WO2013039196A1 - Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method - Google Patents

Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method Download PDF

Info

Publication number
WO2013039196A1
WO2013039196A1 PCT/JP2012/073617 JP2012073617W WO2013039196A1 WO 2013039196 A1 WO2013039196 A1 WO 2013039196A1 JP 2012073617 W JP2012073617 W JP 2012073617W WO 2013039196 A1 WO2013039196 A1 WO 2013039196A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
thin film
vapor deposition
deposition mask
substrate
Prior art date
Application number
PCT/JP2012/073617
Other languages
French (fr)
Japanese (ja)
Inventor
重人 杉本
梶山 康一
水村 通伸
修二 工藤
江梨子 木村
マハール アジズ ハニー
佳敬 梶山
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011203155A external-priority patent/JP5935101B2/en
Priority claimed from JP2011232538A external-priority patent/JP5953566B2/en
Priority claimed from JP2011242089A external-priority patent/JP6078741B2/en
Priority claimed from JP2011242090A external-priority patent/JP5899585B2/en
Priority claimed from JP2011255298A external-priority patent/JP5517308B2/en
Priority claimed from JP2012033657A external-priority patent/JP5884543B2/en
Priority claimed from JP2012038101A external-priority patent/JP2013173968A/en
Priority claimed from JP2012080707A external-priority patent/JP5958804B2/en
Priority to CN201280044893.9A priority Critical patent/CN103797149B/en
Priority to KR1020147009752A priority patent/KR102078888B1/en
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2013039196A1 publication Critical patent/WO2013039196A1/en
Priority to US14/214,428 priority patent/US9334556B2/en
Priority to US14/746,727 priority patent/US9586225B2/en
Priority to US15/071,125 priority patent/US9555434B2/en
Priority to US15/071,116 priority patent/US9555433B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a vapor deposition mask for forming a plurality of striped thin film patterns on a substrate in parallel with a constant arrangement pitch, and particularly to a vapor deposition mask and vapor deposition mask capable of forming a high-definition thin film pattern.
  • the present invention relates to a manufacturing method and a thin film pattern forming method.
  • this type of vapor deposition mask has an opening having a shape corresponding to a predetermined pattern. After aligning the substrate, the mask is brought into close contact with the substrate and then patterned on the substrate through the opening. Vapor deposition was performed (for example, refer to Patent Document 1).
  • the other vapor deposition mask is a metal mask made of a ferromagnetic material provided with a plurality of openings corresponding to a predetermined vapor deposition pattern, and is in close contact with the substrate so as to cover one surface of the substrate and the other surface of the substrate. It was fixed using the magnetic force of the magnet arranged on the side, and the deposition material was attached to one surface of the substrate through the opening in the vacuum chamber of the vacuum deposition apparatus to form a thin film pattern (for example, patent Reference 2).
  • the vapor deposition mask described in Patent Document 1 is generally formed by forming an opening corresponding to a thin film pattern on a thin metal plate by, for example, etching or the like.
  • etching for example, it is difficult to form a high-definition thin film pattern of 300 dpi or more due to the influence of misalignment and warpage due to thermal expansion of the metal plate.
  • the vapor deposition mask described in Patent Document 2 has a thinner metal plate as in the vapor deposition mask described in Patent Document 1, although the adhesion to the substrate is improved as compared with the vapor deposition mask described in Patent Document 1. Since the opening corresponding to the thin film pattern is formed by, for example, etching or the like, it is difficult to form the opening with high accuracy. For example, it is difficult to form a high-definition thin film pattern of 300 dpi or more.
  • an object of the present invention is to provide a vapor deposition mask, a vapor deposition mask manufacturing method, and a thin film pattern forming method capable of coping with such problems and forming a high-definition thin film pattern.
  • a vapor deposition mask is a vapor deposition mask for vapor-depositing a thin film pattern having a predetermined shape on a substrate, and forming the predetermined thin-film pattern on the substrate.
  • it is configured to include a resin film that transmits visible light and has an opening pattern that penetrates the same thin film pattern and shape.
  • a metal member is provided on the outer side of the opening pattern of the film.
  • the metal member may be a thin plate that has an opening having a larger size than the opening pattern corresponding to the opening pattern and is in close contact with one surface of the film.
  • the metal member may be a plurality of thin pieces distributed on one surface or inside of the film.
  • a method of manufacturing a vapor deposition mask wherein a resin film that transmits visible light has the same shape and dimension as a thin film pattern corresponding to a predetermined thin film pattern formation region on a substrate.
  • a method of manufacturing a vapor deposition mask that is produced by forming an opening pattern, wherein the thin film pattern is arranged on a substrate to be vapor deposited, or arranged at the same arrangement pitch as the thin film pattern, and the thin film pattern and shape dimensions A first step of closely contacting the film on a reference substrate provided with the same plurality of reference patterns, and a film formation region on the substrate to be deposited or on the reference substrate or the film corresponding to the reference pattern And a second step of forming an opening pattern having the same shape and dimension as the thin film pattern.
  • the first step includes forming a mask member on one surface of the film by closely contacting a metal member provided with an opening having a shape dimension larger than that of the thin film pattern corresponding to the thin film pattern. It is desirable that the thin film pattern formation region on the deposition target substrate or the reference substrate or a portion corresponding to the reference pattern is positioned so as to be positioned in the opening.
  • the second step is performed by irradiating the film portion with laser light.
  • the second step is to irradiate a laser beam with a constant energy density to process the film at a constant speed to form a hole with a constant depth, and then lower the energy density at the bottom of the hole.
  • the laser beam is irradiated and processed at a speed slower than the speed to penetrate the hole.
  • the hole is formed in the film by irradiating a laser beam having a constant energy density, and then the reactive gas reacts with the carbon of the film to vaporize the carbon, or is reactive.
  • the opening portion may be formed by etching the bottom of the hole with radical ions generated by converting the gas into a plasma and penetrating the hole.
  • the laser light used here has a wavelength of 400 nm or less.
  • a method of manufacturing a vapor deposition mask wherein a resin film that transmits visible light has the same shape and dimension as the thin film pattern corresponding to a predetermined thin film pattern formation region on the substrate.
  • the film is etched from the other surface side of the film, the opening area on the one surface side of the film is the same as the area of the thin film pattern, and the opening area on the other surface side of the film It is desirable to form the opening pattern having a larger opening area on the one surface side.
  • a thin film pattern forming method that penetrates a resin film that transmits visible light and has the same shape and dimension as a predetermined thin film pattern formation region on a substrate.
  • a thin film pattern forming method for forming a vapor deposition mask by forming an opening pattern, and forming a thin film pattern using the vapor deposition mask, the first step of closely contacting the film on the substrate, and on the substrate A second step of irradiating a portion of the film corresponding to the formation region of the thin film pattern with a laser beam, forming an opening pattern having the same shape and dimension as the thin film pattern on the film of the portion;
  • a fourth step of separating the disk is intended to include.
  • the substrate is placed on a stage having an internal chuck means, and a shape dimension is larger on one surface of the film than the thin film pattern corresponding to the thin film pattern.
  • a mask member formed by closely contacting a metal member made of a magnetic material or a non-magnetic material provided with an opening so that a formation region of the thin film pattern on the substrate is located in the opening. It is preferable that the metal member is adsorbed onto the substrate by the chuck means to sandwich the film.
  • the thin film pattern forming method according to the fifth aspect of the present invention penetrates through a resin film that transmits visible light and has the same shape and dimension as a predetermined thin film pattern formation region on the substrate.
  • a second step of forming a thin film pattern is forming a thin film pattern.
  • the thin film pattern of the substrate placed on the chuck means is placed with the opening pattern in a state where the metal member side of the vapor deposition mask is attracted to and held by the flat surface of the holding means.
  • the metal member is adsorbed by the chuck means, and the vapor deposition mask is preferably transferred from the holding means onto the substrate.
  • the thin film pattern is a plurality of types of thin film patterns and the opening pattern formed in the film is formed corresponding to one thin film pattern among the plurality of types of thin film patterns
  • the step of peeling the vapor deposition mask from the substrate, and the opening pattern of the vapor deposition mask on the other thin film pattern of the substrate After aligning with the formation region, placing the vapor deposition mask on the substrate, and depositing on the formation region of the other thin film pattern through the opening pattern of the vapor deposition mask to form another thin film pattern And step.
  • the thin film patterns are a plurality of types of thin film patterns formed by arranging at a constant arrangement pitch, and the opening pattern formed in the film corresponds to one thin film pattern among the plurality of types of thin film patterns. If formed, the first step to the second step are performed to form the one thin film pattern, and then the vapor deposition mask is moved to the plurality of types by the same dimension as the arrangement pitch of the plurality of types of thin film patterns. Sliding on the substrate in the direction in which the thin film patterns are aligned, and depositing another thin film pattern on the substrate through the opening pattern of the deposition mask to form another thin film pattern; , May be performed.
  • the opening pattern through which the vapor deposition material passes is processed and formed into a film having a thickness smaller than that of the metal mask, the formation accuracy of the opening pattern can be improved. Therefore, it is possible to form a high-definition thin film pattern.
  • vapor deposition mask used as the foundation of this invention, (a) is a top view, (b) is a side view. It is a figure explaining the manufacturing method of 3rd Embodiment of the vapor deposition mask by this invention, Comprising: It is sectional drawing which shows the process of forming the member for masks. It is a figure explaining the manufacturing method of 3rd Embodiment of the vapor deposition mask by this invention, Comprising: It is a top view which shows an opening pattern formation process. It is a top view which shows the modification of 3rd Embodiment of the vapor deposition mask by this invention.
  • FIG. 4 is a partially enlarged view of (c). It is process drawing explaining manufacture of 4th Embodiment of the vapor deposition mask by this invention. It is a top view which shows one structural example of the film used for 4th Embodiment of the vapor deposition mask of this invention. It is a top view which shows the other structural example of the film used for the vapor deposition mask of this invention.
  • FIG. 51 is a cross-sectional view showing a configuration example of a TFT substrate used in the thin film pattern forming method of FIGS. 48 to 50.
  • FIG. 1 is a cross-sectional explanatory view showing a first embodiment of a thin film pattern forming method performed using a vapor deposition mask according to the present invention.
  • the vapor deposition mask according to the present invention includes a resin film that transmits visible light and has an opening pattern that penetrates the thin film pattern and has the same shape and dimension as a predetermined thin film pattern formation region on the substrate.
  • the thin film pattern forming method is manufactured in the implementation process of the first embodiment.
  • the substrate is the TFT substrate 1 of the organic EL display device and the thin film pattern is the R organic EL layer 3R formed on the anode electrode 2R corresponding to red (R)
  • the R organic EL layer 3R is The first embodiment of the vapor deposition mask according to the present invention will be described while explaining the first embodiment of the thin film pattern forming method for forming.
  • the R organic EL layer 3R is formed by sequentially vapor-depositing on the R-compatible anode electrode 2R so as to have a general laminated structure such as a hole injection layer, a hole transport layer, an R light emitting layer, and an electron transport layer.
  • a general laminated structure such as a hole injection layer, a hole transport layer, an R light emitting layer, and an electron transport layer.
  • the R organic EL layer 3R will be described as being formed by a single vapor deposition step.
  • a first step of installing a resin film 4 that transmits visible light on a TFT substrate (also simply referred to as “substrate”) 1 and an R on the TFT substrate 1 are described.
  • a portion of the corresponding anode electrode 2R is irradiated with a laser beam L1 having a constant energy density, and the film 4 in the portion is dug down to a certain depth at a constant speed to form a hole portion 5.
  • the hole portion 5 is formed at the bottom of the hole portion 5.
  • the laser beam L2 having a reduced energy density is irradiated, the bottom of the hole 5 is slowly processed at a speed slower than the above speed to penetrate the hole 5, and an opening pattern 6 having the same shape and dimension as the R organic EL layer 3 is formed.
  • a second step of forming the first embodiment of the vapor deposition mask 7 according to the present invention, and a third step of vapor-depositing the R organic EL layer 3 on the R corresponding anode electrode 2R through the opening pattern 6 of the vapor deposition mask 7 Ste And flop, a fourth step of separating the deposition mask 7, and the execution.
  • ultraviolet light such as polyethylene terephthalate (PET) or polyimide having a thickness of about 10 ⁇ m to 30 ⁇ m is formed above the surface of the TFT substrate 1 where the anode electrodes 2R to 2B for each color are formed.
  • PET polyethylene terephthalate
  • polyimide having a thickness of about 10 ⁇ m to 30 ⁇ m is formed above the surface of the TFT substrate 1 where the anode electrodes 2R to 2B for each color are formed.
  • the film 4 is placed on the surface of the TFT substrate 1 as shown in FIG.
  • the upper surface of the film 4 is preferably pressed uniformly with an elastic member such as urethane rubber so that the film 4 is in close contact with the surface of the TFT substrate 1.
  • an adhesive layer may be provided on the adhesion surface of the film 4 with the TFT substrate 1, and the film 4 may be adhered to the TFT substrate 1 surface via this adhesion layer.
  • the film which provided the self-adhesion function can also be utilized.
  • the film 4 may be electrostatically attracted to the surface of the TFT substrate 1 using an electrostatic chuck or the like.
  • a metal member that is configured to include a magnetic material and that has an opening having a shape dimension larger than the pattern of the organic EL layer Is placed on the TFT substrate 1 so that the anode electrode 2R corresponding to R is positioned in the opening, and the metal member is adsorbed onto the TFT substrate 1 by the static magnetic field of the magnet to form the film 4 May be adhered to the surface of the TFT substrate 1.
  • the position of the anode electrode 2R corresponding to R is detected by an imaging means (not shown) through the film 4, and the irradiation position of the laser beam is positioned on the anode electrode 2R corresponding to R. .
  • an excimer laser having a wavelength of 400 nm or less, for example, KrF248 nm first, as shown in FIG. 1B, energy is applied to the portion of the film 4 corresponding to the anode electrode 2R corresponding to R on the TFT substrate 1.
  • the laser beam L1 having a density of 1 J / cm 2 to 20 J / cm 2 is irradiated and the hole 5 is formed at high speed, leaving a layer having a thickness of, for example, about 2 ⁇ m immediately before the anode electrode 2R of the underlayer is exposed.
  • the irradiation with the laser beam L1 is temporarily stopped.
  • the bottom of the hole 5 is irradiated with laser light L2 having an energy density reduced to 0.1 J / cm 2 or less, preferably 0.06 J / cm 2 or less,
  • the bottom part of the part 5 is slowly processed to penetrate the hole part 5 to form the vapor deposition mask 7 of the present invention having the opening pattern 6 (first embodiment).
  • the film 4 Since the carbon bonds of the film 4 are broken and removed in an instant by the light energy of the ultraviolet laser beams L1 and L2, clean drilling without residue can be performed.
  • the film 4 is processed at a high speed by irradiating the laser beam L1 having a high energy density, and thereafter, the processing is performed slowly by the laser beam L2 having a reduced energy density. Without sacrificing, it is possible to efficiently process only the film 4 while suppressing damage to the anode electrode 2R, which is the underlayer.
  • the second step can be performed as follows. That is, while stepping the TFT substrate 1 in a certain direction, the anode electrode 2R corresponding to R is passed through a microlens array in which a plurality of microlenses are arranged in a row in a direction crossing the moving direction of the TFT substrate 1.
  • the opening patterns 6 may be formed on the film 4 by irradiating the laser beams L1 and L2. Alternatively, the opening pattern 6 may be formed on the film 4 by irradiating the laser beams L1 and L2 while stepping the TFT substrate 1 in a two-dimensional direction in a plane parallel to the substrate surface.
  • the opening patterns 6 may be formed in the film 4 by irradiating the laser beams L1 and L2 through a microlens array provided with a plurality of microlenses corresponding to the plurality of anode electrodes 2R. Further, the elongated laser beams L1 and L2 may be generated by a cylindrical lens to form the stripe-shaped opening pattern 6 in the film 4, and the stripe-shaped R organic EL layer 3R (thin film pattern) may be formed.
  • FIG. 2 is a cross-sectional view showing another manufacturing method of the first embodiment of the vapor deposition mask according to the present invention, which is performed in the second step of the first embodiment of the thin film pattern forming method.
  • this manufacturing method first, as shown in FIG. 2 (a), the laser beam L1 of the energy density in the portion of the anode electrode 2R of R corresponding on the TFT substrate 1 is 1J / cm 2 ⁇ 20J / cm 2 After irradiating and forming the hole 5 by digging the film 4 of the part to a certain depth, the reactive gas 8 reacts with the carbon of the film 4 to vaporize the carbon, as shown in FIG.
  • the bottom of the hole 5 is irradiated with laser light L2 having an energy density reduced to 0.1 J / cm 2 or less, preferably 0.06 J / cm 2 or less, and the bottom of the hole 5 is slowly processed. Then, the hole 5 is penetrated to form an opening pattern 6 as shown in FIG.
  • the reactive gas 8 for example, ozone (O 3 ) gas, a mixed gas of tetrafluoromethane (CF 4 ) and ozone, or the like can be used.
  • the scattered material by the laser processing adheres to the surface of the film 4 or the opening pattern 6, the scattered material is removed by etching with the reactive gas 8 so that the surface of the anode electrode 2 ⁇ / b> R in the opening pattern 6 is removed.
  • the organic EL layer 3 can be washed and the adhesion of the organic EL layer 3 to the surface of the anode electrode 2R can be enhanced to improve the yield when forming the organic EL layer.
  • FIG. 3 is a cross-sectional view showing still another manufacturing method of the first embodiment of the vapor deposition mask according to the present invention, which is performed in the second step of the first embodiment of the thin film pattern forming method.
  • this manufacturing method first, 3 to a portion of the anode electrode 2R e.g. R corresponding on the TFT substrate 1 (a), the example 1 J / cm 2 ⁇ laser beam energy density of 20 J / cm 2 After irradiating L1 and digging up the film 4 of the part to a certain depth at a constant speed to form the hole 5, the irradiation of the laser beam L1 is stopped, and then the film 4 as shown in FIG.
  • the film 4 is etched by a reactive gas 8 such as ozone (O 3 ) gas or a mixed gas of carbon tetrafluoride (CF 4 ) and ozone, which reacts with carbon to vaporize the carbon. As shown in c), it is carried out so as to penetrate the hole 5 of the film 4 to form an opening pattern 6 having a fixed shape.
  • a reactive gas 8 such as ozone (O 3 ) gas or a mixed gas of carbon tetrafluoride (CF 4 ) and ozone
  • the film 4 is efficiently etched using the etching selectivity between the film 4 of the reactive gas 8 and the anode electrodes 2R to 2B without damaging the anode electrodes 2R to 2B.
  • the surface of the anode electrodes 2R to 2B in the opening pattern 6 can be cleaned by etching with the reactive gas 8, and the adhesion of the organic EL layer to the anode electrodes 2R to 2B can be enhanced to form the organic EL layer.
  • the yield can be improved.
  • the bottom of the hole 5 is slowly processed by etching to penetrate the hole 5, so that the processing time is sacrificed. Without damaging, it is possible to efficiently process only the film 4 while suppressing damage to the anode electrodes 2R to 2B as the underlayer.
  • the film 4 is plasmatized with oxygen (O 2 ) gas or a mixed gas of carbon tetrafluoride (CF 4 ) and oxygen, etc. instead of the reactive gas 8 and is etched with the generated radical ions. Also good.
  • oxygen O 2
  • CF 4 carbon tetrafluoride
  • an opening pattern 6 having the same shape and dimension as the thin film pattern is formed corresponding to a predetermined thin film pattern formation region on the substrate.
  • the resin film 4 is composed of only the resin film 4 that transmits visible light.
  • an R organic EL layer is formed on the R corresponding anode electrode 2R of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 7 using a vacuum vapor deposition apparatus.
  • 3R is formed by vapor deposition.
  • the deposition mask 7 moves and the opening pattern 6 of the deposition mask 7 and the R corresponding anode electrode 2R of the TFT substrate 1 are not displaced, there is no possibility that the anode electrode 2G, 2B is electrostatically attracted and fixed. .
  • the vapor deposition mask 7 since there is no possibility that the vapor deposition mask 7 is in close contact with the surface of the TFT substrate 1 and a gap is formed between the lower surface of the vapor deposition mask 7 and the upper surface of the TFT substrate 1, the vapor deposition molecules wrap around and adhere to the gap. The problem of deteriorating the formation accuracy of the film can also be avoided.
  • the third step before the R organic EL layer 3R is formed, it is preferable to remove impurities from the anode electrode 2R corresponding to R.
  • the impurities here include, for example, residues such as the film 4 ablated in the second step.
  • etching or laser is used.
  • a mixed gas of O 2 (oxygen), O 2 and Ar (argon), or a mixed gas of O 2 , Ar and CF 4 (carbon tetrafluoride) was used as an etching gas. It is preferable to remove impurities by dry etching.
  • a laser a green laser having an energy density of about 0.5 J / cm 2 and a wavelength of 532 nm, a 355 nm UV laser, a 266 nm DUV laser, or the like can be used.
  • O 2 a mixed gas of O 2 and Ar, the gas mixture of O 2 and Ar and CF 4, or O 3 (ozone) is preferably used in combination as the assist gas and the like.
  • an electrode material may be deposited on the R-compatible anode electrode 2R from which impurities have been removed.
  • An electrode material here means the material which forms an anode electrode, for example, Al (aluminum), Mg (magnesium), etc. are contained.
  • the electrode material is deposited on the surface of the anode electrode 2R corresponding to R through the opening pattern 6 formed in the film 4 by a method such as sputtering, vacuum deposition, and ion plating.
  • the edge of the vapor deposition mask 7 is lifted upward to mechanically peel the vapor deposition mask 7 from the surface of the TFT substrate 1.
  • the R organic EL layer 3R remains on the R corresponding anode electrode 2R, and the R organic EL layer forming step is completed.
  • the thickness of the vapor deposition mask 7 is about 10 ⁇ m to 30 ⁇ m, whereas the thickness of the R organic EL layer 3R is about 100 nm.
  • the R organic EL layer 3R attached to the sidewall of the opening pattern 6 of the vapor deposition mask 7 Since the thickness of is very thin, when the vapor deposition mask 7 is peeled off, the vapor deposition mask 7 and the R organic EL layer 3R on the anode electrode 2R corresponding to R are easily separated. Therefore, there is no possibility that the R organic EL layer 3R on the R-compatible anode electrode 2R is peeled off when the vapor deposition mask 7 is peeled off.
  • each anode electrode 2G is removed when the deposition mask 7 is peeled off.
  • 2B may be turned off or a reverse polarity voltage may be applied.
  • peeling of the vapor deposition mask 7 can be performed easily.
  • a force larger than the adhesive force of the adhesive may be applied to the vapor deposition mask 7 and mechanically peeled off.
  • the pressure-sensitive adhesive when the pressure-sensitive adhesive is cured by irradiation with ultraviolet rays, the pressure-sensitive adhesive is cured by irradiating with ultraviolet rays to reduce the adhesive force at the interface between the vapor deposition mask 7 and the TFT substrate 1 surface. It is good to peel.
  • organic EL layers 3G and 3B of corresponding colors are formed on the anode electrodes 2G and 2B for G and B, respectively.
  • a transparent conductive film of ITO is formed on the TFT substrate 1, and a transparent protective substrate is further bonded thereon to form an organic EL display device.
  • the film 4 is in the form of a sheet.
  • the present invention is not limited to this and is a material capable of ultraviolet laser ablation. If it exists, it may be liquid.
  • the film 4 is formed by spin-coating or dip-coating a liquid material on the surface of the TFT substrate 1 and then drying it.
  • a transparent electrode layer may be further formed on the organic EL layer 3R when the organic EL layer 3R is formed in the third step.
  • the transparent electrode layer functions as a barrier layer, and it is possible to prevent the organic EL layer 3R from being dissolved by the liquid film 4.
  • FIGS. 4 to 8 are process diagrams showing a second embodiment of a thin film pattern forming method performed using the second embodiment of the vapor deposition mask according to the present invention.
  • a method of manufacturing an organic EL display device according to the second embodiment will be described in which the thin film pattern is an organic EL layer.
  • This organic EL display device manufacturing method is a method of manufacturing an organic EL display device by forming an organic EL layer of a corresponding color on an anode electrode on a TFT substrate, and a red (R) organic EL layer forming step, It consists of a green (G) organic EL layer forming step, a blue (B) organic EL layer forming step, and a cathode electrode forming step.
  • FIG. 4 is a cross-sectional explanatory view showing the R organic EL layer forming step.
  • This R organic EL layer forming step is a step in which an organic material is heated in a vacuum to form an R organic EL layer 3R on the R-compatible anode electrode 2R of the TFT substrate 1, and is formed on a thin plate made of a magnetic material.
  • the second embodiment of the vapor deposition mask according to the present invention is formed by irradiating the film 4 corresponding to the anode electrode 2R with the laser beam L and providing the opening 4 with the same shape and dimension as the pattern of the R organic EL layer 3R on the film 4 of the portion.
  • a fifth step for forming a form (hereinafter referred to as “evaporation mask 14”) and an R pattern corresponding to the R electrode on the TFT substrate 1 through the opening pattern 6 of the deposition mask 14 R
  • a sixth step for forming the organic EL layer 3R by vapor deposition, and a seventh step (see (g) in the same figure) for lifting the vapor deposition mask 14 in the arrow + Z direction shown in the figure and peeling it off.
  • the It is intended to row.
  • a plurality of rows R of the TFT substrate 1 are applied to a metal member 10 having a thickness of about 15 ⁇ m to 50 ⁇ m made of a magnetic material such as nickel, nickel alloy, invar or invar alloy.
  • a plurality of elongated strips having a size sufficient to accommodate a plurality of R-compatible anode electrodes 2R arranged in a single row as shown in FIG. 5A at the same pitch as the arrangement pitch of the anode electrodes 2R.
  • an adhesive is provided on one surface of the metal member 10 as shown in FIG.
  • a film 4 capable of ultraviolet laser ablation such as polyethylene terephthalate (PET) or polyimide having a thickness of about 10 ⁇ m to 30 ⁇ m is pasted, and then partially enlarged in FIG. And the film 4, for example, dry etching the metal member 10 side Suyo, a mask member 11 is thinned to a few ⁇ m, for example, about the thickness of the film 4 of the portion corresponding to the opening 9. This makes it possible to form a fine opening pattern with high accuracy.
  • the etching of the film 4 may be performed from the side opposite to the metal member 10 or from both sides. Further, the etching of the film 4 may be wet etching instead of dry etching.
  • the metal member 10 may be formed by plating in an outer region of a portion corresponding to the opening 9 on one surface of the film 4.
  • the anode electrodes 2R, 2G, 2B of the TFT substrate 1 are placed on a magnetic chuck stage 13 provided with, for example, a permanent magnet as the static magnetic field generating means 12 inside. It is placed with the surface on which is formed facing upward.
  • the magnetic chuck stage 13 has, for example, a smooth attracting surface.
  • the static magnetic field generating means 12 is moved up and down by a lifting means (not shown).
  • the static magnetic field generating means 12 is lowered to the bottom of the magnetic chuck stage 13.
  • the mask member 11 is magnetically arranged so that the plurality of R-compatible anode electrodes 2 ⁇ / b> R completely fit within the opening 9 of the metal member 10. Positioning is performed by moving and rotating in a two-dimensional direction within a plane parallel to the upper surface of the chuck stage 13.
  • the mask member 11 can freely move on the surface of the TFT substrate 1.
  • the TFT substrate 1 is positioned on the top surface of the magnetic chuck stage 13 to form a recess so that the TFT substrate 1 can be placed.
  • a positioning pin is provided outside the recess, and a positioning hole is formed in the metal member 10 corresponding to the positioning pin. If formed, the TFT substrate 1 and the mask member 11 can be aligned only by fitting the positioning hole into the positioning pin.
  • the static magnetic field generating means 12 is raised to the top of the magnetic chuck stage 13 to cause the static magnetic field to act on the metal member 10, and the metal member 10 is moved to the TFT substrate.
  • the film 4 is adhered to the upper surface of the TFT substrate 1 by adsorbing to the 1 side.
  • the R-compatible anode electrode 2R on the TFT substrate 1 is irradiated with the laser light L, and the film 4 on the anode electrode 2R is R-compatible.
  • An opening pattern 6 having substantially the same shape and dimension as the anode electrode 2R is provided to form a vapor deposition mask 14 (second embodiment) according to the present invention.
  • the laser used here is an excimer laser having a wavelength of 400 nm or less, for example, a KrF248 nm laser.
  • the carbon bonds of the film 4 such as polyethylene terephthalate (PET) or polyimide are broken and removed in an instant, so a clean drilling process that suppresses the generation of residues It can be performed.
  • PET polyethylene terephthalate
  • polyimide polyimide
  • the thermal process by the irradiation of the laser beam L is not used, a penetration pattern having substantially the same cross-sectional shape and shape as the beam of the laser beam L can be processed. It is also possible to form the vapor deposition mask 14 having the opening pattern 6. Therefore, it is possible to form a thin film pattern with higher definition than before.
  • FIG. 9 is a front view showing a configuration example of the laser processing apparatus used in the fifth step.
  • This laser processing apparatus irradiates the mask member 11 on the TFT substrate 1 with the laser light L while conveying the TFT substrate 1 at a constant speed in the direction indicated by the arrow X in FIG.
  • This is for forming the vapor deposition mask 14 by providing the opening pattern 6 having substantially the same shape and dimensions as the patterns of the organic EL layers 3R to 3B.
  • the transfer means 15 mounts the TFT substrate 1 and the magnetic chuck stage 13 integrated on a transfer stage 20 having a plurality of air ejection holes and air suction holes formed on the upper surface thereof. And the edge parallel to the arrow X direction of the magnetic chuck stage 13 is held by a transport mechanism (not shown) while the TFT substrate 1 and the magnetic chuck stage 13 are floated on the transport stage 20 by a certain amount. And transport it.
  • a laser optical unit 16 is provided above the conveying means 15.
  • the laser optical unit 16 irradiates selected laser electrodes L on the TFT substrate 1 with ultraviolet laser light L.
  • an excimer laser 21 that emits laser light L of KrF 248 nm, and laser light
  • a coupling optical unit 22 for enlarging the L beam diameter and making the intensity distribution uniform to irradiate parallel light onto a photomask 23 (described later) and an upper surface of the transfer stage 20 are disposed opposite to the transfer stage 20.
  • a photomask 23 having a plurality of openings 24 (see FIG. 10) formed in a direction crossing the arrow X direction in a plane parallel to the upper surface is provided.
  • the photomask 23 will be described in detail.
  • the photomask 23 is formed on a light shielding film 26 such as chromium (Cr) provided on one surface of a transparent substrate 25 with the TFT substrate 1.
  • the openings 24 are formed in a row at an arrangement pitch 3P that is three times the arrangement pitch P of the anode electrodes 2R to 2B in the direction crossing the arrow X direction, and the center and the central axis of each opening 24 are matched on the other surface.
  • a plurality of microlenses 27 are formed, and the opening 24 is reduced and projected onto the TFT substrate 1 by the microlens 27.
  • the size of the opening 24 is M times the pattern size of the organic EL layers 3R to 3B, where M is the reduction magnification of the microlens 27.
  • region which attached the oblique line is an area
  • an elongated viewing window 28 having a longitudinal central axis intersecting the arrow X direction is formed at a position away from the center of the plurality of openings 24 by a certain distance in the direction opposite to the arrow X.
  • This viewing window 28 is for enabling the surface of the TFT substrate 1 passing under the photomask 23 to be photographed by the imaging means 17 described later from above the photomask 23.
  • the imaging means 17 is provided above the conveying means 15.
  • This imaging means 17 is for photographing the surface of the TFT substrate 1 through the viewing window 28 of the photomask 23 and is a line camera having a plurality of light receiving elements arranged in a straight line in a direction crossing the arrow X direction.
  • the central axis in the direction in which the plurality of light receiving elements are arranged is arranged to coincide with the longitudinal central axis of the viewing window 28 of the photomask 23.
  • illumination means (not shown) is provided so that the imaging region of the imaging means 17 can be illuminated from above the TFT substrate 1.
  • reference numeral 30 denotes a reflection mirror that bends the optical path of the imaging system.
  • Alignment means 18 is provided so that the photomask 23 can be moved in a direction crossing the arrow X in a plane parallel to the upper surface of the transfer stage 20.
  • the alignment means 18 aligns the photomask 23 with respect to the moving TFT substrate 1, and a direction in which the photomask 23 intersects the arrow X by a transport mechanism including an electromagnetic actuator, a motor, and the like. It can be moved to.
  • a control means 19 is provided in electrical connection with the transport means 15, the excimer laser 21, the imaging means 17, and the alignment means 18.
  • the control unit 19 controls the transport unit 15 to transport the TFT substrate 1 at a constant speed in the direction of the arrow X, and controls the excimer laser 21 to emit light at regular intervals, and processes an image input from the imaging unit 17. Then, a reference position preset on the TFT substrate 1 is detected, and a horizontal distance between the reference position and the alignment mark 29 of the photomask 23 is calculated, and the horizontal distance becomes a predetermined distance.
  • the alignment means 18 is controlled to move the photomask 23.
  • the fifth step is executed as follows. First, the TFT substrate 1 integrated with the magnetic chuck stage 13 is positioned and placed on the upper surface of the transfer stage 20 of the transfer means 15 so that the long axis of the opening 9 of the metal member 10 is parallel to the arrow X direction. To do. Next, the transport unit 15 is controlled by the control unit 19 in a state where the magnetic chuck stage 13 and the TFT substrate 1 are integrally floated on the transport stage 20 and transported at a constant speed in the arrow X direction. Start.
  • the TFT substrate 1 is transported, reaches the lower side of the photomask 23, passes through the viewing window 28 of the photomask 23, and intersects with the arrow X direction previously formed on the TFT substrate 1 by the imaging means 17, for example, the anode electrodes 2R to 2B or
  • the moving distance of the TFT substrate 1 is calculated by the control means 19 based on the position of the TFT substrate 1 when the anode electrodes 2R to 2B are detected. The Then, when the movement distance matches a preset target value of the movement distance stored and the anode electrode 2R corresponding to R of the TFT substrate 1 reaches just below the opening 24 of the photomask 23, the control means 19 controls the movement distance.
  • the excimer laser 21 emits pulses.
  • the edge of the gate line serving as a reference for the pre-selected alignment among a plurality of gate lines, for example, parallel to the direction of the arrow X formed in advance on the TFT substrate 1 is imaged.
  • the horizontal distance between the photomask 23 and the alignment mark 29 of the photomask 23 detected at the same time is calculated by the control means 19, and the alignment means 18 is set so that the distance matches a preset target value stored.
  • the photomask 23 can be made to follow and align with the TFT substrate 1 which moves while swinging in the direction intersecting the arrow X.
  • the excimer laser 21 emits light, and the irradiation region of the photomask 23 is irradiated with the laser light L. Further, the laser light L that has passed through the opening 24 of the photomask 23 is condensed on the anode electrode 2 ⁇ / b> R corresponding to R of the TFT substrate 1 by the microlens 27. Then, the film 4 on the anode electrode 2R is ablated and removed by the laser light L, and an opening pattern 6 is formed.
  • the excimer laser 21 emits light
  • the film 4 on the anode electrode 2R is removed by the laser light L
  • the anode electrode 2R A vapor deposition mask 14 having an opening pattern 6 provided thereon is formed.
  • the excimer laser 21 emits light continuously, and a shutter is provided on the output optical axis side of the laser light L so that the shutter is opened when the R-compatible anode electrode 2R reaches just below the opening 24 of the photomask 23. Good.
  • the photomask 23 is provided with a plurality of openings 24 arranged in a line.
  • the plurality of openings 24 is an integer multiple of the pixel pitch in the same direction in the arrow X direction.
  • a plurality of rows may be provided at the pitch.
  • the film 4 on the anode electrode 2R corresponding to R is removed by multiple laser irradiations.
  • the microlenses 27 are provided corresponding to the plurality of openings 24 .
  • a cylindrical lens having a long axis across the plurality of openings 24 may be used.
  • the opening 24 may be formed as one stripe-like opening connecting the plurality of openings 24.
  • a laser beam L having an elongated light beam cross section can be generated to form a stripe-shaped opening pattern 6 in the film 4.
  • the TFT substrate 1 is placed and transported on the transport stage 20 so that the long axis of the opening 9 of the mask member 11 intersects the arrow X.
  • the strip-shaped opening pattern 6 is irradiated with the plurality of R-compatible anodes by irradiating the elongated laser beam L. It can be formed across the electrode 2R. As a result, a striped R organic EL layer 3R (thin film pattern) can be formed on a plurality of R-compatible anode electrodes 2R.
  • the laser processing apparatus has been described with respect to the case where the aperture pattern 6 is formed on the film 4 by irradiating the laser beam L while moving the TFT substrate 1 at a constant speed.
  • the processing apparatus opens the film 4 by irradiating the laser beam L while moving the TFT substrate 1 stepwise in the direction of arrow X or moving the TFT substrate 1 stepwise in a plane parallel to the substrate surface.
  • the pattern 6 may be formed, or the film 4 is opened by irradiating laser light L through a photomask 23 provided with a plurality of microlenses 27 corresponding to a plurality of anode electrodes of the TFT substrate 1.
  • the pattern 6 may be formed collectively.
  • the formation of the opening pattern 6 by the laser beam L is processed at once by irradiating the laser beam L having a relatively high energy density of, for example, 1 to 20 J / cm 2 at a constant depth, as described above.
  • the portion may be processed slowly by irradiating the laser beam L with the energy intensity lowered to 0.1 J / cm 2 or less, preferably 0.06 J / cm 2 or less.
  • the formation time of the opening pattern 6 can be shortened, and at the same time, the anode electrode can be prevented from being damaged by the laser light L.
  • an R organic EL layer is formed on the R corresponding anode electrode 2R of the TFT substrate 1 via the opening pattern 6 of the vapor deposition mask 14 using a vacuum vapor deposition apparatus.
  • 3R is vapor-deposited, and a transparent electrode layer 31 made of an ITO film is vapor-deposited on the R organic EL layer 3R using a known vapor deposition technique such as vapor deposition or sputtering.
  • the edge of the vapor deposition mask 14 is lifted upward as indicated by the arrow + Z in the figure. Then, the film 4 of the vapor deposition mask 14 is mechanically peeled from the surface of the TFT substrate 1. As a result, the R organic EL layer 3R remains on the R corresponding anode electrode 2R, and the R organic EL layer forming step is completed.
  • FIG. 6 is a cross-sectional explanatory view showing the G organic EL layer forming step.
  • the G organic EL layer forming step includes a magnetic material, and is a resin film 4 that transmits visible light to the metal member 10 in which the opening 9 having a larger shape than the pattern of the G organic EL layer 3G is formed.
  • a step of placing the metal member 10 on the TFT substrate 1 so that the anode electrode 2G corresponding to G on 1 is positioned in the opening 9 of the metal member 10 FIG. 5B
  • FIG. 7 is a cross-sectional explanatory view showing the B organic EL layer forming step.
  • This B organic EL layer forming step includes a magnetic material, and is a resin film 4 that transmits visible light to the metal member 10 in which the opening 9 having a larger size than the pattern of the B organic EL layer 3B is formed.
  • a step of placing the metal member 10 on the TFT substrate 1 so that the anode electrode 2B corresponding to B on 1 is positioned in the opening 9 of the metal member 10 FIG. 7
  • FIG. 8 is a cross-sectional explanatory view showing the cathode electrode forming step.
  • This cathode electrode forming step is for electrically connecting the transparent electrode layers on the organic EL layers 3R, 3G, 3B formed on the anode electrodes 2R, 2G, 2B of the TFT substrate 1,
  • a cathode electrode 32 transparent electrode
  • ITO IndiumInTin Oxide
  • FIG. 11 is a cross-sectional explanatory view showing a modification of the method for manufacturing a vapor deposition mask used in the organic EL layer forming step.
  • the manufacturing method of the vapor deposition mask for R organic EL layers is demonstrated as an example.
  • laser light L such as a fluorine resin or a cover glass that transmits visible light so as to cover the upper surface of the TFT substrate 1 placed on the magnetic chuck stage 13 is used.
  • a transparent member 36 that is difficult to absorb is placed.
  • the film 4 of the mask member 11 is attached.
  • the transparent member 36 is closely attached. In this state, the metal member 10 is attracted by the static magnetic field of the magnetic chuck stage 13 and the film 4 and the transparent member 36 are sandwiched between the metal member 10 and the TFT substrate 1 as shown in FIG. .
  • the film 4 corresponding to the anode electrode 2R corresponding to R on the TFT substrate 1 is irradiated with the laser light L, and the film 4 of the portion is irradiated with the R organic EL layer 3R.
  • An evaporation mask 14 is formed by providing an opening pattern 6 having the same shape and dimensions as the pattern. At this time, since the transparent member 36 does not absorb the laser light L, it is not laser processed.
  • an electrostatic chuck stage 37 configured to be able to apply a constant voltage, for example, is placed on the vapor deposition mask 14, and the film of the vapor deposition mask 14 is placed on the electrostatic chuck stage 37. 4 is electrostatically attracted and the static magnetic field of the magnetic chuck stage 13 is turned off. Then, with the vapor deposition mask 14 adsorbed to the electrostatic chuck stage 37, the electrostatic chuck stage 37 is lifted perpendicular to the arrow + Z direction shown in the figure, and the transparent member 36 is pulled out in the arrow Y direction shown in the figure.
  • the electrostatic chuck stage 37 is again lowered vertically in the direction of the arrow ⁇ Z, and the deposition mask 14 is placed on the TFT substrate 1. Then, the electrostatic chuck stage 37 is turned off and the magnetic chuck stage 13 is turned on, and the metal member 10 of the vapor deposition mask 14 is attracted by a magnetic force as shown in FIG. After the contact, the electrostatic chuck stage 37 is removed. Thereby, the manufacturing method of the vapor deposition mask 14 is complete
  • the formation of the R organic EL layer 3R is performed in the same manner as in FIGS. 4F and 4G using the vapor deposition mask 14. Furthermore, the G organic EL layer 3G and the B organic EL layer 3B can be formed using a mask formed in the same manner.
  • the transparent member 36 that transmits visible light is interposed between the film 4 and the TFT substrate 1, the laser light L is irradiated, and the film 4 is ablated to form the opening pattern 6.
  • the residue of the film 4 is generated by ablation, the residue is completely blocked by the transparent member 36 and does not adhere to the anode electrodes 2R to 2B. Therefore, the contact resistance between the anode electrodes 2R to 2B and the organic EL layers 3R to 3B is increased, or the residue damages the organic EL layers 3R to 3B, so that the light emission characteristics of the organic EL layers 3R to 3B are improved. There is no risk of lowering.
  • the transparent member 36 is a member that hardly absorbs the laser light L.
  • the present invention is not limited to this, and the transparent member 36 is sufficiently thick with respect to the thickness of the film 4. As long as it is thick, it may be a member that easily absorbs the laser beam L such as polyimide. In this case, after the laser processing on the film 4 is completed, the irradiation of the laser beam L may be stopped when the laser processing of the transparent member 36 is not completed.
  • the transparent electrode layer 31 is further formed on the organic EL layers 3R to 3B when the organic EL layers 3R to 3B are formed has been described.
  • the transparent electrode layer 31 may not be formed when the organic EL layers 3R to 3B are formed.
  • the static magnetic field generating means 12 is a permanent magnet.
  • the present invention is not limited to this, and the static magnetic field generating means 12 is an electromagnet. Also good.
  • the metal member 10 is made of a magnetic material.
  • the present invention is not limited to this, and the metal member 10 is made of a nonmagnetic material. May be.
  • an electrostatic chuck stage configured to be able to apply a constant voltage is used. After the TFT substrate 1 is placed on the electrostatic chuck stage, a voltage is applied to the stage to electrostatically attract the metal member 10 onto the TFT substrate 1 and sandwich the film 4.
  • the film 4 is attached to the metal member 10. May be applied by thermocompression bonding.
  • the opening 9 of the metal member 10 can be filled with the film 4.
  • the film 4 may be used by being sandwiched between the TFT substrate 1 and the metal member 10 without being bonded to the metal member 10.
  • FIG. 12 is a process diagram showing another manufacturing method of the second embodiment of the vapor deposition mask according to the present invention.
  • the vapor deposition mask manufacturing method includes a first step of forming the metal member 10, a second step of closely holding the resin film 4 on the metal member 10, a third step of closely contacting the film 4 on the substrate 38, A fourth step of forming a plurality of opening patterns 6 in the film 4 and a fifth step of peeling the metal member 10 and the film 4 integrally from the substrate 38 are performed, and the results are shown in FIG. 13 or FIG. A vapor deposition mask is manufactured.
