WO2013039288A1 - 에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치 및 방법 - Google Patents

에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치 및 방법 Download PDF

Info

Publication number
WO2013039288A1
WO2013039288A1 PCT/KR2012/003883 KR2012003883W WO2013039288A1 WO 2013039288 A1 WO2013039288 A1 WO 2013039288A1 KR 2012003883 W KR2012003883 W KR 2012003883W WO 2013039288 A1 WO2013039288 A1 WO 2013039288A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
carboxylic acid
dehydration tower
water
dehydration
Prior art date
Application number
PCT/KR2012/003883
Other languages
English (en)
French (fr)
Inventor
강기준
Original Assignee
(주)에이엠티퍼시픽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이엠티퍼시픽 filed Critical (주)에이엠티퍼시픽
Priority to CN201280045216.9A priority Critical patent/CN103814008B/zh
Priority to MX2014003084A priority patent/MX2014003084A/es
Priority to BR112014006095A priority patent/BR112014006095A2/pt
Priority to CA2848647A priority patent/CA2848647A1/en
Priority to EP12831692.4A priority patent/EP2772479A4/en
Priority to JP2014530578A priority patent/JP2014528938A/ja
Priority to RU2014111801/04A priority patent/RU2575250C2/ru
Priority to US14/344,322 priority patent/US9334222B2/en
Publication of WO2013039288A1 publication Critical patent/WO2013039288A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/36Azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • C07C51/46Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a method for separating water from a reactor effluent and recovering a carboxylic acid during the oxidation of an aromatic compound using energy-conjugated combined distillation, and more particularly, from the effluent discharged from the reactor during the oxidation of an aromatic compound.
  • oxidizing an aromatic compound generates an exothermic reaction with aromatic carboxylic acid and water
  • aromatic carboxylic acid since the aromatic carboxylic acid is generally solid, a solvent must be injected so that it does not exist in the solid state inside the reactor.
  • aromatic carboxylic acid has high solubility in carboxylic acid
  • carboxylic acid is injected into the oxidation reactor in order to maintain the aromatic oxide as a reaction product in the liquid phase. Therefore, a large amount of water and carboxylic acid are present in the gaseous phase and the liquid discharge generated after the oxidation reaction, so that a dehydration process of removing the water generated by the oxidation reaction out of the system and recovering the carboxylic acid back to the oxidation reactor is essential.
  • the manufacturing process of a phthalic acid compound which is a kind of aromatic carboxylic acid
  • the dehydration tower which recovers acetic acid to the bottom and separates the water to the top operates the concentration of acetic acid recovered to the bottom about 90 ⁇ 95wt%.
  • Boiling temperature at the atmospheric pressure of 90 ⁇ 95wt% acetic acid solution at the bottom of the dehydration tower is about 108 ⁇ 111 °C
  • the boiling temperature at the normal pressure of the water of the top of the dehydration tower is 100 °C, so it consists of two or more dehydration tower and each dehydration tower
  • the condenser of the high pressure dewatering tower can be configured to act as a reboiler of the low pressure dewatering tower.
  • energy can be saved on the principle of a multi-effect evaporator. The present invention focuses on this point.
  • acetic acid which is a kind of carboxylic acid
  • conventional distillation, azeotropic distillation for circulating an acetate compound or an alcohol, etc. is used. because of the high degree from 125 to 135 °C by the pressure loss type of steam use in an reboil is a medium-pressure steam (3.0kg / cm 2 G ⁇ 5 kg / cm 2 G, 143 °C ⁇ 158 °C).
  • the use of medium pressure steam is very high in order to maintain the concentration of acetic acid in the distillate effluent at about 0.5wt% and in the azeotropic distillation at 0.01wt%. .
  • 1 is a process chart showing a conventional method for recovering acetic acid through distillation.
  • the conventional apparatus for recovering acetic acid through conventional distillation includes a dehydration tower 1, a reboiler 2, a condenser 3, and a condensate drum 4.
  • a dehydration tower 1 Into a liquid stream having a low acetic acid concentration (acetic acid concentration of 40 to 70 wt%), a gaseous stream having a high acetic acid concentration (acetic acid concentration of 70 to 88 wt%), and acetic acid of some of the acetic acid from the bottom of the dehydration column (1) Acetic acid concentration of 88 ⁇ 95wt%) is discharged to the outside and the remaining part is introduced into the dehydration tower (1) again through the reboiler (2), exited to the top of the dehydration tower (1) and selectively through the condenser (3)
  • the non-condensed gas in the condensate passed through the condensate drum 4 installed is discharged to the outside as a vent gas (Vent gas) and partly flows back into the dehydration tower
  • the amount of medium pressure steam used in the dehydration tower to recover acetic acid in a plant that produces 500,000 tons of phthalic acid per year during the conventional dehydration and acetic acid recovery through distillation is about 90 to 100 tons per hour.
  • FIG. 2 is a process chart showing a conventional method for recovering acetic acid through azeotropic distillation.
  • a conventional apparatus for recovering acetic acid through azeotropic distillation using an azeotropic dehydration tower (1) for separating acetic acid and water through azeotropic distillation, and the dehydration tower (1) A condenser (3) for condensing the gas discharged to the upper portion of the water, an oil / water separator (4a) for separating the organic phase and the water phase through the condenser (3), and the dehydration tower ( 1) an acetic acid recovery device (5) including a reboiler (2) for supplying steam to the tank, and an external azeotropic reservoir (not shown), each of which is optionally installed from the water stream of the acetic acid recovery device.
  • Organic matter recovery process apparatus (6) which collect
  • azeotropic agent recovery process apparatus (7) which collect
  • aromatic compound recovery process which collect
  • acetic acid recovery method using azeotropic agent has the advantage of reducing the use of medium pressure steam by about 25 to 30% compared to the conventional distillation, but some azeotropic agents are lost to the oxidation reactor to generate impurities, some azeotropic agents There is a problem that can not be completely prevented from being discharged with the waste water.
  • the present invention can further reduce the energy consumption used in the dehydration tower in the conventional conventional distillation process, and does not use an azeotropic agent, so a separate distillation column for recovering the azeotropic agent is not required without a storage tank for storing the azeotropic agent.
  • an apparatus for separating water and recovering carboxylic acid from the discharge from the reactor during the oxidation reaction of the aromatic compound using energy-conjugated combined distillation according to the first embodiment of the present invention, two energy First and second dehydration tower, the first dehydration tower condenser installed on the upper downstream side of the first dehydration tower, the first dewatering tower condensate drum, respectively installed selectively downstream of the first dewatering tower condenser, A first dewatering tower condensate conveying pump and a first dewatering tower condensate vacuum pump; a first joint connected to a downstream side of the lower portion of the first dewatering tower and an upper downstream side of the second dewatering tower to re-consume and condensate the effluent respectively; Dewatering tower reboiler-second dewatering tower condenser (energy sharing heat exchanger), first dewatering tower reboiler-second dewatering tower condenser (energy sharing heat exchanger)
  • An apparatus for separating water and recovering carboxylic acid from the discharge from the reactor during the oxidation reaction of the aromatic compound using the energy-conjugated combined distillation according to the second embodiment of the present invention (when azeotropic distillation is included) is carboxyl.
  • a first dehydration tower for separating all streams comprising acid or relatively low concentrations of liquid stream carboxylic acid and water by distillation, and a first condenser for condensing the gas exiting the top of the first dehydration tower,
  • An optionally installed first condensate drum for storing the condensate that has passed through the first condenser, and a first reboiler for supplying energy to the first dehydration tower (a condenser on top of a second dehydration tower, an azeotropic distillation column described below).
  • a first carboxylic acid recovery device including covalent);
  • a second dehydration tower for azeotropic distillation which is installed at the rear side of the first carboxylic acid recovery device and which a stream composed of another carboxylic acid and water is selectively introduced and the discharge liquid from the first dehydration tower is introduced;
  • a second carboxylic acid recovery having a second condenser for condensing the gas discharged to the upper part of the second dehydration tower through the reboiler, and a rear oil / water separator, and a second reboiler for supplying energy to the second dehydration tower.
  • a vacuum pump is selectively installed at one downstream of the condensate drum of the first carboxylic acid recovery device so that the vent gas is discharged, and a transfer pump is selectively installed at the other downstream to allow the discharge condensate to flow into the second dehydration tower. It is supposed to be.
  • the organic material recovery process unit, azeotropic agent recovery process unit, aromatic compound recovery process unit is a distillation column, reboiler, condenser, condensate drum, which is a basic configuration for recovering acetic acid through conventional conventional distillation It consists of.
  • the apparatus for separating water and recovering carboxylic acid from the discharge from the reactor during the oxidation reaction of the aromatic compound using the energy-conjugated combined distillation according to the third embodiment of the present invention (in the case of extraction and azeotropic distillation),
  • a first condensate drum selectively installed to store the condensate that has passed through the first condenser, and a first reboiler for supplying energy to the first dehydration tower (a condenser on top of a second dehydration tower, which is an azeotropic distillation column described later).
  • the second dehydration tower for azeotropic distillation which is installed at the rear side of the first carboxylic acid recovery device, is introduced with a stream consisting of another carboxylic acid and water is selectively introduced and discharged from the upper portion of the extraction column described later; And a second condenser for condensing the gas discharged to the upper portion of the second dewatering tower through the reboiler, a rear oil / water separator, and a second carboxyl having a second reboiler for supplying energy to the second dewatering tower.
  • Acid recovery unit And an organic recovery unit for selectively recovering organic matter from the aqueous phase stream from the second carboxylic acid recovery unit, and an azeotropic agent recovery process unit for recovering an azeotropic agent from the oily stream of the second carboxylic acid recovery unit.
  • an aromatic compound recovery process apparatus for recovering the aromatic compound from the second carboxylic acid recovery apparatus, and water containing low concentration acetic acid discharged from the upper part of the first dehydration column of the first carboxylic acid recovery apparatus.
  • the azeotropic agent discharged to the upper part of the second dehydration tower of the second carboxylic acid recovery device is introduced into the lower part using the extractant, and at the upper side, the extractant + carboxylic acid + water to the second dehydration tower and the remaining lower side.
  • the water is characterized in that it comprises an extraction process unit sent to the organic matter recovery unit.
  • a vacuum pump is selectively installed at one downstream of the condensate drum of the first carboxylic acid recovery device so that the vent gas is discharged, and a transfer pump is selectively installed at the other downstream to allow the discharge condensate to flow into the second dehydration tower. It is supposed to be.
  • the organic material recovery process unit, azeotropic agent recovery process unit, aromatic compound recovery process unit is a distillation column, reboiler, condenser, condensate drum, which is a basic configuration for recovering acetic acid through conventional conventional distillation
  • the extraction process apparatus is also composed of an extraction tower that includes a general extraction tower or a driving device using the extractant.
  • the discharge is used for each device in the process After roughing, flowing into the first dehydration tower operated under reduced pressure or normal pressure to discharge water to the upper portion of the first dehydration tower, and recovering the concentrated carboxylic acid to the lower portion of the first dehydration tower ( First step); And flowing the first concentrated carboxylic acid discharged from the bottom of the first dehydration tower into the middle of the second dehydration tower operated at atmospheric pressure or pressure to recover the final concentrated carboxylic acid under the second dehydration tower.
  • a second condenser of the second dehydration tower serves as a reboiler of the first dehydration tower so that only the energy supplied to the second dehydration tower reboiler is used as distillation energy of the first dehydration tower.
  • a second condenser of the second dehydration tower serves as a reboiler of the first dehydration tower so that only the energy supplied to the second dehydration tower reboiler is used as distillation energy of the first dehydration tower.
  • the discharge passes through each device in the process After recovering the concentrated carboxylic acid to the lower portion of the first dehydration tower by flowing into a first dehydration tower operating under reduced pressure or atmospheric pressure, and discharged less water less carboxylic acid to the upper portion of the first dehydration tower (First step); And forming an azeotropic distillation column in which a second dehydration tower operated by atmospheric pressure or pressure is applied to the middle of the water containing the carboxylic acid discharged to the upper portion of the first dehydration tower to recover the carboxylic acid under the second dehydration tower.
  • the condenser of the second dewatering tower serves as a reboiler of the first dewatering tower and is supplied to the second dewatering tower reboiler.
  • a method of separating water from an exhaust discharged from a reactor during the oxidation of an aromatic compound and recovering a carboxylic acid characterized in that the energy alone is used as distillation energy of the first dehydration column.
  • the method for separating water and recovering carboxylic acid from the discharge from the reactor during the oxidation reaction of the aromatic compound using the energy-conjugated combined distillation according to the third embodiment of the present invention (when the extraction and azeotropic distillation is included), After passing through each apparatus in the process, the discharge is introduced into a first dehydration tower operated under reduced pressure or normal pressure to recover the concentrated carboxylic acid under the first dehydration tower, and carboxyl as the upper part of the first dehydration tower.
  • Draining water with less acid removed (first step); Water containing carboxylic acid discharged to the first dewatering tower is introduced into the top of the extraction tower, and azeotropic agent discharged from the oil / water separator installed downstream of the second dewatering tower is introduced into the extraction tower as an extractant. Discharging the water from which the carboxylic acid has been removed to the bottom of the column and discharging the extractant + carboxylic acid + water to the top of the extraction column (second step); And a second dehydration tower operated at atmospheric pressure or under pressure of the extractant + carboxylic acid + water discharged to the extraction tower as an azeotropic distillation column, flowing into the middle thereof, and recovering the carboxylic acid under the second dehydration tower.
  • the second dewatering tower condenser serves as a reboiler of the first dewatering tower.
  • a method of separating water from an exhaust discharged from a reactor during oxidation of an aromatic compound and recovering carboxylic acid characterized in that the energy supplied to the column reboiler is used as distillation energy of the first dehydration column.
  • the method of separating water from the reactor effluent and recovering the carboxylic acid in the oxidation reaction of the aromatic compound using the energy-conjugated combined distillation according to the present invention provides the following effects.
  • 1 is a process chart showing a method for recovering acetic acid through conventional distillation using a conventional dehydration column.
  • Figure 2 is a process chart showing a method for recovering acetic acid through azeotropic distillation using a conventional dehydration tower.
  • FIG. 3 is a process diagram illustrating a method for separating water and recovering carboxylic acid (acetic acid) from an aromatic compound oxidation reactor discharge using two dehydration towers sharing energy according to the first embodiment of the present invention.
  • FIG. 5 is a carboxylic acid separating water from an aromatic compound oxidation reactor discharge using two dehydration towers sharing energy according to a third embodiment of the present invention, in which an extraction process apparatus is added to the process diagram shown in FIG. 4. Process drawing when azeotropic distillation is included in the method of recovering (acetic acid),
  • terephthalic acid which is a kind of aromatic carboxylic acid, which is produced by oxidizing paraxylene, which is a kind of aromatic compound, using air-contributing distillation according to the present invention.
  • acetic acid which is a typical kind of carboxylic acid used as a solvent in the reactor will be described for each embodiment.
  • the inventors found that the water generated by the reaction with acetic acid used as a solvent by the heat generated when oxidizing paraxylene by air under cobalt, manganese and bromine catalysts in the reactor during the oxidation reaction in the terephthalic acid manufacturing process It is discharged in a hot gas phase together with gases such as nitrogen present in this air and some acetic acid and water are discharged in the liquid phase together with terephthalic acid, and two or more operations are performed to separate water from these discharges and recover acetic acid.
  • the energy required by the preceding dewatering tower reboiler can be supplied by the dehydrating tower condenser, which reduces the amount of medium pressure steam used by the effect of the multi-effect evaporator.
  • Figure 3 shows a process diagram showing a method for separating water and recovering carboxylic acid (acetic acid) from the aromatic compound oxidation reactor discharge using two dehydration towers sharing energy according to the first embodiment of the present invention.
  • an apparatus for removing acetic acid and recovering acetic acid from a gas and a liquid discharged from a reactor in the production of terephthalic acid using a dehydration tower sharing two energies includes first and second energy sharing units.
  • a first dewatering tower reboiler-a second dewatering tower condenser (energy sharing heat exchanger) 15 the first dewatering tower reboiler, which is jointly connected to the upper downstream side of 11b to re-refine and condense the emissions, respectively;
  • Sequentially downstream of the second dewatering tower condenser (energy sharing heat exchanger) 15 A second dewatering tower cooler 12 installed in the furnace, a second dewatering tower condensate drum 17 optionally installed, and a second de
  • water can be separated from the discharge discharged from the reactor during the oxidation reaction of the aromatic compound and the carboxylic acid can be recovered.
  • the method of separating water from the discharge from the reactor during the oxidation of the aromatic compound and recovering the carboxylic acid may be performed by introducing the discharge into a first dehydration tower operated under reduced pressure or atmospheric pressure after passing through each device in the process. Water is discharged to an upper portion of the first dehydration tower, and a primary concentrated carboxylic acid is recovered to a lower portion of the first dehydration tower (first step), and a primary discharged from a lower portion of the first dehydration tower is performed.
  • the concentrated carboxylic acid was introduced into the middle of the second dehydration tower operated at atmospheric pressure or pressure to recover the final concentrated carboxylic acid under the second dehydration tower (second step), and Since the condenser serves as a reboiler of the first dehydration tower, only the energy supplied to the second dehydration tower reboiler may be used as the distillation energy of the first dehydration tower.
  • the concentrated carboxylic acid is recovered from the bottom of the first dehydration tower, the water containing the carboxylic acid is discharged to the upper part of the first dehydration tower, and this is introduced into the second dehydration tower and concentrated to the bottom of the second dehydration tower.
