲肋用角焊缝焊接在一起;
(2) 将固定板与加劲肋用角焊缝焊接在一起, 在固定板上钻孔;
( 3 ) 将拉索置于套管内, 拉索端部穿过固定板的孔洞, 使用锚具进行锚固;
(4) 在芯板周围铺设可压縮脱层粘结材料层;
( 5 ) 将一块前封板置于固定板前, 与方钢管的内壁用角焊缝焊接在一起, 向 方钢管内灌注轻质混凝土, 再把另一块前封板置于另一块固定板前固定, 制成钢管 混凝土外套筒;
( 6 ) 将后封板与方钢管的两个横截面采用角焊缝焊接在一起;
(7 ) 安装固定支撑变形记录装置, 支撑变形记录装置包括两个齿板、 棘轮和 第一线轴、第二线轴, 将两个齿板固定在所述芯板加劲肋上, 棘轮与所述后封板固 定相连, 并棘轮置于两个齿板间, 棘轮上的齿与齿板上棘爪的齿相啮合, 棘轮在齿 板的带动下转动, 第一线轴固定在棘轮上, 第二线轴固定在芯板加劲肋上并第二线 轴上缠绕线绳, 线绳的端部固定在第一线轴上。
通过以上技术方案, 本发明一种防震断变形记录式屈曲约束支撑及其制造方 法,其中支撑变形记录装置可记录屈曲约束支撑在地震下所经历的累积塑性变形与 最大变形, 为判断支撑损伤程度与震后是否需要更换提供可靠依据; 拉索除了具有 防震断的功能, 还具有补偿拉压不对称的功能。本发明比普通屈曲约束支撑具有更 高的安全性和更好的力学性能,可防止屈曲约束支撑疲劳断裂对结构造成的不利影 响, 并可记录屈曲约束支撑的累积变形和最大变形。 附图说明
图 1为本发明一实施例的构造示意图。
图 2为图 1的 A-A向侧视图。
图 3为图 1的 B-B剖面示意图。
图 4为图 1的 C-C剖面示意图。
图 5为图 1的 D-D剖面示意图。
图 6为本发明所述芯板的结构示意图。
图 7为所述支撑变形记录装置示意图。
图 8为所述第一线轴和第二线轴连接图。
图 9为所述安装槽的纵剖视图。
图 10为所述安装槽局部的横剖面图。
图 11为所述棘轮与齿板的配合示意图。
图 12为本发明对受拉和受压补偿的折线示意图。 具体实施方式
如图 1所示, 本发明防震断变形记录式屈曲约束支撑的具体结构图, 其包括钢 管混凝土外套筒 1, 钢管混凝土外套筒内设有芯板 2, 芯板端部设有芯板加劲肋 8, 还包括支撑变形记录装置 5, 支撑变形记录装置 5包括两个齿板 51、 棘轮 55、 第 一线轴 58和第二线轴 56 (见图 7及图 8), 两个齿板 51固定在芯板加劲肋 8上, 棘轮 55与钢管混凝土外套筒 1相连, 每个齿板 51的长度方向上设有一排棘爪 53, 两个齿板上的棘爪方向相反, 棘轮两侧分别与两个齿板上的棘爪 53相啮合, 第一 线轴 58固定在棘轮的轴心上, 第二线轴 56固定在芯板加劲肋 8上, 线绳的一端缠 绕在第二线轴上, 线绳的另一端固定在第一线轴上, 当芯板变形时, 带动两齿板相 对于钢管混凝土外套筒 1运动,棘爪驱动棘轮及第一线轴单向转动并将第二线轴上 的部分线绳缠绕到第一线轴上。本发明的支撑变形记录装置在屈曲约束支撑受到拉 压力时, 芯板受到拉压变形而带动齿板运动, 而齿板驱动棘轮及第一线轴转动把第 二线轴上的线绳缠绕到第一线轴上, 通过线轴旋转缠绕线绳记录累积变形量, 根据 记录的累计变形量判断屈曲约束支撑损伤程度,并为震后是否需要更换提供数据支 持。
如图 7、 图 8及图 9所示, 本发明中的支撑变形记录装置的具体结构为: 齿板 51沿长度方向上设有安装槽 512,在安装槽 512内设有沿安装槽 512深度方向伸縮 的伸縮机构, 棘爪 53置于安装槽内并与伸縮机构相连。 当棘爪上的齿阻碍棘轮转 动时,棘轮把棘爪压入安装槽内; 当棘轮转过该棘爪后,伸縮机构把棘爪弹回原处; 并两齿板保证使棘轮始终按一个方向转动, 累积屈曲约束支撑的变形量。