  • the specific configuration of the second embodiment of the vapor deposition mask according to the present invention is to form an opening pattern 6 having the same shape and dimension as the thin film pattern corresponding to a predetermined thin film pattern formation region on the substrate.
  • a metal member 10 having an opening 9.
  • the vapor deposition mask 14 shown in FIG. 13 is provided with a plurality of elongated opening patterns 6, and the vapor deposition mask 14 shown in FIG. 14 is separated by a plurality of bridges 39 and arranged in a row. Are selected according to the shape of the thin film pattern to be formed. 13 and 14, reference numeral 40 denotes a mask side alignment mark for alignment with a substrate side alignment mark provided in advance on the substrate.
  • a plurality of openings 9 having a shape larger than that of the thin film pattern are provided in a thin plate-shaped magnetic material corresponding to the formation region of the thin film pattern. This is a step of forming the metal member 10.
  • the metal member 10 is formed into a thin plate of magnetic material made of, for example, nickel, nickel alloy, invar, or invar alloy having a thickness of about 1 ⁇ m to several mm, preferably about 30 ⁇ m to 50 ⁇ m.
  • the opening 9 is formed by dry etching such as wet etching or ion milling using a resist mask or by laser processing.
  • the opening 9 only needs to have a larger shape than the opening pattern 6 formed in the film 4 in the fourth step described later, and therefore the opening 9 is not required to be as precise as the opening pattern 6.
  • the shape of the opening part 9 is good to become narrow gradually toward the film 4 side (a longitudinal cross-sectional shape is an inverted trapezoid shape). As a result, the deposition material at the edge of the opening 9 is not squeezed during deposition, and the film thickness of the thin film pattern can be formed uniformly.
  • the second step is a step of forming a mask member by closely holding a resin film 4 that transmits visible light on one surface of the metal member 10, as shown in FIG. 12 (b).
  • the metal member 10 is thermocompression bonded to the film 4.
  • thermoplastic film 4 that transmits visible light adhered on a substrate 41 such as flat glass or the like, or a surface that is fusible.
  • the step of placing the metal member 10 on the upper surface of the processed film 4 and the metal member 10 are thermocompression bonded to the film 4 under a constant temperature and pressure as shown in FIG. And a step of peeling the film 4 from the surface of the substrate 41 as shown in FIG. In this case, since the twist and bending of the metal member 10 are regulated by the film 4, the shape and position of the opening 9 of the metal member 10 are maintained.
  • This second step may be performed in a state where a constant tension is applied to the metal member 10 by grasping the four sides of the metal member 10 and pulling them outward.
  • the magnetic member 10 made of a magnetic material may be attracted to the flat surface of a magnetic chuck having a flat surface by a magnetic force, or a combination of both may be performed.
  • the magnetic chuck may include a permanent magnet, but preferably includes an electromagnet that can control on / off of the generation of a magnetic field.
  • another magnetic chuck is placed on the metal member 10, and the metal member 10 is placed on the flat suction surface of the magnetic chuck by a magnetic force. It is good to carry out in the state which adsorbed and held. Thereby, the shape and position of the opening 9 of the metal member 10 can be maintained with high accuracy.
  • the film material used here may be a resin film that is ablated by irradiation with ultraviolet laser light L, and preferably, for example, polyimide, polyethylene terephthalate (PET), or the like.
  • the linear expansion coefficient of polyimide is about 10 ⁇ 10 ⁇ 6 to about 40 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of metal such as nickel (about 6 ⁇ 10 ⁇ 6 to about 20 ⁇ 10 ⁇ 6 / (° C.) and within an allowable range, when used in combination with the metal member 10 made of a metal material, it is possible to suppress the occurrence of warpage in vapor deposition due to the difference in thermal expansion coefficient between the two members during vapor deposition. desirable.
  • the metal such as Invar has a very small coefficient of thermal expansion (about 2 ⁇ 10 ⁇ 6 / ° C. or less)
  • the thermal expansion of the deposition mask due to radiant heat during deposition is regulated to maintain the positional accuracy of the opening pattern 6. Can do.
  • the thin film pattern formation region on the substrate 38 placed on the first magnetic chuck 42 is positioned in the opening 9 of the metal member 10. While observing with a microscope a mask-side alignment mark 40 (see FIGS. 13 and 14) formed in advance on the metal member 10 and a substrate-side alignment mark (not shown) formed in advance on the substrate 38, both marks are at a fixed position. After the metal member 10 is aligned with the substrate 38 by adjusting the relationship, the metal member 10 is attracted by the magnetic force of the first magnetic chuck 42 and the film 4 is placed on the upper surface of the substrate 38. Adhere closely.
  • substrate 38 is a board
  • the reference pattern 43 used as the irradiation target of the laser beam L in the 3rd step mentioned later corresponds to a thin film pattern formation area.
  • a reference substrate provided.
  • the thin film pattern may be formed on the substrate 38 by vapor deposition through the opening pattern 6 following the formation of the opening pattern 6 in the fourth step described later. Thereby, a high-definition thin film pattern can also be formed with high positional accuracy.
  • the wavelength of the film 4 corresponding to the thin film pattern formation region (reference pattern 43) in the opening 9 of the metal member 10 is 400 nm or less.
  • energy density is irradiated with a laser beam L of 0.1J / cm 2 ⁇ 20J / cm 2, a thin film pattern and geometry to form an opening pattern 6 to the same through.
  • the second magnetic chuck 44 having a flat attracting surface is placed on the upper surface of the metal member 10, and the electromagnet of the second magnetic chuck 44 is installed.
  • the electromagnet of the first magnetic chuck 42 is turned off, the metal member 10 is attracted by the magnetic force of the second magnetic chuck 44, and the metal member 10 and the film 4 are integrally peeled off from the substrate 38. 2 is received on the magnetic chuck 44 side.
  • the manufacturing process of the vapor deposition mask of this invention is complete
  • the vapor deposition mask 14 is handled while the metal member 10 is attracted to the second magnetic chuck 44, the shape and position of the opening pattern 6 of the vapor deposition mask 14 are maintained, and the subsequent high-definition thin film pattern is formed. Formation can be performed easily.
  • the metal member 10 and the film 4 may be integrated by thermocompression bonding of the metal member 10 after the surface of the film 4 is modified.
  • the surface modification treatment includes a method of etching the surface of the film 4 to form hydrophilic groups such as carboxyl groups (—COOH) and carbonyl groups (—COO) on the surface.
  • hydrophilic groups such as carboxyl groups (—COOH) and carbonyl groups (—COO) on the surface.
  • a silane coupling agent or the like is applied to the interface between the film 4 and the metal member 10 to form a silanol (SiOH) group to improve wettability, and the film 4 and the metal member 10 are formed at the interface.
  • Hydrogen bonds may be further subjected to dehydration condensation. Thereby, adhesion by a more stable chemical bond becomes possible.
  • the surface of the film 4 can be modified by performing plasma treatment on the surface of the film 4 in atmospheric pressure plasma or reduced pressure plasma, or wet etching the surface of the film 4 with an alkaline solution.
  • FIG. 16 is an explanatory view showing still another example of forming the mask member.
  • a step of placing the metal member 10 on the upper surface of the film 4 adhered on the substrate 41 such as flat glass is shown in FIG.
  • the step of applying the curable resin 45 that transmits visible light into the opening 9 of the metal member 10 and curing it to integrate the metal member 10 and the film 4 as shown in FIG. it includes a step of adsorbing the metal member 10 to a flat adsorption surface of a magnetic chuck (not shown) and peeling the film 4 from the surface of the substrate 41.
  • the curable resin 45 used here is preferably, for example, a UV-free or photo-curable solventless or resin with very little solvent.
  • FIG. 17 is an explanatory view showing still another example of forming the mask member.
  • copper is deposited on one surface of a film 4 electrostatically adsorbed on an electrostatic chuck (not shown) having a flat surface by a known deposition technique such as sputtering or plating.
  • FIG. 18 is an explanatory view showing still another example of forming the mask member.
  • a resin solution 48 such as polyimide is spin-coated or dip-coated to a thickness of about 30 ⁇ m, for example, on a substrate 41 having a flat surface such as glass.
  • the step of forming the film 4 held on the metal member 10 and, as shown in FIG. 5C, for example, the metal member 10 is attracted to a flat attracting surface of a magnetic chuck (not shown) to attach the film 4 to the substrate 41. Peeling from the surface.
  • the semi-dry state of the resin solution 48 can be realized by appropriately controlling the heating temperature and the heating time, and the heating conditions are determined in advance by experiments. Furthermore, the conditions for completely drying the resin are similarly determined in advance.
  • FIG. 19 is an explanatory view showing still another example of forming the mask member.
  • a photosensitive resin solution 48 such as photoresist or photosensitive polyimide is spin-coated or dip-coated to a thickness of about 30 ⁇ m on a substrate 41 such as glass.
  • a photomask as shown in FIG. 5B
  • developing to form a protruding pattern 49 at a position corresponding to the opening 9 of the metal member 10 After the metal member 10 is pressure-bonded on the photosensitive resin in a state where the opening 9 of the metal member 10 and the protruding pattern 49 are matched, heating is performed at a predetermined temperature.
  • the step of forming the film 4 which is dried and held on the metal member 10 and the film 4 is formed by adsorbing the metal member 10 on a flat adsorption surface of a magnetic chuck (not shown), for example, as shown in FIG. Table of material 41 And it includes a step of peeling, from.
  • the protruding pattern 49 is formed in a trapezoidal shape having a narrow upper portion and a lower lower portion, the fitting of the opening 9 of the metal member 10 and the protruding pattern 49 is performed using the side surface of the protruding pattern 49 as a guide. It can be done easily.
  • the positioning of the opening 9 of the metal member 10 is regulated by the protruding pattern 49, the positional accuracy of the opening 9 of the metal member 10 can be made higher than in the case of FIG.
  • FIG. 20 is an explanatory view showing still another example of forming the mask member.
  • a step of adsorbing the metal member 10 to a flat adsorption surface of a magnetic chuck (not shown) and peeling the film 4 from the surface of the base material 41 is included.
  • the metal member 10 is placed on the attraction surface of another magnetic chuck whose attraction surface is formed flat by glass or the like. It may be performed in a state in which the metal member 10 is attracted and held by the magnetic force. Thereby, the shape and position of the opening 9 of the metal member 10 can be maintained with high accuracy.
  • FIG. 21 is an explanatory view showing still another example of forming the mask member.
  • a photosensitive resin solution 48 such as a photoresist or photosensitive polyimide is applied to the upper surface of a flat metal substrate 50 made of, for example, stainless steel.
  • the metal member 10 is attracted to a flat attracting surface of a magnetic chuck (not shown), and the metal member 10 and the island pattern 51 (film 4) are formed. Are integrally peeled off from the surface of the metal substrate 50.
  • the metal member 10 is produced by plating a magnetic film around the resin island pattern 51 (film 4) formed by using the photolithography technique, the opening 9 of the metal member 10 is formed. Can be formed with high accuracy.
  • FIG. 22A is a process diagrams showing still another manufacturing method of the vapor deposition mask (second embodiment) according to the present invention.
  • a polyimide film 4 having a thickness of about 10 ⁇ m to 30 ⁇ m for transmitting visible light, for example, electrostatically adsorbed and held on a stage (not shown) having a flat surface.
  • a base layer 52 of a metal film made of a magnetic material made of nickel or the like having a thickness of about 50 nm is deposited on the surface 4a by a known vapor deposition technique such as sputtering as shown in FIG.
  • the underlayer 52 is not limited to a metal film made of a magnetic material, and may be a metal film made of a highly conductive nonmagnetic material.
  • a resist 53 (photosensitive material) having a thickness of about 30 ⁇ m is spin-coated on the base layer 52, for example.
  • FIG. 22 (d) exposure is performed using a photomask 54, development is performed as shown in FIG. 22 (e), and a thin film pattern formation region (eg, organic) on a substrate (eg, TFT substrate) is developed.
  • a thin film pattern formation region eg, organic
  • An island pattern 51 of a resist 53 having a shape larger than that of the thin film pattern is formed in a portion corresponding to the EL layer formation region.
  • the photomask 54 to be used has an opening formed in a portion corresponding to the thin film pattern formation region on the substrate, and when the resist 53 is a positive type, the photomask 54 shields light from the portion corresponding to the thin film pattern formation region on the substrate.
  • a metal member 10 made of a magnetic material such as nickel or invar is plated to a thickness of about 30 ⁇ m in the peripheral region of the island pattern 51 of the film 4.
  • FIG. 22 (g) after the island pattern 51 is peeled off and the opening 9 corresponding to the island pattern 51 is formed in the metal member 10, as shown in FIG. 9 is removed by etching, and the mask member 11 is formed. Note that a mask-side alignment mark 40 for alignment with the substrate is formed by the metal member 10 at a predetermined position of the mask member 11.
  • the mask member 11 formed in this way is attracted and held on the metal member 10 side by the second magnetic chuck 44 having the attracting surface 44a formed on a flat surface as shown in FIG.
  • the mask member 11 is placed above the substrate 1 (for example, a TFT substrate) placed on the first magnetic chuck 42 having the attracting surface 42a formed on a flat surface. Positioning and observing with a microscope a substrate-side alignment mark (not shown) formed in advance on the substrate 1 and a mask-side alignment mark 40 formed in advance on the mask member 11 so that both marks have a certain positional relationship. After the adjustment, the substrate 1 and the mask member 11 are aligned so that the thin film pattern formation region 55 (for example, the region on the anode electrode) is positioned in the opening 9 as shown in FIG. The film 4 is brought into close contact with the substrate 1. Thereafter, as shown in FIG.
  • the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off, and the metal member 10 is attracted by the first magnetic chuck 42. Then, the mask member 11 is transferred from the second magnetic chuck 44 onto the substrate 1.
  • plasma processing is performed in a known plasma processing apparatus, and a thin layer at the bottom of the concave portion 5 is removed to form an opening pattern 6 penetrating therethrough. Thereby, the vapor deposition mask 14 is manufactured.
  • a second magnetic chuck 44 is placed on the vapor deposition mask 14. Then, as shown in FIG. 24C, the electromagnet 56 of the second magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 is attracted by the second magnetic chuck 44. Then, the vapor deposition mask 14 is transferred to the second magnetic chuck 44. Thereafter, the vapor deposition mask 14 is stored while being held by the second magnetic chuck 44.
  • the substrate 1 is integrated with the vapor deposition mask 14 when the vapor deposition mask 14 is formed in FIG.
  • the thin film pattern may be formed by placing the first magnetic chuck 42 in a vacuum chamber of a vacuum deposition apparatus and vacuum depositing the deposition material through the opening pattern 6 of the deposition mask 14.
  • FIGS. 25 (a) and 25 (b) from a thin plate-like magnetic material provided with a plurality of through-holes 9 having a shape larger than that of the thin film pattern corresponding to the formation region of the thin film pattern.
  • a case in which an elongated opening pattern 6 as shown in FIG. 13 is formed on a mask member 11 in which a metal member 10 to be formed is formed in close contact with one surface of a resin film 4 that transmits visible light will be described. .
  • a plurality of reference patterns 43 which are the same as the thin film pattern and have the same dimensions as the thin film pattern, are formed on one surface 57a of the transparent substrate 57.
  • the reference pattern 43 of the reference substrate 38 placed on the stage of the laser processing apparatus with the reference pattern 43 on the lower side is formed at the opening 9 of the metal member 10. After the metal member 10 is aligned with the reference substrate 38 so as to be positioned inside, the film 4 is brought into close contact with the other surface 57 b of the reference substrate 38.
  • a cross-shaped substrate-side alignment mark 58 is formed at the position corresponding to the mask-side alignment mark 40 outside the formation region of the plurality of reference patterns 43 together with the reference pattern 43. ) Or the like.
  • the alignment of the metal member 10 and the reference substrate 38 is performed by observing the mask-side alignment mark 40 formed in advance on the metal member 10 and the substrate-side alignment mark 58 formed in advance on the reference substrate 38 with a microscope. The adjustment is performed so that the center of the substrate side alignment mark 58 matches the center of the mask side alignment mark 40.
  • the film 4 and the reference substrate 38 are brought into close contact with each other by attracting the metal member 10 by the magnetic force of the magnet chuck provided on the back surface of the stage, and at the same time, the metal member 10, the film 4 and the reference substrate 38 are integrated with the stage. Fixed to.
  • a laser beam L having an energy density of 0.1 J / cm 2 to 20 J / cm 2 is irradiated to form an opening pattern 6 having the same shape as the thin film pattern.
  • the mask member 11 and the reference substrate 38 are conveyed in the alignment direction of the reference patterns 43 of the reference substrate 38 (in the direction of the arrow in FIG. 25D), while the mask is applied to the irradiation position of the laser light L.
  • the reference pattern 43 is photographed by transmitted illumination by the imaging means 17 provided so as to be capable of photographing the upstream position of the member 11 and the reference substrate 38 in the transport direction, and the reference pattern 43 is detected based on the photographed image. This is executed by controlling the irradiation timing of the laser light L with reference to the time. Thereby, a vapor deposition mask as shown in FIG. 13 is completed.
  • the imaging means 17 is a line camera in which a plurality of light receiving elements are arranged in a straight line in a direction intersecting with the conveying direction of the mask member 11 and the reference substrate 38, and the reference pattern 43 is an image taken by the imaging means 17. Based on this, it is possible to detect from a change in luminance in the transport direction (for example, a change in luminance from light to dark in the case of transmitted illumination).
  • the amount of positional deviation between the center of the opening 9 of the metal member 10 and the center of the reference pattern 43 of the reference substrate 38 is within an allowable value. It is executed with confirmation. More specifically, a change in luminance that exceeds the threshold value as shown in FIG. 27 in the moving direction of the mask member 11 and the reference substrate 38 is detected based on the image taken by the imaging means 17, and the brightness changes from dark to bright. The distance D1 between the two is calculated from the position of the luminance change to the distance, and the distance D2 between the two is calculated from the position of the luminance change from light to dark adjacent to each other, and
  • a magnetic chuck (holding means) (not shown) having a flat attracting surface is placed on the upper surface of the metal member 10, and the electromagnet of the magnetic chuck is turned on. Then, the metal member 10 is attracted by the magnetic force of the magnetic chuck, and the vapor deposition mask is peeled off from the reference substrate 38 and received by the magnetic chuck side. Thereby, all the manufacturing processes of the vapor deposition mask of this invention are complete
  • the one surface side of the sheet coated with an easily peelable adhesive may be adhered to the upper surface of the metal member 10, the metal member 10 may be attached to the sheet, and the vapor deposition mask may be peeled off from the reference substrate 38.
  • the handleability of a vapor deposition mask improves more.
  • the opening pattern 6 is formed on the film 4 by irradiating the laser beam L while conveying the mask member 11 and the reference substrate 38 has been described, but the present invention is not limited to this.
  • the opening pattern 6 may be formed while stepping the laser light L side in the arrangement direction of the reference pattern 43 of the reference substrate 38.
  • the mask member 11 and the reference substrate 38 are integrally conveyed.
  • step S1 the reference substrate 38 and the mask member 11 positioned and adhered to the surface of the reference substrate 38 opposite to the surface on which the reference pattern 43 is formed are placed with the reference pattern 43 side down. Then, it is placed on the stage integrally, and the edge of the mask member 11 and the reference substrate 38 is held by a conveyance mechanism (not shown), and conveyance is started at a constant speed in the arrow Z direction shown in FIG.
  • step S2 the imaging member 17 captures the mask member 11 and the reference substrate 38 from below, and the captured image is processed by the image processing unit of the control unit 19 to change the brightness from dark to bright in the arrow Z direction. Then, a luminance change from light to dark (see FIG. 27) is detected.
  • step S3 the number of driving pulses of the pulse motor of the transport mechanism from the detection of a change in luminance from dark to light until the detection of the next change in luminance from dark to light, and the luminance from light to dark.
  • the number of drive pulses of the pulse motor from when the change is detected until the next brightness change from light to dark is detected is counted by the calculation unit of the control means 19, and from each count number to the dark to light adjacent to each other.
  • the interval D1 between the luminance change portions and the interval D2 between the brightness change portions adjacent to each other from light to dark are calculated.
  • is calculated to calculate the amount of positional deviation between the center of the opening 9 of the metal member 10 and the center of the reference pattern 43.
  • step S4 the calculation unit compares the displacement amount with an allowable value read from the memory, and determines whether the displacement amount is within an allowable range. Here, if it becomes "YES” determination, it will progress to step S5. On the other hand, if “NO” determination is made, it is determined that the alignment error between the metal member 10 and the reference substrate 38 or the formation accuracy of the opening 9 of the metal member 10 is poor, and the laser processing is terminated. Then, the transport mechanism is moved at a high speed to carry out the mask member 11 and the reference substrate 38.
  • step S5 the leading edge of the reference pattern 43 in the conveyance direction is detected based on the detection of the odd-numbered luminance change in the luminance change from light to dark in the image processing unit.
  • step S6 when the reference pattern 43 is detected in step S5, the number of driving pulses of the pulse motor of the transport mechanism is counted by the arithmetic unit based on the detection time. Then, compared with the target value of the pulse count number read from the memory, whether or not the pulse count number matches the target value, that is, the reference substrate 38 is moved by a predetermined distance integrally with the mask member 11. It is determined whether or not. Here, if it becomes "YES" determination, it will progress to step S7.
  • the pulse count number matches the target value when the reference pattern 43 of the reference substrate 38 has just reached the irradiation position of the laser light L of the laser optical unit 16.
  • step S7 an oscillation command is output from the control means 19 to the excimer laser 21, and the excimer laser 21 pulsates.
  • the laser beam L is applied to the film 4 portion on the reference pattern 43 of the reference substrate 38, and the film 4 in the portion is ablated to penetrate the opening pattern 6 having the same shape and dimension as the reference pattern 43 (or thin film pattern). Is formed.
  • the opening pattern 6 may be formed by emitting a plurality of shots of laser light L from the excimer laser 21 within a predetermined time.
  • step S8 it is determined whether or not all the opening patterns 6 corresponding to the reference pattern 43 have been formed. If “NO” is determined here, the process returns to step S2, and steps S2 to S8 are repeatedly executed until all the opening patterns 6 are formed and step S8 is determined to be "YES".
  • the opening pattern 6 corresponding to the second and subsequent reference patterns 43 from the top in the transport direction of the reference substrate 38 may be formed as follows. That is, the number of driving pulses of the pulse motor is counted in the calculation unit, and the moving distance of the transport mechanism calculated based on the counted number is compared with the arrangement pitch of the reference pattern 43 read from the memory. Alternatively, the excimer laser 21 may be oscillated.
  • steps S3 to S6 are executed in series, but in actuality, steps S3 to S4 and steps S5 to S6 are executed in parallel.
  • the opening pattern 6 may be formed by etching instead of laser processing.
  • etching instead of laser processing.
  • the opening pattern 6 is formed by etching will be described.
  • the case where the opening pattern 6 is formed with respect to the member for masks formed, for example according to the process shown in FIG. 22 is demonstrated.
  • a positive photoresist 53 for example, is dip-coated on both surfaces of the mask member 11.
  • a photomask 54 having openings corresponding to the opening pattern 6 to be formed is placed on the side opposite to the first surface 4a where the metal member 10 of the film 4 is in close contact.
  • the second photomask 54 is masked by using an alignment mark (not shown) provided on the photomask 54 and a mask side alignment mark 40 provided on the metal member 10 in a state of being opposed to the second surface 4b.
  • the photo resist 53 applied to the second surface 4b of the film 4 is exposed and developed.
  • openings having the same shape and dimensions as the thin film pattern are arranged at the same arrangement pitch as the thin film pattern to be deposited on the portion of the photoresist 53 corresponding to the opening 9. 59 is formed, and a resist mask 60 is formed.
  • the mask member 11 is immersed in a tank filled with, for example, a polyimide etching solution, and the polyimide film 4 is etched using the resist mask 60. Then, as shown in FIG. 29D, an opening pattern 6 is formed.
  • the opening pattern 6 is formed with a taper having a taper angle of about 55 ° to 60 °. be able to.
  • the etching of the film 4 is performed from the second surface 4b side of the film 4, the opening pattern 6 is opened from the second surface 4b side to the first surface 4a side due to the effect of side etching. The area gradually decreases.
  • the area of the opening pattern 6 on the first surface 4a side is the same as the area of the thin film pattern to be formed.
  • the deposition mask 14 shown in FIG. 13 or FIG. 14 is completed by washing away the photoresist 53 applied on both surfaces of the mask member 11 with an organic solvent.
  • a dry film resist may be used instead of the photoresist 53.
  • the etching process of the film 4 shown in FIG. 29D is preferably performed in a state where the metal member 10 side of the mask member 11 is the magnetic chuck side and the metal member 10 is magnetically attracted to the magnetic chuck. .
  • the vapor deposition mask 14 manufactured in this way is used as follows during vapor deposition.
  • an organic EL layer is formed by vapor deposition as a thin film pattern
  • an R organic EL layer is formed
  • the vapor deposition mask 14 that is attracted and held by the second magnetic chuck 44 is positioned above the TFT substrate 1 placed on the first magnetic chuck 42.
  • the metal member 10 of the vapor deposition mask 14 is arranged on the TFT substrate 1 side.
  • the two marks are in a certain positional relationship, for example, each mark.
  • the deposition mask 14 and the TFT substrate 1 are aligned by relatively moving the first and second magnetic chucks 42 and 44 so that the centers coincide.
  • the second magnetic chuck 44 is lowered vertically with respect to the first magnetic chuck 42 in the direction of the arrow -Z shown in FIG.
  • the metal member 10 of the vapor deposition mask 14 is brought into close contact with the TFT substrate 1.
  • each opening pattern 6 of the vapor deposition mask 14 is positioned on the R corresponding anode electrode 2 ⁇ / b> R of the TFT substrate 1.
  • the first magnetic chuck 42 is turned on, the second magnetic chuck 44 is turned off, and the metal member 10 of the vapor deposition mask 14 is magnetically applied to the first magnetic chuck 42.
  • the vapor deposition mask 14 is transferred onto the TFT substrate 1. Thereafter, the second magnetic chuck 44 is lifted and removed in the arrow + Z direction shown in FIG.
  • the vapor deposition mask 14, the TFT substrate 1 and the second magnetic chuck 44 are integrally installed at a predetermined position in the vacuum chamber of the vapor deposition apparatus with the vapor deposition mask 14 facing down and facing the vapor deposition source. .
  • vacuum evaporation is performed under preset evaporation conditions to form an R organic EL layer 3 ⁇ / b> R on the R corresponding anode electrode 2 ⁇ / b> R of the TFT substrate 1.
  • the opening pattern 6 of the vapor deposition mask 14 is formed in a shape expanding from the first surface 4a side to the second surface 4b side of the film 4, and the vapor deposition mask 14 on the side on which the vapor deposition material molecules fly. Since there is no member that becomes a shadow of vapor deposition on this surface, the R organic EL layer 3R deposited on the TFT substrate 1 through the opening pattern 6 has a uniform film thickness.
  • the vapor deposition mask 14 according to the present invention has the following advantages compared to the conventional metal mask. That is, as shown in FIG. 32A, in the case of the conventional metal mask 61, the vapor deposition material goes around and adheres to the gap 63 between the metal mask 61 and the TFT substrate 1, and deposit 64 is deposited. To do. The deposit 64 lifts the edge of the opening pattern 6 of the metal mask 61 to wave the metal mask 61. For this reason, a fine thin film pattern (for example, the R organic EL layer 3R) can be accurately formed. There was something I could't do.
  • a fine thin film pattern (R organic EL layer 3R) can be formed with high accuracy.
  • the vapor deposition mask 14 is described in which the metal member 10 provided with the opening 9 having a larger dimension than the opening pattern 6 is in close contact with the one surface 4a of the film 4.
  • the vapor deposition mask of the present invention is described. 14 is not limited thereto, and a plurality of flaky metal members 10 may be provided by being dispersed on one surface 4a or inside of the film 4 at the outer portion of the opening pattern 6.
  • the metal member 10 is a thin piece will be described.
  • FIG. 33A and 33B are views showing a third embodiment of the vapor deposition mask 14 according to the present invention, wherein FIG. 33A is a plan view and FIG. 33B is a sectional view taken along the line DD of FIG.
  • a plurality of opening patterns 6 having the same shape and dimensions as the thin film pattern are formed by arranging them in parallel at the same arrangement pitch as the arrangement pitch of the striped thin film pattern to be formed on the substrate.
  • one surface 4a or the inside of the film 4 at the outer portion of the film 4 made of resin such as polyimide or polyethylene terephthalate (PET) having a thickness of, for example, about 10 ⁇ m to 30 ⁇ m and a plurality of opening patterns 6 of the film 4.
  • resin such as polyimide or polyethylene terephthalate (PET) having a thickness of, for example, about 10 ⁇ m to 30 ⁇ m and a plurality of opening patterns 6 of the film 4.
  • a flaky metal member 10 provided on the surface.
  • the thin piece is a magnetic material and the metal member 10 having a thickness of about 10 ⁇ m to 30 ⁇ m provided in close contact with the one surface 4a of the film 4 will be described.
  • the metal member 10 has a striped form in which the major axis coincides with the major axis at the outer portion parallel to the major axis of the opening pattern 6 of the film 4.
  • the difference in thermal expansion coefficient between the film 4 and the metal member 10 is shown in FIG.
  • the vapor deposition mask 14 may be warped, and the adhesion to the substrate may be deteriorated.
  • a plurality of flaky metal members 10 are provided scattered on one surface 4a of the film 4 at the outer portion of the plurality of opening patterns 6. It is a thing. Thereby, the difference of the thermal expansion coefficient between the film 4 and the metal member 10 is relieved, and the curvature of the vapor deposition mask 14 is suppressed.
  • a base layer 52 of a metal film made of a magnetic material made of nickel (Ni) or the like having a thickness of about 50 nm is deposited by a known film forming technique such as sputtering.
  • the underlayer 52 is not limited to a magnetic material, and may be a non-magnetic material with good electrical conductivity.
  • a resist 53 (photosensitive material) having a thickness of about 15 ⁇ m is spin-coated on the underlayer 52, for example.
  • the resist 53 is exposed using a photomask 54, developed as shown in FIG. 35 (e), and a plurality of layers reaching the underlayer 52 on the film surface of the resist 53.
  • the openings 59 are randomly arranged.
  • the photomask 54 shields light from portions corresponding to the plurality of openings 59.
  • the photomask 54 to be used is A portion corresponding to the plurality of openings 59 is opened.
  • a thin film of a metal member 10 such as nickel (Ni) is plated in the opening 59 to a thickness of about 15 ⁇ m.
  • FIG. 35 (g) after the resist 53 is peeled off, the underlying layer 52 around the metal member 10 is removed by etching as shown in FIG. 35 (h). Thereby, as shown in FIG. 36A, a mask member 11 in which a plurality of film-like metal members 10 are randomly scattered on one surface of the film 4 is formed.
  • the laser light L shown in FIG. 36B is irradiated to the portion of the film 4 corresponding to the reference pattern 43 of the reference substrate 38.
  • the opening pattern 6 is formed on the film 4.
  • the laser beam L is moved stepwise in the direction of the arrow relative to the mask member 11 by the same distance as the arrangement pitch of the reference patterns 43 in the same direction.
  • the film 4 is processed to form a plurality of opening patterns 6.
  • the vapor deposition mask 14 shown in FIG. 33 is completed.
  • the opening pattern 6 may be laser processed using the laser processing apparatus shown in FIG.
  • the mask member 11 is formed by randomly dispersing a plurality of flaky metal members 10 on one surface 4a of the film 4, vapor deposition with different arrangement pitches and shapes of the opening patterns 6 is performed.
  • the mask member 11 can be shared by the mask 14. Therefore, the manufacturing cost of the vapor deposition mask 14 can be reduced.
  • the present invention is not limited to this, and the plurality of metal members 10 are scattered. 37 may be provided in parallel with the long axis on the outer side of the striped opening pattern 6 of the film 4 parallel to the long axis. In this case, the plurality of metal members 10 may be arranged at a constant arrangement pitch. Thereby, the attraction
  • the mask member 11 to be formed is dedicated to a specific vapor deposition mask.
  • an R (red) organic EL layer and a G (green) organic EL are formed on the TFT substrate 1 as a plurality of types of thin film patterns having a fixed shape.
  • a method of manufacturing an organic EL display device by forming a layer and a B (blue) organic EL layer will be described.
  • the case where the R organic EL layer 3 ⁇ / b> R is formed on the TFT substrate 1 will be described with reference to FIGS. 38 and 39.
  • the vapor deposition mask 14 held by being attracted to the second magnetic chuck 44 is placed above the TFT substrate 1 placed on the first magnetic chuck 42.
  • the film 4 is brought into close contact with the TFT substrate 1. Thereby, the opening pattern 6 of the vapor deposition mask 14 is positioned on the R corresponding anode electrode 2 ⁇ / b> R of the TFT substrate 1.
  • the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off.
  • the member 10 is attracted to move the vapor deposition mask 14 from the second magnetic chuck 44 onto the TFT substrate 1.
  • the TFT substrate 1 and the vapor deposition mask 14 are integrally held in the first magnetic chuck 42 and placed in a vacuum chamber of a vacuum vapor deposition apparatus (not shown).
  • the R organic EL layer 3 ⁇ / b> R is vacuum-deposited on the R organic EL layer forming region on the R corresponding anode electrode 2 ⁇ / b> R of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14.
  • the first magnetic chuck 42 is taken out from the vacuum chamber, and the second magnetic chuck 44 is placed on the vapor deposition mask 14 as shown in FIG. 39B, and the second magnetic chuck 44 is placed as shown in FIG.
  • the electromagnet 56 of the magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 of the vapor deposition mask 14 is attracted by the second magnetic chuck 44 so that the vapor deposition mask 14 is attached to the TFT substrate 1 side.
  • the R organic EL layer 3 ⁇ / b> R is formed on the R corresponding anode electrode 2 ⁇ / b> R of the TFT substrate 1.
  • the vapor deposition mask 14 that is attracted and held by the second magnetic chuck 44 is placed above the TFT substrate 1 placed on the first magnetic chuck 42. Positioning and observing the mask-side alignment mark 40 and the G substrate-side alignment mark with a microscope, as shown in FIG. After the alignment with the TFT substrate 1, the film 4 is brought into close contact with the TFT substrate 1. Thereby, the opening pattern 6 of the vapor deposition mask 14 is positioned on the G corresponding anode electrode 2G of the TFT substrate 1.
  • the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off.
  • the member 10 is attracted to move the vapor deposition mask 14 from the second magnetic chuck 44 onto the TFT substrate 1.
  • the TFT substrate 1 and the vapor deposition mask 14 are integrally held in the first magnetic chuck 42 and installed in the vacuum chamber of the vacuum vapor deposition apparatus.
  • the G organic EL layer 3G is vacuum-deposited on the G organic EL layer forming region on the G corresponding anode electrode 2G of the TFT substrate 1 through the opening pattern 6.
  • the first magnetic chuck 42 is taken out from the vacuum chamber, the second magnetic chuck 44 is placed on the vapor deposition mask 14 as shown in FIG. 41B, and the second magnetic chuck 44 is placed as shown in FIG.
  • the electromagnet 56 of the magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 of the vapor deposition mask 14 is attracted by the second magnetic chuck 44 to bring the vapor deposition mask 14 from the TFT substrate 1 side.
  • the G organic EL layer 3G is formed on the G corresponding anode electrode 2G of the TFT substrate 1.
  • the vapor deposition mask 14 that is attracted and held by the second magnetic chuck 44 is placed above the TFT substrate 1 placed on the first magnetic chuck 42. Positioning, while observing the mask side alignment mark 40 and the B substrate side alignment mark with a microscope, as shown in FIG. After the alignment with the TFT substrate 1, the film 4 is brought into close contact with the TFT substrate 1. Thereby, the opening pattern 6 of the vapor deposition mask 14 is positioned on the B corresponding anode electrode 2 ⁇ / b> B of the TFT substrate 1.
  • the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off.
  • the member 10 is attracted to move the vapor deposition mask 14 from the second magnetic chuck 44 onto the TFT substrate 1.
  • the TFT substrate 1 and the vapor deposition mask 14 are integrally held in the first magnetic chuck 42 and installed in the vacuum chamber of the vacuum vapor deposition apparatus.
  • the B organic EL layer 3B is vacuum-deposited on the B organic EL layer forming region on the B corresponding anode electrode 2B of the TFT substrate 1 through the opening pattern 6.
  • the first magnetic chuck 42 is taken out of the vacuum chamber, and the second magnetic chuck 44 is placed on the vapor deposition mask 14 as shown in FIG. 11B, and the second magnetic chuck 44 is placed as shown in FIG.
  • the electromagnet 56 of the magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 of the vapor deposition mask 14 is attracted by the second magnetic chuck 44 so that the vapor deposition mask 14 is placed on the TFT substrate 1.
  • the B organic EL layer 3B is formed on the B corresponding anode electrode 2B of the TFT substrate 1.
  • the vapor deposition mask 14 is transferred from the second magnetic chuck 44 side to the first magnetic chuck 42 side in the same manner as described above, and is subjected to plasma treatment in the plasma processing apparatus and adhered to the vapor deposition mask 14. Material is removed. The vapor deposition mask 14 thus cleaned is transferred again to the second magnetic chuck 44 and held on the second magnetic chuck 44, or while being held on the first magnetic chuck 42. Stored. Therefore, there is no possibility that the vapor deposition mask 14 is twisted or bent and the shape of the opening pattern 6 is lost or displaced.
  • the formation process of the said R organic EL layer 3R, G organic EL layer 3G, and B organic EL layer 3B can be performed as a series of processes using the same vapor deposition mask 14.
  • FIG. 44A and 44B are views showing a fourth embodiment of the vapor deposition mask according to the present invention, in which FIG. 44A is a plan view, FIG. 44B is a bottom view, and FIG. 44C is a sectional view taken along line EE of FIG. (D) is a partially enlarged view of (c).
  • the fourth embodiment of the vapor deposition mask according to the present invention is different from the first to third embodiments in that the film 4 is an elongated metal member 10 described later as shown in FIGS. 44 (a) and 44 (b).
  • the metal member 10 has a plurality of openings 9 separated by bridges 39 provided at predetermined portions that do not affect the formation of the organic EL layer. Is formed. Thereby, the rigidity of the metal member 10 is increased and bending can be suppressed. Therefore, the alignment accuracy between the vapor deposition mask 14 and the substrate can be further improved, and the formation accuracy of the thin film pattern can be further improved.
  • the shape of the film 4 is larger than the thin film pattern corresponding to the surface 4b opposite to the contact surface 4a with the substrate and the thin film pattern formation region of the substrate.
  • a metal member 10 made of, for example, a magnetic material and having a plurality of through-holes 9 separated by a plurality of bridges 39 is surface-bonded as indicated by arrows in the figure, and the mask shown in FIG. The member 11 is formed.
  • the surface bonding is preferably performed by using non-flux solder 47 applied on the metal film 46 using a film 4 having a part (for example, a peripheral region) coated with the metal film 46 as shown in FIG.
  • the film 4 may be non-flux soldered to the metal member 10.
  • a metal film 46 is formed in the peripheral region of the plurality of regions 66 of the film 4 corresponding to the plurality of regions on the substrate. It is preferable to use the film 4 in which the non-flux solder 47 is applied on the metal film 46 so as to surround the regions 66.
  • Reference numeral 67 shown in FIGS. 46 and 47 is an opening formed corresponding to the mask side alignment mark 40 formed on the metal member 10, and transmits the substrate side alignment mark on the substrate through the film 4. It is for making observation possible.
  • the mask member 11 is placed on a reference substrate 38 (for example, a dummy substrate of an organic EL display TFT substrate) on which the reference pattern 43 is formed, the mask side While observing the alignment mark 40 and the substrate-side alignment mark (not shown) with, for example, a microscope, the mask member 11 and the reference substrate 38 are aligned by adjusting each mark so as to form a certain positional relationship.
  • a reference substrate 38 for example, a dummy substrate of an organic EL display TFT substrate
  • the reference substrate 38 at the portion of the film 4 positioned in the opening 9 of the metal member 10 is used.
  • a hole 5 having a constant depth is formed leaving a thin layer of about 2 ⁇ m in the portion. If such an ultraviolet laser beam L is used, the carbon bond of the film 4 is broken and removed instantly by the optical energy of the laser beam L, so that clean drilling without residue can be performed. .
  • the substrate is formed with R organic EL layers 3R, G organic EL layers 3G, and B organic EL layers 3B as thin film patterns (regions on anode electrodes 2R, 2G, and 2B corresponding to the respective colors).
  • Is provided in advance with partition walls 68 made of, for example, a silicon nitride (SIN) film whose height is set so as to protrude from the surfaces of the formed organic EL layers 3R to 3B.
  • SIN silicon nitride
  • the vapor deposition mask 14 is placed on the TFT substrate 1, and the mask side alignment mark 40 formed on the vapor deposition mask 14 and the TFT substrate 1 are formed in advance. While the substrate-side alignment mark (not shown) is observed with a microscope, the vapor deposition mask 14 and the TFT substrate 1 are aligned by adjusting the two marks so as to have a predetermined positional relationship. As a result, the opening pattern 6 of the vapor deposition mask 14 coincides with the R corresponding anode electrode 2R of the TFT substrate 1 as shown in FIG.
  • the deposition mask 14 and the TFT substrate 1 are in close contact and integrated, for example, in a vacuum chamber of a vacuum deposition apparatus, and as shown in FIG.
  • the R organic EL layer 3R is formed by vapor deposition on the anode electrode 2R through the opening pattern 6 of the vapor deposition mask 14.
  • the vapor deposition mask 14 and the TFT substrate 1 that are in close contact with each other are taken out from the vacuum chamber of the vacuum vapor deposition apparatus, and the vapor deposition mask 14 is placed in each color organic EL as shown by arrows in FIG.
  • the TFT substrate 1 is slid and moved in the arrangement direction of the respective color organic EL layers 3R to 3B by the same dimension as the arrangement pitch of the layers 3R to 3B.
  • the opening pattern 6 of the vapor deposition mask 14 may be adjusted so as to coincide with the G corresponding anode electrode 2G, or the G substrate side alignment mark formed on the TFT substrate.
  • the mask side alignment mark 40 may be adjusted.
  • the mask 1 and the TFT substrate 1 are in close contact and integrated, for example, in a vacuum chamber of a vacuum evaporation apparatus, as shown in FIG. 49 (b). Then, the G organic EL layer 3G is formed by vapor deposition on the anode electrode 2G corresponding to G of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14.
  • the deposition mask 14 and the TFT substrate 1 that are closely integrated are taken out from the vacuum chamber of the vacuum deposition apparatus, and the deposition mask 14 is removed as shown in FIG.
  • the TFT substrate 1 is slid and moved in the arrangement direction of the color organic EL layers 3R to 3B by the same dimension as the arrangement pitch of the color organic EL layers 3R to 3B. It is made to match on B corresponding anode electrode 2B.
  • the vapor deposition mask 14 and the TFT substrate 1 are in close contact and integrated, for example, in a vacuum chamber of a vacuum vapor deposition apparatus.
  • the B organic EL layer 3B is formed by vapor deposition on the anode electrode 2G corresponding to G of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14.
  • the organic EL layers 3R to 3B of a plurality of colors can be sequentially formed using one mask 1, and the organic EL layer forming step can be performed efficiently.
  • the vapor deposition mask 14 when the vapor deposition mask 14 is slid in the horizontal direction, the surface 4a of the film 4 is not in contact with the organic EL layers 3R and 3G, and the protrusions 65 provided on the surface 4a of the film 4 are provided as partition walls. Since it slides on 68, the friction between the film 4 and the partition 68 can be reduced. Accordingly, the vapor deposition mask 14 can be stably slid on the TFT substrate 1.
  • the present invention is not limited to this, and any thin film pattern can be formed.
  • the present invention can be applied to anything such as formation of a color filter of a liquid crystal display device or formation of a wiring pattern of a semiconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention is a vapor-deposition mask for forming, by vapor deposition, a thin-film pattern of a certain shape on a substrate, wherein in correspondence with a pre-decided forming region of the thin-film pattern on the substrate, a resin film is provided that has formed therein a through opening pattern having the same formed dimensions as the thin-film pattern and that passes visible light.