  • the carboxylic acid may be recovered and the final purified water may be discharged to the top of the second dehydration column. That is, by changing the flow process of the first step and the second step, in the first step, the discharge flows through each device in the process and flows into the first dehydration tower operated under reduced pressure or normal pressure to lower the first dehydration tower.
  • All streams containing acetic acid or A liquid stream (A1, B1) having a relatively low acetic acid concentration of about 40 to 70 wt% is introduced into the first dehydration tower 11a to separate the water above the first dehydration tower 11a (M1).
  • the concentrated acetic acid is discharged to the bottom of the first dehydration tower 11a (R1).
  • the concentration of acetic acid that is primarily concentrated and discharged to the bottom of the first dehydration tower 11a is about 60 to 80 wt%.
  • the gaseous stream C1 having a relatively high acetic acid concentration of about 70 to 88 wt% among the reactor effluents passed through each process is first concentrated into the second dewatering tower 11b and discharged to the bottom of the first dewatering tower.
  • Acetic acid is introduced into the second dehydration tower (D1).
  • steam is used for the reboiler 16 of the second dehydration tower 11b, and the condenser 15 of the second dehydration tower 11b serves as a reboiler of the first dehydration tower 11a.
  • the concentration of acetic acid recovered to the lower portion of the second dehydration tower (11b) is 90 ⁇ 95wt%
  • the concentration of acetic acid in the water separated into the upper portion of the first dehydration tower (11a) and the second dehydration tower (11b) is 0.1 ⁇ 0.5 wt%.
  • Water separated into the upper portion of the first dehydration tower (11a) and water separated into the upper portion of the second dehydration tower (11b) may be operated separately using the respective condensate drums, condensate of the second dewatering tower (11b) It is also possible to use all of the drums 17 together.
  • the pressure of the first dehydration column (11a) is preferably operated at -0.8 to 0.8 kg / cm 2 G, more preferably -0.8 to -0.5 kg / cm 2 G.
  • the second dehydration tower (11b) is preferably operated at a pressure of 0.1 ⁇ 1.7 kg / cm 2 G so that the temperature is maintained so that the condenser 15 can serve as a re-boiler of the first dehydration tower (11a). More preferably, it is preferably 0.1 to 0.4 kg / cm 2 G.
  • the pressure of the first dehydration tower 11a is too low, it is difficult to operate due to the limitation of condensate used in the upper part. If the pressure of the first dehydration tower 11a is too high, the pressure of the second dehydration tower 11b is made higher. Since the lower temperature of the second dehydration tower 11b is increased, a more expensive high pressure steam should be used.
  • a separate reboiler is additionally configured around the first dehydration tower to supply the low pressure steam or vacuum steam which is not used in the process to supply the second dehydration tower 11b.
  • the amount of medium pressure steam used can be further reduced.
  • the operating pressure of the second dehydration tower 11b may be maintained to a degree suitable for transferring energy to the lower portion of the first dehydration tower 11a.
  • the medium pressure steam used in the 90 to 100 tons per hour when using the conventional dehydration tower as the second dewatering tower and the first stage of the dehydration tower with 60 trays, the medium pressure steam consumption is 55 to 65 tons per hour. This is much lower than 80 to 90 tons per hour, which is the medium pressure steam consumption when one dehydration tower combined with two stages of the dehydration tower is 150 stages (90 + 60). This is less than 65 to 75 tons per hour, which is the amount of medium pressure steam used.
  • the energy required to depressurize the first dehydration tower or transfer the liquid (water) from the first dehydration tower to the second dehydration tower is less than that of the dehydration tower energy, since energy equivalent to one ton of medium pressure steam per hour is required. .
  • the stream containing acetic acid entering the first and second dehydration towers is balanced to minimize and balance the energy supplied to the second dehydration tower and the energy required for the first dehydration tower, taking into account the acetic acid concentration and temperature of each stream. It is desirable to choose to be able.
  • FIG. 4 is a process diagram when azeotropic distillation is included in a method of separating water from an aromatic compound oxidation reactor discharge using two dehydration towers sharing energy and recovering carboxylic acid according to a second embodiment of the present invention. Show it.
  • an apparatus for removing acetic acid and recovering acetic acid from a gas and a liquid discharged from a reactor in the production of terephthalic acid using a dehydration tower sharing two energies when azeotropic distillation Any stream you include or A first dehydration tower (21a) for separating relatively low concentrations of liquid stream acetic acid and water through distillation, and a first condenser (23a) for condensing the gas discharged to the top of the first dehydration tower (21a); A first condensate drum selectively installed to store the condensate that has passed through the first condenser 23a, and a first reboiler 22a for supplying energy to the first dehydration tower 21a A first acetic acid recovery device 5a including energy sharing with a condenser on the top of a second dehydration tower 21b which is a distillation column; remind On the rear side of the first acetic acid recovery device 5a As installed, a second
  • a second condenser 23b for condensing the gas discharged to the upper part of the gas through the first reboiler 22a and a rear oil / water separator 24a, and a second ash for supplying energy to the second dewatering tower.
  • a second acetic acid recovery device 5b having a rain machine 22b;
  • an organic matter recovery process device (6) selectively installed to recover organic matter from the aqueous phase stream from the second acetic acid recovery device (5b), each selectively installed, and an azeotropic agent from the oily stream of the second acetic acid recovery device.
  • the condensate drum 24 of the first acetic acid recovery device 5a has a vacuum pump 29 selectively installed at one downstream side thereof so that the vent gas is discharged, and the downstream side has a transfer pump ( 28) is selectively installed to introduce the discharge condensate into the second dewatering tower (21b).
  • the organic material recovery process unit 6, azeotropic agent recovery unit 7, aromatic compound recovery unit 8 is a basic component for recovering acetic acid through conventional conventional distillation. Phosphorus distillation column, reboiler, condenser, condensate drum.
  • water can be separated from the exhaust discharged from the reactor during the oxidation reaction of the aromatic compound using energy-conjugated combined distillation, and the carboxylic acid can be recovered.
  • the second dehydration tower operated in the atmospheric or pressurized state is configured as an azeotropic distillation column
  • a method of separating water from the discharge from the reactor during the oxidation reaction of the aromatic compound and recovering the carboxylic acid may be performed.
  • the water is discharged (first step), and the water discharged to the first dewatering tower is composed of an azeotropic distillation tower operated by atmospheric pressure or pressure, and flows into the middle thereof to form a carboxyl under the second dewatering tower.
  • the acid is recovered and the final separated water is discharged to the top of the second dewatering tower (second step), and the condenser of the second dewatering tower serves as a reboiler of the first dewatering tower. Only the energy supplied to the water tower reboiling can be used as the energy of the first distillation dehydration column.
  • the purified water is discharged to the upper part of the first dehydration tower, and the primary concentrated carboxylic acid is discharged to the lower part of the first dehydration tower, which is introduced into the second dehydration tower and finally concentrated to the bottom of the second dehydration tower.
  • Recovered carboxylic acid and purified water to the second dehydration column It can also be discharged. That is, by changing the flow process of the first step and the second step, in the first step, the discharge flows through each device in the process and then flows into the first dehydration tower operated under reduced pressure or normal pressure to the upper part of the first dehydration tower.
  • the purified water is discharged and the primary concentrated carboxylic acid is discharged to the lower portion of the first dehydration tower, and the primary concentrated carboxylic acid discharged to the lower portion of the first dehydration tower is operated at atmospheric pressure or pressure.
  • the second dehydration tower may be configured as an azeotropic distillation column to enter the middle thereof to recover the final concentrated acetic acid below the second dehydration tower and discharge the purified water to the top of the second dehydration tower.
  • the concentration of acetic acid in the water discharged to the upper part of the first dehydration tower in which the acetic acid is first removed is about 20 to 60 wt%.
  • the gaseous stream C2 which has a relatively high acetic acid concentration of about 70 to 88 wt%, is introduced into the second dehydration tower 21b and discharged to the upper portion of the first dehydration tower 21a.
  • water from which acetic acid has been removed flows into the second dehydration tower 21b (S2).
  • steam is used for the reboiler 22b of the second dehydration tower 21b, and the condenser 23b of the second dehydration tower 21b serves as a reboiler of the first dehydration tower.
  • the concentration of acetic acid recovered to the lower portion of the second dehydration tower 21b is 90 to 95 wt%, and the concentration of acetic acid in water separated to the upper portion of the second dehydration tower 21b is 0.01 to 0.05 wt%, preferably 0.005 to 0.03 wt%.
  • the upstream of the first dehydration tower may be used as the reflux of the first dehydration tower, the upstream of the second dehydration tower may be used as the reflux of the second dehydration tower, but since the acetic acid concentration in the water above the second dehydration tower is low, Can also be used to reflux.
  • the second dehydration column 21b is refluxed with azeotrope (G2).
  • the pressure of the first dehydration tower (21a) is preferably operated at -0.8 to 0.8 kg / cm 2 G, more preferably -0.8 to -0.5 kg / cm 2 G.
  • the second dewatering tower 21b is preferably operated at a pressure of 0.1 to 1.7 kg / cm 2 G so as to maintain a temperature such that the condenser can serve as a reboiler of the first dewatering tower, more preferably 0.1 Recommended is 0.4 kg / cm 2 G.
  • the pressure of the first dehydration tower 21a is too low, operation is difficult due to the limitation of condensate used in the upper portion. If the pressure of the first dehydration tower 21a is too high, the pressure of the second dehydration tower 21b is made higher. Since the lower temperature of the second dehydration tower 21b is increased, it is necessary to use a more expensive high-pressure steam. Since the temperature of the first dehydration tower 21a is low, a reboiler of the first dehydration tower 21a is further configured to supply a low pressure steam or vacuum steam which is not used in the process to supply the second dehydration tower 21b to the medium pressure. The use of steam can be further reduced.
  • the operating pressure of the second dehydration tower 21b may be maintained to be suitable for transferring energy to the lower portion of the first dehydration tower 21a.
  • the azeotropic agent used for the second dehydration column is mainly an acetate compound such as ethyl acetate, propyl acetate, butyl acetate, an alcohol compound such as butyl alcohol, an aromatic compound such as xylene, or a compound of the above compounds.
  • the stream containing acetic acid entering the first and second dehydration towers is balanced to minimize and balance the energy supplied to the second dehydration tower and the energy required for the first dehydration tower, taking into account the acetic acid concentration and temperature of each stream. It is desirable to choose to be able.
  • FIG. 5 includes extraction and azeotropic distillation in a method for separating water and recovering carboxylic acid (acetic acid) from an aromatic compound oxidation reactor discharge using two dehydration towers sharing energy according to a third embodiment of the present invention. Show the process chart when
  • FIG. 5 includes extraction and azeotropic distillation in a method for separating water and recovering carboxylic acid (acetic acid) from an aromatic compound oxidation reactor discharge using two dehydration towers sharing energy according to a third embodiment of the present invention.
  • the extraction process apparatus 9 is added to the configuration (second embodiment) of FIG. 4, and all conditions and descriptions related to the apparatus and operation according to FIG. The description will be omitted and only the additional parts will be described.
  • the device for recovering acetic acid contains, in addition to the constitution (second embodiment) shown in Fig. 4, the low concentration acetic acid discharged from the upper portion of the first dehydration tower 21a of the first carboxylic acid recovery device 5a.
  • the azeotropic agent is introduced into the upper portion and the azeotropic agent discharged to the upper portion of the second dehydration tower 21b of the second carboxylic acid recovery apparatus is introduced into the lower portion, and the extractant + acetic acid + water is introduced from the upper side. 2, the extraction process unit 9 which sends water to the dehydration tower 21b and the remaining lower side to the organic matter recovery process unit 6;
  • the apparatus for separating water and recovering carboxylic acid from the discharge from the reactor during the oxidation reaction of the aromatic compound using energy-conjugated combined distillation includes a first dehydration tower for separating carboxylic acid and water through distillation; A first condenser for condensing the gas discharged to an upper portion of the first dewatering tower, a first condensate drum selectively installed for storing the condensate passing through the first condenser, and for supplying energy to the first dewatering tower A first carboxylic acid recovery device (5a) comprising a first reboiler (energy sharing with a condensation tower on top of a second dehydration tower, an azeotropic distillation column described below); The second dehydration tower for azeotropic distillation, which is installed on the rear side of the first carboxylic acid recovery device, is selectively introduced with a stream composed of another carboxylic acid and water, and the discharge liquid from the extraction column described later is introduced; A second carboxylic acid recovery device having
  • the organic material recovery process apparatus 6 which collect
  • Water containing the acid was introduced into the upper portion, and the azeotropic agent discharged to the upper portion of the second dehydration tower of the second carboxylic acid recovery device was introduced into the lower portion as an extractant. It includes; and the extraction process unit (9) to send to the second dehydration tower and the water of the remaining lower side selectively to the organic material recovery process apparatus.
  • the condensate drum 24 of the first acetic acid recovery device 5a has a vacuum pump 29 selectively installed at one downstream side thereof so that the vent gas is discharged, and the downstream side has a transfer pump ( 28) is selectively installed to introduce the discharge condensate into the second dewatering tower (21b).
  • the organic matter recovery process apparatus (6), azeotropic agent recovery process unit (7), aromatic compound recovery process unit (8) is usually a distillation column, reboiler, condenser which is a basic configuration for recovering acetic acid through conventional conventional distillation It is composed of a condensate drum, the extraction process unit 9 is also composed of a general extraction tower in which the extractant is used.
  • water can be efficiently separated from the discharge discharged from the reactor during the oxidation reaction of the aromatic compound using energy-conjugated combined distillation, and the carboxylic acid can be recovered.
  • the second dehydration tower operated in the atmospheric or pressurized state is configured as an azeotropic distillation column
  • water is separated from the discharge discharged from the reactor during the oxidation reaction of the aromatic compound using energy-conjugated combined distillation and carboxylic acid is recovered.
  • the method includes flowing the effluent into a first dehydration tower, which is operated at reduced or normal pressure after passing through each device in the process, to recover the concentrated carboxylic acid under the first dehydration tower, and to the top of the first dehydration tower.
  • first step Draining the less carboxylic acid removed
  • the azeotropic agent discharged from the oil / water separator installed downstream of the second dewatering tower is introduced into the extraction tower and the water containing the carboxylic acid discharged to the first dehydration tower is introduced into the extraction tower as an extractant.
  • Discharging carboxylic acid-free water to the bottom of the column and extracting the extractant + carboxylic acid + water to the top of the extraction column (second step); And a second dehydration tower operated at atmospheric pressure or pressure with the extractant + carboxylic acid + water discharged to the extraction tower as an azeotropic distillation column, flowing into the middle thereof, and recovering the carboxylic acid under the second dehydration tower.
  • the method according to the third embodiment further includes an extraction process step in addition to the steps according to the second embodiment, the condenser of the second dewatering tower acts as a reboiler of the first dewatering tower to the second dewatering tower reboiler Only the supplied energy can be used as distillation energy of the first dehydration column.
  • the acetic acid from which water is removed is recovered to the bottom of the first dehydration tower (21a) (acetic acid concentration: 90 ⁇ 95%), the concentration of acetic acid is 15 ⁇ 50% of water is discharged (at this time, if the concentration of acetic acid is too low, the energy supplied from the second dehydration tower 21b may not be able to operate the first dehydration tower 21a, which requires additional energy supply.
  • the water discharged to the top of the first dewatering tower flows into the top of the extraction tower, and optionally discharged to the top of the second dewatering tower
  • the azeotropic agent is used as an extractant to discharge acetic acid-free water to the lower part of the extraction tower, and the extractant containing acetic acid and some water to the upper part of the extraction tower is discharged to the second dehydration tower 21b ( second Azeotropic agents used in dewatering towers It is preferable to use the extractant of the extraction tower, but a separate extractant may be used due to the characteristics of each plant).
  • the extractant + acetic acid + water discharged to the top of the extraction tower is transferred to the second dehydration tower to recover acetic acid under the second dehydration tower (90 to 95%), and the water + to the top of the second dehydration tower.
  • the azeotropic agent is discharged to the gas phase and is transferred to the secondary condenser 22b through the primary condenser (energy heat exchanger) 22a of the second dehydration tower, which is used as a reboiler of the first dehydration tower, and discharged to the lower portion of the extraction tower.
  • the concentration of silver acetic acid is about 100 ⁇ 500 wt.ppm and 0.1 ⁇ 5 wt% extractant is sent to the distillation process to recover the organic matter in the water stream to recover the organic matter is discharged to the waste water.
  • Each process condition of the third embodiment of the present invention according to FIG. 5 is the same as each process condition of the second embodiment of the present invention according to FIG.
  • the method for separating water from the discharge from the reactor and recovering the carboxylic acid in the oxidation reaction of the aromatic compound using energy-conjugated combined distillation comprises two or more dehydration towers having different operating pressures.
  • One or more of the condenser is configured to serve as a reboiler of the other dehydration tower
  • the two or more dehydration tower may be composed of a distillation column of the distillation, or the two or more dehydration tower One or more of these may be configured as an azeotropic distillation column, and a vacuum steam or a low pressure steam may be used as a heat source supplied to the reboiler of one or more dehydration towers of the two or more dehydration towers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 방향족 화합물의 산화반응시 반응기 배출물로부터 반응 생성물인 물을 분리하고 반응기내에서 용매로 사용되는 카르복실산을 회수하는 방법에 관한 것으로, 보다 상세하게는 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물을 두 개 혹은 그 이상의 운전압력이 다른 탈수탑으로 유입하여 한 개의 탈수탑의 응축기가 다른 탈수탑의 재비기 역할을 함으로써 에너지 사용량이 현저히 감소하는 방향족 화합물의 산화반응시 반응기 배출물로부터 반응 생성물인 물을 분을 분리하고 반응기내에서 용매로 사용되는 카르복실산을 회수하는 방법에 관한 것이다.

