WO2013040747A1 - 造纸工业碱回收固体废渣综合利用的方法 - Google Patents

造纸工业碱回收固体废渣综合利用的方法 Download PDF

Info

Publication number
WO2013040747A1
WO2013040747A1 PCT/CN2011/079846 CN2011079846W WO2013040747A1 WO 2013040747 A1 WO2013040747 A1 WO 2013040747A1 CN 2011079846 W CN2011079846 W CN 2011079846W WO 2013040747 A1 WO2013040747 A1 WO 2013040747A1
Authority
WO
WIPO (PCT)
Prior art keywords
green liquor
green
white mud
controlled
liquor
Prior art date
Application number
PCT/CN2011/079846
Other languages
English (en)
French (fr)
Inventor
王桂林
Original Assignee
北京沃特玛德环境技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京沃特玛德环境技术股份有限公司 filed Critical 北京沃特玛德环境技术股份有限公司
Priority to PCT/CN2011/079846 priority Critical patent/WO2013040747A1/zh
Priority to CN2011800113305A priority patent/CN103180506A/zh
Publication of WO2013040747A1 publication Critical patent/WO2013040747A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0064Aspects concerning the production and the treatment of green and white liquors, e.g. causticizing green liquor
    • D21C11/0078Treatment of green or white liquors with other means or other compounds than gases, e.g. in order to separate solid compounds such as sodium chloride and carbonate from these liquors; Further treatment of these compounds