Description

蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法Vapor deposition mask, vapor deposition mask manufacturing method, and thin film pattern forming method
 本発明は、基板上にストライプ状の複数の薄膜パターンを一定の配列ピッチで平行に並べて蒸着形成するための蒸着マスクに関し、特に高精細な薄膜パターンの形成を可能にする蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法に係るものである。 The present invention relates to a vapor deposition mask for forming a plurality of striped thin film patterns on a substrate in parallel with a constant arrangement pitch, and particularly to a vapor deposition mask and vapor deposition mask capable of forming a high-definition thin film pattern. The present invention relates to a manufacturing method and a thin film pattern forming method.
 従来、この種の蒸着マスクは、所定のパターンに対応した形状の開口を有するものであり、基板に対して位置合わせした後、該基板上に密着させ、その後上記開口を介して基板に対するパターンニング蒸着をするようになっていた(例えば、特許文献1参照)。 Conventionally, this type of vapor deposition mask has an opening having a shape corresponding to a predetermined pattern. After aligning the substrate, the mask is brought into close contact with the substrate and then patterned on the substrate through the opening. Vapor deposition was performed (for example, refer to Patent Document 1).
 また、他の蒸着マスクは、所定の蒸着パターンに対応した複数の開口が設けられた強磁性材料から成るメタルマスクであり、基板の一面を覆うように基板に密着されると共に、基板の他面側に配置された磁石の磁力を利用して固定され、真空蒸着装置の真空槽内で上記開口を通して基板の一面に蒸着材料を付着させ、薄膜パターンを形成するようになっていた(例えば、特許文献2参照)。 The other vapor deposition mask is a metal mask made of a ferromagnetic material provided with a plurality of openings corresponding to a predetermined vapor deposition pattern, and is in close contact with the substrate so as to cover one surface of the substrate and the other surface of the substrate. It was fixed using the magnetic force of the magnet arranged on the side, and the deposition material was attached to one surface of the substrate through the opening in the vacuum chamber of the vacuum deposition apparatus to form a thin film pattern (for example, patent Reference 2).
特開2003-73804号公報JP 2003-73804 A 特開2009-164020号公報JP 2009-164020 A
 しかし、このような従来の蒸着マスクにおいて、上記特許文献1に記載の蒸着マスクは、一般に、薄い金属板に薄膜パターンに対応した開口を例えばエッチング等により形成して作られるので、開口を高精度に形成することが困難であり、又金属板の熱膨張による位置ずれや反り等の影響で例えば300dpi以上の高精細な薄膜パターンの形成が困難であった。 However, in such a conventional vapor deposition mask, the vapor deposition mask described in Patent Document 1 is generally formed by forming an opening corresponding to a thin film pattern on a thin metal plate by, for example, etching or the like. For example, it is difficult to form a high-definition thin film pattern of 300 dpi or more due to the influence of misalignment and warpage due to thermal expansion of the metal plate.
 また、上記特許文献2に記載の蒸着マスクは、上記特許文献1に記載の蒸着マスクよりも基板との密着性は改善されるものの、特許文献1に記載の蒸着マスクと同様に、薄い金属板に薄膜パターンに対応した開口を例えばエッチング等により形成して作られるので、開口を高精度に形成することが困難であり、例えば300dpi以上の高精細な薄膜パターンの形成が困難であった。 Further, the vapor deposition mask described in Patent Document 2 has a thinner metal plate as in the vapor deposition mask described in Patent Document 1, although the adhesion to the substrate is improved as compared with the vapor deposition mask described in Patent Document 1. Since the opening corresponding to the thin film pattern is formed by, for example, etching or the like, it is difficult to form the opening with high accuracy. For example, it is difficult to form a high-definition thin film pattern of 300 dpi or more.
 そこで、本発明は、このような問題点に対処し、高精細な薄膜パターンの形成を可能にする蒸着マスク、蒸着マスクの製造方法及び薄膜パターン形成方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a vapor deposition mask, a vapor deposition mask manufacturing method, and a thin film pattern forming method capable of coping with such problems and forming a high-definition thin film pattern.
 上記目的を達成するために、第1の発明による蒸着マスクは、基板上に一定形状の薄膜パターンを蒸着形成するための蒸着マスクであって、前記基板上に予め定められた前記薄膜パターンの形成領域に対応して、該薄膜パターンと形状寸法の同じ貫通する開口パターンを形成した可視光を透過する樹脂製のフィルムを備えて構成されたものである。 In order to achieve the above object, a vapor deposition mask according to a first aspect of the present invention is a vapor deposition mask for vapor-depositing a thin film pattern having a predetermined shape on a substrate, and forming the predetermined thin-film pattern on the substrate. Corresponding to the region, it is configured to include a resin film that transmits visible light and has an opening pattern that penetrates the same thin film pattern and shape.
 好ましくは、前記フィルムの前記開口パターンの外側部分には、金属部材が設けられているのが望ましい。この場合、前記金属部材は、前記開口パターンに対応して該開口パターンよりも形状寸法が大きい開口部を有し、前記フィルムの一面に密接された薄板であるとよい。又は前記金属部材は、前記フィルムの一面又は内部に分散させて設けられた複数の薄片であってもよい。 Preferably, a metal member is provided on the outer side of the opening pattern of the film. In this case, the metal member may be a thin plate that has an opening having a larger size than the opening pattern corresponding to the opening pattern and is in close contact with one surface of the film. Alternatively, the metal member may be a plurality of thin pieces distributed on one surface or inside of the film.
 また、第2の発明による蒸着マスクの製造方法は、基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成して製造する蒸着マスクの製造方法であって、前記薄膜パターンを蒸着形成しようとする蒸着対象の基板上、又は前記薄膜パターンと同じ配列ピッチで並べて、該薄膜パターンと形状寸法の同じ複数の基準パターンを設けた基準基板上に前記フィルムを密着する第1ステップと、前記蒸着対象の基板上又は前記基準基板上の前記薄膜パターンの形成領域又は前記基準パターンに対応する前記フィルムの部分を加工して、前記薄膜パターンと形状寸法の同じ開口パターンを形成する第2ステップと、を含むものである。 According to a second aspect of the present invention, there is provided a method of manufacturing a vapor deposition mask, wherein a resin film that transmits visible light has the same shape and dimension as a thin film pattern corresponding to a predetermined thin film pattern formation region on a substrate. A method of manufacturing a vapor deposition mask that is produced by forming an opening pattern, wherein the thin film pattern is arranged on a substrate to be vapor deposited, or arranged at the same arrangement pitch as the thin film pattern, and the thin film pattern and shape dimensions A first step of closely contacting the film on a reference substrate provided with the same plurality of reference patterns, and a film formation region on the substrate to be deposited or on the reference substrate or the film corresponding to the reference pattern And a second step of forming an opening pattern having the same shape and dimension as the thin film pattern.
 好ましくは、前記第1ステップは、前記フィルムの一面に、前記薄膜パターンに対応して該薄膜パターンよりも形状寸法が大きい開口部を設けた金属部材を密接させてマスク用部材を形成した後、前記蒸着対象の基板上又は前記基準基板上の前記薄膜パターンの形成領域又は前記基準パターンに対応した部分が前記開口部内に位置するように位置決めして行われるのが望ましい。 Preferably, the first step includes forming a mask member on one surface of the film by closely contacting a metal member provided with an opening having a shape dimension larger than that of the thin film pattern corresponding to the thin film pattern. It is desirable that the thin film pattern formation region on the deposition target substrate or the reference substrate or a portion corresponding to the reference pattern is positioned so as to be positioned in the opening.
 さらに、前記第2ステップは、前記フィルムの部分にレーザ光を照射して実行されるのが望ましい。この場合、前記第2ステップは、一定のエネルギー密度のレーザ光を照射して前記フィルムを一定速度で加工して一定深さの穴部を形成した後、該穴部の底部にエネルギー密度を下げたレーザ光を照射して前記速度よりも遅い速度で加工して前記穴部を貫通させるのがよい。 Furthermore, it is preferable that the second step is performed by irradiating the film portion with laser light. In this case, the second step is to irradiate a laser beam with a constant energy density to process the film at a constant speed to form a hole with a constant depth, and then lower the energy density at the bottom of the hole. It is preferable that the laser beam is irradiated and processed at a speed slower than the speed to penetrate the hole.
 又は、前記第2ステップは、一定のエネルギー密度のレーザ光を照射して前記フィルムに前記穴部を形成した後、前記フィルムの炭素と反応し該炭素を気化させる反応性ガスにより、又は反応性ガスをプラズマ化して生成されたラジカルイオンにより前記穴部の底部をエッチングし、該穴部を貫通させて前記開口パターンを形成するよう実行してもよい。 Alternatively, in the second step, the hole is formed in the film by irradiating a laser beam having a constant energy density, and then the reactive gas reacts with the carbon of the film to vaporize the carbon, or is reactive. The opening portion may be formed by etching the bottom of the hole with radical ions generated by converting the gas into a plasma and penetrating the hole.
 そして、ここで使用する前記レーザ光は、波長が400nm以下であるのが望ましい。 And, it is desirable that the laser light used here has a wavelength of 400 nm or less.
 また、第3の発明による蒸着マスクの製造方法は、基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成して製造する蒸着マスクの製造方法であって、前記フィルムの一面に前記薄膜パターンの形成領域に対応して該薄膜パターンよりも形状寸法が大きい開口部を設けた金属部材を密接してマスク用部材を形成する第1ステップと、前記開口部内の前記フィルムの部分をエッチング加工して、前記薄膜パターンと形状寸法の同じ開口パターンを形成する第2ステップと、を含むものである。 According to a third aspect of the present invention, there is provided a method of manufacturing a vapor deposition mask, wherein a resin film that transmits visible light has the same shape and dimension as the thin film pattern corresponding to a predetermined thin film pattern formation region on the substrate. A method for manufacturing a vapor deposition mask for manufacturing by forming an opening pattern, wherein a metal member provided with an opening having a shape dimension larger than that of the thin film pattern corresponding to a region where the thin film pattern is formed on one surface of the film. A first step of closely forming a mask member, and a second step of forming an opening pattern having the same shape and dimension as the thin film pattern by etching a portion of the film in the opening.
 好ましくは、前記第2ステップは、前記フィルムの他面側から該フィルムをエッチング加工して前記フィルムの一面側の開口面積が前記薄膜パターンの面積と同じで、前記フィルムの他面側の開口面積が前記一面側の開口面積よりも大きい前記開口パターンを形成するのが望ましい。 Preferably, in the second step, the film is etched from the other surface side of the film, the opening area on the one surface side of the film is the same as the area of the thin film pattern, and the opening area on the other surface side of the film It is desirable to form the opening pattern having a larger opening area on the one surface side.
 また、第4の発明による薄膜パターン形成方法は、基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成して蒸着マスクを製造し、該蒸着マスクを使用して薄膜パターンを形成する薄膜パターン形成方法であって、前記基板上に前記フィルムを密着させる第1ステップと、前記基板上の前記薄膜パターンの形成領域に対応する前記フィルムの部分にレーザ光を照射し、当該部分の前記フィルムに前記薄膜パターンと形状寸法の同じ開口パターンを設けて前記蒸着マスクを形成する第2ステップと、前記基板上の前記薄膜パターンの形成領域に対応した部分に前記蒸着マスクの前記開口を介して蒸着する第3ステップと、前記蒸着マスクを剥離する第4ステップと、を含むものである。 According to a fourth aspect of the present invention, there is provided a thin film pattern forming method that penetrates a resin film that transmits visible light and has the same shape and dimension as a predetermined thin film pattern formation region on a substrate. A thin film pattern forming method for forming a vapor deposition mask by forming an opening pattern, and forming a thin film pattern using the vapor deposition mask, the first step of closely contacting the film on the substrate, and on the substrate A second step of irradiating a portion of the film corresponding to the formation region of the thin film pattern with a laser beam, forming an opening pattern having the same shape and dimension as the thin film pattern on the film of the portion; A third step of depositing through the opening of the deposition mask on a portion of the substrate corresponding to the formation region of the thin film pattern; A fourth step of separating the disk, is intended to include.
 好ましくは、前記第1ステップにおいては、内部にチャック手段を備えたステージ上に前記基板を載置すると共に、前記フィルムの一面に、前記薄膜パターンに対応して該薄膜パターンよりも形状寸法が大きい開口部を設けた磁性材料又は非磁性材料からなる金属部材を密接させて形成されたマスク用部材を、前記基板上の前記薄膜パターンの形成領域が前記開口部内に位置するように位置決めした後、前記チャック手段により前記金属部材を前記基板上に吸着して前記フィルムを挟持するのが望ましい。 Preferably, in the first step, the substrate is placed on a stage having an internal chuck means, and a shape dimension is larger on one surface of the film than the thin film pattern corresponding to the thin film pattern. After positioning a mask member formed by closely contacting a metal member made of a magnetic material or a non-magnetic material provided with an opening so that a formation region of the thin film pattern on the substrate is located in the opening, It is preferable that the metal member is adsorbed onto the substrate by the chuck means to sandwich the film.
 さらに、第5の発明による薄膜パターン形成方法は、基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成した蒸着マスクを使用して薄膜パターンを形成する薄膜パターン形成方法であって、前記フィルムの前記開口パターンの外側部分に金属部材を設けて構成された前記蒸着マスクの前記開口パターンを、前記基板の前記薄膜パターンの形成領域に位置合わせした状態で前記基板上に載置する第1ステップと、前記蒸着マスクの前記開口パターンを介して前記基板上の前記薄膜パターンの形成領域に蒸着し、薄膜パターンを形成する第2ステップと、を行うものである。 Furthermore, the thin film pattern forming method according to the fifth aspect of the present invention penetrates through a resin film that transmits visible light and has the same shape and dimension as a predetermined thin film pattern formation region on the substrate. A thin film pattern forming method for forming a thin film pattern using a deposition mask having an opening pattern formed thereon, wherein the opening pattern of the deposition mask is configured by providing a metal member on an outer portion of the opening pattern of the film. A first step of placing the substrate on the substrate in alignment with the thin film pattern formation region of the substrate, and vapor deposition on the thin film pattern formation region on the substrate through the opening pattern of the vapor deposition mask. And a second step of forming a thin film pattern.
 好ましくは、前記第1ステップは、前記蒸着マスクの前記金属部材側を保持手段の平坦面に吸着して保持した状態で前記開口パターンを、チャック手段上に載置された前記基板の前記薄膜パターンの形成領域に位置合わせした後、前記チャック手段により前記金属部材を吸着して前記蒸着マスクを前記保持手段から前記基板上に移すように実施されるのが望ましい。 Preferably, in the first step, the thin film pattern of the substrate placed on the chuck means is placed with the opening pattern in a state where the metal member side of the vapor deposition mask is attracted to and held by the flat surface of the holding means. After the alignment with the formation region, the metal member is adsorbed by the chuck means, and the vapor deposition mask is preferably transferred from the holding means onto the substrate.
 この場合、前記薄膜パターンが複数種の薄膜パターンであり、前記フィルムに形成された開口パターンが前記複数種の薄膜パターンのうち、一の薄膜パターンに対応して形成されたものであるときには、前記第1ステップから前記第2ステップを行って前記一の薄膜パターンを形成した後、前記蒸着マスクを前記基板上から剥離するステップと、前記蒸着マスクの前記開口パターンを前記基板の他の薄膜パターンの形成領域に位置合わせした後、前記蒸着マスクを前記基板上に載置するステップと、前記蒸着マスクの開口パターンを介して前記他の薄膜パターンの形成領域に蒸着し、他の薄膜パターンを形成するステップと、を行うとよい。 In this case, when the thin film pattern is a plurality of types of thin film patterns and the opening pattern formed in the film is formed corresponding to one thin film pattern among the plurality of types of thin film patterns, After performing the second step from the first step to form the one thin film pattern, the step of peeling the vapor deposition mask from the substrate, and the opening pattern of the vapor deposition mask on the other thin film pattern of the substrate After aligning with the formation region, placing the vapor deposition mask on the substrate, and depositing on the formation region of the other thin film pattern through the opening pattern of the vapor deposition mask to form another thin film pattern And step.
 又は、前記薄膜パターンが一定の配列ピッチで並べて形成される複数種の薄膜パターンであり、前記フィルムに形成された前記開口パターンが前記複数種の薄膜パターンのうち、一の薄膜パターンに対応して形成されたものであるときには、前記第1ステップから前記第2ステップを行って前記一の薄膜パターンを形成した後、前記蒸着マスクを前記複数種の薄膜パターンの配列ピッチと同寸法だけ前記複数種の薄膜パターンの並び方向に前記基板上をスライド移動するステップと、前記基板の他の薄膜パターンの形成領域に前記蒸着マスクの前記開口パターンを介して蒸着し、他の薄膜パターンを形成するステップと、を行ってもよい。 Alternatively, the thin film patterns are a plurality of types of thin film patterns formed by arranging at a constant arrangement pitch, and the opening pattern formed in the film corresponds to one thin film pattern among the plurality of types of thin film patterns. If formed, the first step to the second step are performed to form the one thin film pattern, and then the vapor deposition mask is moved to the plurality of types by the same dimension as the arrangement pitch of the plurality of types of thin film patterns. Sliding on the substrate in the direction in which the thin film patterns are aligned, and depositing another thin film pattern on the substrate through the opening pattern of the deposition mask to form another thin film pattern; , May be performed.
 本発明によれば、蒸着材料が通過する開口パターンは、メタルマスクに比べて厚みの薄いフィルムに加工形成されるため、開口パターンの形成精度を向上することができる。したがって、高精細な薄膜パターンの形成を可能にすることができる。 According to the present invention, since the opening pattern through which the vapor deposition material passes is processed and formed into a film having a thickness smaller than that of the metal mask, the formation accuracy of the opening pattern can be improved. Therefore, it is possible to form a high-definition thin film pattern.
本発明による蒸着マスクの第1実施形態の製造方法及び本発明による薄膜パターン形成方法の第1の実施形態を示す断面説明図である。It is sectional explanatory drawing which shows 1st Embodiment of the manufacturing method of 1st Embodiment of the vapor deposition mask by this invention, and the thin film pattern formation method by this invention. 本発明による蒸着マスクの第1実施形態の別の製造方法を示す断面図である。It is sectional drawing which shows another manufacturing method of 1st Embodiment of the vapor deposition mask by this invention. 本発明による蒸着マスクの第1実施形態の更に別の製造方法を示す断面図である。It is sectional drawing which shows another manufacturing method of 1st Embodiment of the vapor deposition mask by this invention. 本発明による薄膜パターン形成方法の第2の実施形態を示す図であり、有機EL表示装置のR有機EL層形成工程を示す断面説明図である。It is a figure which shows 2nd Embodiment of the thin film pattern formation method by this invention, and is cross-sectional explanatory drawing which shows the R organic electroluminescent layer formation process of an organic electroluminescence display. 上記R有機EL層形成工程において使用するマスク用部材の形成について示す説明図である。It is explanatory drawing shown about formation of the member for masks used in the said R organic electroluminescent layer formation process. 本発明による薄膜パターン形成方法の第2の実施形態を示す図であり、有機EL表示装置のG有機EL層形成工程を示す断面説明図である。It is a figure which shows 2nd Embodiment of the thin film pattern formation method by this invention, and is sectional explanatory drawing which shows G organic electroluminescent layer formation process of an organic electroluminescence display. 本発明による薄膜パターン形成方法の第2の実施形態を示す図であり、有機EL表示装置のB有機EL層形成工程を示す断面説明図である。It is a figure which shows 2nd Embodiment of the thin film pattern formation method by this invention, and is sectional explanatory drawing which shows the B organic electroluminescent layer formation process of an organic electroluminescence display. 上記有機EL表示装置のカソード電極層形成工程を示す断面説明図である。It is sectional explanatory drawing which shows the cathode electrode layer formation process of the said organic electroluminescent display apparatus. 上記有機EL層形成工程において使用する蒸着マスクを形成するためのレーザ加工装置の一構成例を示す正面図である。It is a front view which shows one structural example of the laser processing apparatus for forming the vapor deposition mask used in the said organic EL layer formation process. 本発明による蒸着マスクの第2実施形態の製造に使用するフォトマスクの一構成例を示す図であり、(a)は平面図、(b)は(a)のB-B線断面矢視図である。It is a figure which shows one structural example of the photomask used for manufacture of 2nd Embodiment of the vapor deposition mask by this invention, (a) is a top view, (b) is the BB sectional view taken on the line of the arrow of (a). It is. 本発明による蒸着マスクの第2の実施形態の製造方法の変形例を示す断面説明図である。It is sectional explanatory drawing which shows the modification of the manufacturing method of 2nd Embodiment of the vapor deposition mask by this invention. 本発明による蒸着マスクの第2実施形態の別の製造方法を示す工程図である。It is process drawing which shows another manufacturing method of 2nd Embodiment of the vapor deposition mask by this invention. 本発明による蒸着マスクの第2実施形態を示す図であり、(a)は平面図、(b)は(a)のC-C線断面矢視図である。It is a figure which shows 2nd Embodiment of the vapor deposition mask by this invention, (a) is a top view, (b) is the CC sectional view taken on the line of (a). 本発明による蒸着マスクの第2実施形態の変形例を示す平面図である。It is a top view which shows the modification of 2nd Embodiment of the vapor deposition mask by this invention. 図12の製造方法におけるマスク用部材の製造の詳細を示す説明図である。It is explanatory drawing which shows the detail of manufacture of the member for masks in the manufacturing method of FIG. 上記マスク用部材の他の形成例を示す説明図である。It is explanatory drawing which shows the other example of formation of the said member for masks. 上記マスク用部材の更に他の形成例を示す説明図である。It is explanatory drawing which shows the other example of formation of the said member for masks. 上記マスク用部材の更に他の形成例を示す説明図である。It is explanatory drawing which shows the other example of formation of the said member for masks. 上記マスク用部材の更に他の形成例を示す説明図である。It is explanatory drawing which shows the other example of formation of the said member for masks. 上記マスク用部材の更に他の形成例を示す説明図である。It is explanatory drawing which shows the other example of formation of the said member for masks. 上記マスク用部材の更に他の形成例を示す説明図である。It is explanatory drawing which shows the other example of formation of the said member for masks. 本発明による蒸着マスクの第2実施形態の更に別の製造方法を示す図であり、その前半工程を示す断面図である。It is a figure which shows another manufacturing method of 2nd Embodiment of the vapor deposition mask by this invention, and is sectional drawing which shows the first half process. 本発明による蒸着マスクの第2実施形態の更に別の製造方法を示す図であり、その中間工程を示す断面図である。It is a figure which shows another manufacturing method of 2nd Embodiment of the vapor deposition mask by this invention, and is sectional drawing which shows the intermediate process. 本発明による蒸着マスクの第2実施形態の更に別の製造方法を示す図であり、その後半工程を示す断面図である。It is a figure which shows another manufacturing method of 2nd Embodiment of the vapor deposition mask by this invention, and is sectional drawing which shows the latter half process. 本発明による蒸着マスクの第2の実施形態の製造方法であって、開口パターンのレーザ加工について示す説明図である。It is a manufacturing method of 2nd Embodiment of the vapor deposition mask by this invention, Comprising: It is explanatory drawing shown about the laser processing of an opening pattern. 上記レーザ加工に使用する基準基板の一構成例を示す平面図である。It is a top view which shows one structural example of the reference | standard board | substrate used for the said laser processing. 金属部材の開口部と基準基板の基準パターンとの間の位置ずれ量が許容値内にあるか否かを検出する方法について示す説明図である。It is explanatory drawing shown about the method to detect whether the positional offset amount between the opening part of a metal member and the reference | standard pattern of a reference | standard board | substrate exists in tolerance value. 上記レーザ加工について説明するフォローチャートである。It is a follow chart explaining the said laser processing. エッチング加工により開口パターンを形成して本発明の蒸着マスクを製造する方法を説明する断面図である。It is sectional drawing explaining the method of forming an opening pattern by an etching process and manufacturing the vapor deposition mask of this invention. 図29の方法により製造された蒸着マスクを使用する薄膜パターン形成方法を説明する図であり、前半工程を示す断面図である。It is a figure explaining the thin film pattern formation method using the vapor deposition mask manufactured by the method of FIG. 29, and is sectional drawing which shows the first half process. 図29の方法により製造された蒸着マスクを使用する薄膜パターン形成方法を説明する図であり、後半工程を示す断面図である。It is a figure explaining the thin film pattern formation method using the vapor deposition mask manufactured by the method of FIG. 29, and is sectional drawing which shows a latter half process. エッチング加工して開口パターンを形成した本発明による蒸着マスクの利点を従来のメタルマスクと比較して示す説明図であり、(a)はメタルマスクを示し、(b)は本発明の蒸着マスクを示す。It is explanatory drawing which shows the advantage of the vapor deposition mask by this invention which formed the opening pattern by etching compared with the conventional metal mask, (a) shows a metal mask, (b) shows the vapor deposition mask of this invention. Show. 本発明による蒸着マスクの第3実施形態を示す図であり、(a)は平面図、(b)は(a)のD-D線断面矢視図である。It is a figure which shows 3rd Embodiment of the vapor deposition mask by this invention, (a) is a top view, (b) is the DD sectional view taken on the line of (a). 本発明の基礎となる蒸着マスクの一構成例であり、(a)は平面図、(b)は側面図である。It is one structural example of the vapor deposition mask used as the foundation of this invention, (a) is a top view, (b) is a side view. 本発明による蒸着マスクの第3実施形態の製造方法を説明する図であって、マスク用部材を形成する工程を示す断面図である。It is a figure explaining the manufacturing method of 3rd Embodiment of the vapor deposition mask by this invention, Comprising: It is sectional drawing which shows the process of forming the member for masks. 本発明による蒸着マスクの第3実施形態の製造方法を説明する図であって、開口パターン形成工程を示す平面図である。It is a figure explaining the manufacturing method of 3rd Embodiment of the vapor deposition mask by this invention, Comprising: It is a top view which shows an opening pattern formation process. 本発明による蒸着マスクの第3実施形態の変形例を示す平面図である。It is a top view which shows the modification of 3rd Embodiment of the vapor deposition mask by this invention. 本発明による蒸着マスクの第2又は第3実施形態を使用して複数種の薄膜パターンを形成する方法を説明する図であり、赤色有機EL層の形成工程の前半工程を示す断面図である。It is a figure explaining the method to form a multiple types of thin film pattern using 2nd or 3rd embodiment of the vapor deposition mask by this invention, and is sectional drawing which shows the first half process of the formation process of a red organic electroluminescent layer. 上記赤色有機EL層の形成工程の後半工程を示す断面図である。It is sectional drawing which shows the latter half process of the formation process of the said red organic electroluminescent layer. 緑色有機EL層の形成工程の前半工程を示す断面図である。It is sectional drawing which shows the first half process of the formation process of a green organic electroluminescent layer. 上記緑色有機EL層の形成工程の後半工程を示す断面図である。It is sectional drawing which shows the latter half process of the formation process of the said green organic electroluminescent layer. 青色有機EL層の形成工程の前半工程を示す断面図である。It is sectional drawing which shows the first half process of the formation process of a blue organic electroluminescent layer. 上記青色有機EL層の形成工程の後半工程を示す断面図である。It is sectional drawing which shows the latter half process of the formation process of the said blue organic electroluminescent layer. 本発明による蒸着マスクの第4実施形態を示す図であり、(a)は平面図、(b)は底面図、(c)は(a)のE-E線断面矢視図、(d)は(c)の一部拡大図である。It is a figure which shows 4th Embodiment of the vapor deposition mask by this invention, (a) is a top view, (b) is a bottom view, (c) is the EE sectional view taken on the arrow of (a), (d) FIG. 4 is a partially enlarged view of (c). 本発明による蒸着マスクの第4実施形態の製造について説明する工程図である。It is process drawing explaining manufacture of 4th Embodiment of the vapor deposition mask by this invention. 本発明の蒸着マスクの第4実施形態に使用するフィルムの一構成例を示す平面図である。It is a top view which shows one structural example of the film used for 4th Embodiment of the vapor deposition mask of this invention. 本発明の蒸着マスクに使用するフィルムの他の構成例を示す平面図である。It is a top view which shows the other structural example of the film used for the vapor deposition mask of this invention. 本発明による蒸着マスクの第4実施形態を使用して薄膜パターンを形成する方法を説明する図であり、R有機EL層形成工程を示す工程図である。It is a figure explaining the method of forming a thin film pattern using 4th Embodiment of the vapor deposition mask by this invention, and is process drawing which shows R organic electroluminescent layer formation process. G有機EL層形成工程を示す工程図である。It is process drawing which shows G organic electroluminescent layer formation process. B有機EL層形成工程を示す工程図である。It is process drawing which shows B organic electroluminescent layer formation process. 図48~図50の薄膜パターン形成方法において使用するTFT基板の一構成例を示す断面図である。FIG. 51 is a cross-sectional view showing a configuration example of a TFT substrate used in the thin film pattern forming method of FIGS. 48 to 50.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による蒸着マスクを使用して行う薄膜パターン形成方法の第1の実施形態を示す断面説明図である。本発明による蒸着マスクは、基板上に予め定められた薄膜パターンの形成領域に対応して、該薄膜パターンと形状寸法の同じ貫通する開口パターンを形成した可視光を透過する樹脂製のフィルムを備えて構成されたもので、上記薄膜パターン形成方法の第1の実施形態の実施過程で製造されるものである。以下、基板が有機EL表示装置のTFT基板1であり、薄膜パターンが赤色(R)に対応したアノード電極2R上に形成されるR有機EL層3Rである場合に、該R有機EL層3Rを形成するための薄膜パターン形成方法の第1の実施形態を説明しながら、本発明による蒸着マスクの第1実施形態について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional explanatory view showing a first embodiment of a thin film pattern forming method performed using a vapor deposition mask according to the present invention. The vapor deposition mask according to the present invention includes a resin film that transmits visible light and has an opening pattern that penetrates the thin film pattern and has the same shape and dimension as a predetermined thin film pattern formation region on the substrate. The thin film pattern forming method is manufactured in the implementation process of the first embodiment. Hereinafter, when the substrate is the TFT substrate 1 of the organic EL display device and the thin film pattern is the R organic EL layer 3R formed on the anode electrode 2R corresponding to red (R), the R organic EL layer 3R is The first embodiment of the vapor deposition mask according to the present invention will be described while explaining the first embodiment of the thin film pattern forming method for forming.
 なお、R有機EL層3Rは、R対応のアノード電極2R上に正孔注入層、正孔輸送層、R発光層、電子輸送層等、一般的な積層構造をとるように順次蒸着して形成されるが、ことでは、説明の便宜上R有機EL層3Rが1回の蒸着工程により形成されるものとして説明する。 The R organic EL layer 3R is formed by sequentially vapor-depositing on the R-compatible anode electrode 2R so as to have a general laminated structure such as a hole injection layer, a hole transport layer, an R light emitting layer, and an electron transport layer. However, for the sake of explanation, the R organic EL layer 3R will be described as being formed by a single vapor deposition step.
 上記薄膜パターン形成方法の第1の実施形態は、TFT基板(単に「基板」とも言う)1上に可視光を透過する樹脂製のフィルム4を設置する第1ステップと、TFT基板1上のR対応のアノード電極2Rの部分に一定のエネルギー密度のレーザ光L1を照射して当該部分のフィルム4を一定の速度で一定深さまで掘り下げて穴部5を形成した後、該穴部5の底部にエネルギー密度を下げたレーザ光L2を照射し、穴部5の底部を上記速度よりも遅い速度でゆっくり加工して穴部5を貫通させ、R有機EL層3と形状寸法の同じ開口パターン6を有する本発明による蒸着マスク7の第1実施形態を形成する第2ステップと、R対応のアノード電極2R上に上記蒸着マスク7の開口パターン6を介してR有機EL層3を蒸着形成する第3ステップと、蒸着マスク7を剥離する第4ステップと、を実行するものである。 In the first embodiment of the thin film pattern forming method, a first step of installing a resin film 4 that transmits visible light on a TFT substrate (also simply referred to as “substrate”) 1 and an R on the TFT substrate 1 are described. A portion of the corresponding anode electrode 2R is irradiated with a laser beam L1 having a constant energy density, and the film 4 in the portion is dug down to a certain depth at a constant speed to form a hole portion 5. Then, the hole portion 5 is formed at the bottom of the hole portion 5. The laser beam L2 having a reduced energy density is irradiated, the bottom of the hole 5 is slowly processed at a speed slower than the above speed to penetrate the hole 5, and an opening pattern 6 having the same shape and dimension as the R organic EL layer 3 is formed. A second step of forming the first embodiment of the vapor deposition mask 7 according to the present invention, and a third step of vapor-depositing the R organic EL layer 3 on the R corresponding anode electrode 2R through the opening pattern 6 of the vapor deposition mask 7 Ste And flop, a fourth step of separating the deposition mask 7, and the execution.
 詳細には、先ず、第1ステップにおいては、TFT基板1の各色対応のアノード電極2R~2Bを形成した面の上方に、例えば厚みが10μm~30μm程度のポリエチレンテレフタレート(PET)やポリイミド等の紫外線レーザアブレーションが可能なシート状のフィルム4を張設した後、図1(a)に示すように該フィルム4をTFT基板1面に設置する。この場合、フィルム4の上面を例えばウレタンゴムのような弾性部材で均一に押圧してフィルム4をTFT基板1面に密着させるとよい。又は、フィルム4のTFT基板1との密着面に粘着層を設け、この粘着層を介してフィルム4をTFT基板1面に密着させてもよい。或いは、自己粘着機能を付与したフィルムを利用することもできる。さらには、静電チャック等を使用してフィルム4をTFT基板1面に静電吸着させてもよい。さらには、内部に磁石のチャック手段を備えたステージ上にTFT基板1を載置した後、磁性材料を含んで構成され、有機EL層のパターンよりも形状寸法の大きい開口部を形成した金属部材を、R対応のアノード電極2Rが上記開口部内に位置するように位置合わせしてTFT基板1上に載置し、上記磁石の静磁界により上記金属部材をTFT基板1上に吸着してフィルム4をTFT基板1面に密着させてもよい。 Specifically, first, in the first step, ultraviolet light such as polyethylene terephthalate (PET) or polyimide having a thickness of about 10 μm to 30 μm is formed above the surface of the TFT substrate 1 where the anode electrodes 2R to 2B for each color are formed. After the sheet-like film 4 capable of laser ablation is stretched, the film 4 is placed on the surface of the TFT substrate 1 as shown in FIG. In this case, the upper surface of the film 4 is preferably pressed uniformly with an elastic member such as urethane rubber so that the film 4 is in close contact with the surface of the TFT substrate 1. Alternatively, an adhesive layer may be provided on the adhesion surface of the film 4 with the TFT substrate 1, and the film 4 may be adhered to the TFT substrate 1 surface via this adhesion layer. Or the film which provided the self-adhesion function can also be utilized. Furthermore, the film 4 may be electrostatically attracted to the surface of the TFT substrate 1 using an electrostatic chuck or the like. Furthermore, after the TFT substrate 1 is placed on a stage having a magnet chuck means inside, a metal member that is configured to include a magnetic material and that has an opening having a shape dimension larger than the pattern of the organic EL layer Is placed on the TFT substrate 1 so that the anode electrode 2R corresponding to R is positioned in the opening, and the metal member is adsorbed onto the TFT substrate 1 by the static magnetic field of the magnet to form the film 4 May be adhered to the surface of the TFT substrate 1.
 次に、第2ステップにおいては、上記フィルム4を透過して図示省略の撮像手段でR対応のアノード電極2Rの位置を検出し、該R対応のアノード電極2R上にレーザ光の照射位置を位置付ける。そして、波長が400nm以下の、例えばKrF248nmのエキシマレーザを使用して、図1(b)に示すように、先ず、TFT基板1上のR対応のアノード電極2Rに対応したフィルム4の部分にエネルギー密度が1J/cm~20J/cmのレーザ光L1を照射し、下地層のアノード電極2Rが露出する直前の例えば2μm程度の厚みの層を残して穴部5を高速で形成した後、レーザ光L1の照射を一旦停止する。次に、同図(c)に示すように、穴部5の底部に0.1J/cm以下、望ましくは0.06J/cm以下までエネルギー密度を下げたレーザ光L2を照射し、穴部5の底部をゆっくり加工して穴部5を貫通させ、開口パターン6を有する本発明の蒸着マスク7(第1実施形態)を形成する。このような紫外線のレーザ光L1,L2の光エネルギーにより、フィルム4の炭素結合が一瞬のうちに破壊されて除去されるため、残渣の無いクリーンな穴あけ加工を行うことができる。また、一定深さまでは、エネルギー密度の高いレーザ光L1を照射して高速でフィルム4を加工し、その後、エネルギー密度を下げたレーザ光L2によりゆっくりと加工するようにしているので、加工時間を犠牲にせずに、下地層であるアノード電極2Rに与えるダメージを抑制してフィルム4のみを効率よく加工することができる。 Next, in the second step, the position of the anode electrode 2R corresponding to R is detected by an imaging means (not shown) through the film 4, and the irradiation position of the laser beam is positioned on the anode electrode 2R corresponding to R. . Then, using an excimer laser having a wavelength of 400 nm or less, for example, KrF248 nm, first, as shown in FIG. 1B, energy is applied to the portion of the film 4 corresponding to the anode electrode 2R corresponding to R on the TFT substrate 1. After the laser beam L1 having a density of 1 J / cm 2 to 20 J / cm 2 is irradiated and the hole 5 is formed at high speed, leaving a layer having a thickness of, for example, about 2 μm immediately before the anode electrode 2R of the underlayer is exposed, The irradiation with the laser beam L1 is temporarily stopped. Next, as shown in FIG. 3C, the bottom of the hole 5 is irradiated with laser light L2 having an energy density reduced to 0.1 J / cm 2 or less, preferably 0.06 J / cm 2 or less, The bottom part of the part 5 is slowly processed to penetrate the hole part 5 to form the vapor deposition mask 7 of the present invention having the opening pattern 6 (first embodiment). Since the carbon bonds of the film 4 are broken and removed in an instant by the light energy of the ultraviolet laser beams L1 and L2, clean drilling without residue can be performed. In addition, at a certain depth, the film 4 is processed at a high speed by irradiating the laser beam L1 having a high energy density, and thereafter, the processing is performed slowly by the laser beam L2 having a reduced energy density. Without sacrificing, it is possible to efficiently process only the film 4 while suppressing damage to the anode electrode 2R, which is the underlayer.
 上記第2ステップは、次のようにして行なうことができる。即ち、TFT基板1を一定方向にステップ移動しながら、TFT基板1の移動方向と交差する方向に一列に複数のマイクロレンズを並べて設けたマイクロレンズアレイを介してR対応のアノード電極2Rの部分にレーザ光L1,L2を照射し、フィルム4に開口パターン6を形成するとよい。または、TFT基板1を基板面に平行な面内を2次元方向にステップ移動しながら、レーザ光L1,L2を照射してフィルム4に開口パターン6を形成してもよいし、TFT基板1の複数のアノード電極2Rに対応して複数のマイクロレンズを設けたマイクロレンズアレイを介してレーザ光L1,L2を照射してフィルム4に開口パターン6を一括形成してもよい。さらには、シリンドリカルレンズにより細長状のレーザ光L1,L2を生成してフィルム4にストライプ状の開口パターン6を形成し、ストライプ状のR有機EL層3R(薄膜パターン)を形成してもよい。 The second step can be performed as follows. That is, while stepping the TFT substrate 1 in a certain direction, the anode electrode 2R corresponding to R is passed through a microlens array in which a plurality of microlenses are arranged in a row in a direction crossing the moving direction of the TFT substrate 1. The opening patterns 6 may be formed on the film 4 by irradiating the laser beams L1 and L2. Alternatively, the opening pattern 6 may be formed on the film 4 by irradiating the laser beams L1 and L2 while stepping the TFT substrate 1 in a two-dimensional direction in a plane parallel to the substrate surface. The opening patterns 6 may be formed in the film 4 by irradiating the laser beams L1 and L2 through a microlens array provided with a plurality of microlenses corresponding to the plurality of anode electrodes 2R. Further, the elongated laser beams L1 and L2 may be generated by a cylindrical lens to form the stripe-shaped opening pattern 6 in the film 4, and the stripe-shaped R organic EL layer 3R (thin film pattern) may be formed.
 図2は、上記薄膜パターン形成方法の第1の実施形態の第2ステップにおいて実施される本発明による蒸着マスクの第1実施形態の別の製造方法を示す断面図である。
 この製造方法によれば、先ず、図2(a)に示すように、TFT基板1上のR対応のアノード電極2Rの部分にエネルギー密度が1J/cm~20J/cmのレーザ光L1を照射し、当該部分のフィルム4を一定深さまで掘り下げて穴部5を形成した後、同図(b)に示すように、フィルム4の炭素と反応して該炭素を気化させる反応性ガス8の雰囲気下で、穴部5の底部に0.1J/cm以下、望ましくは0.06J/cm以下までエネルギー密度を下げたレーザ光L2を照射し、穴部5の底部をゆっくりと加工して穴部5を貫通させ、同図(c)に示すように開口パターン6を形成する。この場合、反応性ガス8としては、例えばオゾン(O)ガスや、四フッ化メタン(CF)とオゾンとの混合ガス等が使用できる。これにより、レーザ加工による飛散物がフィルム4の表面や開口パターン6内に付着した場合にも、反応性ガス8によるエッチングにより上記飛散物を除去して開口パターン6内のアノード電極2Rの表面を洗浄することができ、有機EL層3のアノード電極2R面への付着力を増強して有機EL層形成時の歩留まりを向上することができる。
FIG. 2 is a cross-sectional view showing another manufacturing method of the first embodiment of the vapor deposition mask according to the present invention, which is performed in the second step of the first embodiment of the thin film pattern forming method.
According to this manufacturing method, first, as shown in FIG. 2 (a), the laser beam L1 of the energy density in the portion of the anode electrode 2R of R corresponding on the TFT substrate 1 is 1J / cm 2 ~ 20J / cm 2 After irradiating and forming the hole 5 by digging the film 4 of the part to a certain depth, the reactive gas 8 reacts with the carbon of the film 4 to vaporize the carbon, as shown in FIG. Under the atmosphere, the bottom of the hole 5 is irradiated with laser light L2 having an energy density reduced to 0.1 J / cm 2 or less, preferably 0.06 J / cm 2 or less, and the bottom of the hole 5 is slowly processed. Then, the hole 5 is penetrated to form an opening pattern 6 as shown in FIG. In this case, as the reactive gas 8, for example, ozone (O 3 ) gas, a mixed gas of tetrafluoromethane (CF 4 ) and ozone, or the like can be used. As a result, even when the scattered material by the laser processing adheres to the surface of the film 4 or the opening pattern 6, the scattered material is removed by etching with the reactive gas 8 so that the surface of the anode electrode 2 </ b> R in the opening pattern 6 is removed. The organic EL layer 3 can be washed and the adhesion of the organic EL layer 3 to the surface of the anode electrode 2R can be enhanced to improve the yield when forming the organic EL layer.
 図3は、上記薄膜パターン形成方法の第1の実施形態の第2ステップにおいて実施される本発明による蒸着マスクの第1実施形態の更に別の製造方法を示す断面図である。
 この製造方法によれば、先ず、図3(a)に示すようにTFT基板1上の例えばR対応のアノード電極2Rの部分に、例えば1J/cm~20J/cmのエネルギー密度のレーザ光L1を照射して当該部分のフィルム4を一定速度で一定深さまで掘り下げて穴部5を形成した後、レーザ光L1の照射を停止し、次いで、同図(b)に示すようにフィルム4の炭素と反応して該炭素を気化させる、例えばオゾン(O)ガスや、四フッ化炭素(CF)とオゾンとの混合ガス等の反応性ガス8によりフィルム4をエッチングし、同図(c)に示すようにフィルム4の穴部5を貫通させて一定形状の開口パターン6を形成するように実行される。
FIG. 3 is a cross-sectional view showing still another manufacturing method of the first embodiment of the vapor deposition mask according to the present invention, which is performed in the second step of the first embodiment of the thin film pattern forming method.
According to this manufacturing method, first, 3 to a portion of the anode electrode 2R e.g. R corresponding on the TFT substrate 1 (a), the example 1 J / cm 2 ~ laser beam energy density of 20 J / cm 2 After irradiating L1 and digging up the film 4 of the part to a certain depth at a constant speed to form the hole 5, the irradiation of the laser beam L1 is stopped, and then the film 4 as shown in FIG. The film 4 is etched by a reactive gas 8 such as ozone (O 3 ) gas or a mixed gas of carbon tetrafluoride (CF 4 ) and ozone, which reacts with carbon to vaporize the carbon. As shown in c), it is carried out so as to penetrate the hole 5 of the film 4 to form an opening pattern 6 having a fixed shape.
 この場合、反応性ガス8のフィルム4とアノード電極2R~2Bとの間のエッチング選択比を利用してアノード電極2R~2Bにダメージを与えることなくフィルム4のみを効率よくエッチングし、開口パターン6を形成することができる。さらに、反応性ガス8によるエッチングにより、開口パターン6内のアノード電極2R~2Bの表面を洗浄することができ、アノード電極2R~2Bに対する有機EL層の付着力を増強して有機EL層形成時の歩留まりを向上することができる。さらにまた、最初は、高いエネルギー密度のレーザ光L1により高速で穴部5を加工した後、エッチングにより穴部5の底部をゆっくり加工して穴部5を貫通させているので、加工時間を犠牲にせずに、下地層であるアノード電極2R~2Bに与えるダメージを抑制してフィルム4のみを効率よく加工することができる。 In this case, only the film 4 is efficiently etched using the etching selectivity between the film 4 of the reactive gas 8 and the anode electrodes 2R to 2B without damaging the anode electrodes 2R to 2B. Can be formed. Furthermore, the surface of the anode electrodes 2R to 2B in the opening pattern 6 can be cleaned by etching with the reactive gas 8, and the adhesion of the organic EL layer to the anode electrodes 2R to 2B can be enhanced to form the organic EL layer. The yield can be improved. Furthermore, at first, after processing the hole 5 at high speed with the laser beam L1 having a high energy density, the bottom of the hole 5 is slowly processed by etching to penetrate the hole 5, so that the processing time is sacrificed. Without damaging, it is possible to efficiently process only the film 4 while suppressing damage to the anode electrodes 2R to 2B as the underlayer.
 なお、フィルム4は、上記反応性ガス8に替えて酸素(O)ガスや、四フッ化炭素(CF)と酸素との混合ガス等をプラズマ化し、生成されたラジカルイオンによりエッチングしてもよい。 The film 4 is plasmatized with oxygen (O 2 ) gas or a mixed gas of carbon tetrafluoride (CF 4 ) and oxygen, etc. instead of the reactive gas 8 and is etched with the generated radical ions. Also good.
 このようにして製造される本発明による蒸着マスクの第1実施形態は、基板上に予め定められた薄膜パターンの形成領域に対応して、該薄膜パターンと形状寸法の同じ貫通する開口パターン6を形成した可視光を透過する樹脂製のフィルム4のみで備えて構成されたものである。 In the first embodiment of the vapor deposition mask according to the present invention thus manufactured, an opening pattern 6 having the same shape and dimension as the thin film pattern is formed corresponding to a predetermined thin film pattern formation region on the substrate. The resin film 4 is composed of only the resin film 4 that transmits visible light.
 第3ステップにおいては、図1(d)に示すように、例えば真空蒸着装置を使用してTFT基板1のR対応のアノード電極2R上に蒸着マスク7の開口パターン6を介してR有機EL層3Rを蒸着形成する。このとき、G対応及びB対応のアノード電極2G,2Bに通電して各アノード電極2G,2Bに一定電圧を印加した状態で真空蒸着を行えば、フィルム状の蒸着マスク7がG対応及びB対応のアノード電極2G,2Bに静電吸着されて固定されるため、蒸着マスク7が動いて蒸着マスク7の開口パターン6とTFT基板1のR対応のアノード電極2Rとの位置ずれが生ずるおそれが無い。また、蒸着マスク7がTFT基板1面に密着して蒸着マスク7の下面とTFT基板1の上面との間に隙間が生じるおそれが無いため、該隙間に蒸着分子が回り込んで付着し薄膜パターンの形成精度を悪くするという問題も回避することができる。 In the third step, as shown in FIG. 1D, for example, an R organic EL layer is formed on the R corresponding anode electrode 2R of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 7 using a vacuum vapor deposition apparatus. 3R is formed by vapor deposition. At this time, if the vacuum deposition is performed in a state where the anode electrodes 2G and 2B for G and B are energized and a constant voltage is applied to each of the anode electrodes 2G and 2B, the film-like deposition mask 7 is adapted for G and B. Since the deposition mask 7 moves and the opening pattern 6 of the deposition mask 7 and the R corresponding anode electrode 2R of the TFT substrate 1 are not displaced, there is no possibility that the anode electrode 2G, 2B is electrostatically attracted and fixed. . In addition, since there is no possibility that the vapor deposition mask 7 is in close contact with the surface of the TFT substrate 1 and a gap is formed between the lower surface of the vapor deposition mask 7 and the upper surface of the TFT substrate 1, the vapor deposition molecules wrap around and adhere to the gap. The problem of deteriorating the formation accuracy of the film can also be avoided.
 上記第3ステップにおいては、R有機EL層3Rを形成する前に、R対応のアノード電極2Rの不純物を除去するとよい。ここでいう不純物には、例えば上記第2ステップにおいてアブレーションされたフィルム4等の残渣が含まれる。このような不純物がR対応のアノード電極2Rの表面に付着した状態でR有機EL層3Rが蒸着されると、R対応のアノード電極2Rの電気抵抗が上昇し、R有機EL層3Rの駆動に障害が生じるおそれがある。また、このような不純物には有機EL層を腐食するものもあり、有機EL層の耐用年数を縮めるおそれがある。 In the third step, before the R organic EL layer 3R is formed, it is preferable to remove impurities from the anode electrode 2R corresponding to R. The impurities here include, for example, residues such as the film 4 ablated in the second step. When the R organic EL layer 3R is deposited with such impurities attached to the surface of the R-compatible anode electrode 2R, the electrical resistance of the R-compatible anode electrode 2R increases, and the R organic EL layer 3R is driven. Failure may occur. In addition, some of these impurities corrode the organic EL layer, which may shorten the useful life of the organic EL layer.
 このような不純物を除去するために、エッチングやレーザが使用される。エッチングを行う場合には、O(酸素)、OとAr(アルゴン)との混合気、又はOとArとCF(四フッ化炭素)との混合気等をエッチングガスとして使用したドライエッチングにより不純物を除去するのが好ましい。また、レーザを使用する場合には、エネルギー密度が0.5J/cm程度で波長が532nmのグリーンレーザ,355nmのUVレーザ,266nmのDUVレーザ等を使用することができる。この際、O、OとArとの混合気、OとArとCFとの混合気、又はO(オゾン)等をアシストガスとして併用するのが好ましい。 In order to remove such impurities, etching or laser is used. In the case of performing etching, a mixed gas of O 2 (oxygen), O 2 and Ar (argon), or a mixed gas of O 2 , Ar and CF 4 (carbon tetrafluoride) was used as an etching gas. It is preferable to remove impurities by dry etching. When a laser is used, a green laser having an energy density of about 0.5 J / cm 2 and a wavelength of 532 nm, a 355 nm UV laser, a 266 nm DUV laser, or the like can be used. In this case, O 2, a mixed gas of O 2 and Ar, the gas mixture of O 2 and Ar and CF 4, or O 3 (ozone) is preferably used in combination as the assist gas and the like.
 さらに、不純物が除去されたR対応のアノード電極2R上に電極材料を蒸着するとよい。ここでいう電極材料とは、アノード電極を形成する材料を意味し、例えばAl(アルミニウム)やMg(マグネシウム)等が含まれる。電極材料は、スパッタリング、真空蒸着、及びイオンプレーティング等の方法により、フィルム4に形成された開口パターン6を介してR対応のアノード電極2Rの表面に蒸着される。 Furthermore, an electrode material may be deposited on the R-compatible anode electrode 2R from which impurities have been removed. An electrode material here means the material which forms an anode electrode, for example, Al (aluminum), Mg (magnesium), etc. are contained. The electrode material is deposited on the surface of the anode electrode 2R corresponding to R through the opening pattern 6 formed in the film 4 by a method such as sputtering, vacuum deposition, and ion plating.
