WO2013039081A1 - 熱伝導性材料 - Google Patents

熱伝導性材料 Download PDF

Info

Publication number
WO2013039081A1
WO2013039081A1 PCT/JP2012/073252 JP2012073252W WO2013039081A1 WO 2013039081 A1 WO2013039081 A1 WO 2013039081A1 JP 2012073252 W JP2012073252 W JP 2012073252W WO 2013039081 A1 WO2013039081 A1 WO 2013039081A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
parts
adhesive resin
particles
mass
Prior art date
Application number
PCT/JP2012/073252
Other languages
English (en)
French (fr)
Inventor
芳峰 坂元
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2013039081A1 publication Critical patent/WO2013039081A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat conductive material. More specifically, the present invention includes, for example, a heat conductive material that can be suitably used to join a wiring board and a member that requires heat dissipation, such as a heat sink and a housing, and the heat conductive material.
  • the present invention relates to a pressure-sensitive adhesive sheet having a heat conductive material layer, and a lighting fixture using the heat conductive material.
  • a sheet made of a resin composition in which a heat-conductive filler such as alumina or silica is blended with a flexible resin may have a non-smooth surface such as a heating element or a heat radiator used for the sheet. Therefore, in order to follow these surfaces, the heat conductive material used for the sheet is required to have flexibility.
  • the present invention has been made in view of the prior art, and includes a thermally conductive material excellent in thermal conductivity, adhesiveness, heat resistance, and electrical insulation, and a thermally conductive material layer made of the thermally conductive material. It is an object of the present invention to provide a pressure-sensitive adhesive sheet and a lighting fixture using the thermally conductive material.
  • the present invention (1) A thermally conductive material containing plate-like particles and an adhesive resin as essential components, and containing spherical particles in an amount of 500 parts by mass or less per 1 part by mass of the plate-like particles, A heat conductive material characterized in that the total amount of plate-like particles and spherical particles per 100 parts by mass is 1 to 600 parts by mass; (2) The heat conductive material according to (1), wherein the aspect ratio of the plate-like particles is 10 to 100, (3) The thermally conductive material according to (1) or (2), wherein the thickness of the plate-like particles is 0.01 to 20 ⁇ m and the length in the plane direction is 0.1 to 100 ⁇ m, (4) An adhesive sheet having a heat conductive material layer made of the heat conductive material according to any one of (1) to (3) on at least one surface, and (5) a substrate on which a light emitting element is mounted And a lighting device having a heat radiator, wherein the heat conductive material according to any one of (1) to (3) is interposed between the substrate and the heat radiator. It
  • a thermally conductive material having excellent thermal conductivity, adhesiveness, heat resistance, and electrical insulation is provided. Since the pressure-sensitive adhesive sheet of the present invention has a heat conductive material layer made of the heat conductive material, it is excellent in heat conductivity, pressure-sensitive adhesiveness, heat resistance and electrical insulation. In the lighting fixture of the present invention, since the thermally conductive material of the present invention is interposed between the substrate and the radiator, the adhesiveness and thermal conductivity between the substrate on which the light emitting element is mounted and the radiator are included. Excellent electrical insulation properties.
  • the thermally conductive material of the present invention is a thermally conductive material containing plate-like particles and an adhesive resin as essential components, and the amount of spherical particles is 500 parts by mass or less per 1 part by mass of the plate-like particles.
  • the total amount of plate-like particles and spherical particles per 100 parts by mass of the adhesive resin (solid content) is 1 to 600 parts by mass.
  • plate-like particles and an adhesive resin are contained as essential components, spherical particles are contained in an amount of a specific amount or less, and plate-like per specific amount of the adhesive resin (solid content). Since the total amount of the particles and the spherical particles is within a specific range, it is excellent in thermal conductivity, adhesiveness, heat resistance and electrical insulation.
  • the present invention has one major feature in that plate-like particles are used as the heat conductive material. Since the plate-like particles are used in the heat conductive material of the present invention, the heat conductivity in the surface direction of the heat conductive material layer formed using the heat conductive material of the present invention is increased. Thermal conductivity in the direction can be expressed. In the present invention, when plate-like particles and spherical particles are used in combination, any of the thickness direction and the surface direction of the thermally conductive material layer formed using the thermally conductive material of the present invention is used. Since the thermal conductivity also increases in the direction, isotropic thermal conductivity can be exhibited.
  • the plate-like particles include alkali metals such as sodium and potassium, alkaline earth metals such as magnesium and calcium, typical metals such as graphite, aluminum, zinc and tin, iron, nickel, copper, manganese, silver and platinum.
  • Plate-like metal particles made of metals such as transition metals; alumina, silica, titania, zirconia, magnesia, yttria, zinc oxide, iron oxide, silicon nitride, titanium nitride, boron nitride, silicon carbide, light calcium carbonate, heavy carbonate Calcium, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, silica
  • Examples include plate-like inorganic particles made of inorganic materials such as magnesium, diatomaceous earth, and si
  • plate-like particles may be used alone or in combination of two or more.
  • plate-like particles made of aluminum, silver, copper or an alloy thereof, plate-like particles made of boron nitride, plate-like particles made of graphite, plate made of alumina are preferably plate-like particles made of aluminum, silver, copper or an alloy thereof, plate-like particles made of boron nitride, plate-like particles made of graphite, and plate-like particles made of alumina, more preferably aluminum
  • plate-like particles made of silver, copper or an alloy thereof, plate-like particles made of boron nitride, and plate-like particles made of graphite are more preferable, and plate-like particles made of boron nitride, aluminum, silver, copper or an alloy thereof are more preferable.
  • plate-like particles made of boron nitride or aluminum may be used alone
  • the plate-like particles may be subjected to a surface treatment if necessary.
  • Surface treatment includes, for example, silane coupling treatment, titanate treatment, oxidation treatment, resin coating treatment, energy ray irradiation treatment, electrochemical treatment, and the like, saturated fatty acids such as stearic acid, oleic acid, linoleic acid and the like.
  • grains are mentioned, this invention is not limited only to this illustration.
  • the plate-like particles subjected to the resin coating treatment are preferable because they are excellent in thermal conductivity and thermal adhesiveness and particularly in insulating properties.
  • the resin used for the resin-coated plate-like particles examples include acrylic resins, but the present invention is not limited to such examples.
  • acrylic resins for example, an acrylic resin obtained by polymerizing a monomer component mainly composed of an acrylate ester is preferable, and trimethylolpropane triacrylate, acrylic acid, epoxidized polybutadiene, and divinylbenzene are used.
  • a resin obtained by polymerizing the monomer component to be contained is more preferable.
  • the coating amount of the resin in the plate-like particles coated with the resin is preferably 1 part by mass or more from the viewpoint of improving the electric insulation per 100 parts by mass of the plate-like particles, particularly from the viewpoint of particularly increasing the dielectric breakdown voltage. Preferably it is 3 parts by mass or more, more preferably 5 parts by mass or more. From the viewpoint of improving thermal conductivity, it is preferably 40 parts by mass or less, more preferably 35 parts by mass or less, and even more preferably 30 parts by mass or less. .
  • the aspect ratio of the plate-like particles is preferably 10 or more, more preferably 20 or more, and still more preferably 30 or more from the viewpoint of improving thermal conductivity.
  • the aspect ratio From the viewpoint of suppressing the increase in viscosity it is preferably 100 or less, more preferably 90 or less, and still more preferably 80 or less.
  • the aspect ratio of the plate-like particle is a value obtained by dividing the maximum length in the plane direction of the plate-like particle by the maximum thickness of the plate-like particle.
  • the maximum length and the maximum thickness in the plane direction of the plate-like particles are determined by directly observing the plate-like particles with a scanning electron microscope or the like, and for each arbitrarily selected plate-like particle, the maximum length and the maximum thickness are determined. It can be measured and obtained as an average value in the measured number.
  • the number of plate-like particles to be measured is not particularly limited, but is preferably about 10 to 20 from the viewpoint of improving accuracy and convenience of measurement.
  • the maximum length and the maximum thickness of the plate-like particles contained in the thermally conductive material layer are measured for the plate-like particles separated by dissolving the thermally conductive material layer with a solvent such as an organic solvent. Can be determined by
  • the length and thickness in the plane direction of the plate-like particles mean the maximum length and the maximum thickness in the plane direction of one plate-like particle for convenience.
  • the thickness of the plate-like particles is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and further preferably 0.1 ⁇ m or more from the viewpoint of improving thermal conductivity. From the viewpoint of suppressing the increase in viscosity with the passage of time, it is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the length in the plane direction of the plate-like particles is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more from the viewpoint of improving thermal conductivity, and when the adhesive resin and the plate-like particles are mixed. From the viewpoint of suppressing thickening with time, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the spherical particles include spherical particles made of a metal oxide such as silica, alumina, magnesium oxide, zinc oxide and titanium oxide; spherical particles made of a metal hydroxide such as aluminum hydroxide and magnesium hydroxide; boron nitride, Spherical particles made of metal nitrides such as aluminum nitride, silicon nitride, silicon carbide; spherical particles made of metal carbides such as silicon carbide; spherical particles made of inorganic powders such as carbon black and graphite; alkali metals such as sodium and potassium Metal particles composed of alkaline earth metals such as magnesium and calcium, typical metals such as aluminum, zinc and tin, and transition metals such as iron, nickel, copper, manganese, silver and platinum, etc.
  • a metal oxide such as silica, alumina, magnesium oxide, zinc oxide and titanium oxide
  • metal hydroxide such as aluminum hydroxide and magnesium hydroxide
  • spherical particles may be used alone or in combination of two or more.
  • alumina, magnesium oxide, aluminum hydroxide, magnesium hydroxide, aluminum nitride, and silicon carbide are preferable, alumina, magnesium oxide, aluminum nitride, and silicon carbide are more preferable, and alumina and magnesium oxide are further preferable.
  • the average particle diameter of the spherical particles is preferably 0.01 to 200 ⁇ m, more preferably 0.01 to 100 ⁇ m from the viewpoint of improving the dispersion stability and thermal conductivity of the heat conductive material of the present invention.
  • the average particle diameter of the spherical particles is a value when measured using a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Horiba, Ltd., product number: LA-920).
  • the mass ratio of the plate-like particles to the spherical particles is preferably 0.3 / 100 or more, more preferably 0.6 from the viewpoint of improving dispersion stability and thermal conductivity. / 100 or more, more preferably 1/100 or more, and preferably 90/100 or less, more preferably 70/100 or less, and still more preferably from the viewpoint of improving the isotropic dispersion stability and thermal conductivity. 50/100 or less, more preferably 30/100 or less.
  • the total amount of the plate-like particles and the spherical particles per 100 parts by mass of the adhesive resin (solid content) is 1 part by mass or more from the viewpoint of improving the dispersion stability and the thermal conductivity of the thermal conductive material of the present invention. It is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and from the viewpoint of improving the dispersion stability and the isotropic thermal conductivity of the heat conductive material of the present invention, it is 600 parts by mass or less, preferably 550. It is not more than part by mass, more preferably not more than 530 parts by mass, further preferably not more than 520 parts by mass, and still more preferably not more than 500 parts by mass.
  • the total amount of plate-like particles and spherical particles per 100 parts by mass of the adhesive resin (solid content) is preferably 10 parts by mass or more from the viewpoint of improving the thermal conductivity of the thermally conductive material of the present invention. Preferably it is 15 parts by mass or more, more preferably 50 parts by mass or more. From the viewpoint of improving the adhesiveness and electrical insulation of the heat conductive material of the present invention, it is preferably 550 parts by mass or less, more preferably 530 parts by mass. Hereinafter, it is more preferably 500 parts by mass or less.
  • the total content of the plate-like particles and spherical particles in the heat conductive material of the present invention is preferably 0.5% by mass or more, more preferably 3 from the viewpoint of improving the heat conductivity of the heat conductive material of the present invention. From the viewpoint of improving the adhesiveness and electrical insulation of the heat conductive material of the present invention, more preferably 5% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and particularly preferably 15% by mass or more. , Preferably it is 90 mass% or less, More preferably, it is 85 mass% or less.
  • the adhesive resin examples include (meth) acrylic adhesive resin, silicone adhesive resin, urethane adhesive resin, vinyl alkyl ether adhesive resin, vinylpyrrolidone adhesive resin, acrylamide adhesive resin, Cellulose-based adhesive resins, rubber-based heat conductive materials and the like can be mentioned, but the present invention is not limited to such examples. These adhesive resins may be used alone or in combination of two or more, as long as the object of the present invention is not impaired.
  • (meth) acrylic adhesive resin is excellent in adhesiveness and constant load peelability, can be used for various adherends, and has a wide range of versatility.
  • (Meth) acrylic adhesive resin obtained by polymerizing a monomer component mainly composed of (meth) acrylic acid alkyl ester is more preferable.
  • the “monomer component mainly composed of (meth) acrylic acid alkyl ester” means that the content of the (meth) acrylic acid alkyl ester in the monomer component is 50% by mass or more.
  • the content of the (meth) acrylic acid alkyl ester in the monomer component is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass from the viewpoint of improving adhesiveness. % Or more.
  • the upper limit of the content of the (meth) acrylic acid alkyl ester in the monomer component is preferably 100% by mass, more preferably 97% by mass or less, more preferably from the viewpoint of improving heat resistance. It is 95 mass% or less.
  • (meth) acrylic acid alkyl esters are excellent in adhesiveness, can be used for various adherends, and have a wide range of versatility, from the viewpoint of obtaining (meth) acrylic adhesive resins.
  • a (meth) acrylic acid alkyl ester having 1 to 18 carbon atoms in the ester is preferred, and an alkyl alkyl ester having 1 to 18 carbon atoms in the alkyl ester is more preferred.
  • Suitable alkyl (meth) acrylates include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec- Butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl acrylate, n-heptyl ( (Meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate
  • acrylic acid esters may be used alone or in combination of two or more.
  • alkyl alkyl esters having 1 to 18 carbon atoms of the alkyl ester are preferable, and n-butyl acrylate, n-octyl acrylate, Octyl acrylate and 2-ethylhexyl acrylate are more preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are more preferable.
  • (meth) acrylate means “acrylate” and / or “methacrylate”
  • (meth) acryl means “acryl” and / or “methacryl”.
  • the monomer component may contain a monomer other than the (meth) acrylic acid alkyl ester as long as the object of the present invention is not impaired.
  • monomers other than (meth) acrylic acid alkyl ester for example, a monomer having a carboxyl group, a monomer having a hydroxyl group, an acidic phosphate ester monomer, a monomer having an epoxy group, nitrogen Monomers having atoms, monomers having two or more polymerizable double bonds, aromatic monomers, monomers having halogen atoms, vinyl ester monomers, vinyl ether monomers, etc.
  • the present invention is not limited to such examples.
  • These monomers may be used alone or in combination of two or more. Among these monomers, a monomer having a carboxyl group and a monomer having a hydroxyl group are preferable.
  • Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic anhydride and the like, but the present invention is not limited only to such examples. These monomers having a carboxyl group may be used alone or in combination of two or more. Among these monomers having a carboxyl group, acrylic acid, methacrylic acid, itaconic acid and maleic anhydride are preferable, and acrylic acid and methacrylic acid are more preferable.
  • acidic phosphate ester monomers examples include 2-acryloyloxyethyl acid phosphate and 2-methacryloyloxyethyl acid phosphate, but the present invention is not limited to such examples. These acidic phosphate ester monomers may be used alone or in combination of two or more.
  • Examples of the monomer having a nitrogen atom include nitrogen atoms such as (meth) acrylamide such as acrylamide and methacrylamide, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, imide acrylate, and imide methacrylate.
  • nitrogen atoms such as (meth) acrylamide such as acrylamide and methacrylamide, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, imide acrylate, and imide methacrylate.
  • the (meth) acrylate etc. which have this are mentioned, However, This invention is not limited only to this illustration.
  • These monomers having a nitrogen atom may be used alone or in combination of two or more
  • Examples of the monomer having two or more polymerizable double bonds include ethylene glycol diacrylate, ethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, tripropylene glycol diacrylate, and tripropylene glycol. Examples include dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, and the like, but the present invention is not limited to such examples. These monomers having two or more polymerizable double bonds may be used alone or in combination of two or more.
  • aromatic monomers examples include styrene compounds such as styrene and ⁇ -methylstyrene, but the present invention is not limited to such examples. These aromatic monomers may be used alone or in combination of two or more.
  • Examples of the monomer having a halogen atom include vinyl halides such as vinyl chloride, but the present invention is not limited to such examples. Only one type of monomer having a halogen atom may be used, or two or more types may be used in combination.
  • vinyl ester monomers include fatty acid vinyls such as vinyl acetate, but the present invention is not limited to such examples. Only one type of vinyl ester monomer may be used, or two or more types may be used in combination.
  • vinyl ether monomer examples include butyl vinyl ether and cyclohexyl vinyl ether, but the present invention is not limited to such examples. These vinyl ether monomers may be used alone or in combination of two or more.
  • the content of monomers other than the alkyl acrylate ester in the monomer component is 50% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less, and still more preferably, from the viewpoint of improving adhesiveness. It is 20 mass% or less.
  • the lower limit of the content of the monomer other than the alkyl acrylate ester in the monomer component is preferably 0% by mass, more preferably 3% by mass or more from the viewpoint of improving heat resistance. Preferably it is 5 mass% or more.
  • chain transfer agent When polymerizing the monomer component, a chain transfer agent may be used as necessary from the viewpoint of suppressing an increase in molecular weight distribution and gelation.
  • chain transfer agents include mercaptocarboxylic acids such as mercaptoacetic acid and 3-mercaptopropionic acid; methyl mercaptoacetate, methyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, and n-octyl 3-mercaptopropionate.
  • chain transfer agents may be used alone or in combination of two or more.
  • chain transfer agents mercaptocarboxylic acids, mercaptocarboxylic acid esters, alkyl mercaptans are obtained because they are easily available, have excellent anti-crosslinking properties, and have a low degree of decrease in polymerization rate.
  • Compounds having a mercapto group such as mercaptoalcohols, aromatic mercaptans and mercaptoisocyanurates are preferred.
  • the amount of the chain transfer agent may be appropriately set according to the composition of the monomer component, the polymerization conditions such as the polymerization temperature, the molecular weight of the target polymer, etc., and is not particularly limited, but the weight average molecular weight is from several thousand to When obtaining tens of thousands of polymers, the amount is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass per 100 parts by mass of the monomer component.
  • Examples of the method for polymerizing the monomer component include a bulk polymerization method, a solution polymerization method, a dispersion polymerization method, a suspension polymerization method, and an emulsion polymerization method, but the present invention is limited to such examples. It is not a thing.
  • Bulk polymerization can be performed, for example, by irradiation with energy rays such as ultraviolet rays, electron beams, or radiation, or heating.
  • energy rays such as ultraviolet rays, electron beams, or radiation
  • the monomer components are irradiated by irradiation with energy rays in an inert gas atmosphere such as nitrogen gas or in an atmosphere where air is shut off. It is preferable to polymerize the monomer component.
  • a photopolymerization initiator When the monomer component is polymerized by a bulk polymerization method, a photopolymerization initiator can be used.
  • the photopolymerization initiator include an acetophenone polymerization initiator, a benzoin ether polymerization initiator, a benzyl ketal polymerization initiator, an acyl phosphine oxide polymerization initiator, a benzoin polymerization initiator, and a benzophenone polymerization initiator.
  • the present invention is not limited to such examples.
  • These photopolymerization initiators may be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator may be appropriately set according to the desired physical properties of the polymer to be obtained, but is usually preferably 0.01 to 50 parts by mass, more preferably 100 parts by mass of the monomer component. Is 0.03 to 20 parts by mass.
  • examples of the solvent include aromatic solvents such as benzene, toluene and xylene; alcohol solvents such as isopropyl alcohol and n-butyl alcohol; propylene glycol methyl ether and dipropylene Ether solvents such as glycol methyl ether, ethyl cellosolve, butyl cellosolve; ester solvents such as ethyl acetate, butyl acetate, cellosolve; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol; amides such as dimethylformamide
  • organic solvents such as a system solvent, are mentioned, this invention is not limited only to this illustration. These solvents may be used alone or in combination of two or more. The amount of the solvent may be appropriately determined in consideration of the polymerization conditions, the composition of the monomer components, the concentration of the resulting
  • a polymerization initiator When the monomer component is polymerized by a solution polymerization method, a polymerization initiator can be used.
