WO2013039418A1 - Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером - Google Patents

Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером Download PDF

Info

Publication number
WO2013039418A1
WO2013039418A1 PCT/RU2011/001006 RU2011001006W WO2013039418A1 WO 2013039418 A1 WO2013039418 A1 WO 2013039418A1 RU 2011001006 W RU2011001006 W RU 2011001006W WO 2013039418 A1 WO2013039418 A1 WO 2013039418A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
light
reflector
converter
emitting diodes
Prior art date
Application number
PCT/RU2011/001006
Other languages
English (en)
French (fr)
Inventor
Владимир Николаевич УЛАСЮК
Original Assignee
Закрытое Акционерное Общество "Научно-Производственная Коммерческая Фирма "Элтан Лтд"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Научно-Производственная Коммерческая Фирма "Элтан Лтд" filed Critical Закрытое Акционерное Общество "Научно-Производственная Коммерческая Фирма "Элтан Лтд"
Priority to US13/976,101 priority Critical patent/US9136444B2/en
Priority to CN201180064616.XA priority patent/CN103348476B/zh
Priority to EP11872178.6A priority patent/EP2665099A4/en
Priority to CA2824309A priority patent/CA2824309A1/en
Priority to KR1020137021356A priority patent/KR20140053837A/ko
Priority to JP2013549382A priority patent/JP6045079B2/ja
Publication of WO2013039418A1 publication Critical patent/WO2013039418A1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/043Optical design with cylindrical surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • Solid state lighting technology is beginning to conquer the white lighting market thanks to the latest advances in the development of efficient LEDs, especially nitride (InGaN), and the highest achievable lighting efficiency among all known white light sources.
  • LED solutions are widely used in those lighting devices, such as linear and street luminaires, in which the illuminator is relatively large and highly heated LEDs can be distributed so as to facilitate efficient heat removal from them.
  • the photophosphor is scattered in the shell 207 of the medium 211, and / or
  • the illuminator includes a primary radiation source, consisting of one or more LEDs 1, a heat sink 2 with an aperture 3 and a surface 4 on which these LEDs 1 are mounted, a reflector 5 with a concave reflective surface facing the LED 6, a conversion layer 7 for converting the primary radiation 8 into the secondary radiation 9, with a concave surface 10 facing the LED 1, and a second convex surface 11 facing the reflective surface 6, and the conversion layer 7 is located between the LED 2 and the surface reflector 6.
  • a primary radiation source consisting of one or more LEDs 1, a heat sink 2 with an aperture 3 and a surface 4 on which these LEDs 1 are mounted
  • a reflector 5 with a concave reflective surface facing the LED 6
  • a conversion layer 7 for converting the primary radiation 8 into the secondary radiation 9 with a concave surface 10 facing the LED 1
  • a second convex surface 11 facing the reflective surface 6, and the conversion layer 7 is located between the LED 2 and the surface reflector 6.
  • Fluorine-containing polymers are particularly useful in the ultraviolet wavelength ranges of less than 400 nm, and infrared wavelengths of more than 700 nm, due to their low light absorption in these wavelength ranges.
  • Typical inorganic materials include, but are not limited to: silicon dioxide, optical glasses, and chalcogenide glasses.
  • photophosphor into the coating material, for example, transparent plastic such as polycarbonate, PET, polypropylene, polyethylene, acrylic, formed by extrusion.
  • transparent plastic such as polycarbonate, PET, polypropylene, polyethylene, acrylic
  • the conversion layer can be prefabricated in sheets, which are then thermally molded to the desired shape. Before forming, one of the sheet surfaces can be vacuum coated with a light reflecting coating, for example, aluminum or silver.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

Изобретение относится к источникам белого света на основе полупроводниковых светоизлучающих диодов с удаленными фотолюминофорными конвертерами. Сущность изобретения: осветитель содержит теплоотводящее основание с отверстием для выхода излучения, закрепленные по периферии отверстия светоизлучающие диоды, на удалении от которых последовательно расположены конвертер излучения, выполненный в виде вогнутого слоя фотолюминофорного материала, и светоотражатель с вогнутой отражающей свет поверхностью, обращенные вогнутостями к светоизлучающим диодам и выходному отверстию. При попадании на поверхность конвертера первичного излучения от светоизлучающих диодов образующийся в результате смешения отраженного первичного излучения и вторичного излучения фотолюминофорного материала белый свет выходит в отверстие в теплоотводящем основании. Поверхности конвертера и отражателя могут быть выполнены в форме усеченного эллипсоида вращения, в частности сферы, или параболоида, с главной осью перпендикулярной плоскости отверстия в теплоотводящем основании, или цилиндра, усеченного плоскостью выходного отверстия. Для улучшения отвода тепла обеспечен тепловой контакт выпуклой поверхности конвертера с вогнутой внутренней поверхностью отражателя, внешняя поверхность которого может быть выполнена в форме оребренного теплового радиатора, объединенного с теплоотводящим основанием. Библиография 3 наименования.