Description

에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치 및 방법
본 발명은 에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법에 관한 것으로, 보다 상세하게는, 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하기 위하여 운전 압력이 서로 다른 두 개의 탈수탑을 사용하면서 압력이 높은 탈수탑의 응축기가 압력이 낮은 탈수탑의 재비기(reboiler) 역할을 하도록 하여 에너지를 공유하도록 함으로써 종래 알려진 통상 증류나 공비 증류 공정에서 물과 카르복실산을 분리하기 위해 사용되는 스팀의 사용량을 현저하게 줄이면서 방향족 화합물의 산화반응시 반응기 배출물로부터 경제적인 방법으로 물을 분리하고 카르복실산을 회수하는 방법에 관한 것이다.
일반적으로, 방향족 화합물을 산화 반응하면 발열 반응하면서 방향족 카르복실산과 물이 생성되며, 이 방향족 카르복실산은 일반적으로 고체이므로 반응기 내부에서 고체 상태로 존재하지 않도록 하기 위해 용매를 주입해야 한다. 방향족 카르복실산은 카르복실산에 용해도가 높기 때문에 반응 생성물인 방향족 산화물을 액상으로 유지하기 위해 산화 반응기에 카르복실산을 주입한다. 따라서, 산화 반응 후 생성된 기상과 액상 배출물에는 다량의 물과 카르복실산이 존재하게 되어, 산화 반응에 의해 생성된 물은 계외로 제거하고 카르복실산은 다시 산화 반응기로 회수하는 탈수공정이 필수적이다.
특히, 방향족 카르복실산의 일종인 프탈산(phthalic acid) 화합물의 제조공정은 방향족 화합물을 코발트, 망간 및 브롬 등의 촉매 하에서 공기에 의해 산화시키는 산화공정과 반응기에서 용매로 사용된 카르복실산의 일종인 초산을 회수하고 물을 제거하는 탈수공정을 포함한다.
이 때, 초산을 하부로 회수하고 물을 상부로 분리하는 탈수탑은 하부로 회수하는 초산의 농도를 통상 90 ~ 95wt% 정도로 운전한다. 탈수탑 하부의 초산 90 ~ 95wt% 용액의 상압에서 끓는 온도는 약 108 ~ 111℃ 이고, 탈수탑 상부의 물의 상압에서 끓는 온도는 100℃ 이므로 탈수탑을 두 개 또는 그 이상으로 구성하고 각 탈수탑 사이의 압력차이를 약 1kg/cm2 이하로 운전하면 압력이 높은 탈수탑의 응축기가 압력이 낮은 탈수탑의 재비기 역할을 하도록 구성할 수 있어, 적은 압력차이로도 한 개의 탈수탑의 재비기에 공급되는 에너지로 두 개 또는 그 이상의 탈수탑을 운전함으로써 다중 효용 증발관(Multi effect evaporator)의 원리로 에너지를 절감할 수 있다. 본 발명은 이 점을 착안한 것이다.
카르복실산의 일종인 초산을 물에서 분리 회수하는 방법으로는, 통상 증류(conventional distillation), 아세테이트 화합물 또는 알코올을 순환하는 공비 증류(azeotropic distillation) 등이 사용되고 있으며, 이때 증류탑 하부 온도가 탈수탑 내부의 압력 손실에 의해 125 내지 135℃ 정도로 높기 때문에 재비기에 사용되는 스팀의 종류는 중압 스팀(3.0kg/cm2G ~ 5 kg/cm2G, 143℃ ~ 158℃)이다.
또한, 초산의 회수율을 높이고 폐수 처리 비용을 줄이기 위해 통상 증류시 배출물 중 초산의 농도를 0.5wt% 정도, 공비 증류시 배출물 중 초산의 농도를 0.01wt% 로 유지하기 위해 중압 스팀의 사용량이 매우 많다.
도 1은 종래의 통상 증류를 통한 초산의 회수 방법을 나타낸 공정도이다.
도 1을 참조하면, 종래의 통상 증류를 통해 초산을 회수하는 장치는 탈수탑(1), 재비기(2), 응축기(3), 응축액 드럼(4)으로 구성되어 있으며, 상기 탈수탑(1) 안으로 초산 농도가 낮은 액상 스트림(초산 농도 40 ~ 70wt%), 초산 농도가 높은 기상 스트림(초산 농도 70 ~ 88wt%)이 유입되고, 상기 탈수탑(1) 하부로 나온 초산 중 일부의 초산(초산 농도 88 ~ 95wt%)은 외부로 배출되고 나머지 일부는 재비기(2)를 통해 다시 탈수탑(1)으로 유입되고, 상기 탈수탑(1) 상부로 나와 상기 응축기(3)를 통해 선택적으로 설치되는 응축액 드럼(4)을 거친 응축액 중 불응축가스는 밴트 가스(Vent gas)로 외부로 배출되고 그리고 일부는 환류액으로서 다시 상기 탈수탑(1) 안으로 유입된다.
이와 같은 종래의 통상 증류를 통한 탈수 및 초산 회수시 프탈산을 연간 500,000톤 생산하는 공장에서 초산을 회수하기 위해 탈수탑에서 사용하는 중압스팀의 량은 시간당 약 90~100 톤이다.
도 2는 종래의 공비 증류를 통한 초산의 회수 방법을 나타낸 공정도이다.
도 2를 참조하여 간략히 설명하자면, 종래 공비제를 사용하여 공비 증류를 통한 초산을 회수하기 위한 장치는 초산과 물을 공비 증류를 통하여 분리하기 위한 탈수탑(1)과, 상기 탈수탑(1)의 상부로 배출되는 가스를 응축시키는 응축기(3)와, 상기 응축기(3)를 거친 액상의 유기물질(Organic phase)과 물(Aquose phase)을 분리시키는 유수 분리기(4a)와, 상기 탈수탑(1)에 스팀을 공급하기 위한 재비기(2), 외부의 공비제 저장조(도시하지 않았음)를 포함하는 초산회수장치(5), 각기 선택적으로 설치되는 것으로서, 상기 초산회수장치의 수상 스트림으로부터 유기물을 회수하는 유기물 회수공정장치(6), 상기 초산회수장치의 유상 스트림으로부터 공비제를 회수하는 공비제 회수공정장치(7) 및 상기 초산회수장치로부터 방향족 화합물을 회수하는 방향족 화합물 회수공정장치(8)로 구성되어 있다. 상기 종래의 공비 증류를 통한 초산의 회수 방법에 관한 상세한 공정과정은 도 2에 예시된 바와 같다.
종래의 공비 증류를 통한 초산 회수시 프탈산을 연간 500,000톤 생산하는 공장에서 초산을 회수하기 위해 탈수탑에서 사용하는 중압스팀의 양은 시간당 약 60 ~ 70톤이며, 추가적으로 공비제를 회수하기 위해 운전하여야하는 증류탑들에서 중압 스팀 사용량을 합하면 시간당 약 65 ~ 75톤의 중압스팀이 필요하다. 공비제를 사용하는 초산 회수 방법은 통상 증류에 비해 중압스팀 사용량을 약 25 ~ 30% 정도 줄일 수 있는 장점이 있으나, 일부의 공비제는 산화반응기로 유실되어 불순물을 생성하고, 일부의 공비제는 폐수와 함께 배출되는 것을 완전히 방지할 수 없는 문제점이 있다.
따라서, 본 발명은 종래 통상 증류 공정에서 탈수탑에 사용되는 에너지 사용량보다 더욱 절감시킬 수 있으며, 공비제를 사용하지 않으므로 공비제를 저장하기 위한 저장조가 필요하지 않고 공비제를 회수하기 위한 별도의 증류탑을 운전 할 필요가 없으며, 공비제 유실에 대한 문제가 없는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 산화반응에 의해 생성된 물을 분리하고 용매로 사용되는 카르복실산을 회수하는 방법 및 장치를 제공하는 것을 제1 목적으로 한다.
또한, 공비제를 사용하는 공비 증류의 경우에도 에너지를 공유하는 두 개의 탈수탑으로 구성하여 에너지 사용량을 줄일 수 있는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 산화반응에 의해 생성된 물을 분리하고 용매로 사용되는 카르복실산을 회수하는 방법 및 장치를 제공하는 것을 제2 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명의 제 1 실시예에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치는, 두 개의 에너지를 공유하는 제 1 및 제 2 탈수탑, 상기 제 1 탈수탑의 상부 하류측에 설치된 제 1 탈수탑 응축기, 상기 제 1 탈수탑 응축기의 하류측에 각기 선택적으로 설치되는 제 1 탈수탑 응축액 드럼, 제 1 탈수탑 응축액 이송펌프 및 제 1 탈수탑 응축액 진공펌프, 상기 제 1 탈수탑 하부의 하류측과 상기 제 2 탈수탑의 상부 하류측에 공동적으로 연결되어 배출물을 각각 재비 및 응축시키는 제 1 탈수탑 재비기-제 2 탈수탑 응축기(에너지 공유 열교환기), 상기 제 1 탈수탑 재비기-제 2 탈수탑 응축기(에너지 공유 열교환기)의 하류측에 순차로 설치된 제 2 탈수탑 냉각기 및 선택적으로 설치되는 제 2 탈수탑 응축액 드럼, 및 상기 제 2 탈수탑의 하부 하류측에 설치된 제 2 탈수탑 재비기를 포함한다.
본 발명의 제 2 실시예에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치(공비 증류를 포함하는 경우)는, 카르복실산을 포함하는 모든 스트림 또는 비교적 낮은 농도의 액상 스트림 카르복실산과 물을 통상 증류를 통하여 분리하기 위한 제 1 탈수탑과, 상기 제 1 탈수탑의 상부로 배출되는 가스를 응축시키는 제 1 응축기와, 상기 제 1 응축기를 거친 응축액을 저장하는 선택적으로 설치되는 제 1응축액 드럼과, 상기 제 1 탈수탑에 에너지를 공급하기 위한 제 1 재비기(후술하는 공비 증류탑인 제 2 탈수탑 상부의 응축기와 에너지 공유)를 포함하는 제 1 카르복실산회수장치; 상기 제 1 카르복실산회수장치의 후방측에 설치되는 것으로서 또 다른 카르복실산과 물로 구성된 스트림이 선택적으로 유입되고 상기 제 1 탈수탑으로부터의 배출액이 유입되는 공비 증류용 제 2 탈수탑과, 상기 제 2 탈수탑의 상부로 배출되는 가스를 상기 재비기를 통해 응축시키는 제 2 응축기 및 그 후미의 유수 분리기와, 상기 제 2 탈수탑에 에너지를 공급하기 위한 제 2 재비기를 갖춘 제 2 카르복실산회수장치; 및 선택적으로 설치되는 것으로서, 상기 제 2 카르복실산회수장치로부터 수상 스트림으로부터 유기물을 회수하는 유기물 회수공정장치, 상기 제 2 카르복실산회수장치의 유상 스트림으로부터 공비제를 회수하는 공비제 회수공정장치 및 상기 제 2 카르복실산회수장치로부터 방향족 화합물을 회수하는 방향족 화합물 회수공정장치를 포함하는 것을 특징으로 한다. 상기 제 1 카르복실산회수장치의 응축액 드럼의 하류 일측에는 진공펌프가 선택적으로 설치되어 밴트 가스가 배출되고, 그리고 하류 타측에는 이송펌프가 선택적으로 설치되어 배출응축액을 상기 제 2 탈수탑으로 유입시키도록 되어 있다. 본 발명의 실시예에 따르면, 상기 유기물 회수공정장치, 공비제 회수공정장치, 방향족 화합물 회수공정장치는 통상적으로 종래의 통상 증류를 통해 초산을 회수하는 기본 구성인 증류탑, 재비기, 응축기, 응축액 드럼으로 구성된다.