  • the polymerization initiator include 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile), tert-butylperoxy-2-ethylhexano And 2,2′-azobisisobutyronitrile, benzoyl peroxide, di-tert-butyl peroxide, and the like, but the present invention is not limited to such examples.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator may be appropriately set according to the desired physical properties of the polymer to be obtained. Usually, it is preferably 0.001 to 20 parts by mass, more preferably 100 parts by mass of the monomer component. 0.005 to 10 parts by mass.
  • the polymerization conditions for polymerizing the monomer component may be appropriately set according to the polymerization method, and are not particularly limited.
  • the polymerization temperature is preferably room temperature to 200 ° C, more preferably 40 to 140 ° C. What is necessary is just to set reaction time suitably so that the polymerization reaction of a monomer component may be completed.
  • the weight average molecular weight (Mw) of the (meth) acrylic adhesive resin is from the viewpoint of improving the adhesiveness and heat resistance of the thermally conductive material and the dispersion stability of the plate-like metal particles and the spherical particles used as necessary. , Preferably it is 300,000 or more, More preferably, it is 400,000 or more, More preferably, it is 500,000 or more.
  • the upper limit of the weight average molecular weight of the (meth) acrylic adhesive resin is not particularly limited, but the adhesiveness and heat resistance of the heat conductive material, and the dispersion stability of the plate-like metal particles and the spherical particles used as necessary. From the viewpoint of improving, it is preferably 1.5 million or less, more preferably 1.2 million or less, further preferably 1 million or less, and still more preferably 900,000 or less.
  • the weight average molecular weight of the (meth) acrylic adhesive resin is measured by a gel permeation chromatography (GPC) measuring instrument manufactured by Tosoh Corporation, product number: HLC-8220GPC, separation column: Tosoh Co., Ltd., product number: TSKgel Super HZM-M is used, which means a conversion value using standard polystyrene [Tosoh Co., Ltd.].
  • GPC gel permeation chromatography
  • the glass transition temperature of the (meth) acrylic adhesive resin can be easily adjusted by appropriately adjusting the type and amount of the monomer used in preparing the (meth) acrylic adhesive resin.
  • the glass transition temperature (Tg) of the (meth) acrylic adhesive resin is preferably ⁇ 65 ° C. or higher, more preferably ⁇ 63 ° C. or higher, and still more preferably ⁇ 60 from the viewpoint of improving the adhesiveness of the heat conductive material. From the viewpoint of improving the adhesiveness and heat resistance of the thermally conductive material, it is preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower, and further preferably ⁇ 40 ° C. or lower.
  • the glass transition temperature of the (meth) acrylic adhesive resin is the glass transition temperature of the homopolymer of the monomer used in the monomer component used as a raw material for the (meth) acrylic adhesive resin.
  • 1 / Tg ⁇ (Wm / Tgm) / 100 [Wm represents the content (% by mass) of monomer m in the monomer component constituting the polymer, and Tgm represents the glass transition temperature (absolute temperature: K) of the homopolymer of monomer m]
  • the glass transition temperature (Tg) of the main homopolymer is shown, for example, the glass transition temperature (Tg) of the homopolymer of acrylic acid is 106 ° C, the glass transition temperature (Tg) of the homopolymer of methacrylic acid is 130 ° C, methyl
  • the glass transition temperature (Tg) of the homopolymer of acrylate is 8 ° C, the glass transition temperature (Tg) of the homopolymer of ethyl acrylate is -22 ° C, and the glass transition temperature (Tg) of the homopolymer of n-butyl acrylate is -54 ° C.
  • the glass transition temperature (Tg) of 2-ethylhexyl acrylate homopolymer is ⁇ 70 ° C.
  • the glass transition temperature (Tg) of 2-hydroxyethyl acrylate homopolymer is ⁇ 15 ° C.
  • the homopolymer of 2-hydroxyethyl methacrylate has a glass transition temperature (Tg) of 55 ° C. and 4-hydroxybutyl acrylate.
  • the glass transition temperature (Tg) of the mopolymer is -70 ° C
  • the glass transition temperature (Tg) of the homopolymer of methyl methacrylate is 105 ° C
  • the glass transition temperature (Tg) of the homopolymer of vinyl acetate is 32 ° C
  • the homopolymer of acrylonitrile The glass transition temperature (Tg) is 125 ° C.
  • the glass transition temperature (Tg) of the homopolymer of styrene is 100 ° C.
  • the glass transition temperature of the (meth) acrylic adhesive resin means a glass transition temperature obtained based on the above formula unless otherwise specified.
  • the total amount of monomers with unknown glass transition temperature in the monomer component is 10% by mass.
  • the glass transition temperature is determined using only monomers whose glass transition temperature is known.
  • the glass transition temperature of the (meth) acrylic adhesive resin is determined by differential scanning calorimetry (DSC), differential It is determined by calorimetric analysis (DTA), thermomechanical analysis (TMA) or the like.
  • the composition of the monomer component used as a raw material for the (meth) acrylic adhesive resin can be determined.
  • Examples of the differential scanning calorie measuring device include Seiko Instruments Co., Ltd. product number: DSC220C. Further, when measuring the differential scanning calorific value, a method of drawing a differential scanning calorific value (DSC) curve, a method of obtaining a first derivative curve from the differential scanning calorific value (DSC) curve, a method of performing a smoothing process, and a method of obtaining a target peak temperature There is no limitation in particular. For example, when the measuring device is used, the drawing may be performed from data obtained by using the measuring device. At that time, analysis software capable of performing mathematical processing can be used.
  • analysis software examples include analysis software [manufactured by Seiko Instruments Inc., product number: EXSTAR6000], but the present invention is not limited to such examples.
  • the peak temperature obtained in this way may include an error due to plotting of about 5 ° C. up and down.
  • the room temperature elastic modulus of the adhesive heat conductive material measured at a frequency of 1 Hz is less than 0.3 MPa (10 7 dyne / cm 2 ).
  • the adhesive resin used in the present invention has an adhesive judgment criterion, that is, the storage elastic modulus at room temperature of the adhesive resin measured at a frequency of 1 Hz is 0.3 MPa (10 7 dyne / cm) from the viewpoint of enhancing the adhesiveness. 2 ) It is preferable that it is less than.
  • the storage elastic modulus (G ′) at 25 ° C. of the adhesive resin at a frequency of 1 Hz is preferably 0.5 ⁇ 10 6 Pa or less, more preferably 0.3 ⁇ 10 6 Pa, from the viewpoint of enhancing the adhesiveness. It is as follows.
  • the content of the adhesive resin in the heat conductive material of the present invention is such that the total amount becomes 100% by mass when plate-like particles, spherical particles, cross-linking agents, cross-linking accelerators, additives and the like described below are used. Adjusted to The content of the adhesive resin in the heat conductive material of the present invention is 10% by mass or more, preferably 15% by mass or more from the viewpoint of improving the adhesiveness and electrical insulation of the heat conductive material of the present invention. From the viewpoint of improving thermal conductivity, it is 90% by mass or less, preferably 85% by mass or less.
  • the heat conductive material of the present invention can be easily prepared by mixing adhesive resin, plate-like particles, spherical particles and the like. At this time, it is preferable to use an adhesive resin solution in which an adhesive resin is dissolved in an organic solvent from the viewpoint of preparing a thermally conductive material in which plate-like particles, spherical particles and the like are uniformly dispersed.
  • the organic solvent used for the adhesive resin solution is not particularly limited as long as it dissolves the adhesive resin.
  • the organic solvent include gasoline, coal tar naphtha, petroleum ether, petroleum benzine, turonic acid, mineral spirit, and the like in addition to the organic solvent used when the monomer component is polymerized by a solution polymerization method.
  • the present invention is not limited to such examples.
  • the concentration of the nonvolatile content in the adhesive resin solution is not particularly limited, but is usually about 10 to 70% by mass.
  • the heat conductive material of this invention may contain a crosslinking agent as needed.
  • the crosslinking agent can cure the adhesive resin by crosslinking the adhesive resin having a crosslinkable group.
  • crosslinking agent a compound having two or more functional groups capable of reacting with the crosslinkable group of the adhesive resin in one molecule can be used.
  • the crosslinking agent include a polyisocyanate-based crosslinking agent, a polyfunctional epoxy-based crosslinking agent, a silicone-based crosslinking agent, and the like, but the present invention is not limited to such examples.
  • polyisocyanate-based crosslinking agent examples include aromatic polyisocyanates such as xylylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, and tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and hydrogenated products of the above aromatic polyisocyanates.
  • aromatic polyisocyanates such as xylylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane triisocyanate, and tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and hydrogenated products of the above aromatic polyisocyanates.
  • Polyisocyanates are, for example, “Coronate L”, “Coronate L-55E”, “Coronate HX”, “Coronate HL”, “Coronate HL-S”, “Coronate 2234”, “Aquanate 200”, “Aquanate 210”. [The above is made by Nippon Polyurethane Industry Co., Ltd., “Coronate” and “Aquanate” are registered trademarks], “Desmodule N3400” (manufactured by Sumitomo Bayer Urethane Co., Ltd.
  • polyfunctional epoxy crosslinking agent examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, bisphenol A type epoxy resin, N, N, N ′, N′-tetra.
  • examples include glycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N-diglycidylaniline, N, N-diglycidyltoluidine, and the like. It is not limited to illustration only.
  • These polyfunctional epoxy crosslinking agents may be used alone or in combination of two or more.
  • silicone-based cross-linking agent examples include Shin-Etsu Chemical Co., Ltd., product number: X-92-122, but the present invention is not limited to such examples. Only one type of silicone crosslinking agent may be used, or two or more types may be used in combination.
  • polyisocyanate dimers polyisocyanate trimers, polyisocyanate difunctional prepolymers and polyisocyanate adducts are preferred.
  • Hexamethylene diisocyanate dimer hexamethylene diisocyanate isocyanate.
  • Nurates (trimers), adducts of tolylene diisocyanate and trimethylolpropane are more preferable, and isocyanurates of hexamethylene diisocyanate are more preferable.
  • Examples of the isocyanurate of hexamethylene diisocyanate include Asahi Kasei Chemicals Corporation, trade name: Duranate (registered trademark) TSE-100, trade name: Duranate (registered trademark) TSS-100, and the like. Is not limited to such examples.
  • the amount of the crosslinking agent is usually preferably 0.03 to 1 equivalent, more preferably 0.05 to 0.5 equivalent, when the total amount of crosslinkable groups (functional groups) of the adhesive resin is 1 equivalent. It is.
  • an appropriate amount of a crosslinking accelerator may be used.
  • the crosslinking accelerator include dibutyltin dilaurate, tin octoate, dibutyltin di (2-ethylhexanoate), lead 2-ethylhexanoate, 2-ethylhexyl titanate, 2-ethylhexanoate iron, Examples include 2-ethylhexanoate cobalt, zinc naphthenate, cobalt naphthenate, tin octoate, bismuth octoate, tetra-n-butyltin, diisopropoxytitanium bis (ethylacetoacetate), and zirconium tetraacetylacetonate.
  • the present invention is not limited to such examples.
  • These crosslinking accelerators may be used alone or in combination of two or more.
  • the heat conductive material of the present invention includes, for example, a dispersant, a tackifier, an antioxidant, a plasticizer, a flame retardant, a flame retardant aid, as long as the purpose of the present invention is not impaired. Even if additives such as anti-settling agent, thickener, thixotropy imparting agent, surfactant, antifoaming agent, antistatic agent, surface treatment agent, anti-aging agent, UV absorber, UV stabilizer, etc. Good.
  • the nonvolatile content in the heat conductive material of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more from the viewpoint of improving productivity, and preferably 80% by mass from the viewpoint of improving coating properties. % Or less, more preferably 70% by mass or less.
  • the non-volatile content in the heat conductive material can be adjusted by adjusting the amount of the solvent and the amount of additives contained in the heat conductive material.
  • the solvent may be the same as the organic solvent used for the adhesive resin solution.
  • the viscosity of the heat conductive material of the present invention is from the viewpoint of improving the coatability.
  • the pressure-sensitive adhesive sheet of the present invention has a heat conductive material layer made of a heat conductive material on at least one surface.
  • the pressure-sensitive adhesive sheet of the present invention can be obtained, for example, by forming a heat conductive material layer on at least one surface of a substrate. Therefore, the pressure-sensitive adhesive sheet of the present invention may have a heat conductive material layer only on one surface of the substrate, or may have a heat conductive material layer on both surfaces of the substrate.
  • Examples of the method for applying the thermally conductive material of the present invention to a substrate include coating using a knife coater, slot die coater, lip coater, roll coater, flow coater, spray coater, bar coater, comma coater, doctor blade, and the like.
  • Examples of the method include a coating method and a coating method such as dipping, but the present invention is not limited to such examples.
  • the thermally conductive material of the present invention When the thermally conductive material of the present invention is applied to a substrate, the thermally conductive material of the present invention may be directly applied to the substrate, or after being applied to release paper or the like, the coated material is applied to the substrate. You may make it transfer on.
  • coating the heat conductive material of this invention a heat conductive material layer can be formed on a base material by making it dry.
  • a release paper or a release film may be attached to the surface of the heat conductive material layer formed on the substrate.
  • a heat conductive material layer can be protected suitably.
  • the release paper is peeled off from the surface of the heat conductive material layer when the heat conductive material is used.
  • a thermally conductive material layer is formed on one side of a substrate having a shape such as a sheet shape or a tape shape
  • a known release agent is applied to the back surface of the substrate of the resulting adhesive sheet, If the release agent layer is formed, the heat conductive material layer comes into contact with the release agent layer on the back surface of the substrate by winding the adhesive sheet in a roll shape with the heat conductive material layer inside. Therefore, the surface of the heat conductive material layer can be protected or stored.
  • the base material examples include paper such as fine paper, kraft paper, crepe paper, and glassine paper, resin base materials, textile products such as woven fabrics, non-woven fabrics, and fabrics, and conductive base materials.
  • the invention is not limited to such examples.
  • the heat conductive material of the present invention can be suitably used for joining, for example, a wiring board and a member that requires heat dissipation, such as a heat sink and a housing. Materials, nonwoven fabrics and conductive substrates are preferred.
  • Examples of the resin used for the resin base material include polyolefin resins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, polyvinyl chloride, cellophane, acrylic resin, polyimide, polyphenylene sulfide, and polyamide.
  • the present invention is not limited to such examples.
  • Examples of the resin substrate include a resin film and a sheet. The thickness of the resin film cannot be determined unconditionally because it varies depending on the use of the heat conductive material of the present invention, but is usually about 1 to 100 ⁇ m, and is a viewpoint of improving electrical insulation and heat conductivity.
  • it is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more. From the viewpoint of improving electrical insulation and thermal conductivity, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m. In the following, it is more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less, particularly preferably 5 ⁇ m or less.
  • nonwoven fabric examples include a spunbond nonwoven fabric, a melt blown nonwoven fabric, and a needle punched nonwoven fabric.
  • spunbond nonwoven fabrics are preferred.
  • fibers constituting the nonwoven fabric include polyolefin resins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, polyvinyl chloride, cellophane, acrylic resins, polyimides, polyphenylene sulfide, and polyamide resins.
  • the thickness and basis weight of the nonwoven fabric are arbitrary, and examples thereof include a thickness of 3 to 50 ⁇ m and a basis weight of 5 to 100 g / m 2 .
  • the thickness of the nonwoven fabric is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 7 ⁇ m or more from the viewpoint of improving electrical insulation and thermal conductivity, and preferably 50 ⁇ m from the viewpoint of improving electrical insulation. Below, it is more preferably 45 ⁇ m or less, still more preferably 40 ⁇ m or less.
  • the basis weight of the nonwoven fabric is preferably 5 g / m 2 or more, more preferably 10 g / m 2 or more, and further preferably 15 g / m 2 or more from the viewpoint of improving thermal conductivity. From the viewpoint of improving conductivity, it is preferably 100 g / m 2 or less, more preferably 80 g / m 2 or less, and still more preferably 60 g / m 2 or less.
  • Examples of conductive substrates include titanium foil, stainless steel foil, nickel foil, nickel-chromium alloy foil, copper foil, beryllium foil, aluminum foil, tin foil, lead foil, zinc foil, iron foil, molybdenum foil, zirconium foil. , Gold foil, silver foil, platinum foil, metal foil such as palladium foil, graphite sheet, and the like can be mentioned, but the present invention is not limited to such examples.
  • the thickness of the conductive substrate is arbitrary, but is usually about 1 to 100 ⁇ m. From the viewpoint of improving thermal conductivity, it is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more.
  • it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the thermal conductive material of the present invention is applied to a substrate and then dried.
  • Examples of the drying method include irradiation with hot air and far infrared rays.
  • the thickness of the thermally conductive material layer after drying of the thermally conductive material of the present invention is not particularly limited, but is usually about 1 ⁇ m to 5 mm.
  • the thermally conductive material of the present invention is excellent in adhesiveness and thermal conductivity, and further in electrical insulation.
  • the thermally conductive material of the present invention is applied to one side of the substrate.
  • the total thickness of the pressure-sensitive adhesive sheet of the present invention varies depending on the application of the pressure-sensitive adhesive sheet of the present invention and cannot be determined unconditionally, but is usually about 50 to 300 ⁇ m.
  • the heat conductive material of the present invention can be suitably used for, for example, a lighting fixture having a substrate on which a light emitting element is mounted and a radiator.
  • the thermally conductive material of the present invention can be interposed between the substrate and the radiator.
  • FIG. 1 is a schematic explanatory view showing an embodiment of a lighting fixture in which a thermally conductive material of the present invention is interposed between a substrate and the radiator.
  • the lighting fixture shown in FIG. 1 includes a light emitting element 1, a substrate 2, a heat conductive material layer 3 made of a heat conductive material, and a radiator 4.
  • the heat conductive material layer 3 made of the heat conductive material of the present invention is interposed between the substrate 2 and the radiator 4, the substrate 2 on which the light emitting element 1 is mounted and the radiator. 4 is excellent in adhesiveness and thermal conductivity, and also in electrical insulation.
  • the light emitting element 1 is disposed on one surface of a substrate 2.
  • the other surface of the substrate 2 is integrated with the radiator 4 through the heat conductive material layer 3 made of the heat conductive material of the present invention.
  • Examples of the light-emitting element 1 include elements such as a light-emitting diode (LED) and electroluminescence, but the present invention is not limited to such examples.
  • examples of the heat radiator 4 include a heat sink and a housing, but the present invention is not limited to such examples.
  • the thermally conductive material of the present invention is interposed between the substrate and the radiator, the adhesiveness between the substrate on which the light emitting element is mounted and the radiator and It has excellent thermal conductivity and also excellent electrical insulation.
  • Example 1 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate (mass part, hereinafter the same), 50.5 parts of n-butyl acrylate, 2-ethylhexyl acrylate 37 0.0 part of vinyl acetate, 9.0 part of vinyl acetate, 0.5 part of 2-hydroxyethyl acrylate and 3.0 part of acrylic acid were added, and 0.05 part of azoisobutyronitrile was placed in a nitrogen gas atmosphere. The reaction was carried out at 80 ° C. for 5 hours to obtain an acrylic adhesive resin solution. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • Example 2 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 3 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 4 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 5 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 6 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 7 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 8 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 9 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • this acrylic adhesive resin solution (resin solid content: 100 parts), 100 parts of boron nitride particles (aspect ratio: 25, thickness: 0.4 ⁇ m, length in the plane direction: 10 ⁇ m) and spherical alumina 200 parts of particles (average particle size: 20 ⁇ m) were mixed, ethyl acetate was added so that the nonvolatile content was 70% by mass, and the mixture was sufficiently stirred to obtain a mixed solution.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 13 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 14 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material was coated on release paper [manufactured by Sanei Kaken Co., Ltd., product number: K-80HS] and dried in an atmosphere at 100 ° C. for 5 minutes, so that the heat conduction having a thickness of about 100 ⁇ m was achieved.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 15 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 16 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • Example 17 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • this acrylic adhesive resin solution (resin solid content: 100 parts), 100 parts of mica (aspect ratio: 40, thickness: 0.8 ⁇ m, length in the plane direction: 32 ⁇ m) and spherical alumina particles ( (Average particle size: 20 ⁇ m) 250 parts were mixed, ethyl acetate was added so that the content of nonvolatile components was 70% by mass, and the mixture was sufficiently stirred to obtain a mixed solution.
  • Example 18 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.40 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 19 Thermal conductivity was obtained by mixing 100 parts of the mixed solution obtained in Example 18 and 0.40 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. Obtained material.
  • the obtained heat conductive material was coated on a release paper [manufactured by Sanei Kaken Co., Ltd., product number: K-80HS], dried in an atmosphere at 100 ° C. for 5 minutes, and then the formed heat conductive material layer And a polyethylene terephthalate film having a thickness of 4 ⁇ m were bonded together to form a heat conductive material layer, and an adhesive sheet having an overall thickness of about 100 ⁇ m was obtained.
  • This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides of a polyethylene terephthalate film by peeling the release paper.
  • Example 20 Thermal conductivity was obtained by mixing 100 parts of the mixed solution obtained in Example 13 and 0.40 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. Obtained material.
  • the obtained heat conductive material was coated on a release paper [manufactured by Sanei Kaken Co., Ltd., product number: K-80HS], dried in an atmosphere at 100 ° C. for 5 minutes, and then the formed heat conductive material layer And a polyethylene terephthalate film having a thickness of 4 ⁇ m were bonded together to form a heat conductive material layer, and an adhesive sheet having an overall thickness of about 100 ⁇ m was obtained.
