WO2013038772A1 - 光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法 - Google Patents

光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法 Download PDF

Info

Publication number
WO2013038772A1
WO2013038772A1 PCT/JP2012/066147 JP2012066147W WO2013038772A1 WO 2013038772 A1 WO2013038772 A1 WO 2013038772A1 JP 2012066147 W JP2012066147 W JP 2012066147W WO 2013038772 A1 WO2013038772 A1 WO 2013038772A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
interface
layer
optical information
recording medium
Prior art date
Application number
PCT/JP2012/066147
Other languages
English (en)
French (fr)
Inventor
邊見晃子
見上竜雄
望月英宏
佐々木俊央
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280042821.0A priority Critical patent/CN103814407B/zh
Publication of WO2013038772A1 publication Critical patent/WO2013038772A1/ja
Priority to US14/175,267 priority patent/US20140153375A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24018Laminated discs
    • G11B7/24027Layers; Shape, structure or physical properties thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00452Recording involving bubble or bump forming
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24018Laminated discs
    • G11B7/24024Adhesion or bonding, e.g. specific adhesive layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B2007/00457Two photon recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/256Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers improving adhesion between layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to an optical information recording medium, a manufacturing method thereof, and a recording method of the optical information recording medium.
  • an intermediate layer having an appropriate thickness is generally provided between a plurality of recording layers in order to prevent crosstalk between recording layers.
  • another information layer is formed in the vicinity of the upper and lower interfaces of one recording layer. So as to record. Specifically, a multi-photon absorption compound is used for the recording layer, and the first information layer of the recording layer is formed by changing the refractive index only in the vicinity of the upper interface of the recording layer. The second information layer of the recording layer is formed by changing the refractive index only in the vicinity of the interface. As a result, two information layers can be formed in one recording layer. Therefore, when the same number of information layers are to be formed, the number of recording layers can be reduced and the manufacturing process of the medium can be simplified.
  • a recording spot is formed by changing the refractive index of a region adjacent to the upper and lower interfaces in the recording layer.
  • interference in the recording spot may occur.
  • the reflected light at the upper interface of the formed recording spot for example, the interface between the intermediate layer and the recording layer
  • the lower interface of the one recording spot for example, Since there is a possibility that reflected light in the recording layer at the interface between the portion where the refractive index does not change and the portion where the refractive index changes) may interfere with each other, stable information reproduction may not be possible.
  • an optical information recording medium including a plurality of recording layers and an intermediate layer composed of an adhesive layer provided between the plurality of recording layers.
  • the recording layer has a polymer binder and a dye dispersed in the polymer binder, or a polymer to which a dye is bonded, and the refractive index does not change by irradiation of recording light, and is adjacent to the recording layer.
  • first interface and a second interface By forming a first interface and a second interface between two intermediate layers and irradiating recording light to a region adjacent to the first interface or a region adjacent to the second interface of the recording layer,
  • the polymer in the recording layer is deformed by heat generated by absorbing the recording light, and a convex shape toward the intermediate layer is formed at the first interface or the second interface, and the first interface and the first interface are formed.
  • Information is recorded as separate information layers on both of the two interfaces.
  • optical information recording medium information can be recorded as two separate information layers on the first interface and the second interface of the recording layer, so that when the same number of information layers are to be formed, Thus, the number of recording layers can be reduced, and the manufacturing process of the optical information recording medium can be simplified.
  • information (recording spot) is formed by utilizing the deformation of the first interface and the second interface, and the refractive index is recorded in the vicinity of the first interface and the second interface in the recording layer when information is recorded. Since there is no change, there is no possibility of interference in the recording spot during reproduction. Therefore, stable information reproduction is possible.
  • the recording layer has a thickness of 2 ⁇ m or more.
  • the thickness of the recording layer is set to 2 ⁇ m or more, when the recording spot formed on one of the first interface and the second interface in one recording layer is read, the influence from the recording spot formed on the other is detected. (Crosstalk) can be suppressed.
  • the reflectivity of the first interface and the second interface can be the same. That is, the refractive index of each layer can be set so as to have such a reflectance.
  • the recording layer can be configured to have a polymer to which a dye is bonded. This is because when a polymer to which a dye is bonded is applied, even if a relatively thick film is formed, the refractive index distribution does not vary within the thickness.
  • the first interface and the second interface may have different reflectivities.
  • the position of the information layer can be easily specified by the reflectance of the interface.
  • the recording layer may have a polymer binder and a dye dispersed in the polymer binder.
  • the dye When the dye is dispersed in the polymer binder, when a recording layer having a certain thickness is formed by coating, a difference occurs in the dye concentration in the thickness direction of the layer. Therefore, the reflectance of the first interface and the second interface A difference can be made in the reflectance.
  • the dye contains a multiphoton absorbing compound.
  • a multiphoton absorption compound is used as a dye for recording, a change can be caused in a limited range in the thickness direction, which is advantageous for multilayering information layers.
  • Each of the optical information recording medium manufacturing methods described above includes a step of forming a unit structure sheet in which a recording layer and an adhesive layer are laminated between two release sheets, and peeling one of the release sheets from the unit structure sheet. And the process of sticking to the other unit structure sheet from which the other release sheet was peeled off can be provided.
  • optical information recording medium described above uses an adhesive layer as an intermediate layer, it is possible to use a method suitable for mass production, such as bonding of unit structure sheets.
  • a recording method for an optical information recording medium comprising: a polymer binder and a dye dispersed in the polymer binder; A step of preparing an optical information recording medium comprising a plurality of recording layers whose refractive index does not change by irradiation and an intermediate layer made of an adhesive layer provided between the plurality of recording layers; Of the interface of the intermediate layer, the condensed recording light is irradiated to a region adjacent to the interface on one side in the thickness direction of the recording layer, and the interface on the one side is deformed to be convex toward the intermediate layer.
  • a large number of information layers can be formed with a small number of recording layers, and stable information reproduction can be performed without using a change in the refractive index of the recording layer.
  • the substrate side interface after recording is obtained by imaging the reflection intensity with a reproducing apparatus.
  • the reflection intensity is imaged by a reproducing apparatus.
  • the cover side interface after recording at the substrate side interface and before recording is formed by imaging the reflection intensity with a reproducing apparatus.
  • the recording-side cover-side interface after recording at the substrate-side interface is obtained by imaging the reflection intensity with a reproducing apparatus. It is an atomic force microscope image of a recording spot.
  • A The measurement result of the reflectance with respect to the thickness direction position in the optical information recording medium of Example 1, and
  • B The measurement result of the reflectance with respect to the thickness direction position in the optical information recording medium of Example 2.
  • the optical information recording medium 10 includes a substrate 11, a plurality of recording layers 14, a plurality of intermediate layers 15, and a cover layer 16.
  • the substrate 11 is composed of a support plate 12 and a servo signal layer 13.
  • the support plate 12 is a support for supporting the recording layer 14 and the like, and is made of, for example, a polycarbonate disc.
  • the material and thickness of the support plate 12 are not particularly limited.
  • the servo signal layer 13 is made of an adhesive or adhesive resin material for holding the support plate 12 with a multilayer structure composed of the recording layer 14 and the intermediate layer 15, and has an unevenness or refractive index in advance on the surface on the support plate 12 side.
  • the servo signal here is a signal set in advance so that the recording / reproducing apparatus can recognize that it is the reference plane of focus during recording and reproduction. When focusing on a predetermined recording layer 14, the focus is controlled in consideration of the distance from the reference plane and the number of interfaces.
  • a servo signal or groove for tracking so that the laser beam can be accurately irradiated to the track of the recording spot arranged in the circumferential direction during recording and reproduction.
  • the presence or absence of the servo signal layer 13 is arbitrary.
  • the recording layer 14 is a layer made of a photosensitive material on which information is optically recorded.
  • the recording layer 14 includes a polymer binder and a dye dispersed in the polymer binder.
  • the polymer binder When the recording layer 14 is irradiated with recording light, the polymer binder is deformed by heat generated by the dye absorbing the recording light, and the interface 18 with the intermediate layer 15 (when the upper and lower interfaces of the recording layer 14 are not distinguished).