본 발명의 제 3 실시예에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치(추출 및 공비 증류를 포함하는 경우)는, 카르복실산을 포함하는 모든 스트림 또는 비교적 낮은 농도의 액상 스트림 카르복실산과 물을 통상 증류를 통하여 분리하기 위한 제 1 탈수탑과, 상기 제 1 탈수탑의 상부로 배출되는 가스를 응축시키는 제 1 응축기와, 상기 제 1 응축기를 거친 응축액을 저장하는 선택적으로 설치되는 제 1응축액 드럼과, 상기 제 1 탈수탑에 에너지를 공급하기 위한 제 1 재비기(후술하는 공비 증류탑인 제 2 탈수탑 상부의 응축기와 에너지 공유)를 포함하는 제 1 카르복실산회수장치; 상기 제 1 카르복실산회수장치의 후방측에 설치되는 것으로서 또 다른 카르복실산과 물로 구성된 스트림이 선택적으로 유입되고 후술하는 추출탑의 상부로부터 배출되는 배출액이 유입되는 공비 증류용 제 2 탈수탑과, 상기 제 2 탈수탑의 상부로 배출되는 가스를 상기 재비기를 통해 응축시키는 제 2 응축기 및 그 후미의 유수 분리기와, 상기 제 2 탈수탑에 에너지를 공급하기 위한 제 2 재비기를 갖춘 제 2 카르복실산회수장치; 및 선택적으로 설치되는 것으로서, 상기 제 2 카르복실산회수장치로부터 수상 스트림으로부터 유기물을 회수하는 유기물 회수공정장치, 상기 제 2 카르복실산회수장치의 유상 스트림으로부터 공비제를 회수하는 공비제 회수공정장치, 상기 제 2 카르복실산회수장치로부터 방향족 화합물을 회수하는 방향족 화합물 회수공정장치, 및 상기 제 1 카르복실산회수장치의 제 1 탈수탑 상부로부터 배출되는 저농도 초산을 함유한 물을 상부로 유입하고 상기 제 2 카르복실산회수장치의 제 2 탈수탑의 상부로 배출되는 공비제를 추출제로 사용하여 하부로 유입하여 상부측에서는 추출제+카르복실산+물을 상기 제 2 탈수탑으로 그리고 나머지 하부측의 물은 상기 유기물 회수공정장치로 보내는 추출공정장치를 포함하는 것을 특징으로 한다. 상기 제 1 카르복실산회수장치의 응축액 드럼의 하류 일측에는 진공펌프가 선택적으로 설치되어 밴트 가스가 배출되고, 그리고 하류 타측에는 이송펌프가 선택적으로 설치되어 배출응축액을 상기 제 2 탈수탑으로 유입시키도록 되어 있다. 본 발명의 실시예에 따르면, 상기 유기물 회수공정장치, 공비제 회수공정장치, 방향족 화합물 회수공정장치는 통상적으로 종래의 통상 증류를 통해 초산을 회수하는 기본 구성인 증류탑, 재비기, 응축기, 응축액 드럼으로 구성되며, 추출공정장치 역시 추출제가 사용되는 일반적인 추출탑 또는 구동장치가 포함되는 추출탑으로 구성된다.
한편, 본 발명의 제 1 실시예에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법은, 상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑의 상부로 물을 배출하고, 상기 제 1 탈수탑의 하부로는 1차적으로 농축된 카르복실산산을 회수하는 단계(제1 단계); 및 상기 제 1 탈수탑의 하부로부터 배출되는 1차적으로 농축된 카르복실산을 상압 혹은 가압으로 운전되는 제 2 탈수탑의 중간으로 유입하여, 제 2 탈수탑 하부로 최종 농축된 카르복실산을 회수하는 단계(제2 단계);를 포함하고, 상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하게 하는 것을 특징으로 하는, 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 것을 특징으로 한다.
본 발명의 제 2 실시예에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법에 있어서, 상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑 하부로 농축된 카르복실산을 회수하고, 상기 제 1 탈수탑의 상부로는 카르복실산이 덜 제거된 물을 배출하는 단계(제1 단계); 및 상기 제 1 탈수탑 상부로 배출되는 카르복실산을 함유한 물을 상압 혹은 가압으로 운전되는 제 2 탈수탑을 공비 증류탑으로 구성하여 그의 중간으로 유입하여 제 2 탈수탑 하부로 카르복실산을 회수하고 제 2 탈수탑 상부로 최종 분리된 물을 배출하는 단계(제2 단계) 를 포함하고, 상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하게 하는 것을 특징으로 하는, 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법을 제공한다.
본 발명의 제 3 실시예에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법(추출 및 공비 증류를 포함하는 경우)은, 상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑 하부로 농축된 카르복실산을 회수하고, 상기 제 1 탈수탑의 상부로는 카르복실산이 덜 제거된 물을 배출하는 단계(제1 단계); 상기 제 1 탈수탑 상부로 배출되는 카르복실산을 함유한 물을 추출탑의 상부로 유입하고 제 2 탈수탑 상부 하류에 설치된 유수분리기로부터 배출되는 공비제를 추출탑 하부에 추출제로서 유입하여 추출탑 하부로 카르복실산이 제거된 물을 배출하고 추출탑 상부로 추출제+카르복실산+물을 배출하는 단계(제2 단계); 및 상기 추출탑 상부로 배출되는 추출제+카르복실산+물을 상압 혹은 가압으로 운전되는 제 2 탈수탑을 공비증류탑으로 구성하여 그의 중간으로 유입하여 제 2 탈수탑 하부로 카르복실산을 회수하고 공비제를 이용하여 제 2 탈수탑 상부로 최종 분리된 물을 배출하는 단계(제3 단계);를 포함하고, 상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하게 하는 것을 특징으로 하는, 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법을 제공한다.
상술한 바와 같이 본 발명에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법은 다음과 같은 효과를 제공한다.
첫째, 에너지를 공유하는 두 개 또는 그 이상의 탈수탑을 연결하여 운전하기 때문에 종래기술에 비해 탈수 및 카르복실산 회수에 필요한 에너지 사용을 줄일 수 있다.
둘째, 한 개 또는 그 이상의 탈수탑을 감압하여 진공운전을 할 경우 탈수탑 하부에 저압 스팀을 사용하는 재비기를 추가함으로써, 공정내의 수요처가 없었던 저압 스팀을 사용할 수 있으므로 중압스팀의 사용량을 더욱 절감할 수 있다.
셋째, 공비제를 사용하지 않고도 하나의 탈수탑으로 운전되는 공비증류에 비해 적은 에너지 사용으로 공비 증류 이상의 에너지 절감 효과가 있고, 별도의 공비제 저장조가 필요하지 않고 공비제의 유실에 대한 우려도 없다.
넷째, 공비증류를 하더라도 에너지를 공유하는 두 개 또는 그 이상의 탈수탑을 운전함으로써 종래기술에 비해 에너지 사용을 더욱 줄일 수 있다.
도 1은 종래의 하나의 탈수탑을 사용하는 통상 증류를 통한 초산의 회수 방법을 나타낸 공정도.
도 2는 종래의 하나의 탈수탑을 사용하는 공비증류를 통한 초산의 회수 방법을 나타낸 공정도.
도 3은 본 발명에 제 1 실시예에 따른 에너지를 공유하는 두 개의 탈수탑을 이용한 방향족 화합물 산화 반응기 배출물로부터 물을 분리하고 카르복실산(초산)을 회수하는 방법을 나타낸 공정도.
도 4는 본 발명의 제 2 실시예에 따른 에너지를 공유하는 두 개의 탈수탑을 이용한 방향족 화합물 산화 반응기 배출물로부터 물을 분리하고 카르복실산(초산)을 회수하는 방법에 있어서 공비 증류를 포함하는 경우의 공정도.
도 5는 상기 도 4에 도시된 공정도에 추출공정장치가 추가된, 본 발명의 제 3 실시예에 따른 에너지를 공유하는 두 개의 탈수탑을 이용한 방향족 화합물 산화 반응기 배출물로부터 물을 분리하고 카르복실산(초산)을 회수하는 방법에 있어서 공비 증류를 포함하는 경우의 공정도,
<부호의 설명>
1,11,21: 탈수탑(증류탑) 2,15,16,22: 재비기
3,13,23: 응축기 4,14,17,24: 응축액 드럼
4a,24b: 유수 분리기 5: 카르복실산(초산)회수장치
6: 유기물 회수공정장치 7: 공비제 회수공정장치
8: 방향족 화합물 회수공정장치 9: 추출공정장치
18,28: 이송펌프 19,29: 진공펌프
이하, 본 발명의 바람직한 실시예들을 첨부도면을 통해 본 발명을 보다 상세하게 설명하기로 한다.
그럼, 본 발명에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 일종인 파라자일렌을 공기에 의해 산화 반응하여 생산하는 방향족 카르복실산의 일종인 테레프탈산을 제조하는 공정에서 반응에 의해 생성된 물을 분리하고 반응기에서 용매로 사용되는 카르복실산의 대표적인 일종인 초산을 회수하는 장치 및 방법에 관해 각 실시예 별로 설명하기로 한다.
참고로, 본 발명에 대해 발명자는 테레프탈산 제조공정 중 산화반응시 반응기에서 코발트, 망간 및 브롬 촉매 하에 파라자일렌을 공기에 의해 산화시킬 때 발생하는 열에 의해 용매로서 사용된 초산과 반응에 의해 발생한 물이 공기중에 존재하는 질소 등의 기체와 함께 고온의 기상으로 배출되고 일부 초산과 물은 테레프탈산과 함께 액상으로 배출되는데 있어, 이 배출물들로부터 물을 분리하고 초산을 회수하는데 두 개 또는 그 이상의 각각 운전 압력이 다른 탈수탑을 이용하면 선행하는 탈수탑 재비기에서 필요한 에너지를 후행하는 탈수탑 응축기에서 공급할 수 있음으로써 다중효용 증발관(Multi effect evaporator)의 효과에 의해 중압 스팀 사용량을 절감 할 수 있다는 점을 착안하여 본 발명을 완성한 것이다.
도 3은 본 발명에 제 1 실시예에 따른 에너지를 공유하는 두 개의 탈수탑을 이용한 방향족 화합물 산화 반응기 배출물로부터 물을 분리하고 카르복실산(초산)을 회수하는 방법을 나타낸 공정도를 보여 준다.
도 3에 도시된 바와 같이, 두 개의 에너지를 공유하는 탈수탑을 이용하여 테레프탈산 제조시 반응기로부터 배출되는 가스 및 액체로부터 물을 제거하고 초산을 회수하는 장치는 두 개의 에너지를 공유하는 제 1 및 제 2 탈수탑(11a,11b), 상기 제 1 탈수탑(11a)의 상부 하류측에 설치된 제 1 탈수탑 응축기(13), 상기 제 1 탈수탑 응축기(13)의 하류측에 각기 선택적으로 설치되는 제 1 탈수탑 응축액 드럼(14), 제 1 탈수탑 응축액 이송펌프(18) 및 제 1 탈수탑 응축액 진공펌프(19), 상기 제 1 탈수탑(11a) 하부의 하류측과 상기 제 2 탈수탑(11b)의 상부 하류측에 공동적으로 연결되어 배출물을 각각 재비 및 응축시키는 제 1 탈수탑 재비기-제 2 탈수탑 응축기(에너지 공유 열교환기)(15), 상기 제 1 탈수탑 재비기-제 2 탈수탑 응축기(에너지 공유 열교환기)(15)의 하류측에 순차로 설치된 제 2 탈수탑 냉각기(12) 및 선택적으로 설치되는 제 2 탈수탑 응축액 드럼(17), 및 상기 제 2 탈수탑(11b)의 하부 하류측에 설치된 제 2 탈수탑 재비기(16)를 포함한다.
상기와 같이 구성된 장치에 의해, 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수할 수 있다.
즉, 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법은 상기 배출물이 공정 내의 각 장치를 거친 후 감압 또는 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑의 상부로 물을 배출하고, 상기 제 1 탈수탑의 하부로는 1차적으로 농축된 카르복실산산을 회수하며(제1 단계), 상기 제 1 탈수탑의 하부로부터 배출되는 1차적으로 농축된 카르복실산을 상압 또는 가압으로 운전되는 제 2 탈수탑의 중간으로 유입하여, 제 2 탈수탑 하부로 최종 농축된 카르복실산을 회수하며(제2 단계), 상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용할 수 있다.