  • This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides of a polyethylene terephthalate film by peeling the release paper.
  • Comparative Example 1 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Comparative Example 2 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Comparative Example 3 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Comparative Example 4 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Thermal conductivity (1) Heat ray method The test piece was produced by cutting an adhesive sheet into the size of 50 mm x 120 mm.
  • silicon, quartz glass and zirconia are used as standard substances, and the thermal conductivity of these is measured using a thermal conductivity meter [manufactured by Kyoto Electronics Co., Ltd., product number: QTM500], the temperature is 23 ° C., and the relative humidity is When measured in an atmosphere of 50%, the thermal conductivity of silicon was 0.24 W / mK, the thermal conductivity of quartz glass was 1.41 W / mK, and the thermal conductivity of zirconia was 3.3 W / mK. .
  • Periodic heating method thermo conductivity in the thickness direction
  • the thermal diffusivity of the test piece was measured by a method (periodic heating method) according to ISO 22007-3 in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50%.
  • the specific heat of the test piece was measured according to JIS K7113, and the specific gravity was measured according to JIS K7112.
  • Thermal conductivity in the plane direction is calculated by, for example, Takahiro Omura and two others, “Method of estimating the in-plane thermal conductivity of a fibrous heat insulating material by the periodic heating method and the unsteady hot wire method. "Nichias Technical Time Report No.” 330, Nichias Co., Ltd., 2002 No. 2, page 1-6, and the like.
  • the thermal conductivity in the plane direction is the result of the thermal conductivity ( ⁇ h ) obtained by the hot wire method and the thermal conductivity ( ⁇ y ) obtained by the periodic heating method.
  • [Thermal conductivity in the surface direction ( ⁇ x )] [Thermal conductivity obtained by the hot wire method ( ⁇ h )] 2 ⁇ [Thermal conductivity obtained by the periodic heating method ( ⁇ y )]
  • [Evaluation criteria] A: Thermal conductivity in the plane direction is 1.5 W / mK or more.
  • O Thermal conductivity in the plane direction is 1.0 W / mK or more and less than 1.5 W / mK.
  • Thermal conductivity in the plane direction is 0.4 W / mK.
  • more and less than 1.0 W / mK x thermal conductivity in the plane direction is less than 0.4 W / mK or more
  • a polyester film having a thickness of 25 ⁇ m was stuck on one side of the adhesive sheet to prepare a test tape having a width of 25 mm and a length of 50 mm.
  • a test piece was prepared by placing the test tape obtained above on a stainless steel plate that had been previously polished, reciprocating a roller having a mass of 2 kg, and integrating the two. After this test piece was cured for 20 minutes in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%, an adhesive sheet was removed from the test piece by 300 mm in this atmosphere using a QC tensile tester (manufactured by Tester Sangyo Co., Ltd.).
  • Adhesive strength is 5 N / 25 mm or more
  • Adhesive strength is 1 N / 25 mm or more and less than 5 N / 25 mm
  • Adhesive strength is less than 1 N / 25 mm or cohesive failure occurs
  • Heat-resistant shearing holding force A polyester film having a thickness of 25 ⁇ m was attached to one side of the pressure-sensitive adhesive sheet to prepare a test tape having a width of 25 mm and a length of 25 mm.
  • a test piece was prepared by placing the test tape obtained above on a stainless steel plate that had been previously polished, reciprocating a roller having a mass of 2 kg, and integrating the two. After this test piece was cured for 20 minutes in an atmosphere having a temperature of 120 ° C., a weight of 1 kg was attached to the test piece in the vertical direction in this atmosphere, and a holding force tester (manufactured by Tester Sangyo Co., Ltd.) was used.
  • Dielectric breakdown voltage is 20 kV / mm or more
  • Dielectric breakdown voltage is 10 kV / mm or more and less than 20 kV / mm
  • Dielectric breakdown voltage is 1 kV / mm or more and less than 10 kV / mm
  • Dielectric breakdown voltage is less than 1 kV / mm
  • each of the thermally conductive materials obtained in each comparative example has an evaluation of x, and the score in the overall evaluation is 45 points or less, whereas it is obtained in each example. None of the obtained thermal conductive materials have an evaluation of x at all, and since the score in the comprehensive evaluation is 70 points or more, it is comprehensive in thermal conductivity, adhesiveness, heat resistance and electrical insulation. It turns out that it is excellent in.
  • the non-volatile content in the paste obtained above was 55.7% by mass, and the resin coating amount in the aluminum particles coated with the resin was examined based on the following method.
  • the resin per 100 g of plate-like aluminum particles The coating amount of was 13.8 g (reaction rate: 80%).
  • a portion of this paste was washed with hexane and filtered, and then mineral spirit was added to prepare a paste having a plate-like aluminum particle content of 50.0% by mass.
  • the amount of plate-like aluminum particles was determined by subtracting the resin coating amount from the mass of the resin-coated aluminum particles.
  • Example 22 Thermal conductivity was obtained by mixing 100 parts of the mixed solution obtained in Example 5 and 0.30 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. Obtained material.
  • the obtained heat conductive material was coated on a release paper [manufactured by Sanei Kaken Co., Ltd., product number: K-80HS], dried in an atmosphere at 100 ° C. for 5 minutes, and then the formed heat conductive material layer And a polyethylene terephthalate film having a thickness of about 4 ⁇ m were bonded together to obtain an adhesive sheet having a heat conductive material layer and a total thickness of 100 ⁇ m.
  • This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 23 In Example 22, a polyethylene terephthalate film having a thickness of about 12 ⁇ m was used instead of a polyethylene terephthalate film having a thickness of about 4 ⁇ m, and the thickness of the adhesive sheet having the heat conductive material layer was 100 ⁇ m.
  • a pressure-sensitive adhesive sheet was obtained in the same manner as in Example 22 except that the adjustment was made. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 24 In Example 22, a polyimide film having a thickness of about 12.5 ⁇ m was used instead of a polyethylene terephthalate film having a thickness of about 4 ⁇ m, and the thickness of the adhesive sheet having the heat conductive material layer was 100 ⁇ m.
  • a pressure-sensitive adhesive sheet was obtained in the same manner as in Example 22 except that the adjustment was made as described above. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 25 In Example 22, a polyphenylene sulfide film having a thickness of about 5 ⁇ m was used in place of the polyethylene terephthalate film having a thickness of about 4 ⁇ m, and the thickness of the adhesive sheet having the thermally conductive material layer was 100 ⁇ m.
  • a pressure-sensitive adhesive sheet was obtained in the same manner as in Example 22 except that the adjustment was made. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 26 In Example 22, instead of a polyethylene terephthalate film having a thickness of about 4 ⁇ m, a polyamide film having a thickness of about 9 ⁇ m was used, and the thickness of the adhesive sheet having the thermally conductive material layer was 100 ⁇ m. Except having adjusted, it carried out similarly to Example 22, and obtained the adhesive sheet.
  • This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 27 In Example 22, a polyester non-woven fabric having a thickness of about 36 ⁇ m (basis weight: 23 g / m 2 ) was used instead of a polyethylene terephthalate film having a thickness of about 4 ⁇ m, and a pressure-sensitive adhesive sheet having a thermally conductive material layer A pressure-sensitive adhesive sheet was obtained in the same manner as in Example 22 except that the thickness was adjusted to 100 ⁇ m. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 28 In Example 22, instead of a polyethylene terephthalate film having a thickness of about 4 ⁇ m, a rayon nonwoven fabric having a thickness of about 36 ⁇ m (basis weight: 14 g / m 2 ) was used, and an adhesive sheet having a thermally conductive material layer A pressure-sensitive adhesive sheet was obtained in the same manner as in Example 22 except that the thickness was adjusted to 100 ⁇ m. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 29 After preparing an acrylic adhesive resin solution in the same manner as in Example 1, 200 parts of this acrylic adhesive resin solution (solid content: 100 parts) and a plate coated with the resin obtained in Production Example 1 were coated. 10 parts of aluminum particle paste (aspect ratio of plate-like aluminum particles: 50, thickness: 0.25 ⁇ m, length in plane direction: 12.5 ⁇ m) (solid content of aluminum particles coated with resin) and spherical alumina particles (Average particle diameter: 10 ⁇ m) 200 parts was mixed, ethyl acetate was added so that the nonvolatile content was 70% by mass, and the mixture was sufficiently stirred to obtain a mixed solution.
  • aluminum particle paste aspect ratio of plate-like aluminum particles: 50, thickness: 0.25 ⁇ m, length in plane direction: 12.5 ⁇ m
  • spherical alumina particles Average particle diameter: 10 ⁇ m
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 30 In Example 29, the amount of paste of plate-like aluminum particles coated with resin (aspect ratio of plate-like aluminum particles: 50, thickness: 0.25 ⁇ m, length in the plane direction: 12.5 ⁇ m) is from 10 parts.
  • a pressure-sensitive adhesive sheet was obtained by performing the same operation as in Example 29 except that the amount was changed to 15 parts. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 31 In Example 29, the amount of paste of plate-like aluminum particles coated with resin (aspect ratio of plate-like aluminum particles: 50, thickness: 0.25 ⁇ m, length in the plane direction: 12.5 ⁇ m) is from 10 parts.
  • a pressure-sensitive adhesive sheet was obtained by performing the same operation as in Example 29 except that the amount was changed to 20 parts. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 32 In Example 22, instead of 100 parts of the mixed solution obtained in Example 5, 100 parts of the mixed solution obtained in Example 30 [Plate of aluminum particles coated with resin (the aspect ratio of the plate-like aluminum particles) : 50, thickness: 0.25 ⁇ m, length in the plane direction: 12.5 ⁇ m): 15 parts] was used to obtain an adhesive sheet by performing the same operation as in Example 22. It was.
  • This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both surfaces of a resin substrate by peeling the release paper.
  • Example 33 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 34 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 35 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 36 An acrylic adhesive resin solution was prepared in the same manner as in Example 1.
  • the acrylic adhesive resin contained in the obtained acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 37 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 50.5 parts of n-butyl acrylate, 37.0 parts of 2-ethylhexyl acrylate, vinyl acetate 9 0.0 part, 2-hydroxyethyl acrylate 0.5 part and acrylic acid 3.0 part were added, and then 0.06 part azoisobutyronitrile was added and reacted at 80 ° C. for 5 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass. The acrylic adhesive resin contained in this acrylic adhesive resin solution had a weight average molecular weight of 500,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • the acrylic adhesive resin solution obtained above was used in place of the acrylic adhesive resin solution used in Example 11, and an isocyanate crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd.
  • An adhesive sheet was obtained in the same manner as in Example 11 except that the amount of isocyanate, trade name: Coronate L-55E] was changed to 0.30 part.
  • Example 38 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 50.5 parts of n-butyl acrylate, 37.0 parts of 2-ethylhexyl acrylate, vinyl acetate 9 0.0 part, 2-hydroxyethyl acrylate 0.5 part and acrylic acid 3.0 part were added, and then azoisobutyronitrile 0.03 part was added and reacted at 80 ° C. for 5 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 1,000,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • the acrylic adhesive resin solution obtained above was used in place of the acrylic adhesive resin solution used in Example 11, and an isocyanate crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd.
  • An adhesive sheet was obtained in the same manner as in Example 11 except that the amount of isocyanate, trade name: Coronate L-55E] was changed to 0.20 part.
  • Example 39 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 87.5 parts of n-butyl acrylate, 9.0 parts of vinyl acetate, 2-hydroxyethyl acrylate After adding 0.5 part and 3.0 parts of acrylic acid, 0.05 part of azoisobutyronitrile is added and reacted in a nitrogen gas atmosphere at 80 ° C. for 5 hours to obtain an acrylic adhesive resin solution. It was. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 45.2 ° C.
  • an adhesive sheet was obtained in the same manner as in Example 11 except that the acrylic adhesive resin solution obtained above was used instead of the acrylic adhesive resin solution used in Example 11. .
  • Example 40 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 15.5 parts of n-butyl acrylate, 80.0 parts of 2-ethylhexyl acrylate, vinyl acetate 1 0.0 part, 0.5 part of 2-hydroxyethyl acrylate and 3.0 parts of acrylic acid, and then 0.05 part of azoisobutyronitrile were allowed to react at 80 ° C. for 5 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass. The acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of -63.8 ° C.
  • an adhesive sheet was obtained in the same manner as in Example 11 except that the acrylic adhesive resin solution obtained above was used instead of the acrylic adhesive resin solution used in Example 11. .
  • Example 41 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 50.5 parts of n-butyl acrylate, 37.0 parts of 2-ethylhexyl acrylate, vinyl acetate 9 0.0 part, 2-hydroxyethyl acrylate 0.5 part and acrylic acid 3.0 part were added, and then 0.06 part azoisobutyronitrile was added and reacted at 80 ° C. for 5 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 500,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • Example 33 instead of the acrylic adhesive resin solution used in Example 33, the acrylic adhesive resin solution obtained above was used, and an isocyanate crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., A pressure-sensitive adhesive sheet was obtained in the same manner as in Example 33 except that the amount of polyisocyanate, trade name: Coronate L-55E] was changed to 0.30 part.
  • Example 42 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 50.5 parts of n-butyl acrylate, 37.0 parts of 2-ethylhexyl acrylate, vinyl acetate 9 0.0 part, 2-hydroxyethyl acrylate 0.5 part and acrylic acid 3.0 part were added, and then azoisobutyronitrile 0.03 part was added and reacted at 80 ° C. for 5 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 1,000,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • the acrylic adhesive resin solution obtained above was used in place of the acrylic adhesive resin solution used in Example 33, and an isocyanate crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd.
  • An adhesive sheet was obtained in the same manner as in Example 33 except that the amount of isocyanate, trade name: Coronate L-55E] was changed to 0.20 part.
  • Example 43 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 87.5 parts of n-butyl acrylate, 9.0 parts of vinyl acetate, 2-hydroxyethyl acrylate After adding 0.5 part and 3.0 parts of acrylic acid, 0.05 part of azoisobutyronitrile is added and reacted in a nitrogen gas atmosphere at 80 ° C. for 5 hours to obtain an acrylic adhesive resin solution. It was. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 45.2 ° C.
  • a pressure-sensitive adhesive sheet was obtained in the same manner as in Example 33 except that the acrylic pressure-sensitive adhesive resin solution obtained above was used instead of the acrylic pressure-sensitive adhesive resin solution used in Example 33. .
  • Example 44 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 15.5 parts of n-butyl acrylate, 80.0 parts of 2-ethylhexyl acrylate, vinyl acetate 1 0.0 part, 0.5 part of 2-hydroxyethyl acrylate and 3.0 parts of acrylic acid, and then 0.05 part of azoisobutyronitrile were allowed to react at 80 ° C. for 5 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass. The acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of -63.8 ° C.
  • a pressure-sensitive adhesive sheet was obtained in the same manner as in Example 33 except that the acrylic pressure-sensitive adhesive resin solution obtained above was used instead of the acrylic pressure-sensitive adhesive resin solution used in Example 33. .
  • Example 29 the amount of paste of plate-like aluminum particles coated with resin (aspect ratio of plate-like aluminum particles: 50, thickness: 0.25 ⁇ m, length in the plane direction: 12.5 ⁇ m) is from 10 parts.
  • An adhesive sheet was obtained by performing the same operation as in Example 29, except that the content was changed to 0.1 part.
  • This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Example 29 the amount of paste of plate-like aluminum particles coated with resin (aspect ratio of plate-like aluminum particles: 50, thickness: 0.25 ⁇ m, length in the plane direction: 12.5 ⁇ m) is from 10 parts.
  • a pressure-sensitive adhesive sheet was obtained by performing the same operation as in Example 29 except that the amount was changed to 210 parts. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Comparative Example 7 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 50.5 parts of n-butyl acrylate, 37.0 parts of 2-ethylhexyl acrylate, vinyl acetate 9 0.0 part, 0.5 part of 2-hydroxyethyl acrylate and 3.0 part of acrylic acid, and then 0.1 part of azoisobutyronitrile were allowed to react at 80 ° C. for 5 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass. Further, the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 250,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.44 parts of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Comparative Example 8 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 96.5 parts of 2-ethylhexyl acrylate, 0.5 parts of 2-hydroxyethyl acrylate and acrylic acid After adding 3.0 parts, 0.03 part of azoisobutyronitrile was added and reacted in a nitrogen gas atmosphere at 80 ° C. for 5 hours to obtain an acrylic adhesive resin solution. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 66.7 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Comparative Example 9 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 50.5 parts of n-butyl acrylate, 37.0 parts of 2-ethylhexyl acrylate, vinyl acetate 9 0.0 part, 0.5 part of 2-hydroxyethyl acrylate and 3.0 parts of acrylic acid, and then 0.01 part of azoisobutyronitrile were allowed to react at 60 ° C. for 8 hours in a nitrogen gas atmosphere. An acrylic adhesive resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass. The acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 1,800,000 and a glass transition temperature of ⁇ 51.2 ° C.
  • Comparative Example 10 In a reaction vessel equipped with a cooling pipe, a nitrogen gas introduction pipe, a thermometer, a dropping funnel and a stirrer, 100 parts of ethyl acetate, 50.5 parts of n-butyl acrylate, 37.0 parts of methyl methacrylate, 9 parts of vinyl acetate, After adding 0.5 parts of 2-hydroxyethyl acrylate and 3.0 parts of acrylic acid, 0.05 parts of azoisobutyronitrile is added and reacted in a nitrogen gas atmosphere at 80 ° C. for 5 hours to obtain an acrylic adhesive. A functional resin solution was obtained. The content of nonvolatile components in the obtained acrylic adhesive resin solution was 50% by mass.
  • the acrylic adhesive resin contained in the acrylic adhesive resin solution had a weight average molecular weight of 700,000 and a glass transition temperature of ⁇ 1.3 ° C.
  • a heat conductive material was obtained by mixing 100 parts of the obtained mixed solution and 0.22 part of an isocyanate-based crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd., polyisocyanate, trade name: Coronate L-55E]. .
  • the obtained heat conductive material is coated on a release paper (manufactured by Sanei Kaken Co., Ltd., product number: K-80HS) and dried in an atmosphere at 100 ° C. for 5 minutes to obtain a heat conductivity of about 100 ⁇ m in thickness.
  • An adhesive sheet having an adhesive material layer formed thereon was obtained. This pressure-sensitive adhesive sheet was used as a pressure-sensitive adhesive sheet having a thermally conductive material layer on both sides having no substrate by peeling the release paper.
  • Comparative Example 11 instead of the acrylic adhesive resin solution used in Example 33, an acrylic adhesive resin solution obtained in the same manner as in Comparative Example 7 was used, and an isocyanate crosslinking agent [manufactured by Nippon Polyurethane Industry Co., Ltd. Polyisocyanate, trade name: Coronate L-55E] was changed to 0.44 part, and an adhesive sheet was obtained in the same manner as in Example 33.
  • an isocyanate crosslinking agent manufactured by Nippon Polyurethane Industry Co., Ltd. Polyisocyanate, trade name: Coronate L-55E
  • Comparative Example 12 An adhesive sheet was obtained in the same manner as in Example 33 except that the acrylic adhesive resin solution obtained in the same manner as in Comparative Example 9 was used instead of the acrylic adhesive resin solution used in Example 33. I tried to make it. However, when the acrylic adhesive resin solution, boron nitride particles, and spherical alumina particles were mixed and stirred, aggregates were generated, so the subsequent operation was stopped.
  • Comparative Example 13 An adhesive sheet was prepared in the same manner as in Example 33 except that the acrylic adhesive resin solution obtained in the same manner as in Comparative Example 8 was used instead of the acrylic adhesive resin solution used in Example 33. Obtained.
  • Comparative Example 14 An adhesive sheet was obtained in the same manner as in Example 33 except that the acrylic adhesive resin solution obtained in the same manner as in Comparative Example 10 was used instead of the acrylic adhesive resin solution used in Example 33. Obtained.
  • each of the heat conductive materials obtained in each comparative example has an evaluation of x, and the score in the comprehensive evaluation is 25 points or less, whereas it is obtained in each example. None of the obtained heat conductive materials have an evaluation of x at all, and since the score in the comprehensive evaluation is 60 points or more, it is comprehensive in heat conductivity, adhesiveness, heat resistance and electrical insulation. It turns out that it is excellent in. Further, it can be seen that the heat conductive materials obtained in Examples 33 to 36 and Examples 41 to 44 are remarkably excellent in the thermal conductivity and heat resistance (T-type peel strength) in the surface direction.
  • the adhesive sheet having the thermally conductive material obtained in each example and the thermally conductive material layer made of the thermally conductive material are all, for example, a wiring board, a heat sink, a housing, and the like. It turns out that it can be used conveniently, when joining the member for which heat dissipation of this is calculated
  • examples of products in which a wiring board and a member that requires heat dissipation are joined include a board on which a light-emitting element is mounted and a lighting device having a radiator.
  • the adhesive sheet of the present invention can be used in place of the fixture from parts fixed by conventional fasteners such as screws and screws, but also the adhesive sheet of the present invention can be fixed.
  • the fixing tool can be more firmly fixed.
  • the product in which the parts are fixed using the pressure-sensitive adhesive sheet of the present invention has a function of filling a gap (air layer) existing between the substrate 2 and the radiator 4 as shown in FIG. Therefore, the present invention not only can prevent a decrease in thermal conductivity due to the presence of the air layer, but also can reduce the thickness and life of the device and shorten the process when manufacturing the device.
  • This adhesive sheet is excellent in industrial applicability.
  • the heat conductive material of the present invention is a lighting device using an adhesive sheet, a light emitting diode (LED), electroluminescence, etc., a backlight lighting device, a battery such as a solar cell or a lithium ion battery, an IC, a CPU. It is expected to be used for applications such as computer parts, power control devices such as modules, power circuits such as inverters, touch panels, and electromagnetic shields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 熱伝導性、粘着性、耐熱性および電気絶縁性に優れた熱伝導性材料、前記熱伝導性材料からなる熱伝導性材料層を有する粘着性シート、および前記熱伝導性材料が用いられた照明用器具を提供する。板状粒子および粘着性樹脂を必須成分として含有する熱伝導性材料であって、球状粒子を板状粒子1質量部あたり500質量部以下の量で含有し、粘着性樹脂(固形分)100質量部あたりの板状粒子と球状粒子との合計量が1~600質量部であることを特徴とする熱伝導性材料、当該熱伝導性材料からなる熱伝導性材料層を少なくとも一方の面に有する粘着性シート、および発光素子1が実装された基板2および放熱器4を有する照明用器具であって、基板2と放熱器4との間に前記熱伝導性材料からなる熱伝導性材料層3が介在することを特徴とする照明用器具。