 第4ステップにおいては、図1(e)に示すように、蒸着マスク7の縁部を上方に持ち上げて蒸着マスク7をTFT基板1面から機械的に剥離する。これにより、R対応のアノード電極2R上にR有機EL層3Rが残りR有機EL層形成工程が終了する。この場合、蒸着マスク7の厚みが約10μm~30μmであるのに対してR有機EL層3Rの厚みは100nm程度であるので、蒸着マスク7の開口パターン6の側壁に付着するR有機EL層3Rの厚みは極薄いため蒸着マスク7を剥離する際に、蒸着マスク7とR対応のアノード電極2R上のR有機EL層3Rとが容易に分離する。したがって、蒸着マスク7を剥離する際にR対応のアノード電極2R上のR有機EL層3Rが剥離するおそれがない。なお、G対応及びB対応のアノード電極2G,2Bに電圧を印加させて蒸着マスク7をTFT基板1面に静電吸着させた場合には、蒸着マスク7を剥離する際に、各アノード電極2G,2Bの印加電圧をオフするか、又は逆極性の電圧を印加してやるとよい。これにより、蒸着マスク7の剥離を容易に行うことができる。また、粘着剤を使用してフィルム4をTFT基板1面に貼り付けた場合には、上記粘着剤の粘着力よりも大きな力を蒸着マスク7に加えて機械的に剥離するとよい。さらに、上記粘着剤が紫外線照射により硬化するものであるときには、紫外線を照射して粘着剤を硬化させ、蒸着マスク7とTFT基板1面との界面の粘着力を低下させてから蒸着マスク7を剥離するとよい。 In the fourth step, as shown in FIG. 1E, the edge of the vapor deposition mask 7 is lifted upward to mechanically peel the vapor deposition mask 7 from the surface of the TFT substrate 1. As a result, the R organic EL layer 3R remains on the R corresponding anode electrode 2R, and the R organic EL layer forming step is completed. In this case, the thickness of the vapor deposition mask 7 is about 10 μm to 30 μm, whereas the thickness of the R organic EL layer 3R is about 100 nm. Therefore, the R organic EL layer 3R attached to the sidewall of the opening pattern 6 of the vapor deposition mask 7 Since the thickness of is very thin, when the vapor deposition mask 7 is peeled off, the vapor deposition mask 7 and the R organic EL layer 3R on the anode electrode 2R corresponding to R are easily separated. Therefore, there is no possibility that the R organic EL layer 3R on the R-compatible anode electrode 2R is peeled off when the vapor deposition mask 7 is peeled off. In addition, when a voltage is applied to the anode electrodes 2G and 2B for G and B and the deposition mask 7 is electrostatically adsorbed on the surface of the TFT substrate 1, each anode electrode 2G is removed when the deposition mask 7 is peeled off. , 2B may be turned off or a reverse polarity voltage may be applied. Thereby, peeling of the vapor deposition mask 7 can be performed easily. Further, when the film 4 is attached to the surface of the TFT substrate 1 using an adhesive, a force larger than the adhesive force of the adhesive may be applied to the vapor deposition mask 7 and mechanically peeled off. Further, when the pressure-sensitive adhesive is cured by irradiation with ultraviolet rays, the pressure-sensitive adhesive is cured by irradiating with ultraviolet rays to reduce the adhesive force at the interface between the vapor deposition mask 7 and the TFT substrate 1 surface. It is good to peel.
 以降、上述と同様にして、G対応及びB対応のアノード電極2G,2B上に対応色の有機EL層3G,3Bを夫々形成する。その後、TFT基板1上にITO(Indium Tin Oxide)の透明導電膜を形成し、さらにその上に透明な保護基板を接着して有機EL表示装置が形成される。 Thereafter, in the same manner as described above, organic EL layers 3G and 3B of corresponding colors are formed on the anode electrodes 2G and 2B for G and B, respectively. Thereafter, a transparent conductive film of ITO (Indium Tin Oxide) is formed on the TFT substrate 1, and a transparent protective substrate is further bonded thereon to form an organic EL display device.
 なお、上記薄膜パターン形成方法の第1の実施形態においては、フィルム4がシート状の形態を成すものである場合について説明したが、本発明はこれに限られず、紫外線レーザアブレーションが可能な材料であれば、液状のものであってもよい。この場合は、フィルム4は、液状材料をTFT基板1面にスピンコート又はディップコートした後、それを乾燥させて形成される。 In the first embodiment of the thin film pattern forming method, the case where the film 4 is in the form of a sheet has been described. However, the present invention is not limited to this and is a material capable of ultraviolet laser ablation. If it exists, it may be liquid. In this case, the film 4 is formed by spin-coating or dip-coating a liquid material on the surface of the TFT substrate 1 and then drying it.
 また、上記薄膜パターン形成方法の第1の実施形態においては、第3ステップの有機EL層3Rの形成時に、有機EL層3R上にさらに透明電極層を形成してもよい。この場合、フィルム4が液状のものであるときには、透明電極層がバリア層として機能し、液状のフィルム4によって有機EL層3Rが溶解されるのを防止することができる。 In the first embodiment of the thin film pattern forming method, a transparent electrode layer may be further formed on the organic EL layer 3R when the organic EL layer 3R is formed in the third step. In this case, when the film 4 is liquid, the transparent electrode layer functions as a barrier layer, and it is possible to prevent the organic EL layer 3R from being dissolved by the liquid film 4.
 図4~図8は本発明による蒸着マスクの第2実施形態を使用して行う薄膜パターン形成方法の第2の実施形態を示す工程図である。ここでは、前述と同様に、薄膜パターンが有機EL層であり、上記第2の実施形態により有機EL表示装置を製造する方法について説明する。この有機EL表示装置の製造方法は、TFT基板上のアノード電極上に対応色の有機EL層を形成して有機EL表示装置を製造する方法であり、赤色(R)有機EL層形成工程と、緑色(G)有機EL層形成工程と、青色(B)有機EL層形成工程と、カソード電極形成工程とからなる。 FIGS. 4 to 8 are process diagrams showing a second embodiment of a thin film pattern forming method performed using the second embodiment of the vapor deposition mask according to the present invention. Here, as described above, a method of manufacturing an organic EL display device according to the second embodiment will be described in which the thin film pattern is an organic EL layer. This organic EL display device manufacturing method is a method of manufacturing an organic EL display device by forming an organic EL layer of a corresponding color on an anode electrode on a TFT substrate, and a red (R) organic EL layer forming step, It consists of a green (G) organic EL layer forming step, a blue (B) organic EL layer forming step, and a cathode electrode forming step.
 図4は、R有機EL層形成工程を示す断面説明図である。このR有機EL層形成工程は、有機材料を真空中で加熱してTFT基板1のR対応のアノード電極2R上にR有機EL層3Rを蒸着形成する工程であり、磁性材料からなる薄板に、R有機EL層3Rのパターンよりも形状寸法の大きい開口部9を形成した金属部材10に可視光を透過する樹脂製のフィルム4を保持してマスク用部材11を形成する第1ステップ(同図(a)参照)と、内部にチャック手段としての静磁界発生手段12を備えた磁気チャックステージ13上にTFT基板1を載置する第2ステップ(同図(b)参照)と、TFT基板1上のR対応のアノード電極2Rが金属部材10の上記開口部9内に位置するように位置合わせしてマスク用部材11をTFT基板1上に載置する第3ステップ(同図(c)参照)と、上記静磁界発生手段12の静磁界により金属部材10をTFT基板1上に吸着し、フィルム4をTFT基板1面に密着させる第4ステップ(同図(d)参照)と、TFT基板1上のR対応のアノード電極2Rに対応したフィルム4部分にレーザ光Lを照射し、当該部分のフィルム4にR有機EL層3Rのパターンと形状寸法の同じ開口パターン6を設けて本発明による蒸着マスクの第2実施形態(以下「蒸着マスク14」という)を形成する第5ステップ(同図(e)参照)と、TFT基板1上のR対応のアノード電極2R上に蒸着マスク14の開口パターン6を介してR有機EL層3Rを蒸着形成する第6ステップ(同図(f)参照)と、上記蒸着マスク14を同図に示す矢印+Z方向に持ち上げて剥離する第7ステップ(同図(g)参照)と、を実行するものである。 FIG. 4 is a cross-sectional explanatory view showing the R organic EL layer forming step. This R organic EL layer forming step is a step in which an organic material is heated in a vacuum to form an R organic EL layer 3R on the R-compatible anode electrode 2R of the TFT substrate 1, and is formed on a thin plate made of a magnetic material. A first step of forming a mask member 11 by holding a resin film 4 that transmits visible light on a metal member 10 in which an opening 9 having a larger dimension than the pattern of the R organic EL layer 3R is formed. (See (a)), a second step of placing the TFT substrate 1 on a magnetic chuck stage 13 provided with a static magnetic field generating means 12 as a chuck means (see (b) in the figure), and the TFT substrate 1 The third step of positioning the mask member 11 on the TFT substrate 1 so that the upper R-compatible anode electrode 2R is positioned in the opening 9 of the metal member 10 (see FIG. 3C). ) And the above static magnetism A fourth step (see FIG. 4D) in which the metal member 10 is adsorbed on the TFT substrate 1 by the static magnetic field of the generating means 12 and the film 4 is in close contact with the surface of the TFT substrate 1; The second embodiment of the vapor deposition mask according to the present invention is formed by irradiating the film 4 corresponding to the anode electrode 2R with the laser beam L and providing the opening 4 with the same shape and dimension as the pattern of the R organic EL layer 3R on the film 4 of the portion. A fifth step (see (e) in the figure) for forming a form (hereinafter referred to as “evaporation mask 14”) and an R pattern corresponding to the R electrode on the TFT substrate 1 through the opening pattern 6 of the deposition mask 14 R A sixth step (see (f) in the figure) for forming the organic EL layer 3R by vapor deposition, and a seventh step (see (g) in the same figure) for lifting the vapor deposition mask 14 in the arrow + Z direction shown in the figure and peeling it off. The It is intended to row.
 より詳細には、先ず、第1ステップにおいては、例えばニッケル、ニッケル合金、インバー又はインバー合金等の磁性材料からなる15μm~50μm程度の厚みの金属部材10に、TFT基板1の複数列のR対応のアノード電極2Rの配列ピッチと同ピッチで、図5(a)に示すように1列に並んだ複数のR対応のアノード電極2Rが内部に完全に収まる十分な大きさの、複数列の細長状の開口部9をエッチングや打ちぬき等により形成した後、同図(b)に同図(a)のA-A線断面で示すように金属部材10の一面に例えば粘着剤を介して例えば厚みが10μm~30μm程度のポリエチレンテレフタレート(PET)やポリイミド等の紫外線レーザアブレーションが可能なフィルム4を貼り付け、次いで、同図(c)に一部拡大して示すように金属部材10側から上記フィルム4を例えばドライエッチングし、上記開口部9に対応した部分のフィルム4の厚みを例えば数μm程度まで薄くしてマスク用部材11を形成する。これにより、微細な開口パターンも精度よく形成することが可能となる。なお、フィルム4のエッチングは、金属部材10とは反対側から行ってもよく、又は両側から行ってもよい。また、フィルム4のエッチングは、ドライエッチングではなく、ウエットエッチングであってもよい。さらに、上記金属部材10は、フィルム4の一面の上記開口部9に対応した部分の外側領域にメッキ形成されたものであってもよい。 More specifically, first, in the first step, a plurality of rows R of the TFT substrate 1 are applied to a metal member 10 having a thickness of about 15 μm to 50 μm made of a magnetic material such as nickel, nickel alloy, invar or invar alloy. A plurality of elongated strips having a size sufficient to accommodate a plurality of R-compatible anode electrodes 2R arranged in a single row as shown in FIG. 5A at the same pitch as the arrangement pitch of the anode electrodes 2R. After the opening 9 is formed by etching, punching, or the like, for example, an adhesive is provided on one surface of the metal member 10 as shown in FIG. A film 4 capable of ultraviolet laser ablation such as polyethylene terephthalate (PET) or polyimide having a thickness of about 10 μm to 30 μm is pasted, and then partially enlarged in FIG. And the film 4, for example, dry etching the metal member 10 side Suyo, a mask member 11 is thinned to a few μm, for example, about the thickness of the film 4 of the portion corresponding to the opening 9. This makes it possible to form a fine opening pattern with high accuracy. The etching of the film 4 may be performed from the side opposite to the metal member 10 or from both sides. Further, the etching of the film 4 may be wet etching instead of dry etching. Further, the metal member 10 may be formed by plating in an outer region of a portion corresponding to the opening 9 on one surface of the film 4.
 次に、第2ステップにおいては、図4(b)に示すように、内部に静磁界発生手段12として例えば永久磁石を備えた磁気チャックステージ13上にTFT基板1のアノード電極2R,2G,2Bを形成した面を上側にして載置する。この場合、上記磁気チャックステージ13は、例えば吸着面が平滑に形成されたものである。なお、上記静磁界発生手段12は、図示省略の昇降手段により昇降するようになっており、上記第2ステップにおいては、静磁界発生手段12は、磁気チャックステージ13の底部に下降している。 Next, in the second step, as shown in FIG. 4B, the anode electrodes 2R, 2G, 2B of the TFT substrate 1 are placed on a magnetic chuck stage 13 provided with, for example, a permanent magnet as the static magnetic field generating means 12 inside. It is placed with the surface on which is formed facing upward. In this case, the magnetic chuck stage 13 has, for example, a smooth attracting surface. The static magnetic field generating means 12 is moved up and down by a lifting means (not shown). In the second step, the static magnetic field generating means 12 is lowered to the bottom of the magnetic chuck stage 13.
 続いて、第3ステップにおいては、図4(c)に示すように、マスク用部材11のフィルム4側をTFT基板1側としてTFT基板1上に載置した後、例えば顕微鏡下でTFT基板1のR対応のアノード電極2Rと金属部材10の開口部9とを観察しながら、複数のR対応のアノード電極2Rが金属部材10の開口部9内に完全に収まるようにマスク用部材11を磁気チャックステージ13の上面に平行な面内で2次元方向に移動及び回転して位置合わせする。この場合、静磁界発生手段12は、磁気チャックステージ13の底部に下降しているので、金属部材10に作用する静磁界強度は小さい。したがって、マスク用部材11は、TFT基板1面上を自由に移動することができる。なお、磁気チャックステージ13の上面にTFT基板1を位置決めして載置可能に凹部を形成し、該凹部の外側に位置決めピンを設けると共に、該位置決めピンに対応して金属部材10に位置決め孔を形成すれば、上記位置決めピンに上記位置決め孔を嵌合するだけでTFT基板1とマスク用部材11との位置合わせをすることができる。 Subsequently, in the third step, as shown in FIG. 4C, after the film member 4 side of the mask member 11 is placed on the TFT substrate 1 with the TFT substrate 1 side, for example, under the microscope, the TFT substrate 1 While observing the R-compatible anode electrode 2 </ b> R and the opening 9 of the metal member 10, the mask member 11 is magnetically arranged so that the plurality of R-compatible anode electrodes 2 </ b> R completely fit within the opening 9 of the metal member 10. Positioning is performed by moving and rotating in a two-dimensional direction within a plane parallel to the upper surface of the chuck stage 13. In this case, since the static magnetic field generating means 12 is lowered to the bottom of the magnetic chuck stage 13, the static magnetic field strength acting on the metal member 10 is small. Therefore, the mask member 11 can freely move on the surface of the TFT substrate 1. The TFT substrate 1 is positioned on the top surface of the magnetic chuck stage 13 to form a recess so that the TFT substrate 1 can be placed. A positioning pin is provided outside the recess, and a positioning hole is formed in the metal member 10 corresponding to the positioning pin. If formed, the TFT substrate 1 and the mask member 11 can be aligned only by fitting the positioning hole into the positioning pin.
 次いで、第4ステップにおいては、図4(d)に示すように、静磁界発生手段12を磁気チャックステージ13の上部まで上昇させて静磁界を金属部材10に作用させ、金属部材10をTFT基板1側に吸着してフィルム4をTFT基板1の上面に密着させる。 Next, in the fourth step, as shown in FIG. 4D, the static magnetic field generating means 12 is raised to the top of the magnetic chuck stage 13 to cause the static magnetic field to act on the metal member 10, and the metal member 10 is moved to the TFT substrate. The film 4 is adhered to the upper surface of the TFT substrate 1 by adsorbing to the 1 side.
 次に、第5ステップにおいては、図4(e)に示すように、TFT基板1上のR対応のアノード電極2R上にレーザ光Lを照射し、当該アノード電極2R上のフィルム4にR対応のアノード電極2Rと形状寸法が略同じ開口パターン6を設けて本発明による蒸着マスク14(第2実施形態)を形成する。ここで使用するレーザは、波長が400nm以下のエキシマレーザであり、例えばKrF248nmのレーザである。このような紫外線のレーザ光Lの光エネルギーにより、ポリエチレンテレフタレート(PET)やポリイミド等のフィルム4の炭素結合が一瞬のうちに破壊されて除去されるため、残渣の発生を抑制したクリーンな穴あけ加工を行うことができる。この場合、レーザ光Lの照射による熱的過程を使用しないため、レーザ光Lの光束断面と形状寸法が略同じ貫通パターンを加工することができ、縮小結像手段を用いれば、数μm程度の開口パターン6を有する蒸着マスク14の形成も可能である。したがって、従来よりも増してより高精細な薄膜パターンを形成することができる。 Next, in the fifth step, as shown in FIG. 4 (e), the R-compatible anode electrode 2R on the TFT substrate 1 is irradiated with the laser light L, and the film 4 on the anode electrode 2R is R-compatible. An opening pattern 6 having substantially the same shape and dimension as the anode electrode 2R is provided to form a vapor deposition mask 14 (second embodiment) according to the present invention. The laser used here is an excimer laser having a wavelength of 400 nm or less, for example, a KrF248 nm laser. Because of the light energy of the ultraviolet laser beam L, the carbon bonds of the film 4 such as polyethylene terephthalate (PET) or polyimide are broken and removed in an instant, so a clean drilling process that suppresses the generation of residues It can be performed. In this case, since the thermal process by the irradiation of the laser beam L is not used, a penetration pattern having substantially the same cross-sectional shape and shape as the beam of the laser beam L can be processed. It is also possible to form the vapor deposition mask 14 having the opening pattern 6. Therefore, it is possible to form a thin film pattern with higher definition than before.
 図9は、上記第5ステップにおいて使用するレーザ加工装置の一構成例を示す正面図である。
 このレーザ加工装置は、TFT基板1を同図に矢印Xで示す方向に一定速度で搬送しながら、TFT基板1上のマスク用部材11にレーザ光Lを照射してアノード電極2R~2B上に有機EL層3R~3Bのパターンと形状寸法が略同じ開口パターン6を設けて蒸着マスク14を形成するためのものであり、搬送手段15と、レーザ光学ユニット16と、撮像手段17と、アライメント手段18と、制御手段19と、を備えて構成されている。
FIG. 9 is a front view showing a configuration example of the laser processing apparatus used in the fifth step.
This laser processing apparatus irradiates the mask member 11 on the TFT substrate 1 with the laser light L while conveying the TFT substrate 1 at a constant speed in the direction indicated by the arrow X in FIG. This is for forming the vapor deposition mask 14 by providing the opening pattern 6 having substantially the same shape and dimensions as the patterns of the organic EL layers 3R to 3B. The transport means 15, the laser optical unit 16, the imaging means 17, and the alignment means 18 and a control means 19.
 上記搬送手段15は、上面に複数のエア噴出孔及びエア吸引孔を形成した搬送ステージ20上に一体化されたTFT基板1と磁気チャックステージ13とを載置し、エアの噴出力と吸引力とをバランスさせてTFT基板1及び磁気チャックステージ13を上記搬送ステージ20上に一定量だけ浮上させた状態で、磁気チャックステージ13の矢印X方向に平行な縁部を図示省略の搬送機構により保持して搬送するものである。 The transfer means 15 mounts the TFT substrate 1 and the magnetic chuck stage 13 integrated on a transfer stage 20 having a plurality of air ejection holes and air suction holes formed on the upper surface thereof. And the edge parallel to the arrow X direction of the magnetic chuck stage 13 is held by a transport mechanism (not shown) while the TFT substrate 1 and the magnetic chuck stage 13 are floated on the transport stage 20 by a certain amount. And transport it.
 上記搬送手段15の上方には、レーザ光学ユニット16が設けられている。このレーザ光学ユニット16は、紫外線のレーザ光LをTFT基板1上の選択されたアノード電極2R~2B上に照射させるものであり、例えばKrF248nmのレーザ光Lを放射するエキシマレーザ21と、レーザ光Lの光束径を拡大すると共に、強度分布を均一化して平行光を後述のフォトマスク23に照射させるカップリング光学ユニット22と、上記搬送ステージ20の上面に対向して配置され、搬送ステージ20の上面に平行な面内にて、矢印X方向と交差する方向に複数の開口24(図10参照)を形成したフォトマスク23とを備えて構成されている。 A laser optical unit 16 is provided above the conveying means 15. The laser optical unit 16 irradiates selected laser electrodes L on the TFT substrate 1 with ultraviolet laser light L. For example, an excimer laser 21 that emits laser light L of KrF 248 nm, and laser light A coupling optical unit 22 for enlarging the L beam diameter and making the intensity distribution uniform to irradiate parallel light onto a photomask 23 (described later) and an upper surface of the transfer stage 20 are disposed opposite to the transfer stage 20. A photomask 23 having a plurality of openings 24 (see FIG. 10) formed in a direction crossing the arrow X direction in a plane parallel to the upper surface is provided.
 ここで、上記フォトマスク23について詳細に説明すると、フォトマスク23は、例えば図10に示すように、透明な基板25の一面に設けたクロム(Cr)等の遮光膜26に、TFT基板1の矢印X方向と交差する方向のアノード電極2R~2Bの配列ピッチPの3倍の配列ピッチ3Pで一列に並べて開口24を形成し、他面には、各開口24の中心と中心軸を合致されて複数のマイクロレンズ27を形成したものであり、マイクロレンズ27により開口24をTFT基板1上に縮小投影するようになっている。この場合、開口24の大きさは、マイクロレンズ27の縮小倍率をMとすると、有機EL層3R~3BのパターンサイズのM倍の大きさに形成される。なお、同図(a)において、斜線を付した領域は、レーザ光Lが照射される領域である。 Here, the photomask 23 will be described in detail. For example, as shown in FIG. 10, the photomask 23 is formed on a light shielding film 26 such as chromium (Cr) provided on one surface of a transparent substrate 25 with the TFT substrate 1. The openings 24 are formed in a row at an arrangement pitch 3P that is three times the arrangement pitch P of the anode electrodes 2R to 2B in the direction crossing the arrow X direction, and the center and the central axis of each opening 24 are matched on the other surface. A plurality of microlenses 27 are formed, and the opening 24 is reduced and projected onto the TFT substrate 1 by the microlens 27. In this case, the size of the opening 24 is M times the pattern size of the organic EL layers 3R to 3B, where M is the reduction magnification of the microlens 27. In addition, in the figure (a), the area | region which attached the oblique line is an area | region to which the laser beam L is irradiated.
 また、上記複数の開口24の中心に対して矢印Xと反対方向に一定距離だけ離れた位置に、矢印X方向と交差する長手中心軸を有する細長状の覗き窓28が形成されている。この覗き窓28は、フォトマスク23の下側を通過するTFT基板1の表面をフォトマスク23の上方から後述の撮像手段17により撮影可能にするためのものであり、覗き窓28内には、いずれかの開口24の中心と長手中心軸を合致させて矢印X方向に平行な細線状の少なくとも一本のアライメントマーク29(ここでは、一本のアライメントマークで示す)が設けられている。 Also, an elongated viewing window 28 having a longitudinal central axis intersecting the arrow X direction is formed at a position away from the center of the plurality of openings 24 by a certain distance in the direction opposite to the arrow X. This viewing window 28 is for enabling the surface of the TFT substrate 1 passing under the photomask 23 to be photographed by the imaging means 17 described later from above the photomask 23. In the viewing window 28, There is provided at least one alignment mark 29 (in this case, indicated by one alignment mark) in the form of a thin line parallel to the arrow X direction so that the center of one of the openings 24 coincides with the longitudinal central axis.
 上記搬送手段15の上方には、撮像手段17が設けられている。この撮像手段17は、上記フォトマスク23の覗き窓28を通してTFT基板1の表面を撮影するものであり、矢印X方向と交差する方向に複数の受光エレメントを一直線に並べて有するラインカメラである。そして、複数の受光エレメントの並び方向の中心軸が上記フォトマスク23の覗き窓28の長手中心軸と合致するように配設されている。さらに、撮像手段17の撮影領域をTFT基板1の上方側から照明可能に図示省略の照明手段が設けられている。なお、図9において符号30は、撮像系の光路を折り曲げる反射ミラーである。 The imaging means 17 is provided above the conveying means 15. This imaging means 17 is for photographing the surface of the TFT substrate 1 through the viewing window 28 of the photomask 23 and is a line camera having a plurality of light receiving elements arranged in a straight line in a direction crossing the arrow X direction. The central axis in the direction in which the plurality of light receiving elements are arranged is arranged to coincide with the longitudinal central axis of the viewing window 28 of the photomask 23. Further, illumination means (not shown) is provided so that the imaging region of the imaging means 17 can be illuminated from above the TFT substrate 1. In FIG. 9, reference numeral 30 denotes a reflection mirror that bends the optical path of the imaging system.
 上記フォトマスク23を搬送ステージ20の上面に平行な面内にて、矢印Xと交差する方向に移動可能にアライメント手段18が設けられている。このアライメント手段18は、フォトマスク23を移動中のTFT基板1に対して位置合わせするものであり、電磁アクチュエータやモータ等を含んで構成された搬送機構によりフォトマスク23を矢印Xと交差する方向に移動させることができるようになっている。 Alignment means 18 is provided so that the photomask 23 can be moved in a direction crossing the arrow X in a plane parallel to the upper surface of the transfer stage 20. The alignment means 18 aligns the photomask 23 with respect to the moving TFT substrate 1, and a direction in which the photomask 23 intersects the arrow X by a transport mechanism including an electromagnetic actuator, a motor, and the like. It can be moved to.
 上記搬送手段15と、エキシマレーザ21と、撮像手段17と、アライメント手段18とに電気的に接続して制御手段19が設けられている。この制御手段19は、搬送手段15を制御してTFT基板1を矢印X方向に一定速度で搬送させ、エキシマレーザ21を一定間隔で発光させるように制御し、撮像手段17から入力する画像を処理して、TFT基板1に予め設定された基準位置を検出すると共に、該基準位置とフォトマスク23のアライメントマーク29との間の水平距離を演算し、該水平距離が予め定められた距離となるようにアライメント手段18を制御してフォトマスク23を移動させるものである。 A control means 19 is provided in electrical connection with the transport means 15, the excimer laser 21, the imaging means 17, and the alignment means 18. The control unit 19 controls the transport unit 15 to transport the TFT substrate 1 at a constant speed in the direction of the arrow X, and controls the excimer laser 21 to emit light at regular intervals, and processes an image input from the imaging unit 17. Then, a reference position preset on the TFT substrate 1 is detected, and a horizontal distance between the reference position and the alignment mark 29 of the photomask 23 is calculated, and the horizontal distance becomes a predetermined distance. Thus, the alignment means 18 is controlled to move the photomask 23.
 このように構成されたレーザ加工装置を使用して、上記第5ステップは次のようにして実行される。
 先ず、搬送手段15の搬送ステージ20上面に磁気チャックステージ13と一体化されたTFT基板1を、金属部材10の開口部9の長軸が矢印X方向と平行となるように位置決めして載置する。次に、搬送手段15は、磁気チャックステージ13とTFT基板1とを一体的に搬送ステージ20上に一定量だけ浮上させた状態で制御手段19により制御されて矢印X方向に一定速度で搬送を開始する。
Using the thus configured laser processing apparatus, the fifth step is executed as follows.
First, the TFT substrate 1 integrated with the magnetic chuck stage 13 is positioned and placed on the upper surface of the transfer stage 20 of the transfer means 15 so that the long axis of the opening 9 of the metal member 10 is parallel to the arrow X direction. To do. Next, the transport unit 15 is controlled by the control unit 19 in a state where the magnetic chuck stage 13 and the TFT substrate 1 are integrally floated on the transport stage 20 and transported at a constant speed in the arrow X direction. Start.
 TFT基板1が搬送されて、フォトマスク23の下側に達し、フォトマスク23の覗き窓28を通して撮像手段17によりTFT基板1に予め形成された矢印X方向と交差する例えばアノード電極2R~2B或いは所定の箇所に設けたラインパターン等が検出されると、該アノード電極2R~2B等が検出された時のTFT基板1の位置を基準にして制御手段19によりTFT基板1の移動距離が演算される。そして、該移動距離が予め設定して保存された移動距離の目標値に合致し、TFT基板1のR対応のアノード電極2Rがフォトマスク23の開口24の真下に達すると制御手段19に制御されてエキシマレーザ21がパルス発光する。 The TFT substrate 1 is transported, reaches the lower side of the photomask 23, passes through the viewing window 28 of the photomask 23, and intersects with the arrow X direction previously formed on the TFT substrate 1 by the imaging means 17, for example, the anode electrodes 2R to 2B or When a line pattern or the like provided at a predetermined location is detected, the moving distance of the TFT substrate 1 is calculated by the control means 19 based on the position of the TFT substrate 1 when the anode electrodes 2R to 2B are detected. The Then, when the movement distance matches a preset target value of the movement distance stored and the anode electrode 2R corresponding to R of the TFT substrate 1 reaches just below the opening 24 of the photomask 23, the control means 19 controls the movement distance. The excimer laser 21 emits pulses.
 一方、TFT基板1の移動中は、TFT基板1に予め形成された矢印X方向に平行な例えば複数のゲート線のうち、予め選択されたアライメントの基準となるゲート線の縁部を撮像手段17により検出し、同時に検出したフォトマスク23のアライメントマーク29との間の水平距離を制御手段19により演算し、該距離が予め設定して保存されたアライメントの目標値と合致するようにアライメント手段18を制御してフォトマスク23を矢印Xと交差する方向に移動させる。これにより、矢印Xと交差する方向に振れながら移動するTFT基板1にフォトマスク23を追従させて位置合わせすることができる。 On the other hand, during the movement of the TFT substrate 1, the edge of the gate line serving as a reference for the pre-selected alignment among a plurality of gate lines, for example, parallel to the direction of the arrow X formed in advance on the TFT substrate 1 is imaged. The horizontal distance between the photomask 23 and the alignment mark 29 of the photomask 23 detected at the same time is calculated by the control means 19, and the alignment means 18 is set so that the distance matches a preset target value stored. To move the photomask 23 in the direction intersecting the arrow X. Thereby, the photomask 23 can be made to follow and align with the TFT substrate 1 which moves while swinging in the direction intersecting the arrow X.
 上述したように、TFT基板1のR対応のアノード電極2Rがフォトマスク23の開口24の真下に達するとエキシマレーザ21が発光し、レーザ光Lがフォトマスク23の照射領域に照射される。さらに、フォトマスク23の開口24を通過したレーザ光Lは、マイクロレンズ27によりTFT基板1のR対応のアノード電極2R上に集光される。そして、該アノード電極2R上のフィルム4がレーザ光Lによってアブレーションされて除去され、開口パターン6が形成される。以後、搬送方向後続のR対応のアノード電極2Rがフォトマスク23の開口24の真下に達する毎にエキシマレーザ21が発光し、アノード電極2R上のフィルム4がレーザ光Lによって除去され、アノード電極2R上に開口パターン6を設けた蒸着マスク14が形成される。なお、エキシマレーザ21を連続発光させ、レーザ光Lの出力光軸側にシャッタを設けてR対応のアノード電極2Rがフォトマスク23の開口24の真下に達したときにシャッタを開くようにしてもよい。 As described above, when the anode electrode 2R corresponding to R of the TFT substrate 1 reaches just below the opening 24 of the photomask 23, the excimer laser 21 emits light, and the irradiation region of the photomask 23 is irradiated with the laser light L. Further, the laser light L that has passed through the opening 24 of the photomask 23 is condensed on the anode electrode 2 </ b> R corresponding to R of the TFT substrate 1 by the microlens 27. Then, the film 4 on the anode electrode 2R is ablated and removed by the laser light L, and an opening pattern 6 is formed. Thereafter, every time the anode electrode 2R corresponding to R following in the transport direction reaches directly below the opening 24 of the photomask 23, the excimer laser 21 emits light, the film 4 on the anode electrode 2R is removed by the laser light L, and the anode electrode 2R A vapor deposition mask 14 having an opening pattern 6 provided thereon is formed. Note that the excimer laser 21 emits light continuously, and a shutter is provided on the output optical axis side of the laser light L so that the shutter is opened when the R-compatible anode electrode 2R reaches just below the opening 24 of the photomask 23. Good.
 なお、以上の説明においては、フォトマスク23に複数の開口24が1列に並べて設けられている場合について述べたが、上記複数の開口24を矢印X方向に、同方向の画素ピッチの整数倍のピッチで複数列設けてもよい。この場合、R対応のアノード電極2R上のフィルム4が複数回のレーザ照射により除去されることになる。 In the above description, the case where the photomask 23 is provided with a plurality of openings 24 arranged in a line has been described. However, the plurality of openings 24 is an integer multiple of the pixel pitch in the same direction in the arrow X direction. A plurality of rows may be provided at the pitch. In this case, the film 4 on the anode electrode 2R corresponding to R is removed by multiple laser irradiations.
 また、以上の説明においては、複数の開口24に対応してマイクロレンズ27が設けられている場合について述べたが、複数の開口24に跨って長軸を有するシリンドリカルレンズであってもよい。この場合、開口24は、上記複数の開口24を連結した一つのストライプ状の開口として形成されるとよい。これにより、光束断面が細長状のレーザ光Lを生成してフィルム4にストライプ状の開口パターン6を形成することができる。なお、この場合は、TFT基板1は、マスク用部材11の開口9の長軸が矢印Xと交差するように搬送ステージ20上に載置されて搬送される。そして、複数のR対応のアノード電極2Rが上記ストライプ状の開口24の真下に達する毎に、細長状のレーザ光Lを照射することにより、上記ストライプ状の開口パターン6を複数のR対応のアノード電極2Rを跨って形成することができる。その結果、複数のR対応のアノード電極2Rを跨って、その上にストライプ状のR有機EL層3R(薄膜パターン)を形成することができる。 In the above description, the case where the microlenses 27 are provided corresponding to the plurality of openings 24 has been described. However, a cylindrical lens having a long axis across the plurality of openings 24 may be used. In this case, the opening 24 may be formed as one stripe-like opening connecting the plurality of openings 24. As a result, a laser beam L having an elongated light beam cross section can be generated to form a stripe-shaped opening pattern 6 in the film 4. In this case, the TFT substrate 1 is placed and transported on the transport stage 20 so that the long axis of the opening 9 of the mask member 11 intersects the arrow X. Each time the plurality of R-compatible anode electrodes 2R reach just below the stripe-shaped openings 24, the strip-shaped opening pattern 6 is irradiated with the plurality of R-compatible anodes by irradiating the elongated laser beam L. It can be formed across the electrode 2R. As a result, a striped R organic EL layer 3R (thin film pattern) can be formed on a plurality of R-compatible anode electrodes 2R.
 さらに、上記レーザ加工装置は、TFT基板1を一定速度で移動しながら、レーザ光Lを照射してフィルム4に開口パターン6を形成する場合について説明したが、本発明はこれに限られず、レーザ加工装置は、TFT基板1を矢印X方向にステップ移動しながら、又はTFT基板1を基板面に平行な面内を2次元方向にステップ移動しながら、レーザ光Lを照射してフィルム4に開口パターン6を形成するものであってもよいし、TFT基板1の複数のアノード電極に対応して複数のマイクロレンズ27を設けたフォトマスク23を介してレーザ光Lを照射してフィルム4に開口パターン6を一括形成するものであってもよい。 Further, the laser processing apparatus has been described with respect to the case where the aperture pattern 6 is formed on the film 4 by irradiating the laser beam L while moving the TFT substrate 1 at a constant speed. The processing apparatus opens the film 4 by irradiating the laser beam L while moving the TFT substrate 1 stepwise in the direction of arrow X or moving the TFT substrate 1 stepwise in a plane parallel to the substrate surface. The pattern 6 may be formed, or the film 4 is opened by irradiating laser light L through a photomask 23 provided with a plurality of microlenses 27 corresponding to a plurality of anode electrodes of the TFT substrate 1. The pattern 6 may be formed collectively.
 さらにまた、レーザ光Lによる開口パターン6の形成は、前述と同様に、一定深さまでは例えば1~20J/cmと比較的高いエネルギー密度のレーザ光Lを照射して一気に加工し、残りの部分はエネルギー強度を0.1J/cm以下、望ましくは0.06J/cm以下に下げたレーザ光Lを照射してゆっくり加工するようにするとよい。これにより、開口パターン6の形成時間を短縮するのと同時に、アノード電極がレーザ光Lによってダメージを受けるのを抑制することができる。 Furthermore, the formation of the opening pattern 6 by the laser beam L is processed at once by irradiating the laser beam L having a relatively high energy density of, for example, 1 to 20 J / cm 2 at a constant depth, as described above. The portion may be processed slowly by irradiating the laser beam L with the energy intensity lowered to 0.1 J / cm 2 or less, preferably 0.06 J / cm 2 or less. Thereby, the formation time of the opening pattern 6 can be shortened, and at the same time, the anode electrode can be prevented from being damaged by the laser light L.
 第6ステップにおいては、図4(f)に示すように、例えば真空蒸着装置を使用してTFT基板1のR対応のアノード電極2R上に蒸着マスク14の開口パターン6を介してR有機EL層3Rを蒸着形成し、さらに、該R有機EL層3R上にITO膜からなる透明電極層31を蒸着又はスパッタリング等の公知の蒸着技術を使用して蒸着形成する。 In the sixth step, as shown in FIG. 4F, for example, an R organic EL layer is formed on the R corresponding anode electrode 2R of the TFT substrate 1 via the opening pattern 6 of the vapor deposition mask 14 using a vacuum vapor deposition apparatus. 3R is vapor-deposited, and a transparent electrode layer 31 made of an ITO film is vapor-deposited on the R organic EL layer 3R using a known vapor deposition technique such as vapor deposition or sputtering.
 第7ステップにおいては、図4(g)に示すように、磁気チャックステージ13の静磁界発生手段12を下降させた状態で、蒸着マスク14の縁部を同図に矢印+Zで示す上方に持ち上げて蒸着マスク14のフィルム4をTFT基板1面から機械的に剥離する。これにより、R対応のアノード電極2R上にR有機EL層3Rが残りR有機EL層形成工程が終了する。 In the seventh step, as shown in FIG. 4G, with the static magnetic field generating means 12 of the magnetic chuck stage 13 lowered, the edge of the vapor deposition mask 14 is lifted upward as indicated by the arrow + Z in the figure. Then, the film 4 of the vapor deposition mask 14 is mechanically peeled from the surface of the TFT substrate 1. As a result, the R organic EL layer 3R remains on the R corresponding anode electrode 2R, and the R organic EL layer forming step is completed.
 図6は、G有機EL層形成工程を示す断面説明図である。このG有機EL層形成工程は、磁性材料を含んで構成され、G有機EL層3Gのパターンよりも形状寸法の大きい開口部9を形成した金属部材10に可視光を透過する樹脂製のフィルム4を保持するステップ(同図(a)参照)と、内部に静磁界発生手段12を備えた磁気チャックステージ13上にTFT基板1を載置するステップ(同図(b)参照)と、TFT基板1上のG対応のアノード電極2Gが金属部材10の上記開口部9内に位置するように位置合わせして金属部材10をTFT基板1上に載置するステップ(同図(c))と、上記静磁界発生手段12の静磁界により金属部材10をTFT基板1上に吸着し、フィルム4をTFT基板1の上面に密着させるステップ(同図(d))と、TFT基板1上のG対応のアノード電極2Gに対応したフィルム4部分にレーザ光Lを照射し、当該部分のフィルム4にG有機EL層3Gのパターンと形状寸法の同じ開口パターン6を設けて蒸着マスク14を形成するステップ(同図(e))と、TFT基板1上のG対応のアノード電極2G上に蒸着マスク14の開口パターン6を介してG有機EL層3Gを蒸着形成するステップ(同図(f))と、上記蒸着マスク14を同図に示す矢印+Z方向に持ち上げて剥離するステップ(同図(g))と、を実行するもので、R有機EL層形成工程と同様にして行われる。 FIG. 6 is a cross-sectional explanatory view showing the G organic EL layer forming step. The G organic EL layer forming step includes a magnetic material, and is a resin film 4 that transmits visible light to the metal member 10 in which the opening 9 having a larger shape than the pattern of the G organic EL layer 3G is formed. Holding the TFT substrate 1 on the magnetic chuck stage 13 having the static magnetic field generating means 12 (see FIG. 5B), and the TFT substrate. A step of placing the metal member 10 on the TFT substrate 1 so that the anode electrode 2G corresponding to G on 1 is positioned in the opening 9 of the metal member 10 (FIG. 3C); The step of adsorbing the metal member 10 on the TFT substrate 1 by the static magnetic field of the static magnetic field generating means 12 and closely adhering the film 4 to the upper surface of the TFT substrate 1 (FIG. 4D) and the G corresponding to the TFT substrate 1 Anode electrode 2G A step of irradiating the corresponding film 4 part with laser light L, providing an opening pattern 6 having the same shape and dimension as the pattern of the G organic EL layer 3G on the film 4 of the part, and forming a vapor deposition mask 14 ((e) in the figure) ), Forming a G organic EL layer 3G on the anode electrode 2G corresponding to G on the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14 (FIG. 5F), and forming the vapor deposition mask 14 The step of lifting and peeling in the arrow + Z direction shown in the figure (FIG. 5G) is performed, and is performed in the same manner as the R organic EL layer forming step.
 図7は、B有機EL層形成工程を示す断面説明図である。このB有機EL層形成工程は、磁性材料を含んで構成され、B有機EL層3Bのパターンよりも形状寸法の大きい開口部9を形成した金属部材10に可視光を透過する樹脂製のフィルム4を保持するステップ(同図(a)参照)と、内部に静磁界発生手段12を備えた磁気チャックステージ13上にTFT基板1を載置するステップ(同図(b)参照)と、TFT基板1上のB対応のアノード電極2Bが金属部材10の上記開口部9内に位置するように位置合わせして金属部材10をTFT基板1上に載置するステップ(同図(c))と、上記静磁界発生手段12の静磁界により金属部材10をTFT基板1上に吸着し、フィルム4をTFT基板1の上面に密着させるステップ(同図(d))と、TFT基板1上のB対応のアノード電極2Bに対応したフィルム4部分にレーザ光Lを照射し、当該部分のフィルム4にB有機EL層3Bのパターンと形状寸法の同じ開口パターン6を設けて蒸着マスク14を形成するステップ(同図(e))と、TFT基板1上のB対応のアノード電極2B上に蒸着マスク14の開口パターン6を介してB有機EL層3Bを蒸着形成するステップ(同図(f))と、上記蒸着マスク14を同図に示す矢印+Z方向に持ち上げて剥離するステップ(同図(g))と、を実行するもので、R有機EL層又はG有機EL層形成工程と同様にして行われる。 FIG. 7 is a cross-sectional explanatory view showing the B organic EL layer forming step. This B organic EL layer forming step includes a magnetic material, and is a resin film 4 that transmits visible light to the metal member 10 in which the opening 9 having a larger size than the pattern of the B organic EL layer 3B is formed. Holding the TFT substrate 1 on the magnetic chuck stage 13 having the static magnetic field generating means 12 (see FIG. 5B), and the TFT substrate. A step of placing the metal member 10 on the TFT substrate 1 so that the anode electrode 2B corresponding to B on 1 is positioned in the opening 9 of the metal member 10 (FIG. 3C); The step of adsorbing the metal member 10 on the TFT substrate 1 by the static magnetic field of the static magnetic field generating means 12 and bringing the film 4 into close contact with the upper surface of the TFT substrate 1 (FIG. 4D) and the B corresponding to the TFT substrate 1 Anode electrode 2B A step of irradiating the corresponding film 4 part with the laser beam L, providing an opening pattern 6 having the same shape and pattern as the pattern of the B organic EL layer 3B on the film 4 of the part, and forming a vapor deposition mask 14 (FIG. 4E) ), Forming a B organic EL layer 3B on the anode electrode 2B corresponding to B on the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14 (FIG. 5F), and forming the vapor deposition mask 14 The step of lifting and peeling in the arrow + Z direction shown in the figure (FIG. 5G) is performed, and is performed in the same manner as the R organic EL layer or G organic EL layer forming step.
 図8は、カソード電極形成工程を示す断面説明図である。このカソード電極形成工程は、TFT基板1の各アノード電極2R,2G,2B上に形成された有機EL層3R,3G,3B上の透明電極層を電気的に接続するためのものであり、図8に示すように、先ず、公知の蒸着技術を使用してTFT基板1上面を覆ってITO(Indium Tin Oxide)膜からなるカソード電極32(透明電極)を形成する(同図(a)参照)。続いて、同様にしてカソード電極32を覆って絶縁性の保護層33を蒸着形成し(同図(b)参照)、さらにその上に例えばUV硬化性の樹脂を例えばスピンコート又はスプレー塗布して接着層34を形成する(同図(c)参照)。そして、上記接着層34上に透明な対向基板35を密着させた後、対向基板35側から紫外線を照射して接着層34を硬化させ、対向基板35をTFT基板1に接合する(同図(d)参照)。これにより、有機EL表示装置が完成する。 FIG. 8 is a cross-sectional explanatory view showing the cathode electrode forming step. This cathode electrode forming step is for electrically connecting the transparent electrode layers on the organic EL layers 3R, 3G, 3B formed on the anode electrodes 2R, 2G, 2B of the TFT substrate 1, As shown in FIG. 8, first, a cathode electrode 32 (transparent electrode) made of an ITO (IndiumInTin Oxide) film is formed by covering the upper surface of the TFT substrate 1 using a known vapor deposition technique (see FIG. 8A). . Subsequently, an insulating protective layer 33 is formed by vapor deposition so as to cover the cathode electrode 32 (see FIG. 5B), and a UV curable resin is applied thereon, for example, by spin coating or spraying. An adhesive layer 34 is formed (see FIG. 3C). Then, after the transparent counter substrate 35 is brought into close contact with the adhesive layer 34, the adhesive layer 34 is cured by irradiating ultraviolet rays from the counter substrate 35 side, and the counter substrate 35 is bonded to the TFT substrate 1 (see FIG. d)). Thereby, an organic EL display device is completed.
 図11は、有機EL層形成工程において使用する蒸着マスクの製造方法の変形例を示す断面説明図である。ここでは、1例として、R有機EL層用の蒸着マスクの製造方法を説明する。
 先ず、同図(a)に示すように、磁気チャックステージ13上に載置されたTFT基板1の上面を覆うように可視光を透過する、例えばフッ素系樹脂やカバーガラス等のレーザ光Lを吸収し難い透明部材36を置く。
FIG. 11 is a cross-sectional explanatory view showing a modification of the method for manufacturing a vapor deposition mask used in the organic EL layer forming step. Here, the manufacturing method of the vapor deposition mask for R organic EL layers is demonstrated as an example.
First, as shown in FIG. 3A, laser light L such as a fluorine resin or a cover glass that transmits visible light so as to cover the upper surface of the TFT substrate 1 placed on the magnetic chuck stage 13 is used. A transparent member 36 that is difficult to absorb is placed.
 次に、図11(b)に示すように、金属部材10の開口部9内にTFT基板1のR対応のアノード電極2Rが位置するように位置合わせした後、マスク用部材11のフィルム4を上記透明部材36上に密着させる。そして、その状態で、同図(c)に示すように磁気チャックステージ13の静磁界により金属部材10を吸着してフィルム4及び透明部材36を金属部材10とTFT基板1との間に挟持する。 Next, as shown in FIG. 11 (b), after aligning so that the anode electrode 2 R corresponding to R of the TFT substrate 1 is positioned in the opening 9 of the metal member 10, the film 4 of the mask member 11 is attached. The transparent member 36 is closely attached. In this state, the metal member 10 is attracted by the static magnetic field of the magnetic chuck stage 13 and the film 4 and the transparent member 36 are sandwiched between the metal member 10 and the TFT substrate 1 as shown in FIG. .
 続いて、図11(d)に示すように、TFT基板1上のR対応のアノード電極2Rに対応したフィルム4部分にレーザ光Lを照射し、当該部分のフィルム4にR有機EL層3Rのパターンと形状寸法の同じ開口パターン6を設けて蒸着マスク14を形成する。このとき、透明部材36は、レーザ光Lを吸収しないためレーザ加工されない。 Subsequently, as shown in FIG. 11 (d), the film 4 corresponding to the anode electrode 2R corresponding to R on the TFT substrate 1 is irradiated with the laser light L, and the film 4 of the portion is irradiated with the R organic EL layer 3R. An evaporation mask 14 is formed by providing an opening pattern 6 having the same shape and dimensions as the pattern. At this time, since the transparent member 36 does not absorb the laser light L, it is not laser processed.
 次いで、図11(e)に示すように、蒸着マスク14上に例えば一定の電圧を印加可能に構成された静電チャックステージ37を載置し、該静電チャックステージ37により蒸着マスク14のフィルム4を静電吸着すると共に、磁気チャックステージ13の静磁界をオフする。そして、静電チャックステージ37に蒸着マスク14を吸着した状態で、同図に示す矢印+Z方向に垂直に静電チャックステージ37を持ち上げ、同図に示す矢印Y方向に透明部材36を引き抜く。 Next, as shown in FIG. 11 (e), an electrostatic chuck stage 37 configured to be able to apply a constant voltage, for example, is placed on the vapor deposition mask 14, and the film of the vapor deposition mask 14 is placed on the electrostatic chuck stage 37. 4 is electrostatically attracted and the static magnetic field of the magnetic chuck stage 13 is turned off. Then, with the vapor deposition mask 14 adsorbed to the electrostatic chuck stage 37, the electrostatic chuck stage 37 is lifted perpendicular to the arrow + Z direction shown in the figure, and the transparent member 36 is pulled out in the arrow Y direction shown in the figure.
 その後、図11(f)に示すように、再び、静電チャックステージ37を矢印-Z方向に垂直に降ろして蒸着マスク14をTFT基板1上に置く。そして、静電チャックステージ37をオフすると共に磁気チャックステージ13をオンし、同図(g)に示すように磁力により蒸着マスク14の金属部材10を吸着してフィルム4をTFT基板1の上面に密着させた後、静電チャックステージ37を取り除く。これにより、蒸着マスク14の製造方法は終了する。 Thereafter, as shown in FIG. 11 (f), the electrostatic chuck stage 37 is again lowered vertically in the direction of the arrow −Z, and the deposition mask 14 is placed on the TFT substrate 1. Then, the electrostatic chuck stage 37 is turned off and the magnetic chuck stage 13 is turned on, and the metal member 10 of the vapor deposition mask 14 is attracted by a magnetic force as shown in FIG. After the contact, the electrostatic chuck stage 37 is removed. Thereby, the manufacturing method of the vapor deposition mask 14 is complete | finished.
 以降、R有機EL層3Rの形成は、上記蒸着マスク14を使用して、図4(f),(g)と同様にして行われる。さらに、G有機EL層3G及びB有機EL層3Bの形成も同様にして形成されたマスクを使用して行うことができる。 Thereafter, the formation of the R organic EL layer 3R is performed in the same manner as in FIGS. 4F and 4G using the vapor deposition mask 14. Furthermore, the G organic EL layer 3G and the B organic EL layer 3B can be formed using a mask formed in the same manner.
 上述のように、フィルム4とTFT基板1との間に可視光を透過する透明部材36を介在させた状態でレーザ光Lを照射し、フィルム4をアブレーションして開口パターン6を形成すれば、アブレーションによりフィルム4の残渣が発生した場合でも、残渣が透明部材36によって完全にブロックされてアノード電極2R~2B上に付着することがない。したがって、アノード電極2R~2Bと有機EL層3R~3Bとの間の接触抵抗が上昇したり、残渣が有機EL層3R~3Bにダメージを与えたりして有機EL層3R~3Bの発光特性を低下させるおそれがない。 As described above, if the transparent member 36 that transmits visible light is interposed between the film 4 and the TFT substrate 1, the laser light L is irradiated, and the film 4 is ablated to form the opening pattern 6. Even when the residue of the film 4 is generated by ablation, the residue is completely blocked by the transparent member 36 and does not adhere to the anode electrodes 2R to 2B. Therefore, the contact resistance between the anode electrodes 2R to 2B and the organic EL layers 3R to 3B is increased, or the residue damages the organic EL layers 3R to 3B, so that the light emission characteristics of the organic EL layers 3R to 3B are improved. There is no risk of lowering.
 なお、以上の説明においては、透明部材36がレーザ光Lを吸収し難い部材である場合について述べたが、本発明はこれに限られず、透明部材36は、フィルム4の厚みに対して十分に厚いものであれば、ポリイミド等のレーザ光Lを吸収し易い部材であってもよい。この場合は、フィルム4に対するレーザ加工が完了した後、透明部材36のレーザ加工が未終了の段階でレーザ光Lの照射を停止すればよい。 In the above description, the case where the transparent member 36 is a member that hardly absorbs the laser light L has been described. However, the present invention is not limited to this, and the transparent member 36 is sufficiently thick with respect to the thickness of the film 4. As long as it is thick, it may be a member that easily absorbs the laser beam L such as polyimide. In this case, after the laser processing on the film 4 is completed, the irradiation of the laser beam L may be stopped when the laser processing of the transparent member 36 is not completed.
 また、上記薄膜パターン形成方法の第2の実施形態においては、各有機EL層3R~3B形成時に、有機EL層3R~3B上にさらに透明電極層31を形成する場合について説明したが、本発明はこれに限られず、有機EL層3R~3B形成時には透明電極層31を形成しなくてもよい。 Further, in the second embodiment of the thin film pattern forming method, the case where the transparent electrode layer 31 is further formed on the organic EL layers 3R to 3B when the organic EL layers 3R to 3B are formed has been described. However, the transparent electrode layer 31 may not be formed when the organic EL layers 3R to 3B are formed.
 さらに、上記薄膜パターン形成方法の第2の実施形態においては、静磁界発生手段12が永久磁石である場合について説明したが、本発明はこれに限られず、静磁界発生手段12は電磁石であってもよい。 Furthermore, in the second embodiment of the thin film pattern forming method, the case where the static magnetic field generating means 12 is a permanent magnet has been described. However, the present invention is not limited to this, and the static magnetic field generating means 12 is an electromagnet. Also good.
 また、上記薄膜パターン形成方法の第2の実施形態においては、金属部材10が磁性材料で構成されている場合について説明したが、本発明はこれに限られず、金属部材10は非磁性材料であってもよい。この場合、フィルム4をTFT基板1と金属部材10との間に挟持するためには、磁気チャックステージ13に替えて、一定の電圧を印加可能に構成された静電チャックステージを使用し、該静電チャックステージ上にTFT基板1を載置した後、該ステージに電圧を印加して金属部材10をTFT基板1上に静電吸着しフィルム4を挟持するとよい。 In the second embodiment of the thin film pattern forming method, the case where the metal member 10 is made of a magnetic material has been described. However, the present invention is not limited to this, and the metal member 10 is made of a nonmagnetic material. May be. In this case, in order to sandwich the film 4 between the TFT substrate 1 and the metal member 10, instead of the magnetic chuck stage 13, an electrostatic chuck stage configured to be able to apply a constant voltage is used. After the TFT substrate 1 is placed on the electrostatic chuck stage, a voltage is applied to the stage to electrostatically attract the metal member 10 onto the TFT substrate 1 and sandwich the film 4.