Definitions

  • the invention optimizes the alkali recovery process technology of the traditional paper industry, and more specifically, the method for comprehensively utilizing the solid waste generated by the alkali recovery process. Background technique
  • the green mud produced by alkali recovery can only be discharged or landfilled.
  • the treatment method of white mud has calcination recycling method, chemical method and water washing method, the following problems exist: 1.
  • the calcination method is mainly applicable to Wood pulp papermaking, but the straw fiber raw material is widely used in China.
  • the silicon content in black liquor is high. Due to the limitation of silicon removal cost and technology, it is difficult to clarify green liquor.
  • White mud contains many impurities, low whiteness, calcination method. It is difficult to achieve recycling.
  • the use of chemical methods requires the addition of chemical additives, which has high operating costs and is not suitable for industrial production. 3.
  • the washing method is to remove most of the impurities and residual alkali from the white mud discharged from the caustic chemical section through several washing, carbonation and filtration processes to prepare a filler for papermaking applications. It has been applied internally, but as the printing industry's requirements for paper products continue to increase, the carbonic acid produced by this single-sheet process has been unable to meet the standards for paper-added raw materials. Because the prepared filler particles have poor uniformity, loose texture, low surface strength, and fineness and whiteness are not required. In view of the above reasons, many paper manufacturers directly discharge the caustic white mud out of the factory or landfill, which pollutes the environment and wastes resources.
  • Patent Document 1 Patent Application No.: CN200610007252.2
  • Patent Document 2 Patent Application No.: CN200610007252.2
  • the patent Improvements in the combustion and causticization process It includes: green liquor purification process, lime raw material pretreatment process, green mud treatment process, white mud ash removal, alkali removal process, white mud fine treatment process.
  • Patent Document 1 successfully solves the problem of recovery of the alkali recovery process waste residue, and obtains the ultra-fine carbonic acid 4 bow product which meets the production of the paper sheet from the industrial waste residue, and the production operation cost is relatively low, realizing the turning waste into treasure.
  • the inorganic melt produced by burning the black liquor in the alkali furnace is dissolved in the whitening liquid, and the formed solution is green due to a certain amount of ferrous ions present in a colloidal form, and the presence of iron ions is severely present. Affect the quality of the green liquor, thus affecting the quality of white liquor and white mud. Therefore, how to effectively remove the iron ions in the green liquor and make the green liquor clear and transparent has always been a problem in the purification of green liquor.
  • the object of the present invention is to provide a method for comprehensive utilization of solid waste residue generated by an alkali recovery process, which can effectively remove iron ions in green liquor and improve the whiteness of white mud.
  • the method for comprehensively utilizing the alkali recovery solid waste residue in the paper industry of the present invention comprises the step of removing iron ions in the green liquor, in which the alkaline hydroxide is added to the green liquid whose temperature is controlled above 80 ° C, and the green The pH of the liquid is maintained above 14; hydrogen peroxide is added so that at least 0.15 g of 3 ⁇ 4 O 2 is contained per liter of green liquor; the iron-containing precipitate in the green liquor is removed by filtration for at least 2 minutes.
  • the green liquor temperature is controlled in the range of 85 °C to 99 °C.
  • the alkaline hydroxide is Ca(OH) 2 , NaOH.
  • 0.15 g to 1.0 g of 3 ⁇ 4 O 2 is contained per liter of green liquor.
  • the stirring is carried out for 2 minutes to 10 minutes.
  • a concentration of 15-20% by weight of the white mud carbonic acid 4 ⁇ emulsion is mixed with carbon dioxide of more than 90% purity, followed by a temperature of 30 ° C ⁇ 50 ° C and l-2 The reaction was carried out under a pressure of kgf/cm 2 for 1 to 2 hours.
  • the pH of the emulsion reaction system is controlled to be in the range of 6.8 to 7.5.
  • the pH of the white mud carbonic acid emulsion after the carbonation treatment is controlled within a range of 8.0 to 9.5, and is subjected to an aging process by entering the aging device through a carbon dioxide recovery system.
  • the invention effectively solves the problem of the color of the green liquor belt, greatly improves the purity of the green liquor, and lays a foundation for improving the quality of the lye and the whiteness of the white mud;
  • the high iron removal rate of the invention can reduce the iron ion content in the green liquor to less than lppm;
  • the use of the present invention for the iron removal treatment of the green liquor does not bring any other components to the green liquor, which is considered an "environmentally friendly" method.
  • the whole treatment process can make the white mud carbonate 4 bow particles be trimmed, and the crystal form can be shaped and treated; a small amount of calcium hydroxide is converted into calcium carbonate by the carbonization reaction; and the calcium silicate is converted into silicic acid by the action of percarbonic acid. It is removed by forced dehydration of the white mud, and the hydrochloric acid insoluble matter of the white mud carbonic acid product is lowered.
  • Figure 1 is a flow chart showing the operation of removing iron ions from green liquor.
  • Fig. 2 is a flow chart showing the operation of carbonation trimming reaction of white mud calcium carbonate. detailed description
  • the core of the method for comprehensive utilization of the alkali recovery solid waste in the paper industry of the present invention is the step of removing iron ions in the green liquor. In order to effectively remove iron ions, it needs to be in a strong hot alkaline environment. Add hydrogen peroxide.
  • the "strong hot alkaline environment” means that the temperature is above 80 ° C and the pH is above 14. If the green liquor is not heat treated, the addition of a small amount of hydrogen peroxide can only change the color of the green liquor from green to reddish brown. After a large amount of addition, it can become colorless again, and white precipitates are produced (the presence of a large amount of hydrogen peroxide destroys the stability of the colloid). However, this treatment method is impossible to achieve industrial production. Effectively remove iron ions and reduce costs. From a point of view, the green liquor temperature is preferably controlled between 85 ° C and 99 ° C.