  • a recording spot M (information) is recorded by forming a convex shape toward the intermediate layer 15 at “interface 18”.
  • the recording spot M has a convex shape such that the center is directed from the recording layer 14 toward the intermediate layer 15, and the periphery of the convex shape is concave so as to extend from the intermediate layer 15 toward the recording layer 14.
  • a shape (with reference to the recording layer 14) is formed.
  • a conceptual layer in which information is written when the recording spot M is formed on the interface 18 is referred to as an “information layer”.
  • the recording layer 14 is formed thicker than a conventional recording layer containing a polymer binder and a dye, and the thickness of one recording layer 14 is preferably 2 ⁇ m or more.
  • the thickness of one recording layer 14 is more desirably 5 ⁇ m or more, and further desirably 7 ⁇ m or more.
  • the optical information recording medium 10 of the present embodiment detects from the difference in reflection intensity depending on the position in the thickness direction, but when the information layer interval is less than 5 ⁇ m. The peaks of the reflection intensity when viewed in the graph of the relationship between the thickness direction position and the reflection intensity overlap, and the peak becomes ambiguous.
  • the recording spot M (deformed portion) recorded on the interface 18 (referred to as “first interface 18A”) with the intermediate layer 15 adjacent to the recording layer 14 above
  • first interface 18A the recording spot M recorded on the interface 18
  • second interface 18B the recording spot M recorded on the interface 18
  • the recording spot M on the first interface 18A it may be difficult to separate the reflected light and the signal from the recording spot recorded on the second interface 18B immediately below, so the recording layer 14 has a thickness of 5 ⁇ m. The above is desirable.
  • the recording layer 14 has a thickness of 2 ⁇ m or more. If a margin is taken in consideration of the aim of the focal position at the time, the error of the focal position, etc., it is desirable that the thickness be 5 ⁇ m or more. Thus, when one of the first interface 18A and the second interface 18B is to be deformed, the other of the first interface 18A and the second interface 18B of the same recording layer 14 is not deformed. Can do.
  • the upper limit of the thickness of the recording layer 14 is not particularly limited. However, in order to increase the number of recording layers 14, it is desirable that the thickness be as small as possible, as long as interlayer crosstalk does not occur. As an example, in the present embodiment, the thickness of the recording layer 14 is 12 ⁇ m.
  • the recording layer 14 is provided with, for example, about 2 to 100 layers. In order to increase the storage capacity of the optical information recording medium 10, it is desirable that the number of the recording layers 14 be large, for example, 10 layers or more.
  • the recording layer 14 is made of a material whose refractive index does not substantially change before and after recording that deforms the interface 18.
  • the recording layer 14 desirably has an absorptance (one-photon absorptivity) with respect to recording light of 5% or less per layer. Further, the absorptance is more preferably 2% or less, and further preferably 1% or less. For example, assuming that the intensity of the recording light reaching the innermost recording layer 14 is 50% or more of the intensity of the irradiated recording light, 15 recording layers (30 information layers) are realized. In order to achieve 25 recording layers (50 information layers), the absorptance per recording layer needs to be 4% or less. It is because it needs to be 2% or less. Further, if the absorption rate is high, it becomes difficult to form a convex shape on the interface 18 by heating the recording layer 14 too much.
  • absorptance one-photon absorptivity
  • the formation method of the recording layer 14 is not particularly limited, but can be formed by spin coating or blade coating using a solution obtained by dissolving a dye material and a polymer binder in a solvent.
  • a solvent As the solvent at this time, dichloromethane, chloroform, methyl ethyl ketone (MEK), acetone, methyl isobutyl ketone (MIBK), toluene, hexane, or the like can be used.
  • Polymer binders used for the recording layer 14 include polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), polyethyl methacrylate, polybutyl methacrylate, polybenzyl methacrylate, polyisobutyl methacrylate, polycyclohexyl methacrylate, polycarbonate (PC), Polystyrene (PS), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyvinyl benzoate, vinyl polypivalate, polyethyl acrylate, polybutyl acrylate, and the like can be used.
  • PVAc polyvinyl acetate
  • PMMA polymethyl methacrylate
  • PMMA polyethyl methacrylate
  • polybutyl methacrylate polybenzyl methacrylate
  • polyisobutyl methacrylate polycyclohexyl methacrylate
  • PC Polycarbonate
  • PS Polystyrene
  • PVC polyvin
  • a dye (one-photon absorption dye) conventionally used as a heat mode recording material can be used.
  • phthalocyanine compounds, azo compounds, azo metal complex compounds, and methine dyes cyanine compounds, oxonol compounds, styryl dyes, merocyanine dyes
  • methine dyes cyanine compounds, oxonol compounds, styryl dyes, merocyanine dyes
  • the photon absorbing dye is preferably, for example, a two-photon absorbing compound that does not have a linear absorption band at the wavelength of the readout light.
  • These dyes are preferably contained in the recording layer in an amount of 1 to 80% by weight. More preferably, it is 5 to 60% by weight, and further preferably 10 to 40% by weight.
  • the two-photon absorption compound is not particularly limited as long as it does not have a linear absorption band in the wavelength of readout light, and examples thereof include compounds having a structure represented by the following general formula (1).
  • X and Y each represent a substituent having a Hammett's sigma para value ( ⁇ p value) of zero or more, which may be the same or different, and n represents an integer of 1 to 4.
  • R represents a substituent, which may be the same or different, and m represents an integer of 0 to 4.
  • X and Y are those having a positive ⁇ p value in the Hammett formula, so-called electron-withdrawing groups, and preferably, for example, a trifluoromethyl group, a heterocyclic group, a halogen atom, a cyano group Nitro group, alkylsulfonyl group, arylsulfonyl group, sulfamoyl group, carbamoyl group, acyl group, acyloxy group, alkoxycarbonyl group, etc., more preferably trifluoromethyl group, cyano group, acyl group, acyloxy group, Or an alkoxycarbonyl group, and most preferably a cyano group or a benzoyl group.
  • an alkylsulfonyl group, an arylsulfonyl group, a sulfamoyl group, a carbamoyl group, an acyl group, an acyloxy group, and an alkoxycarbonyl group are further added for various purposes in addition to imparting solubility to a solvent. It may have a substituent, and preferred examples of the substituent include an alkyl group, an alkoxy group, an alkoxyalkyl group, and an aryloxy group.
  • n is preferably 2 or 3, most preferably 2. As n becomes 5 or more, linear absorption comes out on the longer wavelength side, and non-resonant two-photon absorption recording using recording light in a wavelength region shorter than 700 nm becomes impossible.
  • R represents a substituent, and the substituent is not particularly limited, and specific examples include an alkyl group, an alkoxy group, an alkoxyalkyl group, and an aryloxy group.
  • Specific examples of the compound having the structure represented by the general formula (1) are not particularly limited, but compounds represented by the following chemical structural formulas D-1 to D-21 can be used.
  • the intermediate layer 15 is provided between the plurality of recording layers 14, in other words, adjacent to the top and bottom of each recording layer 14.
  • the intermediate layer 15 is provided in order to provide a predetermined amount of space between the recording layers 14 so that interlayer crosstalk does not occur between the plurality of recording layers 14.
  • the thickness of the intermediate layer 15 is 2 ⁇ m or more, desirably 5 ⁇ m or more, and as an example, 10 ⁇ m in the present embodiment.
  • the intermediate layer 15 is preferably thin as long as interlayer crosstalk does not occur. For example, it is preferably 20 ⁇ m or less.
  • the intermediate layer 15 is made of a material that does not change due to laser irradiation during recording and reproduction. Further, the intermediate layer 15 is transparent to the recording light, the reading light, and the reproducing light in order to minimize the loss of the recording light, the reading light, and the reproducing light (light including the reproduction signal generated by the irradiation of the reading light). It is desirable to be made of a new resin.
  • transparent here means that the absorptance is 1% or less.
  • the intermediate layer 15 is made of an adhesive layer.