경우에 따라서는, 제 1 탈수탑 하부로 농축된 카르복실산을 회수하고 제 1 탈수탑 상부로 카르복실산이 함유된 물을 배출하여 이것을 제 2 탈수탑으로 유입하여 제 2 탈수탑 하부로도 농축된 카르복실산을 회수하고 제 2 탈수탑 상부로 최종 정제된 물을 배출할 수도 있다. 즉, 상기 제1 단계와 제2 단계의 흐름공정을 바꾸어, 제1 단계에서 상기 배출물이 공정내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑의 하부로 농축된 카르복실산을 회수하고, 상기 제 1 탈수탑 상부로 카르복실산을 함유한 물을 배출하고, 제2 단계에서 상기 제 1 탈수탑의 상부로부터 배출되는 카르복실산을 함유한 물을 상압 혹은 가압으로 운전되는 제 2 탈수탑으로 유입하여, 제 2 탈수탑 하부로 농축된 카르복실산을 회수할 수도 있다.
본 발명의 제 1 실시예에 따른 장치에 의해 에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법을 구체적으로 설명한다면, 각 공정을 거친 반응기 배출물중 초산을 포함하는 모든 스트림 또는 초산의 농도가 약 40 ~ 70wt% 로 비교적 낮은 액상 스트림(A1,B1)을 제 1 탈수탑(11a)으로 유입하여 제 1 탈수탑(11a) 상부로 물을 분리하고(M1), 1차적으로 농축된 초산을 제 1 탈수탑(11a) 하부로 배출한다(R1). 1차적으로 농축되어 제 1 탈수탑(11a) 하부로 배출되는 초산의 농도는 약 60 ~ 80 wt% 이다. 각 공정을 거친 반응기 배출물 중 선택적으로 초산의 농도가 약 70 ~ 88wt% 로 비교적 높은 기상 스트림(C1)은 제 2 탈수탑(11b)으로 유입하고 상기 제 1 탈수탑 하부로 배출되는 1차적으로 농축된 초산은 제 2 탈수탑으로 유입한다(D1). 이 때 제 2 탈수탑(11b)의 재비기(16)에는 스팀을 사용하고, 제 2 탈수탑(11b)의 응축기(15)는 제 1 탈수탑(11a)의 재비기 역할을 한다. 제 2 탈수탑(11b) 하부로 회수되는 초산의 농도는 90 ~ 95wt% 이고, 제 1 탈수탑(11a)과 제 2 탈수탑(11b)의 상부로 분리되는 물 중 초산의 농도는 0.1 ~ 0.5wt% 이다. 제 1 탈수탑(11a)의 상부로 분리되는 물과 제 2 탈수탑(11b)의 상부로 분리되는 물은 각각의 응축액 드럼을 사용하여 별도로 운용할 수도 있고, 제 2 탈수탑(11b)의 응축액 드럼(17)에 모두 모이게 하여 사용할 수도 있다.
상기 제 1 탈수탑(11a)의 압력은 -0.8 내지 0.8 kg/cm2G 로 운전하는 것이 바람직하며, 보다 바람직하게는 -0.8 ~ -0.5 kg/cm2G인 것이 좋다. 제 2 탈수탑(11b)은 응축기(15)가 제 1 탈수탑(11a)의 재비기로써 역할을 할 수 있을 정도의 온도가 유지되도록 압력은 0.1 ~ 1.7 kg/cm2G 로 운전하는 것이 바람직하며, 보다 바람직하게는 0.1 ~ 0.4 kg/cm2G 인 것이 좋다.
제 1 탈수탑(11a)의 압력이 너무 낮으면 상부에서 사용하는 응축수의 제한 때문에 운전이 곤란하고, 제 1 탈수탑(11a)의 압력이 너무 높으면 제 2 탈수탑(11b)의 압력을 더욱 높게 유지하여야 하게 때문에 제 2 탈수탑(11b) 하부 온도가 높아져 더욱 고가인 고압스팀을 사용하여야 한다.
한편, 제 1 탈수탑(11a)의 온도가 낮으므로 제 1 탈수탑 주변에 별도의 재비기를 추가로 구성하여 공정내에 사용하지 않는 저압스팀 혹은 진공 스팀을 공급하면 제 2 탈수탑(11b)에 공급되는 중압스팀의 사용량을 더욱 줄일 수 있다.
제 2 탈수탑(11b)의 운전 압력은 제 1 탈수탑(11a) 하부에 에너지를 전달하는데 적합할 정도로 유지하면 된다.
탈수탑의 개수를 세 개 이상으로 구성하면 에너지를 더욱 절감할 수 있으나 투자비가 증가하게 되고 수량 증가에 따른 에너지 절감 효과는 줄어 들게 되므로 2 ~ 3개가 바람직하다.
본 발명의 제 1 실시예에 따른 방법에 의해, 즉, 방향족 화합물의 일종인 자일렌을 산화 반응기에서 공기에 의해 산화시켜 방향족 카르복실산의 일종인 프탈산을 제조하는 공정에서 산화반응에 의해 생성된 물을 분리하고 용매로 사용되는 카르복실산의 일종인 초산을 회수할 때, 각 공정을 거친 초산을 포함하는 모든 스트림 또는 초산의 농도가 비교적 낮은 액상 스트림을 상압 또는 감압으로 운전되는 제 1 탈수탑으로 유입하여 상부로 물을 배출하고 하부로 1 차적으로 농축된 초산을 배출하는 단계 ; 제 1 탈수탑 하부로 배출되는 1 차적으로 농축된 초산을 제 2 탈수탑 중간으로 유입하여 상부로 물을 분리하고, 하부로 최종 농축된 초산을 회수하는 단계를 포함하고, 상기 제 2 탈수탑의 응축기를 제 1 탈수탑의 재비기 역할을 하도록하는 분리 및 회수방법을 사용으로써, 종래의 통상 증류에 사용하는 90단의 트레이(Tray)를 갖고 있는 탈수탑에서 연간 프탈산 500,000톤을 생산할 경우 탈수탑에 사용되는 중압스팀은 시간당 90 ~ 100톤임에 비해, 기존의 탈수탑을 제 2 탈수탑으로 사용하고 트레이 단수가 60단인 제 1 탈수탑을 사용할 경우 중압스팀 사용량은 시간당 55 ~ 65톤이 된다. 이것은 두 개의 탈수탑의 단수를 합친 하나의 탈수탑을 150단(90+60)으로 했을 경우의 중압스팀 사용량인 시간당 80~90 톤보다도 매우 적은 양이며, 공비 증류시 탈수탑 및 공비제 회수공정에 사용되는 중압스팀의 사용량인 시간당 65 ~ 75톤 보다도 적은 량이다. 제 1 탈수탑을 감압하거나, 제 1 탈수탑으로부터 제 2 탈수탑으로 액(물)을 이송하는데 필요한 에너지는 시간당 중압스팀 1톤 이하에 해당하는 에너지가 필요하므로 탈수탑 에너지 사용저감량에 비해 매우 적다.
따라서, 하나의 공비증류탑을 운전하는 경우 한 개의 탈수탑으로 운전하는 통상 증류에 비해 약 70 ~ 75% 정도의 에너지가 소비되고, 두 개의 탈수탑을 에너지를 공유하여 운전하면 한 개의 탈수탑으로 운전하는 통상 증류에 비해 약 60 ~ 65% 정도의 에너지만 필요하다.
제 1 탈수탑과 제 2 탈수탑에 유입하는 초산을 함유하는 스트림은 각 스트림의 초산 농도와 온도를 고려하여 제 2 탈수탑에 공급되는 에너지와 제 1 탈수탑에 필요한 에너지가 최소화 되고 균형을 이룰 수 있도록 선택하는 것이 바람직하다.
도 4는 본 발명의 제 2 실시예에 따른 에너지를 공유하는 두 개의 탈수탑을 이용한 방향족 화합물 산화 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법에 있어서 공비 증류를 포함하는 경우의 공정도를 보여 준다.
도 4에 도시된 바와 같이, 공비 증류를 포함하는 경우의 두 개의 에너지를 공유하는 탈수탑을 이용하여 테레프탈산 제조시 반응기로부터 배출되는 가스 및 액체로부터 물을 제거하고 초산을 회수하는 장치는, 초산을 포함하는 모든 스트림 또는 비교적 낮은 농도의 액상 스트림 초산과 물을 통상 증류를 통하여 분리하기 위한 제 1 탈수탑(21a)과, 상기 제 1 탈수탑(21a)의 상부로 배출되는 가스를 응축시키는 제 1 응축기(23a)와, 상기 제 1 응축기(23a)를 거친 응축액을 저장하기 위해 선택적으로 설치되는 제 1응축액 드럼과, 상기 제 1 탈수탑(21a)에 에너지를 공급하기 위한 제 1 재비기(22a)(후술하는 공비 증류탑인 제 2 탈수탑(21b) 상부의 응축기와 에너지 공유)를 포함하는 제 1 초산회수장치(5a); 상기 제 1 초산회수장치(5a)의 후방측에 설치되는 것으로서 비교적 초산 농도가 높은 기상 스트림이 선택적으로 유입되고 상기 제 1 탈수탑(21a)으로부터의 배출액이 유입되는 공비 증류용 제 2 탈수탑(21b)과, 상기 제 2 탈수탑(21b)의 상부로 배출되는 가스를 상기 제 1 재비기(22a)를 통해 응축시키는 제 2 응축기(23b) 및 그 후미의 유수 분리기(24a)와, 상기 제 2 탈수탑에 에너지를 공급하기 위한 제 2 재비기(22b)를 갖춘 제 2 초산회수장치(5b); 및 각기 선택적으로 설치되는 것으로서, 상기 제 2 초산회수장치(5b)로부터 수상 스트림으로부터 유기물을 회수하기 위하여 선택적으로 설치되는 유기물 회수공정장치(6), 상기 제 2 초산회수장치의 유상 스트림으로부터 공비제를 회수하는 공비제 회수공정장치(7) 및 상기 제 2 초산회수장치(5b)로부터 방향족 화합물을 회수하는 방향족 화합물 회수공정장치(8);를 포함한다. 본 발명의 실시예에 따르면, 상기 제 1 초산회수장치(5a)의 응축액 드럼(24)은 하류 일측에는 진공펌프(29)가 선택적으로 설치되어 밴트 가스가 배출되고, 그리고 하류 타측에는 이송펌프(28)가 선택적으로 설치되어 배출응축액을 상기 제 2 탈수탑(21b)으로 유입시킨다. 본 발명의 실시예에 따르면, 상기 유기물 회수공정장치(6), 공비제 회수공정장치(7), 방향족 화합물 회수공정장치(8)는 통상적으로 종래의 통상 증류를 통해 초산을 회수하는 기본 구성요소인 증류탑, 재비기, 응축기, 응축액 드럼으로 구성된다.
상기와 같이 구성된 장치에 의해, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수할 수 있다.
즉, 상기 상압 또는 가압 상태에서 운전되는 제 2 탈수탑을 공비증류탑으로 구성하는 경우, 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법은 상기 배출물이 공정 내의 각 장치를 거친 후 감압 또는 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑 하부로 농축된 카르복실산을 회수하고, 상기 제 1 탈수탑의 상부로는 카르복실산이 덜 제거된 물을 배출하고(제1 단계), 상기 제 1 탈수탑 상부로 배출되는 물을 상압 또는 가압으로 운전되는 제 2 탈수탑을 공비증류탑으로 구성하여 그의 중간으로 유입하여 제 2 탈수탑 하부로 카르복실산을 회수하고 제 2 탈수탑 상부로 최종 분리된 물을 배출하며(제2 단계), 상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하게 할 수 있다.
경우에 따라서는, 제 1 탈수탑 상부로 정제된 물을 배출하고 제 1 탈수탑 하부로 1차적으로 농축된 카르복실산을 배출하여 이것을 제 2 탈수탑으로 유입하여 제 2 탈수탑 하부로 최종 농축된 카르복실산을 회수하고 제 2 탈수탑 상부로도 정제된 물을 배출할 수도 있다. 즉, 상기 제1 단계와 제2 단계의 흐름공정을 바꾸어, 제1 단계에서 상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑 상부로 정제된 물을 배출하고 제 1 탈수탑 하부로 1차적으로 농축된 초산을 배출하고, 제2 단계에서 상기 제 1 탈수탑의 하부로 배출되는 1차 농축된 카르복실산을 상압 혹은 가압으로 운전되는 제 2 탈수탑을 공비증류탑으로 구성하여 그의 중간으로 유입하여 제 2 탈수탑 하부로 최종 농축된 초산을 회수하고 제 2 탈수탑 상부로 정제된 물을 배출할 수도 있다.