  • the adjustment of the pH can be achieved by adding an alkali hydroxide, as long as the hydroxide capable of introducing OH - and adjusting the pH can be used without limitation, but it is preferable from the viewpoint of reducing or avoiding introduction of impurities into the green liquor.
  • the mechanism for removing iron ions is as follows: After adding hydrogen peroxide, it oxidizes the ferrous hydroxide Fe(OH) 2 colloid with divalent iron ion Fe 2+ in green liquor to hydroxide with ferric ion Fe 3 + Iron Fe(OH) 3 colloid; meanwhile, the oxidant hydrogen peroxide interacts with sodium hydroxide (NaOH) in the green liquor to form sodium peroxide Na 2 O 2 , which is a colloidal iron Fe(OH) 3 colloid in green liquor The reaction produced a white Na 2 0 2 'Fe(OH) 3 colloidal precipitate.
  • the chemical reaction of the whole process is as follows:
  • the stirring time is not less than 2 minutes, preferably 2 minutes to 10 minutes.
  • the method for comprehensively utilizing the solid waste residue recovered by the paper industry in the papermaking industry can realize the white mud by further removing the residual Ca(OH) 2 in the white mud carbonate by using a carbonation trimming process in the white mud fine treatment process.
  • the characteristics of hydrochloric acid insoluble matter in the white mud carbonic acid 4 ⁇ are improved, and at the same time, the white mud carbonic acid 4 ⁇ grain is trimmed to improve the white mud carbonic acid 4 ⁇ particle hook One sex.
  • the specific steps of the carbonation finishing treatment process are as follows:
  • the washed white mud carbonic acid 4 is adjusted into a white mud carbonate 4 ⁇ emulsion with a concentration of 15-20%, and the mixture is mixed with carbon dioxide of more than 90% purity, followed by a temperature of 30 ° C to 50 ° C. And the reaction under 1-2 kgf / cm 2 pressure for 1-2 hours, the pH of the emulsion reaction system is controlled within the range of 6.8-7.5.
  • the pH value of the white mud carbonate 4 ⁇ emulsion after carbonation treatment is controlled within the range of 8.0-9.5, and is aged into the aging device through the carbon dioxide recovery system to complete the carbonation finishing process of the white mud carbonic acid.
  • Figure 1 shows the operation flow for removing iron ions from green liquor.
  • the green liquid is cleaned by a green liquid clarifier or a green liquid filter or a green liquid purification separator.
  • Ca(OH) 2 is added to the green liquid, and the reactor is fed into the reactor by a pump or a self-flowing method.
  • the hydrogen peroxide is thoroughly mixed and reacted.
  • the stirring reaction time is 2-10 minutes, and then enters the clean green liquid storage tank.
  • the clean green liquid in the storage tank is pumped to the green liquid fine filter to be filtered, and the filtered impurities are discharged into the green.
  • the mud tank, the clear green liquid is sent to the causticizing reaction system for causticization.
  • Embodiment 1 Embodiment 1
  • the supernatant of the green liquor after cleaning and adding Ca(OH) 2 is 1000 ml, the effective alkali (NaOH) content in the green liquor is 12 wt%, the sodium carbonate content is 128 g/L, and the total iron ion content is 400 ppm.
  • the test results are: green green green fade 8ppm ⁇ The total iron ion content was 0. 8ppm.
  • the supernatant of the green liquor after cleaning and adding Ca(OH) 2 is 1000 ml, the effective alkali (NaOH) content in the green liquor is 18 wt%, the sodium carbonate content is 132 g/L, and the total iron ion content is 400 ppm.
  • the test result is: Greenish green fades, becomes a colorless transparent solution, detects total iron The ion content was 0.7 ppm.
  • the supernatant of the green liquor after cleaning and adding Ca(OH) 2 is 1000 ml, the effective alkali (NaOH) content in the green liquor is 15 wt%, the sodium carbonate content is 114 g/L, and the total iron ion content is 300 ppm.
  • the test results are: Green green green faded, become a colorless transparent solution, no detection Iron ions.
  • the iron ions in the green liquor treated by the method for removing iron ions of the present invention did not exceed 1 ppm, and the iron ions in the green liquor could be effectively removed.
  • the process cartridge of the invention is convenient to implement and has low cost.
  • Figure 2 shows the operation flow of the carbonation trimming reaction of white mud calcium carbonate.
  • the washed and alkali-removed white mud calcium carbonate is adjusted into an emulsion having a concentration of 15-20% by weight, and the emulsion is mixed with carbon dioxide in a mixer, and then reacted in a carbonation trimming reactor, and the reaction is carried out.
  • the carbon dioxide recovery system enters the aging device for aging treatment, and completes the carbonation and dressing treatment process of the white mud carbonic acid.
  • the white mud calcium carbonate according to the present invention is introduced for the carbonation trimming reaction, and the comparison before and after the carbonation trimming is performed.
  • Embodiment 1 Adjusting the white mud carbonate 4 ⁇ after washing and de-alkali in the above-mentioned Embodiment 1 to a concentrated
  • the emulsion was 18 wt%, and the emulsion was mixed with 95% carbon dioxide in a mixer, and reacted at a temperature of 40 ° C and a pressure of 1.5 kgf / cm 2 for 1.4 hours, and the pH of the emulsion reaction system was controlled within the range of 7.0.
  • the pH value of the white mud carbonate 4 bow emulsion after carbonation treatment is controlled within the range of 8.5, and the carbon dioxide recovery system enters the aging device for aging treatment to complete the carbonation modification process of the white mud carbonic acid.
  • the white mud calcium carbonate subjected to the carbonation trimming treatment was detected, and the detection result was found to be similar to the white mud carbonate 4 bow which was not subjected to the carbonation trimming treatment of the first embodiment, and the crystal form was subjected to shaping treatment; Calcium oxide disappears and is converted into carbonic acid 4 bow; at the same time, calcium silicate is converted into silicic acid, which can be removed by dehydration of white mud, thereby reducing the hydrochloric acid insoluble matter of the white mud carbonic acid product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Abstract