 さらに、上記薄膜パターン形成方法の第2の実施形態においては、金属部材10に粘着剤を介してフィルム4を保持する場合について説明したが、本発明はこれに限られず、金属部材10にフィルム4を熱圧着により被着させてもよい。この場合、フィルム4が熱可塑性樹脂であるときには、金属部材10の開口部9をフィルム4で埋めることができる。又は、フィルム4を金属部材10には接着せず、TFT基板1と金属部材10との間に挟み込んで使用してもよい。 Furthermore, in 2nd Embodiment of the said thin film pattern formation method, although the case where the film 4 was hold | maintained via the adhesive on the metal member 10 was demonstrated, this invention is not limited to this, The film 4 is attached to the metal member 10. May be applied by thermocompression bonding. In this case, when the film 4 is a thermoplastic resin, the opening 9 of the metal member 10 can be filled with the film 4. Alternatively, the film 4 may be used by being sandwiched between the TFT substrate 1 and the metal member 10 without being bonded to the metal member 10.
 以上の説明においては、本発明による蒸着マスクの第2実施形態が薄膜パターン形成過程で製造される場合について述べたが、蒸着マスクの第2実施形態は、薄膜パターンの形成とは別工程で製造されたものであってもよい。
 図12は、本発明による蒸着マスクの第2実施形態の別の製造方法を示す工程図である。この蒸着マスクの製造方法は、金属部材10を形成する第1ステップと、金属部材10に樹脂製フィルム4を密着保持する第2ステップと、基板38上にフィルム4を密着させる第3ステップと、フィルム4に複数の開口パターン6を形成する第4ステップと、金属部材10とフィルム4とを一体的に基板38上から剥離する第5ステップと、を行って、図13、又は図14に示す蒸着マスクを製造するものである。
In the above description, the case where the second embodiment of the vapor deposition mask according to the present invention is manufactured in the process of forming a thin film pattern has been described, but the second embodiment of the vapor deposition mask is manufactured in a separate process from the formation of the thin film pattern. It may be what was done.
FIG. 12 is a process diagram showing another manufacturing method of the second embodiment of the vapor deposition mask according to the present invention. The vapor deposition mask manufacturing method includes a first step of forming the metal member 10, a second step of closely holding the resin film 4 on the metal member 10, a third step of closely contacting the film 4 on the substrate 38, A fourth step of forming a plurality of opening patterns 6 in the film 4 and a fifth step of peeling the metal member 10 and the film 4 integrally from the substrate 38 are performed, and the results are shown in FIG. 13 or FIG. A vapor deposition mask is manufactured.
 なお、本発明による蒸着マスクの第2実施形態の具体的構成は、基板上に予め定められた薄膜パターンの形成領域に対応して、該薄膜パターンと形状寸法の同じ貫通する開口パターン6を形成した可視光を透過する例えばポリイミドやポリエチレンテレフタレート(PET)等の樹脂製のフィルム4と、該フィルム4の一面に密接され、上記開口パターン6に対応して該開口パターン6よりも形状寸法が大きい開口部9を有する金属部材10とを含んで構成されている。図13に示す蒸着マスク14は、細長状の開口パターン6を複数列備えたものであり、図14に示す蒸着マスク14は、複数のブリッジ39によって分離されて一列に並んだ複数の開口パターン6を複数列備えたもので、形成しようとする薄膜パターンの形状に合わせて適宜選択される。図13,14において、符号40は、基板に予め設けられた基板側アライメントマークに対して位置合わせするためのマスク側アライメントマークである。 The specific configuration of the second embodiment of the vapor deposition mask according to the present invention is to form an opening pattern 6 having the same shape and dimension as the thin film pattern corresponding to a predetermined thin film pattern formation region on the substrate. A film 4 made of a resin such as polyimide or polyethylene terephthalate (PET) that transmits visible light, and is in close contact with one surface of the film 4 and has a shape dimension larger than that of the opening pattern 6 corresponding to the opening pattern 6. And a metal member 10 having an opening 9. The vapor deposition mask 14 shown in FIG. 13 is provided with a plurality of elongated opening patterns 6, and the vapor deposition mask 14 shown in FIG. 14 is separated by a plurality of bridges 39 and arranged in a row. Are selected according to the shape of the thin film pattern to be formed. 13 and 14, reference numeral 40 denotes a mask side alignment mark for alignment with a substrate side alignment mark provided in advance on the substrate.
 上記第1ステップは、図12(a)に示すように、薄板状の磁性材料に、薄膜パターンの形成領域に対応して該薄膜パターンよりも形状が大きい貫通する複数の開口部9を設けて金属部材10を形成する工程である。 In the first step, as shown in FIG. 12 (a), a plurality of openings 9 having a shape larger than that of the thin film pattern are provided in a thin plate-shaped magnetic material corresponding to the formation region of the thin film pattern. This is a step of forming the metal member 10.
 より詳細には、第1ステップにおいて、金属部材10は、例えば1μm~数mm程度、好ましくは30μm~50μm程度の厚みを有する例えばニッケル、ニッケル合金、インバー、又はインバー合金からなる磁性材料の薄板にレジストマスクを使用して上記開口部9をウェットエッチング又はイオンミーリング等のドライエッチングにより、又はレーザ加工して形成される。この場合、開口部9は、後述の第4ステップにおいてフィルム4に形成される開口パターン6よりも形状が大きければよいので、開口部9の形成精度は開口パターン6程の高精度は要求されない。なお、開口部9の形状は、フィルム4側に向かって徐々に狭くなっている(縦断面形状が逆台形状)のがよい。これにより、蒸着時に開口部9の縁部における蒸着材料のけられがなくなり、薄膜パターンの膜厚を均一に形成することができる。 More specifically, in the first step, the metal member 10 is formed into a thin plate of magnetic material made of, for example, nickel, nickel alloy, invar, or invar alloy having a thickness of about 1 μm to several mm, preferably about 30 μm to 50 μm. The opening 9 is formed by dry etching such as wet etching or ion milling using a resist mask or by laser processing. In this case, the opening 9 only needs to have a larger shape than the opening pattern 6 formed in the film 4 in the fourth step described later, and therefore the opening 9 is not required to be as precise as the opening pattern 6. In addition, the shape of the opening part 9 is good to become narrow gradually toward the film 4 side (a longitudinal cross-sectional shape is an inverted trapezoid shape). As a result, the deposition material at the edge of the opening 9 is not squeezed during deposition, and the film thickness of the thin film pattern can be formed uniformly.
 上記第2ステップは、図12(b)に示すように、金属部材10の一面に、可視光を透過する樹脂製のフィルム4を密接して保持し、マスク用部材を形成する工程であり、この実施例においては、フィルム4に金属部材10を熱圧着して行われる。 The second step is a step of forming a mask member by closely holding a resin film 4 that transmits visible light on one surface of the metal member 10, as shown in FIG. 12 (b). In this embodiment, the metal member 10 is thermocompression bonded to the film 4.
 第2ステップは、より詳細には、図15(a)に示すように平板状のガラス等の基材41上に密着された可視光を透過する熱可塑性のフィルム4、又は表面に融着性処理が施されたフィルム4の上面に金属部材10を載置するステップと、同図(b)に示すように一定温度及び圧力の下で金属部材10をフィルム4に熱圧着して一体化するステップと、同図(c)に示すようにフィルム4を基材41の表面から剥離するステップと、を含んでいる。この場合、フィルム4によって金属部材10のねじれや撓みが規制されるので、金属部材10の開口部9の形状及び位置が維持される。 More specifically, in the second step, as shown in FIG. 15 (a), a thermoplastic film 4 that transmits visible light adhered on a substrate 41 such as flat glass or the like, or a surface that is fusible. The step of placing the metal member 10 on the upper surface of the processed film 4 and the metal member 10 are thermocompression bonded to the film 4 under a constant temperature and pressure as shown in FIG. And a step of peeling the film 4 from the surface of the substrate 41 as shown in FIG. In this case, since the twist and bending of the metal member 10 are regulated by the film 4, the shape and position of the opening 9 of the metal member 10 are maintained.
 この第2ステップは、金属部材10の四辺を掴んで夫々外方に引っ張って金属部材10に一定のテンションを掛けた状態で実施するとよい。又は、平坦な面を有する磁気チャックの該平坦面に、磁性材料からなる金属部材10を磁力により吸着した状態で行ってもよく、両方を適宜組合せて行ってもよい。なお、上記磁気チャックは、永久磁石を備えて構成されたものであってもよいが、磁界の発生をオン/オフ制御できる電磁石を備えて構成されたものがよい。さらに、図15(c)に示すフィルム4を基材41の表面から剥離するステップは、別の磁気チャックを金属部材10上に設置し、磁力により該磁気チャックの平坦な吸着面に金属部材10を吸着保持した状態で行うとよい。これにより、金属部材10の開口部9の形状及び位置を高精度に維持することができる。 This second step may be performed in a state where a constant tension is applied to the metal member 10 by grasping the four sides of the metal member 10 and pulling them outward. Alternatively, the magnetic member 10 made of a magnetic material may be attracted to the flat surface of a magnetic chuck having a flat surface by a magnetic force, or a combination of both may be performed. The magnetic chuck may include a permanent magnet, but preferably includes an electromagnet that can control on / off of the generation of a magnetic field. Further, in the step of peeling the film 4 from the surface of the base material 41 shown in FIG. 15 (c), another magnetic chuck is placed on the metal member 10, and the metal member 10 is placed on the flat suction surface of the magnetic chuck by a magnetic force. It is good to carry out in the state which adsorbed and held. Thereby, the shape and position of the opening 9 of the metal member 10 can be maintained with high accuracy.
 ここで使用するフィルム材料は、紫外線のレーザ光Lの照射によりアブレーションする樹脂製フィルムがよく、好ましくは、例えばポリイミドやポリエチレンテレフタレート(PET)等がよい。特に、ポリイミドは、線膨張係数が約10×10-6~約40×10-6/℃であり、ニッケル等の金属の線膨張係数(約6×10-6~約20×10-6/℃)と許容範囲内で等しいため、金属材料からなる金属部材10と組合せて使用する場合、蒸着時に両部材の熱膨張係数の違いにより蒸着に反りが発生するのを抑制することができるのでより望ましい。また、インバー等の金属は熱膨張係数が極めて小さい(約2×10-6/℃以下)ため、蒸着時の輻射熱による蒸着マスクの熱膨張を規制して開口パターン6の位置精度を維持することができる。 The film material used here may be a resin film that is ablated by irradiation with ultraviolet laser light L, and preferably, for example, polyimide, polyethylene terephthalate (PET), or the like. In particular, the linear expansion coefficient of polyimide is about 10 × 10 −6 to about 40 × 10 −6 / ° C., and the linear expansion coefficient of metal such as nickel (about 6 × 10 −6 to about 20 × 10 −6 / (° C.) and within an allowable range, when used in combination with the metal member 10 made of a metal material, it is possible to suppress the occurrence of warpage in vapor deposition due to the difference in thermal expansion coefficient between the two members during vapor deposition. desirable. Further, since the metal such as Invar has a very small coefficient of thermal expansion (about 2 × 10 −6 / ° C. or less), the thermal expansion of the deposition mask due to radiant heat during deposition is regulated to maintain the positional accuracy of the opening pattern 6. Can do.
 上記第3ステップにおいては、図12(c)に示すように、第1の磁気チャック42上に載置された基板38上の薄膜パターン形成領域が金属部材10の開口部9内に位置するように金属部材10に予め形成されたマスク側アライメントマーク40(図13,14参照)と基板38に予め形成された図示省略の基板側アライメントマークとを顕微鏡により観察しながら、両マークが一定の位置関係を成すように調整して金属部材10を基板38に位置合わせした後、基板38上に設置し、第1の磁気チャック42の磁力により金属部材10を吸着してフィルム4を基板38上面に密着させる。 In the third step, as shown in FIG. 12C, the thin film pattern formation region on the substrate 38 placed on the first magnetic chuck 42 is positioned in the opening 9 of the metal member 10. While observing with a microscope a mask-side alignment mark 40 (see FIGS. 13 and 14) formed in advance on the metal member 10 and a substrate-side alignment mark (not shown) formed in advance on the substrate 38, both marks are at a fixed position. After the metal member 10 is aligned with the substrate 38 by adjusting the relationship, the metal member 10 is attracted by the magnetic force of the first magnetic chuck 42 and the film 4 is placed on the upper surface of the substrate 38. Adhere closely.
 この場合、上記基板38は、薄膜パターンを形成しようとする蒸着対象の基板であっても、又は後述の第3ステップにおいてレーザ光Lの照射目標となる基準パターン43を薄膜パターン形成領域に対応して設けた基準基板であってもよい。上記基板38が蒸着対象の基板であるときには、後述の第4ステップにおける開口パターン6の形成に続けて該開口パターン6を介して蒸着し、基板38上に薄膜パターンを形成してもよい。これにより、高精細な薄膜パターンも位置精度よく形成することができる。 In this case, even if the said board | substrate 38 is a board | substrate of the vapor deposition object which is going to form a thin film pattern, or the reference pattern 43 used as the irradiation target of the laser beam L in the 3rd step mentioned later corresponds to a thin film pattern formation area. Or a reference substrate provided. When the substrate 38 is a substrate to be deposited, the thin film pattern may be formed on the substrate 38 by vapor deposition through the opening pattern 6 following the formation of the opening pattern 6 in the fourth step described later. Thereby, a high-definition thin film pattern can also be formed with high positional accuracy.
 上記第4ステップにおいては、図12(d)に示すように、金属部材10の開口部9内の薄膜パターン形成領域(基準パターン43)に対応したフィルム4の部分に、波長が400nm以下の、例えばKrF248nmのエキシマレーザを使用して、エネルギー密度が0.1J/cm~20J/cmのレーザ光Lを照射し、薄膜パターンと形状寸法が同じ貫通する開口パターン6を形成する。 In the fourth step, as shown in FIG. 12D, the wavelength of the film 4 corresponding to the thin film pattern formation region (reference pattern 43) in the opening 9 of the metal member 10 is 400 nm or less. for example, using an excimer laser of KrF248nm, energy density is irradiated with a laser beam L of 0.1J / cm 2 ~ 20J / cm 2, a thin film pattern and geometry to form an opening pattern 6 to the same through.
 上記第5ステップにおいては、図12(e)に示すように、吸着面が平坦に形成された第2の磁気チャック44を金属部材10の上面に設置し、第2の磁気チャック44の電磁石をオンすると共に第1の磁気チャック42の電磁石をオフし、第2の磁気チャック44の磁力により金属部材10を吸着して該金属部材10及びフィルム4を一体的に基板38上から剥離し、第2の磁気チャック44側に受け取る。これにより、本発明の蒸着マスクの製造工程が終了し、図13,14に示すような蒸着マスクが完成する。以後、この第2の磁気チャック44に金属部材10を吸着した状態で蒸着マスク14のハンドリングを行えば、蒸着マスク14の開口パターン6の形状及び位置が維持され、その後の高精細な薄膜パターンの形成を容易に行うことができる。 In the fifth step, as shown in FIG. 12E, the second magnetic chuck 44 having a flat attracting surface is placed on the upper surface of the metal member 10, and the electromagnet of the second magnetic chuck 44 is installed. The electromagnet of the first magnetic chuck 42 is turned off, the metal member 10 is attracted by the magnetic force of the second magnetic chuck 44, and the metal member 10 and the film 4 are integrally peeled off from the substrate 38. 2 is received on the magnetic chuck 44 side. Thereby, the manufacturing process of the vapor deposition mask of this invention is complete | finished, and a vapor deposition mask as shown in FIG. Thereafter, if the vapor deposition mask 14 is handled while the metal member 10 is attracted to the second magnetic chuck 44, the shape and position of the opening pattern 6 of the vapor deposition mask 14 are maintained, and the subsequent high-definition thin film pattern is formed. Formation can be performed easily.
 上記マスク用部材の他の形成例として、フィルム4の表面を改質処理した後、金属部材10を熱圧着して金属部材10とフィルム4とを一体化してもよい。上記表面改質処理には、フィルム4の表面をエッチングして、表面にカルボキシル基(-COOH)やカルボニル基(-COO)等の親水基を形成する方法がある。これにより、フィルム4と金属部材10との界面における化学結合により両部材の接着が可能となる。又は、例えばシランカップリング剤等をフィルム4と金属部材10との界面に塗布し、シラノール(SiOH)基を形成させて濡れ性を改善すると共に、フィルム4と金属部材10の界面に形成された水素結合を、さらに脱水縮合させてもよい。これにより、より安定な化学結合による接着が可能となる。他に、フィルム4の表面を大気圧プラズマ又は減圧プラズマ中でプラズマ処理したり、アルカリ溶液でフィルム4の表面をウェットエッチングしたりしてフィルム4の表面を改質することも可能である。 As another example of forming the mask member, the metal member 10 and the film 4 may be integrated by thermocompression bonding of the metal member 10 after the surface of the film 4 is modified. The surface modification treatment includes a method of etching the surface of the film 4 to form hydrophilic groups such as carboxyl groups (—COOH) and carbonyl groups (—COO) on the surface. Thereby, both members can be bonded by chemical bonding at the interface between the film 4 and the metal member 10. Alternatively, for example, a silane coupling agent or the like is applied to the interface between the film 4 and the metal member 10 to form a silanol (SiOH) group to improve wettability, and the film 4 and the metal member 10 are formed at the interface. Hydrogen bonds may be further subjected to dehydration condensation. Thereby, adhesion by a more stable chemical bond becomes possible. In addition, the surface of the film 4 can be modified by performing plasma treatment on the surface of the film 4 in atmospheric pressure plasma or reduced pressure plasma, or wet etching the surface of the film 4 with an alkaline solution.
 図16は、上記マスク用部材の更に他の形成例を示す説明図である。
 この形成例は、図16(a)に示すように平板状のガラス等の基材41上に密着されたフィルム4の上面に金属部材10を載置するステップと、同図(b)に示すように金属部材10の開口部9内に可視光を透過する硬化性樹脂45を塗布して硬化させ、金属部材10とフィルム4とを一体化するステップと、同図(c)に示すように例えば図示省略の磁気チャックの平坦な吸着面に金属部材10を吸着してフィルム4を基材41の表面から剥離するステップと、を含んでいる。ここで使用する硬化性樹脂45は、例えば紫外線硬化又は光硬化性の無溶剤又は溶剤が極めて少ない樹脂がよい。
FIG. 16 is an explanatory view showing still another example of forming the mask member.
In this example, as shown in FIG. 16A, a step of placing the metal member 10 on the upper surface of the film 4 adhered on the substrate 41 such as flat glass is shown in FIG. In this way, the step of applying the curable resin 45 that transmits visible light into the opening 9 of the metal member 10 and curing it to integrate the metal member 10 and the film 4 as shown in FIG. For example, it includes a step of adsorbing the metal member 10 to a flat adsorption surface of a magnetic chuck (not shown) and peeling the film 4 from the surface of the substrate 41. The curable resin 45 used here is preferably, for example, a UV-free or photo-curable solventless or resin with very little solvent.
 図17は、上記マスク用部材の更に他の形成例を示す説明図である。
 この形成例は、図17(a)に示すように、例えば平坦な面を有する図示省略の静電チャック上に静電吸着されたフィルム4の一面にスパッタリングやメッキ等の公知の蒸着技術により銅等の金属膜46を蒸着するステップと、同図(b)に示すように金属膜46上にノンフラックス半田47を塗布するステップと、同図(c)に示すようにノンフラックス半田47により金属膜46を金属部材10に半田付けしてフィルム4を金属部材10に接着するステップと、を含むものである。ノンフラックス半田47により接着する場合には、蒸着時に不純物ガスが発生するおそれがない。したがって、例えば有機EL発光層を蒸着形成する際に、不純物ガスにより有機EL発光層がダメージを受けるという問題を解消することができる。
FIG. 17 is an explanatory view showing still another example of forming the mask member.
In this example, as shown in FIG. 17A, for example, copper is deposited on one surface of a film 4 electrostatically adsorbed on an electrostatic chuck (not shown) having a flat surface by a known deposition technique such as sputtering or plating. The step of depositing a metal film 46, etc., the step of applying non-flux solder 47 on the metal film 46 as shown in FIG. 5 (b), and the non-flux solder 47 as shown in FIG. Soldering the film 46 to the metal member 10 and bonding the film 4 to the metal member 10. In the case of bonding with the non-flux solder 47, there is no possibility that impurity gas is generated during vapor deposition. Therefore, for example, when the organic EL light emitting layer is formed by vapor deposition, the problem that the organic EL light emitting layer is damaged by the impurity gas can be solved.
 図18は、上記マスク用部材の更に他の形成例を示す説明図である。
 この形成例は、図18(a)に示すように、ガラス等の平坦面を有する基材41上に例えばポリイミド等の樹脂溶液48を例えば約30μmの厚みにスピンコート又はディップコートした後、この樹脂溶液48を加熱乾燥して半乾燥状態にするステップと、同図(b)に示すように半乾燥状態の樹脂上に金属部材10を圧着した後、この半乾燥状態の樹脂を乾燥して金属部材10に保持されたフィルム4を形成するステップと、同図(c)に示すように例えば図示省略の磁気チャックの平坦な吸着面に金属部材10を吸着してフィルム4を基材41の表面から剥離するステップと、を含んでいる。
FIG. 18 is an explanatory view showing still another example of forming the mask member.
In this example, as shown in FIG. 18A, a resin solution 48 such as polyimide is spin-coated or dip-coated to a thickness of about 30 μm, for example, on a substrate 41 having a flat surface such as glass. A step of heating and drying the resin solution 48 to a semi-dry state, and after pressing the metal member 10 on the semi-dry resin as shown in FIG. 5B, the semi-dry resin is dried. The step of forming the film 4 held on the metal member 10 and, as shown in FIG. 5C, for example, the metal member 10 is attracted to a flat attracting surface of a magnetic chuck (not shown) to attach the film 4 to the substrate 41. Peeling from the surface.
 なお、上記樹脂溶液48の半乾燥状態は、加熱温度及び加熱時間を適宜制御して実現することができ、予め実験により加熱条件が決められる。さらに、同様にして樹脂を完全乾燥させるための条件も事前に決定される。 In addition, the semi-dry state of the resin solution 48 can be realized by appropriately controlling the heating temperature and the heating time, and the heating conditions are determined in advance by experiments. Furthermore, the conditions for completely drying the resin are similarly determined in advance.
 図19は、上記マスク用部材の更に他の形成例を示す説明図である。
 この形成例は、先ず、図19(a)に示すようにガラス等の基材41上にフォトレジストや感光性ポリイミド等の感光性の樹脂溶液48を約30μmの厚みにスピンコート又はディップコートするステップと、同図(b)に示すようにフォトマスクを使用して上記感光性樹脂を露光した後、現像して金属部材10の開口部9に対応した位置に突状パターン49を形成するステップと、同図(c)に示すように金属部材10の開口部9と突状パターン49とを合致させた状態で金属部材10を感光性樹脂上に圧着した後、予め定められた温度で加熱乾燥して金属部材10に保持されたフィルム4を形成するステップと、同図(d)に示すように例えば図示省略の磁気チャックの平坦な吸着面に金属部材10を吸着してフィルム4を基材41の表面から剥離するステップと、を含んでいる。
FIG. 19 is an explanatory view showing still another example of forming the mask member.
In this formation example, first, as shown in FIG. 19A, a photosensitive resin solution 48 such as photoresist or photosensitive polyimide is spin-coated or dip-coated to a thickness of about 30 μm on a substrate 41 such as glass. And, after exposing the photosensitive resin using a photomask as shown in FIG. 5B, developing to form a protruding pattern 49 at a position corresponding to the opening 9 of the metal member 10 Then, as shown in FIG. 5C, after the metal member 10 is pressure-bonded on the photosensitive resin in a state where the opening 9 of the metal member 10 and the protruding pattern 49 are matched, heating is performed at a predetermined temperature. The step of forming the film 4 which is dried and held on the metal member 10 and the film 4 is formed by adsorbing the metal member 10 on a flat adsorption surface of a magnetic chuck (not shown), for example, as shown in FIG. Table of material 41 And it includes a step of peeling, from.
 この場合、上記突状パターン49を上部が狭く下部が広い縦断面台形状に形成すれば、金属部材10の開口部9と突状パターン49との嵌合を突状パターン49の側面をガイドとして容易に行うことができる。また、金属部材10の開口部9は、突状パターン49により位置決め規制されるため、金属部材10の開口部9の位置精度を図17における場合よりも高くすることができる。 In this case, if the protruding pattern 49 is formed in a trapezoidal shape having a narrow upper portion and a lower lower portion, the fitting of the opening 9 of the metal member 10 and the protruding pattern 49 is performed using the side surface of the protruding pattern 49 as a guide. It can be done easily. In addition, since the positioning of the opening 9 of the metal member 10 is regulated by the protruding pattern 49, the positional accuracy of the opening 9 of the metal member 10 can be made higher than in the case of FIG.
 図20は、上記マスク用部材の更に他の形成例を示す説明図である。
 この形成例は、図20(a)に示すように、平板状の基材41の上面に金属部材10を載置するステップと、同図(b)に示すように金属部材10の上面にポリイミド等の樹脂溶液48を金属部材10の厚み以上の厚みに塗布した後、これを予め定められた温度で加熱乾燥して金属部材10に保持されたフィルム4を形成するステップと、同図(c)に示すように例えば図示省略の磁気チャックの平坦な吸着面に金属部材10を吸着してフィルム4を基材41の表面から剥離するステップと、を含んでいる。
FIG. 20 is an explanatory view showing still another example of forming the mask member.
In this example, as shown in FIG. 20A, a step of placing the metal member 10 on the upper surface of the flat substrate 41 and a polyimide on the upper surface of the metal member 10 as shown in FIG. (C) applying a resin solution 48 such as a thickness equal to or greater than the thickness of the metal member 10 to heat and dry it at a predetermined temperature to form the film 4 held on the metal member 10; ), For example, a step of adsorbing the metal member 10 to a flat adsorption surface of a magnetic chuck (not shown) and peeling the film 4 from the surface of the base material 41 is included.
 この場合、図20(a),(b)に示す各ステップは、金属部材10を吸着面がガラス等により平坦に形成された別の磁気チャックの上記吸着面上に載置し、該磁気チャックの磁力により金属部材10を吸着保持した状態で行うとよい。これにより、金属部材10の開口部9の形状及び位置を高精度に保つことができる。 In this case, in each step shown in FIGS. 20A and 20B, the metal member 10 is placed on the attraction surface of another magnetic chuck whose attraction surface is formed flat by glass or the like. It may be performed in a state in which the metal member 10 is attracted and held by the magnetic force. Thereby, the shape and position of the opening 9 of the metal member 10 can be maintained with high accuracy.
 図21は、上記マスク用部材の更に他の形成例を示す説明図である。
 この形成例は、図21(a)に示すように、例えばステンレス鋼等からなる平板状の金属製基材50の上面にフォトレジストや感光性ポリイミド等の感光性の樹脂溶液48を約30μmの厚みにスピンコート又はディップコートするステップと、同図(b)に示すようにフォトマスクを使用して感光性樹脂を露光した後、現像して金属部材10の開口部9に対応した位置に島パターン51(フィルム4に相当)を形成するステップと、同図(c)に示すように島パターン51の周囲領域にニッケル又はニッケル合金等の磁性膜を約30μmの厚みにメッキして金属部材10を形成するステップと、同図(d)に示すように例えば図示省略の磁気チャックの平坦な吸着面に金属部材10を吸着して金属部材10と島パターン51(フィルム4)とを一体的に金属製基材50の表面から剥離するステップと、含んでいる。
FIG. 21 is an explanatory view showing still another example of forming the mask member.
In this example, as shown in FIG. 21A, a photosensitive resin solution 48 such as a photoresist or photosensitive polyimide is applied to the upper surface of a flat metal substrate 50 made of, for example, stainless steel. A step of spin coating or dip coating on the thickness, and exposing the photosensitive resin using a photomask as shown in FIG. 5B, developing, and developing the island at a position corresponding to the opening 9 of the metal member 10. A step of forming a pattern 51 (corresponding to the film 4), and a metal film 10 by plating a magnetic film such as nickel or a nickel alloy to a thickness of about 30 μm around the island pattern 51 as shown in FIG. As shown in FIG. 4D, for example, the metal member 10 is attracted to a flat attracting surface of a magnetic chuck (not shown), and the metal member 10 and the island pattern 51 (film 4) are formed. Are integrally peeled off from the surface of the metal substrate 50.
 この場合、フォトリソグラフィー技術を使用して形成した樹脂製の島パターン51(フィルム4)の周囲領域に磁性膜をメッキ形成して金属部材10を作製しているので、金属部材10の開口部9を高精度に形成することができる。 In this case, since the metal member 10 is produced by plating a magnetic film around the resin island pattern 51 (film 4) formed by using the photolithography technique, the opening 9 of the metal member 10 is formed. Can be formed with high accuracy.
 図22~24は本発明による蒸着マスク(第2実施形態)の更に別の製造方法を示す工程図である。以下、図を参照して詳細に説明する。
 先ず、図22(a)に示すように、平坦面を有する図示省略のステージ上に例えば静電吸着して保持された可視光を透過する厚みが10μm~30μm程度の、例えばポリイミドのフィルム4の一面4aに、同図(b)に示すようにスパッタリング等の公知の蒸着技術により50nm程度の厚みの例えばニッケル等からなる磁性材料の金属膜の下地層52を被着する。この場合、下地層52は、磁性材料の金属膜に限られず、良電導性の非磁性材料の金属膜であってもよい。
22 to 24 are process diagrams showing still another manufacturing method of the vapor deposition mask (second embodiment) according to the present invention. Hereinafter, it will be described in detail with reference to the drawings.
First, as shown in FIG. 22A, for example, a polyimide film 4 having a thickness of about 10 μm to 30 μm for transmitting visible light, for example, electrostatically adsorbed and held on a stage (not shown) having a flat surface. A base layer 52 of a metal film made of a magnetic material made of nickel or the like having a thickness of about 50 nm is deposited on the surface 4a by a known vapor deposition technique such as sputtering as shown in FIG. In this case, the underlayer 52 is not limited to a metal film made of a magnetic material, and may be a metal film made of a highly conductive nonmagnetic material.
 次に、図22(c)に示すように、下地層52上に30μm程度の厚みのレジスト53(感光性材料)を例えばスピンコートする。 Next, as shown in FIG. 22C, a resist 53 (photosensitive material) having a thickness of about 30 μm is spin-coated on the base layer 52, for example.
 次いで、図22(d)に示すように、フォトマスク54を使用して露光し、同図(e)に示すように現像して、基板(例えばTFT基板)上の薄膜パターン形成領域(例えば有機EL層形成領域)に対応した部分に薄膜パターンよりも形状の大きいレジスト53の島パターン51を形成する。この場合、レジスト53がネガ型であるときには、使用するフォトマスク54は、基板上の薄膜パターン形成領域に対応した部分に開口を形成したものであり、レジスト53がポジ型であるときには、フォトマスク54は、基板上の薄膜パターン形成領域に対応した部分を遮光するものである。 Next, as shown in FIG. 22 (d), exposure is performed using a photomask 54, development is performed as shown in FIG. 22 (e), and a thin film pattern formation region (eg, organic) on a substrate (eg, TFT substrate) is developed. An island pattern 51 of a resist 53 having a shape larger than that of the thin film pattern is formed in a portion corresponding to the EL layer formation region. In this case, when the resist 53 is a negative type, the photomask 54 to be used has an opening formed in a portion corresponding to the thin film pattern formation region on the substrate, and when the resist 53 is a positive type, the photomask 54 shields light from the portion corresponding to the thin film pattern formation region on the substrate.
 続いて、図22(f)に示すように、フィルム4の上記島パターン51の周辺領域にニッケル又はインバー等の磁性材料からなる金属部材10を30μm程度の厚みにメッキ形成する。 Subsequently, as shown in FIG. 22 (f), a metal member 10 made of a magnetic material such as nickel or invar is plated to a thickness of about 30 μm in the peripheral region of the island pattern 51 of the film 4.
 さらに、図22(g)に示すように、上記島パターン51を剥離して金属部材10に島パターン51に対応する開口部9を形成した後、同図(h)に示すように、開口部9内の下地層52をエッチングして除去し、マスク用部材11を形成する。なお、マスク用部材11の予め定められた位置には、金属部材10により基板との位置合わせをするためのマスク側アライメントマーク40が形成される。 Further, as shown in FIG. 22 (g), after the island pattern 51 is peeled off and the opening 9 corresponding to the island pattern 51 is formed in the metal member 10, as shown in FIG. 9 is removed by etching, and the mask member 11 is formed. Note that a mask-side alignment mark 40 for alignment with the substrate is formed by the metal member 10 at a predetermined position of the mask member 11.
 このように形成されたマスク用部材11は、図23(a)に示すように吸着面44aが平坦面に形成された第2の磁気チャック44によって金属部材10側を吸着して保持される。 The mask member 11 formed in this way is attracted and held on the metal member 10 side by the second magnetic chuck 44 having the attracting surface 44a formed on a flat surface as shown in FIG.
 次に、図23(b)に示すように、吸着面42aが平坦面に形成された第1の磁気チャック42上に載置された基板1(例えばTFT基板)の上方にマスク用部材11を位置付け、基板1に予め形成された図示省略の基板側アライメントマークとマスク用部材11に予め形成されたマスク側アライメントマーク40とを顕微鏡により観察しながら、両マークが一定の位置関係となるように調整して、同図(c)に示すように薄膜パターン形成領域55(例えばアノード電極上の領域)が上記開口部9内に位置するように基板1とマスク用部材11とを位置合わせした後、基板1上にフィルム4を密着させる。その後、同図(d)に示すように、第1の磁気チャック42の電磁石56をオンすると共に第2の磁気チャック44の電磁石56をオフし、第1の磁気チャック42により金属部材10を吸着してマスク用部材11を第2の磁気チャック44から基板1上に移す。 Next, as shown in FIG. 23B, the mask member 11 is placed above the substrate 1 (for example, a TFT substrate) placed on the first magnetic chuck 42 having the attracting surface 42a formed on a flat surface. Positioning and observing with a microscope a substrate-side alignment mark (not shown) formed in advance on the substrate 1 and a mask-side alignment mark 40 formed in advance on the mask member 11 so that both marks have a certain positional relationship. After the adjustment, the substrate 1 and the mask member 11 are aligned so that the thin film pattern formation region 55 (for example, the region on the anode electrode) is positioned in the opening 9 as shown in FIG. The film 4 is brought into close contact with the substrate 1. Thereafter, as shown in FIG. 4D, the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off, and the metal member 10 is attracted by the first magnetic chuck 42. Then, the mask member 11 is transferred from the second magnetic chuck 44 onto the substrate 1.
 続いて、波長が400nm以下の、例えばKrF248nmのエキシマレーザを使用して、図24(a)に示すように、マスク用部材11の開口部9内の薄膜パターン形成領域に対応したフィルム4の部分にエネルギー密度が0.1J/cm~20J/cmのレーザ光Lを照射し、底に薄い層を残して一定深さの凹部5を形成する。次いで、同図(b)に示すように、公知のプラズマ処理装置内でプラズマ処理し、上記凹部5の底の薄い層を除去して貫通する開口パターン6を形成する。これにより、蒸着マスク14が製造される。 Subsequently, using an excimer laser having a wavelength of 400 nm or less, for example, KrF248 nm, a portion of the film 4 corresponding to the thin film pattern forming region in the opening 9 of the mask member 11 as shown in FIG. Is irradiated with a laser beam L having an energy density of 0.1 J / cm 2 to 20 J / cm 2 to form a recess 5 having a constant depth, leaving a thin layer at the bottom. Next, as shown in FIG. 2B, plasma processing is performed in a known plasma processing apparatus, and a thin layer at the bottom of the concave portion 5 is removed to form an opening pattern 6 penetrating therethrough. Thereby, the vapor deposition mask 14 is manufactured.
 次に、上記蒸着マスク14上に第2の磁気チャック44が置かれる。そして、図24(c)に示すように、第2の磁気チャック44の電磁石56をオンすると共に第1の磁気チャック42の電磁石56をオフし、第2の磁気チャック44により金属部材10を吸着して蒸着マスク14を第2の磁気チャック44に移す。以後、蒸着マスク14は第2の磁気チャック44に保持された状態で保管される。 Next, a second magnetic chuck 44 is placed on the vapor deposition mask 14. Then, as shown in FIG. 24C, the electromagnet 56 of the second magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 is attracted by the second magnetic chuck 44. Then, the vapor deposition mask 14 is transferred to the second magnetic chuck 44. Thereafter, the vapor deposition mask 14 is stored while being held by the second magnetic chuck 44.
 なお、続けて、基板1上に薄膜パターン(例えば有機EL層)を蒸着形成する場合には、図24(b)において蒸着マスク14が形成されると、基板1を蒸着マスク14と一体的に第1の磁気チャック42に保持した状態で例えば真空蒸着装置の真空槽内に設置し、蒸着マスク14の開口パターン6を介して蒸着材料を真空蒸着し、薄膜パターンを形成してもよい。 When a thin film pattern (for example, an organic EL layer) is formed on the substrate 1 by vapor deposition, the substrate 1 is integrated with the vapor deposition mask 14 when the vapor deposition mask 14 is formed in FIG. For example, the thin film pattern may be formed by placing the first magnetic chuck 42 in a vacuum chamber of a vacuum deposition apparatus and vacuum depositing the deposition material through the opening pattern 6 of the deposition mask 14.
 次に、フィルム4に開口パターンをレーザ加工して形成する方法について、より詳細に説明する。
 ここでは、図25(a),(b)に示すように、薄膜パターンの形成領域に対応して該薄膜パターンよりも形状が大きい貫通する複数の開口部9を設けた薄板状の磁性材料からなる金属部材10を、可視光を透過する樹脂製のフィルム4の一面に密接して形成したマスク用部材11に、例えば図13に示すような細長状の開口パターン6を形成する場合について説明する。
Next, a method for forming an opening pattern on the film 4 by laser processing will be described in more detail.
Here, as shown in FIGS. 25 (a) and 25 (b), from a thin plate-like magnetic material provided with a plurality of through-holes 9 having a shape larger than that of the thin film pattern corresponding to the formation region of the thin film pattern. For example, a case in which an elongated opening pattern 6 as shown in FIG. 13 is formed on a mask member 11 in which a metal member 10 to be formed is formed in close contact with one surface of a resin film 4 that transmits visible light will be described. .
 この場合は、図25(c)に示すように、透明基板57の一面57aに薄膜パターンと形状寸法の同じ、後述のレーザ光Lの照射目標となる複数の基準パターン43を薄膜パターンの配列ピッチと同じ配列ピッチで並べて形成し、該基準パターン43を下側にしてレーザ加工装置のステージ上に載置された基準基板38(図26参照)の上記基準パターン43が金属部材10の開口部9内に位置するように金属部材10を基準基板38に対して位置合わせした後、フィルム4を基準基板38の他面57bに密着させる。なお、基準基板38には、上記複数の基準パターン43の形成領域外にてマスク側アライメントマーク40に対応した位置に、例えば十字状の基板側アライメントマーク58が上記基準パターン43と同時にクロム(Cr)等の薄膜により形成されている。 In this case, as shown in FIG. 25 (c), a plurality of reference patterns 43, which are the same as the thin film pattern and have the same dimensions as the thin film pattern, are formed on one surface 57a of the transparent substrate 57. The reference pattern 43 of the reference substrate 38 (see FIG. 26) placed on the stage of the laser processing apparatus with the reference pattern 43 on the lower side is formed at the opening 9 of the metal member 10. After the metal member 10 is aligned with the reference substrate 38 so as to be positioned inside, the film 4 is brought into close contact with the other surface 57 b of the reference substrate 38. In addition, on the reference substrate 38, for example, a cross-shaped substrate-side alignment mark 58 is formed at the position corresponding to the mask-side alignment mark 40 outside the formation region of the plurality of reference patterns 43 together with the reference pattern 43. ) Or the like.
 上記金属部材10と基準基板38との位置合わせは、金属部材10に予め形成されたマスク側アライメントマーク40と、基準基板38に予め形成された基板側アライメントマーク58とを顕微鏡により観察しながら、基板側アライメントマーク58の中心がマスク側アライメントマーク40の中心に合致するように調整して行われる。 The alignment of the metal member 10 and the reference substrate 38 is performed by observing the mask-side alignment mark 40 formed in advance on the metal member 10 and the substrate-side alignment mark 58 formed in advance on the reference substrate 38 with a microscope. The adjustment is performed so that the center of the substrate side alignment mark 58 matches the center of the mask side alignment mark 40.
 また、フィルム4と基準基板38との密着は、ステージの裏面に備えたマグネットチャックの磁力により金属部材10を吸着して行われ、同時に金属部材10、フィルム4及び基準基板38が一体的にステージに固定される。 Further, the film 4 and the reference substrate 38 are brought into close contact with each other by attracting the metal member 10 by the magnetic force of the magnet chuck provided on the back surface of the stage, and at the same time, the metal member 10, the film 4 and the reference substrate 38 are integrated with the stage. Fixed to.
 次に、図25(d)に示すように、金属部材10の開口部9内の基準パターン43に対応したフィルム4の部分に、波長が400nm以下の、例えばKrF248nmのエキシマレーザを使用して、エネルギー密度が0.1J/cm~20J/cmのレーザ光Lを照射し、薄膜パターンと同形状の貫通する開口パターン6を形成する。 Next, as shown in FIG. 25D, an excimer laser having a wavelength of 400 nm or less, for example, KrF248 nm, is used for the portion of the film 4 corresponding to the reference pattern 43 in the opening 9 of the metal member 10. A laser beam L having an energy density of 0.1 J / cm 2 to 20 J / cm 2 is irradiated to form an opening pattern 6 having the same shape as the thin film pattern.
 このレーザ加工は、マスク用部材11と基準基板38とを基準基板38の基準パターン43の並び方向(図25(d)の矢印方向)に搬送しながら、レーザ光Lの照射位置に対してマスク用部材11及び基準基板38の搬送方向上流側の位置を撮影可能に設けられた撮像手段17で透過照明により基準パターン43を撮影し、該撮影画像に基づいて基準パターン43を検出し、該検出時刻を基準にしてレーザ光Lの照射タイミングを制御して実行される。これにより、図13に示すような蒸着マスクが完成する。 In this laser processing, the mask member 11 and the reference substrate 38 are conveyed in the alignment direction of the reference patterns 43 of the reference substrate 38 (in the direction of the arrow in FIG. 25D), while the mask is applied to the irradiation position of the laser light L. The reference pattern 43 is photographed by transmitted illumination by the imaging means 17 provided so as to be capable of photographing the upstream position of the member 11 and the reference substrate 38 in the transport direction, and the reference pattern 43 is detected based on the photographed image. This is executed by controlling the irradiation timing of the laser light L with reference to the time. Thereby, a vapor deposition mask as shown in FIG. 13 is completed.
 上記撮像手段17は、マスク用部材11及び基準基板38の搬送方向と交差する方向に複数の受光エレメントを一直線に並べて設けたラインカメラであり、上記基準パターン43は、撮像手段17の撮影画像に基づいて上記搬送方向における輝度変化(例えば、透過照明の場合は明から暗への輝度変化)から検出することができる。 The imaging means 17 is a line camera in which a plurality of light receiving elements are arranged in a straight line in a direction intersecting with the conveying direction of the mask member 11 and the reference substrate 38, and the reference pattern 43 is an image taken by the imaging means 17. Based on this, it is possible to detect from a change in luminance in the transport direction (for example, a change in luminance from light to dark in the case of transmitted illumination).
 さらに、レーザ加工は、撮像手段17の撮影画像に基づいて、金属部材10の開口部9の中心と基準基板38の基準パターン43の中心との間の位置ずれ量が許容値内であることを確認しながら実行される。より詳細には、撮像手段17の撮影画像に基づいてマスク用部材11及び基準基板38の移動方向における図27に示すような閾値を超えて変化する輝度変化を検出し、互いに隣接する暗から明への輝度変化の位置から両者間の距離D1を算出し、さらに互いに隣接する明から暗への輝度変化の位置から両者間の距離D2を算出し、|D1-D2|を演算して該演算結果が予め定められた許容値内にあるか否かが判定される。この場合、上記演算結果が許容値外のときには、金属部材10と基準基板38とのアライメントミス、又は金属部材10の開口部9の形成精度不良と判断して、レーザ光の照射は行なわれず、レーザ加工の工程は直ちに終了される。 Further, in the laser processing, based on the photographed image of the imaging means 17, the amount of positional deviation between the center of the opening 9 of the metal member 10 and the center of the reference pattern 43 of the reference substrate 38 is within an allowable value. It is executed with confirmation. More specifically, a change in luminance that exceeds the threshold value as shown in FIG. 27 in the moving direction of the mask member 11 and the reference substrate 38 is detected based on the image taken by the imaging means 17, and the brightness changes from dark to bright. The distance D1 between the two is calculated from the position of the luminance change to the distance, and the distance D2 between the two is calculated from the position of the luminance change from light to dark adjacent to each other, and | D1-D2 | It is determined whether the result is within a predetermined tolerance. In this case, when the calculation result is outside the allowable value, it is determined that the alignment error between the metal member 10 and the reference substrate 38 or the formation accuracy of the opening 9 of the metal member 10 is poor, and laser light irradiation is not performed. The laser processing process is immediately terminated.
 レーザ加工が終了すると、図25(e)に示すように、吸着面が平坦に形成された図示省略の磁気チャック(保持手段)を金属部材10の上面に設置し、磁気チャックの電磁石をオンして磁気チャックの磁力により金属部材10を吸着して蒸着マスクを基準基板38上から剥離し、磁気チャック側に受け取る。これにより、本発明の蒸着マスクの製造工程が全て終了する。以後、この磁気チャックに金属部材10を吸着した状態で蒸着マスクのハンドリングを行えば、蒸着マスクの開口パターン6の形状及び位置が維持され、その後の高精細な薄膜パターンの形成を容易に行うことができる。 When the laser processing is completed, as shown in FIG. 25E, a magnetic chuck (holding means) (not shown) having a flat attracting surface is placed on the upper surface of the metal member 10, and the electromagnet of the magnetic chuck is turned on. Then, the metal member 10 is attracted by the magnetic force of the magnetic chuck, and the vapor deposition mask is peeled off from the reference substrate 38 and received by the magnetic chuck side. Thereby, all the manufacturing processes of the vapor deposition mask of this invention are complete | finished. Thereafter, if the vapor deposition mask is handled while the metal member 10 is attracted to the magnetic chuck, the shape and position of the opening pattern 6 of the vapor deposition mask can be maintained, and subsequent high-definition thin film patterns can be easily formed. Can do.
 又は、一面に剥離容易な粘着剤を塗布したシートの前記一面側を金属部材10の上面に密着し、シートに金属部材10を貼り付けて蒸着マスクを基準基板38上から剥離してもよい。これにより、蒸着マスクのハンドリング性がより向上する。 Alternatively, the one surface side of the sheet coated with an easily peelable adhesive may be adhered to the upper surface of the metal member 10, the metal member 10 may be attached to the sheet, and the vapor deposition mask may be peeled off from the reference substrate 38. Thereby, the handleability of a vapor deposition mask improves more.
 なお、以上の説明においては、マスク用部材11及び基準基板38を搬送しながらレーザ光Lを照射してフィルム4に開口パターン6を形成する場合について述べたが、本発明はこれに限られず、レーザ光L側を基準基板38の基準パターン43の配列方向にステップ移動しながら開口パターン6を形成してもよい。 In the above description, the case where the opening pattern 6 is formed on the film 4 by irradiating the laser beam L while conveying the mask member 11 and the reference substrate 38 has been described, but the present invention is not limited to this. The opening pattern 6 may be formed while stepping the laser light L side in the arrangement direction of the reference pattern 43 of the reference substrate 38.
 フィルム4に開口パターン6を加工するためには図9に示すレーザ加工装置を使用して行うことができる。この場合、マスク用部材11と基準基板38が一体的に搬送されることになる。 In order to process the opening pattern 6 on the film 4, it can be performed using a laser processing apparatus shown in FIG. In this case, the mask member 11 and the reference substrate 38 are integrally conveyed.
 以下、上記レーザ加工装置を使用して行う開口パターン6の形成について、図28のフローチャートを参照して説明する。
 先ず、ステップS1においては、基準基板38と、該基準基板38の基準パターン43を形成した面とは反対側の面に位置決めして密着されたマスク用部材11とを上記基準パターン43側を下にして一体的にステージ上に載置し、図示省略の搬送機構によりマスク用部材11及び基準基板38の縁部を保持して図9に示す矢印Z方向に一定速度で搬送を開始する。
Hereinafter, the formation of the opening pattern 6 performed using the laser processing apparatus will be described with reference to the flowchart of FIG.
First, in step S1, the reference substrate 38 and the mask member 11 positioned and adhered to the surface of the reference substrate 38 opposite to the surface on which the reference pattern 43 is formed are placed with the reference pattern 43 side down. Then, it is placed on the stage integrally, and the edge of the mask member 11 and the reference substrate 38 is held by a conveyance mechanism (not shown), and conveyance is started at a constant speed in the arrow Z direction shown in FIG.
 ステップS2においては、撮像手段17によりマスク用部材11及び基準基板38を下側から撮影し、その撮影画像を制御手段19の画像処理部で処理して矢印Z方向の暗から明への輝度変化及び明から暗への輝度変化(図27参照)を検出する。 In step S2, the imaging member 17 captures the mask member 11 and the reference substrate 38 from below, and the captured image is processed by the image processing unit of the control unit 19 to change the brightness from dark to bright in the arrow Z direction. Then, a luminance change from light to dark (see FIG. 27) is detected.
 ステップS3においては、暗から明への輝度変化が検出されてから次の暗から明への輝度変化が検出されるまでの上記搬送機構のパルスモータの駆動パルス数、及び明から暗への輝度変化が検出されてから次の明から暗への輝度変化が検出されるまでの上記パルスモータの駆動パルス数を制御手段19の演算部でカウントし、各カウント数から互いに隣接する暗から明への輝度変化部の間隔D1、及び互いに隣接する明から暗への輝度変化部の間隔D2を算出する。そして、|D1-D2|を演算して金属部材10の開口部9の中心と基準パターン43の中心との間の位置ずれ量を算出する。 In step S3, the number of driving pulses of the pulse motor of the transport mechanism from the detection of a change in luminance from dark to light until the detection of the next change in luminance from dark to light, and the luminance from light to dark. The number of drive pulses of the pulse motor from when the change is detected until the next brightness change from light to dark is detected is counted by the calculation unit of the control means 19, and from each count number to the dark to light adjacent to each other. The interval D1 between the luminance change portions and the interval D2 between the brightness change portions adjacent to each other from light to dark are calculated. Then, | D1-D2 | is calculated to calculate the amount of positional deviation between the center of the opening 9 of the metal member 10 and the center of the reference pattern 43.
 ステップS4においては、上記演算部で上記位置ずれ量とメモリから読み出した許容値とを比較し、上記位置ずれ量が許容範囲内にあるか否かを判定する。ここで、“YES”判定となるとステップS5に進む。一方、“NO”判定となった場合には、金属部材10と基準基板38とのアライメントミス、又は金属部材10の開口部9の形成精度不良と判断してレーザ加工を終了する。そして、搬送機構を高速で移動させてマスク用部材11及び基準基板38を搬出する。 In step S4, the calculation unit compares the displacement amount with an allowable value read from the memory, and determines whether the displacement amount is within an allowable range. Here, if it becomes "YES" determination, it will progress to step S5. On the other hand, if “NO” determination is made, it is determined that the alignment error between the metal member 10 and the reference substrate 38 or the formation accuracy of the opening 9 of the metal member 10 is poor, and the laser processing is terminated. Then, the transport mechanism is moved at a high speed to carry out the mask member 11 and the reference substrate 38.
 ステップS5においては、画像処理部において明から暗への輝度変化にて奇数番目の輝度変化の検出に基づいて基準パターン43の搬送方向先頭側の縁部が検出される。 In step S5, the leading edge of the reference pattern 43 in the conveyance direction is detected based on the detection of the odd-numbered luminance change in the luminance change from light to dark in the image processing unit.
 ステップS6においては、ステップS5で基準パターン43が検出されると、該検出時刻を基準にして演算部で搬送機構のパルスモータの駆動パルス数をカウントする。そして、メモリから読み出したパルスカウント数の目標値と比較し、パルスカウント数が目標値と合致したか否か、即ちマスク用部材11と一体的に基準基板38が予め定められた所定距離移動したか否かが判定される。ここで、“YES”判定となるとステップS7に進む。なお、パルスカウント数が目標値に合致したときは、基準基板38の基準パターン43がレーザ光学ユニット16のレーザ光Lの照射位置に丁度達したときである。 In step S6, when the reference pattern 43 is detected in step S5, the number of driving pulses of the pulse motor of the transport mechanism is counted by the arithmetic unit based on the detection time. Then, compared with the target value of the pulse count number read from the memory, whether or not the pulse count number matches the target value, that is, the reference substrate 38 is moved by a predetermined distance integrally with the mask member 11. It is determined whether or not. Here, if it becomes "YES" determination, it will progress to step S7. The pulse count number matches the target value when the reference pattern 43 of the reference substrate 38 has just reached the irradiation position of the laser light L of the laser optical unit 16.