Description

Светодиодный источник белого света с удаленным фотолюминесцентным
отражающим конвертером
Настоящее изобретение относится к электротехнике и электронной технике, более конкретно к источникам света на основе полупроводниковых светоизлучающих диодов (СИД), еще более конкретно к источникам белого света на основе СИД с конверсионными фото люминофорами.
Технология твердотельного освещения начинает завоевывать рынок белого освещения, благодаря последним достижениям в разработке эффективных СИД, особенно, нитридных (InGaN), и наиболее высокой достижимой эффективности освещения среди всех известных источников белого света. Светодиодные решения находят широкое применение в тех осветительных устройствах, типа линейных и уличных светильников, в которых осветитель относительно велик и сильно нагревающиеся СИД могут быть распределены так, чтобы облегчить эффективный отвод тепла от них. Разработка светодиодных заменителей традиционных ламп накаливания и галогенных ламп с малым форм-фактором, обладающих высоким световым потоком, ввиду значительных перспектив в решении проблемы энергосбережения является одной из наиболее актуальных современных научно- технических задач, но ее решение сильно затруднено ограничениями объема для размещения управляющей электроники (драйверов) и относительно малой поверхностью для отвода тепла, выделяемого СИД, в таких лампах. Белые СИД часто включают синий СИД, покрытый YAG:Ce фосфором. Высокомощные (один ватт или больше) синие СИД имеют эффективность приблизительно 30-45%, при приблизительно 550-700 мВт, выделяемых на нагревание прибора из каждого приложенного ватта. Кроме того, считается, что при преобразовании фосфором синего света в желтый свет в белых СИД приблизительно 20% падающей световой энергии уходит на нагревание фосфора. Технические спецификации указывают, что падение мощности излучения синих СИД составляет приблизительно 7% при температуре 25- 125 °С, в то время как падение мощности белых СИД составляет приблизительно 20% при той же самой температуре. Таким образом, в высокомощных белых СИД имеются существенные ограничения на тепловые и световые потоки.
Целью настоящего изобретения является создание СИД лампы, с малым форм- фактором для замены стандартных ламп, в которой преодолены проблемы известных технических решений. Основу любой СИД лампы, предназначенной для замены стандартных ламп белого свечения, составляют чипы СИД. Белый свет зачастую получается в результате смешения излучения комбинации чипов СИД с различными цветами излучения, например, синего, зеленого и красного, или синего и оранжевого и др.
Однако в последние годы на первый план по масштабам использования выходят источники белого света на основе СИД с фотолюминофорами-конвертерами, которые излучают желтое или оранжевое (красное) излучение при поглощении синего или УФ излучения чипа СИД. На Фиг.1 показана схема, поясняющая принцип действия источника белого света такого типа.
Устройство содержит чип СИД, излучающий первичное относительно коротковолновое излучение, и конверсионную фотолюминофорную среду, облучаемую указанным относительно коротковолновым излучением, которая при облучении указанным относительно коротковолновым излучением, возбуждается, излучая в ответ второе, относительно более длинноволновое излучение. В конкретном исполнении, монохромное синее или УФ излучение, выходящее из чипа, конвертируется в белый свет упаковкой чипа в органические и/или неорганические фосфоры (фотолюминофоры) в полимерной матрице.
На Фиг. 2 показано устройство известного источника белого света на основе СИД с фотолюминофором-конвертером, описанного в патенте US 6351069.
Источник белого света ПО включает нитридный чип СИД 112, который при возбуждении испускает первичное синее излучение. Чип 112 размещен на проводящей рамке чаши отражателя 114, и электрически соединен с проводниками 116 и 118.
Проводники 116 и 118 подводят электрическую мощность к чипу 112. Чип 112 покрыт слоем 120 прозрачной смолы, которая включает конверсионный материал для преобразования длины волны излучения 122. Тип конверсионного материала, используемого для формирования слоя 120, может выбираться, в зависимости от желательного спектрального распределения вторичного излучения, которое продуцируется материалом 122. Чип 112 и флуоресцентный слой 120 накрыты линзой
124. Линза 124 обычно изготавливается из прозрачной эпоксидной смолы или силикона.
При работе источника белого света электрическое напряжение прикладывается к чипу
112, при этом из верхней поверхности чипа испускается первичное излучение. Часть испускаемого первичного излучения поглощается конверсионным материалом 122 в слое
120. Затем конверсионный материал 122 в ответ на поглощение первичного света испускает вторичное излучение, то есть преобразованный свет, имеющий более
2
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) длинноволновый пик. Остающаяся непоглощенной часть испускаемого первичного излучения передается через конверсионный слой вместе с вторичным излучением. Линза 124 направляет непоглощенное первичное излучение и вторичное излучение в общем направлении, обозначенном стрелкой 126 как выходящий свет. Таким образом, выходящий свет - сложный свет, который составлен из первичного излучения, испускаемого чипом 112 и вторичного излучения, испускаемого конверсионным слоем 120. Конверсионный материал может также быть сконфигурирован таким образом, чтобы лишь малая часть или вообще весь первичный свет не покидал устройства, как в случае чипа, который испускает УФ первичный свет, объединенный с одним или более конверсионных материалов, которые испускают видимый вторичный свет.
Вышеупомянутые известные устройства, в которых слой фотолюминофора сформирован на поверхности СИД, имеют несколько недостатков. Трудно достигнуть цветовой однородности, когда фотолюминофор находится в прямом механическом, оптическом и тепловом контакте с поверхностью СИД, из-за значительных изменений в длине пути света в зависимости от угла распространения излучения через толщу слоя фотолюминофора. К тому же высокая температура от нагретого СИД может нежелательным образом изменять цветовые координаты фотолюминофора или приводить к его деградации.
Для устранения указанных недостатков предложены источники белого света с удаленным от СИД конвертером длины волны, принцип действия которых поясняется на Фиг. 3.
Устройство осветителя, построенного на данном принципе, описанного, например, в патенте US 6600175 (В1), поясняется Фиг.4.
Такой источник белого света включает оболочку 207, формируемую прозрачной средой 211, с внутренним объемом. Среда 211 может быть сформирована из любого подходящего материала, пропускающего свет, типа прозрачного полимера или стекла.
Среда 211 содержит во внутреннем объеме чип свето диода (СИД) 213, размещенный на основании 214. Первый и второй электрические контакты 216 и 217 соединены с излучающей и тыльной сторонами 218 и 219 чипа СИД 213, соответственно, и с излучающей стороной 218 чипа СИД, присоединенной к первому электрическому контакту 216 проводником 212. Со светопропускающей средой 211 связаны флуоресцентные и/или фосфоресцентные компоненты, или их смеси, иначе говоря, фотолюминофорная среда, которая конвертирует излучение, испускаемое стороной 218
СИД 213, в белый свет. Фотолюминофор рассеян в оболочке 207 среды 211, и/или
3
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) размещен в виде пленочного покрытия 209 на внутренней стенке поверхности оболочки 207. Альтернативно, фотолюминофор может быть покрытием на внешней стенке оболочки сборки (не показано), если оболочка используется исключительно в условиях окружающей среде, в которых такое внешнее покрытие может удовлетворительно поддерживаться в рабочем состоянии (например, там, где оно не подвержено истиранию, или деградации). Фотолюминофор может, например, быть распределен в полимере, или расплаве стекла, из которого затем сформирована оболочка, чтобы обеспечить гомогенный состав оболочки и обеспечить выход света со всей ее поверхности.