公开了一种造纸工业碱回收固体废渣综合利用方法,包括去除绿液中的亚铁离子的步骤,在该步骤中向温度控制在80°C以上的绿液中加入碱性氢氧化物,将绿液的pH值维持在14以上;加入双氧水,使得每升绿液中至少含有0.15g双氧水;搅拌至少2分钟,然后通过过滤去除绿液中的含铁沉淀物。该方法可以有效地去除绿液中的亚铁离子,处理过的绿液中,亚铁离子含量不超过1ppm。

Description

造纸工业碱回收固体废渣综合利用的方法 技术领域
本发明是对传统造纸工业碱回收工艺技术进行优化, 更具体地是对 碱回收工艺产生的固体废渣进行综合利用的方法。 背景技术
造纸工业制浆生产过程中会产生大量的制浆废水(俗称黑液), 通过 传统的碱回收方法可以有效解决其污染问题, 但是碱回收生产过程中产 生的固体废渣由于现有工艺的缺陷无法有效地回收处理, 大部分直接将 绿泥、 白泥排出厂外或进行填埋, 造成了环境的二次污染。
在目前的造纸行业中, 碱回收产生的绿泥只能排放或填埋, 虽然白 泥的处理方法有煅烧循环利用法、化学法和水洗法,但存在下列问题: 1、 煅烧法主要适用于木浆造纸, 但我国广泛采用的是草浆类纤维原料, 黑 液中硅含量高, 受除硅成本和技术的限制, 使得绿液澄清困难, 白泥含 杂质多, 白度低, 煅烧法难以实现循环利用。 2、 采用化学法需要添加化 学助剂, 运行成本高, 不适宜于工业生产。 3、 水洗法是将苛化工段排出 的白泥经过数次水洗、 碳酸化处理以及过滤工序去除其中的大部分杂质 和残碱, 制备成可供造纸应用的填料, 这种方法曾在小范围内得到应用, 但随着印刷业对纸品要求的不断提高, 用这种筒单工艺生产的碳酸 4丐已 经不能满足造纸添加原料的标准。 因为所制得的填料颗粒均整性差, 质 地松散, 表面强度低, 细度和白度达不到要求。 鉴于上述几种原因, 许 多造纸厂家都是直接将苛化白泥排出厂外或进行填埋,这样既污染环境, 又造成资源的浪费。
本发明人长期以来一直在对碱回收工业生产中废渣的处理技术进行 研究, 并在 2006年 2 月申请了相关专利 (专利文献 1 , 专利申请号: CN200610007252.2 ), 在该专利中对传统的燃烧和苛化工艺进行了改进, 其包括: 绿液提纯处理过程, 石灰原料的预处理过程, 绿泥的处理过程, 白泥除灰、 脱碱过程, 白泥精细处理过程。
专利文献 1成功地解决了碱回收工艺废渣的回收问题, 由工业废渣 得到了满足纸页生产的超细碳酸 4弓产品, 并且生产运行成本相对较低, 实现了变废为宝。
但是, 随着研发工作的不断深入,上述专利 CN200610007252.2仍存 在一些需要改进、 优化的余地, 譬如绿液中铁离子的去除, 铁离子的存 在将直接影响到白泥的白度, 影响最终碳酸 4弓产品的品质。 在该专利中 没有对如何去除铁离子进行任何的揭示。
在碱回收生产过程中, 碱炉燃烧黑液产生的无机熔融物溶解于稀白 液中, 形成的溶液由于含有一定量以胶体形式存在的二价铁离子而呈绿 色, 铁离子的存在严重地影响到绿液的质量, 从而影响白液和白泥的质 量。 因此, 如何有效地将绿液中的铁离子去除, 使绿液变得澄清透明, 一直是绿液净化中的一个难题。
另外, 在白泥精制碳酸 4丐过程中通过对脱碱、 去杂, 洗涤处理过的 白泥碳酸 4丐进行分析与研究, 发现白泥中还残存一定量的 Ca(OH)2、 硅 酸 4弓等杂质, 乳液的 PH值高于 11 , 粒子的晶型不匀一, 粒子表面不规 整, 筒单的碳酸化过程很难生产出合格的碳酸钙产品。 发明内容
本发明的目的是提供一种碱回收工艺产生的固体废渣进行综合利用 的方法, 该方法可以有效地去除绿液中的铁离子, 改善白泥的白度。
本发明的造纸工业碱回收固体废渣综合利用的方法, 包括去除绿液 中的铁离子的步骤, 在该步骤中向温度控制在 80°C以上的绿液中加入碱 性氢氧化物, 将绿液的 pH值维持在 14以上; 加入双氧水, 使得每升绿 液中至少含有 0.15g ¾O2; 搅拌至少 2分钟, 由过滤去除绿液中的含铁 沉淀物。
优选地, 绿液温度控制在 85 °C -99 °C范围内。