  • This pressure-sensitive adhesive layer has an adhesive property that allows it to be attached to another surface, and is softer than the recording layer 14.
  • the pressure-sensitive adhesive layer has a glass transition temperature lower than the glass transition temperature of the recording layer 14.
  • the intermediate layer 15 has a refractive index different from that of the recording layer 14. Thereby, at the interface between the recording layer 14 and the intermediate layer 15, the reading light OB can be reflected due to a sudden change in refractive index.
  • the intermediate layer 15 is preferably provided with an appropriate difference in refractive index from the recording layer 14. Specifically, the refractive index of the recording layer 14 is n1, and the refractive index of the intermediate layer 15 is n2. 0.001 ⁇ ((n2-n1) / (n2 + n1)) 2 ⁇ 0.04 It is desirable to satisfy.
  • the refractive index n2 of the intermediate layer 15 is 1.460 as an example. If the refractive index n1 of the recording layer 14 is 1.565, ((n2 ⁇ n1) / (n2 + n1)) 2 is 0.001205, which satisfies the above inequality.
  • the composition of the materials used for the recording layer 14 and the intermediate layer 15 may be adjusted. Specifically, since a dye such as a two-photon absorption compound is mixed in the polymer binder in the material of the recording layer 14, the refractive index of the dye or the polymer binder is appropriately selected, and the blending ratio of each is selected. By changing the refractive index, the refractive index can be arbitrarily adjusted.
  • the refractive index changes when the degree of polymerization is different, so a polymer binder with a different degree of polymerization can be used, or the degree of polymerization of the polymer binder can be adjusted. By doing so, the refractive index can be adjusted. Furthermore, it is also possible to adjust by blending a plurality of polymer binders. It is also possible to adjust the refractive index by adding a refractive index adjusting agent (such as inorganic fine particles).
  • a refractive index adjusting agent such as inorganic fine particles
  • the refractive index of the intermediate layer 15 can be adjusted by adjusting the degree of polymerization of a polymer material such as a resin that can be used as the material of the intermediate layer 15. It is also possible to adjust the refractive index by arbitrarily blending materials that can be used as the intermediate layer 15 or to adjust the refractive index by adding a refractive index adjusting agent (such as inorganic fine particles).
  • a refractive index adjusting agent such as inorganic fine particles.
  • the cover layer 16 is a layer provided to protect the recording layer 14 and the intermediate layer 15 and is made of a material that can transmit recording / reproducing light.
  • the cover layer 16 is provided with an appropriate thickness of several tens of ⁇ m to several mm.
  • a method for recording / reproducing information on the optical information recording medium 10 as described above will be described.
  • the information is output to an area adjacent to the first interface 18A of the recording layer 14 according to the information to be recorded.
  • a pulsed laser beam capable of increasing the peak power may be used as this laser beam.
  • the focal position of the recording light RB is preferably targeted at the interface 18, for example.
  • a recording spot M in which the center of the portion irradiated with the recording light RB has a convex shape from the recording layer 14 toward the intermediate layer 15 is formed.
  • a first information layer is formed on the first interface 18A of the recording layer 14.
  • the recording spot M has a convex portion M1 at the center and a ring-shaped concave portion M2 around the convex portion M1 toward the recording layer.
  • the distance from the first interface 18A (first interface 18A before deformation) of the deepest portion of the recess M2 is smaller than the distance from the first interface 18A (first interface 18A before deformation) at the apex of the protrusion M1. .
  • the recording spot M as a whole can be said to be approximately convex.
  • the formation principle of the recording spot M having a convex shape at the center is not clear, the formation principle of the concave shape in the recording method in which the center of the irradiated spot is a concave shape (also known as a known recording method) It is inferred as follows from the comparison with
  • the recording layer 14 when the recording light RB is irradiated, the recording layer 14 is thermally expanded, and the recording layer 14 protrudes as shown in FIG.
  • the viscosity in the vicinity of the surface of the recording layer 14 is not as low as in the prior art, and the outflow of FIG. 4B does not occur. Therefore, when the expanded portion contracts due to a decrease in temperature, the shape changes from the shape of FIG. 4A to the shape of FIG. 2, leaving a convex portion M1 at the center and a concave portion M2 around the convex portion M1. It is thought that you can.
  • the optical information recording medium 10 of the present embodiment not only the first interface 18A on the upper side of one recording layer 14 but also information to be recorded in the area adjacent to the second interface 18B of the recording layer 14 is recorded. Accordingly, when a laser beam (recording light RB) whose output is modulated is irradiated, a recording spot M that protrudes toward the intermediate layer 15 can be formed. Thereby, in the recording layer 14, an information layer separate from the information layer formed on the first interface 18A can be formed. That is, information can be recorded as separate information layers on both the first interface 18A and the second interface 18B.
  • the reading light OB when the reading light OB is irradiated to the recording spot M of the second interface 18B with a continuous wave laser, there is a difference between the refractive index of the recording layer 14 and the refractive index of the intermediate layer 15. Thus, the reading light OB is reflected at the second interface 18B. At this time, a difference occurs in the intensity of the reflected light at the second interface 18B around the recording spot M and the recording spot M, and therefore the recording spot M can be detected by the difference in reflectance.
  • the recording spot may consist only of a convex shape (convex portion M 1), and the concave portion M 2 may not be formed around the convex shape.
  • the recording spot M is formed with the concave portion M2 around the convex portion M1, when the reading light OB for reading the recording spot M is applied to the recording spot M, only the convex portion M1 is present.
  • the intensity distribution of the reflected light from the recording spot M is considered to change abruptly according to the distance from the center of the convex portion M1, and can be read with a high degree of modulation.
  • the fluidity of the polymer binder is improved by heating the recording layer 14 to a temperature near the glass transition temperature of the polymer binder, preferably higher than the glass transition temperature.
  • the information recorded in the information layer can be erased by returning to the original plane after the interface 18 is not deformed by the surface tension.
  • re-recording (repeated recording) on the recording layer 14 (information layer) is possible.
  • a method of irradiating a continuous wave laser so as to focus on the recording layer 14 can be used.
  • By heating with a continuous wave laser it is possible to erase information in a continuous region in the recording layer 14 without unevenness.
  • this continuous wave laser a laser used for reproducing information may be used, or another laser may be used. In any case, it is desirable to use a laser that emits light having a wavelength that allows one-photon absorption in the recording layer 14.
  • the information recorded in all the recording layers 14 is heated by heating the entire optical information recording medium 10 to a temperature higher than the glass transition temperature of the polymer binder. Can be erased at once.
  • the entire information of the optical information recording medium can be easily erased and initialized.
  • information can be easily deleted when the optical information recording medium is discarded.
  • the optical information recording medium 10 of the present embodiment information is recorded as separate information layers on both the first interface 18A on one side and the second interface 18B on the other side of the recording layer 14. Can do. Since the refractive index of the recording layer 14 does not change before and after recording, no reflection occurs in the recording layer 14 (no interference in the recording spot M as in the conventional example), and stable information reproduction is possible. Is possible. Further, the optical information recording medium 10 does not need to give high fluidity to the recording layer 14 as in the case of recording by forming a well-known concave shape, so that it can be recorded with high sensitivity accordingly. .
  • the recording layer 14 has a polymer binder and a dye dispersed in the polymer binder.
  • the present invention is not limited to this, and the recording layer has a high density of dyes bonded thereto. You may have molecules.
  • the recording layer 14 may contain a polymer having a structure represented by the following general formula (2).
  • Y represents a substituent in which both Hammett's sigma para value ( ⁇ p value) has a value of zero or more, and X also represents the same kind of substituent.
  • N represents an integer of 1 to 4
  • R 1 , R 2 , and R 3 represent substituents, and may be the same or different
  • l represents 1 or more
  • m represents an integer of 0 to 4 .
  • the detection system for reproduction can be made the same when reading the first interface 18A and when reading the second interface 18B. It becomes easy to configure the system.
  • an adhesive is apply
  • a first sheet 110 on which is attached is prepared.