如图 9、 图 10所示, 为更好的保持棘轮朝一个方向转动, 每个棘爪 53包括第 一侧面 531和第二侧面 532, 第一侧面 531和第二侧面 532的顶部相交成尖角, 第 一侧面 531的根部与第一销轴 515相连, 第一销轴 515与一伸縮机构相连, 伸縮机 构位于一伸縮槽内, 在伸縮槽内设有沿伸縮槽深度方向的销轴滑槽, 第一销轴 515 的两端插设在销轴滑槽内并可在销轴滑槽内滑动;第二侧面 532的根部与第二销轴 516相连, 第二销轴 516固定在安装槽内。 伸縮机构包括弹簧 511和卡板 514, 弹 簧 511沿伸縮槽的深度方向设置其一端固定在伸縮槽的底部,另一端与卡板 514固 定, 第一销轴 515置于卡板 514的前方。在棘爪第二侧面 532受压时可将弹簧压縮 使棘爪 53进入安装槽内, 过后弹簧 511通过卡板 514和第一销轴 515把棘爪弹回 原处;当棘爪第一侧面 531受压时由于第二销轴固定不动,以使棘爪拨动棘轮转动。 伸縮结构并不限于上述结构, 只需满足棘爪受压时不阻碍棘轮转动而縮回安装槽 内, 在棘爪不受压时又恢复到原处可以与棘轮相啮合即可。
如图 11所示, 支撑变形记录装置工作过程为: 当芯板受压变形时, 假设两个 齿板往下运动, 则右边齿板上的棘爪第一侧面 531与棘轮 55相接触, 棘爪 53不回 縮拨动棘轮 55顺时针转动, 而左边齿板上的棘爪第二侧面 532与棘轮相接触, 棘 爪受压回縮到安装槽 512内, 使棘轮正常转动; 当芯板受拉变形时, 两个齿板往上 运动, 则右边齿板上的棘爪 53变成第二侧面与棘轮 55相接触, 此时右边齿板上的 棘爪回縮, 而左边齿板上的棘爪拨动棘轮继续顺时针转动。所以无论芯板受压或受 拉变形, 支撑变形记录装置始终使棘轮顺时针旋转, 把第二线轴上的线绳缠绕到第 一线轴上, 记录支撑的累积变形量。
两个齿板 51 内侧沿长度方向各设有一道指针滑槽 513, 上述支撑变形记录装 置 5还包括两根指针 54 (见图 7), 两根指针 54分别位于棘轮 55的两侧, 并每根 指针的两端插设在两个齿板上的指针滑槽 513内,当芯板相对钢管混凝土外套筒运 动时, 指针在棘轮 55的推动下在指针滑槽 513内滑动并止于最大位置处。 并指针 滑槽内刻有记录长度的刻度。上述棘轮与钢管混凝土外套筒固定相连, 而齿板与芯 板的加劲肋固定相连, 所以当芯板相对钢管混凝土外套筒运动时, 指针就在指针滑 槽内运动并且止于芯板运动的最大位置处, 因此, 通过读取两侧的指针在指针滑槽 内的停止刻度值, 即可以得到屈曲约束支撑受拉的最大变形值和受压的最大变形 值。
如图 8所示, 棘轮 55上方设有棘轮盖 52, 第一线轴 58的一端固定在棘轮上 另一端设在棘轮盖 52上的轴承内, 棘轮盖与 52通过磁铁块 57与钢管混凝土套筒 1的端部固定相连。
为加强本发明的防震断功能, 如图 1、 图 2、 图 3、 图 4及图 5所示, 在钢管 混凝土外套筒内对称分布多根拉索 3, 拉索 3的两端通过锚具 Ί固定在芯板两端的 芯板加劲肋 8处。 钢管混凝土外套筒的端部设有前后两块封板 9, 并在两封板 9间 设置固定板 6, 拉索穿过前封板和固定板 6后通过锚具固定。 固定板 6置于锚具 7 前, 用以阻止拉索的回縮, 为支撑提供附加受拉承载力, 并沿固定板的长度方向钻 孔, 使拉索可以穿过并能自由变形。
拉索 3穿设在一套管 4内, 套管 4采用 PVC管, 并在灌注混凝土前定位, 使 套管端部深入锚具前的固定板内部孔洞中。拉索 3穿入套管 4中, 用以防止拉索与 灌注的轻质混凝土粘结, 失去其原有作用。拉索为高强钢绞线或纤维强化高分子材 料线。在屈曲约束支撑中加设防震断功能部分后, 补偿了屈曲约束支撑中拉压不对 称的缺点。 拉压不对称产生的机理如下: 由于受压时, 支撑截面变大、 芯板的摩擦 力增加和泊松效应的产生, 导致支撑承载力增加; 而受拉时, 支撑截面变小及芯板 的摩擦力减小导致支撑承载力下降。 如图 12所示, 该示意图中实线为没有加拉索 的屈曲约束支撑折线, 其中受拉折线和受压折线不对称, 虚线为加拉索后补偿过的 受拉折线, 加拉索后的受拉折线和受压折线对称。 另可以根据需要, 通过设定拉索 的自由变形长度来实现补偿点的调整。