Известен светодиодный белый протяженный светильник с удаленным конвертером цилиндрической формы, описанный в патенте US7618157 B1. Его устройство схематически показано на Фиг.5. Светильник 310 включает линейный теплоотвод 312, множество СИД 314, установленных на теплоотводе 312 вдоль длинной стороны теплоотвода, и светоиспускающий плафон 316, установленный на теплоотводе 312 в линию с СИД 314, где полукруглая в сечении часть 318 плафона 316, расположенная напротив СИД 314, включает фотолюминофор 320, который возбуждается светом от СИД. Теплоотвод 312 изготовлен из теплопроводящего материала, например, алюминия. Плафон 316 изготовлен из прозрачного материала типа стекла или пластмассы. Фотолюминофор 320 может быть нанесен как покрытие на внутреннюю сторону плафона или, введен в материал покрытия. Не содержащие фотолюминофора плоские части 326, которые прикреплены к теплоотводу по обе стороны от СИД, имеют внутренние отражательные поверхности 328, например, алюминиевые покрытия, отражающие свет, попадающий на них от СИД 314, к части 318 плафона.
Конверсионный слой может включать фотолюминофорный материал, материал квантовых точек или совокупность таких материалов, а также может включать прозрачный материал-хозяин, в котором диспергированы материал фосфора и/или материал квантовых точек.
Известно, что слои, которые содержат порошковые фотолюминофорные материалы, могут пропускать, поглощать, отражать и рассеивать падающий на них свет. Когда такой слой рассеивает свет, он может также пропускать, поглощать и отражать часть рассеянного света.
В связи с этим обстоятельством общим недостатком упомянутых известных изобретений является то, что излучение, возбуждаемое в зернах фотолюминофора при воздействии излучения СИД, равно как и отраженное излучение СИД, неизбежно
4
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) частично поглощаются в слое фотолюминофора и на внутренних элементах устройства, что приводит к уменьшению эффективности источника белого света.
Yamada [1] и Narendran [2] определили соотношение долей излучения, распространяющегося вперед и назад от конверсионного слоя фотолюминофора YAG:Ce, возбуждаемого синим излучением с длиной волны около 470 нм, которое конвертируется в излучение желтого диапазона длин волн. Narendran показал, что при этом более 60% света, испускаемого и отражаемого конверсионным слоем, распространяется назад к источнику возбуждения и большая часть этого света теряется в пределах СИД сборки [2]. В работе [3] показано, что даже в случае фотолюминофора YAG:Ce с коэффициентом оптического преломления 1,8, замешенного в эпоксидной смоле с коэффициентом оптического преломления 1,6 при плотности фотолюминофора 8 мг/см , позволяющей создавать сбалансированный белый свет, доли направленного обратно и прошедшего вперед излучения, включая синее и желтое излучение, составляют 53% и 47%, соответственно, а для только желтого излучения 55% и 45%, соответственно.
По этой причине значительного выигрыша в световом потоке и максимально возможной эффективности светодиодно-конверсионных источников белого света можно достичь при прочих равных условиях, направляя в выходную апертуру светодиодного источника с удаленным конвертером излучение, исходящее от поверхности фотолюминофора, непосредственно облучаемой излучением СИД,
Подобное техническое решение предложено в патенте US7293908 В2, в котором один из заявленных вариантов системы освещения с боковым выводом излучения, выполненной согласно этому патенту, включает удаленный от СИД конверсионный слой, расположенный на отражателе света.
Этот прибор наиболее близок к предлагаемому в настоящем изобретении и поэтому выбран в качестве прототипа.
Принцип действия источника белого света с боковым выводом излучения, выполненной согласно этому патенту, поясняется Фиг.6, на которой показан в разрезе один из заявленных вариантов системы освещения с боковым выводом излучения.
Система освещения с боковым выводом излучения включает СИД 402, первый отражатель 404, второй отражатель 406, выводную апертуру 412, конверсионный слой
602, дополнительный прозрачный покровный слой 408 и поддерживающие средства, которые поддерживают и отделяют второй отражатель 406 от первого отражателя 404.
Поддерживающие средства включают плоский прозрачный элемент 502, боковые опоры
504 и основание 506. Боковые опоры 504 предпочтительно прозрачные или отражающие.
5
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Первый отражатель 404 прикреплен к основанию 506. Второй отражатель 406 прикреплен к плоскому прозрачному элементу 502. Конверсионный слой 602 расположен на поверхности второго отражателя 406, и преобразует, по крайней мере, часть первичного излучения, испускаемого активной областью СИД 402, в излучение с длиной волны, отличной от длины волны первичного излучения.
Взятые для примера, лучи света 414, 415 и 416 иллюстрируют действие системы освещения с боковым выводом излучения. Луч света 414 первичного цвета испускается активной областью СИД 402 и направляется к выходной поверхности СИД 402. Луч света 414 первичного цвета проходит через выходную поверхность СИД 402 и направляется к прозрачному покровному слою 408. Луч света 414 первого цвета проходит через прозрачный покровный слой 408 и направляется в конверсионный слой 602, который конвертирует луч света 414 первого цвета в луч света 415 второго цвета, отличающегося от первого цвета. Свет второго цвета может испускаться в любом направлении от точки преобразования длины волны. Луч 415 второго цвета направляется через прозрачный покровный слой 408 и направляется через выходную апертуру 412 к первому отражателю 404. Луч света 416 второго цвета отражается первым отражателем 404 и направляется к плоскому прозрачному элементу 502. Луч света 416 второго цвета проходит через плоский прозрачный элемент 502 и выходит из системы освещения с боковым выводом излучения.
Недостатком такой системы являются большие апертурные потери и потери света на границах поддерживающих средств и на отражателях.
Попытка устранить эти недостатки предпринята в другом известном источнике белого света прожекторного типа, описанном в патенте US 7810956 В2.
На Фиг.7, поясняющей конструкцию и принцип действия такого устройства, показан вид в разрезе прожекторной лампы согласно одному из вариантов исполнения изобретения по патенту US 7810956 В2. Источник света 730 размещен на креплении 734, и дополнительном тепловом радиаторе 736. Тепловой радиатор 736 может быть оребрен, как показано на Фиг.7. Свет, испускаемый от источника 730 и отраженный от зеркала 732, окружающего источник света 730, излучается в оптическую пластину 738. Слой преобразования длины волны 742 отделен от источника света 730 и расположен так, чтобы воспринимать свет от источника 730. Дополнительный тепловой радиатор 744 может охлаждать конверсионный слой 742. Собирающая оптика 740 коллимирует свет.
Источником света 730, может быть СИД, который производит коротковолновый свет, например синий или ультрафиолетовый. Источник света 730 может быть установлен на дополнительном креплении 734 и присоединен к дополнительному тепловому радиатору
б
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) 736. Оптическая пластина 738 может быть сформирована так, чтобы направлять свет к собирающей оптике 740. Например, стороны 748 могут быть наклонены или изогнуты так, что полное внутреннее отражение направляет свет в собирающую оптику 740.
Недостатком такой системы также являются относительно большие апертурные потери, потери света на границах оптической пластины с источником света, зеркалами и конверсионным слоем, снижающие ее эффективность. Кроме того, световой пучок, выходящий из коллимирующей оптической системы достаточно узок, что неприемлемо при использовании подобного осветителя для замены традиционных ламп с малым форм- фактором, обладающих достаточно широким угловым раствором испускаемого светового потока, даже в случае галогенных ламп.
В основу предлагаемого изобретения поставлена задача обеспечения максимальной эффективности светодиодного источника белого света с удаленным конвертером, обеспечения высоких цветовой однородности и рендеринга, а также широкого углового раствора испускаемого светового потока при малом форм-факторе осветителя.
Предлагается осветитель, включающий источник первичного излучения, состоящий из одного или нескольких СИД, теплоотводящее основание с плоской периферийной частью, на которой закреплены указанные СИД, отражатель с обращенной к СИД светоотражающей поверхностью, конверсионный слой для преобразования первичного излучения во вторичное излучение, расположенный между СИД и отражателем. Поставленная задача решается тем, что в теплоотводящем основании для вывода излучения выполнено апертурное отверстие, вблизи от края которого на теплоотводящем основании размещены СИД, а указанная поверхность конверсионного слоя, облучаемая СИД, и поверхность светоотражателя имеют вогнутую форму, обращенную вогнутостью к источнику первичного излучения и апертурному отверстию.
Сущность изобретения поясняется фиг.8, на которой схематически показан в разрезе предлагаемый осветитель.