Description

熱伝導性材料
 本発明は、熱伝導性材料に関する。さらに詳しくは、本発明は、例えば、配線基板とヒートシンク、筐体などの放熱性が求められる部材とを接合させるのに好適に使用することができる熱伝導性材料、当該熱伝導性材料からなる熱伝導性材料層を有する粘着性シート、および前記熱伝導性材料が用いられた照明用器具に関する。
 柔軟性を有する樹脂にアルミナ、シリカなどの熱伝導性充填剤が配合された樹脂組成物からなるシートは、当該シートが使用される発熱体、放熱体などの表面が平滑ではないことがあることから、これらの表面に追随するようにするために当該シートに用いられる熱伝導性材料には柔軟性が求められている。
 柔軟性を有する熱伝導性材料としては、母材としてシリコーンが用いられ、これに半導体熱伝導フィラーが充填された熱伝導材(例えば、特許文献1参照)、アルミナ粉末、酸化亜鉛粉末、シリコーンゲルおよびアルキルアルコキシシランを含有する熱伝導性材料(例えば、特許文献2参照)が提案されている。
 しかし、シリコーンおよびシリコーンゲルは、粘着性が低いばかりでなく、これらに含まれている低分子量のシロキサン化合物が電子部品などの接続不良を生じる原因となるため、実用上、その用途が限定される。
 したがって、近年、熱伝導性、粘着性、耐熱性および電気絶縁性に優れた熱伝導性材料の開発が待ち望まれている。
特開2003-197833号公報 特開2011-084621号公報
 本発明は、前記従来技術に鑑みてなされたものであり、熱伝導性、粘着性、耐熱性および電気絶縁性に優れた熱伝導性材料、前記熱伝導性材料からなる熱伝導性材料層を有する粘着性シート、および前記熱伝導性材料が用いられた照明用器具を提供することを目的とする。
 本発明は、
(1) 板状粒子および粘着性樹脂を必須成分として含有する熱伝導性材料であって、球状粒子を板状粒子1質量部あたり500質量部以下の量で含有し、粘着性樹脂(固形分)100質量部あたりの板状粒子と球状粒子との合計量が1~600質量部であることを特徴とする熱伝導性材料、
(2) 板状粒子のアスペクト比が10~100である前記(1)に記載の熱伝導性材料、
(3) 板状粒子の厚さが0.01~20μmであり、面方向の長さが0.1~100μmである前記(1)または(2)に記載の熱伝導性材料、
(4) 前記(1)~(3)のいずれかに記載の熱伝導性材料からなる熱伝導性材料層を少なくとも一方の面に有する粘着性シート、および
(5) 発光素子が実装された基板および放熱器を有する照明用器具であって、前記基板と前記放熱器との間に前記(1)~(3)のいずれかに記載の熱伝導性材料が介在することを特徴とする照明用器具
に関する。
 本発明によれば、熱伝導性、粘着性、耐熱性および電気絶縁性に優れた熱伝導性材料が提供される。本発明の粘着性シートは、前記熱伝導性材料からなる熱伝導性材料層を有するので、熱伝導性、粘着性、耐熱性および電気絶縁性に優れている。また、本発明の照明用器具は、基板と放熱器との間に本発明の熱伝導性材料が介在しているので、発光素子が実装された基板と放熱器との粘着性および熱伝導性に優れ、さらに電気絶縁性にも優れている。
照明用器具を構成する基板と放熱器との間に本発明の熱伝導性材料が介在する照明用器具の一実施態様を示す概略説明図である。
 本発明の熱伝導性材料は、前記したように、板状粒子および粘着性樹脂を必須成分として含有する熱伝導性材料であり、球状粒子を板状粒子1質量部あたり500質量部以下の量で含有し、粘着性樹脂(固形分)100質量部あたりの板状粒子と球状粒子との合計量が1~600質量部であることを特徴とする。
 本発明の熱伝導性材料においては、板状粒子および粘着性樹脂を必須成分として含有し、球状粒子を特定量以下の量で含有し、粘着性樹脂(固形分)の特定量あたりの板状粒子と球状粒子との合計量が特定範囲内にあるので、熱伝導性、粘着性、耐熱性および電気絶縁性に優れている。
 本発明は、熱伝導性材料に板状粒子が使用されている点に、1つの大きな特徴がある。本発明の熱伝導性材料において、板状粒子が使用されているので、本発明の熱伝導性材料を用いて形成される熱伝導性材料層の面方向の熱伝導率が高くなるので、面方向における熱伝導性を発現させることができる。また、本発明において、板状粒子と球状粒子とが併用されている場合には、本発明の熱伝導性材料を用いて形成される熱伝導性材料層の厚さ方向および面方向のいずれの方向においても熱伝導率が高くなるので、等方性のある熱伝導性を発現させることができる。
 板状粒子としては、例えば、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、グラファイト、アルミニウム、亜鉛、スズなどの典型金属、鉄、ニッケル、銅、マンガン、銀、白金などの遷移金属などの金属からなる板状金属粒子;アルミナ、シリカ、チタニア、ジルコニア、マグネシア、イットリア、酸化亜鉛、酸化鉄、窒化ケイ素、窒化チタン、窒化ホウ素、シリコンカーバイド、軽質炭酸カルシウム、重質炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレイ、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂などの無機材料からなる板状無機粒子;ラウロイルタウリンカルシウム、ラウロイルリジンなどの有機材料からなる板状有機粒子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの板状粒子は、それぞれ単独で用いてもよく、2種類以上を混合して用いてもよい。板状粒子のなかでは、熱伝導性を向上させる観点から、アルミニウム、銀、銅またはそれらの合金からなる板状粒子、窒化ホウ素からなる板状粒子、グラファイトからなる板状粒子、アルミナからなる板状粒子、タルクおよびマイカが好ましく、アルミニウム、銀、銅またはそれらの合金からなる板状粒子、窒化ホウ素からなる板状粒子、グラファイトからなる板状粒子およびアルミナからなる板状粒子がより好ましく、アルミニウム、銀、銅またはそれらの合金からなる板状粒子、窒化ホウ素からなる板状粒子およびグラファイトからなる板状粒子がさらに好ましく、窒化ホウ素、アルミニウム、銀、銅またはそれらの合金からなる板状粒子がさらに一層好ましく、窒化ホウ素またはアルミニウムからなる板状粒子が特に好ましい。前記板状粒子は、いずれも、それぞれ単独で用いてもよく、2種類以上を混合して用いてもよい。
 板状粒子には、必要により、表面処理が施されていてもよい。表面処理としては、例えば、シランカップリング処理、チタネート処理、酸化処理、樹脂被覆処理、エネルギー線照射処理、電気化学的処理などをはじめ、ステアリン酸などの飽和脂肪酸やオレイン酸、リノール酸などの不飽和脂肪酸を板状粒子に吸着させる処理などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの表面処理のなかでは、樹脂被覆処理が施された板状粒子は、熱伝導性および熱粘着性に優れるとともに、特に絶縁性に優れることから好ましい。
 樹脂被覆処理が施された板状粒子、すなわち樹脂が被覆された粒子に用いられる樹脂としては、例えば、アクリル系樹脂などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。アクリル系樹脂のなかでは、例えば、アクリル酸エステルを主成分とする単量体成分を重合させることによって得られるアクリル系樹脂が好ましく、トリメチロールプロパントリアクリレート、アクリル酸、エポキシ化ポリブタジエンおよびジビニルベンゼンを含有する単量体成分を重合させることによって得られる樹脂がより好ましい。
 樹脂が被覆された板状粒子における樹脂の被覆量は、板状粒子100質量部あたり、電気絶縁性を向上させる観点、なかでも特に絶縁破壊電圧を高める観点から、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上であり、熱伝導性を向上させる観点から、好ましくは40質量部以下、より好ましくは35質量部以下、さらに好ましくは30質量部以下である。
 板状粒子のアスペクト比は、熱伝導性を向上させる観点から、好ましくは10以上、より好ましくは20以上、さらに好ましくは30以上であり、粘着性樹脂と板状粒子とを混合したときに経時とともに増粘することを抑制する観点から、好ましくは100以下、より好ましくは90以下、さらに好ましくは80以下である。
 なお、板状粒子のアスペクト比は、板状粒子の面方向の最大長さを当該板状粒子の最大厚さで除することによって求められる値である。換言すれば、板状粒子のアスペクト比は、式:
〔板状粒子のアスペクト比〕
=〔板状粒子の面方向の最大長さ〕÷〔板状粒子の最大厚さ〕
に基づいて求められる。
 板状粒子の面方向の最大長さおよび最大厚さは、板状粒子を走査型電子顕微鏡などによって直接観察し、任意に選択された板状粒子について、それぞれの最大長さおよび最大厚さを測定し、測定された個数における平均値として求めることができる。板状粒子の測定個数は、特に限定されないが、精度の向上および測定の便宜の観点から、10~20個程度であることが好ましい。なお、熱伝導性材料層に含まれている板状粒子の最大長さおよび最大厚さは、熱伝導性材料層を有機溶媒などの溶媒で溶解させることによって分離された板状粒子について測定することによって求めることができる。
 なお、本明細書において、板状粒子の面方向の長さおよび厚さは、便宜上、それぞれ1つの板状粒子における面方向の最大長さおよび最大厚さを意味する。
 板状粒子の厚さは、熱伝導性を向上させる観点から、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、粘着性樹脂と板状粒子とを混合したときに経時とともに増粘することを抑制する観点から、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下である。
 板状粒子の面方向の長さは、熱伝導性を向上させる観点から、好ましくは0.1μm以上、より好ましくは0.2μm以上であり、粘着性樹脂と板状粒子とを混合したときに経時とともに増粘することを抑制する観点から、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下である。
 球状粒子としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化亜鉛、酸化チタンなどの金属酸化物からなる球状粒子;水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物からなる球状粒子;窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素などの金属窒化物からなる球状粒子;炭化ケイ素などの金属炭化物からなる球状粒子;カーボンブラック、グラファイトなどの無機粉体からなる球状粒子;ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、アルミニウム、亜鉛、スズなどの典型金属、鉄、ニッケル、銅、マンガン、銀、白金などの遷移金属などの金属からなる金属粒子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの球状粒子は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの球状粒子のなかでは、アルミナ、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、窒化アルミニウムおよび炭化ケイ素が好ましく、アルミナ、酸化マグネシウム、窒化アルミニウムおよび炭化ケイ素がより好ましく、アルミナおよび酸化マグネシウムがさらに好ましい。
 球状粒子の平均粒子径は、本発明の熱伝導性材料の分散安定性および熱伝導性を向上させる観点から、好ましくは0.01~200μm、より好ましくは0.01~100μmである。なお、球状粒子の平均粒子径は、レーザ回折/散乱式粒度分布測定装置〔(株)堀場製作所製、品番:LA-920〕を用いて測定したときの値である。
 本発明の熱伝導性材料は、球状粒子を板状粒子1質量部あたり500質量部以下の量、すなわち0~500質量部の量で含有する。板状粒子1質量部あたりの球状粒子の量は、分散安定性および熱伝導率を向上させる観点から、0質量部以上、好ましくは1質量部以上、より好ましくは2質量部以上であり、分散安定性および熱伝導率の等方性を向上させる観点から、500質量部以下、好ましくは450質量部以下、より好ましくは400質量部以下、さらに好ましくは350質量部以下、さらに一層好ましくは300質量部以下である。
 また、板状粒子と球状粒子との質量比(板状粒子/球状粒子)は、分散安定性および熱伝導率を向上させる観点から、好ましくは0.3/100以上、より好ましくは0.6/100以上、さらに好ましくは1/100以上であり、分散安定性および熱伝導率の等方性を向上させる観点から、好ましくは90/100以下、より好ましくは70/100以下、より一層好ましくは50/100以下、さらに好ましくは30/100以下である。
 粘着性樹脂(固形分)100質量部あたりの板状粒子と球状粒子との合計量は、本発明の熱伝導性材料の分散安定性および熱伝導率を向上させる観点から、1質量部以上、好ましくは3質量部以上、より好ましくは5質量部以上であり、本発明の熱伝導性材料の分散安定性および熱伝導率の等方性を向上させる観点から、600質量部以下、好ましくは550質量部以下、より好ましくは530質量部以下、さらに好ましくは520質量部以下、さらに一層好ましくは500質量部以下である。また、粘着性樹脂(固形分)100質量部あたりの板状粒子および球状粒子の合計量は、本発明の熱伝導性材料の熱伝導性を向上させる観点から、好ましくは10質量部以上、より好ましくは15質量部以上、さらに好ましくは50質量部以上であり、本発明の熱伝導性材料の粘着性および電気絶縁性を向上させる観点から、好ましくは550質量部以下、より好ましくは530質量部以下、さらに好ましくは500質量部以下である。
 本発明の熱伝導性材料における板状粒子および球状粒子の合計含有率は、本発明の熱伝導性材料の熱伝導性を向上させる観点から、好ましくは0.5質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上、さらに一層好ましくは10質量%以上、特に好ましくは15質量%以上であり、本発明の熱伝導性材料の粘着性および電気絶縁性を向上させる観点から、好ましくは90質量%以下、より好ましくは85質量%以下である。
 粘着性樹脂としては、例えば、(メタ)アクリル系粘着性樹脂、シリコーン系粘着性樹脂、ウレタン系粘着性樹脂、ビニルアルキルエーテル系粘着性樹脂、ビニルピロリドン系粘着性樹脂、アクリルアミド系粘着性樹脂、セルロース系粘着性樹脂、ゴム系熱伝導性材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの粘着性樹脂は、本発明の目的が阻害されない範囲内で、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 粘着性樹脂のなかでは、粘着性および耐定荷重剥離性に優れており、さらに種々の被着体に使用することができ、汎用性の幅が広いことから、(メタ)アクリル系粘着性樹脂が好ましく、(メタ)アクリル酸アルキルエステルを主成分とする単量体成分を重合させることによって得られる(メタ)アクリル系粘着樹脂がより好ましい。
 なお、前記「(メタ)アクリル酸アルキルエステルを主成分とする単量体成分」は、単量体成分における(メタ)アクリル酸アルキルエステルの含有率が50質量%以上であることを意味する。単量体成分における(メタ)アクリル酸アルキルエステルの含有率は、粘着性を向上させる観点から、50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。また、単量体成分における(メタ)アクリル酸アルキルエステルの含有率の上限値は、好ましくは100質量%であるが、耐熱性を向上させる観点から、より好ましくは97質量%以下、さらに好ましくは95質量%以下である。
 (メタ)アクリル酸アルキルエステルのなかでは、粘着性に優れており、種々の被着体に使用することができ、汎用性の幅が広い(メタ)アクリル系粘着性樹脂を得る観点から、アルキルエステルの炭素数が1~18である(メタ)アクリル酸アルキルエステルが好ましく、アルキルエステルの炭素数が1~18であるアクリル酸アルキルエステルがより好ましい。好適な(メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、n-へキシル(メタ)アクリレート、シクロヘキシルアクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、n-ラウリル(メタ)アクリレートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの(メタ)アクリル酸エステルは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの(メタ)アクリル酸アルキルエステルのなかでは、粘着性を向上させる観点から、アルキルエステルの炭素数が1~18であるアクリル酸アルキルエステルが好ましく、n-ブチルアクリレート、n-オクチルアクリレート、イソオクチルアクリレートおよび2-エチルヘキシルアクリレートがより好ましく、n-ブチルアクリレートおよび2-エチルヘキシルアクリレートがさらに好ましい。
 なお、本明細書において、「(メタ)アクリレート」は、「アクリレート」および/または「メタクリレート」を意味し、「(メタ)アクリル」は、「アクリル」および/または「メタクリル」を意味する。
 単量体成分には、本発明の目的が阻害されない範囲内で、(メタ)アクリル酸アルキルエステル以外の単量体が含まれていてもよい。(メタ)アクリル酸アルキルエステル以外の単量体としては、例えば、カルボキシル基を有する単量体、水酸基を有する単量体、酸性リン酸エステル系単量体、エポキシ基を有する単量体、窒素原子を有する単量体、2個以上の重合性二重結合を有する単量体、芳香族系単量体、ハロゲン原子を有する単量体、ビニルエステル系単量体、ビニルエーテル系単量体などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの単量体のなかでは、カルボキシル基を有する単量体および水酸基を有する単量体が好ましい。
 カルボキシル基を有する単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸、無水マレイン酸などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのカルボキシル基を有する単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらのカルボキシル基を有する単量体のなかでは、アクリル酸、メタクリル酸、イタコン酸および無水マレイン酸が好ましく、アクリル酸およびメタクリル酸がより好ましい。
 水酸基を有する単量体としては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレートなどのヒドロキシアルキル基の炭素数が2~4のヒドロキシアルキル(メタ)アクリレートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの水酸基を有する単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 酸性リン酸エステル系単量体としては、例えば、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの酸性リン酸エステル系単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 エポキシ基を有する単量体としては、例えば、グリシジルアクリレート、グリシジルメタクリレートなどのエポキシ基を有する(メタ)アクリル酸エステルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのエポキシ基を有する単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 窒素原子を有する単量体としては、例えば、アクリルアミド、メタクリルアミドなどの(メタ)アクリルアミド、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、イミドアクリレート、イミドメタクリレートなどの窒素原子を有する(メタ)アクリレートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの窒素原子を有する単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 2個以上の重合性二重結合を有する単量体としては、例えば、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、トリプロピレングリコールジアクリレート、トリプロピレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの2個以上の重合性二重結合を有する単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 芳香族系単量体としては、例えば、スチレン、α-メチルスチレンなどのスチレン系化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの芳香族系単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 ハロゲン原子を有する単量体としては、例えば、塩化ビニルなどのハロゲン化ビニルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。ハロゲン原子を有する単量体は、1種類のみを用いてもよく、2種類以上を併用してもよい。
 ビニルエステル系単量体としては、例えば、酢酸ビニルなどの脂肪酸ビニルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。ビニルエステル系単量体は、1種類のみを用いてもよく、2種類以上を併用してもよい。
 ビニルエーテル系単量体としては、例えば、ブチルビニルエーテル、シクロヘキシルビニルエーテルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのビニルエーテル系単量体は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 単量体成分におけるアクリル酸アルキルエステル以外の単量体の含有率は、粘着性を向上させる観点から、50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。また、単量体成分におけるアクリル酸アルキルエステル以外の単量体の含有率の下限値は、好ましくは0質量%であるが、耐熱性を向上させる観点から、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。