如图 6所示, 芯板 2的两端各设有芯板加劲肋 8, 芯板加劲肋包括与芯板平行 的加劲肋 8b, 以及与芯板垂直的加劲肋 8a, 两个加劲肋组成十字形, 提高了芯板 的支撑力。 并芯板周围铺设可压縮脱层粘结材料层 11, 可压縮脱层粘结材料层可 为聚苯乙烯泡沫板等。
综述, 本发明的一种防震断屈曲约束支撑, 其包括有: 芯材部分、 钢管混凝土 外套筒部分、双功能部分和记录支撑变形部分。 其中, 芯材部分包括芯板 2和芯板 端部加劲肋 8; 钢管混凝土外套筒部分由方钢管和混凝土组成; 双功能部分包括拉 索 3、 套管 4和锚具 7, 该部分除了具有防震断的功能, 还具有补偿拉压不对称的 功能; 记录支撑变形部分由累积变形和最大变形测量的支撑变形记录装置 5组成。 钢管混凝土外套筒 1与芯板 2之间采用可压縮脱层粘结材料 11隔离。 拉索 3置于 套管 4中, 其两端通过锚具 Ί固定于芯板两端的芯板加劲肋 8处, 并留有一定松弛 度, 拉索的松弛长度根据大震下支撑的预期变形量和补偿拉压不对称的需求确定, 用以保证在大震中芯板断裂时, 支撑丧失的受拉承载力由拉索提供, 避免结构薄弱 层的产生。支撑变形记录装置 5可记录支撑在地震下所经历的累积塑性变形与最大 变形, 为判断支撑损伤程度与震后是否需要更换提供可靠依据。钢管混凝土外套筒 部分中, 方钢管外套筒内壁紧贴芯板加劲肋, 芯板加劲肋与方钢管外套筒纵向预留 距离为支撑的压縮距离。本发明比普通屈曲约束支撑具有更高的安全性和更好的力 学性能, 可防止支撑疲劳断裂对结构造成的不利影响, 并可记录支撑的累积变形和 最大变形。
本发明一种防震断变形记录式屈曲约束支撑的制作方法, 包括以下步骤: ( 1 )制作芯板部分: 将芯板 2与平行于芯板的加劲肋 8b用对接焊缝焊接在一 起, 芯板 2与垂直于芯板的加劲肋 8a用角焊缝焊接在一起; (2) 将固定板 6与芯板加劲肋 8用角焊缝焊接在一起, 在固定板 6上钻孔;
(3) 将拉索 3置于套管 4内, 拉索端部穿过固定板 6的孔洞, 使用 XM型夹 片式锚具 7进行锚固;
(4) 在芯板周围铺设可压縮脱层粘结材料层 11 ;
(5) 将一块前封板置于固定板 6前, 与方钢管的内壁用角焊缝焊接在一起, 向方钢管内灌注轻质混凝土, 再把另一块前封板置于另一块固定板前固定, 制成钢 管混凝土外套筒 1 ;
(6) 将两块后封板与方钢管两端的横截面采用角焊缝焊接在一起;
(7) 安装固定支撑变形记录装置 5, 支撑变形记录装置包括两个齿板 51、 棘 轮 55和第一线轴 58、 第二线轴 56, 将两个齿板固定在芯板加劲肋 8上, 棘轮 55 与后封板相连, 并棘轮置于两个齿板间, 棘轮上的齿与齿板上的棘爪相啮合, 棘轮 在齿板的带动下转动, 第一线轴 58固定在棘轮 55上, 第二线轴 56固定在芯板加 劲肋 8上并第二线轴上缠绕线绳, 线绳的端部固定在第一线轴上。
支撑变形记录装置的具体制作方法为: (1 ) 沿齿板 51纵轴方向开设安装槽, 在安装槽内刨出若干个伸縮槽, 且沿伸縮槽深度方向刻出销轴滑槽, 并在齿板顶部 刻出指针滑槽 513; 把第二销轴 516固定在伸縮槽临近处的安装槽上; (2) 将弹簧 511放入伸縮槽中, 并将卡板 514置于弹簧的前端部; (3) 把第一销轴 515放入相 应的销轴滑槽内, 将钢片制作的棘爪 53固定在第一销轴和第二销轴上; (4) 两块 齿板 51分别用角焊缝与芯板加劲肋 8连接在一起, 两块齿板 51定位后将指针 54 置于预定位置处; (5)将第二线轴 56固定在芯板加劲肋 8上; (6)将棘轮 55与第 一线轴 58固定在一起, 并将线绳一端缠绕于第二线轴上, 另一端固定在第一线轴 上但不缠绕; (7)将第一线轴 58与棘轮盖中的轴承连接在一起, 棘轮盖 52与磁铁 块 57连接在一起, 并将磁铁块 57吸附于后封板上。