优选地, 所述碱性氢氧化物为 Ca(OH)2、 NaOH。 优选地, 每升绿液中含有 0.15g~1.0g ¾O2
优选地, 所述搅拌进行 2分钟〜 10分钟。
优选地,在白泥精细处理过程中向浓度为 15-20wt%的白泥碳酸 4丐乳 液中通入 90%以上纯度的二氧化碳进行混合, 随后在 30°C~50°C温度以 及 l-2 kgf/cm2压力下反应 1~2小时。
优选地, 乳液反应体系的 pH值控制在 6.8-7.5范围内。
优选地, 碳酸化处理后的白泥碳酸 4丐乳液的 pH值控制在 8.0-9.5范 围内, 经二氧化碳回收系统进入陈化器进行陈化处理。
根据本发明的造纸工业碱回收固体废渣综合利用的方法, 具有如下 的有益效果:
1) 本发明有效地解决了绿液带颜色的问题, 大大地提高了绿液的纯 度, 为提高碱液的质量和白泥的白度奠定了基础;
2) 本发明工艺筒单、 操作实施方便, 成本低;
3) 本发明除铁率高, 可将绿液中铁离子含量降低到 lppm以下;
4) 采用本发明对绿液进行除铁处理, 不会给绿液带来任何其它组 分, 算得上是"环保"方法。 整处理工艺, 可以使白泥碳酸 4弓粒子得到修整处理, 晶型获得整形处理; 少量的氢氧化钙被碳化反应消耗转化为碳酸钙; 同时硅酸钙在过碳酸的 作用下转化为硅酸, 通过对白泥的强制脱水而被去除, 使白泥碳酸 4丐产 品的盐酸不溶物降低。 附图说明
图 1为表示对绿液去除铁离子的操作流程图。
图 2为表示对白泥碳酸钙进行碳酸化修整反应的操作流程图。 具体实施方式
本发明的造纸工业碱回收固体废渣综合利用的方法的核心在于去除 绿液中的铁离子的步骤。 为了有效地去除铁离子, 需要在强热碱环境下 加入双氧水。
这里"强热碱环境,,是指温度在 80°C以上、 pH值在 14以上。 如果不 对绿液进行加热处理, 少量双氧水的加入只能使绿液的颜色由绿色变为 红褐色, 只有大量加入后才能再变成无色, 并有白色沉淀物产生 (大量 双氧水的存在破坏了胶体的稳定性)。但是, 这种处理方法不可能实现工 业化生产。 从有效去除铁离子、 降低成本的角度考虑, 绿液温度优选控 制在 85°C~99°C。
pH值的调节可以通过加入碱性氢氧化物来实现, 只要是能够引入 OH -、 调节 pH的氢氧化物可以不受限制地使用, 但是从减少或避免向绿 液中引入杂质的角度考虑优选使用 Ca(OH)2或 NaOH。
随后, 在上述强热碱环境下向绿液中加入双氧水, 并进行搅拌。 按 照常识性认识,加入双氧水即可将二价铁离子 Fe2+氧化成三价铁 离子 Fe3 + , Fe3+在碱性环境下可转变成 Fe(OH)3而以沉淀物 形式被去除。 然而, 本发明人进行了大量的实验, 发现在双 氧水的加入未达到足够量时, 绿液由绿色变成褐色, 并不能 去除铁离子。 只有当每升绿液中至少含有 0.15g ¾O2时, 绿液才有 绿色变成无色, 有效地去除了铁离子。
关于去除铁离子的机理如下: 加入双氧水后, 其将绿液 中的带二价铁离子 Fe2+的氢氧化亚铁 Fe(OH)2胶体氧化成带 三价铁离子 Fe3 +的氢氧化铁 Fe(OH)3胶体; 同时, 氧化剂双 氧水与绿液中的氢氧化钠 ( NaOH ) 成份相互作用生成过氧 化钠 Na202 , 它与绿液中的氢氧化铁 Fe(OH)3胶体反应生成 白色的 Na202'Fe(OH)3胶体状析出物。整个过程的化学反应式 如下:
2Fe(OH)2(胶体) +H202→2Fe(OH)3(胶体) NaOH+H202→Na202(絮凝物)+2H20
Na202(絮凝物)+2Fe(OH)3(胶体)→Na202'Fe(OH)3(凝胶 体
关于双氧水的加入量, 只要每升绿液中不少于 0.15g H2O2即可, 从 降低双氧水用量、 降低成本的角度考虑, 优选每升绿液中的 ¾02不高于 1.0g。 搅拌时间不少于 2分钟, 优选进行 2分钟〜 10分钟。
本发明的造纸工业碱回收固体废渣综合利用的方法, 在白泥精细处 理过程中可以通过采用碳酸化修整处理工艺, 在进一步去除白泥碳酸 4丐 中残余的 Ca(OH)2, 实现白泥轻质碳酸 4丐 PH值指标的调节的基础上, 使 白泥碳酸 4丐中盐酸不溶物特性得到改善, 同时, 对白泥碳酸 4丐晶粒进行 修整处理, 提高白泥碳酸 4丐的粒子勾一性。 该碳酸化修整处理工艺具体 步骤为:
将经洗涤后的白泥碳酸 4弓调节成浓度为 15-20%的白泥碳酸 4丐乳 液, 向乳液中通入 90%以上纯度的二氧化碳进行混合, 随后在 30°C~50°C 温度以及 1-2 kgf/cm2压力下反应 1-2小时, 乳液反应体系的 pH值控制 在 6.8-7.5范围内。
碳酸化处理后的白泥碳酸 4丐乳液的 pH值控制在 8.0-9.5范围内, 经 二氧化碳回收系统进入陈化器进行陈化处理, 完成白泥碳酸 4丐的碳酸化 修整处理过程。
下面通过附图和实施例更具体地说明本发明, 但本发明的保护范围 并不受限于所列举的实施例。
图 1表示对绿液去除铁离子的操作流程。 如图 1所示, 经绿液澄清 器或绿液过滤器或绿液提纯分离器来清洁绿液, 绿液中加入了 Ca(OH)2, 通过泵或自流的方式进入反应器与定量比例的双氧水进行充分混合并反 应, 搅拌反应时间为 2-10分钟, 再进入清洁绿液贮存槽, 贮存槽的清洁 绿液通过泵送到绿液精细过滤器进入过滤处理,过滤的杂质排入绿泥槽, 清澈绿液送到苛化反应系统进行苛化反应。 实施例一
取清洁过并加入 Ca(OH)2后的绿液的上清液 1000 ml,绿液中有效碱 ( NaOH )含量为 12wt%, 碳酸钠含量为 128g/L, 总铁离子的含量为 400ppm, 温度 85°C , 加入 27.5%的工业级双氧水 0.5ml, 搅拌反应 5分 钟, 沉淀分离后, 取上部清澈绿液进行检测, 检测结果为: 绿液绿色褪 去, 变为无色透明溶液, 检测总铁离子含量为 0. 8ppm。
实施例二
取清洁过并加入 Ca(OH)2后的绿液的上清液 1000 ml,绿液中有效碱 ( NaOH )含量为 18wt%, 碳酸钠含量为 132g/L, 总铁离子的含量为 400ppm, 温度 90°C , 加入 25%的工业级双氧水 lml, 搅拌反应 6分钟, 沉淀分离后, 取上部清澈绿液进行检测, 检测结果为: 绿液绿色褪去, 变为无色透明溶液, 检测总铁离子含量为 0.7ppm。
实施例三
取清洁过并加入 Ca(OH)2后的绿液的上清液 1000 ml,绿液中有效碱 ( NaOH )含量为 15wt%, 碳酸钠含量为 114g/L, 总铁离子的含量为 300ppm,温度 87°C ,加入 30%的工业级双氧水 1.5mL,搅拌反应 8分钟, 沉淀分离后, 取上部清澈绿液进行检测, 检测结果为: 绿液绿色褪去, 变为无色透明溶液, 没有检测出铁离子。
由上述实施例一至三可以看出, 经过本发明的去除铁离子的方法处 理过的绿液中铁离子含量均未超过 lppm,可以有效地绿液中的去除铁离 子。 并且, 本发明的工艺筒单、 操作实施方便, 成本低。
图 2表示对白泥碳酸钙进行碳酸化修整反应的操作流程。 如图 2所 示, 将经过洗涤脱碱的白泥碳酸钙调节成浓度为 15 ~ 20wt%的乳液, 在 混合器中将乳液与二氧化碳混合, 进入碳酸化修整反应器中进行反应, 反应后经二氧化碳回收系统进入陈化器进行陈化处理, 完成白泥碳酸 4丐 碳酸化修整处理过程。
这里在专利文献 1的具体实施方式一的白泥精细处理过程中引入本 发明涉及的白泥碳酸钙进行碳酸化修整反应, 并进行碳酸化修整前后的 对比。 实施例四
将在上述具体实施方式一中经过洗涤脱碱后的白泥碳酸 4丐调节成浓 度为 18wt%的乳液, 在混合器中将乳液与 95%浓度的二氧化碳混合, 在 温度 40 °C、 压力 1.5 kgf/cm2下反应 1.4小时, 乳液反应体系的 pH值控 制在 7.0范围内。
碳酸化处理后的白泥碳酸 4弓乳液的 pH值控制在 8. 5范围内, 经二 氧化碳回收系统进入陈化器进行陈化处理, 完成白泥碳酸 4丐的碳酸化修 整处理过程。
对经过碳酸化修整处理的白泥碳酸钙进行检测, 检测结果与上述具 体实施方式一的未进行碳酸化修整处理的白泥碳酸 4弓相比发现, 晶型获 得整形处理; 原本少量存在的氢氧化钙消失, 转化为碳酸 4弓; 同时硅酸 钙转化为硅酸, 可以通过对白泥的脱水而去除, 从而使白泥碳酸 4丐产品 的盐酸不溶物降低。