 単量体成分を重合させる際には、分子量分布の増大やゲル化を抑制する観点から、必要により連鎖移動剤を用いてもよい。連鎖移動剤としては、例えば、メルカプト酢酸、3-メルカプトプロピオン酸などのメルカプトカルボン酸類;メルカプト酢酸メチル、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸2-エチルヘキシル、3-メルカプトプロピオン酸n-オクチル、3-メルカプトプロピオン酸メトキシブチル、3-メルカプトプロピオン酸ステアリル、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)などのメルカプトカルボン酸エステル類;エチルメルカプタン、tert-ブチルメルカプタン、n-ドデシルメルカプタン、1,2-ジメルカプトエタンなどのアルキルメルカプタン類;2-メルカプトエタノール、4-メルカプト-1-ブタノールなどのメルカプトアルコール類;ベンゼンチオール、m-トルエンチオール、p-トルエンチオール、2-ナフタレンチオールなどの芳香族メルカプタン類;トリス〔(3-メルカプトプロピオニロキシ)エチル〕イソシアヌレートなどのメルカプトイソシアヌレート類;2-ヒドロキシエチルジスルフィド、テトラエチルチウラムジスルフィドなどのジスルフィド類;ベンジルジエチルジチオカルバメートなどのジチオカルバメート類;α-メチルスチレンダイマーなどのダイマー類;四臭化炭素などのハロゲン化アルキルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの連鎖移動剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの連鎖移動剤のなかでは、入手が容易であること、架橋防止性に優れていること、重合速度の低下の度合いが小さいことなどから、メルカプトカルボン酸類、メルカプトカルボン酸エステル類、アルキルメルカプタン類、メルカプトアルコール類、芳香族メルカプタン類、メルカプトイソシアヌレート類などのメルカプト基を有する化合物が好ましい。
 連鎖移動剤の量は、単量体成分の組成、重合温度などの重合条件、目的とする重合体の分子量などに応じて適宜設定すればよく、特に限定されないが、重量平均分子量が数千~数万の重合体を得る場合には、単量体成分100質量部あたり、0.1~20質量部であることが好ましく、0.5~15質量部であることがより好ましい。
 単量体成分を重合させる方法としては、例えば、塊状重合法、溶液重合法、分散重合法、懸濁重合法、乳化重合法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 塊状重合は、例えば、紫外線、電子線、放射線などのエネルギー線の照射や加熱などによって行なうことができる。エネルギー線の照射によって単量体成分の塊状重合を行なう場合には、例えば、窒素ガスなどの不活性ガス雰囲気中や空気を遮断した雰囲気中でエネルギー線を単量体成分に照射することによって単量体成分を重合させることが好ましい。
 塊状重合法によって単量体成分を重合させる際には、光重合開始剤を用いることができる。光重合開始剤としては、例えば、アセトフェノン系重合開始剤、ベンゾインエーテル系重合開始剤、ベンジルケタール系重合開始剤、アシルフォスフィンオキシド系重合開始剤、ベンゾイン系重合開始剤、ベンゾフェノン系重合開始剤などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの光重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。光重合開始剤の量は、得られる重合体の所望する物性などに応じて適宜設定すればよいが、通常、単量体成分100質量部あたり、好ましくは0.01~50質量部、より好ましくは0.03~20質量部である。
 単量体成分を溶液重合法によって重合させる場合、溶媒として、例えば、ベンゼン、トルエン、キシレンなどの芳香族系溶媒;イソプロピルアルコール、n-ブチルアルコールなどのアルコール系溶媒;プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、エチルセロソルブ、ブチルセロソルブなどのエーテル系溶媒;酢酸エチル、酢酸ブチル、酢酸セロソルブなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコールなどのケトン系溶媒;ジメチルホルムアミドなどのアミド系溶媒などの有機溶媒が挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。溶媒の量は、重合条件、単量体成分の組成、得られる重合体の濃度などを考慮して適宜決定すればよい。
 単量体成分を溶液重合法によって重合させる際には、重合開始剤を用いることができる。重合開始剤としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、tert-ブチルパーオキシ-2-エチルヘキサノエート、2,2’-アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイドなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。重合開始剤の量は、得られる重合体の所望する物性などに応じて適宜設定すればよいが、通常、単量体成分100質量部あたり、好ましくは0.001~20質量部、より好ましくは0.005~10質量部である。
 単量体成分を重合させる際の重合条件は、重合方法に応じて適宜設定すればよく、特に限定されるものではない。重合温度は、好ましくは室温~200℃、より好ましくは40~140℃である。反応時間は、単量体成分の重合反応が完結するように適宜設定すればよい。
 以上のようにして単量体成分を重合させることにより、(メタ)アクリル系粘着性樹脂が得られる。(メタ)アクリル系粘着性樹脂の重量平均分子量(Mw)は、熱伝導性材料の粘着性、耐熱性ならびに板状金属粒子および必要に応じて用いられる球状粒子の分散安定性を向上させる観点から、好ましくは30万以上、より好ましくは40万以上、さらに好ましくは50万以上である。(メタ)アクリル系粘着性樹脂の重量平均分子量の上限は、特に限定されないが、熱伝導性材料の粘着性、耐熱性ならびに板状金属粒子および必要に応じて用いられる球状粒子の分散安定性を向上させる観点から、好ましくは150万以下、より好ましくは120万以下、さらに好ましくは100万以下、さらに一層好ましくは90万以下である。
 なお、本明細書において、(メタ)アクリル系粘着性樹脂の重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)の測定装置として、東ソー(株)製、品番:HLC-8220GPC、分離カラム:東ソー(株)製、品番:TSKgel Super HZM-Mを用い、標準ポリスチレン〔東ソー(株)製〕による換算値を意味する。
 (メタ)アクリル系粘着性樹脂のガラス転移温度は、当該(メタ)アクリル系粘着性樹脂を調製する際に用いられるモノマーの種類およびその量を適宜調整することによって容易に調節することができる。
 (メタ)アクリル系粘着性樹脂のガラス転移温度(Tg)は、熱伝導性材料の粘着性を向上させる観点から、好ましくは-65℃以上、より好ましくは-63℃以上、さらに好ましくは-60℃以上であり、熱伝導性材料の粘着性および耐熱性を向上させる観点から、好ましくは-20℃以下、より好ましくは-30℃以下、さらに好ましくは-40℃以下である。
 なお、本願明細書において、(メタ)アクリル系粘着性樹脂のガラス転移温度は、(メタ)アクリル系粘着性樹脂の原料として用いられるモノマー成分に使用されているモノマーのホモポリマーのガラス転移温度を用いて、式:
   1/Tg=Σ(Wm/Tgm)/100
〔式中、Wmはポリマーを構成するモノマー成分におけるモノマーmの含有率(質量%)、Tgmはモノマーmのホモポリマーのガラス転移温度(絶対温度:K)を示す〕
で表されるフォックス(Fox)の式に基づいて求められた温度を意味する。
 主要なホモポリマーのガラス転移温度(Tg)を示せば、例えば、アクリル酸のホモポリマーのガラス転移温度(Tg)は106℃、メタクリル酸のホモポリマーのガラス転移温度(Tg)は130℃、メチルアクリレートのホモポリマーのガラス転移温度(Tg)は8℃、エチルアクリレートのホモポリマーのガラス転移温度(Tg)は-22℃、n-ブチルアクリレートのホモポリマーのガラス転移温度(Tg)は-54℃、2-エチルへキシルアクリレートのホモポリマーのガラス転移温度(Tg)は-70℃、2-ヒドロキシエチルアクリレートのホモポリマーのガラス転移温度(Tg)は-15℃、2-ヒドロキシエチルメタクリレートのホモポリマーのガラス転移温度(Tg)は55℃、4-ヒドロキシブチルアクリレートのホモポリマーのガラス転移温度(Tg)は-70℃、メチルメタクリレートのホモポリマーのガラス転移温度(Tg)は105℃、酢酸ビニルのホモポリマーのガラス転移温度(Tg)は32℃、アクリロニトリルのホモポリマーのガラス転移温度(Tg)は125℃、スチレンのホモポリマーのガラス転移温度(Tg)は100℃である。
 本明細書においては、(メタ)アクリル系粘着性樹脂のガラス転移温度は、特に断りがない限り、前記式に基づいて求められたガラス転移温度を意味する。なお、特殊単量体、多官能単量体などのようにガラス転移温度が不明の単量体については、単量体成分における当該ガラス転移温度が不明の単量体の合計量が10質量%以下である場合には、ガラス転移温度が判明している単量体のみを用いてガラス転移温度が求められる。単量体成分におけるガラス転移温度が不明の単量体の合計量が10質量%を超える場合には、(メタ)アクリル系粘着性樹脂のガラス転移温度は、示差走査熱量分析(DSC)、示差熱量分析(DTA)、熱機械分析(TMA)などによって求められる。
 この(メタ)アクリル系粘着性樹脂のガラス転移温度を考慮して、当該(メタ)アクリル系粘着性樹脂の原料として用いられる単量体成分の組成を決定することができる。
 示差走査熱量の測定装置としては、例えば、セイコーインスツル(株)製、品番:DSC220Cなどが挙げられる。また、示差走査熱量を測定する際、示差走査熱量(DSC)曲線を描画する方法、示差走査熱量(DSC)曲線から一次微分曲線を得る方法、スムージング処理を行なう方法、目的のピーク温度を求める方法などには特に限定がない。例えば、前記測定装置を用いた場合には、当該測定装置を用いることによって得られたデータから作図すればよい。その際、数学的処理を行なうことができる解析ソフトウェアを用いることができる。当該解析ソフトウェアとしては、例えば、解析ソフトウェア〔セイコーインスツル(株)製、品番:EXSTAR6000〕などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。なお、このようにして求められたピーク温度には、上下5℃程度の作図による誤差が含まれることがある。
 なお、「粘着性及び熱伝導性材料技術(Adhesion and Adhesives Technology)」第2版、独国、カール・ハンゼル(Carl Hanzer)社、2002年のアルフォンサス・ポシウス(Alphonsus Pocius)〕著「ダールキスト(Dahlquist)の粘着性判定基準」に、周波数1Hzで測定した粘着性熱伝導性材料の室温弾性率は0.3MPa(107dyne/cm2)未満であることが報告されている。本発明に用いられる粘着性樹脂は、粘着性を高める観点から、この粘着性判定基準、すなわち、周波数1Hzで測定した粘着性樹脂の室温での貯蔵弾性率が0.3MPa(107dyne/cm2)未満であることを満たすものであることが好ましい。また、周波数1Hzにおける粘着性樹脂の25℃での貯蔵弾性率(G’)は、粘着性を高める観点から、好ましくは0.5×106Pa以下、より好ましくは0.3×106Pa以下である。
 本発明の熱伝導性材料における粘着性樹脂の含有率は、板状粒子、球状粒子、以下に述べる架橋剤、架橋促進剤、添加剤などを使用したときに、全量が100質量%となるように調整される。本発明の熱伝導性材料における粘着性樹脂の含有率は、本発明の熱伝導性材料の粘着性および電気絶縁性を向上させる観点から、10質量%以上、好ましくは15質量%以上であり、熱伝導性を向上させる観点から、90質量%以下、好ましくは85質量%以下である。
 本発明の熱伝導性材料は、粘着性樹脂、板状粒子、球状粒子などを混合することによって容易に調製することができる。このとき、板状粒子、球状粒子などが均一に分散された熱伝導性材料を調製する観点から、粘着性樹脂を有機溶媒に溶解させた粘着性樹脂溶液を用いることが好ましい。
 粘着性樹脂溶液に用いられる有機溶媒は、粘着性樹脂を溶解させるものであればよく、特に限定されない。前記有機溶媒としては、例えば、前記単量体成分を溶液重合法によって重合させる場合に用いられる有機溶媒のほか、ガソリン、コールタールナフサ、石油エーテル、石油ベンジン、テレビン酸、ミネラルスピリットなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。粘着性樹脂溶液における不揮発分の濃度は、特に限定されないが、通常、10~70質量%程度である。
 なお、前記粘着性樹脂が架橋性基(官能基)を有する場合、本発明の熱伝導性材料には、必要により架橋剤を含有させてもよい。架橋剤は、架橋性基を有する粘着性樹脂を架橋させることによって当該粘着性樹脂を硬化させることができる。
 架橋剤としては、粘着性樹脂が有する架橋性基と反応し得る官能基を1分子中に2個以上有する化合物を用いることができる。架橋剤としては、例えば、ポリイソシアネート系架橋剤、多官能エポキシ系架橋剤、シリコーン系架橋剤などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 ポリイソシアネート系架橋剤としては、例えば、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、トリレンジイソシアネートなどの芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、前記芳香族ポリイソシアネートの水素添加物などの脂肪族または脂環族ポリイソシアネート、これらのポリイソシアネートの2量体または3量体、これらのポリイソシアネートとトリメチロールプロパンなどのポリオールとからなるアダクト体などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのポリイソシアネート系架橋剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 ポリイソシアネートは、例えば、「コロネートL」、「コロネートL-55E」、「コロネートHX」、「コロネートHL」、「コロネートHL-S」、「コロネート2234」、「アクアネート200」、「アクアネート210」〔以上、日本ポリウレタン工業(株)製、「コロネート」および「アクアネート」は登録商標〕、「デスモジュールN3400」〔住友バイエルウレタン(株)(現バイエルA.G.社)製、「デスモジュール」は登録商標〕、「デュラネートD-201」、「デュラネートTSE-100」、「デュラネートTSS-100」、「デュラネート24A-100」、「デュラネートE-405-80T」〔以上、旭化成ケミカルズ(株)製、「デュラネート」は登録商標〕、「タケネートD-110N」、「タケネートD-120N」、「タケネートM-631N」、「MTERT-オレスターNP1200」〔以上、三井化学ポリウレタン(株)製、「タケネート」および「オレスター」は登録商標〕などとして商業的に容易に入手することができる。これらのポリイソシアネートは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 多官能エポキシ系架橋剤としては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールA型エポキシ樹脂、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの多官能エポキシ系架橋剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 シリコーン系架橋剤としては、例えば、信越化学工業(株)製、品番:X-92-122などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。シリコーン系架橋剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。
 架橋剤のなかでは、ポリイソシアネートの2量体、ポリイソシアネートの3量体、ポリイソシアネートの2官能プレポリマーおよびポリイソシアネートのアダクト体などが好ましく、ヘキサメチレンジイソシアネートの2量体、ヘキサメチレンジイソシアネートのイソシアヌレート体(3量体)、トリレンジイソシアネートとトリメチロールプロパンとのアダクト体などがより好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート体がさらに好ましい。ヘキサメチレンジイソシアネートのイソシアヌレート体としては、例えば、旭化成ケミカルズ(株)製、商品名:デュラネート(登録商標)TSE-100、商品名:デュラネート(登録商標)TSS-100などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 架橋剤の量は、粘着性樹脂が有する架橋性基(官能基)の合計量を1当量としたとき、通常、好ましくは0.03~1当量、より好ましくは0.05~0.5当量である。
 また、本発明においては、架橋促進剤を適量で用いてもよい。架橋促進剤としては、例えば、ジブチル錫ジラウレート、オクトエ酸錫、ジブチル錫ジ(2-エチルヘキサノエート)、2-エチルヘキサノエート鉛、チタン酸2-エチルヘキシル、2-エチルヘキサノエート鉄、2-エチルヘキサノエートコバルト、ナフテン酸亜鉛、ナフテン酸コバルト、オクタン酸錫、オクタン酸ビスマス、テトラn-ブチル錫、ジイソプロポキシチタンビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトナートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの架橋促進剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 また、本発明の熱伝導性材料には、本発明の目的を阻害しない範囲内で、必要により、例えば、分散剤、粘着付与剤、酸化防止剤、可塑剤、難燃剤、難燃助剤、沈降防止剤、増粘剤、チクソトロピー付与剤、界面活性剤、消泡剤、静電気防止剤、表面処理剤、老化防止剤、紫外線吸収剤、紫外線安定剤などの添加剤を適量で含有させてもよい。
 本発明の熱伝導性材料における不揮発分量は、生産性を向上させる観点から、好ましくは20質量%以上、より好ましくは30質量%以上であり、塗工性を向上させる観点から、好ましくは80質量%以下、より好ましくは70質量%以下である。熱伝導性材料における不揮発分量は、熱伝導性材料に含まれる溶媒の量や添加剤の量などを調整することによって調節することができる。前記溶媒としては、前記粘着性樹脂溶液に用いられる有機溶媒と同様であればよい。
 本発明の熱伝導性材料の粘度〔東機産業(株)製、品番:TVB-10Mを用い、25℃の温度で回転数12r/mにて測定〕は、塗工性を向上させる観点から、好ましくは100mPa・s以上、より好ましくは500mPa・s以上、さらに好ましくは1000mPa・s以上であり、前記と同様に塗工性を向上させる観点から、好ましくは60000mPa・s以下、より好ましくは40000mPa・s以下、さらに好ましくは20000mPa・s以下である。
 本発明の粘着性シートは、熱伝導性材料からなる熱伝導性材料層を少なくとも一方の面に有するものである。本発明の粘着性シートは、例えば、基材の少なくとも一方の表面に熱伝導性材料層を形成させることによって得られる。したがって、本発明の粘着性シートは、基材の一方表面のみに熱伝導性材料層を有していてもよく、基材の両表面に熱伝導性材料層を有していてもよい。
 本発明の熱伝導性材料を基材に塗布する方法としては、例えば、ナイフコーター、スロットダイコーター、リップコーター、ロールコーター、フローコーター、スプレーコーター、バーコーター、コンマコーター、ドクターブレードなどを用いる塗工方法、ディッピングなどの塗工方法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。本発明の熱伝導性材料を基材に塗布する際には、本発明の熱伝導性材料を基材に直接塗布してもよく、あるいは離型紙などに塗布した後、この塗布物を基材上に転写させてもよい。このように本発明の熱伝導性材料を塗布した後、乾燥させることにより、基材上に熱伝導性材料層を形成させることができる。
 基材上に形成された熱伝導性材料層の表面には、例えば、離型紙や離型フィルムを貼着してもよい。このように熱伝導性材料層の表面に離型紙を貼着した場合には、熱伝導性材料層を好適に保護することができる。離型紙は、熱伝導性材料を使用するときに熱伝導性材料層の表面から引き剥がされる。なお、シート状、テープ状などの形状を有する基材の片面に熱伝導性材料層を形成させた場合には、得られる粘着性シートの基材の背面に公知の離型剤を塗布し、離型剤層を形成しておけば、熱伝導性材料層を内側にして粘着性シートをロール状に巻くことにより、熱伝導性材料層は、基材の背面の離型剤層と接触するので、熱伝導性材料層の表面を保護したり、保存したりすることができる。
 基材としては、例えば、上質紙、クラフト紙、クレープ紙、グラシン紙などの紙類、樹脂製基材、織布、不織布、布帛などの繊維製品、導電性基材などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。基材のなかでは、本発明の熱伝導性材料を、例えば、配線基板とヒートシンク、筐体などの放熱性が求められる部材とを接合させるのに好適に使用することができることから、樹脂製基材、不織布および導電性基材が好ましい。
 樹脂製基材に用いられる樹脂としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリスチレン、ポリ塩化ビニル、セロファン、アクリル樹脂、ポリイミド、ポリフェニレンスルフィド、ポリアミドなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。樹脂製基材としては、例えば、樹脂フィルム、シートなどが挙げられる。樹脂フィルムの厚さは、本発明の熱伝導性材料の用途によって異なることから一概には決定することができないが、通常、1~100μm程度であり、電気絶縁性および熱伝導性を向上させる観点から、好ましくは1μm以上、より好ましくは2μm以上、さらに好ましくは3μm以上であり、電気絶縁性および熱伝導性を向上させる観点から、好ましくは100μm以下、より好ましくは50μm以下、より一層好ましくは30μm以下、さらに好ましくは20μm以下、さらに一層好ましくは10μm以下、特に好ましくは5μm以下である。