  • the second release sheet S2 has a release agent having a high release performance such that the force when peeling the second release sheet S2 is weaker than the force when peeling the first release sheet S1. It has been applied.
  • the recording layer 14 is formed on the surface of the third release sheet S3 on the side where the release agent is applied, thereby producing the second sheet 120.
  • the method for forming each layer is not particularly limited, and for example, the material for forming the layer is applied by spin coating, knife coating, roll coating, bar coating, blade coating, die coating, gravure coating, or the like. be able to. Note that the order of manufacturing the first sheet 110 and the second sheet 120 is not particularly limited.
  • the third sheet 130 is a unit structure sheet in which the recording layer 14 and the pressure-sensitive adhesive layer (intermediate layer 15) are stacked between two release sheets (S3, S1). It is good to manufacture and stock.
  • the substrate 11 is prepared, and on the other hand, the second release sheet S2 of the first sheet 110 is released, and the exposed adhesive layer is bonded to the surface of the substrate 11 on the servo signal layer 13 side.
  • a structure in which the intermediate layer 15 is laminated on the substrate 11 (an optical information recording medium in the middle of manufacture is referred to as a “semi-product medium”) as shown in FIG. 5D is formed.
  • the first release sheet S1 is peeled from the semi-finished medium to expose the intermediate layer 15, while the release sheet S3 is peeled from the separately prepared third sheet 130 to expose the recording layer 14. Is prepared, and the recording layer 14 is bonded to the intermediate layer 15 of the semi-finished product medium to form a semi-finished product medium as shown in FIG.
  • the first release sheet S1 is peeled from the semi-finished medium of FIG. 5 (e) to expose the intermediate layer 15, while a separately prepared third sheet 130 is provided.
  • a third release sheet S3 is peeled off to expose the recording layer 14, and the recording layer 14 is bonded to the intermediate layer 15 of the semi-finished medium, as shown in FIG.
  • a semi-finished medium in which three intermediate layers 15 and two recording layers 14 are alternately arranged on the substrate 11 is formed.
  • the optical information recording medium 10 having the structure as shown in FIG. 1 is obtained by repeating the process a number of times and finally bonding the cover layer 16 to the adhesive layer (intermediate layer 15) that is exposed by peeling off the outermost release sheet S1. Can be manufactured. Since the optical information recording medium 10 of the present embodiment has a structure in which the adhesive layer (intermediate layer 15) and the recording layer 14 are repeatedly laminated, the recording layer and the adhesive layer are thus interposed between the two release sheets. A process of repeatedly laminating unit structure sheets laminated with each other can be adopted, and the manufacturing process can be simplified.
  • the sheet used for the manufacturing as described above is manufactured with an area larger than the shape of the optical information recording medium as the final product, and is punched into the shape of the optical information recording medium as the final product after the manufacturing process by the above bonding. If it is made, an optical information recording medium can be manufactured efficiently.
  • Example 1 In Example 1, a recording material in which a dye was dispersed in a polymer binder was used.
  • Polymer binder Polymethyl methacrylate 19376 (manufactured by SIGMA-ALDRICH) was used as the polymer binder.
  • an adhesive layer 215 (DA-3010, manufactured by Hitachi Chemical Co., Ltd.) having a size of about 2 ⁇ 3 cm is attached to a slide glass 211 (substrate) twice, and a recording film formed on the release film thereon. The layers were attached facing each other (see the recording layer 214 in FIG. 6). Thereafter, the release film was peeled off, and an adhesive layer 215 (DA-3010) was further bonded onto the recording layer 214 twice. Finally, a polycarbonate film (Pure Ace C110, Teijin Chemicals Limited) was attached as the cover layer 216. The film thickness of each layer was as follows when measured by MINICOM ELECTRONIC GAGE (TOKYO SEIMITSU). Glass slide 1000 ⁇ m Cover layer 80 ⁇ m Adhesive layer (per sheet) 10 ⁇ m each Recording layer 12 ⁇ m
  • Example 2 In Example 2, a polymer binder to which a dye was bound was used as a recording material.
  • a pulse laser with a wavelength of 522 nm was used, and recording was performed in the order of the substrate side interface and the cover side interface of the recording layer with a peak power of 36.8 W and a pulse width of 10 ⁇ sec.
  • a 405 nm CW (Continuous Wave) laser was used as a laser for reproducing the recording spot, and the reflection intensities at several thickness direction positions were imaged. That is, based on the intensity of the reflected light of the reproducing laser beam, images of the reflection intensity were created at several positions in the thickness direction.
  • the recording spot When the interface is observed after recording on the substrate side interface of the recording layer, the recording spot should be observed in a High to Low state (a recording spot appears dark in a bright unrecorded portion) as shown in FIG. I was able to.
  • FIG. 9 shows the cover layer side interface observed after recording on the substrate side interface of the recording layer and before recording on the cover layer side interface. As can be seen from FIG. 9, there was a defect that was thought to have been produced at the time of sample preparation, but the influence of the recording layer on the substrate side interface during recording was not confirmed.
  • FIG. 10 shows an image obtained by observing the interface after recording on the interface on the cover layer side of the recording layer. As shown in FIG. 10, a recording spot could be confirmed at the interface on the cover layer side in the same High to Low state as the substrate side interface of the recording layer.
  • FIG. 11 shows a three-dimensional display of the result of measuring the shape of the recording spot recorded in Example 1 with the following atomic force microscope (AFM) after peeling the adhesive layer on the cover layer side.
  • AFM atomic force microscope
  • the recording light incident side (cover layer side) interface was measured with respect to the recording layer.
  • Atomic force microscope device Nanosearch microscope OLS-3500 (Olympus) Observation conditions Dynamic mode, scanning range 10 ⁇ m, scanning speed 1Hz Uses high aspect ratio probe AR5-NCHR-20 (Nanoworld)
  • Example 1 A 405 nm CW laser was used as a laser for reproducing the recording spot, and the focal position was gradually moved from the substrate side to the cover layer side, and the intensity of the reflected light was measured.
  • Example 2 As a result, in Example 1, as shown in FIG. 12A, a small peak P1 was detected at the interface on the substrate side of the recording layer, and a peak P2 larger than the peak P1 was detected at the interface on the cover layer side.
  • Example 2 as shown in FIG. 12B, the peak P3 is detected at the interface on the substrate side of the recording layer, and the peak P4 having the same height as the peak P3 is detected at the interface on the cover layer side. It was.
  • Example 1 including the recording layer in which the dye is dispersed in the polymer binder
  • the reflectance is different between the interface on the substrate side and the interface on the cover layer side, and the recording using the polymer binder to which the dye is bonded is used.