Claims

权利要求书
1. 一种防震断变形记录式屈曲约束支撑, 包括钢管混凝土外套筒 (1 ), 钢管混凝 土外套筒内设有芯板 (2), 芯板端部设有芯板加劲肋 (8), 其特征在于, 还包 括支撑变形记录装置(5), 支撑变形记录装置包括两个齿板(51 )、 棘轮(55)、 第一线轴 (58) 和第二线轴 (56), 两个齿板固定在所述芯板加劲肋 (8) 上, 棘轮 (55) 与钢管混凝土外套筒 (1 ) 相连, 每个齿板 (51 ) 的长度方向上设 有一排棘爪 (53), 两个齿板上的棘爪方向相反, 所述棘轮两侧分别与两个齿 板上的棘爪相啮合, 所述第一线轴 (58) 固定在棘轮的轴心上, 所述第二线轴
(56) 固定在所述芯板加劲肋 (8) 上, 线绳的一端缠绕在第二线轴上, 线绳 的另一端固定在第一线轴上, 当所述芯板变形时, 带动两齿板相对于钢管混凝 土外套筒 (1 ) 运动, 棘爪驱动棘轮及第一线轴单向转动并将第二线轴上的部 分线绳缠绕到第一线轴上。
2. 根据权利要求 1所述的屈曲约束支撑, 其特征在于, 所述齿板上沿长度方向设 有安装槽(512), 所述棘爪(53)位于安装槽内, 每个棘爪包括第一侧面(531 ) 和第二侧面 (532), 第一侧面和第二侧面的顶部相交成尖角, 第一侧面的根部 与第一销轴 (515) 相连, 第一销轴 (515) 与一伸縮机构相连, 所述伸縮机构 位于一伸縮槽内, 在伸縮槽内设有沿伸縮槽深度方向的销轴滑槽, 第一销轴
(515) 的两端可在所述销轴滑槽内滑动; 第二侧面的根部与第二销轴 (516) 相连, 第二销轴固定安装在安装槽内。
3. 根据权利要求 1所述的屈曲约束支撑, 其特征在于, 所述齿板内侧沿长度方向 各设有一道指针滑槽(513),所述支撑变形记录装置(5)还包括两根指针(54), 两根指针分别位于所述棘轮 (55) 的两侧, 并每根指针的两端插设在两个齿板 上的指针滑槽 (513) 内。
4. 根据权利要求 1 所述的屈曲约束支撑, 其特征在于, 所述芯板加劲肋 (8) 的 一端位于所述钢管混凝土外套筒的外部, 所述支撑变形记录装置 (5) 设在钢 管混凝土外套筒外的芯板加劲肋上。
5. 根据权利要求 1所述的屈曲约束支撑, 其特征在于, 所述棘轮 (55) 上设有棘 轮盖 (52), 所述第一线轴 (58 ) 的一端固定在棘轮上另一端设在棘轮盖上的 轴承内, 所述棘轮盖 (52) 与所述钢管混凝土套筒端部固定相连。
6. 根据权利要求 1所述的屈曲约束支撑, 其特征在于, 在所述钢管混凝土外套筒 内对称分布多根拉索 (3), 拉索的两端固定在所述芯板两端的芯板加劲肋 (8) 上。
7. 根据权利要求 6所述的屈曲约束支撑, 其特征在于, 所述拉索 (3) 穿设在一 套管 (4) 内。
8. 根据权利要求 6所述的屈曲约束支撑, 其特征在于, 所述钢管混凝土外套筒的 两端各设有前后两块封板 (9), 并在两封板间设置固定板 (6), 固定板 (6) 固定在芯板加劲肋上, 所述拉索 (3) 穿过前封板和固定板后通过锚具固定。
9.一种制作防震断变形记录式屈曲约束支撑的方法, 其特征在于, 包括以下步骤:
( 1 ) 制作芯板部分: 将芯板 (2) 与平行于芯板的加劲肋 (8b) 用对接焊缝 焊接在一起, 芯板 (2) 与垂直于芯板的加劲肋 (8a) 用角焊缝焊接在一起;
(2) 将固定板 (6) 与芯板加劲肋用角焊缝焊接在一起, 在固定板 (6) 上钻 孔;
( 3 ) 将拉索 (3 ) 置于套管 (4) 内, 拉索端部穿过固定板 (6) 的孔洞, 使 用锚具 (7) 进行锚固;
(4) 在芯板外壁铺设可压縮脱层粘结材料层 (11 );
( 5 ) 将一块前封板置于固定板 (6) 前, 与方钢管的内壁用角焊缝焊接在一 起, 向方钢管内灌注轻质混凝土, 再把另一块前封板置于另一块固定板前固定, 制成钢管混凝土外套筒 (1 );
( 6 ) 将后封板与方钢管的两个横截面采用角焊缝焊接在一起;
(7) 安装固定支撑变形记录装置(5),支撑变形记录装置包括两个齿板(51 )、 棘轮 (55)和第一线轴 (58)、 第二线轴 (56), 将两个齿板固定在所述芯板加劲 肋 (8) 上, 棘轮与所述后封板固定相连, 并棘轮置于两个齿板间, 棘轮上的齿 与齿板上棘爪的齿相啮合, 棘轮在齿板的带动下转动, 第一线轴固定在棘轮上, 第二线轴固定在芯板加劲肋上并第二线轴上缠绕线绳,线绳的端部固定在第一线 轴上。
PCT/CN2011/080558 2011-09-22 2011-10-09 防震断变形记录式屈曲约束支撑及其制造方法 WO2013040811A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/696,501 US8789319B2 (en) 2011-09-22 2011-10-09 Seismic-incurred-rupture-resistant deformation-recordable buckling-restrained brace and fabricating method thereof
JP2013534152A JP5456212B2 (ja) 2011-09-22 2011-10-09 地震破断防止のための変形記録式座屈拘束ブレース及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110283454.0 2011-09-22
CN201110283454.0A CN103015552B (zh) 2011-09-22 2011-09-22 防震断变形记录式屈曲约束支撑及其制造方法