Осветитель, включает источник первичного излучения, состоящий из одного или нескольких СИД 1, теплоотводящее основание 2 с апертурным отверстием 3 и поверхностью 4, на которой закреплены указанные СИД 1, отражатель 5 с обращенной к СИД вогнутой светоотражающей поверхностью 6, конверсионный слой 7 для преобразования первичного излучения 8 во вторичное излучение 9, с вогнутой поверхностью 10, обращенной к СИД 1, и второй выпуклой поверхностью 11, обращенной к светоотражающей поверхности 6, причем конверсионный слой 7 расположен между СИД 2 и поверхностью отражателя 6.
7
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Осветитель работает следующим образом. Первичное излучение 8 СИД 1 попадает на поверхность 10 конверсионного слоя 7, частично отражается от поверхности 10, выходя в апертурное отверстие 3 теплоотводящего основания 2, частично отражается от поверхностей зерен фотолюминофора, рассеиваясь в конверсионном слое 7, частично поглощается материалом конверсионного слоя 7 с преобразованием во вторичное излучение 9, при этом часть первичного излучения 8, прошедшая к светоотражающей поверхности 6, отражается обратно в конверсионный слой 7 и снова частично поглощается материалом конверсионного слоя 7 с преобразованием во вторичное излучение 9 фотолюминофором конверсионного слоя 7. Определенная часть первичного излучения 8 при этом выходит из конверсионного слоя в апертурное отверстие 3 светильника и, смешиваясь со вторичным излучением 9, образует излучение белого цвета спектральное распределении которого определяется свойствами материалов конверсионного слоя, в первую очередь составом, дисперсностью фотолюминофора и толщиной конверсионного слоя.
Фотолюминофорами обычно являются оптические неорганические материалы, допированные ионами редкоземельных элементов (лантанидов), или альтернативно, ионами типа хрома, титана, ванадия, кобальта или неодима. Лантанидные элементы - лантан, церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий и лютеций. Оптические неорганические материалы включают (но не ограничиваются): сапфир (А1203), арсенид галлия (GaAs), алюмоокись бериллия (ВеА1204), фторид магния (MgF2), фосфид индия (InP), фосфид галлия (GaP), алюмоиттриевый гранат (YAG или Y3Ai5012), тербий-содержащий гранат, иттрий-алюминий-лантанид окисные составы, компаунды окисей иттрий-алюминий- лантанид-галлий, окись иттрия (Y203), галофосфаты кальция или стронция или бария (Ca,Sr,Ba)5(P04)3(Cl,F), состав CeMgAlnO^, фосфат лантана (LaP04), лантанид- пентаборатные материалы ((lanthanide)(Mr,Zn)B5O10), состав BaMgAl10O17, состав SrGa2S4, соединения (Sr,Mg,Ca,Ba)(Ga,Al,In)2S4, состав SrS, состав ZnS и нитридосиликаты.
Есть несколько типичных фртрлюминофоров, которые могут быть возбуждены УФ излучением с длиной волны 250 нм или вблизи нее. Типичный фотолюминофор красного свечения - Y203:Eu+3. Типичный фотолюминофор желтого свечения - YAG:Ce+3.
Типичные фотолюминофоры зеленого свечения включают: CeMgAl11019:Tb<3+>,
(lanthanide) Р04:Се+3,ТЬ+3 и GdMgB5O10:Ce+3,Tb+3. Типичный фосфор синего свечения -
BaMgAll0O17:Eu+2 и (Sr,Ba,Ca)5(P04)3Cl:Eu+2. Для более длинноволнового СИД возбуждения в диапазоне длин волн 400-450 нм или вблизи него, типичные оптические
8
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) неорганические материалы включают алюмоиттриевый гранат (YAG или УзА150]2), тербий содержащие гранат, окись иттрия (Y2O3), YVO4, SrGa2S4, (Sr,Mg,Ca,Ba)(Ga,Al,In)2S4, SrS, и нитридосиликаты. Типичные фотолюминофоры для СИД возбуждения в диапазоне длин волн 400-450 нм включают YAG:Ce+3, YAG:Ho+3, YAG:Pr , SrGa2S4:Eu SrGa2S4:Ce , SrS:Eu и нитридосиликаты, допированные Eu .
Квантово-точечные материалы - мелкие частицы неорганических полупроводников, имеющие размеры менее, чем приблизительно 30 нм. Типичные квантово-точечные материалы включают (но не ограничиваются ими) частицы CdS, CdSe, ZnSe, InAs, GaAs и GaN. Квантово-точечные материалы могут поглощать свет одной длины волны и затем переизлучать свет с различными длинами волн, которые зависят от размера частицы, свойств поверхности частицы, и неорганического материала полупроводника.
Конверсионный слой может включать как единственный тип материала фотолюминофора или квантово-точечного материала, так и смесь материалов фотолюминофора и квантово-точечных материалов. Использование смеси более чем одного такого материала, целесообразно, если желателен широкий спектральный диапазон эмитируемого белого излучения (высокий цветовой рендеринг). Один из типовых подходов к получению теплого белого света с высоким коэффициентом цветового рендеринга состоит в том, чтобы смешать излучение InGaN СИД с излучением смеси желтого и красного конверсионных фотолюминофоров. Конверсионный слой может включать несколько фотолюминофоров, поглощающих свет, испускаемый СИД, и испускающих свет с большей длиной волны. Например, для синих СИД, конверсионный слой может включать единственный фотолюминофор, испускающий желтый свет, или несколько фотолюминофоров, которые испускают красный и зеленый свет. Для ультрафиолетовых СИД, конверсионный слой может включать фотолюминофоры, которые испускают сине-желтый свет, или фотолюминофоры, которые испускают синий, зеленый, и красный свет. Могут быть добавлены фотолюминофоры, испускающие дополнительные цвета, для того, чтобы управлять цветовыми координатами и рендерингом смешанного света, выходящего из осветителя.
Прозрачные материалы хозяина могут включать полимерные и неорганические материалы. Полимерные материалы включают (но не ограничиваются): акрилаты, поликарбонат, флуороакрилаты, перфлуороакрилаты, флуорофосфинатные полимеры, флуоросиликоны, флуорополиимиды, политетрафлуорэтилен, флуоросиликоны, золь- гели, эпоксидные смолы, термопласты, термоусадочные пластмассы и силиконы.
9
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Фторсодержащие полимеры особенно полезны в диапазонах ультрафиолетовых длин волн менее, чем 400 нм, и инфракрасных длин волн более, чем 700 нм, вследствие их низкого светопоглощения в этих диапазонах длин волн. Типичные неорганические материалы включают (но не ограничиваются): диоксид кремния, оптические стекла и халькогенидные стекла.
Фотолюминофор конверсионного слоя может быть конформно нанесен как покрытие на поверхность светоотражателя, например методами пульверизации, намазывания пасты, осаждения или электрофореза из суспензии фотолюминофора в жидкости. Одна из проблем, связанных с покрытием отражателя фотолюминофором - нанесение однородного воспроизводимого покрытия на отражатель, особенно, если отражатель имеет неплоскую поверхность, например, цилиндрическую или полусферическую. При покрытии методами пульверизации, нанесения пасты и осаждения используют жидкие суспензии для нанесения частиц фотолюминофора на подложку. Однородность покрытия сильно зависит от вязкости суспензии, концентрации частиц в суспензии, и факторов окружающей среды, таких, например, как окружающая температура и влажность. Дефекты покрытия, возникающие из-за потоков в суспензии перед высыханием, и ежедневные изменения толщины покрытия, относятся к числу рядовых проблем.
В некоторых случаях предпочтительно введение фотолюминофора в материал покрытия, например, прозрачной пластмассы типа поликарбоната, ПЭТ, полипропилена, полиэтилена, акрила, сформированных экструзией. Конверсионный слой при этом может быть предварительно изготовлен в листах, которые затем термически отформованы до требуемой формы. Перед формовкой на одну из поверхностей листа может быть вакуумным напылением нанесено отражающее свет покрытие, например, из алюминия или серебра.
Конверсионный слой, предварительно отформованный конформно отражательной поверхности теплового радиатора, может быть приклеен к ней, например, силиконовым адгезивом, расположенным между конверсионным слоем и отражающей поверхностью теплового радиатора. Клеевой слой в этом случае может быть тонким, тоньше, например, чем конверсионный слой, и не оказывать большого термического сопротивления отводу тепла от конверсионного слоя.
В одном из конкретных исполнений осветителя, используется предварительно отформованный лист, который приклеивают к медному или латунному цилиндрическому отражателю с тонким слоем алюминия (0,5 мкм), нанесенным методом вакуумного
10