  • Example 2 composed of layers, it was confirmed that the interface on the substrate side and the interface on the cover layer side had the same reflectance. The measurement of the reflection intensity was performed on an unrecorded recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

光情報記録媒体(10)は、記録層(14)が、高分子バインダーと当該高分子バインダーに分散された色素とを有するか、または、色素が結合された高分子を有し、記録光の照射により屈折率が変化せず、隣接する2つの中間層との間で第1界面および第2界面を形成する。そして、記録層(14)の第1界面(18A)に隣接する領域または第2界面(18B)に隣接する領域に記録光を照射することで、色素が記録光を吸収して発生する熱により記録層(14)中の高分子が変形し、第1界面(18A)または第2界面(18B)に、中間層(15)に向かう凸形状が形成され、第1界面(18A)と第2界面(18B)の双方に別個の情報層として情報が記録される。

Description

光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法
 本発明は、光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法に関する。
 近年では、光情報記録媒体の大容量化の技術として、1枚の記録媒体中に多層に情報を記録する3次元記録が検討されている。3次元記録をするための光情報記録媒体では、記録層間のクロストークを防止するため、複数の記録層の間に適宜な厚さの中間層を設けるのが一般的である。
 そして、特許文献1の3次元記録をするための光情報記録媒体では、多数の記録層の製造工程を簡略化するため、記録層1層の上下の界面近傍においてそれぞれ別の情報層を形成するように記録するようにしている。具体的には、記録層に多光子吸収化合物を用い、記録層の上側の界面近傍のみの屈折率を変化させて、その記録層の1つ目の情報層を形成し、記録層の下側の界面近傍のみの屈折率を変化させて、その記録層の2つめの情報層を形成するようにしている。これにより、1つの記録層に2つの情報層を形成できるため、同じ数の情報層を形成しようとした場合には、記録層を少なくして媒体の製造工程を簡略化することができる。
特開2009-277271号公報
 しかし、特許文献1の光情報記録媒体では、記録層における、上下の界面に隣接する領域の屈折率を変化させることで記録スポット(ピット)を形成するため、再生時には、界面での反射光と、無記録部分の記録層と記録スポットの境での反射光との干渉(便宜上、「記録スポット内の干渉」という。)が起こるおそれがあった。すなわち、記録スポットに光を当てると、形成された1つの記録スポットの上側の界面(例えば、中間層と記録層の界面)における反射光と、その1つの記録スポットの下側の界面(例えば、記録層中における、屈折率が変化していない部分と屈折率が変化している部分との界面)における反射光とが互いに干渉するおそれがあるため、安定した情報の再生ができないおそれがあった。
 そこで、新たな記録方法を利用して、安定した情報の再生が可能となる光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法を提供することが望まれている。
 本発明の一態様として、複数の記録層と、当該複数の記録層の間に設けられる粘着剤層からなる中間層とを備えた光情報記録媒体を提供する。前記記録層は、高分子バインダーと当該高分子バインダーに分散された色素とを有するか、または、色素が結合された高分子を有し、記録光の照射により屈折率が変化せず、隣接する2つの中間層との間で第1界面および第2界面を形成し、前記記録層の前記第1界面に隣接する領域または第2界面に隣接する領域に記録光を照射することで、色素が記録光を吸収して発生する熱により前記記録層中の高分子が変形し、前記第1界面または前記第2界面に、前記中間層に向かう凸形状が形成され、前記第1界面と前記第2界面の双方に別個の情報層として情報が記録されるようにしたことを特徴とする。
 このような光情報記録媒体によれば、記録層の第1界面と第2界面の2つの界面に、それぞれ別個の情報層として情報が記録できるので、同じ数の情報層を形成しようとしたときには、記録層の数を少なくすることができ、光情報記録媒体の製造工程を簡略化することができる。そして、この光情報記録媒体では、第1界面および第2界面の変形を利用して情報(記録スポット)を形成し、情報の記録時に、記録層における第1界面および第2界面近傍で屈折率が変化しないので、再生時の記録スポット内の干渉が生じるおそれがない。そのため、安定した情報の再生が可能である。
 前記した光情報記録媒体において、前記記録層の厚みは2μm以上であることが望ましい。
 このように、記録層の厚みを2μm以上とすることで、一つの記録層における第1界面および第2界面の一方に形成した記録スポットを読み取るときに、他方に形成された記録スポットからの影響(クロストーク)を抑制することができる。
 前記した光情報記録媒体においては、前記第1界面と前記第2界面の反射率は同じとすることができる。すなわち、そのような反射率となるように各層の屈折率を設定することができる。
 このような構成によれば、記録が行われる各界面(情報層)において反射率が同じとなるため、再生のための検出システムを構成しやすくなる。
 このような、第1界面と第2界面の反射率を同じにするために、前記記録層は、色素が結合された高分子を有する構成とすることができる。色素が結合された高分子を塗布する場合には、比較的厚い膜を形成しても、厚み内での屈折率分布のばらつきが生じないからである。
 前記した光情報記録媒体においては、前記第1界面と前記第2界面の反射率が異なる構成とすることができる。
 このような構成によれば、界面の反射率によって、情報層の位置を特定しやすくなる。
 第1界面と第2界面の反射率を異ならせるためには、前記記録層は、高分子バインダーと当該高分子バインダーに分散された色素とを有する構成とすることができる。
 高分子バインダーに色素を分散させた場合、ある程度の厚みの記録層を塗布により形成したときに、層の厚み方向で、色素の濃度に差異が生じるので、第1界面の反射率と第2界面の反射率とに違いを出すことができる。
 前記した光情報記録媒体において、前記色素は、多光子吸収化合物を含むことが望ましい。多光子吸収化合物を記録のための色素として用いると、厚み方向の限られた範囲で変化を起こさせることができるので、情報層の多層化に有利である。
 前記した各光情報記録媒体の製造方法は、2枚の剥離シートの間に記録層および粘着剤層を積層した単位構造シートを形成する工程と、前記単位構造シートから前記剥離シートの一方を剥離して、他方の剥離シートが剥離された他の単位構造シートに貼り合わせる工程とを有するようにすることができる。
 前記した光情報記録媒体は、中間層として粘着剤層を用いるので、このような単位構造シートの貼り合わせという、大量生産に向いた方法を利用することができる。
 本発明の他の態様としての光情報記録媒体の記録方法は、高分子バインダーと当該高分子バインダーに分散された色素とを有するか、または、色素が結合された高分子を有し、記録光の照射により屈折率が変化しない複数の記録層と、当該複数の記録層の間に設けられる粘着剤層からなる中間層とを備えた光情報記録媒体を用意する工程と、前記記録層と前記中間層の界面のうち、前記記録層の厚み方向の一方側の界面に隣接する領域に集光した記録光を照射して当該一方側の界面を中間層に向かって凸となるように変形させて情報を記録する工程と、前記記録層と前記中間層の界面のうち、前記記録層の厚み方向の他方側の界面に隣接する領域に集光した記録光を照射して当該他方側の界面を中間層に向かって凸となるように変形させて情報を記録する工程と、を有することを特徴とする。
 このような記録方法によると、少ない記録層で多くの情報層を形成でき、しかも、記録層の屈折率の変化を利用せず、安定した情報の再生が可能となる。
 前記した本発明の諸態様および効果、並びに、他の効果およびさらなる特徴は、添付の図面を参照して後述する本発明の例示的かつ非制限的な実施の形態の詳細な説明により、一層明らかとなるであろう。
光情報記録媒体の断面図である。 記録時に形成される記録スポットを示す図である。 再生時を説明する図である。 光情報記録媒体における凹形状の形成過程を説明する図である。 光情報記録媒体の製造工程を説明する図である。 実施例のサンプルの層構成を説明する図である。 記録後の基板側界面を、再生装置で反射強度を画像化したものである。 基板側界面で記録後の基板側界面から5μm内側の記録層内を、再生装置で反射強度を画像化したものである。 基板側界面で記録後の、記録前のカバー側界面を、再生装置で反射強度を画像化したものである。 基板側界面で記録後の、記録後のカバー側界面を、再生装置で反射強度を画像化したものである。 記録スポットの原子間力顕微鏡像である。 (a)実施例1の光情報記録媒体における厚さ方向位置に対する反射率の測定結果と、(b)実施例2の光情報記録媒体における厚さ方向位置に対する反射率の測定結果である。