Publications (1)

Publication Number Publication Date
WO2013040811A1 true WO2013040811A1 (zh) 2013-03-28

Family

ID=47913792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080558 WO2013040811A1 (zh) 2011-09-22 2011-10-09 防震断变形记录式屈曲约束支撑及其制造方法

Country Status (4)

Country Link
US (1) US8789319B2 (zh)
JP (1) JP5456212B2 (zh)
CN (1) CN103015552B (zh)
WO (1) WO2013040811A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243832A (zh) * 2013-05-15 2013-08-14 常州工学院 一种钢管内灌聚氨酯高效支撑
CN104612449A (zh) * 2015-02-11 2015-05-13 清华大学 一种巨型防屈曲支撑框架结构体系
CN107345426A (zh) * 2017-08-28 2017-11-14 北京堡瑞思减震科技有限公司 一种x形布置的防屈曲支撑结构及其连接方法
CN108532836A (zh) * 2018-05-22 2018-09-14 扬州大学 一种新型减震自复位耗能拉索支撑装置
CN108999306A (zh) * 2018-07-20 2018-12-14 江南大学 一种建筑用减震软钢阻尼装置
CN113958000A (zh) * 2021-12-22 2022-01-21 北京市建筑设计研究院有限公司 串联套管式双屈服点屈曲约束支撑

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840607B (zh) 1999-12-01 2010-06-09 普林斯顿大学理事会 作为有机发光器件的磷光掺杂剂的l2mx形式的络合物
TWI570306B (zh) * 2014-03-17 2017-02-11 Chong-Shien Tsai A beam bracing device with a viewing window
CN104532977A (zh) * 2014-12-17 2015-04-22 清华大学 一种预应力索撑型防屈曲支撑
US9989349B2 (en) * 2015-07-29 2018-06-05 Corebrace, Llc Displacement measurement systems and methods
CN105464236B (zh) * 2015-12-08 2017-10-24 清华大学 自复位屈曲约束支撑
JP6664968B2 (ja) * 2016-01-19 2020-03-13 Jfeシビル株式会社 制振ダンパー及び累積塑性変位測定器
US10745913B2 (en) * 2016-03-24 2020-08-18 Omg, Inc. Building shrinkage compensation device with rotating gears
CN106400999A (zh) * 2016-10-17 2017-02-15 南京大德减震科技有限公司 一种反压式螺旋压缩弹簧阻尼器
CN106401000A (zh) * 2016-10-17 2017-02-15 南京大德减震科技有限公司 一种能调节竖向初始刚度的三维隔震装置
CN106703217B (zh) * 2017-01-22 2019-02-12 武汉大学 一种具有抗震和自愈合性能的内置阻尼梁柱节点
CN108360701B (zh) * 2018-01-17 2019-10-01 同济大学 一种新型单向摩擦型阻尼器
CN110795879B (zh) * 2019-10-29 2023-04-18 广西路桥工程集团有限公司 一种连续的钢管混凝土构件压弯承载力计算方法
CN112227719B (zh) * 2020-10-29 2022-06-03 中铁成都规划设计院有限责任公司 一种钢管剪力墙混凝土浇筑顺序分析方法
CN114482321B (zh) * 2022-03-30 2023-08-01 中建三局第一建设工程有限责任公司 支撑装置及抗侧力构件
CN115788140B (zh) * 2023-01-06 2023-05-12 河北震安减隔震技术有限公司 防屈曲约束支撑及制作工艺
CN115977257A (zh) * 2023-01-10 2023-04-18 同济大学 咬合式变刚度抗风隔震支座