 不織布としては、例えば、スパンボンド不織布、メルトブロー不織布、ニードルパンチ不織布などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの不織布のなかでは、スパンボンド不織布が好ましい。不織布を構成する繊維としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリスチレン、ポリ塩化ビニル、セロファン、アクリル樹脂、ポリイミド、ポリフェニレンスルフィド、ポリアミドなどの樹脂からなる合成繊維、レーヨン、キュプラなどの再生繊維、アセテートなどの半合成繊維などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。不織布の厚さおよび坪量は、任意であるが、その一例として、厚さは3~50μm、坪量は5~100g/m2が挙げられる。不織布の厚さは、電気絶縁性および熱伝導性を向上させる観点から、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは7μm以上であり、電気絶縁性を向上させる観点から、好ましくは50μm以下、より好ましくは45μm以下、さらに好ましくは40μm以下である。また、不織布の坪量は、熱伝導性を向上させる観点から、好ましくは5g/m2以上、より好ましくは10g/m2以上、さらに好ましくは15g/m2以上であり、電気絶縁性および熱伝導性を向上させる観点から、好ましくは100g/m2以下、より好ましくは80g/m2以下、さらに好ましくは60g/m2以下である。
 導電性基材としては、例えば、チタン箔、ステンレス鋼箔、ニッケル箔、ニッケル-クロム合金箔、銅箔、ベリリウム箔、アルミニウム箔、錫箔、鉛箔、亜鉛箔、鉄箔、モリブデン箔、ジルコニウム箔、金箔、銀箔、白金箔、パラジウム箔などの金属箔、グラファイトシートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。導電性基材の厚さは、任意であるが、通常、1~100μm程度であり、熱伝導性を向上させる観点から、好ましくは1μm以上、より好ましくは2μm以上、さらに好ましくは3μm以上であり、電気絶縁性を向上させる観点から、好ましくは100μm以下、より好ましくは50μm以下、より一層好ましくは30μm以下、さらに好ましくは20μm以下、さらに一層好ましくは10μm以下、特に好ましくは5μm以下である。
 本発明の熱伝導性材料を基材に塗布した後、乾燥させるが、その乾燥方法としては、例えば、熱風、遠赤外線の照射などが挙げられる。
 本発明の熱伝導性材料の乾燥後の熱伝導性材料層の厚さは、特に限定されないが、通常、1μm~5mm程度である。
 以上説明したように、本発明の熱伝導性材料は、粘着性および熱伝導性に優れ、さらに電気絶縁性にも優れていることから、例えば、本発明の熱伝導性材料を基材の片面または両面に塗布することによって熱伝導性材料層を形成させてもよく、基材を有しない熱伝導性材料層のみを有する粘着性シートとして好適に使用することができる。
 本発明の粘着性シートの全体の厚さは、本発明の粘着性シートの用途などによって異なるので一概には決定することができないが、通常、50~300μm程度である。
 また、本発明の熱伝導性材料は、例えば、発光素子が実装された基板および放熱器を有する照明用器具にも好適に使用することができる。この場合、前記基板と前記放熱器との間に本発明の熱伝導性材料を介在させることができる。以下に、前記照明用器具の一実施態様を図面に基づいて説明する。
 図1は、基板と前記放熱器との間に本発明の熱伝導性材料が介在する照明用器具の一実施態様を示す概略説明図である。図1に示される照明用器具は、発光素子1、基板2、熱伝導性材料からなる熱伝導性材料層3および放熱器4を有する。この照明用器具は、基板2と放熱器4との間に本発明の熱伝導性材料からなる熱伝導性材料層3が介在しているので、発光素子1が実装された基板2と放熱器4との粘着性および熱伝導性に優れ、電気絶縁性にも優れている。
 図1において、発光素子1は、基板2の一方表面に配設されている。基板2の他方表面は、本発明の熱伝導性材料からなる熱伝導性材料層3を介して放熱器4と一体化されている。
 発光素子1としては、例えば、発光ダイオード(LED)、エレクトロルミネッセンスなどの素子が挙げられるが、本発明は、かかる例示のみに限定されるものではない。基板2としては、例えば、プリント配線基板などが挙げられる。また、放熱器4としては、例えば、ヒートシンク、筐体などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 本発明の照明用器具は、前記したように、基板と放熱器との間に本発明の熱伝導性材料が介在しているので、発光素子が実装された基板と放熱器との粘着性および熱伝導性に優れ、さらに電気絶縁性にも優れているものである。
 次に本発明を実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
実施例1
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部(質量部、以下同じ)、n-ブチルアクリレート50.5部、2-エチルヘキシルアクリレート37.0部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.05部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、前記で得られたアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:40、厚さ:0.25μm、面方向の長さ:10μm)3部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:10μm)500部とを混合した後、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 前記で得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例2
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:33、厚さ:0.3μm、面方向の長さ:10μm)10部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:30μm)500部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例3
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.4μm、面方向の長さ:20μm)41部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:30μm)43部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例4
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:40、厚さ:0.25μm、面方向の長さ:10μm)12部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:10μm)250部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例5
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.25μm、面方向の長さ:12.5μm)10部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例6
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:40、厚さ:0.25μm、面方向の長さ:10μm)3部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例7
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:55、厚さ:0.4μm、面方向の長さ:22μm)1部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例8
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.2μm、面方向の長さ:10μm)3部(板状アルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:30μm)20部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例9
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:25、厚さ:0.4μm、面方向の長さ:10μm)100部と球状アルミナ粒子(平均粒子径:20μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例10
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:33.3、厚さ:0.3μm、面方向の長さ:10μm)20部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例11
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:40、厚さ:0.3μm、面方向の長さ:12μm)10部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例12
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とグラファイト粒子(アスペクト比:25、厚さ:0.4μm、面方向の長さ:10μm)20部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例13
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とグラファイト粒子(アスペクト比:25、厚さ:0.4μm、面方向の長さ:10μm)10部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例14
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とグラファイト粒子(アスペクト比:25、厚さ:0.4μm、面方向の長さ:10μm)5部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例15
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とタルク(アスペクト比:30、厚さ:1μm、面方向の長さ:30μm)50部と球状アルミナ粒子(平均粒子径:30μm)250部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例16
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とタルク(アスペクト比:30、厚さ:1μm、面方向の長さ:30μm)100部と球状アルミナ粒子(平均粒子径:30μm)250部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例17
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とマイカ(アスペクト比:40、厚さ:0.8μm、面方向の長さ:32μm)100部と球状アルミナ粒子(平均粒子径:20μm)250部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例18
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:10、厚さ:0.3μm、面方向の長さ:3μm)40部と球状アルミナ粒子(平均粒子径:20μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.40部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例19
 実施例18で得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.40部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させた後、形成された熱伝導性材料層と厚さが4μmのポリエチレンテレフタレート製フィルムとを貼り合わせることにより、熱伝導性材料層を形成し、全体の厚さが約100μmである粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、ポリエチレンテレフタレート製フィルムの両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例20
 実施例13で得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.40部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させた後、形成された熱伝導性材料層と厚さが4μmのポリエチレンテレフタレート製フィルムとを貼り合わせることにより、熱伝導性材料層を形成し、全体の厚さが約100μmである粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、ポリエチレンテレフタレート製フィルムの両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例21
 実施例18で得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.40部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させた後、形成された熱伝導性材料層を厚さが12μmのアルミニウム箔と貼り合わせることにより、熱伝導性材料層を有し、全体の厚さが100μmである粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、アルミニウム箔の両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例1
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と球状アルミナ粒子(平均粒子径:30μm)233部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例2
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と球状アルミナ粒子(平均粒子径:30μm)43部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例3
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子(アスペクト比:200、厚さ:1μm、面方向の長さ:200μm)41部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例4
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子(アスペクト比:1、厚さ:10μm、面方向の長さ:10μm)41部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
 次に、各実施例または各比較例で得られた熱伝導性材料または粘着性シートを用いて以下の物性を調べた。その結果を表1に示す。
〔分散安定性〕
 各実施例または各比較例で得られた混合溶液を試験管内に入れ、温度が23℃であり、相対湿度が50%である雰囲気中で放置し、当該混合溶液を目視にて観察することにより、分散安定性を以下の評価基準に基づいて熱伝導率を評価した。
[評価基準]
○:12時間以上放置しても混合溶液の沈降が認められず。
△:3時間以上12時間未満で混合溶液の沈降が認められる。
×:3時間未満で混合溶液の沈降が認められる。
〔熱伝導性〕
(1)熱線法
 粘着性シートを50mm×120mmの大きさに裁断することにより、試験片を作製した。
 一方、標準物質としてシリコン、石英ガラスおよびジルコニアを用い、これらの熱伝導率を熱伝導率計〔京都電子工業(株)製、品番:QTM500〕を用い、温度が23℃であり、相対湿度が50%である雰囲気中で測定したところ、シリコンの熱伝導率は0.24W/mK、石英ガラスの熱伝導率は1.41W/mK、ジルコニアの熱伝導率は3.3W/mKであった。
 次に、各標準物質の上に試験片を粘着させ、前記と同様にして熱伝導率を測定し、標準物質と試験片との熱伝導率の偏差をプロットし、内挿法により熱伝導率を求め、以下の評価基準に基づいて熱伝導率を評価した。
[評価基準]
○:熱伝導率が0.8W/mK以上
△:熱伝導率が0.4W/mK以上0.8W/mK未満
×:熱伝導率が0.4W/mK未満
(2)周期加熱法(厚さ方向の熱伝導率)
 温度が23℃であり、相対湿度が50%である雰囲気中でISO 22007-3に準じた方法(周期加熱法)により、試験片の熱拡散率を測定した。また、試験片の比熱をJIS K7123に準じて測定し、その比重をJIS K7112に準じて測定した。
 前記で測定した試験片の熱拡散率、比熱および比重の測定結果に基づいて、式:
   〔熱伝導率〕=〔熱拡散率〕×〔比熱〕×〔比重〕
に従って熱伝導率を求め、以下の評価基準に基づいて熱伝導率を評価した。
[評価基準]
○:熱伝導率が0.8W/mK以上
△:熱伝導率が0.4W/mK以上0.8W/mK未満
×:熱伝導率が0.4W/mK未満
(3)面方向の熱伝導率
 面方向の熱伝導率は、例えば、大村高弘、外2名、「周期加熱法と非定常熱線法による繊維質断熱材の面内方向熱伝導率の推定方法」、ニチアス技術時報No.330、ニチアス(株)、2002年2号、1-6頁に記載の方法などの公知の方法によって測定することができる。
 本実施例および比較例においては、面方向の熱伝導率は、前記熱線法で求められた熱伝導率(λh)および前記周期加熱法で求められた熱伝導率(λy)の結果に基づき、式:
〔面方向の熱伝導率(λx)〕
=〔熱線法で求められた熱伝導率(λh)〕2
÷〔周期加熱法で求められた熱伝導率(λy)〕
にしたがって求め、以下の評価基準に基づいて評価した。
[評価基準]
◎:面方向の熱伝導率が1.5W/mK以上
○:面方向の熱伝導率が1.0W/mK以上1.5W/mK未満
△:面方向の熱伝導率が0.4W/mK以上1.0W/mK未満
×:面方向の熱伝導率が0.4W/mK以上未満
〔粘着性〕
 粘着性シートの片面に厚さが25μmのポリエステルフィルムを貼り付け、幅25mm、長さ50mmの試験テープを作製した。あらかじめ研磨処理が施されたステンレス鋼板の上に前記で得られた試験テープを載せ、質量が2kgのローラーを1往復させ、両者を一体化させることにより、試験片を作製した。この試験片を温度23℃、相対湿度50%の雰囲気中で20分間養生させた後、この雰囲気中でQC引張試験機〔テスター産業(株)製〕を用いて試験片から粘着性シートを300mm/minの引張速度で引き剥がし、そのときの粘着力を測定し、以下の評価基準に基づいて粘着性を評価した。
[評価基準]
○:粘着力が5N/25mm以上
△:粘着力が1N/25mm以上5N/25mm未満
×:粘着力が1N/25mm未満であるか、または凝集破壊が発生
〔耐熱性〕
(1)耐熱せん断保持力
 粘着性シートの片面に厚さが25μmのポリエステルフィルムを貼り付け、幅25mm、長さ25mmの試験テープを作製した。あらかじめ研磨処理が施されたステンレス鋼板の上に前記で得られた試験テープを載せ、質量が2kgのローラーを1往復させ、両者を一体化させることにより、試験片を作製した。この試験片を温度が120℃の雰囲気中で20分間養生させた後、この雰囲気中で試験片に鉛直方向で質量1kgの荷重を取り付け、保持力試験機〔テスター産業(株)製〕を用いて試験を行ない、試験開始から試験片がステンレス鋼板から剥がれ落ちるまでの時間を測定し、以下の評価基準に基づいて評価した。
[評価基準]
○:試験片がステンレス鋼板から剥がれ落ちるまでの時間が720分間以上
△:試験片がステンレス鋼板から剥がれ落ちるまでの時間が10分間以上720分間未満
×:試験片がステンレス鋼板から剥がれ落ちるまでの時間が10分間未満
(2)耐定荷重剥離性
 粘着性シートの片面に厚さが40μmのアルミニウム箔を貼り付け、幅25mm、長さ50mmの試験テープを作製した。前記で得られた試験テープをアルミニウム板上に載せ、2kgローラーを1往復させ、両者を一体化させることにより、試験片を作製した。この試験片を温度23℃、相対湿度50%の雰囲気中で24時間養生させた後、120℃の雰囲気中で試験片に鉛直方向で質量100gの荷重をかけて2時間試験を行ない、試験開始から試験片がアルミニウム板から剥がれ落ちるまでの時間を測定し、以下の評価基準に基づいて評価した。
[評価基準]
○:試験片がアルミニウム板から剥がれ落ちるまでの時間が120分間以上
△:試験片がアルミニウム板から剥がれ落ちるまでの時間が50分間以上120分間未満
×:試験片がアルミニウム板から剥がれ落ちるまでの時間が50分間未満
(3)T型剥離強度
 縦4cm、横4cmとなるように裁断した試験片の片面の剥離紙を剥がし、アルミニウム板に貼り付けた後、背面の剥離紙を剥離し、縦5cm、横5cmのステンレス鋼板〔質量50g、SUS304、ブライトアニール(BA)処理板〕を貼り付け、24時間室温中で静置させた。次に、この試験片を120℃の雰囲気中で鉛直方向に置き、ステンレス鋼板が試験片から剥がれ落ちるまでの保持時間を測定し、以下の評価基準に基づいて評価した。
[評価基準]
○:保持時間が24時間以上
△:保持時間が1時間以上24時間未満
×:保持時間が1時間未満
〔電気絶縁性〕
(1)体積抵抗
 絶縁計〔東亜ディーケーケー(株)製、品番:SME-8331E〕を用い、温度が23±5℃であり、相対湿度が50±10%である雰囲気中でJIS C2151に準じて粘着性シートの体積抵抗率を測定し、以下の評価基準に基づいて評価した。
[評価基準]
○:体積抵抗率が1×1014Ω・cm以上
△:体積抵抗率が1×1010Ω・cm以上1×1014Ω・cm未満
×:体積抵抗率が1×1010Ω・cm未満
(2)絶縁破壊電圧
 絶縁破壊電圧の測定試験機として多摩電測(株)製、耐圧試験機TP-516UZを用い、IEC60243-1に準拠し、電圧印加法(短時間法)により、測定温度を23℃とし、周囲媒体としてシリコーンオイルを用い、試験電極として直径25mm円柱電極(印加面)および全面アルミニウム箔(検知面)を用い、検知電流10mAにて絶縁破壊電圧を測定し、以下の評価基準に基づいて評価した。
[評価基準]
◎:絶縁破壊電圧が20kV/mm以上
○:絶縁破壊電圧が10kV/mm以上20kV/mm未満
△:絶縁破壊電圧が1kV/mm以上10kV/mm未満
×:絶縁破壊電圧が1kV/mm未満
〔総合評価〕
 各物性において、◎の評価を20点、○の評価を10点、△の評価を5点、×の評価を-10点とし、各物性の得点を合計することにより、合計点数を求めた(最高得点:120点)。
Figure JPOXMLDOC01-appb-T000001
 表1に示された結果から、各比較例で得られた熱伝導性材料は、いずれも×の評価を有し、総合評価における得点が45点以下であるのに対し、各実施例で得られた熱伝導性材料は、いずれも、×の評価がまったくないのみならず、総合評価における得点が70点以上であることから、熱伝導性、粘着性、耐熱性および電気絶縁性に総合的に優れていることがわかる。
製造例1
 1リットル容のセパラブルフラスコ内に、板状アルミニウム粒子のペースト(不揮発分含量:65.2質量%)184.0gを入れた後、ミネラルスピリット589.4gを当該フラスコ内に添加し、撹拌することにより、スラリーを得た。得られたスラリーを撹拌しながらフラスコ内に窒素ガスを導入し、窒素ガス雰囲気とした後、フラスコの内容物を80℃に昇温し、さらにフラスコ内の雰囲気が窒素ガス雰囲気となるように維持した。