 次に、本発明の一実施形態について、図面を参照しながら説明する。
 図1に示すように、光情報記録媒体10は、基板11と、複数の記録層14と、複数の中間層15と、カバー層16とを備えてなる。
 基板11は、支持板12とサーボ信号層13とから構成されている。支持板12は、記録層14などを支持するための支持体であり、一例としてポリカーボネートの円板などからなる。支持板12の材質や厚さは特に限定されない。
 サーボ信号層13は、記録層14および中間層15からなる多層構造を支持板12に保持させるための粘着性または接着性の樹脂材料からなり、支持板12側の面に予め凹凸または屈折率の変化によりサーボ信号が記録された層である。ここでのサーボ信号は、記録時および再生時のフォーカスの基準面であることを記録再生装置が認識できるように予め設定された信号である。所定の記録層14に焦点を合わせる場合には、この基準面からの距離や、界面の数を考慮して焦点を制御する。また、記録時および再生時に円周方向に並んだ記録スポットのトラックに正確にレーザ光を照射できるようにトラッキング用のサーボ信号または溝を設けておくとよい。なお、サーボ信号層13の有無は任意である。
 記録層14は、情報が光学的に記録される感光材料からなる層であり、本実施形態においては、高分子バインダーと、当該高分子バインダーに分散された色素とを有してなる。記録層14は、記録光を照射すると、色素が記録光を吸収して発生する熱により高分子バインダーが変形し、中間層15との界面18(記録層14の上下の界面を区別しないときに「界面18」とする。)に、中間層15に向かう凸形状が形成されることで記録スポットM(情報)が記録される。より詳しくは、記録スポットMは、後述するように、中央が記録層14から中間層15に向かうように凸形状となり、この凸形状の周囲が、中間層15から記録層14に向かうように凹形状(記録層14を基準に見て)が形成される。
 なお、本願において、界面18に記録スポットMが形成されることにより情報が書き込まれる概念的な層を「情報層」と称することにする。
 このため、記録層14は、従来の高分子バインダーと色素を含む記録層に比較して厚く形成されており、一層の記録層14の厚さは、2μm以上であるのが望ましい。一層の記録層14の厚さは、より望ましくは5μm以上であり、さらに望ましくは7μm以上である。近時発表された参照光との干渉を利用したホモダイン検出の手法(Tatsuro Ide et al., Reduction of Interlayer Crosstalk in Multilayer Optical Disk by using Phase-diversity Homodyne Detection, ISOM'11 OWB3(2011))を使えば、情報層の間隔が2μm以上の場合に、隣接する情報層からの信号と分離して検出することが可能だからである。また、参照光を用いない従来の信号分離方法を用いても5μm以上であれば、隣接する情報層からの信号と分離することが可能だからである。すなわち、従来の方法で情報層となる界面18を検出する場合、本実施形態の光情報記録媒体10では、厚み方向位置による反射強度の違いから検出するが、情報層の間隔が5μm未満になると、厚み方向位置と反射強度の関係のグラフで見たときの反射強度のピークの裾が重なり合い、ピークが曖昧になってくる。そのため、厚さが5μmより小さい場合には、記録層14に対し上に隣接する中間層15との界面18(「第1界面18A」とする)に記録した記録スポットM(変形部分)と、その同じ記録層14に対し下に隣接する中間層15との界面18(「第2界面18B」とする)に記録した記録スポットMを読み取るときに、相互に層間クロストークが生じるおそれがある。例えば、第1界面18Aの記録スポットMを読み取るときに、直ぐ下の第2界面18Bに記録された記録スポットからの反射光と信号の分離が難しくなることがあるので、記録層14は、5μm以上であるのが望ましい。
 また、多光子吸収反応は、記録光RBを十分に収斂させた場合、記録層14の厚み方向において、0.5~2μm程度の範囲で生じるため、記録層14の厚さを2μm以上、記録時の焦点位置の狙いや、焦点位置の誤差などを考慮してマージンをとれば、厚さを5μm以上とするのが望ましい。これにより、第1界面18Aおよび第2界面18Bの一方に変形を生じさせようとしたときに、同じ記録層14の第1界面18Aおよび第2界面18Bの他方において変形を生じさせないようにすることができる。
 なお、記録層14の厚さの上限は特に限定されないが、記録層14の数を多くするためには、層間クロストークが生じない限りは薄い方が望ましく、例えば、20μm以下が望ましい。
 一例として、本実施形態では、記録層14の厚さは12μmである。
 記録層14は、例えば、2~100層程度設けられる。光情報記録媒体10の記憶容量を大きくするため、記録層14は多い方が望ましく、例えば10層以上であるのが望ましい。また、記録層14は、界面18を変形させる記録の前後において、屈折率が実質的に変化しないような材料が用いられる。
 記録層14は、記録光に対する吸収率(一光子吸収率)が1層当たり5%以下であるのが望ましい。また、この吸収率は2%以下であるのがより望ましく、1%以下であるのがさらに好ましい。例えば、最も奥側の記録層14に到達する記録光の強度が照射した記録光の強度の50%以上であることを条件とすると、15層の記録層(30層の情報層)を実現するためには、記録層1層当たりの吸収率が4%以下である必要があり、25層の記録層(50層の情報層)を実現するためには、記録層1層当たりの吸収率が2%以下である必要があるからである。また、吸収率が高いと、記録層14を加熱しすぎることで、界面18に凸形状を形成しにくくなる。
 記録層14の形成方法は、特に限定されないが、色素材料と高分子バインダーを溶媒に溶解させた液を用いてスピンコートやブレードコートなどにより形成することができる。このときの溶媒としては、ジクロロメタン、クロロホルム、メチルエチルケトン(MEK)、アセトン、メチルイソブチルケトン(MIBK)、トルエン、ヘキサンなどを用いることができる。
 記録層14に用いる高分子バインダーとしては、ポリ酢酸ビニル(PVAc)、ポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート、ポリブチルメタクリレート、ポリベンジルメタクリレート、ポリイソブチルメタクリレート、ポリシクロヘキシルメタクリレート、ポリカーボネート(PC)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリ安息香酸ビニル、ポリピバル酸ビニル、ポリエチルアクリレート、ポリブチルアクリレートなどを用いることができる
 記録層14に用いる、上記記録光を吸収する色素としては、例えば、ヒートモード型記録材料として従来用いられていた色素(1光子吸収色素)を用いることができる。例えば、フタロシアニン系化合物、アゾ化合物、アゾ金属錯体化合物、メチン色素(シアニン系化合物、オキソノール系化合物、スチリル色素、メロシアニン色素)を用いることができる。また、多層の記録層を有する記録媒体において記録再生時における隣接記録層への影響を最小限にするためには、前記記録光を吸収する色素として、多光子吸収色素を含むことが望ましく、多光子吸収色素は、例えば、読出光の波長に線形吸収帯を持たない2光子吸収化合物であることが好ましい。これら色素は記録層中に1~80重量%含まれることが望ましい。より好ましくは5~60重量%、さらに好ましくは10~40重量%が望ましい。
 2光子吸収化合物としては、読出光の波長に線形吸収帯を持たないものであれば、特に限定されないが、例えば、下記一般式(1)で表される構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、XおよびYはハメットのシグマパラ値(σp値)が共にゼロ以上の値を有する置換基を表し、同一でもそれぞれ異なってもよく、nは1~4の整数を表し、Rは置換基を表し、同一でもそれぞれ異なってもよく、mは0~4の整数を表す。)