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343116A (ja) * 1999-06-30 2003-12-03 Nippon Steel Corp 軸降伏型弾塑性履歴ブレースと制振鉄骨構造物
CN201078050Y (zh) * 2007-07-10 2008-06-25 南京丹普科技工程有限公司 一种带缝隙和防滑凸起的屈曲约束耗能支撑
WO2008115480A1 (en) * 2007-03-19 2008-09-25 Kazak Composites, Incorporated Buckling restrained brace for structural reinforcement and seismic energy dissipation
CN100560884C (zh) * 2007-07-10 2009-11-18 中国建筑科学研究院 一种带横隔板双层套管一字形屈曲约束支撑
US20100005737A1 (en) * 2008-07-09 2010-01-14 National Applied Research Laboratories Buckling restrained brace
CN201627381U (zh) * 2010-04-26 2010-11-10 哈尔滨工业大学 组合钢管混凝土式防屈曲支撑构件
CN101220616B (zh) * 2008-01-25 2011-05-25 同济大学 加劲钢套筒屈曲约束支撑构件

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143946A (en) * 1952-09-30 1964-08-11 Shell Oil Co Method for forming seismic and other records
US3046553A (en) * 1956-09-28 1962-07-24 Seismograph Service Corp Seismic reproducing and recording device
US3025032A (en) * 1959-05-06 1962-03-13 Komfort King Seats Inc Flexible seat support
US3158832A (en) * 1959-10-28 1964-11-24 Jersey Prod Res Co Cycle breadth transcriber employing a sawtooth generator
US3204246A (en) * 1962-04-20 1965-08-31 Exxon Production Research Co Seismic transcribing system
US3426869A (en) * 1967-01-03 1969-02-11 Mechanics Research Inc Energy absorbing arrangement
AU463143B2 (en) * 1971-12-22 1975-07-17 New Zealand Inventions Development Authority Improvements in or relating toa cyclic energy absorber
US3721320A (en) * 1972-08-26 1973-03-20 J Hirsch Energy absorption apparatus
IT1121445B (it) * 1979-06-20 1986-04-02 Camossi Carlo Dispositivo e procedimento per la fabbricazione di supporti antivibranti ed antiurto incorporanti almeno un cavo metallico disposto ad elica e supporto cosi'ottenuto
US4371143A (en) * 1980-05-24 1983-02-01 Mitsubishi Steel Mfg. Co., Ltd. Earthquake isolation floor
US4715469A (en) * 1985-08-29 1987-12-29 Petrophysical Services, Inc. Borehole seismic receiver
JP2790185B2 (ja) * 1989-02-15 1998-08-27 辰治 石丸 差動二重梃子機構を有する構造体の免震・制振機構
US5097547A (en) * 1990-08-28 1992-03-24 Kajima Corporation Vibration absorbing device for structure
JP2927573B2 (ja) * 1991-06-11 1999-07-28 辰治 石丸 構造物の制振装置
JPH053402U (ja) * 1991-06-27 1993-01-19 新日本製鐵株式会社 座屈拘束筋かい部材
CA2122023A1 (en) * 1992-09-09 1994-03-17 Alexander H. Slocum Replicated-in-place internal viscous shear damper for machine structures and components
US5288060A (en) * 1993-01-28 1994-02-22 Adolf Tyutinman Shock absorbing suspension
US5462141A (en) * 1993-05-07 1995-10-31 Tayco Developments, Inc. Seismic isolator and method for strengthening structures against damage from seismic forces
KR960702893A (ko) * 1993-06-02 1996-05-23 윌리암 헨리 로빈손 대형 구조물용 운동 댐퍼(Motion Damper for Large Structures)
US5382008A (en) * 1994-01-05 1995-01-17 Tyutinman; Adolf Shock absorbing suspension
US5560162A (en) * 1994-03-22 1996-10-01 Tekton Seismic brake
US5842312A (en) * 1995-03-01 1998-12-01 E*Sorb Systems Hysteretic damping apparati and methods
JP3118577B2 (ja) * 1997-08-14 2000-12-18 ドーエイ外装有限会社 目地カバー装置
JP3204938B2 (ja) * 1997-11-26 2001-09-04 ドーエイ外装有限会社 床用目地装置
US6098969A (en) * 1998-08-17 2000-08-08 Nagarajaiah; Satish Structural vibration damper with continuously variable stiffness
US6826874B2 (en) * 1999-06-30 2004-12-07 Nippon Steel Corporation Buckling restrained braces and damping steel structures
JP3586416B2 (ja) * 1999-06-30 2004-11-10 新日本製鐵株式会社 軸降伏型弾塑性履歴ブレースと制振鉄骨構造物
JP2001012105A (ja) * 1999-07-01 2001-01-16 Taisei Corp 弾塑性ダンパー
US6672573B2 (en) * 2000-06-16 2004-01-06 Stefano Berton Displacement amplification method and apparatus for passive energy dissipation in seismic applications
WO2002022994A1 (en) * 2000-09-12 2002-03-21 Tube Investments Of India Ltd. A sleeved bracing useful in the construction of earthquake resistant structures
US6530182B2 (en) * 2000-10-23 2003-03-11 Kazak Composites, Incorporated Low cost, light weight, energy-absorbing earthquake brace
US7174680B2 (en) * 2002-05-29 2007-02-13 Sme Steel Contractors, Inc. Bearing brace apparatus