 次に、前記フラスコ内に、アクリル酸0.92g、ミネラルスピリットで50質量%に希釈したエポキシ化1,2-ポリブタジエン9.0g、トリメチロールプロパントリアクリレート10.4g、ジビニルベンゼン4.2gおよびアゾビスイソブチロニトリル0.68gを添加した後、80℃で6時間反応させ、フラスコの内容物を室温に冷却することにより、反応を終了した。反応終了後、フラスコの内容物を取り出し、濾過することによって不純物を除去し、ミネラルスピリットで洗浄することにより、樹脂が被覆されたアルミニウム粒子を含有するペーストを得た。
 前記で得られたペーストにおける不揮発分含量は55.7質量%であり、樹脂が被覆されたアルミニウム粒子における樹脂の被覆量を以下の方法に基づいて調べたところ、板状アルミニウム粒子100gあたりの樹脂の被覆量は13.8g(反応率:80%)であった。このペーストの一部をヘキサンで洗浄し、濾過した後、ミネラルスピリットを添加し、板状アルミニウム粒子の含有率が50.0質量%であるペーストを調製した。
〔樹脂の被覆量の測定方法〕
 ペーストの一部を取り出し、乾燥させた後、王水〔濃塩酸:濃硝酸(容量比)=3:1〕でアルミニウムを溶解させ、残存している樹脂を濾過し、水洗し、乾燥させた後、その質量を測定することにより、樹脂の被覆量を求めた。
 また、板状アルミニウム粒子の量は、樹脂が被覆されたアルミニウム粒子の質量から樹脂の被覆量を減じることによって求めた。
実施例22
 実施例5で得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.30部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させた後、形成された熱伝導性材料層と厚さが約4μmのポリエチレンテレフタレート製フィルムとを貼り合わせることにより、熱伝導性材料層を有し、全体の厚さが100μmである粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例23
 実施例22において、厚さが約4μmのポリエチレンテレフタレート製フィルムの代わりに、厚さが約12μmのポリエチレンテレフタレート製フィルムを用い、熱伝導性材料層を有する粘着性シートの厚さが100μmとなるように調整したこと以外は、実施例22と同様にして粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例24
 実施例22において、厚さが約4μmのポリエチレンテレフタレート製フィルムの代わりに、厚さが約12.5μmのポリイミド製フィルムを用い、熱伝導性材料層を有する粘着性シートの厚さが100μmとなるように調整したこと以外は、実施例22と同様にして粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例25
 実施例22において、厚さが約4μmのポリエチレンテレフタレート製フィルムの代わりに、厚さが約5μmのポリフェニレンスルフィド製フィルムを用い、熱伝導性材料層を有する粘着性シートの厚さが100μmとなるように調整したこと以外は、実施例22と同様にして粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例26
 実施例22において、厚さが約4μmのポリエチレンテレフタレート製フィルムの代わりに、厚さが約9μmのポリアミド製フィルムを用い、熱伝導性材料層を有する粘着性シートの厚さが100μmとなるように調整したこと以外は、実施例22と同様にして粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例27
 実施例22において、厚さが約4μmのポリエチレンテレフタレート製フィルムの代わりに、厚さが約36μm(坪量:23g/m2)のポリエステル製不織布を用い、熱伝導性材料層を有する粘着性シートの厚さが100μmとなるように調整したこと以外は、実施例22と同様にして粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例28
 実施例22において、厚さが約4μmのポリエチレンテレフタレート製フィルムの代わりに、厚さが約36μm(坪量:14g/m2)のレーヨン製不織布を用い、熱伝導性材料層を有する粘着性シートの厚さが100μmとなるように調整したこと以外は、実施例22と同様にして粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例29
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した後、このアクリル系粘着性樹脂溶液200部(固形分含量:100部)と製造例1で得られた樹脂が被覆された板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.25μm、面方向の長さ:12.5μm)10部(樹脂が被覆されたアルミニウム粒子の固形分量)と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例30
 実施例29において、樹脂が被覆された板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.25μm、面方向の長さ:12.5μm)の量を10部から15部に変更したことを除き、実施例29と同様の操作を行なうことにより、粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例31
 実施例29において、樹脂が被覆された板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.25μm、面方向の長さ:12.5μm)の量を10部から20部に変更したことを除き、実施例29と同様の操作を行なうことにより、粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例32
 実施例22において、実施例5で得られた混合溶液100部の代わりに実施例30で得られた混合溶液100部〔樹脂が被覆された板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.25μm、面方向の長さ:12.5μm)の量:15部〕を用いたこと以外は、実施例22と同様の操作を行なうことにより、粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、樹脂基材の両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例33
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:40、厚さ:0.25μm、面方向の長さ:10μm)7部(板状アルミニウム粒子の固形分量)に不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例34
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:40、厚さ:0.3μm、面方向の長さ:12μm)10部に不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例35
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とグラファイト粒子(アスペクト比:25、厚さ:0.4μm、面方向の長さ:10μm)10部に不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例36
 実施例1と同様にしてアクリル系粘着性樹脂溶液を調製した。得られたアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-51.2℃であった。
 次に、このアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)とタルク粒子(アスペクト比:30、厚さ:1μm、面方向の長さ:30μm)50部に不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
実施例37
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート50.5部、2-エチルヘキシルアクリレート37.0部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.06部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は50万であり、ガラス転移温度は-51.2℃であった。
 次に、実施例11で用いられたアクリル系粘着性樹脂溶液の代わりに前記で得られたアクリル系粘着性樹脂溶液を用いたこと、およびイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕の量を0.30部に変更したこと以外は、実施例11と同様にして粘着性シートを得た。
実施例38
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート50.5部、2-エチルヘキシルアクリレート37.0部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.03部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は100万であり、ガラス転移温度は-51.2℃であった。
 次に、実施例11で用いられたアクリル系粘着性樹脂溶液の代わりに前記で得られたアクリル系粘着性樹脂溶液を用いたこと、およびイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕の量を0.20部に変更したこと以外は、実施例11と同様にして粘着性シートを得た。
実施例39
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート87.5部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.05部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-45.2℃であった。
 次に、実施例11で用いられたアクリル系粘着性樹脂溶液の代わりに前記で得られたアクリル系粘着性樹脂溶液を用いたこと以外は、実施例11と同様にして粘着性シートを得た。
実施例40
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート15.5部、2-エチルヘキシルアクリレート80.0部、酢酸ビニル1.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.05部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-63.8℃であった。
 次に、実施例11で用いられたアクリル系粘着性樹脂溶液の代わりに前記で得られたアクリル系粘着性樹脂溶液を用いたこと以外は、実施例11と同様にして粘着性シートを得た。
実施例41
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート50.5部、2-エチルヘキシルアクリレート37.0部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.06部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は50万であり、ガラス転移温度は-51.2℃であった。
 次に、実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに、前記で得られたアクリル系粘着性樹脂溶液を用いたこと、およびイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕の量を0.30部に変更したこと以外は、実施例33と同様にして粘着性シートを得た。
実施例42
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート50.5部、2-エチルヘキシルアクリレート37.0部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.03部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は100万であり、ガラス転移温度は-51.2℃であった。
 次に、実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに前記で得られたアクリル系粘着性樹脂溶液を用いたこと、およびイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕の量を0.20部に変更したこと以外は、実施例33と同様にして粘着性シートを得た。
実施例43
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート87.5部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.05部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-45.2℃であった。
 次に、実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに前記で得られたアクリル系粘着性樹脂溶液を用いたこと以外は、実施例33と同様にして粘着性シートを得た。
実施例44
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート15.5部、2-エチルヘキシルアクリレート80.0部、酢酸ビニル1.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.05部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-63.8℃であった。
 次に、実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに前記で得られたアクリル系粘着性樹脂溶液を用いたこと以外は、実施例33と同様にして粘着性シートを得た。
比較例5
 実施例29において、樹脂が被覆された板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.25μm、面方向の長さ:12.5μm)の量を10部から0.1部に変更したことを除き、実施例29と同様の操作を行なうことにより、粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例6
 実施例29において、樹脂が被覆された板状アルミニウム粒子のペースト(板状アルミニウム粒子のアスペクト比:50、厚さ:0.25μm、面方向の長さ:12.5μm)の量を10部から210部に変更したことを除き、実施例29と同様の操作を行なうことにより、粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例7
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート50.5部、2-エチルヘキシルアクリレート37.0部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.1部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は25万であり、ガラス転移温度は-51.2℃であった。
 次に、前記で得られたアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:40、厚さ:0.3μm、面方向の長さ:12μm)10部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.44部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例8
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、2-エチルヘキシルアクリレート96.5部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.03部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-66.7℃であった。
 次に、前記で得られたアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:40、厚さ:0.3μm、面方向の長さ:12μm)10部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例9
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート50.5部、2-エチルヘキシルアクリレート37.0部、酢酸ビニル9.0部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.01部を入れ、窒素ガス雰囲気中にて60℃で8時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は180万であり、ガラス転移温度は-51.2℃であった。
 次に、前記で得られたアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:40、厚さ:0.3μm、面方向の長さ:12μm)10部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌したが、撹拌時に凝集物が発生したため、その後の操作を中止した。
比較例10
 冷却管、窒素ガス導入管、温度計、滴下漏斗および撹拌機を備えた反応容器内に、酢酸エチル100部、n-ブチルアクリレート50.5部、メチルメタクリレート37.0部、酢酸ビニル9部、2-ヒドロキシエチルアクリレート0.5部およびアクリル酸3.0部を入れた後、アゾイソブチロニトリル0.05部を入れ、窒素ガス雰囲気中にて80℃で5時間反応させ、アクリル系粘着性樹脂溶液を得た。得られたアクリル系粘着性樹脂溶液における不揮発分の含有率は50質量%であった。また、このアクリル系粘着性樹脂溶液に含まれているアクリル系粘着性樹脂の重量平均分子量は70万であり、ガラス転移温度は-1.3℃であった。
 次に、前記で得られたアクリル系粘着性樹脂溶液200部(樹脂固形分量:100部)と窒化ホウ素粒子(アスペクト比:40、厚さ:0.3μm、面方向の長さ:12μm)10部と球状アルミナ粒子(平均粒子径:10μm)200部とを混合し、不揮発分の含有率が70質量%となるように酢酸エチルを添加し、十分に撹拌することにより、混合溶液を得た。
 得られた混合溶液100部とイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕0.22部とを混合することにより、熱伝導性材料を得た。得られた熱伝導性材料を剥離紙〔(株)サンエー化研製、品番:K-80HS〕上に塗布し、100℃の雰囲気中で5分間乾燥させることにより、厚さが約100μmの熱伝導性材料層が形成された粘着性シートを得た。この粘着性シートは、剥離紙を剥離することにより、基材を有しない両面に熱伝導性材料層を有する粘着性シートとして用いた。
比較例11
 実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに比較例7と同様にして得られたアクリル系粘着性樹脂溶液を用いたこと、およびイソシアネート系架橋剤〔日本ポリウレタン工業(株)製、ポリイソシアネート、商品名:コロネートL-55E〕の量を0.44部に変更したこと以外は、実施例33と同様にして粘着性シートを得た。
比較例12
 実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに比較例9と同様にして得られたアクリル系粘着性樹脂溶液を用いたこと以外は、実施例33と同様にして粘着性シートを作製しようとした。しかし、アクリル系粘着性樹脂溶液と窒化ホウ素粒子と球状アルミナ粒子とを混合し、撹拌したときに凝集物が発生したため、その後の操作を中止した。
比較例13
 実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに比較例8と同様にして得られたアクリル系粘着性樹脂溶液を用いたこと以外は、実施例33と同様にして粘着性シートを得た。
比較例14
 実施例33で用いられたアクリル系粘着性樹脂溶液の代わりに比較例10と同様にして得られたアクリル系粘着性樹脂溶液を用いたこと以外は、実施例33と同様にして粘着性シートを得た。
 次に、各実施例または各比較例で得られた熱伝導性材料または粘着性シートを用いて前記と同様にして物性を調べた。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示された結果から、各比較例で得られた熱伝導性材料は、いずれも×の評価を有し、総合評価における得点が25点以下であるのに対し、各実施例で得られた熱伝導性材料は、いずれも、×の評価がまったくないのみならず、総合評価における得点が60点以上であることから、熱伝導性、粘着性、耐熱性および電気絶縁性に総合的に優れていることがわかる。また、実施例33~36および実施例41~44で得られた熱伝導性材料は、いずれも面方向の熱伝導性および耐熱性(T型剥離強度)に格段に優れていることがわかる。
 以上の結果から、各実施例で得られた熱伝導性材料および当該熱伝導性材料からなる熱伝導性材料層を有する粘着性シートは、いずれも、例えば、配線基板と、ヒートシンク、筐体などの放熱性が求められる部材とを接合させる際に好適に使用することができることがわかる。このように、配線基板と放熱性が求められる部材とを接合させた製品としては、例えば、発光素子が実装された基板および放熱器を有する照明用器具などが挙げられる。
 また、本発明の粘着性シートは、従来のネジ、ビスなどの固定具によって固定されているパーツから当該固定具の代わりに使用することができるのみならず、本発明の粘着性シートを当該固定具とともに使用した場合には、当該固定具をより一層強固に固定することができる。このように本発明の粘着シートを用いてパーツが固定された製品は、例えば、図1に示されるように、基板2と放熱器4との間に存在する間隙(空気層)を埋める役目を担うことから、空気層の存在による熱伝導率の低下を防ぐことができるのみならず、機器の薄型化、長寿命化、機器を製造する際の工程短縮などを図ることができるので、本発明の粘着性シートは、産業上の利用性に優れているものである。
 本発明の熱伝導性材料は、粘着性シート、発光ダイオード(LED)、エレクトロルミネッセンスなどが用いられた照明用器具、バックライト用照明用器具、太陽電池、リチウムイオン電池などの電池、IC、CPUなどのコンピュータ用部品、モジュールなどの電力制御装置、インバーターなどの電源回路、タッチパネル、電磁シールドなどの用途に使用することが期待される。
 1 発光素子
 2 基板
 3 熱伝導性材料層
 4 放熱器