Claims

1、 一种造纸工业碱回收固体废渣综合利用的方法, 包括去除绿液中 的铁离子的步骤, 在该步骤中向温度控制在 80°C以上的绿液中加入碱性 氢氧化物, 将绿液的 pH值维持在 14以上; 加入双氧水, 使得每升绿液 中至少含有 0.15g ¾O2; 搅拌至少 2分钟进行反应, 由过滤去除绿液中 的含铁沉淀物。
2、 根据权利要求 1所述的方法, 其中绿液温度控制在 85°C~99°C范 围内。
3、根据权利要求 1所述的方法,其中所述碱性氢氧化物为 Ca(OH)2、 NaOH。
4、 根据权利要求 1所述的方法, 其中每升绿液中含有 0.15g~1.0g ¾02
5、根据权利要求 1所述的方法,其中所述搅拌进行 2分钟〜 10分钟。
6、根据权利要求 1所述的方法, 其中在白泥精细处理过程中向浓度 为 15-20wt%的白泥碳酸 4丐乳液中通入 90%以上纯度的二氧化碳进行混 合, 随后在 30°C~50°C温度以及 l-2 kgf/cm2压力下反应 1-2小时。
7、 根据权利要求 7所述的方法, 其中乳液反应体系的 pH值控制在 6.8-7.5范围。
8、根据权利要求 6或 7所述的方法, 其中碳酸化处理后的白泥碳酸 钙乳液的 pH值控制在 8.0-9.5范围内, 经二氧化碳回收系统进入陈化器 进行陈化处理。
PCT/CN2011/079846 2011-09-19 2011-09-19 造纸工业碱回收固体废渣综合利用的方法 WO2013040747A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/079846 WO2013040747A1 (zh) 2011-09-19 2011-09-19 造纸工业碱回收固体废渣综合利用的方法
CN2011800113305A CN103180506A (zh) 2011-09-19 2011-09-19 造纸工业碱回收固体废渣综合利用的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079846 WO2013040747A1 (zh) 2011-09-19 2011-09-19 造纸工业碱回收固体废渣综合利用的方法

Publications (1)

Publication Number Publication Date
WO2013040747A1 true WO2013040747A1 (zh) 2013-03-28

Family

ID=47913745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079846 WO2013040747A1 (zh) 2011-09-19 2011-09-19 造纸工业碱回收固体废渣综合利用的方法

Country Status (2)