 一般式(1)中、XおよびYはハメット式におけるσp値が正の値を取るもの、所謂電子吸引性の基を指し、好ましくは例えばトリフルオロメチル基、ヘテロ環基、ハロゲン原子、シアノ基、ニトロ基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、カルバモイル基、アシル基、アシルオキシ基、アルコキシカルボニル基、などが挙げられ、より好ましくはトリフルオロメチル基、シアノ基、アシル基、アシルオキシ基、またはアルコキシカルボニル基であり、最も好ましくはシアノ基、ベンゾイル基である。これらの置換基のうち、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、カルバモイル基、アシル基、アシルオキシ基、およびアルコキシカルボニル基は、溶媒への溶解性の付与等の他、様々な目的で、更に置換基を有してもよく、置換基としては、好ましくは、アルキル基、アルコキシ基、アルコキシアルキル基、アリールオキシ基、などが挙げられる。
 nは好ましくは2または3であり、最も好ましくは2である。nが5以上になるほど、線形吸収が長波長側に出てくるようになり、700nmよりも短波長の領域の記録光を用いての非共鳴2光子吸収記録ができなくなる。
 Rは置換基を表し、置換基としては、特に限定されず、具体的には、アルキル基、アルコキシ基、アルコキシアルキル基、アリールオキシ基、などが挙げられる。
 一般式(1)で表される構造を有する化合物の具体例としては、特に限定されないが、下記の化学構造式D-1~D-21の化合物を使用することができる。
Figure JPOXMLDOC01-appb-C000002
 中間層15は、複数の記録層14の間、言い換えると、各記録層14の上下に隣接して設けられている。中間層15は、複数の記録層14の間で層間クロストークが生じないように、記録層14同士の間隔を所定量空けるために設けられている。このため、中間層15の厚さは、2μm以上であり、望ましくは5μm以上であり、一例として、本実施形態では10μmである。中間層15は、層間クロストークが生じない限り薄い方がよく、例えば、20μm以下が望ましい。
 なお、本実施形態のように、高分子バインダーに色素を分散させた記録材料を溶媒で溶いて5μm以上の厚さで塗布した場合、厚み方向に多少、屈折率の分布(違い)が生じることが確認された。このため、本実施形態の光情報記録媒体10では、記録時または再生時に界面18を光でスキャンしていくと、第1界面18Aと第2界面18Bの反射率に違いが出るため、情報層の位置の特定がし易くなる。そして、このような反射率の違いを作るのに、特別な工程を要せず、通常通り記録材料を塗布するだけでよいため、生産性が良好である。
 中間層15は、記録時および再生時のレーザ光の照射により変化しない材料が用いられる。また、中間層15は、記録光や読出光、再生光(読出光の照射により発生する再生信号を含む光)の損失を最小限にするため、記録光や読出光、再生光に対し、透明な樹脂からなることが望ましい。ここでの透明とは、吸収率が1%以下であることをいう。
 中間層15は、粘着剤層からなる。この粘着剤層は、他の面への貼り付けを可能にする粘着性を有し、記録層14よりも軟らかいものである。例えば、粘着剤層は、そのガラス転位温度が記録層14のガラス転位温度よりも低いものである。このように、記録層14よりも軟らかい粘着剤層を中間層15として用いることで、記録層14を記録光により加熱して膨脹させたときに、中間層15が変形しやすく、界面18に容易に変形を起こさせることができる。
 中間層15は、記録層14の屈折率と異なる屈折率を有している。これにより、記録層14と中間層15の界面においては、屈折率の急変による読出光OBの反射が可能となっている。中間層15は、記録層14と屈折率の差が適度に設けられているのがよい。具体的には、記録層14の屈折率をn1、中間層15の屈折率をn2として、
0.001<((n2-n1)/(n2+n1))<0.04
を満たすのが望ましい。
 ((n2-n1)/(n2+n1))、つまり、反射率が0.001より大きいことで、界面18での反射光量を大きくして、情報の再生時に、S/N比を大きくすることができる。また、反射率が0.04より小さいことで、界面18での反射光量を適度な大きさに抑えて、記録時および再生時において記録再生光が大きな減衰を受けることなく深い記録層14に到達するのを可能にする。これにより、記録層14を多数設けて高容量化を図ることが可能となる。
 中間層15の屈折率n2は、一例としては、1.460である。記録層14の屈折率n1が1.565であるとすると、((n2-n1)/(n2+n1))は、0.001205であり、前記した不等式を満たす。
 記録層14および中間層15の屈折率を調整するには、記録層14および中間層15に用いる材料の配合を調整するとよい。具体的には、記録層14の材料には、2光子吸収化合物などの色素が高分子バインダー中に混入されているので、色素または高分子バインダーの屈折率を適切に選択し、それぞれの配合比率を変更することによって屈折率を任意に調整することができる。また、高分子バインダーは、類似の基本構造を有していても重合度が異なると屈折率も変化するため、重合度が異なる高分子バインダーを用いたり、高分子バインダーの重合度を調整したりすることでも屈折率の調整が可能である。さらに、複数の高分子バインダーを配合することで調整することも可能である。また、屈折率調整剤(無機微粒子等)を添加して屈折率を調整することも可能である。
 中間層15の屈折率を調整する場合、中間層15の材料として用いることができる樹脂などのポリマー材料の重合度を調整することで、屈折率を調整することができる。また、中間層15として使用可能な材料を任意に配合して屈折率を調整したり、屈折率調整剤(無機微粒子等)を添加して調整したりすることも可能である。
 カバー層16は、記録層14および中間層15を保護するために設けられる層であり、記録再生光が透過可能な材料からなる。カバー層16は、数十μm~数mmの適宜な厚さで設けられる。
 以上のような光情報記録媒体10に、情報を記録・再生する方法について説明する。
 所望の界面18、例えば、第1界面18Aに情報を記録するとき、図2(a)に示すように、記録層14の第1界面18Aに隣接する領域に、記録すべき情報に応じて出力が変調されたレーザ光(記録光RB)を照射する。記録層14が、多光子吸収化合物を記録色素として有する場合、このレーザ光には、ピークパワーを大きくできるパルスレーザ光を用いるとよい。そして、記録光RBの焦点の位置は、例えば、界面18を目標とするのが望ましい。
 記録光RBを照射すると、記録光RBを照射した箇所の中心が記録層14から中間層15に向けて凸形状となる記録スポットM(ピット)が形成される。これにより、記録層14のうち第1界面18Aに1つ目の情報層が形成される。記録スポットMは、詳細には、中央が凸部M1となり、この凸部M1の周囲が記録層14に向かうリング状の凹部M2となっている。凹部M2の最も深い部分の第1界面18A(変形前の第1界面18A)からの距離は、凸部M1の頂点の第1界面18A(変形前の第1界面18A)からの距離よりも小さい。すなわち、記録スポットMは、全体としては、およそ凸形状ということができる。この中央が凸形状となる記録スポットMの形成原理は明らかではないが、公知の記録方法として知られている、照射箇所の中央が凹形状となる記録方法における、凹形状の形成原理(これも、推測として論じられている)との比較から、次のように推察される。
 まず、公知の記録方法についてみると、J.Appl.Phys 62(3), 1 August 1987によれば、記録光を記録材料に照射すると、図4(a)に示すように、記録材料の温度上昇により記録材料(記録層14)が膨脹する(斜線部分は、加熱された範囲を示す)。そして、図4(b)に示すように、膨脹した部分が表面張力により周囲に流出する。その後、温度が低下すると、図4(c)に示すように、膨脹していた記録材料が収縮して、照射箇所の周囲に流出した部分は、基準面(記録層14の上面)よりも高い位置に記録材料が残って凸形状となるが、中央部分は、材料の流出により基準面よりも低くなって凹形状となる。
 一方、本実施形態の光情報記録媒体では、記録光RBを照射すると、記録層14が熱膨張して、図4(a)のように記録層14が突出する。しかし、本実施形態の場合、記録層14が比較的厚いため、記録層14の表面付近の粘度は従来技術ほど低くならず、図4(b)の流出が起こらない。そのため、温度が下がることにより、膨脹した部分が収縮すると、図4(a)の形状から図2の形状のように変形して、中央に凸部M1が残り、凸部M1の周囲に凹部M2ができると考えられる。
 そして、本実施形態の光情報記録媒体10では、一つの記録層14の上側の第1界面18Aだけではなく、その記録層14の、第2界面18Bに隣接する領域に、記録すべき情報に応じて出力が変調されたレーザ光(記録光RB)を照射すると、中間層15に向けて凸となる記録スポットMを形成することができる。これにより、記録層14において、第1界面18Aに形成した情報層とは別個の情報層を形成することができる。すなわち、第1界面18Aと第2界面18Bの双方に別個の情報層として情報を記録することができる。