Claims (5)

  1.  板状粒子および粘着性樹脂を必須成分として含有する熱伝導性材料であって、球状粒子を板状粒子1質量部あたり500質量部以下の量で含有し、粘着性樹脂(固形分)100質量部あたりの板状粒子と球状粒子との合計量が1~600質量部であることを特徴とする熱伝導性材料。
  2.  板状粒子のアスペクト比が10~100である請求項1に記載の熱伝導性材料。
  3.  板状粒子の厚さが0.01~20μmであり、面方向の長さが0.1~100μmである請求項1または2に記載の熱伝導性材料。
  4.  請求項1~3のいずれかに記載の熱伝導性材料からなる熱伝導性材料層を少なくとも一方の面に有する粘着性シート。
  5.  発光素子が実装された基板および放熱器を有する照明用器具であって、前記基板と前記放熱器との間に請求項1~3のいずれかに記載の熱伝導性材料が介在することを特徴とする照明用器具。
PCT/JP2012/073252 2011-09-14 2012-09-12 熱伝導性材料 WO2013039081A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-200096 2011-09-14
JP2011200096 2011-09-14
JP2012064685 2012-03-22
JP2012-064685 2012-03-22
JP2012-134514 2012-06-14
JP2012134514A JP6161875B2 (ja) 2011-09-14 2012-06-14 熱伝導性材料

Publications (1)

Publication Number Publication Date
WO2013039081A1 true WO2013039081A1 (ja) 2013-03-21

Family

ID=47883307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073252 WO2013039081A1 (ja) 2011-09-14 2012-09-12 熱伝導性材料

Country Status (3)

Country Link
JP (1) JP6161875B2 (ja)
TW (1) TW201329221A (ja)
WO (1) WO2013039081A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007287A1 (en) 2014-07-11 2016-01-14 Henkel IP & Holding GmbH Thermal interface material with mixed aspect ratio particle dispersions
JP2016098366A (ja) * 2014-11-26 2016-05-30 日立マクセル株式会社 粘着組成物前駆体、粘着組成物及びその製造方法、粘着シート及びその製造方法、並びに粘着シートを含む電子機器
CN109140385A (zh) * 2018-10-15 2019-01-04 华域视觉科技(上海)有限公司 一种具有抗聚焦散热功能的车灯零件及其制备方法
US10494553B2 (en) 2014-11-19 2019-12-03 The Yokohama Rubber Co., Ltd. Two-component urethane-based adhesive composition
WO2020136609A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Thermally conductive sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6386051B2 (ja) * 2014-07-29 2018-09-05 株式会社東芝 X線管用回転陽極ターゲットの製造方法、x線管の製造方法、およびx線検査装置の製造方法
JP2016124908A (ja) * 2014-12-26 2016-07-11 株式会社トクヤマ 樹脂成形体
US11296007B2 (en) 2016-01-14 2022-04-05 Dexerials Corporation Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device
JP6259064B2 (ja) * 2016-01-14 2018-01-10 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
DE112018003897B4 (de) * 2017-07-31 2022-12-29 Bando Chemical Industries, Ltd. Wärmeleitender Kunststoffformartikel
CN109282195B (zh) * 2018-10-24 2021-07-23 明朔(北京)电子科技有限公司 一种照明散热器及应用其的照明组件
JP7174197B1 (ja) * 2021-06-16 2022-11-17 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物
WO2022264715A1 (ja) * 2021-06-16 2022-12-22 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021653A (ja) * 2006-07-12 2008-01-31 Samsung Electronics Co Ltd 有機発光表示装置及びその製造方法
JP2010116456A (ja) * 2008-11-12 2010-05-27 Nitto Denko Corp 熱伝導性組成物およびその製造方法
JP2010147000A (ja) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd 照明装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200397A (ja) * 1989-12-27 1991-09-02 Tokai Rubber Ind Ltd 放熱シート
JP2002155110A (ja) * 2000-11-22 2002-05-28 Sekisui Chem Co Ltd 重合性組成物及び熱伝導性シート
JP5381102B2 (ja) * 2006-11-01 2014-01-08 日立化成株式会社 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP2009004536A (ja) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp 熱伝導性樹脂シート及びこれを用いたパワーモジュール
JP2008010897A (ja) * 2007-09-28 2008-01-17 Mitsubishi Electric Corp 絶縁シートおよびこれを用いたパワーモジュール
JP5274007B2 (ja) * 2007-12-27 2013-08-28 三菱電機株式会社 熱伝導性樹脂シートおよびこれを用いたパワーモジュール
JP5316254B2 (ja) * 2008-10-28 2013-10-16 日立化成株式会社 熱伝導シート、熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021653A (ja) * 2006-07-12 2008-01-31 Samsung Electronics Co Ltd 有機発光表示装置及びその製造方法
JP2010116456A (ja) * 2008-11-12 2010-05-27 Nitto Denko Corp 熱伝導性組成物およびその製造方法
JP2010147000A (ja) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd 照明装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007287A1 (en) 2014-07-11 2016-01-14 Henkel IP & Holding GmbH Thermal interface material with mixed aspect ratio particle dispersions
EP3172734A4 (en) * 2014-07-11 2018-05-09 Henkel IP & Holding GmbH Thermal interface material with mixed aspect ratio particle dispersions
US11447677B2 (en) 2014-07-11 2022-09-20 Henkel Ag & Co. Kgaa Thermal interface material with mixed aspect ratio particle dispersions
US10494553B2 (en) 2014-11-19 2019-12-03 The Yokohama Rubber Co., Ltd. Two-component urethane-based adhesive composition
JP2016098366A (ja) * 2014-11-26 2016-05-30 日立マクセル株式会社 粘着組成物前駆体、粘着組成物及びその製造方法、粘着シート及びその製造方法、並びに粘着シートを含む電子機器
CN109140385A (zh) * 2018-10-15 2019-01-04 华域视觉科技(上海)有限公司 一种具有抗聚焦散热功能的车灯零件及其制备方法
CN109140385B (zh) * 2018-10-15 2023-09-01 华域视觉科技(上海)有限公司 一种具有抗聚焦散热功能的车灯零件及其制备方法
WO2020136609A1 (en) * 2018-12-27 2020-07-02 3M Innovative Properties Company Thermally conductive sheet
CN113316621A (zh) * 2018-12-27 2021-08-27 3M创新有限公司 导热片

Also Published As

Publication number Publication date
JP6161875B2 (ja) 2017-07-12
JP2013225636A (ja) 2013-10-31
TW201329221A (zh) 2013-07-16

Similar Documents

Publication Publication Date Title
JP6161875B2 (ja) 熱伝導性材料
JP2015067713A (ja) 放熱シート
JP4848434B2 (ja) 熱伝導性粘着剤組成物および熱伝導性粘着シート
JP2015019059A (ja) 放熱シート
JP6271122B2 (ja) 半導体装置、光半導体装置および放熱部材
JP5173166B2 (ja) 粘着性フィルム剥離方法
JP2011162582A (ja) 熱伝導性両面粘着シート
JP2015021067A (ja) 熱伝導性粘着テープ、物品及び画像表示装置
WO2011145523A1 (ja) 熱伝導性粘着シート
KR102546280B1 (ko) 아크릴계 점착제 및 이를 포함하는 보호 필름
JP2014234444A (ja) 導電性両面粘着テープ
KR20130050909A (ko) 열전도성 점착 시트의 제조 방법
TWI806823B (zh) 黏著劑組合物、黏著構件、光學構件及電子構件
JP5815344B2 (ja) 熱伝導性粘着剤
JP2015231012A (ja) 熱伝導シート、物品及び電子部材
JP2015189961A (ja) 高エネルギー可視光線遮蔽性粘着剤
JP2016100491A (ja) 放熱シートおよびその製造方法
KR101240621B1 (ko) 이중경화형 아크릴계 감압성 점착제 조성물
TWI789344B (zh) 黏著劑組合物、黏著構件、光學構件及電子構件
JP2011241329A (ja) 熱伝導性粘着シート
JP5513225B2 (ja) 感圧接着剤
JP2010235847A (ja) 感圧接着剤組成物、感圧接着剤層及び感圧接着性積層体
JP2015134866A (ja) 感圧接着剤
JP2014040595A (ja) 熱剥離性感圧接着テープ又はシート
JP2010235846A (ja) 感圧接着剤組成物、感圧接着剤層及び感圧接着性積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831211

Country of ref document: EP

Kind code of ref document: A1