US6681538B1 (en) * 2002-07-22 2004-01-27 Skidmore, Owings & Merrill Llp Seismic structural device
TW570083U (en) * 2002-12-18 2004-01-01 Keh-Chyuan Tsai Detachable buckling-confining ductile skewed sprag
US7225588B2 (en) * 2003-07-08 2007-06-05 Nippon Steel Corporation Damping brace and structure
US7185462B1 (en) * 2003-07-25 2007-03-06 Sme Steel Contractors, Inc. Double core brace
TWI262229B (en) * 2004-02-02 2006-09-21 Chong-Shien Tsai Multi-section earthquake protection device
US20100319274A1 (en) * 2004-02-02 2010-12-23 Chong-Shien Tsai Shock-absorbing tie brace
KR101297884B1 (ko) * 2004-03-03 2013-08-19 폴리발러 리미티드 파트너쉽 인장 소자가 장착된 셀프-센터링 에너지 소산형 브레이스장치
US20050257490A1 (en) * 2004-05-18 2005-11-24 Pryor Steven E Buckling restrained braced frame
US20060037275A1 (en) * 2004-08-17 2006-02-23 Chiao-Yu Jen Tilt support structure
US7650962B2 (en) * 2004-09-17 2010-01-26 Georgia Tech Research Corporation Rotary actuated seismic source and methods for continuous direct-push downhole seismic testing
US20060101733A1 (en) * 2004-11-15 2006-05-18 Chiao-Yu Jen Buckling-restrained diagonal brace using lapping and improved plugging connection
US7621085B2 (en) * 2005-01-03 2009-11-24 Commins Alfred D Racheting take-up device
NZ540316A (en) * 2005-05-24 2007-02-23 Geoffrey John Thompson Kinetic energy-absorbing and force-limiting connecting means
US7549257B2 (en) * 2005-07-07 2009-06-23 Kuo-Jung Chuang Earthquake shock damper
US7404370B2 (en) * 2006-08-02 2008-07-29 Pgs Norway Geophysical As Steerable diverter for towed seismic streamer arrays
US20080192570A1 (en) * 2007-02-14 2008-08-14 Stig Rune Lennart Tenghamn Lateral force and depth control device for marine seismic sensor array
JP2008274684A (ja) * 2007-05-02 2008-11-13 Daiwa House Ind Co Ltd 座屈拘束ブレースの点検装置
US7881153B2 (en) * 2007-08-21 2011-02-01 Pgs Geophysical As Steerable paravane system for towed seismic streamer arrays
US8192312B2 (en) * 2008-01-31 2012-06-05 The Gates Corporation Isolator with damping
JP5339406B2 (ja) * 2008-05-22 2013-11-13 学校法人君が淵学園 耐震性構造物
US8925696B2 (en) * 2008-08-07 2015-01-06 Illinois Tool Works Inc. Viscous strand damper assembly
JP2011520047A (ja) * 2009-04-07 2011-07-14 トンジ ユニバーシティ グラウチング二重管エネルギー吸収部材
WO2011038742A1 (en) * 2009-10-02 2011-04-07 Damptech Aps Damping system
US8794372B2 (en) * 2010-06-08 2014-08-05 Bp Coporation North America Inc. Marine mechanical seismic source
US8316589B2 (en) * 2010-07-02 2012-11-27 National Applied Research Laboratories Dual-core self-centering energy dissipation brace apparatus
CN201762839U (zh) * 2010-07-13 2011-03-16 西安建筑科技大学 一种复合型形状记忆合金阻尼器
CN201785888U (zh) * 2010-07-13 2011-04-06 西安建筑科技大学 一种形状记忆合金自传感阻尼器
US9507039B2 (en) * 2010-12-13 2016-11-29 Schlumberger Technology Corporation Seismic source, system, and method
CN201943214U (zh) * 2010-12-30 2011-08-24 陈明中 一种新型支撑型抗震耗能器
US9175467B2 (en) * 2011-03-04 2015-11-03 Moog Inc. Structural damping system and method
US20130139452A1 (en) * 2011-03-18 2013-06-06 National Applied Research Laboratories Buckling restrained brace
TWI458880B (zh) * 2011-03-18 2014-11-01 Nat Applied Res Laboratories Free solution of the system
US8464477B2 (en) * 2011-08-18 2013-06-18 Larry Bowlus Seismic base isloation and energy dissipation device
US8590258B2 (en) * 2011-12-19 2013-11-26 Andrew Hinchman Buckling-restrained brace
US9016007B2 (en) * 2012-09-06 2015-04-28 Bluescope Buildings North America, Inc. Buckling-restrained brace assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343116A (ja) * 1999-06-30 2003-12-03 Nippon Steel Corp 軸降伏型弾塑性履歴ブレースと制振鉄骨構造物
WO2008115480A1 (en) * 2007-03-19 2008-09-25 Kazak Composites, Incorporated Buckling restrained brace for structural reinforcement and seismic energy dissipation
CN201078050Y (zh) * 2007-07-10 2008-06-25 南京丹普科技工程有限公司 一种带缝隙和防滑凸起的屈曲约束耗能支撑
CN100560884C (zh) * 2007-07-10 2009-11-18 中国建筑科学研究院 一种带横隔板双层套管一字形屈曲约束支撑
CN101220616B (zh) * 2008-01-25 2011-05-25 同济大学 加劲钢套筒屈曲约束支撑构件
US20100005737A1 (en) * 2008-07-09 2010-01-14 National Applied Research Laboratories Buckling restrained brace
CN201627381U (zh) * 2010-04-26 2010-11-10 哈尔滨工业大学 组合钢管混凝土式防屈曲支撑构件