 ステップS7においては、制御手段19からエキシマレーザ21に発振指令が出力され、エキシマレーザ21はパルス発振する。これにより、レーザ光Lが基準基板38の基準パターン43上のフィルム4部分に照射し、当該部分のフィルム4をアブレーションして基準パターン43(又は薄膜パターン)と形状寸法の同じ貫通する開口パターン6が形成される。なお、開口パターン6の形成は、エキシマレーザ21から一定時間内に複数ショットのレーザ光Lを放射して行ってもよい。 In step S7, an oscillation command is output from the control means 19 to the excimer laser 21, and the excimer laser 21 pulsates. Thereby, the laser beam L is applied to the film 4 portion on the reference pattern 43 of the reference substrate 38, and the film 4 in the portion is ablated to penetrate the opening pattern 6 having the same shape and dimension as the reference pattern 43 (or thin film pattern). Is formed. The opening pattern 6 may be formed by emitting a plurality of shots of laser light L from the excimer laser 21 within a predetermined time.
 続いて、ステップS8に進んで基準パターン43に対応した全ての開口パターン6が形成されたか否かが判定される。ここで、“NO”判定となると、ステップS2に戻って、全ての開口パターン6が形成されてステップS8が“YES”判定となるまで、ステップS2~S8が繰り返し実行される。 Subsequently, the process proceeds to step S8, where it is determined whether or not all the opening patterns 6 corresponding to the reference pattern 43 have been formed. If "NO" is determined here, the process returns to step S2, and steps S2 to S8 are repeatedly executed until all the opening patterns 6 are formed and step S8 is determined to be "YES".
 なお、ステップS7は、基準基板38の搬送方向の先頭から2番目以降の基準パターン43に対応する開口パターン6の形成を次のようにして行ってもよい。即ち、演算部において上記パルスモータの駆動パルス数をカウントし、該カウント数に基づいて算出した搬送機構の移動距離とメモリから読み出した基準パターン43の配列ピッチとを比較し、両者が合致する度にエキシマレーザ21を発振させて行ってもよい。 In step S7, the opening pattern 6 corresponding to the second and subsequent reference patterns 43 from the top in the transport direction of the reference substrate 38 may be formed as follows. That is, the number of driving pulses of the pulse motor is counted in the calculation unit, and the moving distance of the transport mechanism calculated based on the counted number is compared with the arrangement pitch of the reference pattern 43 read from the memory. Alternatively, the excimer laser 21 may be oscillated.
 また、以上の説明においては、ステップS3~S6がシリースに実行されるように述べたが、実際は、ステップS3~S4とステップS5~S6とはパラレルに実行される。 In the above description, it has been described that steps S3 to S6 are executed in series, but in actuality, steps S3 to S4 and steps S5 to S6 are executed in parallel.
 上記開口パターン6はレーザ加工ではなく、エッチングにより形成されてもよい。
 以下、開口パターン6をエッチングにより形成する場合について説明する。ここでは、例えば図22に示す工程に従って形成されたマスク用部材に対して開口パターン6を形成する場合について説明する。
The opening pattern 6 may be formed by etching instead of laser processing.
Hereinafter, a case where the opening pattern 6 is formed by etching will be described. Here, the case where the opening pattern 6 is formed with respect to the member for masks formed, for example according to the process shown in FIG. 22 is demonstrated.
 先ず、図29(a)に示すように、マスク用部材11の両面に例えばポジ型のフォトレジスト53を例えばディップ塗布する。 First, as shown in FIG. 29A, for example, a positive photoresist 53, for example, is dip-coated on both surfaces of the mask member 11.
 次いで、図29(b)に示すように、形成しようとする開口パターン6に対応して開口を設けたフォトマスク54をフィルム4の金属部材10を密接した第1の面4aとは反対側の第2の面4bに近接対向させた状態で、フォトマスク54に設けられた図示省略のアライメントマークと金属部材10に設けられたマスク側アライメントマーク40とを用いて第2のフォトマスク54をマスク用部材11に対して位置決めして配置し、フィルム4の第2の面4bに塗布されたフォトレジスト53を露光現像する。これにより、同図(c)に示すように上記開口部9に対応したフォトレジスト53の部分に蒸着形成しようとする薄膜パターンの配列ピッチと同じ配列ピッチで並べて該薄膜パターンと同じ形状寸法の開口59が形成され、レジストマスク60が形成される。 Next, as shown in FIG. 29B, a photomask 54 having openings corresponding to the opening pattern 6 to be formed is placed on the side opposite to the first surface 4a where the metal member 10 of the film 4 is in close contact. The second photomask 54 is masked by using an alignment mark (not shown) provided on the photomask 54 and a mask side alignment mark 40 provided on the metal member 10 in a state of being opposed to the second surface 4b. The photo resist 53 applied to the second surface 4b of the film 4 is exposed and developed. As a result, as shown in FIG. 5C, openings having the same shape and dimensions as the thin film pattern are arranged at the same arrangement pitch as the thin film pattern to be deposited on the portion of the photoresist 53 corresponding to the opening 9. 59 is formed, and a resist mask 60 is formed.
 さらに、上記マスク用部材11を、例えばポリイミド用エッチング液を満たした槽内に浸漬し、上記レジストマスク60を使用してポリイミドのフィルム4をエッチングする。そして、図29(d)に示すように、開口パターン6を形成する。この場合、フォトレジスト53の塗布条件、露光条件、現像条件、さらにエッチング条件等の諸条件を実験により適切に設定すれば、開口パターン6をテーパー角が55°~60°程度のテーパーに形成することができる。また、フィルム4のエッチングは、フィルム4の第2の面4b側から行われるため、サイドエッチングの効果により、開口パターン6は、第2の面4b側から第1の面4a側に向かって開口面積が徐々に小さくなる。そして、第1の面4a側の開口パターン6の面積が形成しようとする薄膜パターンの面積と同じになる。 Further, the mask member 11 is immersed in a tank filled with, for example, a polyimide etching solution, and the polyimide film 4 is etched using the resist mask 60. Then, as shown in FIG. 29D, an opening pattern 6 is formed. In this case, if various conditions such as the coating conditions, the exposure conditions, the development conditions, and the etching conditions of the photoresist 53 are appropriately set by experiments, the opening pattern 6 is formed with a taper having a taper angle of about 55 ° to 60 °. be able to. Moreover, since the etching of the film 4 is performed from the second surface 4b side of the film 4, the opening pattern 6 is opened from the second surface 4b side to the first surface 4a side due to the effect of side etching. The area gradually decreases. The area of the opening pattern 6 on the first surface 4a side is the same as the area of the thin film pattern to be formed.
 最後に、マスク用部材11の両面に塗布されたフォトレジスト53を有機溶剤で洗い流すことにより、図13又は図14に示す蒸着マスク14が完成する。なお、フォトレジスト53の代わりにドライフィルムレジストを使用してもよい。 Finally, the deposition mask 14 shown in FIG. 13 or FIG. 14 is completed by washing away the photoresist 53 applied on both surfaces of the mask member 11 with an organic solvent. A dry film resist may be used instead of the photoresist 53.
 ここで、上記図29(d)に示すフィルム4のエッチング工程は、マスク用部材11の金属部材10側を磁気チャック側として、金属部材10を磁気チャックに磁気的に吸着した状態で行うとよい。 Here, the etching process of the film 4 shown in FIG. 29D is preferably performed in a state where the metal member 10 side of the mask member 11 is the magnetic chuck side and the metal member 10 is magnetically attracted to the magnetic chuck. .
 このようにして製造された蒸着マスク14は、蒸着に際して、次のように使用される。以下、薄膜パターンとして有機EL層を蒸着形成する場合について、図30,31を参照して説明する。ここでは、一例として、R有機EL層を形成する場合について説明する。
 先ず、図30(a)に示すように、第1の磁気チャック42上に載置されたTFT基板1の上方に第2の磁気チャック44に吸着して保持された蒸着マスク14を位置付ける。この場合、蒸着マスク14の金属部材10がTFT基板1側となるようにする。
The vapor deposition mask 14 manufactured in this way is used as follows during vapor deposition. Hereinafter, the case where an organic EL layer is formed by vapor deposition as a thin film pattern will be described with reference to FIGS. Here, the case where an R organic EL layer is formed will be described as an example.
First, as shown in FIG. 30A, the vapor deposition mask 14 that is attracted and held by the second magnetic chuck 44 is positioned above the TFT substrate 1 placed on the first magnetic chuck 42. In this case, the metal member 10 of the vapor deposition mask 14 is arranged on the TFT substrate 1 side.
 そして、蒸着マスク14のマスク側アライメントマーク40とTFT基板1に予め形成された図示省略の基板側アライメントマークとを図示省略のカメラで観察しながら、両マークが一定の位置関係、例えば各マークの中心が合致するように、第1及び第2の磁気チャック42,44を相対移動して蒸着マスク14とTFT基板1との位置合わせをする。 Then, while observing the mask side alignment mark 40 of the vapor deposition mask 14 and the substrate side alignment mark (not shown) formed in advance on the TFT substrate 1 with a camera (not shown), the two marks are in a certain positional relationship, for example, each mark. The deposition mask 14 and the TFT substrate 1 are aligned by relatively moving the first and second magnetic chucks 42 and 44 so that the centers coincide.
 蒸着マスク14とTFT基板1との位置合わせが終了すると、第2の磁気チャック44を第1の磁気チャック42に対して、図30(a)に示す矢印-Z方向に垂直に下降し、同図(b)に示すように蒸着マスク14の金属部材10をTFT基板1上に密接する。これにより、蒸着マスク14の各開口パターン6がTFT基板1のR対応アノード電極2R上に位置付けられる。 When the alignment between the vapor deposition mask 14 and the TFT substrate 1 is completed, the second magnetic chuck 44 is lowered vertically with respect to the first magnetic chuck 42 in the direction of the arrow -Z shown in FIG. As shown in FIG. 2B, the metal member 10 of the vapor deposition mask 14 is brought into close contact with the TFT substrate 1. Thereby, each opening pattern 6 of the vapor deposition mask 14 is positioned on the R corresponding anode electrode 2 </ b> R of the TFT substrate 1.
 続いて、図30(c)に示すように、第1の磁気チャック42をオンし、第2の磁気チャック44をオフして蒸着マスク14の金属部材10を第1の磁気チャック42に磁気的に吸着し、蒸着マスク14をTFT基板1上に移す。その後、第2の磁気チャック44を同図に示す矢印+Z方向に上昇して取除く。 Subsequently, as shown in FIG. 30C, the first magnetic chuck 42 is turned on, the second magnetic chuck 44 is turned off, and the metal member 10 of the vapor deposition mask 14 is magnetically applied to the first magnetic chuck 42. The vapor deposition mask 14 is transferred onto the TFT substrate 1. Thereafter, the second magnetic chuck 44 is lifted and removed in the arrow + Z direction shown in FIG.
 次に、蒸着マスク14、TFT基板1及び第2の磁気チャック44を一体的に蒸着装置の真空槽内の所定位置に、蒸着マスク14を下側にして蒸着源に対峙させた状態で設置する。そして、図31(a)に示すように、予め設定された蒸着条件の下で真空蒸着を行い、TFT基板1のR対応アノード電極2R上にR有機EL層3Rを形成する。 Next, the vapor deposition mask 14, the TFT substrate 1 and the second magnetic chuck 44 are integrally installed at a predetermined position in the vacuum chamber of the vapor deposition apparatus with the vapor deposition mask 14 facing down and facing the vapor deposition source. . Then, as shown in FIG. 31A, vacuum evaporation is performed under preset evaporation conditions to form an R organic EL layer 3 </ b> R on the R corresponding anode electrode 2 </ b> R of the TFT substrate 1.
 この場合、蒸着マスク14の開口パターン6は、フィルム4の第1の面4a側から第2の面4b側に向かって拡がった形状に形成され、且つ蒸着材料分子が飛来する側の蒸着マスク14の面には、蒸着の影となるような部材が存在しないため、開口パターン6を介してTFT基板1上に蒸着されるR有機EL層3Rは、膜厚が均一になる。 In this case, the opening pattern 6 of the vapor deposition mask 14 is formed in a shape expanding from the first surface 4a side to the second surface 4b side of the film 4, and the vapor deposition mask 14 on the side on which the vapor deposition material molecules fly. Since there is no member that becomes a shadow of vapor deposition on this surface, the R organic EL layer 3R deposited on the TFT substrate 1 through the opening pattern 6 has a uniform film thickness.
 また、本発明による蒸着マスク14は、従来のメタルマスクと比較して次のような利点がある。即ち、図32(a)に示すように、従来のメタルマスク61の場合には、メタルマスク61とTFT基板1との間の隙間63に蒸着材料が回り込んで付着して堆積物64が堆積する。そして、この堆積物64により、メタルマスク61の開口パターン6の縁部が持ち上げられてメタルマスク61が波打ち、そのために微細な薄膜パターン(例えば、R有機EL層3R)を精度よく形成することができないことがあった。しかしながら、本発明による蒸着マスク14の場合には、フィルム4とTFT基板1との間には、金属部材10の厚みに等しい、例えば30μm程度の大きな隙間63が存在し、且つ金属部材10が開口パターン6の第1の面4a側の縁部から開口パターン6の外側に後退して位置しているために、同図(b)に示すように、蒸着材料がフィルム4の第1の面4a側の開口パターン6の縁部に回り込んで付着しても、蒸着材料の堆積物64により開口パターン6の縁部が持ち上げられるおそれがない。また、回り込んだ蒸着材料が金属部材10とTFT基板1との隙間に侵入して付着するおそれもないため、蒸着マスク14が波打つおそれもない。したがって、本発明の蒸着マスク14によれば、微細な薄膜パターン(R有機EL層3R)も精度よく形成することができる。 Further, the vapor deposition mask 14 according to the present invention has the following advantages compared to the conventional metal mask. That is, as shown in FIG. 32A, in the case of the conventional metal mask 61, the vapor deposition material goes around and adheres to the gap 63 between the metal mask 61 and the TFT substrate 1, and deposit 64 is deposited. To do. The deposit 64 lifts the edge of the opening pattern 6 of the metal mask 61 to wave the metal mask 61. For this reason, a fine thin film pattern (for example, the R organic EL layer 3R) can be accurately formed. There was something I couldn't do. However, in the case of the vapor deposition mask 14 according to the present invention, a large gap 63 equal to the thickness of the metal member 10, for example, about 30 μm, exists between the film 4 and the TFT substrate 1, and the metal member 10 is opened. Since the pattern 6 is positioned so as to recede from the edge on the first surface 4a side of the pattern 6 to the outside of the opening pattern 6, the deposition material is formed on the first surface 4a of the film 4 as shown in FIG. Even if it goes around and adheres to the edge of the opening pattern 6 on the side, the edge of the opening pattern 6 is not lifted by the deposit 64 of the vapor deposition material. Further, since the deposited vapor deposition material does not enter the gap between the metal member 10 and the TFT substrate 1 and adhere to it, there is no possibility that the vapor deposition mask 14 will wave. Therefore, according to the vapor deposition mask 14 of the present invention, a fine thin film pattern (R organic EL layer 3R) can be formed with high accuracy.
 以上の説明においては、開口パターン6よりも形状寸法の大きい開口部9を設けた金属部材10をフィルム4の一面4aに密接させて構成された蒸着マスク14について述べたが、本発明の蒸着マスク14はこれに限られず、開口パターン6の外側部分にてフィルム4の一面4a又は内部に分散させて複数の薄片状の金属部材10を設けたものであってもよい。以下、金属部材10が薄片である場合について説明する。 In the above description, the vapor deposition mask 14 is described in which the metal member 10 provided with the opening 9 having a larger dimension than the opening pattern 6 is in close contact with the one surface 4a of the film 4. However, the vapor deposition mask of the present invention is described. 14 is not limited thereto, and a plurality of flaky metal members 10 may be provided by being dispersed on one surface 4a or inside of the film 4 at the outer portion of the opening pattern 6. Hereinafter, the case where the metal member 10 is a thin piece will be described.
 図33は、本発明による蒸着マスク14の第3実施形態を示す図であり、(a)は平面図、(b)は(a)のD-D線断面矢視図である。この第3実施形態は、基板上に成膜形成しようとするストライプ状の薄膜パターンの配列ピッチと同じ配列ピッチで平行に並べて、該薄膜パターンと形状寸法の同じ複数の開口パターン6を形成した可視光を透過する、例えば厚みが10μm~30μm程度のポリイミドやポリエチレンテレフタレート(PET)等の樹脂製のフィルム4と、フィルム4の複数の開口パターン6の外側部分にて、フィルム4の一面4a又は内部に設けられた薄片状の金属部材10とを備えて構成されている。以下、薄片が磁性材料であり、フィルム4の一面4aに密接して設けられた厚みが10μm~30μm程度の金属部材10である場合について説明する。 33A and 33B are views showing a third embodiment of the vapor deposition mask 14 according to the present invention, wherein FIG. 33A is a plan view and FIG. 33B is a sectional view taken along the line DD of FIG. In the third embodiment, a plurality of opening patterns 6 having the same shape and dimensions as the thin film pattern are formed by arranging them in parallel at the same arrangement pitch as the arrangement pitch of the striped thin film pattern to be formed on the substrate. For example, one surface 4a or the inside of the film 4 at the outer portion of the film 4 made of resin such as polyimide or polyethylene terephthalate (PET) having a thickness of, for example, about 10 μm to 30 μm and a plurality of opening patterns 6 of the film 4. And a flaky metal member 10 provided on the surface. Hereinafter, a case where the thin piece is a magnetic material and the metal member 10 having a thickness of about 10 μm to 30 μm provided in close contact with the one surface 4a of the film 4 will be described.
 この場合、金属部材10は、図34(a)に示すように、フィルム4の開口パターン6の長軸に平行な外側部分に該長軸に長軸を合致させたストライプ状の形態を有するものであってもよいが、このようなストライプ状の金属部材10をフィルム4上にメッキ形成すると、フィルム4と金属部材10との間の熱膨張率の違いから、同図(b)に示すように蒸着マスク14に反りが生じることがあり、基板との密着性が悪くなるおそれがある。 In this case, as shown in FIG. 34 (a), the metal member 10 has a striped form in which the major axis coincides with the major axis at the outer portion parallel to the major axis of the opening pattern 6 of the film 4. However, when such a stripe-shaped metal member 10 is formed on the film 4 by plating, the difference in thermal expansion coefficient between the film 4 and the metal member 10 is shown in FIG. In some cases, the vapor deposition mask 14 may be warped, and the adhesion to the substrate may be deteriorated.
 そこで、本発明の蒸着マスク14の第3実施形態は、前述したように、薄片状の複数の金属部材10を複数の開口パターン6の外側部分にて、フィルム4の一面4aに散在させて設けたものである。これにより、フィルム4と金属部材10との間の熱膨張率の差が緩和されて蒸着マスク14の反りが抑制される。 Therefore, in the third embodiment of the vapor deposition mask 14 of the present invention, as described above, a plurality of flaky metal members 10 are provided scattered on one surface 4a of the film 4 at the outer portion of the plurality of opening patterns 6. It is a thing. Thereby, the difference of the thermal expansion coefficient between the film 4 and the metal member 10 is relieved, and the curvature of the vapor deposition mask 14 is suppressed.
 次に、上記蒸着マスク14の第3実施形態の製造方法について説明する。
 先ず、図35(a)に示すように、平坦面を有する図示省略のステージ上に例えば静電吸着して保持された可視光を透過する厚みが15μm程度の、例えばポリイミドのフィルム4の一面4aに、同図(b)に示すようにスパッタリング等の公知の成膜技術により50nm程度の厚みの例えばニッケル(Ni)等からなる磁性材料の金属膜の下地層52を被着する。この場合、下地層52は、磁性材料に限られず、良電導性の非磁性材料であってもよい。
Next, a manufacturing method of the third embodiment of the vapor deposition mask 14 will be described.
First, as shown in FIG. 35 (a), one surface 4a of, for example, a polyimide film 4 having a thickness of about 15 μm that transmits visible light, for example, electrostatically attracted and held on a stage (not shown) having a flat surface. Further, as shown in FIG. 2B, a base layer 52 of a metal film made of a magnetic material made of nickel (Ni) or the like having a thickness of about 50 nm is deposited by a known film forming technique such as sputtering. In this case, the underlayer 52 is not limited to a magnetic material, and may be a non-magnetic material with good electrical conductivity.
 次に、図35(c)に示すように、下地層52上に15μm程度の厚みのレジスト53(感光性材料)を例えばスピンコートする。 Next, as shown in FIG. 35C, a resist 53 (photosensitive material) having a thickness of about 15 μm is spin-coated on the underlayer 52, for example.
 次いで、図35(d)に示すように、フォトマスク54を使用してレジスト53を露光し、同図(e)に示すように現像して、レジスト53の膜面に下地層52に達する複数の開口59をランダムに配置して形成する。この場合、レジスト53がポジ型であるときには、フォトマスク54は、上記複数の開口59に対応した部分を遮光するものであり、レジスト53がネガ型であるときには、使用するフォトマスク54は、上記複数の開口59に対応した部分を開口したものである。 Next, as shown in FIG. 35 (d), the resist 53 is exposed using a photomask 54, developed as shown in FIG. 35 (e), and a plurality of layers reaching the underlayer 52 on the film surface of the resist 53. The openings 59 are randomly arranged. In this case, when the resist 53 is a positive type, the photomask 54 shields light from portions corresponding to the plurality of openings 59. When the resist 53 is a negative type, the photomask 54 to be used is A portion corresponding to the plurality of openings 59 is opened.
 続いて、図35(f)に示すように、開口59内にニッケル(Ni)等の金属部材10の薄膜を15μm程度の厚みにメッキ形成する。 Subsequently, as shown in FIG. 35 (f), a thin film of a metal member 10 such as nickel (Ni) is plated in the opening 59 to a thickness of about 15 μm.
 さらに、図35(g)に示すように、レジスト53を剥離した後、同図(h)に示すように、該金属部材10周囲の下地層52をエッチングして除去する。これにより、図36(a)に示すように、フィルム4の一面に膜片状の複数の金属部材10がランダムに散在したマスク用部材11が形成される。 Further, as shown in FIG. 35 (g), after the resist 53 is peeled off, the underlying layer 52 around the metal member 10 is removed by etching as shown in FIG. 35 (h). Thereby, as shown in FIG. 36A, a mask member 11 in which a plurality of film-like metal members 10 are randomly scattered on one surface of the film 4 is formed.
 その後、マスク用部材11のフィルム4を基準基板38上に密着させた状態で、例えば図36(b)に示すレーザ光Lを上記基準基板38の基準パターン43に対応したフィルム4の部分に照射し、フィルム4に開口パターン6を形成する。さらに、同図(c)に示すようにレーザ光Lをマスク用部材11に対して相対的に同図中の矢印方向に上記基準パターン43の同方向の配列ピッチと同じ距離だけステップ移動しながらフィルム4を加工し、複数の開口パターン6を形成する。これにより、図33に示す蒸着マスク14が完成する。この場合、図9に示すレーザ加工装置を使用して開口パターン6をレーザ加工するとよい。 Thereafter, with the film 4 of the mask member 11 in close contact with the reference substrate 38, for example, the laser light L shown in FIG. 36B is irradiated to the portion of the film 4 corresponding to the reference pattern 43 of the reference substrate 38. Then, the opening pattern 6 is formed on the film 4. Further, as shown in FIG. 6C, the laser beam L is moved stepwise in the direction of the arrow relative to the mask member 11 by the same distance as the arrangement pitch of the reference patterns 43 in the same direction. The film 4 is processed to form a plurality of opening patterns 6. Thereby, the vapor deposition mask 14 shown in FIG. 33 is completed. In this case, the opening pattern 6 may be laser processed using the laser processing apparatus shown in FIG.
 上記第3実施形態においては、フィルム4の一面4aに薄片状の複数の金属部材10をランダムに散在させてマスク用部材11を形成しているので、開口パターン6の配列ピッチや形状の異なる蒸着マスク14に対してもマスク用部材11を共通化することができる。したがって、蒸着マスク14の製造コストを低減することができる。 In the third embodiment, since the mask member 11 is formed by randomly dispersing a plurality of flaky metal members 10 on one surface 4a of the film 4, vapor deposition with different arrangement pitches and shapes of the opening patterns 6 is performed. The mask member 11 can be shared by the mask 14. Therefore, the manufacturing cost of the vapor deposition mask 14 can be reduced.
 なお、上記第3実施形態においては、フィルム4の一面4aに薄片状の複数の金属部材10がランダムに散在している場合について説明したが、本発明はこれに限られず、複数の金属部材10は、図37に示すように、フィルム4のストライプ状の開口パターン6の長軸に平行な外側部分に長軸に平行に並べて設けられてもよい。この場合、複数の金属部材10は、一定の配列ピッチで配置されてもよい。これにより、第1の磁気チャック42に対する吸着力を増してフィルム4と基板1との密着性をより向上することができる。ただし、この場合、形成されるマスク用部材11は、特定の蒸着マスク専用となる。 In the third embodiment, the case has been described where a plurality of thin metal members 10 are randomly scattered on one surface 4a of the film 4. However, the present invention is not limited to this, and the plurality of metal members 10 are scattered. 37 may be provided in parallel with the long axis on the outer side of the striped opening pattern 6 of the film 4 parallel to the long axis. In this case, the plurality of metal members 10 may be arranged at a constant arrangement pitch. Thereby, the attraction | suction force with respect to the 1st magnetic chuck | zipper 42 can be increased, and the adhesiveness of the film 4 and the board | substrate 1 can be improved more. However, in this case, the mask member 11 to be formed is dedicated to a specific vapor deposition mask.
 次に、本発明による蒸着マスク14の第2又は第3実施形態を使用して、TFT基板1上に一定形状の複数種の薄膜パターンとしてR(赤色)有機EL層、G(緑色)有機EL層及びB(青色)有機EL層を形成して有機EL表示装置を製造する方法について説明する。
 最初に、図38及び図39を参照してTFT基板1上にR有機EL層3Rを形成する場合について説明する。この場合、先ず、図38(a)に示すように、第2の磁気チャック44に吸着して保持された蒸着マスク14を第1の磁気チャック42上に載置されたTFT基板1の上方に位置付け、同図(b)に示すように、マスク側アライメントマーク40とR用基板側アライメントマークとを顕微鏡により観察しながら、両マークが一定の位置関係となるように調整して蒸着マスク14とTFT基板1とを位置合わせした後、TFT基板1上にフィルム4を密着させる。これにより、蒸着マスク14の開口パターン6がTFT基板1のR対応アノード電極2R上に位置付けられることになる。
Next, using the second or third embodiment of the vapor deposition mask 14 according to the present invention, an R (red) organic EL layer and a G (green) organic EL are formed on the TFT substrate 1 as a plurality of types of thin film patterns having a fixed shape. A method of manufacturing an organic EL display device by forming a layer and a B (blue) organic EL layer will be described.
First, the case where the R organic EL layer 3 </ b> R is formed on the TFT substrate 1 will be described with reference to FIGS. 38 and 39. In this case, first, as shown in FIG. 38A, the vapor deposition mask 14 held by being attracted to the second magnetic chuck 44 is placed above the TFT substrate 1 placed on the first magnetic chuck 42. Positioning and observing the mask-side alignment mark 40 and the R substrate-side alignment mark with a microscope, as shown in FIG. After the alignment with the TFT substrate 1, the film 4 is brought into close contact with the TFT substrate 1. Thereby, the opening pattern 6 of the vapor deposition mask 14 is positioned on the R corresponding anode electrode 2 </ b> R of the TFT substrate 1.
 その後、図38(c)に示すように、第1の磁気チャック42の電磁石56をオンすると共に第2の磁気チャック44の電磁石56をオフし、第1の磁気チャック42により蒸着マスク14の金属部材10を吸着して蒸着マスク14を第2の磁気チャック44からTFT基板1上に移す。 Thereafter, as shown in FIG. 38C, the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off. The member 10 is attracted to move the vapor deposition mask 14 from the second magnetic chuck 44 onto the TFT substrate 1.
 次に、図39(a)に示すように、TFT基板1と蒸着マスク14とを一体的に第1の磁気チャック42に保持した状態で図示省略の真空蒸着装置の真空槽内に設置し、蒸着マスク14の開口パターン6を介してTFT基板1のR対応アノード電極2R上のR有機EL層形成領域にR有機EL層3Rを真空蒸着する。 Next, as shown in FIG. 39A, the TFT substrate 1 and the vapor deposition mask 14 are integrally held in the first magnetic chuck 42 and placed in a vacuum chamber of a vacuum vapor deposition apparatus (not shown). The R organic EL layer 3 </ b> R is vacuum-deposited on the R organic EL layer forming region on the R corresponding anode electrode 2 </ b> R of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14.
 次いで、真空槽内から第1の磁気チャック42を取り出し、図39(b)に示すように、蒸着マスク14上に第2の磁気チャック44を置き、同図(c)に示すように第2の磁気チャック44の電磁石56をオンすると共に第1の磁気チャック42の電磁石56をオフし、蒸着マスク14の金属部材10を第2の磁気チャック44により吸着して蒸着マスク14をTFT基板1側から第2の磁気チャック44側に移す。これにより、TFT基板1のR対応アノード電極2R上にR有機EL層3Rが形成される。 Next, the first magnetic chuck 42 is taken out from the vacuum chamber, and the second magnetic chuck 44 is placed on the vapor deposition mask 14 as shown in FIG. 39B, and the second magnetic chuck 44 is placed as shown in FIG. The electromagnet 56 of the magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 of the vapor deposition mask 14 is attracted by the second magnetic chuck 44 so that the vapor deposition mask 14 is attached to the TFT substrate 1 side. To the second magnetic chuck 44 side. Thereby, the R organic EL layer 3 </ b> R is formed on the R corresponding anode electrode 2 </ b> R of the TFT substrate 1.
 次に、図40及び図41を参照してTFT基板1上にG有機EL層を形成する場合について説明する。この場合、先ず、図40(a)に示すように、第2の磁気チャック44に吸着して保持された蒸着マスク14を第1の磁気チャック42上に載置されたTFT基板1の上方に位置付け、同図(b)に示すように、マスク側アライメントマーク40とG用基板側アライメントマークとを顕微鏡により観察しながら、両マークが一定の位置関係となるように調整して蒸着マスク14とTFT基板1とを位置合わせした後、TFT基板1上にフィルム4を密着させる。これにより、蒸着マスク14の開口パターン6がTFT基板1のG対応アノード電極2G上に位置付けられることになる。 Next, the case where the G organic EL layer is formed on the TFT substrate 1 will be described with reference to FIGS. In this case, first, as shown in FIG. 40A, the vapor deposition mask 14 that is attracted and held by the second magnetic chuck 44 is placed above the TFT substrate 1 placed on the first magnetic chuck 42. Positioning and observing the mask-side alignment mark 40 and the G substrate-side alignment mark with a microscope, as shown in FIG. After the alignment with the TFT substrate 1, the film 4 is brought into close contact with the TFT substrate 1. Thereby, the opening pattern 6 of the vapor deposition mask 14 is positioned on the G corresponding anode electrode 2G of the TFT substrate 1.
 その後、図40(c)に示すように、第1の磁気チャック42の電磁石56をオンすると共に第2の磁気チャック44の電磁石56をオフし、第1の磁気チャック42により蒸着マスク14の金属部材10を吸着して蒸着マスク14を第2の磁気チャック44からTFT基板1上に移す。 Thereafter, as shown in FIG. 40C, the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off. The member 10 is attracted to move the vapor deposition mask 14 from the second magnetic chuck 44 onto the TFT substrate 1.
 次に、図41(a)に示すように、TFT基板1と蒸着マスク14とを一体的に第1の磁気チャック42に保持した状態で真空蒸着装置の真空槽内に設置し、蒸着マスク14の開口パターン6を介してTFT基板1のG対応アノード電極2G上のG有機EL層形成領域にG有機EL層3Gを真空蒸着する。 Next, as shown in FIG. 41A, the TFT substrate 1 and the vapor deposition mask 14 are integrally held in the first magnetic chuck 42 and installed in the vacuum chamber of the vacuum vapor deposition apparatus. The G organic EL layer 3G is vacuum-deposited on the G organic EL layer forming region on the G corresponding anode electrode 2G of the TFT substrate 1 through the opening pattern 6.
 次いで、真空槽内から第1の磁気チャック42を取り出し、図41(b)に示すように蒸着マスク14上に第2の磁気チャック44を置き、同図(c)に示すように第2の磁気チャック44の電磁石56をオンすると共に第1の磁気チャック42の電磁石56をオフし、蒸着マスク14の金属部材10を第2の磁気チャック44により吸着して蒸着マスク14をTFT基板1側から第2の磁気チャック44側に移す。これにより、TFT基板1のG対応アノード電極2G上にG有機EL層3Gが形成される。 Next, the first magnetic chuck 42 is taken out from the vacuum chamber, the second magnetic chuck 44 is placed on the vapor deposition mask 14 as shown in FIG. 41B, and the second magnetic chuck 44 is placed as shown in FIG. The electromagnet 56 of the magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 of the vapor deposition mask 14 is attracted by the second magnetic chuck 44 to bring the vapor deposition mask 14 from the TFT substrate 1 side. Move to the second magnetic chuck 44 side. Thereby, the G organic EL layer 3G is formed on the G corresponding anode electrode 2G of the TFT substrate 1.
 次に、図42及び図43を参照してTFT基板1上にB有機EL層を形成する場合について説明する。この場合、先ず、図42(a)に示すように、第2の磁気チャック44に吸着して保持された蒸着マスク14を第1の磁気チャック42上に載置されたTFT基板1の上方に位置付け、同図(b)に示すように、マスク側アライメントマーク40とB用基板側アライメントマークとを顕微鏡により観察しながら、両マークが一定の位置関係となるように調整して蒸着マスク14とTFT基板1とを位置合わせした後、TFT基板1上にフィルム4を密着させる。これにより、蒸着マスク14の開口パターン6がTFT基板1のB対応アノード電極2B上に位置付けられることになる。 Next, the case where the B organic EL layer is formed on the TFT substrate 1 will be described with reference to FIGS. In this case, first, as shown in FIG. 42A, the vapor deposition mask 14 that is attracted and held by the second magnetic chuck 44 is placed above the TFT substrate 1 placed on the first magnetic chuck 42. Positioning, while observing the mask side alignment mark 40 and the B substrate side alignment mark with a microscope, as shown in FIG. After the alignment with the TFT substrate 1, the film 4 is brought into close contact with the TFT substrate 1. Thereby, the opening pattern 6 of the vapor deposition mask 14 is positioned on the B corresponding anode electrode 2 </ b> B of the TFT substrate 1.
 その後、図42(c)に示すように、第1の磁気チャック42の電磁石56をオンすると共に第2の磁気チャック44の電磁石56をオフし、第1の磁気チャック42により蒸着マスク14の金属部材10を吸着して蒸着マスク14を第2の磁気チャック44からTFT基板1上に移す。 After that, as shown in FIG. 42C, the electromagnet 56 of the first magnetic chuck 42 is turned on and the electromagnet 56 of the second magnetic chuck 44 is turned off. The member 10 is attracted to move the vapor deposition mask 14 from the second magnetic chuck 44 onto the TFT substrate 1.
 次に、図43(a)に示すように、TFT基板1と蒸着マスク14とを一体的に第1の磁気チャック42に保持した状態で真空蒸着装置の真空槽内に設置し、蒸着マスク14の開口パターン6を介してTFT基板1のB対応アノード電極2B上のB有機EL層形成領域にB有機EL層3Bを真空蒸着する。 Next, as shown in FIG. 43A, the TFT substrate 1 and the vapor deposition mask 14 are integrally held in the first magnetic chuck 42 and installed in the vacuum chamber of the vacuum vapor deposition apparatus. The B organic EL layer 3B is vacuum-deposited on the B organic EL layer forming region on the B corresponding anode electrode 2B of the TFT substrate 1 through the opening pattern 6.
 次いで、真空槽内から第1の磁気チャック42を取り出し、図11(b)に示すように、蒸着マスク14上に第2の磁気チャック44を置き、同図(c)に示すように第2の磁気チャック44の電磁石56をオンすると共に第1の磁気チャック42の電磁石56をオフし、蒸着マスク14の金属部材10を第2の磁気チャック44により吸着して蒸着マスク14をTFT基板1上から第2の磁気チャック44側に移す。これにより、TFT基板1のB対応アノード電極2B上にB有機EL層3Bが形成される。 Next, the first magnetic chuck 42 is taken out of the vacuum chamber, and the second magnetic chuck 44 is placed on the vapor deposition mask 14 as shown in FIG. 11B, and the second magnetic chuck 44 is placed as shown in FIG. The electromagnet 56 of the magnetic chuck 44 is turned on and the electromagnet 56 of the first magnetic chuck 42 is turned off, and the metal member 10 of the vapor deposition mask 14 is attracted by the second magnetic chuck 44 so that the vapor deposition mask 14 is placed on the TFT substrate 1. To the second magnetic chuck 44 side. Thereby, the B organic EL layer 3B is formed on the B corresponding anode electrode 2B of the TFT substrate 1.
 また、蒸着マスク14は、上述と同様にして第2の磁気チャック44側から第1の磁気チャック42側に移され、プラズマ処理装置内でプラズマ処理して蒸着マスク14上に付着した有機EL蒸着材料が除去される。そして、このようにして洗浄された蒸着マスク14は、再び第2の磁気チャック44に移されて第2の磁気チャック44に保持された状態で、又は第1の磁気チャック42に保持されたままで保管される。したがって、蒸着マスク14がよじれたり撓んだりして開口パターン6の形状が崩れたり位置がずれたりするおそれがない。 Further, the vapor deposition mask 14 is transferred from the second magnetic chuck 44 side to the first magnetic chuck 42 side in the same manner as described above, and is subjected to plasma treatment in the plasma processing apparatus and adhered to the vapor deposition mask 14. Material is removed. The vapor deposition mask 14 thus cleaned is transferred again to the second magnetic chuck 44 and held on the second magnetic chuck 44, or while being held on the first magnetic chuck 42. Stored. Therefore, there is no possibility that the vapor deposition mask 14 is twisted or bent and the shape of the opening pattern 6 is lost or displaced.
 なお、上記R有機EL層3R、G有機EL層3G及びB有機EL層3Bの形成工程は、同一の蒸着マスク14を使用して一連の工程として実行することができる。 In addition, the formation process of the said R organic EL layer 3R, G organic EL layer 3G, and B organic EL layer 3B can be performed as a series of processes using the same vapor deposition mask 14.
 図44は本発明による蒸着マスクの第4実施形態を示す図であり、(a)は平面図、(b)は底面図、(c)は(a)のE-E線断面矢視図、(d)は(c)の一部拡大図である。ここで、本発明による蒸着マスクの上記第4実施形態が第1~第3実施形態と異なる点は、フィルム4が図44(a),(b)に示すように後述の金属部材10の細長状のブリッジ39に対応した位置で分離された複数の開口パターン6を備え、図44(c)に示すように、基板との接触面4aに、金属部材10の細長状のブリッジ39の形成位置に対応して該ブリッジ39の長軸に平行な突条部65が設けられている点である。 44A and 44B are views showing a fourth embodiment of the vapor deposition mask according to the present invention, in which FIG. 44A is a plan view, FIG. 44B is a bottom view, and FIG. 44C is a sectional view taken along line EE of FIG. (D) is a partially enlarged view of (c). Here, the fourth embodiment of the vapor deposition mask according to the present invention is different from the first to third embodiments in that the film 4 is an elongated metal member 10 described later as shown in FIGS. 44 (a) and 44 (b). A plurality of opening patterns 6 separated at a position corresponding to the bridge 39, and as shown in FIG. 44 (c), the formation position of the elongated bridge 39 of the metal member 10 on the contact surface 4a with the substrate Corresponding to this, a ridge 65 parallel to the long axis of the bridge 39 is provided.
 また、上記金属部材10には、図44(a)に示すように、有機EL層の形成に影響を及ぼさない予め定められた部分に設けられたブリッジ39により分離された複数の開口部9が形成されている。これにより、金属部材10の剛性が増し、撓みを抑えることができる。したがって、蒸着マスク14と基板との位置合わせ精度をより向上して薄膜パターンの形成精度をより向上することができる。 Further, as shown in FIG. 44A, the metal member 10 has a plurality of openings 9 separated by bridges 39 provided at predetermined portions that do not affect the formation of the organic EL layer. Is formed. Thereby, the rigidity of the metal member 10 is increased and bending can be suppressed. Therefore, the alignment accuracy between the vapor deposition mask 14 and the substrate can be further improved, and the formation accuracy of the thin film pattern can be further improved.
 次に、このように構成された蒸着マスク14の第4実施形態の製造について図45を参照して説明する。
 先ず、図45(a)に示すように、フィルム4の基板との接触面4aとは反対側の面4bと、基板の薄膜パターン形成領域に対応して薄膜パターンよりも形状が大きく、細長状の複数のブリッジ39により分離された貫通する複数の開口部9を形成した例えば磁性材料からなる金属部材10とを、同図に矢印で示すように面接合し、同図(b)に示すマスク用部材11を形成する。
Next, manufacture of 4th Embodiment of the vapor deposition mask 14 comprised in this way is demonstrated with reference to FIG.
First, as shown in FIG. 45 (a), the shape of the film 4 is larger than the thin film pattern corresponding to the surface 4b opposite to the contact surface 4a with the substrate and the thin film pattern formation region of the substrate. A metal member 10 made of, for example, a magnetic material and having a plurality of through-holes 9 separated by a plurality of bridges 39 is surface-bonded as indicated by arrows in the figure, and the mask shown in FIG. The member 11 is formed.
 上記面接合は、好ましくは、図46に示すように、一部(例えば周縁領域)に金属膜46をコーティングしたフィルム4を使用して、該金属膜46上に塗布されたノンフラックス半田47によりフィルム4を金属部材10にノンフラックス半田付けするとよい。また、大面積の基板上の複数領域に薄膜パターン群を形成する場合には、図47に示すように、基板上の上記複数領域に対応したフィルム4の複数領域66の周縁領域に金属膜46をコーティングし、該金属膜46上に上記各領域66を囲んでノンフラックス半田47を塗布したフィルム4を使用するとよい。このようなフィルム4と金属部材10とをノンフラックス半田付けして形成した蒸着マスク14を使用すれば、例えば薄膜パターンとしての有機EL層を真空蒸着して形成する際に半田からアウトガスが発生せず、アウトガスの不純物により有機EL層がダメージを受けるおそれがない。なお、図46及び図47に示す符号67は、金属部材10に形成されたマスク側アライメントマーク40に対応して形成された開口であり、フィルム4を透過して基板上の基板側アライメントマークを観察可能にするためのものである。 The surface bonding is preferably performed by using non-flux solder 47 applied on the metal film 46 using a film 4 having a part (for example, a peripheral region) coated with the metal film 46 as shown in FIG. The film 4 may be non-flux soldered to the metal member 10. Further, when forming a thin film pattern group in a plurality of regions on a large-area substrate, as shown in FIG. 47, a metal film 46 is formed in the peripheral region of the plurality of regions 66 of the film 4 corresponding to the plurality of regions on the substrate. It is preferable to use the film 4 in which the non-flux solder 47 is applied on the metal film 46 so as to surround the regions 66. If the deposition mask 14 formed by non-flux soldering the film 4 and the metal member 10 is used, outgas is generated from the solder when the organic EL layer as a thin film pattern is formed by vacuum deposition, for example. In addition, the organic EL layer is not damaged by the outgas impurities. Reference numeral 67 shown in FIGS. 46 and 47 is an opening formed corresponding to the mask side alignment mark 40 formed on the metal member 10, and transmits the substrate side alignment mark on the substrate through the film 4. It is for making observation possible.
 上記面接合には、前述したような金属部材10にフィルム状の樹脂を圧着させる方法、金属部材10にフィルム状の樹脂を接着させる方法、半乾燥状態の樹脂溶液に金属部材10を圧着する方法、又は金属部材10に溶液状の樹脂をコーティングする方法等が含まれる。 For the above-described surface bonding, a method of pressure-bonding a film-like resin to the metal member 10 as described above, a method of bonding a film-like resin to the metal member 10, and a method of pressure-bonding the metal member 10 to a semi-dried resin solution Or a method of coating the metal member 10 with a solution-like resin.
 次いで、図45(c)に示すように、マスク用部材11を基準パターン43を形成した基準基板38(例えば、有機EL表示用TFT基板のダミー基板でもよい)上に載置した後、マスク側アライメントマーク40と図示省略の基板側アライメントマークとを例えば顕微鏡により観察しながら、各マークが一定の位置関係を成すように調整してマスク用部材11と基準基板38との位置合わせを行う。 Next, as shown in FIG. 45C, after the mask member 11 is placed on a reference substrate 38 (for example, a dummy substrate of an organic EL display TFT substrate) on which the reference pattern 43 is formed, the mask side While observing the alignment mark 40 and the substrate-side alignment mark (not shown) with, for example, a microscope, the mask member 11 and the reference substrate 38 are aligned by adjusting each mark so as to form a certain positional relationship.
 続いて、波長が400nm以下の、例えばKrF248nmのエキシマレーザを使用して、図45(d)に示すように、金属部材10の開口部9内に位置するフィルム4の部分で、上記基準基板38の基準パターン43上の薄膜パターン形成領域に対応したフィルム4の部分にエネルギー密度が0.1J/cm~20J/cmのレーザ光Lを照射し、同図(e)に示すように当該部分に2μm程度の薄い層を残して一定深さの穴部5を形成する。このような紫外線のレーザ光Lを使用すれば、レーザ光Lの光エネルギーによりフィルム4の炭素結合が一瞬のうちに破壊されて除去されるため、残渣の無いクリーンな穴あけ加工を行うことができる。 Subsequently, by using an excimer laser having a wavelength of 400 nm or less, for example, KrF248 nm, as shown in FIG. 45 (d), the reference substrate 38 at the portion of the film 4 positioned in the opening 9 of the metal member 10 is used. energy density irradiated with laser light L of 0.1J / cm 2 ~ 20J / cm 2 in the portion of the film 4 corresponding to the thin film pattern forming region on the reference pattern 43, the as shown in FIG. (e) A hole 5 having a constant depth is formed leaving a thin layer of about 2 μm in the portion. If such an ultraviolet laser beam L is used, the carbon bond of the film 4 is broken and removed instantly by the optical energy of the laser beam L, so that clean drilling without residue can be performed. .
 その後、図45(f)に示すように、フィルム4の基準基板38との接触面4aの突条部65を形成しようとする部分をマスキングして、フィルム4の材料に応じて露光、現像及びエッチングすることにより一定深さの溝を形成し、金属部材10のブリッジ39の形成位置に対応した上記接触面4aにブリッジ39の長軸に平行な突条部65を形成する。このとき同時に、上記穴部5が貫通して開口パターン6が形成される。これにより、本発明の蒸着マスク14の第4実施形態が完成する。 Thereafter, as shown in FIG. 45 (f), a portion of the contact surface 4a of the contact surface 4a with the reference substrate 38 of the film 4 is masked to be exposed, developed and developed according to the material of the film 4. A groove having a certain depth is formed by etching, and a ridge 65 parallel to the long axis of the bridge 39 is formed on the contact surface 4a corresponding to the position where the bridge 39 of the metal member 10 is formed. At the same time, the hole 5 penetrates and an opening pattern 6 is formed. Thereby, 4th Embodiment of the vapor deposition mask 14 of this invention is completed.
 次に、本発明の蒸着マスク14の第4実施形態を使用して行う薄膜パターン形成方法について、図48~図50を参照して説明する。ここでは、基板が、図51に示すように薄膜パターンとしてのR有機EL層3R、G有機EL層3G及びB有機EL層3Bの形成領域(各色対応のアノード電極2R,2G,2B上の領域)の各境界部に、成膜された各色有機EL層3R~3Bの面よりも突出するように高さが設定された例えば窒化シリコン(SIN)膜から成る隔壁68が予め設けられた有機EL表示装置用のTFT基板1である場合について説明する。 Next, a thin film pattern forming method performed using the fourth embodiment of the vapor deposition mask 14 of the present invention will be described with reference to FIGS. Here, as shown in FIG. 51, the substrate is formed with R organic EL layers 3R, G organic EL layers 3G, and B organic EL layers 3B as thin film patterns (regions on anode electrodes 2R, 2G, and 2B corresponding to the respective colors). ) Is provided in advance with partition walls 68 made of, for example, a silicon nitride (SIN) film whose height is set so as to protrude from the surfaces of the formed organic EL layers 3R to 3B. The case of the TFT substrate 1 for a display device will be described.
 先ず、第1ステップにおいては、図48(a)に示すようにTFT基板1上に蒸着マスク14を載置し、蒸着マスク14に形成されたマスク側アライメントマーク40とTFT基板1に予め形成された図示省略の基板側アライメントマークとを顕微鏡により観察しながら、両マークが予め定められた位置関係となるように調整して蒸着マスク14とTFT基板1とを位置合わせする。これにより、同図(a)に示すように、蒸着マスク14の開口パターン6がTFT基板1のR対応のアノード電極2R上に合致することになる。 First, in the first step, as shown in FIG. 48A, the vapor deposition mask 14 is placed on the TFT substrate 1, and the mask side alignment mark 40 formed on the vapor deposition mask 14 and the TFT substrate 1 are formed in advance. While the substrate-side alignment mark (not shown) is observed with a microscope, the vapor deposition mask 14 and the TFT substrate 1 are aligned by adjusting the two marks so as to have a predetermined positional relationship. As a result, the opening pattern 6 of the vapor deposition mask 14 coincides with the R corresponding anode electrode 2R of the TFT substrate 1 as shown in FIG.
 第2ステップにおいては、蒸着マスク14とTFT基板1とを密着一体化させた状態で例えば真空蒸着装置の真空槽内に設置し、図48(b)に示すように、TFT基板1のR対応のアノード電極2R上に蒸着マスク14の開口パターン6を介してR有機EL層3Rを蒸着形成する。 In the second step, the deposition mask 14 and the TFT substrate 1 are in close contact and integrated, for example, in a vacuum chamber of a vacuum deposition apparatus, and as shown in FIG. The R organic EL layer 3R is formed by vapor deposition on the anode electrode 2R through the opening pattern 6 of the vapor deposition mask 14.
 第3ステップにおいては、蒸着マスク14とTFT基板1とを密着一体化したものを真空蒸着装置の真空槽内から取り出し、蒸着マスク14を、図49(a)に矢印で示すように各色有機EL層3R~3Bの配列ピッチと同寸法だけ各色有機EL層3R~3Bの並び方向にTFT基板1上をスライドさせて移動する。この場合、顕微鏡下でマスク面を観察しながら、蒸着マスク14の開口パターン6がG対応アノード電極2G上に合致するように調整してもよく、又はTFT基板に形成したG用基板側アライメントマークとマスク側アライメントマーク40とが合致するように調整してもよい。 In the third step, the vapor deposition mask 14 and the TFT substrate 1 that are in close contact with each other are taken out from the vacuum chamber of the vacuum vapor deposition apparatus, and the vapor deposition mask 14 is placed in each color organic EL as shown by arrows in FIG. The TFT substrate 1 is slid and moved in the arrangement direction of the respective color organic EL layers 3R to 3B by the same dimension as the arrangement pitch of the layers 3R to 3B. In this case, while observing the mask surface under a microscope, the opening pattern 6 of the vapor deposition mask 14 may be adjusted so as to coincide with the G corresponding anode electrode 2G, or the G substrate side alignment mark formed on the TFT substrate. And the mask side alignment mark 40 may be adjusted.
 第4ステップにおいては、上記第2ステップと同様にして、マスク1とTFT基板1とを密着一体化させた状態で例えば真空蒸着装置の真空槽内に設置し、図49(b)に示すように、TFT基板1のG対応のアノード電極2G上に蒸着マスク14の開口パターン6を介してG有機EL層3Gを蒸着形成する。 In the fourth step, as in the second step, the mask 1 and the TFT substrate 1 are in close contact and integrated, for example, in a vacuum chamber of a vacuum evaporation apparatus, as shown in FIG. 49 (b). Then, the G organic EL layer 3G is formed by vapor deposition on the anode electrode 2G corresponding to G of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14.
 第5ステップにおいては、上記第3ステップと同様にして、蒸着マスク14とTFT基板1とを密着一体化したものを真空蒸着装置の真空槽内から取り出し、蒸着マスク14を、図50(a)に矢印で示すように各色有機EL層3R~3Bの配列ピッチと同寸法だけ各色有機EL層3R~3Bの並び方向にTFT基板1上をスライドさせて移動し、蒸着マスク14の開口パターン6をB対応アノード電極2B上に合致させる。 In the fifth step, in the same manner as in the third step, the deposition mask 14 and the TFT substrate 1 that are closely integrated are taken out from the vacuum chamber of the vacuum deposition apparatus, and the deposition mask 14 is removed as shown in FIG. As shown by the arrows in FIG. 4, the TFT substrate 1 is slid and moved in the arrangement direction of the color organic EL layers 3R to 3B by the same dimension as the arrangement pitch of the color organic EL layers 3R to 3B. It is made to match on B corresponding anode electrode 2B.
 第6ステップにおいては、上記第2又は第4ステップと同様にして、蒸着マスク14とTFT基板1とを密着一体化させた状態で例えば真空蒸着装置の真空槽内に設置し、図50(b)に示すように、TFT基板1のG対応のアノード電極2G上に蒸着マスク14の開口パターン6を介してB有機EL層3Bを蒸着形成する。これにより、一枚のマスク1を使用して複数色の有機EL層3R~3Bを順次形成することができ、有機EL層形成工程を効率よく行なうことができる。 In the sixth step, in the same manner as in the second or fourth step, the vapor deposition mask 14 and the TFT substrate 1 are in close contact and integrated, for example, in a vacuum chamber of a vacuum vapor deposition apparatus. As shown in FIG. 5B, the B organic EL layer 3B is formed by vapor deposition on the anode electrode 2G corresponding to G of the TFT substrate 1 through the opening pattern 6 of the vapor deposition mask 14. As a result, the organic EL layers 3R to 3B of a plurality of colors can be sequentially formed using one mask 1, and the organic EL layer forming step can be performed efficiently.
 この場合、蒸着マスク14を横方向にスライド移動する際には、フィルム4の面4aが有機EL層3R,3Gに接触せず、且つフィルム4の面4aに設けられた突条部65が隔壁68上を滑るので、フィルム4と隔壁68との間の摩擦を低減することができる。したがって、蒸着マスク14を安定してTFT基板1上をスライド移動させることができる。 In this case, when the vapor deposition mask 14 is slid in the horizontal direction, the surface 4a of the film 4 is not in contact with the organic EL layers 3R and 3G, and the protrusions 65 provided on the surface 4a of the film 4 are provided as partition walls. Since it slides on 68, the friction between the film 4 and the partition 68 can be reduced. Accordingly, the vapor deposition mask 14 can be stably slid on the TFT substrate 1.
 なお、以上の説明においては、薄膜パターンとして有機EL表示装置の有機EL層を形成方法について述べたが、本発明はこれに限られず、高精細な薄膜パターンを形成しようとするものであれば、液晶表示装置のカラーフィルターの形成、又は半導体基板の配線パターンの形成等、如何なるものにも適用することができる。 In the above description, the method for forming the organic EL layer of the organic EL display device as the thin film pattern has been described. However, the present invention is not limited to this, and any thin film pattern can be formed. The present invention can be applied to anything such as formation of a color filter of a liquid crystal display device or formation of a wiring pattern of a semiconductor substrate.
 1…基板
 4…フィルム
 6…開口パターン
 7,14…蒸着マスク
 9…開口部
 10…金属部材
 11…マスク用部材
 38…基準基板
 39…ブリッジ
 42…第1の磁気チャック
 43…基準パターン
 44…第2の磁気チャック
 68…突条部
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 4 ... Film 6 ... Opening pattern 7, 14 ... Evaporation mask 9 ... Opening part 10 ... Metal member 11 ... Mask member 38 ... Reference board 39 ... Bridge 42 ... 1st magnetic chuck 43 ... Reference pattern 44 ... 1st 2 magnetic chuck 68 ... ridge