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) термического напыления. Суспензия фотолюминофора, поверхностно-активных веществ (ПАВ) и полимера готовится в органическом растворителе. Суспензия затем может быть сформована в лист экструзией или литьем в форму, или выливаться на плоскую подложку, например, стеклянную, с последующим высыханием. Полученный лист может быть отделен от временной подложки и прикреплен к отражателю, используя растворитель или цианакрилатный клей. Покрытый листом отражатель прогревается при 480°С, при этом полимерная матрица выгорает, оставляя фотолюминофорное покрытие.
В конкретном примере, из суспензии частиц экспериментального фотолюминофора на основе алюмограната иттрия-гадолиния-церия (Y,Gd,Ce)3Al5012 в растворе поликарбоната в хлористом метилене были сформованы экструзией листы разной толщины, показанные на Фиг. 9. Конверсионный слой должен иметь достаточно большую толщину, чтобы обеспечить достижение необходимых значений цветовых координат смешанного белого света, покидающего апертуру осветителя. Эффективная толщина определяется процессами оптического рассеяния в используемых фотолюминофорах и лежит, например, между 5 и 500 мкм, чаще всего между 100 и 250 мкм.
Лист прикреплялся к цилиндрическому отражателю увлажнением отражателя изопропанолом и приложением давления к листу через пуансон нужной формы. Растворитель размягчает лист и позволяет воздушным пузырям быть выжатым из-под него для обеспечения полного прилипания листа к отражателю. Покрытый отражатель был отожжен на воздухе при 480 °С, чтобы выжечь полимер, оставляя покрытый фотолюминофором цилиндрический отражатель. Отражатель менее сложной формы может быть покрыт смесью фотолюминофора с прозрачным силиконовым биндером, которая затем отжигается. При этом силиконовый биндер не удаляется при отжиге. Надо иметь ввиду, что фотолюминофор, который преобразует синий свет в оранжево-красный может деградировать вплоть до полной непригодности после нагрева до 480 °С на воздухе. В этом случае должны использоваться другие полимеры с более низкой температурой выжигания. В некоторых вариантах исполнения температура выжигания находится в диапазоне от 260 °С до 540 °С.
Поверхность конверсионного слоя может быть дополнительно покрыта прозрачным защитным слоем, который предохраняет от проникновения влажности и/или кислорода в конверсионный слой, поскольку некоторые типы фотолюминофоров, например, сульфидных, подвержены повреждениям от воздействия влаги. Защитный слой может быть изготовлен из любого прозрачного материала, который блокирует влагу и/или кислород от проникновения в конверсионный слой, например, из неорганических
11
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) материалов типа двуокиси кремния, нитрида кремния или окиси алюминия, а также органических полимерных материалов или комбинации полимерных и неорганических слоев. Предпочтительные материалы для защитного слоя - двуокись кремния и нитрид кремния.
Защитный слой может также выполнять функцию оптического просветления границы зерна фотолюминофора с атмосферой и уменьшать отражение первичного излучения СИД и вторичного излучения фотолюминофора на данной границе, уменьшая поглотительные потери собственного излучения фотолюминофора в его зернах, и тем самым увеличивая эффективность осветителя.
Защитный слой может наноситься также путем финишной поверхностной обработки зерен фотолюминофора, при которой, например, на поверхности зерен формируется наноразмерная пленка силиката цинка толщиной 50-100 нм, просветляющая границу зерна фотолюминофора.
При необходимости апертурное отверстие может быть дополнительно герметично закрыто оптически прозрачным окном, которое защищает конверсионный слой от воздействия влажности и/или кислорода, при этом внутренний объем осветителя может быть заполнен инертной атмосферой или откачан.
Поверхность 10 конвертера 7 и поверхность 6 отражателя 5 могут иметь форму осесимметричных (сферы, эллипсоида, параболоида или иную) или плоскостесимметричных (например, цилиндра) фигур, усеченных плоскостью, например, параллельной плоскости апертурного отверстия 3 в теплоотводящем основании 2, причем СИД 1, расположены вблизи и вдоль условной линии пересечения указанной поверхности теплоотводящего основания 2 с указанной поверхностью 10 конвертера 7.
Оптимизация формы поверхности 10 конвертера и расположения СИД с учетом их диаграммы направленности излучения позволяет добиться улучшения цветовой однородности и углового распределения выходящего из осветителя излучения за счет падения излучения СИД на поверхность 10 конвертера под различными углами и перераспределения отраженного излучения внутри полости конвертера 7 до выхода из апертурного отверстия.
Диаграмма направленности излучения чипов СИД, как известно из спецификаций, например, чипов мощных синих СИД SL-V-B45AC2 фирмы SemiLEDs или чипов семейства EZBrightl 000 фирмы CREE, может иметь Ламбертово распределение (конус света с углом 90° от нормали к поверхности чипа СИД), или ограничиваться меньшим конусом
12
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) с углом α < 90°, например, при использовании для вывода излучения квантоворазмерной решетчатой структуры, сформированной на поверхности чипа СИД.
При этом приемлемым является такое расположение СИД на теплоотводящем основании, чтобы ось диаграммы направленности излучения СИД пересекалась с осью симметрии отражателя под углом β > 90° - а/2.
Однако, определенная относительно небольшая часть первичного излучения СИД распространяется напрямую вовне апертурного отверстия светильника, и для исключения возможности попадания излучения СИД непосредственно в глаз пользователя теплопроводящее основание 2 может содержать выступ 12, экранирующий прямой выход первичного излучения наружу из осветителя, минуя поверхность 10 конвертера 7. Для более полного использования первичного излучения СИД упомянутый выступ 12 теплопроводящего основания 2 содержит дополнительный отражатель - плоскую зеркально отражающую часть 13, направляющую попадающее на нее первичное излучение на поверхность 10 конвертера 7.
Более детально вариант исполнения осветителя, содержащего дополнительный отражатель, схематически поясняется на фиг.10.
Осветитель в этом исполнении дополнительно к изображенным на Фиг.8 элементам, имеющим ту же нумерацию, что и на фиг.8, включает выступающую часть 12 с отражающим покрытием 13.
Еще один конкретизированный вариант исполнения осветителя с дополнительным отражателем детально поясняется на фиг.11, на которой показан укрупненный разрез осветителя в области основания 2 с закрепленными СИД 1 с сохранением нумерации соответствующих элементов фиг.8 (без сохранения масштаба).
Дополнительный отражатель представляет собой наклонную поверхность 15 (например, перевернутую основанием вверх усеченную коническую поверхность в случае осесимметричной формы конвертера), расположенную между чипами СИД 1 и конвертером 7, отражение от которого позволяет практически полностью перенаправить попадающую на нее часть излучения чипов СИД 1 к противоположной стороне конвертера 7, гомогенизируя выходящее излучение осветителя.
Для повышения отражения света, испускаемого СИД и конверсионным слоем, поверхность светоотражателя в тепловом радиаторе может быть, например, отполирована или матирована для гомогенизации излучения и на нее может быть нанесено покрытие с высоким коэффициентом оптического отражения. Поверхность светоотражателя может быть также выполнена в виде отдельного зеркала, отдаленного от теплового радиатора, но
13
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) находящегося с ним в тепловом контакте через теплопроводный слой. Примеры подходящих покрытий и материалов для высокоотражающих покрытий включают серебро, алюминий, дихроические покрытия, алюминий, объединенный с дихроическим покрытием, чтобы увеличить коэффициент отражения алюминия, и материалы типа окиси титана и окиси алюминия, сформированные золь-гельным методом.
В данном исполнении осветителя чипы СИД 1 расположены на основании 2 таким образом, что нормаль к поверхности чипа СИД 1 параллельна (или составляет небольшой угол) с осью симметрии отражателя 6, выполненного в виде отражающей пленки алюминия или серебра толщиной 0,15-0,2 мкм, нанесенной методом термического вакуумного напыления на внутреннюю поверхность полусферического стеклянного колпачка 17, приклеенного эластичным теплостойким теплопроводящим компаундом 18 к алюминиевому полусферическому колпачку 19, который осуществляет функцию второго общего электрода для чипов СИД 1, присоединенных к нему параллельно проводниками 14 и полиимидным шлейфом 16, покрытым металлизацией 15. Для повышения светоотражательной способности металлизация 15 на полиимидном шлейфе покрыта тонким слоем алюминия и выполняет функцию дополнительного отражателя наряду с функцией электрического контакта. При таком расположении светодиодов их первичное излучение напрямую не попадает в глаз наблюдателя.