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243832A (zh) * 2013-05-15 2013-08-14 常州工学院 一种钢管内灌聚氨酯高效支撑
CN103243832B (zh) * 2013-05-15 2016-02-17 常州工学院 一种钢管内灌聚氨酯高效支撑
CN104612449A (zh) * 2015-02-11 2015-05-13 清华大学 一种巨型防屈曲支撑框架结构体系
CN107345426A (zh) * 2017-08-28 2017-11-14 北京堡瑞思减震科技有限公司 一种x形布置的防屈曲支撑结构及其连接方法
CN107345426B (zh) * 2017-08-28 2023-09-12 华南理工大学 一种x形布置的防屈曲支撑结构及其连接方法
CN108532836A (zh) * 2018-05-22 2018-09-14 扬州大学 一种新型减震自复位耗能拉索支撑装置
CN108532836B (zh) * 2018-05-22 2024-02-27 扬州大学 一种减震自复位耗能拉索支撑装置
CN108999306A (zh) * 2018-07-20 2018-12-14 江南大学 一种建筑用减震软钢阻尼装置
CN113958000A (zh) * 2021-12-22 2022-01-21 北京市建筑设计研究院有限公司 串联套管式双屈服点屈曲约束支撑

Also Published As

Publication number Publication date
US8789319B2 (en) 2014-07-29
CN103015552B (zh) 2014-11-05
CN103015552A (zh) 2013-04-03
JP2013540218A (ja) 2013-10-31
JP5456212B2 (ja) 2014-03-26
US20140041320A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2013040811A1 (zh) 防震断变形记录式屈曲约束支撑及其制造方法
US8590258B2 (en) Buckling-restrained brace
CN108442514B (zh) 附加隐藏式阻尼器的装配式柔性混凝土框架节点结构
JP7130004B2 (ja) 力制限器及びエネルギ消散器
CN104264593B (zh) 一种表层嵌筋加固的预应力张拉方法及装置
JP4472729B2 (ja) 補強構造
CN103243835A (zh) 自复位屈曲约束支撑
CN101672004A (zh) 用于悬索桥的形状记忆合金减振辅助索装置
CN209891191U (zh) 一种建筑地基加固桩
CN107989450A (zh) 一种模块化可装配式屈曲约束支撑构件
JP5816514B2 (ja) アウトフレーム補強工法とその補強構造
JP2005016212A (ja) 露出型鉄骨柱脚
CN108661092A (zh) 一种用于自平衡法试验桩的桩身连接装置
JP2009203783A (ja) 制振パネルおよびそれを用いた骨組構造
US8429877B2 (en) Method for reinforcement of concreted plates in the region of support elements
JP3882633B2 (ja) 鋼管ダンパー及びこれを用いたロッキング基礎構造
JP5166837B2 (ja) 壁構造物の補強方法および補強構造
JP5509374B1 (ja) 既存建物の耐震補強構造及び耐震補強方法
JP2002332750A (ja) 鉄筋コンクリート支持柱の耐震補強構造
JP3768118B2 (ja) 締着装置
KR101176508B1 (ko) 지반확장형 앵커
JP2009115586A (ja) 凹凸計測装置および凹凸計測方法
JP2007039937A (ja) 建物の基礎構造
US11149396B2 (en) Deformation-compliant rigid inclusions with embedded structural reinforcements
JP5217216B2 (ja) アンカーの頭部定着構造、アンカーの頭部定着方法、及びグラウト材の注入方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13696501

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013534152

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872768

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/10/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11872768

Country of ref document: EP

Kind code of ref document: A1