Country Link
CN (1) CN103180506A (zh)
WO (1) WO2013040747A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112726252B (zh) * 2020-11-30 2022-11-25 山东华泰纸业股份有限公司 一种造纸厂废渣的综合利用方法
CN115679737A (zh) * 2022-10-14 2023-02-03 江苏治水有数环保科技有限公司 一种碱回收浓白液除铁离子吸附剂制备方法及使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1115464A (en) * 1978-03-16 1982-01-05 Reino Rasanen Method for carbonation of green liquor by means of concentrated carbon dioxide gas in a mixing reactor and for the separation of concentrated hydrogen sulphide only in process steps after carbonation for the preparation of alkali carbonate
CN1239166A (zh) * 1998-06-14 1999-12-22 艾天召 造纸黑液碱回收绿液苛化新工艺
JP2001115382A (ja) * 1999-10-14 2001-04-24 Nippon Paper Industries Co Ltd 漂白クラフトパルプの製造方法
CN1441117A (zh) * 2002-02-26 2003-09-10 李清明 白泥回收精制填料碳酸钙新工艺
CN1546789A (zh) * 2003-12-12 2004-11-17 山东博汇纸业股份有限公司 改进的回收白泥工艺及其在中性施胶纸生产中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9301161L (sv) * 1993-04-07 1994-10-08 Sunds Defibrator Ind Ab Förfarande för behandling av processvatten
CN1321243C (zh) * 2004-07-20 2007-06-13 上海东升新材料有限公司 一种绿液清洁苛化回收超细碳酸钙的方法
CN101020182B (zh) * 2006-02-16 2010-09-08 王梅林 造纸工业碱回收固体废渣综合利用的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1115464A (en) * 1978-03-16 1982-01-05 Reino Rasanen Method for carbonation of green liquor by means of concentrated carbon dioxide gas in a mixing reactor and for the separation of concentrated hydrogen sulphide only in process steps after carbonation for the preparation of alkali carbonate
CN1239166A (zh) * 1998-06-14 1999-12-22 艾天召 造纸黑液碱回收绿液苛化新工艺
JP2001115382A (ja) * 1999-10-14 2001-04-24 Nippon Paper Industries Co Ltd 漂白クラフトパルプの製造方法
CN1441117A (zh) * 2002-02-26 2003-09-10 李清明 白泥回收精制填料碳酸钙新工艺
CN1546789A (zh) * 2003-12-12 2004-11-17 山东博汇纸业股份有限公司 改进的回收白泥工艺及其在中性施胶纸生产中的应用

Also Published As

Publication number Publication date
CN103180506A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
EP3088360B1 (en) Method for producing nano silicon dioxide and nano calcium carbonate by using rice hull ash and flue gas of biomass power plant
CN102976387B (zh) 改进的造纸填料用白泥碳酸钙制备工艺
CN108840361B (zh) 一种利用绿液苛化精制高纯碳酸钙的方法
WO2003066961A1 (fr) Procede de recuperation d'alcalis a partir de la liqueur noire de la fabrication du papier
CN111115666B (zh) 一种氯碱工业盐泥减量化处理工艺
CN111204780B (zh) 一种氯碱工业盐泥资源化利用工艺
CN1641100A (zh) 一种绿液清洁苛化回收超细碳酸钙的方法
CN109133459A (zh) 一种脱硫废水资源化处理方法
CN103157437A (zh) 一种助滤剂及其再生方法
WO2011162420A1 (ja) パルプ蒸解廃液から中性領域でリグニンを回収する方法
WO2013040747A1 (zh) 造纸工业碱回收固体废渣综合利用的方法
CN102311123A (zh) 去除沉淀法白炭黑中可溶性杂质的方法
CN115652676B (zh) 一种将除硅过程前置的绿液除硅工艺
CN103991982A (zh) 一种利用纤维素基絮凝剂混凝处理废纸制浆造纸综合废水的方法
CN110981031A (zh) 化学镍废水处理方法
CN111547886A (zh) 一种煤矿废水资源化综合处理系统
CN102337690B (zh) 竹浆铝盐蒸煮同步留硅制浆方法
CN113461304B (zh) 一种专用于脱水污泥深度脱水的赤泥基混合酸化学调理剂及其使用方法
CN112723688B (zh) 一种赤泥脱碱的技术
CN109052731B (zh) 一种从印染废水中高效除锑的方法
CN112939168A (zh) 印染废水用混凝剂及其制备方法
CN107021466B (zh) 硫酸法钛白粉酸性废水用于磷矿预处理的封闭循环工艺
CN112573525A (zh) 一种高纯二氧化硅及其制备方法和用途
CN116688646A (zh) 一种水解料助滤方法
CN103266518A (zh) 一种降低黑液中硅含量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872660

Country of ref document: EP

Kind code of ref document: A1