상기와 같은 본 발명의 제2 실시예로서, 제 2 탈수탑(21b)을 공비 증류로 할 경우, 도 4에 제시된 바와 같이, 두 개의 에너지를 공유하는 탈수탑을 이용하여 테레프탈산 제조시 반응기로부터 배출되는 가스 및 액체로부터 물을 제거하고 초산을 회수하는 방법은, 각 공정을 거친 반응기 배출물 중 초산을 함유하는 모든 스트림 또는 초산의 농도가 약 40 ~ 70 wt%로 비교적 낮은 액상 스트림(A2,B2)을 제 1 탈수탑(21a)으로 유입하여 제 1 탈수탑 하부로 초산을 회수하고(O2), 1차적으로 초산이 제거된 물을 제 1 탈수탑 상부로 배출한다(Q2). 1차적으로 초산이 제거된 제 1 탈수탑 상부로 배출되는 물 중 초산의 농도는 약 20 ~ 60wt% 이다. 각 공정을 거친 반응기 배출물 중 선택적으로 초산의 농도가 약 70 ~ 88wt%로 비교적 높은 기상 스트림(C2)은 제 2 탈수탑(21b)으로 유입하고 상기 제 1 탈수탑(21a) 상부로 배출되는 1 차적으로 초산이 제거된 물을 제 2 탈수탑(21b)으로 유입한다(S2). 이때 제 2 탈수탑(21b)의 재비기(22b)에는 스팀을 사용하고, 제 2 탈수탑(21b)의 응축기(23b)는 제 1 탈수탑의 재비기 역할을 한다. 제 2 탈수탑(21b) 하부로 회수되는 초산의 농도는 90 ~ 95wt% 이고, 제 2 탈수탑(21b)의 상부로 분리되는 물 중 초산의 농도는 0.01 ~ 0.05 wt%, 바람직하게는 0.005 ~ 0.03 wt%이다. 제 1 탈수탑의 상류는 제 1 탈수탑의 환류로, 제 2 탈 탈수탑의 상류는 제 2 탈수탑의 환류로 사용하면 되나, 제 2 탈수탑 상부의 물중 초산 농도가 낮으므로 제1 탈수탑의 환류로도 사용할 수 있다. 제 2 탈수탑(21b)은 전술한 바와 같이 공비제가 환류된다(G2).
상기 제 1 탈수탑(21a)의 압력은 -0.8 내지 0.8 kg/cm2G로 운전하는 것이 바람직하며, 보다 바람직하게는 -0.8~-0.5 kg/cm2G인 것이 좋다. 제 2 탈수탑(21b)은 응축기가 제 1 탈수탑의 재비기로써 역할을 할 수 있을 정도의 온도가 유지되도록 압력은 0.1 ~ 1.7 kg/cm2G로 운전하는 것이 바람직하며 보다 바람직하게는 0.1 ~ 0.4 kg/cm2G인 것이 좋다.
제 1 탈수탑(21a)의 압력이 너무 낮으면 상부에서 사용하는 응축수의 제한 때문에 운전이 곤란하고, 제 1 탈수탑(21a)의 압력이 너무 높으면 제 2 탈수탑(21b)의 압력을 더욱 높게 유지하여야 하게 때문에 제 2 탈수탑(21b) 하부 온도가 높아져 더욱 고가인 고압 스팀을 사용하여야 한다. 제 1 탈수탑(21a)의 온도가 낮으므로 제 1 탈수탑(21a)의 재비기를 추가로 구성하여 공정내에 사용하지 않는 저압스팀 혹은 진공 스팀을 공급하면 제 2 탈수탑(21b)에 공급되는 중압스팀의 사용량을 더욱 줄일 수 있다.
제 2 탈수탑(21b)의 운전 압력은 제 1 탈수탑(21a) 하부에 에너지를 전달하는데 적합할 정도로 유지하면 된다.
탈수탑의 개수를 세 개 이상으로 구성하면 에너지를 더욱 절감 할 수 있으나 투자비가 증가하게 되고 수량 증가에 따른 에너지 절감 효과는 줄어 들게 되므로 2 ~ 3개가 바람직하다.
제 2 탈수탑에 사용하는 공비제는 주로 에틸아세테이트, 프로필아세테이트, 부틸아세테이등 아세테이트계 화합물 혹은 부틸알코올등 알코올계 화합물 혹은 자일렌등 방향족 화합물 혹은 상기 화합물들을 적절히 혼합한 화합물이다.
제 1 탈수탑과 제 2 탈수탑에 유입하는 초산을 함유하는 스트림은 각 스트림의 초산 농도와 온도를 고려하여 제 2 탈수탑에 공급되는 에너지와 제 1 탈수탑에 필요한 에너지가 최소화 되고 균형을 이룰 수 있도록 선택하는 것이 바람직하다.
도 5는 본 발명의 제 3 실시예에 따른 에너지를 공유하는 두 개의 탈수탑을 이용한 방향족 화합물 산화 반응기 배출물로부터 물을 분리하고 카르복실산(초산)을 회수하는 방법에 있어서 추출 및 공비 증류를 포함하는 경우의 공정도를 보여준다.
도 5는 본 발명의 제 3 실시예에 따른 에너지를 공유하는 두 개의 탈수탑을 이용한 방향족 화합물 산화 반응기 배출물로부터 물을 분리하고 카르복실산(초산)을 회수하는 방법에 있어서 추출 및 공비 증류를 포함하는 경우의 공정도를 보여주는 것으로서, 상기 도 4 구성(제 2 실시예)에 추출공정장치(9)를 추가한 것으로 상기 도 4에 따른 장치 및 동작에 관한 모든 조건 및 설명은 대부분 동일하여 반복을 피해 생략하기로 하고, 추가부분에 대해서만 설명하기로 한다.
도 5에 도시된 바와 같이, 본 발명의 제 3 실시예에 따른 공비 증류를 포함하는 경우의 두 개의 에너지를 공유하는 탈수탑을 이용하여 테레프탈산 제조시 반응기로부터 배출되는 가스 및 액체로부터 물을 제거하고 초산을 회수하는 장치는, 상기 도 4의 구성(제 2실시예)에 추가하여, 상기 제 1 카르복실산회수장치(5a)의 제 1 탈수탑(21a)의 상부로부터 배출되는 저농도 초산을 함유한 물을 상부로 유입하고 상기 제 2 카르복실산회수장치의 제 2 탈수탑(21b)의 상부로 배출되는 공비제를 추출제로 사용하여 하부로 유입하여 상부측에서는 추출제+초산+물을 상기 제 2 탈수탑(21b)으로 그리고 나머지 하부측의 물은 상기 유기물 회수공정장치(6)로 보내는 추출공정장치(9);를 더 포함한다.
즉, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치는 카르복실산과 물을 통상 증류를 통하여 분리하기 위한 제 1 탈수탑과, 상기 제 1 탈수탑의 상부로 배출되는 가스를 응축시키는 제 1 응축기와, 상기 제 1 응축기를 거친 응축액을 저장하는 선택적으로 설치되는 제 1응축액 드럼과, 상기 제 1 탈수탑에 에너지를 공급하기 위한 제 1 재비기(후술하는 공비 증류탑인 제 2 탈수탑 상부의 응축탑과 에너지 공유)를 포함하는 제 1 카르복실산회수장치(5a); 상기 제 1 카르복실산회수장치의 후방측에 설치되는 것으로서 또 다른 카르복실산과 물로 구성된 스트림이 선택적으로 유입되고 후술하는 추출탑으로부터의 배출액이 유입되는 공비 증류용 제 2 탈수탑과, 상기 제 2 탈수탑의 상부로 배출되는 가스를 상기 재비기를 통해 응축시키는 제 2 응축기 및 그 후미의 유수 분리기와, 상기 제 2 탈수탑에 에너지를 공급하기 위한 제 2 재비기를 갖춘 제 2 카르복실산회수장치(5b); 각기 선택적으로 설치되는 것으로서, 상기 제 2 카르복실산회수장치로부터 수상 스트림으로부터 유기물을 회수하는 유기물 회수공정장치(6), 상기 제 2 카르복실산회수장치의 유상 스트림으로부터 공비제를 회수하는 공비제 회수공정장치(7), 상기 제 2 카르복실산회수장치로부터 방향족 화합물을 회수하는 방향족 화합물 회수공정장치(8), 및 상기 제 1 카르복실산회수장치의 제 1 탈수탑 상부로부터 배출되는 저농도 카르복실산을 함유한 물을 상부로 유입하고 상기 제 2 카르복실산회수장치의 제 2 탈수탑의 상부로 배출되는 공비제를 추출제로 사용하여 하부로 유입하여 상부측에서는 추출제+카르복실산+물을 상기 제 2 탈수탑으로 그리고 나머지 하부측의 물은 선택적으로 상기 유기물 회수공정장치로 보내는 추출공정장치(9);를 포함한다.
본 발명의 실시예에 따르면, 상기 제 1 초산회수장치(5a)의 응축액 드럼(24)은 하류 일측에는 진공펌프(29)가 선택적으로 설치되어 밴트 가스가 배출되고, 그리고 하류 타측에는 이송펌프(28)가 선택적으로 설치되어 배출응축액을 상기 제 2 탈수탑(21b)으로 유입시킨다. 또한, 상기 유기물 회수공정장치(6), 공비제 회수공정장치(7), 방향족 화합물 회수공정장치(8)는 통상적으로 종래의 통상 증류를 통해 초산을 회수하는 기본구성인 증류탑, 재비기, 응축기, 응축액 드럼으로 구성되며, 추출공정장치(9) 역시 추출제가 사용되는 일반적인 추출탑으로 구성된다.
상기와 같이 구성된 장치에 의해, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 효율적으로 분리하고 카르복실산을 회수할 수 있다.
즉, 상기 상압 또는 가압 상태에서 운전되는 제 2 탈수탑을 공비증류탑으로 구성하는 경우, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법은, 상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑 하부로 농축된 카르복실산을 회수하고, 상기 제 1 탈수탑의 상부로는 카르복실산이 덜 제거된 물을 배출하는 단계(제1 단계); 상기 제 1 탈수탑 상부로 배출되는 카르복실산을 함유한 물을 추출탑으로 상부로 유입하고 제 2 탈수탑 상부 하류에 설치된 유수분리기로부터 배출되는 공비제를 추출탑 하부에 추출제로서 유입하여 추출탑 하부로 카르복실산이 제거된 물을 배출하고 추출탑 상부로 추출제+카르복실산+물을 추출하는 단계(제 2 단계); 및 상기 추출탑 상부로 배출되는 추출제+카르복실산+물을 상압 또는 가압으로 운전되는 제 2 탈수탑을 공비증류탑으로 구성하여 그의 중간으로 유입하여 제 2 탈수탑 하부로 카르복실산을 회수하고 공비제를 이용하여 제 2 탈수탑 상부로 최종 분리된 물을 배출하는 단계(제3 단계);를 포함하고, 상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하도록 한 것이다.
상기 제 3 실시예에 따른 방법은 상기 제 2 실시예에 따른 단계 이외에 추출공정단계를 더 포함하여, 상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하게 할 수 있도록 한 것이다.
상기 추출공정단계를 구체적으로 설명한다면, 먼저, 상기 제 1 탈수탑(21a) 하부로는 물이 제거된 초산을 회수하고(초산 농도 : 90~95%), 상부로는 초산의 농도가 15~50%인 물을 배출하게 되며(이때, 만약 초산의 농도를 너무 낮게 하면 제2 탈수탑(21b)에서 공급되는 에너지만으로 제 1 탈수탑(21a)을 운전할 수 없게 될 수 있으므로 추가 에너지 공급이 필요할 수 있고, 초산 농도가 너무 높으면 추출탑에서 추출제 선정에 어려움이 있을 수 있음), 상기 제 1 탈수탑 상부로 배출되는 물을 추출탑 상부로 유입하고, 그리고 선택적으로 제 2 탈수탑 상부로 배출되는 공비제를 추출제로 사용하여 추출탑 하부로 초산이 제거된 물을 배출하고, 추출탑 상부로 초산과 일부 물을 함유한 추출제를 상기 제2 탈수탑(21b)으로 배출하게 된다(제 2 탈수탑에서 사용되는 공비제를 추출탑의 추출제로 사용하는 것이 바람직하나, 각 공장의 특성상 별도의 추출제를 사용 할 수도 있다).
이와 같이 상기 추출탑 상부로 배출되는 추출제+초산+물은 제 2 탈수탑으로 이송하여 제 2 탈수탑 하부로 초산을 회수하고(90~95%), 상기 제 2 탈수탑 상부로는 물+공비제가 기상으로 배출되어 제 1 탈수탑의 재비기로 사용되는 제 2 탈수탑의 1차 응축기(에너지 열교환기)(22a)를 거쳐 2차 응축기(22b)로 이송되고, 추출탑 하부로 배출되는 물은 초산의 농도가 약 100~500 wt.ppm이며 추출제가 0.1~5 wt% 포함되어 있으므로 수상스트림에서 유기물을 회수하는 증류공정으로 보내져 유기물을 회수한 후 폐수로 배출된다.
상기 도 5에 따른 본 발명의 제 3 실시예의 각 공정조건은 앞서의 도 4에 따른 본 발명의 제 2 실시예의 각 공정조건과 동일하다.
종합적으로, 본 발명에 따른 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법은, 운전 압력이 다른 탈수탑을 두 개 또는 그 이상으로 구성하여 그 중 한 개 또는 그 이상의 응축기가 다른 탈수탑의 재비기 역할을 하도록 되어 있고, 상기 두 개 또는 그 이상의 탈수탑을 통상 증류의 증류탑으로 구성할 수도 있고, 상기 두개 또는 그 이상의 탈수탑 중 하나 또는 그 이상을 공비 증류탑으로 구성할 수도 있으며, 상기 두개 또는 그 이상의 탈수탑 중 하나 또는 그 이상의 탈수탑의 재비기에 공급하는 열원으로서 진공스팀 혹은 저압스팀을 사용할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예(초산회수)와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능할 것이다.