Claims (43)

  1.  基板上に一定形状の薄膜パターンを蒸着形成するための蒸着マスクであって、
     前記基板上に予め定められた前記薄膜パターンの形成領域に対応して、該薄膜パターンと形状寸法の同じ貫通する開口パターンを形成した可視光を透過する樹脂製のフィルムを備えて構成されたことを特徴とする蒸着マスク。
    A vapor deposition mask for vapor-depositing a thin film pattern having a fixed shape on a substrate,
    Corresponding to a predetermined formation region of the thin film pattern on the substrate, the substrate is configured to include a resin film that transmits visible light and has an opening pattern having the same shape and dimension as the thin film pattern. Evaporation mask characterized by.
  2.  前記フィルムの前記開口パターンの外側部分には、金属部材が設けられていることを特徴とする請求項1記載の蒸着マスク。 The vapor deposition mask according to claim 1, wherein a metal member is provided on an outer portion of the opening pattern of the film.
  3.  前記金属部材は、前記開口パターンに対応して該開口パターンよりも形状寸法が大きい開口部を有し、前記フィルムの一面に密接された薄板であることを特徴とする請求項2記載の蒸着マスク。 3. The vapor deposition mask according to claim 2, wherein the metal member is a thin plate having an opening having a larger size than the opening pattern corresponding to the opening pattern, and being in close contact with one surface of the film. .
  4.  前記金属部材は、前記フィルムの一面又は内部に分散させて設けられた複数の薄片であることを特徴とする請求項2記載の蒸着マスク。 3. The vapor deposition mask according to claim 2, wherein the metal member is a plurality of thin pieces dispersed on one surface or inside of the film.
  5.  前記金属部材は、磁性材料からなることを特徴とする請求項2記載の蒸着マスク。 3. The vapor deposition mask according to claim 2, wherein the metal member is made of a magnetic material.
  6.  前記磁性材料は、インバー又はインバー合金であることを特徴とする請求項5記載の蒸着マスク。 The vapor deposition mask according to claim 5, wherein the magnetic material is Invar or Invar alloy.
  7.  前記金属部材は、非磁性材料からなることを特徴とする請求項2記載の蒸着マスク。 3. The vapor deposition mask according to claim 2, wherein the metal member is made of a nonmagnetic material.
  8.  前記開口パターンは、前記フィルムの前記一面側の開口面積が前記薄膜パターンの面積と同じで、前記一面とは反対側の他面側の開口面積が前記一面側の開口面積よりも大きいことを特徴とする請求項2記載の蒸着マスク。 In the opening pattern, the opening area on the one surface side of the film is the same as the area of the thin film pattern, and the opening area on the other surface side opposite to the one surface is larger than the opening area on the one surface side. The vapor deposition mask according to claim 2.
  9.  前記フィルムの前記一面側に備えられた前記金属部材を前記基板上に密着させて使用されることを特徴とする請求項8記載の蒸着マスク。 The vapor deposition mask according to claim 8, wherein the metal member provided on the one surface side of the film is used in close contact with the substrate.
  10.  前記金属部材は、細長状の複数のブリッジにより分離された複数の前記開口部を備え、
     前記フィルムは、前記複数の開口部に対応して複数の前記開口パターンを形成すると共に、前記基板に接触する他面側に、前記金属部材の前記ブリッジの形成位置に対応して該ブリッジの長軸に平行な突条部を備えたことを特徴とする請求項3記載の蒸着マスク。
    The metal member includes a plurality of the openings separated by a plurality of elongated bridges,
    The film forms a plurality of the opening patterns corresponding to the plurality of openings, and has a length of the bridge corresponding to a position where the bridge of the metal member is formed on the other surface side in contact with the substrate. The vapor deposition mask according to claim 3, further comprising a protrusion parallel to the axis.
  11.  前記フィルムは、ポリイミドであることを特徴とする請求項1~10のいずれか1項に記載の蒸着マスク。 The evaporation mask according to any one of claims 1 to 10, wherein the film is polyimide.
  12.  基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成して製造する蒸着マスクの製造方法であって、
     前記薄膜パターンを成膜形成しようとする成膜対象の基板上、又は前記薄膜パターンと同じ配列ピッチで並べて、該薄膜パターンと形状寸法の同じ複数の基準パターンを設けた基準基板上に前記フィルムを密着する第1ステップと、
     前記成膜対象の基板上又は前記基準基板上の前記薄膜パターンの形成領域又は前記基準パターンに対応する前記フィルムの部分を加工して、前記薄膜パターンと形状寸法の同じ開口パターンを形成する第2ステップと、
    を含むことを特徴とする蒸着マスクの製造方法。
    Corresponding to a predetermined thin film pattern formation region on a substrate, a deposition mask manufacturing method for forming a through-hole pattern having the same shape and dimension as a thin film pattern on a resin film that transmits visible light. Because
    The thin film pattern is formed on the substrate to be formed, or arranged on the same arrangement pitch as the thin film pattern, and the film is placed on a reference substrate provided with a plurality of reference patterns having the same shape and dimensions as the thin film pattern. A first step to adhere,
    Forming an opening pattern having the same shape and dimension as the thin film pattern by processing a region of the thin film pattern on the film formation target substrate or the reference substrate or a portion of the film corresponding to the reference pattern; Steps,
    The manufacturing method of the vapor deposition mask characterized by including.
  13.  前記第1ステップは、前記フィルムの一面に、前記薄膜パターンに対応して該薄膜パターンよりも形状寸法が大きい開口部を設けた金属部材を密接させてマスク用部材を形成した後、前記成膜対象の基板上又は前記基準基板上の前記薄膜パターンの形成領域又は前記基準パターンに対応した部分が前記開口部内に位置するように位置決めして行われることを特徴とする請求項12記載の蒸着マスクの製造方法。 In the first step, a mask member is formed on one surface of the film by closely contacting a metal member provided with an opening having a shape dimension larger than that of the thin film pattern corresponding to the thin film pattern. 13. The vapor deposition mask according to claim 12, wherein the deposition mask is formed by positioning so that a thin film pattern formation region on the target substrate or the reference substrate or a portion corresponding to the reference pattern is located in the opening. Manufacturing method.
  14.  前記マスク用部材は、一定の温度及び圧力の下で前記金属部材と前記フィルムとを熱圧着して形成されることを特徴とする請求項13記載の蒸着マスクの製造方法。 The method for manufacturing a vapor deposition mask according to claim 13, wherein the mask member is formed by thermocompression bonding the metal member and the film under a constant temperature and pressure.
  15.  前記マスク用部材は、前記金属部材に前記フィルムを接着させて形成されることを特徴とする請求項13記載の蒸着マスクの製造方法。 14. The method of manufacturing a vapor deposition mask according to claim 13, wherein the mask member is formed by adhering the film to the metal member.
  16.  前記マスク用部材は、平板状の基材の上面に塗布され、半乾燥状態にされたフィルム用樹脂に前記金属部材を圧着した後、前記樹脂を完全乾燥させて形成されることを特徴とする請求項13記載の蒸着マスクの製造方法。 The mask member is formed by press-bonding the metal member to a film resin which is applied to the upper surface of a flat substrate and is semi-dried, and then completely drying the resin. The manufacturing method of the vapor deposition mask of Claim 13.
  17.  前記マスク用部材は、平板状の基材の上面に載置された前記金属部材の上面にフィルム用樹脂溶液を塗布した後、乾燥してフィルム化することによって形成されることを特徴とする請求項13記載の蒸着マスクの製造方法。 The mask member is formed by coating a resin solution for a film on an upper surface of the metal member placed on an upper surface of a flat substrate and then drying to form a film. Item 14. A method for producing a vapor deposition mask according to Item 13.
  18.  前記マスク用部材は、前記フィルムの一面に前記金属部材をメッキ形成することにより形成されることを特徴とする請求項13記載の蒸着マスクの製造方法。 14. The method of manufacturing a vapor deposition mask according to claim 13, wherein the mask member is formed by plating the metal member on one surface of the film.
  19.  前記フィルムは、平坦面を有するステージ上に静電吸着して保持されたものであることを特徴とする請求項18記載の蒸着マスクの製造方法。 The method for manufacturing a vapor deposition mask according to claim 18, wherein the film is held by electrostatic adsorption on a stage having a flat surface.
  20.  前記フィルムは、平板な基材上に可視光を透過する樹脂を塗布した後、乾燥させて形成されたものであることを特徴とする請求項18記載の蒸着マスクの製造方法。 19. The method of manufacturing a vapor deposition mask according to claim 18, wherein the film is formed by applying a resin that transmits visible light on a flat substrate and then drying the film.
  21.  前記第1ステップは、前記マスク用部材の前記フィルムの面をエッチングして、少なくとも前記金属部材の前記開口部に対応した部分の前記フィルムの厚みを薄くした後に、前記成膜対象の基板又は前記基準基板に対する位置合わせが実施されることを特徴とする請求項13記載の蒸着マスクの製造方法。 In the first step, the surface of the film of the mask member is etched to reduce the thickness of the film at least in a portion corresponding to the opening of the metal member, and then the substrate to be deposited or the The method of manufacturing a vapor deposition mask according to claim 13, wherein alignment with respect to a reference substrate is performed.
  22.  前記金属部材は、磁性材料又は非磁性材料からなり、
     前記第1ステップは、内部にチャック手段を備えたステージ上に前記成膜対象の基板又は前記基準基板を載置した後、前記チャック手段により前記金属部材を前記成膜対象の基板上又は前記基準基板上に吸着して前記フィルムを挟持することを特徴とする請求項13記載の蒸着マスクの製造方法。
    The metal member is made of a magnetic material or a non-magnetic material,
    In the first step, after the substrate to be deposited or the reference substrate is placed on a stage having a chuck means inside, the metal member is placed on the substrate to be deposited or the reference by the chuck means. The method of manufacturing a vapor deposition mask according to claim 13, wherein the film is sandwiched by being adsorbed on a substrate.
  23.  前記第2ステップは、前記フィルムの部分にレーザ光を照射して実行されることを特徴とする請求項12記載の蒸着マスクの製造方法。 13. The method of manufacturing a vapor deposition mask according to claim 12, wherein the second step is performed by irradiating the film portion with a laser beam.
  24.  前記第2ステップは、一定のエネルギー密度のレーザ光を照射して前記フィルムを一定速度で加工して一定深さの穴部を形成した後、該穴部の底部にエネルギー密度を下げたレーザ光を照射して前記速度よりも遅い速度で加工して前記穴部を貫通させることを特徴とする請求項23記載の蒸着マスクの製造方法。 In the second step, the laser beam is irradiated with a laser beam having a constant energy density to form a hole portion having a constant depth by processing the film at a constant speed, and then the laser beam having a reduced energy density at the bottom portion of the hole portion. 24. The method of manufacturing a vapor deposition mask according to claim 23, wherein the hole portion is penetrated by being processed at a speed slower than the speed by irradiating the film.
  25.  前記エネルギー密度を下げたレーザ光の照射は、前記フィルムの炭素と反応し該炭素を気化させる反応性ガス雰囲気下で行われることを特徴とする請求項24記載の蒸着マスクの製造方法。 25. The method of manufacturing a vapor deposition mask according to claim 24, wherein the irradiation with the laser beam with the energy density lowered is performed in a reactive gas atmosphere that reacts with carbon of the film and vaporizes the carbon.
  26.  前記第2ステップは、一定のエネルギー密度のレーザ光を照射して前記フィルムに前記穴部を形成した後、前記フィルムの炭素と反応し該炭素を気化させる反応性ガスにより、又は反応性ガスをプラズマ化して生成されたラジカルイオンにより前記穴部の底部をエッチングし、該穴部を貫通させて前記開口パターンを形成することを特徴とする請求項12記載の蒸着マスクの製造方法。 In the second step, after forming the hole in the film by irradiating a laser beam having a constant energy density, the reactive gas reacts with carbon of the film and vaporizes the carbon, or reactive gas is used. 13. The method of manufacturing a vapor deposition mask according to claim 12, wherein the opening pattern is formed by etching the bottom of the hole with radical ions generated by plasma, and penetrating the hole.
  27.  前記基準基板は、透明基板の一面に前記基準パターンを設けたものであり、
     前記第2ステップは、前記基準パターンを下側にしてステージ上に載置された前記基準基板の前記基準パターンが前記金属部材の前記開口部内に位置するように前記金属部材を前記基準基板に対して位置合わせした後、前記フィルムを前記基準基板の他面に密着させ、前記金属部材の前記開口部内の前記基準パターンに対応した前記フィルムの部分にレーザ光を照射して、前記開口パターンを形成することを特徴とする請求項13記載の蒸着マスクの製造方法。
    The reference substrate is provided with the reference pattern on one surface of a transparent substrate,
    In the second step, the metal member is placed on the reference substrate so that the reference pattern of the reference substrate placed on the stage with the reference pattern on the lower side is positioned in the opening of the metal member. After the alignment, the film is brought into close contact with the other surface of the reference substrate, and the portion of the film corresponding to the reference pattern in the opening of the metal member is irradiated with laser light to form the opening pattern. The method of manufacturing a vapor deposition mask according to claim 13, wherein:
  28.  前記第2ステップは、前記金属部材、前記フィルム及び前記基準基板を一体的に前記基準パターンの並び方向に搬送しながら、前記レーザ光の照射位置に対して前記搬送方向上流側の位置を撮影可能に設けられた撮像手段で前記基準パターンを撮影し、該撮影画像に基づいて前記基準パターンを検出し、該検出時刻を基準にして前記レーザ光の照射タイミングを制御して実行されることを特徴とする請求項27記載の蒸着マスクの製造方法。 In the second step, it is possible to photograph the position upstream in the transport direction with respect to the irradiation position of the laser beam while transporting the metal member, the film and the reference substrate integrally in the alignment direction of the reference pattern. The reference pattern is imaged by an imaging means provided in the image, the reference pattern is detected based on the captured image, and the laser light irradiation timing is controlled based on the detection time. The method for manufacturing a vapor deposition mask according to claim 27.
  29.  前記第2ステップは、前記撮像手段の撮影画像に基づいて、前記金属部材の前記開口部の中心と前記基準基板の前記基準パターンの中心との間の位置ずれ量が許容値内であることを確認しながら実行されることを特徴とする請求項28記載の蒸着マスクの製造方法。 In the second step, based on a photographed image of the imaging means, a positional deviation amount between the center of the opening of the metal member and the center of the reference pattern of the reference substrate is within an allowable value. The method for manufacturing a vapor deposition mask according to claim 28, wherein the method is performed while checking.
  30.  前記第2ステップの後に、前記フィルムを前記基準基板から剥離することを特徴とする請求項27記載の蒸着マスクの製造方法。 The method for manufacturing a vapor deposition mask according to claim 27, wherein the film is peeled off from the reference substrate after the second step.
  31.  前記レーザ光は、波長が400nm以下であることを特徴とする請求項23~28のいずれか1項に記載の蒸着マスクの製造方法。 The method of manufacturing a vapor deposition mask according to any one of claims 23 to 28, wherein the laser beam has a wavelength of 400 nm or less.
  32.  基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成して製造する蒸着マスクの製造方法であって、
     前記フィルムの一面に前記薄膜パターンの形成領域に対応して該薄膜パターンよりも形状寸法が大きい開口部を設けた金属部材を密接してマスク用部材を形成する第1ステップと、
     前記開口部内の前記フィルムの部分をエッチング加工して、前記薄膜パターンと形状寸法の同じ開口パターンを形成する第2ステップと、
    を含むことを特徴とする蒸着マスクの製造方法。
    Corresponding to a predetermined thin film pattern formation region on a substrate, a deposition mask manufacturing method for forming a through-hole pattern having the same shape and dimension as a thin film pattern on a resin film that transmits visible light. Because
    A first step of forming a mask member by closely contacting a metal member provided with an opening having a shape dimension larger than that of the thin film pattern corresponding to the formation region of the thin film pattern on one surface of the film;
    Etching a portion of the film in the opening to form an opening pattern having the same shape and dimension as the thin film pattern;
    The manufacturing method of the vapor deposition mask characterized by including.
  33.  前記第2ステップは、前記フィルムの他面側から該フィルムをエッチング加工して前記フィルムの一面側の開口面積が前記薄膜パターンの面積と同じで、前記フィルムの他面側の開口面積が前記一面側の開口面積よりも大きい前記開口パターンを形成することを特徴とする請求項32記載の蒸着マスクの製造方法。 In the second step, the film is etched from the other surface side of the film, the opening area on the one surface side of the film is the same as the area of the thin film pattern, and the opening area on the other surface side of the film is the one surface. 33. The method of manufacturing a vapor deposition mask according to claim 32, wherein the opening pattern larger than the opening area on the side is formed.
  34.  基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成して蒸着マスクを製造し、該蒸着マスクを使用して薄膜パターンを形成する薄膜パターン形成方法であって、
     前記基板上に前記フィルムを密着させる第1ステップと、
     前記基板上の前記薄膜パターンの形成領域に対応する前記フィルムの部分にレーザ光を照射し、当該部分の前記フィルムに前記薄膜パターンと形状寸法の同じ開口パターンを設けて前記蒸着マスクを形成する第2ステップと、
     前記基板上の前記薄膜パターンの形成領域に対応した部分に前記蒸着マスクの前記開口を介して成膜する第3ステップと、
     前記蒸着マスクを剥離する第4ステップと、
    を含むことを特徴とする薄膜パターン形成方法。
    Corresponding to a predetermined thin film pattern formation region on the substrate, a vapor deposition mask is formed by forming an opening pattern having the same shape and dimension as the thin film pattern in a resin film that transmits visible light, A thin film pattern forming method for forming a thin film pattern using a vapor deposition mask,
    A first step of closely contacting the film on the substrate;
    A portion of the film corresponding to a region where the thin film pattern is formed on the substrate is irradiated with laser light, and an opening pattern having the same shape and dimension as the thin film pattern is provided on the film of the portion to form the deposition mask. Two steps,
    A third step of forming a film on the substrate corresponding to the formation region of the thin film pattern through the opening of the vapor deposition mask;
    A fourth step of peeling the vapor deposition mask;
    A thin film pattern forming method comprising:
  35.  前記第1ステップにおいては、内部にチャック手段を備えたステージ上に前記基板を載置すると共に、前記フィルムの一面に、前記薄膜パターンに対応して該薄膜パターンよりも形状寸法が大きい開口部を設けた磁性材料又は非磁性材料からなる金属部材を密接させて形成されたマスク用部材を、前記基板上の前記薄膜パターンの形成領域が前記開口部内に位置するように位置決めした後、前記チャック手段により前記金属部材を前記基板上に吸着して前記フィルムを挟持することを特徴とする請求項34記載の薄膜パターン形成方法。 In the first step, the substrate is placed on a stage having a chuck means inside, and an opening having a larger dimension than the thin film pattern is formed on one surface of the film corresponding to the thin film pattern. The chuck member is formed by positioning a mask member formed by bringing a metal member made of a magnetic material or a non-magnetic material into close contact with each other so that a formation region of the thin film pattern on the substrate is located in the opening. 35. The method of forming a thin film pattern according to claim 34, wherein the metal member is adsorbed on the substrate and the film is held therebetween.
  36.  前記第2ステップと第3ステップとの間において、前記薄膜パターンの形成領域の表面から不純物を除去することを特徴とする請求項34記載の薄膜パターン形成方法。 35. The thin film pattern forming method according to claim 34, wherein impurities are removed from the surface of the thin film pattern forming region between the second step and the third step.
  37.  基板上に予め定められた薄膜パターンの形成領域に対応して、可視光を透過する樹脂製のフィルムに前記薄膜パターンと形状寸法の同じ貫通する開口パターンを形成した蒸着マスクを使用して薄膜パターンを形成する薄膜パターン形成方法であって、
     前記フィルムの前記開口パターンの外側部分に金属部材を設けて構成された前記蒸着マスクの前記開口パターンを、前記基板の前記薄膜パターンの形成領域に位置合わせした状態で前記基板上に載置する第1ステップと、
     前記蒸着マスクの前記開口パターンを介して前記基板上の前記薄膜パターンの形成領域に成膜し、薄膜パターンを形成する第2ステップと、
    を行うことを特徴とする薄膜パターン形成方法。
    A thin film pattern corresponding to a predetermined thin film pattern formation region on a substrate using a vapor deposition mask in which an opening pattern having the same shape and dimension as the thin film pattern is formed on a resin film that transmits visible light. A thin film pattern forming method for forming
    The opening pattern of the vapor deposition mask configured by providing a metal member on the outer portion of the opening pattern of the film is placed on the substrate in a state in which the opening pattern is aligned with the formation region of the thin film pattern of the substrate. One step,
    A second step of forming a thin film pattern by forming a film on a formation region of the thin film pattern on the substrate through the opening pattern of the vapor deposition mask;
    A thin film pattern forming method comprising:
  38.  前記金属部材は、前記開口パターンに対応して該開口パターンよりも形状寸法が大きい開口部を有し、前記フィルムの一面に密接された薄板あることを特徴とする請求項37記載の薄膜パターン形成方法。 38. The thin film pattern formation according to claim 37, wherein the metal member is a thin plate having an opening having a larger size than the opening pattern corresponding to the opening pattern, and being in close contact with one surface of the film. Method.
  39.  前記金属部材は、前記フィルムの一面又は内部に分散させて設けられた複数の薄片であることを特徴とする請求項37記載の薄膜パターン形成方法。 38. The method of forming a thin film pattern according to claim 37, wherein the metal member is a plurality of thin pieces dispersed on one surface or inside of the film.
  40.  前記第1ステップは、前記蒸着マスクの前記金属部材側を保持手段の平坦面に吸着して保持した状態で前記開口パターンを、チャック手段上に載置された前記基板の前記薄膜パターンの形成領域に位置合わせした後、前記チャック手段により前記金属部材を吸着して前記蒸着マスクを前記保持手段から前記基板上に移すように実施されることを特徴とする請求項37記載の薄膜パターン形成方法。 In the first step, the thin film pattern forming region of the substrate placed on the chuck means in a state where the metal member side of the vapor deposition mask is held by being attracted and held on the flat surface of the holding means. 38. The thin film pattern forming method according to claim 37, wherein after the alignment, the metal member is adsorbed by the chuck means and the vapor deposition mask is transferred from the holding means onto the substrate.
  41.  前記薄膜パターンは、複数種の薄膜パターンであり、
     前記フィルムに形成された開口パターンは、前記複数種の薄膜パターンのうち、一の薄膜パターンに対応して形成されたもので、
     前記第1ステップから前記第2ステップを行って前記一の薄膜パターンを形成した後、前記蒸着マスクを前記基板上から剥離するステップと、
     前記蒸着マスクの前記開口パターンを前記基板の他の薄膜パターンの形成領域に位置合わせした後、前記蒸着マスクを前記基板上に載置するステップと、
     前記蒸着マスクの開口パターンを介して前記他の薄膜パターンの形成領域に成膜し、他の薄膜パターンを形成するステップと、
    を行うことを特徴とする請求項37記載の薄膜パターン形成方法。
    The thin film pattern is a plurality of types of thin film patterns,
    The opening pattern formed in the film is formed corresponding to one thin film pattern among the plurality of types of thin film patterns,
    Performing the second step from the first step to form the one thin film pattern, and then peeling the deposition mask from the substrate;
    Placing the deposition mask on the substrate after aligning the opening pattern of the deposition mask with a formation region of another thin film pattern of the substrate;
    Forming a film in the formation region of the other thin film pattern through the opening pattern of the vapor deposition mask, and forming another thin film pattern;
    38. The thin film pattern forming method according to claim 37, wherein:
  42.  前記薄膜パターンは、一定の配列ピッチで並べて形成される複数種の薄膜パターンであり、
     前記フィルムに形成された前記開口パターンは、前記複数種の薄膜パターンのうち、一の薄膜パターンに対応して形成されたもので、
     前記第1ステップから前記第2ステップを行って前記一の薄膜パターンを形成した後、前記蒸着マスクを前記複数種の薄膜パターンの配列ピッチと同寸法だけ前記複数種の薄膜パターンの並び方向に前記基板上をスライド移動するステップと、
     前記基板の他の薄膜パターンの形成領域に前記蒸着マスクの前記開口パターンを介して成膜し、他の薄膜パターンを形成するステップと、
    を行うことを特徴とする請求項37記載の薄膜パターン形成方法。
    The thin film pattern is a plurality of types of thin film patterns formed with a constant arrangement pitch,
    The opening pattern formed in the film is formed corresponding to one thin film pattern among the plurality of types of thin film patterns,
    After the first step to the second step to form the one thin film pattern, the vapor deposition mask is arranged in the arrangement direction of the plurality of types of thin film patterns by the same dimension as the arrangement pitch of the plurality of types of thin film patterns. Sliding on the substrate;
    Forming a film through the opening pattern of the vapor deposition mask in another thin film pattern formation region of the substrate, and forming another thin film pattern;
    38. The thin film pattern forming method according to claim 37, wherein:
  43.  前記基板は、有機EL表示用のTFT基板であり、前記複数種の薄膜パターンは、3色対応の有機EL層であることを特徴とする請求項41又は42記載の薄膜パターン形成方法。 43. The thin film pattern forming method according to claim 41, wherein the substrate is a TFT substrate for organic EL display, and the plurality of types of thin film patterns are organic EL layers corresponding to three colors.
PCT/JP2012/073617 2011-09-16 2012-09-14 Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method WO2013039196A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147009752A KR102078888B1 (en) 2011-09-16 2012-09-14 Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method
CN201280044893.9A CN103797149B (en) 2011-09-16 2012-09-14 Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method
US14/214,428 US9334556B2 (en) 2011-09-16 2014-03-14 Deposition mask, producing method therefor and forming method for thin film pattern
US14/746,727 US9586225B2 (en) 2011-09-16 2015-06-22 Deposition mask, producing method therefor and forming method for thin film pattern
US15/071,125 US9555434B2 (en) 2011-09-16 2016-03-15 Deposition mask, producing method therefor and forming method for thin film pattern
US15/071,116 US9555433B2 (en) 2011-09-16 2016-03-15 Deposition mask, producing method therefor and forming method for thin film pattern