Роль первого электрода играет основание 2, к которому припаяны чипы СИД 1, и находящийся с ним в электрическом и тепловом контакте тепловой радиатор 22. Подвод электричества к колпачку 19 осуществляется посредством центрального цилиндрического вывода (не показан на фиг.11), приваренного (или припаянного) к вершине колпачка 19 соосно с осью симметрии отражателя 6, и присоединенного через электрически изолированное отверстие во внутренней поверхности 21 теплового радиатора 22 к драйверу питания, расположенному в соответствующей полости, выполненной в верхней части тела теплового радиатора (не показана).
Полусферический колпачок 19 приклеен теплостойким теплопроводящим компаундом 20 к внутренней поверхности 21 тела теплового радиатора 22.
Полусферический колпачок 17 может быть также изготовлен из теплопроводящей керамики. Полусферический колпачок 19 может быть также изготовлен из нержавеющей стали, меди, латуни, ковара или иного подобного материала.
В случае изготовления колпачка 19 из ковара или иного подобного сплава, обладающего относительно хорошей теплопроводностью и относительно низким коэффициентом термического расширения наиболее близким к коэффициенту
14
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) термического расширения фотолюминофоров, используемых в конвертере 7, возможно упростить и удешевить конструкцию осветителя и выполнить его вообще без использования колпачка 17. Для этого вакуумным термическим напылением (или иным способом) на внутреннюю поверхность коварового колпачка 19 наносится отражающая пленка алюминия или серебра, непосредственно или через промежуточное тонкопленочное диэлектрическое покрытие, с последующим осаждением слоя фотолюминофора одним из ранее описанных способов.
В случае выполнения колпачка 19 из алюминия, нержавеющей стали, меди, латуни или подобных материалов с относительно высоким коэффициентом термического расширения наиболее близким к коэффициенту термического расширения конвертера 7, выполненного их пластмасс с фотолюминофорным наполнением так же возможно выполнить осветитель без колпачка 17. Для этого внутренняя поверхность колпачка 19 полируется и/или на нее вакуумным термическим напылением наносится отражающая пленка алюминия или серебра, непосредственно или через промежуточное тонкопленочное диэлектрическое покрытие, с последующим приклеиванием предварительно отформованного пластикового конвертера 7.
Чипы СИД 1 и проволочные контакты 14 могут быть загерметизированы оптическим компаундом 23 по известной технологии, применяемой при изготовлении светодиодных сборок.
Тепловой радиатор 22 может быть изготовлен из любого подходящего материала, например, меди или алюминия. Тепловой радиатор может быть оребрен, чтобы увеличить поверхность теплоотдачи, например, как показано на Фиг.12.
Из листов, показанных на фиг.9, с использованием чипов СИД типа SL-V-B35AK фирмы SemiLEDs были изготовлены образцы белых линейных полуцилиндрических светильников, обеспечивающие эффективность на уровне 160-200 лм Вт в зависимости от толщины листа.
Литература
1. Yamada, К., Imai, Y. and Ishii К., "Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor," J Light & Vis. Env. 27(2), 70-74 (2003).
2. Narendran, N., Gu. Y., Freyssinier, J., Zhu, Y., "Extracting Phosphor-scattered Photons to Improve White LED Efficiency," Phys. Stat. Sol. (a) 202(6), R60-R62 (2005).
3. Zhu Y., N. Narendran, and Y. Gu. "Investigation of the optical properties of YAG:Ce phosphor". Sixth International Conference on Solid State Lighting. Proceedings of SPIE. в Т, 63370S (2006).
15
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером Формула изобретения
1. Осветитель, включающий источник первичного излучения, состоящий из одного или нескольких светоизлучающих диодов, теплоотводящее основание с поверхностью, на которой закреплены указанные светоизлучающие диоды, конвертер излучения, выполненный в виде слоя конверсионного материала, преобразующего первичное излучение, попадающее на его поверхность от светоизлучающих диодов, во вторичное излучение, и светоотражатель с поверхностью, отражающей попадающее на нее излучение, причем конвертер излучения расположен между источником первичного излучения и отражателем вблизи от указанной поверхности отражателя, а светоотражатель и конвертер расположены в отдалении от источника первичного излучения, ОТЛИЧАЮЩИЙСЯ тем, что теплоотводящее основание имеет отверстие для выхода излучения, а указанная поверхность конвертера, облучаемая светоизлучающими диодами, и поверхность светоотражателя имеют вогнутую форму, обращенную вогнутостью к указанному отверстию и светоизлучающим диодам, причем светоизлучающие диоды расположены вблизи от периметра отверстия.
2. Осветитель по п.1, отличающийся тем, что поверхности конвертера и отражателя имеют форму осесимметричных фигур, усеченных плоскостью, параллельной плоскости отверстия в теплоотводящем основании, например, эллипсоида вращения, в частности, сферы или параболоида, с главной осью перпендикулярной плоскости отверстия в теплоотводящем основании.
3. Осветитель по п.1, отличающийся тем, что поверхности конвертера и отражателя имеют форму плоскостесимметричных фигур, усеченных плоскостью параллельной плоскости отверстия в теплоотводящем основании, например, усеченного цилиндра с плоскостью симметрии перпендикулярной плоскости отверстия в теплоотводящем основании.
4. Осветитель по п.1, отличающийся тем, что теплопроводящее основание включает выступ, экранирующий прямой выход первичного излучения в указанное отверстие.
5. Осветитель по п.1, отличающийся тем, что указанная поверхность отражателя является внутренней поверхностью теплоотводящего радиатора с ребристой внешней поверхностью.
16
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
6. Осветитель по п.2, отличающийся тем, что указанные поверхности конвертера и отражателя сформированы из множества плоских фасеток или сегментов.
7. Осветитель по п.З, отличающийся тем, что теплоотводящее основание источника первичного излучения выполнено как одно целое с отражателем.
8. Осветитель по п.1, отличающийся тем, что выпуклая поверхность конвертера, противоположная его вогнутой поверхности, облучаемой первичным излучением, и вогнутая поверхность отражателя разделены оптически прозрачной средой.
9. Осветитель по п.4, отличающийся тем, что упомянутый выступ теплопроводящего основания содержит плоскую зеркально отражающую часть, направляющую попадающее на нее первичное излучение на противолежащую поверхность конвертера.
10. Осветитель по п.З, отличающийся тем, светоизлучающие диоды закреплены на теплоотводящем основании таким образом, чтобы ось диаграммы направленности излучения каждого светоизлучающего диода, пересекалась с осью симметрии отражателя под углом равным или меньшим разности между 90° и полушириной диаграммы направленности указанного каждого светоизлучающего диода.
11. Осветитель по п.З, отличающийся тем, светоизлучающие диоды закреплены на теплоотводящем основании таким образом, что ось диаграммы направленности излучения каждого светоизлучающего диода параллельна или составляет небольшой угол с осью симметрии отражателя, теплопроводящее основание в области между поверхностью конвертера и светоизлучающими диодами содержит зеркально отражающую наклонную часть, направляющую попадающее на нее первичное излучение на противолежащую поверхность конвертера.
17
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2011/001006 2011-01-13 2011-12-20 Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером WO2013039418A1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/976,101 US9136444B2 (en) 2011-01-13 2011-12-20 LED white light source with remote photoluminescent reflecting converter
CN201180064616.XA CN103348476B (zh) 2011-01-13 2011-12-20 带有光致发光转换器的白光led光源
EP11872178.6A EP2665099A4 (en) 2011-01-13 2011-12-20 White-light light-emitting diode lamp with a remote reflective photoluminescent converter
CA2824309A CA2824309A1 (en) 2011-01-13 2011-12-20 Led white light source with remote photoluminescent reflecting converter
KR1020137021356A KR20140053837A (ko) 2011-01-13 2011-12-20 원거리 광발광 반사 변환기를 구비하는 led 백색광원
JP2013549382A JP6045079B2 (ja) 2011-01-13 2011-12-20 照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2011100487 2011-01-13
RU2011100487/28A RU2452059C1 (ru) 2011-01-13 2011-01-13 Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером

Publications (1)

Publication Number Publication Date
WO2013039418A1 true WO2013039418A1 (ru) 2013-03-21

Family

ID=46231808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/001006 WO2013039418A1 (ru) 2011-01-13 2011-12-20 Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером

Country Status (8)

Country Link
US (1) US9136444B2 (ru)
EP (1) EP2665099A4 (ru)
JP (1) JP6045079B2 (ru)
KR (1) KR20140053837A (ru)
CN (1) CN103348476B (ru)
CA (1) CA2824309A1 (ru)
RU (1) RU2452059C1 (ru)
WO (1) WO2013039418A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247058B (zh) * 2012-04-26 2017-10-03 英特曼帝克司公司 用于在远程波长转换中实施色彩一致性的方法及设备
US20130335994A1 (en) * 2012-06-13 2013-12-19 Innotec Corp. Illuminated accessory unit
RU2536767C2 (ru) * 2012-12-06 2014-12-27 Анатолий Васильевич Вишняков Способ получения модифицированных трехцветных светодиодных источников белого света
US9052088B2 (en) * 2013-09-20 2015-06-09 Whelen Engineering Company, Inc. Tuned composite optical arrangement for LED array
CN103840068B (zh) * 2013-12-31 2017-09-19 杨毅 波长转换装置和发光装置
FR3020115B1 (fr) * 2014-04-16 2019-04-19 Philippe Allart Objet luminescent avec systeme d'amplification de la projection de lumiere sur ledit objet
WO2015179352A1 (en) 2014-05-19 2015-11-26 Whelen Engineering Company, Inc. Warning light with tinted lens
US10422942B2 (en) 2014-06-05 2019-09-24 Signify Holding B.V. Luminescence concentrator
CN105398376B (zh) * 2014-09-05 2019-10-22 福特全球技术公司 光致发光仓灯
KR101601531B1 (ko) * 2014-11-07 2016-03-10 주식회사 지엘비젼 조명장치
US10139078B2 (en) 2015-02-19 2018-11-27 Whelen Engineering Company, Inc. Compact optical assembly for LED light sources
JP6588727B2 (ja) * 2015-04-27 2019-10-09 シチズン電子株式会社 発光装置
US10208914B2 (en) 2015-09-09 2019-02-19 Whelen Engineering Company, Inc. Reflector with concentric interrupted reflecting surfaces
RU2630439C2 (ru) * 2015-10-07 2017-09-07 Денис Геннадьевич Дроздов Светодиодный светильник
US10244599B1 (en) 2016-11-10 2019-03-26 Kichler Lighting Llc Warm dim circuit for use with LED lighting fixtures
CN107062014A (zh) * 2017-05-10 2017-08-18 浙江英特来光电科技有限公司 一种具有高光通维持率的led灯丝球泡灯
US20200139616A1 (en) * 2017-05-15 2020-05-07 Signify Holding B.V. 3d printing of a reflector using polymer filled with metal coated glass or mica particles and reflector obtainable thereby
US11204152B2 (en) 2019-08-15 2021-12-21 Microsoft Technology Licensing, Llc Illumination device having reflector with concave and convex symmetrical surfaces
CN113024251A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 具有平凹形结构薄膜的高显色性激光照明用荧光陶瓷及其制备方法
US11833261B2 (en) * 2020-12-28 2023-12-05 Leedarson Lighting Co., Ltd. Lighting apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351069B1 (en) 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
US6600175B1 (en) 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
EP1381091A2 (en) * 2002-07-12 2004-01-14 Stanley Electric Co., Ltd. Light emitting diode
WO2004019422A1 (en) * 2002-08-21 2004-03-04 Seoul Semiconductor Co., Ltd. White light emitting device
US20070114562A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Red and yellow phosphor-converted LEDs for signal applications
US7293908B2 (en) 2005-10-18 2007-11-13 Goldeneye, Inc. Side emitting illumination systems incorporating light emitting diodes
US7618157B1 (en) 2008-06-25 2009-11-17 Osram Sylvania Inc. Tubular blue LED lamp with remote phosphor
US7810956B2 (en) 2007-08-23 2010-10-12 Koninklijke Philips Electronics N.V. Light source including reflective wavelength-converting layer