Claims (6)

  1. 두 개의 에너지를 공유하는 제 1 및 제 2 탈수탑;
    상기 제 1 탈수탑의 상부 하류측에 설치된 제 1 탈수탑 응축기;
    상기 제 1 탈수탑 응축기의 하류측에 각기 선택적으로 설치되는 제 1 탈수탑 응축액 드럼, 제 1 탈수탑 응축액 이송펌프 및 제 1 탈수탑 응축액 진공펌프;
    상기 제 1 탈수탑 하부의 하류측과 상기 제 2 탈수탑의 상부 하류측에 공동적으로 연결되어 배출물을 각각 재비 및 응축시키는 제 1 탈수탑 재비기-제 2 탈수탑 응축기(에너지 공유 열교환기);
    상기 제 1 탈수탑 재비기-제 2 탈수탑 응축기(에너지 공유 열교환기)의 하류측에 순차로 설치된 제 2 탈수탑 냉각기 및 선택적으로 설치되는 제 2 탈수탑 응축액 드럼; 및
    상기 제 2 탈수탑의 하부 하류측에 설치된 제 2 탈수탑 재비기;를 포함하는 것을 특징으로 하는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치.
  2. 카르복실산과 물로 구성된 스트림을 통상 증류를 통하여 분리하기 위한 제 1 탈수탑과, 상기 제 1 탈수탑의 상부로 배출되는 가스를 응축시키는 제 1 응축기와, 상기 제 1 응축기를 거친 응축액을 저장하기 위해 선택적으로 설치되는 제 1응축액 드럼과, 상기 제 1 탈수탑에 에너지를 공급하기 위한 제 1 재비기(후술하는 공비 증류탑인 제 2 탈수탑 상부의 응축기와 에너지 공유)를 포함하는 제 1 카르복실산회수장치;
    상기 제 1 카르복실산회수장치의 후방측에 설치되는 것으로서 또 다른 카르복실산과 물로 구성된 스트림이 선택적으로 유입되고 상기 제 1 탈수탑으로부터의 배출액이 유입되는 공비 증류용 제 2 탈수탑과, 상기 제 2 탈수탑의 상부로 배출되는 가스를 상기 재비기를 통해 응축시키는 제 2 응축기 및 그 후미의 유수 분리기와, 상기 제 2 탈수탑에 에너지를 공급하기 위한 제 2 재비기를 갖춘 제 2 카르복실산회수장치; 및
    각기 선택적으로 설치되는 것으로서, 상기 제 2 카르복실산회수장치로부터 수상 스트림으로부터 유기물을 회수하는 유기물 회수공정장치, 상기 제 2 카르복실산회수장치의 유상 스트림으로부터 공비제를 회수하는 공비제 회수공정장치 및 상기 제 2 카르복실산회수장치로부터 방향족 화합물을 회수하는 방향족 화합물 회수공정장치:를 포함하는 것을 특징으로 하는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치.
  3. 카르복실산과 물을 통상 증류를 통하여 분리하기 위한 제 1 탈수탑과, 상기 제 1 탈수탑의 상부로 배출되는 가스를 응축시키는 제 1 응축기와, 상기 제 1 응축기를 거친 응축액을 저장하는 선택적으로 설치되는 제 1응축액 드럼과, 상기 제 1 탈수탑에 에너지를 공급하기 위한 제 1 재비기(후술하는 공비 증류탑인 제 2 탈수탑 상부의 응축기와 에너지 공유)를 포함하는 제 1 카르복실산회수장치;
    상기 제 1 카르복실산회수장치의 후방측에 설치되는 것으로서 또 다른 카르복실산과 물로 구성된 스트림이 선택적으로 유입되고 후술하는 추출탑으로부터의 배출액이 유입되는 공비 증류용 제 2 탈수탑과, 상기 제 2 탈수탑의 상부로 배출되는 가스를 상기 재비기를 통해 응축시키는 제 2 응축기 및 그 후미의 유수 분리기와, 상기 제 2 탈수탑에 에너지를 공급하기 위한 제 2 재비기를 갖춘 제 2 카르복실산회수장치;
    각기 선택적으로 설치되는 것으로서, 상기 제 2 카르복실산회수장치로부터 수상 스트림으로부터 유기물을 회수하는 유기물 회수공정장치, 상기 제 2 카르복실산회수장치의 유상 스트림으로부터 공비제를 회수하는 공비제 회수공정장치, 상기 제 2 카르복실산회수장치로부터 방향족 화합물을 회수하는 방향족 화합물 회수공정장치, 및 상기 제 1 카르복실산회수장치의 제 1 탈수탑 상부로부터 배출되는 저농도 카르복실산을 함유한 물을 상부로 유입하고 상기 제 2 카르복실산회수장치의 제 2 탈수탑의 상부로 배출되는 공비제를 추출제로 사용하여 하부로 유입하여 상부측에서는 추출제+카르복실산+물을 상기 제 2 탈수탑으로 그리고 나머지 하부측의 물은 선택적으로 상기 유기물 회수공정장치로 보내는 추출공정장치;를 포함하는 것을 특징으로 하는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치.
  4. 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법에 있어서,
    상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑의 상부로 물을 배출하고, 상기 제 1 탈수탑의 하부로는 1차적으로 농축된 카르복실산을 회수하는 단계(제1 단계); 및
    상기 제 1 탈수탑의 하부로부터 배출되는 1차적으로 농축된 카르복실산을 상압 혹은 가압으로 운전되는 제 2 탈수탑의 중간으로 유입하여, 제 2 탈수탑 하부로 최종 농축된 카르복실산을 회수하는 단계(제2 단계);를 포함하고,
    상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하게 하는 것을 특징으로 하는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법.
  5. 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법에 있어서,
    상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑 하부로 농축된 카르복실산을 회수하고, 상기 제 1 탈수탑의 상부로는 카르복실산이 덜 제거된 물을 배출하는 단계(제1 단계); 및
    상기 제 1 탈수탑 상부로 배출되는 물을 상압 혹은 가압으로 운전되는 제 2 탈수탑을 공비증류탑으로 구성하여 그의 중간으로 유입하여 제 2 탈수탑 하부로 카르복실산을 회수하고 공비제를 이용하여 제 2 탈수탑 상부로 최종 분리된 물을 배출하는 단계(제2 단계);를 포함하고,
    상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하도록 한 것을 특징으로 하는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 카르복실산을 회수하는 방법.
  6. 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응시 반응기에서 배출되는 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법에 있어서,
    상기 배출물이 공정 내의 각 장치를 거친 후 감압 혹은 상압으로 운전되는 제 1 탈수탑으로 유입시켜 상기 제 1 탈수탑 하부로 농축된 카르복실산을 회수하고, 상기 제 1 탈수탑의 상부로는 카르복실산이 덜 제거된 물을 배출하는 단계(제1 단계);
    상기 제 1 탈수탑 상부로 배출되는 카르복실산을 함유한 물을 추출탑으로 상부로 유입하고 제 2 탈수탑 상부 하류에 설치된 유수분리기로부터 배출되는 공비제를 추출탑 하부에 추출제로서 유입하여 추출탑 하부로 카르복실산이 제거된 물을 배출하고 추출탑 상부로 추출제+카르복실산+물을 추출하는 단계(제 2 단계); 및
    상기 추출탑 상부로 배출되는 추출제+카르복실산+물을 상압 또는 가압으로 운전되는 제 2 탈수탑을 공비증류탑으로 구성하여 그의 중간으로 유입하여 제 2 탈수탑 하부로 카르복실산을 회수하고 공비제를 이용하여 제 2 탈수탑 상부로 최종 분리된 물을 배출하는 단계(제3 단계); 를 포함하고,
    상기 제 2 탈수탑의 응축기가 제 1 탈수탑의 재비기 역할을 함으로써 제 2 탈수탑 재비기에 공급된 에너지 만으로 제 1 탈수탑의 증류 에너지로 사용하도록 한 것을 특징으로 하는, 에너지 기여 결합 증류를 이용한 방향족 화합물의 산화반응 배출물로부터 물을 분리하고 카르복실산을 회수하는 방법.
PCT/KR2012/003883 2011-09-15 2012-05-17 에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치 및 방법 WO2013039288A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201280045216.9A CN103814008B (zh) 2011-09-15 2012-05-17 利用供能量结合蒸馏从反应器排放物中分离水并回收羧酸的装置及方法
MX2014003084A MX2014003084A (es) 2011-09-15 2012-05-17 Dispositivo y metodo para la separacion del agua y la recuperacion de un acido carboxilico de la descarga del reactor durante una reaccion de oxidacion de compuesto aromatico utilizando destilacion acoplada de donacion de energia.
BR112014006095A BR112014006095A2 (pt) 2011-09-15 2012-05-17 aparelho para separar água e recuperar um ácido carboxílico de uma descarga descarregada de um reator durante oxidação de um composto aromático utilizando destilação acoplada com doação de energia e método de separar água e recuperar ácido acético de uma descarga descarregada de um reator durante oxidação de um composto de ácido ftálico
CA2848647A CA2848647A1 (en) 2011-09-15 2012-05-17 Device and method for separating off water and recovering a carboxylic acid from reactor discharge during an aromatic compound oxidation reaction using energy donating coupled distillation
EP12831692.4A EP2772479A4 (en) 2011-09-15 2012-05-17 DEVICE AND METHOD FOR SEPARATING WATER AND RECOVERING A CARBOXYLIC ACID FROM A REACTOR DISCHARGE DURING AN OXIDATION REACTION OF AN AROMATIC COMPOUND THROUGH ENERGY-DISPENSING COUPLED DISTILLATION
JP2014530578A JP2014528938A (ja) 2011-09-15 2012-05-17 エネルギー供与結合蒸溜を利用した芳香族化合物酸化反応の時反応器の排出物から水を分離してカルボン酸を回収する装置及び方法
RU2014111801/04A RU2575250C2 (ru) 2011-09-15 2012-05-17 Устройство и способ отделения воды и извлечения карбоновой кислоты из выпускаемого потока реактора в ходе проведения реакции окисления ароматического соединения с использованием поставляющей энергию совместной дистилляции
US14/344,322 US9334222B2 (en) 2011-09-15 2012-05-17 Device and method for separating off water and recovering a carboxylic acid from reactor discharge during an aromatic compound oxidation reaction using energy donating coupled distillation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0092727 2011-09-15
KR20110092727 2011-09-15
KR10-2011-0095698 2011-09-22
KR1020110095698A KR101264603B1 (ko) 2011-09-15 2011-09-22 에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2013039288A1 true WO2013039288A1 (ko) 2013-03-21