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2011203155A JP5935101B2 (en) 2011-09-16 2011-09-16 Thin film pattern forming method
JP2011-203155 2011-09-16
JP2011-203154 2011-09-16
JP2011203154 2011-09-16
JP2011-232538 2011-10-24
JP2011232538A JP5953566B2 (en) 2011-10-24 2011-10-24 Thin film pattern forming method and organic EL display device manufacturing method
JP2011242090A JP5899585B2 (en) 2011-11-04 2011-11-04 Mask manufacturing method
JP2011242089A JP6078741B2 (en) 2011-11-04 2011-11-04 Thin film pattern forming method and mask
JP2011-242090 2011-11-04
JP2011-242089 2011-11-04
JP2011-255298 2011-11-22
JP2011255298A JP5517308B2 (en) 2011-11-22 2011-11-22 Mask manufacturing method, mask and mask manufacturing apparatus
JP2012033657A JP5884543B2 (en) 2011-09-16 2012-02-20 Thin film pattern forming method, mask manufacturing method, and organic EL display device manufacturing method
JP2012-033657 2012-02-20
JP2012038101A JP2013173968A (en) 2012-02-24 2012-02-24 Vapor-deposition mask, and method for manufacturing vapor-deposition mask
JP2012-038101 2012-02-24
JP2012080707A JP5958804B2 (en) 2012-03-30 2012-03-30 Vapor deposition mask, vapor deposition mask manufacturing method, and organic EL display device manufacturing method
JP2012-080707 2012-03-30
JP2012-079207 2012-03-30
JP2012079207 2012-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/214,428 Continuation US9334556B2 (en) 2011-09-16 2014-03-14 Deposition mask, producing method therefor and forming method for thin film pattern

Publications (1)

Publication Number Publication Date
WO2013039196A1 true WO2013039196A1 (en) 2013-03-21

Family

ID=47883412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073617 WO2013039196A1 (en) 2011-09-16 2012-09-14 Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method

Country Status (1)

Country Link
WO (1) WO2013039196A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065446A (en) * 2011-09-16 2013-04-11 V Technology Co Ltd Thin film pattern forming method
JP2013077541A (en) * 2011-09-16 2013-04-25 V Technology Co Ltd Thin film pattern formation method and manufacturing method for organic el display device
JP2013083704A (en) * 2011-10-06 2013-05-09 V Technology Co Ltd Mask and mask member used for the same
WO2013146661A1 (en) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー Method for forming thin film pattern
WO2014077124A1 (en) * 2012-11-15 2014-05-22 株式会社ブイ・テクノロジー Production method for film formation mask and film formation mask
JP2016033265A (en) * 2014-06-06 2016-03-10 大日本印刷株式会社 Vapor deposition mask, framed vapor deposition mask, vapor deposition mask preparator, and manufacturing method for organic semiconductor element
CN105428552A (en) * 2015-12-31 2016-03-23 昆山国显光电有限公司 Method for forming light emitting layer of organic light emitting diode (OLED) device
WO2016060216A1 (en) * 2014-10-15 2016-04-21 シャープ株式会社 Deposition mask, deposition device, deposition method, and deposition mask manufacturing method
CN105554395A (en) * 2016-01-28 2016-05-04 北京金久瑞科技有限公司 Alignment detection apparatus for line-scan camera and linear light source
CN106367721A (en) * 2015-07-24 2017-02-01 昆山国显光电有限公司 Vapor deposition method, and manufacturing method of organic luminescence display
US20170036230A1 (en) * 2014-04-24 2017-02-09 V Technology Co., Ltd. Deposition mask, method for producing deposition mask and touch panel
WO2017056656A1 (en) * 2015-09-30 2017-04-06 フォックスコン日本技研株式会社 Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with support member
WO2017119153A1 (en) * 2016-01-06 2017-07-13 鴻海精密工業股▲ふん▼有限公司 Vapor deposition mask and manufacturing method therefor, and method for manufacturing organic el display device
JP2018059211A (en) * 2013-03-26 2018-04-12 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask preparation body, method for manufacturing vapor deposition mask and method for manufacturing organic semiconductor element
US9962793B2 (en) 2012-12-21 2018-05-08 V Technology Co., Ltd. Method for producing deposition mask
US10208373B2 (en) * 2012-11-15 2019-02-19 V Technology Co., Ltd. Production method for deposition mask
US10384417B2 (en) 2015-01-20 2019-08-20 Sharp Kabushiki Kaisha Deposition mask and manufacturing method
US20200083452A1 (en) * 2017-02-24 2020-03-12 Applied Materials, Inc. Apparatus for vacuum processing of a substrate, system for vacuum processing of a substrate, and method for transportation of a substrate carrier and a mask carrier in a vacuum chamber
US10597766B2 (en) 2013-03-26 2020-03-24 Dai Nippon Printing Co., Ltd. Vapor deposition mask, vapor deposition mask preparation body, method for producing vapor deposition mask, and method for producing organic semiconductor element
CN111788326A (en) * 2018-03-05 2020-10-16 堺显示器制品株式会社 Vapor deposition mask, method for manufacturing same, and method for manufacturing organic EL display device
CN113005419A (en) * 2019-12-18 2021-06-22 佳能特机株式会社 Alignment and film forming apparatus, alignment and film forming method, and method of manufacturing electronic device
JP7454934B2 (en) 2019-11-29 2024-03-25 株式会社ジャパンディスプレイ Vapor deposition mask and its manufacturing method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123570U (en) * 1985-01-21 1986-08-04
JPH09143677A (en) * 1995-11-20 1997-06-03 Toppan Printing Co Ltd Formation of transparent conductive film
JP2004043898A (en) * 2002-07-12 2004-02-12 Canon Electronics Inc Vapor deposition mask, and organic electroluminescence display device
JP2004190057A (en) * 2002-12-09 2004-07-08 Nippon Filcon Co Ltd Mask for forming thin film pattern of lamination structure comprising patterned mask film and supporting body, and its manufacturing method
JP2005517810A (en) * 2002-02-14 2005-06-16 スリーエム イノベイティブ プロパティズ カンパニー In-line deposition for circuit manufacturing
JP2008001959A (en) * 2006-06-23 2008-01-10 Sumika Chemical Analysis Service Ltd Electrode pattern forming method
JP2008255433A (en) * 2007-04-06 2008-10-23 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2008255435A (en) * 2007-04-06 2008-10-23 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2008274373A (en) * 2007-05-02 2008-11-13 Optnics Precision Co Ltd Mask for vapor deposition
JP2009062565A (en) * 2007-09-05 2009-03-26 Seiko Epson Corp Mask, method for manufacturing mask, and method for manufacturing electro-optic device
JP2009249706A (en) * 2008-04-09 2009-10-29 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample for evaluating semiconductor wafer, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2011501380A (en) * 2007-10-22 2011-01-06 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー Patterning method for light emitting device
JP2012111985A (en) * 2010-11-22 2012-06-14 Toppan Printing Co Ltd Vapor deposition mask and thin film pattern-forming method using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123570U (en) * 1985-01-21 1986-08-04
JPH09143677A (en) * 1995-11-20 1997-06-03 Toppan Printing Co Ltd Formation of transparent conductive film
JP2005517810A (en) * 2002-02-14 2005-06-16 スリーエム イノベイティブ プロパティズ カンパニー In-line deposition for circuit manufacturing
JP2004043898A (en) * 2002-07-12 2004-02-12 Canon Electronics Inc Vapor deposition mask, and organic electroluminescence display device
JP2004190057A (en) * 2002-12-09 2004-07-08 Nippon Filcon Co Ltd Mask for forming thin film pattern of lamination structure comprising patterned mask film and supporting body, and its manufacturing method
JP2008001959A (en) * 2006-06-23 2008-01-10 Sumika Chemical Analysis Service Ltd Electrode pattern forming method
JP2008255433A (en) * 2007-04-06 2008-10-23 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2008255435A (en) * 2007-04-06 2008-10-23 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2008274373A (en) * 2007-05-02 2008-11-13 Optnics Precision Co Ltd Mask for vapor deposition
JP2009062565A (en) * 2007-09-05 2009-03-26 Seiko Epson Corp Mask, method for manufacturing mask, and method for manufacturing electro-optic device
JP2011501380A (en) * 2007-10-22 2011-01-06 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー Patterning method for light emitting device
JP2009249706A (en) * 2008-04-09 2009-10-29 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample for evaluating semiconductor wafer, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
JP2012111985A (en) * 2010-11-22 2012-06-14 Toppan Printing Co Ltd Vapor deposition mask and thin film pattern-forming method using the same

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065446A (en) * 2011-09-16 2013-04-11 V Technology Co Ltd Thin film pattern forming method
JP2013077541A (en) * 2011-09-16 2013-04-25 V Technology Co Ltd Thin film pattern formation method and manufacturing method for organic el display device
JP2013083704A (en) * 2011-10-06 2013-05-09 V Technology Co Ltd Mask and mask member used for the same
WO2013146661A1 (en) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー Method for forming thin film pattern
US9844835B2 (en) 2012-11-15 2017-12-19 V Technology Co., Ltd. Production method for deposition mask and deposition mask
CN104781443B (en) * 2012-11-15 2017-06-27 株式会社V技术 The manufacture method and film formation mask of film formation mask
WO2014077124A1 (en) * 2012-11-15 2014-05-22 株式会社ブイ・テクノロジー Production method for film formation mask and film formation mask
CN104781443A (en) * 2012-11-15 2015-07-15 株式会社V技术 Production method for film formation mask and film formation mask
US10208373B2 (en) * 2012-11-15 2019-02-19 V Technology Co., Ltd. Production method for deposition mask
US9962793B2 (en) 2012-12-21 2018-05-08 V Technology Co., Ltd. Method for producing deposition mask
US10597766B2 (en) 2013-03-26 2020-03-24 Dai Nippon Printing Co., Ltd. Vapor deposition mask, vapor deposition mask preparation body, method for producing vapor deposition mask, and method for producing organic semiconductor element
US10597768B2 (en) 2013-03-26 2020-03-24 Dai Nippon Printing Co., Ltd. Vapor deposition mask, vapor deposition mask preparation body, method for producing vapor deposition mask, and method for producing organic semiconductor element
JP2020002471A (en) * 2013-03-26 2020-01-09 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask with frame, vapor deposition mask preform, method of producing vapor deposition mask, and method of producing organic semiconductor element
JP2018059211A (en) * 2013-03-26 2018-04-12 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask preparation body, method for manufacturing vapor deposition mask and method for manufacturing organic semiconductor element
US10982317B2 (en) 2013-03-26 2021-04-20 Dai Nippon Printing Co., Ltd. Vapor deposition mask, vapor deposition mask preparation body, method for producing vapor deposition mask, and method for producing organic semiconductor element
US20170036230A1 (en) * 2014-04-24 2017-02-09 V Technology Co., Ltd. Deposition mask, method for producing deposition mask and touch panel
JP2019070200A (en) * 2014-06-06 2019-05-09 大日本印刷株式会社 Vapor deposition mask, framed vapor deposition mask, vapor deposition mask preparator, and manufacturing method for organic semiconductor element
JP2016033265A (en) * 2014-06-06 2016-03-10 大日本印刷株式会社 Vapor deposition mask, framed vapor deposition mask, vapor deposition mask preparator, and manufacturing method for organic semiconductor element
WO2016060216A1 (en) * 2014-10-15 2016-04-21 シャープ株式会社 Deposition mask, deposition device, deposition method, and deposition mask manufacturing method
US10384417B2 (en) 2015-01-20 2019-08-20 Sharp Kabushiki Kaisha Deposition mask and manufacturing method
CN106367721A (en) * 2015-07-24 2017-02-01 昆山国显光电有限公司 Vapor deposition method, and manufacturing method of organic luminescence display
CN106367721B (en) * 2015-07-24 2018-11-13 昆山国显光电有限公司 The manufacturing method of evaporation coating method and organic light emitting display
CN108474100A (en) * 2015-09-30 2018-08-31 鸿海精密工业股份有限公司 The manufacturing method of resin film with fine pattern and the manufacturing method of organic EL display device and fine pattern formation base film and the resin film with support member
WO2017056656A1 (en) * 2015-09-30 2017-04-06 フォックスコン日本技研株式会社 Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with support member
JPWO2017056656A1 (en) * 2015-09-30 2018-05-24 鴻海精密工業股▲ふん▼有限公司 Manufacturing method of resin film having fine pattern, manufacturing method of organic EL display device, substrate film for forming fine pattern and resin film with support member
JP2019090115A (en) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Manufacturing method of resin film having fine pattern, manufacturing method of organic el display device, base material film for fine pattern formulation and resin film on support member
JP2019090116A (en) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Manufacturing method of resin film having fine pattern, manufacturing method of organic el display device, base material film for fine pattern formulation and resin film on support member
JP2019090114A (en) * 2015-09-30 2019-06-13 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Manufacturing method of resin film having fine pattern, manufacturing method of organic el display device, base material film for fine pattern formulation and resin film on support member
JP2020111832A (en) * 2015-09-30 2020-07-27 鴻海精密工業股▲ふん▼有限公司Hon Hai Precision Industry Co.,Ltd. Method of manufacturing resin film with fine pattern, and method of manufacturing organic el display device
US10840449B2 (en) 2015-09-30 2020-11-17 Hon Hai Precision Industry Co., Ltd. Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with supporting member
US20190044069A1 (en) * 2015-09-30 2019-02-07 Hon Hai Precision Industry Co., Ltd. Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with supporting member
CN105428552A (en) * 2015-12-31 2016-03-23 昆山国显光电有限公司 Method for forming light emitting layer of organic light emitting diode (OLED) device
US10580985B2 (en) 2016-01-06 2020-03-03 Hon Hai Precision Industry Co., Ltd. Deposition mask, method for manufacturing thereof, and method for manufacturing organic EL display device
WO2017119153A1 (en) * 2016-01-06 2017-07-13 鴻海精密工業股▲ふん▼有限公司 Vapor deposition mask and manufacturing method therefor, and method for manufacturing organic el display device
JPWO2017119153A1 (en) * 2016-01-06 2018-05-24 鴻海精密工業股▲ふん▼有限公司 Vapor deposition mask, manufacturing method thereof, and manufacturing method of organic EL display device
CN105554395A (en) * 2016-01-28 2016-05-04 北京金久瑞科技有限公司 Alignment detection apparatus for line-scan camera and linear light source
US20200083452A1 (en) * 2017-02-24 2020-03-12 Applied Materials, Inc. Apparatus for vacuum processing of a substrate, system for vacuum processing of a substrate, and method for transportation of a substrate carrier and a mask carrier in a vacuum chamber
CN111788326A (en) * 2018-03-05 2020-10-16 堺显示器制品株式会社 Vapor deposition mask, method for manufacturing same, and method for manufacturing organic EL display device
JP7454934B2 (en) 2019-11-29 2024-03-25 株式会社ジャパンディスプレイ Vapor deposition mask and its manufacturing method
CN113005419A (en) * 2019-12-18 2021-06-22 佳能特机株式会社 Alignment and film forming apparatus, alignment and film forming method, and method of manufacturing electronic device
CN113005419B (en) * 2019-12-18 2023-06-27 佳能特机株式会社 Alignment and film forming apparatus, alignment and film forming method, and method for manufacturing electronic device

Similar Documents

Publication Publication Date Title
WO2013039196A1 (en) Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method
TWI555862B (en) Evaporation mask, method for manufacturing the same and thinfilm pattern forming method
JP5935179B2 (en) Vapor deposition mask and vapor deposition mask manufacturing method
JP5958804B2 (en) Vapor deposition mask, vapor deposition mask manufacturing method, and organic EL display device manufacturing method
JP6510126B2 (en) Method of manufacturing vapor deposition mask, vapor deposition mask, and method of manufacturing organic semiconductor device
JP5515025B2 (en) Mask, mask member used therein, mask manufacturing method, and organic EL display substrate manufacturing method
JP2013108143A (en) Manufacturing method of mask and manufacturing device of mask
JP5899585B2 (en) Mask manufacturing method
JP5895382B2 (en) Thin film pattern forming method and organic EL display device manufacturing method
TWI679716B (en) Method of manufacturing flexible electronic device
JP6078741B2 (en) Thin film pattern forming method and mask
JP5804457B2 (en) mask
JP2013173968A (en) Vapor-deposition mask, and method for manufacturing vapor-deposition mask
JP5884543B2 (en) Thin film pattern forming method, mask manufacturing method, and organic EL display device manufacturing method
JP5935101B2 (en) Thin film pattern forming method
JP5953566B2 (en) Thin film pattern forming method and organic EL display device manufacturing method
JP6095088B2 (en) Mask manufacturing method, thin film pattern forming method, and organic EL display device manufacturing method
JP2013077541A5 (en) Thin film pattern forming method, mask used therefor, mask manufacturing method and organic EL display device manufacturing method
WO2023145955A1 (en) Mask and method for producing mask
JP2023111849A (en) Mask and method of manufacturing mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009752

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12832694

Country of ref document: EP

Kind code of ref document: A1