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845316A (ja) * 1994-07-29 1996-02-16 Toshiba Lighting & Technol Corp 反射体及び反射体付光源
US6149283A (en) * 1998-12-09 2000-11-21 Rensselaer Polytechnic Institute (Rpi) LED lamp with reflector and multicolor adjuster
JP4527230B2 (ja) * 2000-02-28 2010-08-18 三菱電機照明株式会社 面発光led光源
JP4096598B2 (ja) * 2001-11-06 2008-06-04 株式会社日立製作所 投影装置用光源及びそれを用いた投写型画像ディスプレイ装置
JP2003249103A (ja) * 2002-02-22 2003-09-05 Ichikoh Ind Ltd 車両用灯具
CN100468791C (zh) * 2002-08-30 2009-03-11 吉尔科有限公司 具有改良效率的镀膜led
US6841804B1 (en) * 2003-10-27 2005-01-11 Formosa Epitaxy Incorporation Device of white light-emitting diode
JP2006059625A (ja) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Led照明装置、ペンダント照明器具および街路灯
DE102005028456A1 (de) * 2005-06-17 2006-12-28 Schott Ag Metallreflektor und Verfahren zu dessen Herstellung
JP4492472B2 (ja) * 2005-07-26 2010-06-30 パナソニック電工株式会社 照明器具
TWI331815B (en) * 2006-03-17 2010-10-11 Seoul Semiconductor Co Ltd Side-view light emitting diode package having a reflector
US7722220B2 (en) * 2006-05-05 2010-05-25 Cree Led Lighting Solutions, Inc. Lighting device
US20080029720A1 (en) * 2006-08-03 2008-02-07 Intematix Corporation LED lighting arrangement including light emitting phosphor
JP4726872B2 (ja) * 2006-09-27 2011-07-20 シーシーエス株式会社 反射型照明装置
JP4689579B2 (ja) * 2006-10-25 2011-05-25 シャープ株式会社 発光装置
DE102007061304B4 (de) * 2006-12-19 2010-09-02 Koito Manufacturing Co., Ltd. Fahrzeugleuchte
JP5030661B2 (ja) * 2007-05-16 2012-09-19 シャープ株式会社 照明装置
EP2153114B1 (en) * 2007-05-24 2014-06-25 Koninklijke Philips N.V. Color-tunable illumination system
US8283190B2 (en) * 2008-06-26 2012-10-09 Osram Sylvania Inc. LED lamp with remote phosphor coating and method of making the lamp
JP2010176926A (ja) * 2009-01-27 2010-08-12 Ichikoh Ind Ltd 車両用灯具
CN101881381B (zh) * 2009-05-05 2012-09-05 宁波晶科光电有限公司 白光发光二极管及白光发光二极管灯
KR20120030409A (ko) * 2009-05-07 2012-03-28 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 형광체 및 이색성 필터를 구비한 조명 디바이스
WO2010143093A1 (en) * 2009-06-04 2010-12-16 Koninklijke Philips Electronics N.V. Efficient light emitting device and method for manufacturing such a device
RU93132U1 (ru) * 2009-06-15 2010-04-20 Че-Каи ЧЕН Лампа
CN201513741U (zh) * 2009-07-24 2010-06-23 华南师范大学 一种反射式led照明灯具
EP2524165B1 (en) * 2010-01-15 2020-04-15 Express Imaging Systems, LLC Apparatus, method to change light source color temperature with reduced optical filtering losses
CN101806404A (zh) * 2010-02-12 2010-08-18 李骋翔 一种高效率柔性面光源
CN201636605U (zh) * 2010-03-11 2010-11-17 上海三思电子工程有限公司 一种反光式led照明灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600175B1 (en) 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
US6351069B1 (en) 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
EP1381091A2 (en) * 2002-07-12 2004-01-14 Stanley Electric Co., Ltd. Light emitting diode
WO2004019422A1 (en) * 2002-08-21 2004-03-04 Seoul Semiconductor Co., Ltd. White light emitting device
US7293908B2 (en) 2005-10-18 2007-11-13 Goldeneye, Inc. Side emitting illumination systems incorporating light emitting diodes
US20070114562A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Red and yellow phosphor-converted LEDs for signal applications
US7810956B2 (en) 2007-08-23 2010-10-12 Koninklijke Philips Electronics N.V. Light source including reflective wavelength-converting layer
US7618157B1 (en) 2008-06-25 2009-11-17 Osram Sylvania Inc. Tubular blue LED lamp with remote phosphor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NARENDRAN, N.; GU. Y.; FREYSSINIER, J.; ZHU, Y.: "Extracting Phosphor-scattered Photons to Improve White LED Efficiency", PHYS. STAT. SOL. (A, vol. 202, no. 6, 2005, pages R60 - R62
See also references of EP2665099A4
YAMADA, K.; IMAI, Y.; ISHII K.: "Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor", J. LIGHT & VIS. ENV., vol. 27, no. 2, 2003, pages 70 - 74
ZHU Y.; N. NARENDRAN; Y. GU.: "Investigation of the optical properties of YAG:Ce phosphor", SIXTH INTERNATIONAL CONFERENCE ON SOLID STATE LIGHTING. PROCEEDINGS OF SPIE. 6337, 2006, pages 63370S

Also Published As

Publication number Publication date
JP6045079B2 (ja) 2016-12-14
US20130306998A1 (en) 2013-11-21
JP2014505982A (ja) 2014-03-06
EP2665099A1 (en) 2013-11-20
CA2824309A1 (en) 2013-03-21
KR20140053837A (ko) 2014-05-08
CN103348476B (zh) 2016-12-28
RU2452059C1 (ru) 2012-05-27
US9136444B2 (en) 2015-09-15
CN103348476A (zh) 2013-10-09
EP2665099A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
RU2452059C1 (ru) Светодиодный источник белого света с удаленным фотолюминесцентным отражающим конвертером
RU2502917C2 (ru) Светодиодный источник белого света с комбинированным удаленным фотолюминесцентным конвертером
RU2457393C1 (ru) Светодиодный источник белого света с удаленным фотолюминесцентным конвертером
JP5903039B2 (ja) 色調節装置
TWI614452B (zh) 用於固態發光裝置和燈的光致發光波長轉換構件
KR102114607B1 (ko) 레이저 광원장치
RU2475887C1 (ru) Светодиодный источник белого света с удаленным отражательным многослойным фотолюминесцентным конвертером
JP5818778B2 (ja) リモートルミネセンス材料を用いた照明デバイス
JP2014505982A5 (ru)
CN108235720B (zh) 用于产生高亮度光的光学设备
KR102277127B1 (ko) 발광소자 패키지
JP2007266356A (ja) 発光装置およびそれを用いた照明装置
JP2006237264A (ja) 発光装置および照明装置
WO2017077739A1 (ja) 発光体、発光装置、照明装置、および発光体の製造方法
US20150241758A1 (en) Compact solid-state camera flash
JP2006278741A (ja) 発光装置および照明装置
JP2006066657A (ja) 発光装置および照明装置
CN109798489B (zh) 一种照明装置和汽车照明灯具
JP2022024282A (ja) 発光装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2824309

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011872178

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013549382

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976101

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137021356

Country of ref document: KR

Kind code of ref document: A