Family

ID=48179550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003883 WO2013039288A1 (ko) 2011-09-15 2012-05-17 에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치 및 방법

Country Status (10)

Country Link
US (1) US9334222B2 (ko)
EP (1) EP2772479A4 (ko)
JP (1) JP2014528938A (ko)
KR (1) KR101264603B1 (ko)
CN (1) CN103814008B (ko)
BR (1) BR112014006095A2 (ko)
CA (1) CA2848647A1 (ko)
MX (1) MX2014003084A (ko)
MY (1) MY159832A (ko)
WO (1) WO2013039288A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605846B2 (en) * 2014-10-15 2017-03-28 D. Jeffrey Hill Apparatus and method for recovering off-gases from natural gas dehydrator
KR101947130B1 (ko) * 2016-06-14 2019-02-12 베니트엠 주식회사 방향족 화합물 산화 공정에서 초산을 회수하는 방법
CN113072432B (zh) * 2020-01-06 2022-12-13 中国石油化工股份有限公司 一种从环氧丙烷废水中回收醇、醚的方法
CN113072427B (zh) * 2020-01-06 2022-12-13 中国石油化工股份有限公司 一种回收丙二醇醚和丙二醇的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080000415A (ko) * 2006-06-27 2008-01-02 삼성석유화학(주) 공비증류탑 스팀절감시스템 및 스팀절감방법
KR20090039274A (ko) * 2007-10-18 2009-04-22 주식회사 효성 에너지를 회수 및 재활용하는 2,6-나프탈렌디카르복실산제조방법
US20090293722A1 (en) * 2005-06-28 2009-12-03 Svendsen Hallvard F Method and Apparatus for Energy Reduction In Acid Gas Capture

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490122A (en) * 1977-12-27 1979-07-17 Chiyoda Chem Eng & Constr Co Ltd Distillation of multi-component hydrocarbon composition
US4334086A (en) * 1981-03-16 1982-06-08 Labofina S.A. Production of terephthalic acid
JP3198711B2 (ja) * 1993-03-30 2001-08-13 三井化学株式会社 テレフタル酸の製造方法および装置
JP3332594B2 (ja) * 1994-08-12 2002-10-07 ダイセル化学工業株式会社 酢酸の精製方法
US7048835B2 (en) * 2002-02-12 2006-05-23 Amt International, Inc. System and method for acetic acid recovery during terephthalic acid production
ITMI20021423A1 (it) * 2002-06-27 2003-12-29 Eurotecnica Dev & Licensing S Processo per la separazione dell'acqua prodotta nella ossidazione catalitica di idrocarburi aromatici ad acidi aromatici policarbossilici
KR20060124098A (ko) 2005-05-31 2006-12-05 삼성석유화학(주) 고순도 테레프탈산의 제조방법
CN100363321C (zh) * 2005-12-29 2008-01-23 西南化工研究设计院 甲醇低压羰基合成醋酸工艺中的精馏方法
KR100794317B1 (ko) 2006-02-20 2008-01-11 (주)에이엠티퍼시픽 방향족 화합물의 산화반응시 반응기 배출가스로부터 물을제거하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090293722A1 (en) * 2005-06-28 2009-12-03 Svendsen Hallvard F Method and Apparatus for Energy Reduction In Acid Gas Capture
KR20080000415A (ko) * 2006-06-27 2008-01-02 삼성석유화학(주) 공비증류탑 스팀절감시스템 및 스팀절감방법
KR20090039274A (ko) * 2007-10-18 2009-04-22 주식회사 효성 에너지를 회수 및 재활용하는 2,6-나프탈렌디카르복실산제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772479A4 *

Also Published As

Publication number Publication date
BR112014006095A2 (pt) 2017-04-11
RU2014111801A (ru) 2015-10-20
JP2014528938A (ja) 2014-10-30
CA2848647A1 (en) 2013-03-21
US20140343320A1 (en) 2014-11-20
KR101264603B1 (ko) 2013-05-24
EP2772479A1 (en) 2014-09-03
KR20130029703A (ko) 2013-03-25
MY159832A (en) 2017-02-15
EP2772479A4 (en) 2015-07-08
CN103814008B (zh) 2016-01-20
CN103814008A (zh) 2014-05-21
US9334222B2 (en) 2016-05-10
MX2014003084A (es) 2014-08-21

Similar Documents

Publication Publication Date Title
US8506766B2 (en) Method for recovery of acetic acid from an aqueous solution thereof
WO2013039288A1 (ko) 에너지 기여 결합 증류를 이용한 방향족 화합물 산화반응시 반응기 배출물로부터 물을 분리하고 카르복실산을 회수하는 장치 및 방법
JPH09157213A (ja) アクリル酸の製造方法
JP2587790B2 (ja) 水溶性流から酢酸を回収するための方法及び装置
KR20080063349A (ko) 아세트산 탈수 시스템 및 방법
KR20140018791A (ko) (메트)아크릴산의 연속 회수 방법 및 회수 장치
WO2019066220A1 (ko) 복합화학공정 내의 증발스팀재압축기를 이용한 에너지 재활용 시스템
KR101264602B1 (ko) 방향족 화합물 산화반응시 반응기 배출물로부터 초산을 회수하는 방법
CA2642712A1 (en) Reducing method of water from reactor outlet gas in the oxidation process of aromatic compound
WO2017069448A1 (ko) 페놀 정제 방법
WO2015115725A1 (ko) 방향족 카르복시산 제조시 초산 회수 방법
KR20170060048A (ko) 방향족 다이카복실산의 제조
WO2012115356A2 (ko) 방향족 화합물 산화반응시 반응기 배출물로부터 초산을 회수하는 방법
WO2012057437A2 (ko) 1,3,5-트리옥산의 제조방법
CN213895662U (zh) 用于对碳九芳烃混合物进行分离的装置
CN103012102B (zh) 芳族羧酸生产中回收乙酸和水的方法
WO2016105156A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
WO2024058338A1 (ko) 아크릴산 제조방법
CN112194553A (zh) 一种用于对碳九芳烃混合物进行分离的方法及装置
WO2024049101A1 (ko) 고순도 (메트)아크릴산의 제조방법
WO2024058340A1 (ko) 아크릴산 제조방법
CN219342049U (zh) 丙烯酸水溶液脱水和脱醋酸的工艺装置
CN219023294U (zh) 一种甲基丙烯酸的提纯装置
WO2024058339A1 (ko) 아크릴산 제조방법
WO2024049103A1 (ko) 고순도 (메트)아크릴산의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344322

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2848647

Country of ref document: CA

Ref document number: 2014530578

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/003084

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012831692

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012831692

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014111801

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006095

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006095

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140314