 図3(a)に示すように、第1界面18Aの記録スポットMに連続波レーザで読出光OBを照射すると、記録層14の屈折率と中間層15の屈折率に差があることで、第1界面18Aで読出光OBが反射する。このとき、記録スポットMの周囲の第1界面18Aと、記録スポットMにおける反射光の強度に差が生じるので、この反射率の違いにより記録スポットMを検出することができる。そして、記録層14の屈折率は、記録前と変化していないので、読出光OBの反射は、記録層14の内部では起こらず、第1界面18Aのみで起こり、記録スポットMを安定して検出することができる。このような光学的な検出のため、凸部M1は、変形する前の界面(第1界面18A)に対して1~300nm程度突出しているのが望ましい。
 同様に、図3(b)に示すように、第2界面18Bの記録スポットMに連続波レーザで読出光OBを照射すると、記録層14の屈折率と中間層15の屈折率に差があることで、第2界面18Bで読出光OBが反射する。このとき、記録スポットMの周囲の第2界面18Bと、記録スポットMにおける反射光の強度に差が生じるので、この反射率の違いにより記録スポットMを検出することができる。
 なお、光情報記録媒体10では、記録条件により、記録スポットが、凸形状(凸部M1)のみからなり、凸形状の周囲に凹部M2が形成されない場合もある。
 本実施形態においては、記録スポットMは、凸部M1の周囲に凹部M2が形成されているので、記録スポットMを読み取るための読出光OBを記録スポットMに当てると、凸部M1のみが有る場合に比較して、記録スポットMによる反射光の強度分布は凸部M1の中央からの距離に応じて急激に変化すると考えられ、高い変調度で読み取ることが可能である。
 記録層14に記録した情報を消去する場合、記録層14を高分子バインダーのガラス転移温度付近の温度、望ましくは、ガラス転移点より高い温度に加熱することで、高分子バインダーの流動性が向上し、表面張力により界面18の変形がなくなって元の平面に戻ることで、その情報層に記録された情報を消去することができる。このように情報を消去することで、記録層14(情報層)への再度の記録(繰り返し記録)が可能である。この加熱の際には、記録層14に焦点を合わせるように連続波レーザを照射する方法を用いることができる。連続波レーザで加熱を行うことにより、記録層14中で連続した領域の情報をムラなく消去することが可能である。この連続波レーザは、情報の再生に用いるレーザを用いてもよいし、別のレーザを用いてもよい。いずれの場合にも、記録層14で1光子吸収が可能な波長の光を発するレーザを用いるのが望ましい。
 また、記録層14の加熱により情報を消去する際には、光情報記録媒体10の全体を高分子バインダーのガラス転移温度より高い温度に加熱することで、すべての記録層14に記録された情報を一度に消去することができる。これにより、記録層14が有する色素の種類にかかわらず、簡易に光情報記録媒体の全体の情報を消去して初期化することができる。また、光情報記録媒体の廃棄の際にも、簡易に情報を抹消することができる。
 以上のように、本実施形態の光情報記録媒体10においては、記録層14の一方側の第1界面18Aと他方側の第2界面18Bの両方に、別個の情報層として情報を記録することができる。そして、記録層14は、記録の前後において屈折率が変化しないため、記録層14内で反射が起こらず(従来例のように記録スポットM内の干渉が起こらず)、安定した情報の再生が可能である。また、光情報記録媒体10は、公知の凹形状を形成して記録をする場合のように、記録層14に高い流動性を与える必要がないため、その分、高感度で記録することができる。
 以上に本発明の実施形態について説明したが、本発明は、前記した実施形態に限定されることなく適宜変形して実施することが可能である。
 前記実施形態では、記録層14は、高分子バインダーと、高分子バインダーに分散された色素とを有していたが、本発明はこれに限定されず、記録層は、色素が結合された高分子を有してもよい。
 具体的には、記録層14は、下記の一般式(2)で示す構造を有した高分子を含有していてもよい。
Figure JPOXMLDOC01-appb-C000003
 (一般式(2)中、Yはハメットのシグマパラ値(σp値)が共にゼロ以上の値を有する置換基を表し、Xも同種の置換基を表す。XおよびYは同一種でもそれぞれ異なってもよく、nは1~4の整数を表し、R、R、Rは置換基を表し、同一種でもそれぞれ異なってもよく、lは1以上、mは0~4の整数を表す。)
 このような、色素が結合された高分子を記録層14の材料として用いる場合、5μm以上の厚さで材料を塗布しても、厚み方向の屈折率の分布が均一となる。そのため、第1界面18Aと第2界面18Bの反射率が同じになるので、再生のための検出システムを第1界面18Aを読み取るときと第2界面18Bを読み取るときとで同じにできるので、検出システムを構成しやすくなる。
 次に、以上のような光情報記録媒体10を製造する好適な方法の一例について説明する。
 図5(a)に示すように、第1の剥離シートS1の剥離剤が塗布されている側の表面上に、粘着剤を塗布して中間層15を形成し、さらに第2の剥離シートS2を貼った第1のシート110を用意する。ここで、第2の剥離シートS2には、第2の剥離シートS2を剥離するときの力が第1の剥離シートS1を剥離するときの力よりも弱くなるような剥離性能の高い剥離剤が塗布されている。
 そして、図5(b)に示すように、第3の剥離シートS3の剥離剤が塗布されている側の表面上に記録層14を形成して第2のシート120を作製する。各層の形成方法は、特に限定されないが、例えば、層を形成する材料を、スピンコート法、ナイフコート法、ロールコート法、バーコート法、ブレードコート法、ダイコート法、グラビアコート法などにより塗布することができる。なお、第1のシート110と第2のシート120の作製の順序は特に問わない。
 次に、第1のシート110から、第2の剥離シートS2を剥離して、露出した中間層15と第2のシート120の記録層14を貼り合わせることで、図5(c)に示すように、第3のシート130を作製する。第3のシート130は、2枚の剥離シート(S3,S1)の間に記録層14および粘着剤層(中間層15)を積層した単位構造シートであり、第3のシート130を予め大量に製造してストックしておくとよい。
 次に、基板11を用意し、一方で、第1のシート110の第2の剥離シートS2を剥離し、露出した粘着剤層を基板11のサーボ信号層13側の面に貼り合わせる。これにより、図5(d)に示すような、基板11の上に中間層15が積層された構造(製造途中の光情報記録媒体を「半製品媒体」とする。)が形成される。
 次に、半製品媒体から第1の剥離シートS1を剥離して中間層15を露出させ、一方で別途用意した第3のシート130から剥離シートS3を剥離して記録層14を露出させたものを用意し、その記録層14を半製品媒体の中間層15に貼り合わせて、図5(e)に示したような半製品媒体を形成する。さらに、図5(f)に示すように、図5(e)の半製品媒体から第1の剥離シートS1を剥離して中間層15を露出させ、一方で、別途用意した第3のシート130から第3の剥離シートS3を剥離して記録層14を露出させたものを用意し、その記録層14を半製品媒体の中間層15に貼り合わせて、図5(g)に示したような、基板11の上に3つの中間層15と2つの記録層14が交互に配置された半製品媒体が形成される。
 この後、図5(f)~(g)のような、剥離シートS1を剥離した半製品媒体の中間層15に第3のシート130の剥離シートS3を剥離して貼り重ねていく工程を必要な回数繰り返し、最後に最外層の剥離シートS1を剥離して露出させた粘着層(中間層15)にカバー層16を貼り合わせることで図1に示したような構造の光情報記録媒体10を製造することができる。
 本実施形態の光情報記録媒体10は、粘着層(中間層15)と記録層14が繰り返し積層された構造であるため、このように、2枚の剥離シートの間に記録層および粘着剤層を積層した単位構造シートを繰り返し貼り重ねていく工程を採用することができ、製造工程を簡略化することができる。
 上記のような製造に用いるシートは、最終製品としての光情報記録媒体の形状より大きい面積で製造し、上記の貼り合わせによる製造工程の後、最終製品としての光情報記録媒体の形状に打ち抜くようにすれば、効率的に光情報記録媒体を製造することができる。
 次に、本発明の光情報記録媒体に記録のテストをした実験について説明する。
[実施例1]
 実施例1においては、記録材料として、高分子バインダーに、色素を分散させたものを用いた。
(1)高分子バインダー
 高分子バインダーとしては、ポリメタクリル酸メチル19376(SIGMA-ALDRICH社製)を用いた。
(2)色素
 色素としては、下記C-2に示す2光子吸収色素を用いた。
Figure JPOXMLDOC01-appb-C000004
(3)記録媒体の作製
 2-ブタノン(和光純薬株製)を溶媒とし、上記の高分子バインダーと色素を混合し、一時間撹拌して溶解させ、記録層溶液を作製した。
 剥離フィルム(クリーンセパHY-US20、東山フイルム株式会社製)を、幅10cm、長さ20cm程度に裁断し、平滑なガラス板の上に設置し、記録層溶液をブレードコータによって手塗りし、乾燥させて記録層を形成した。
 図6に示すように2×3cm程度の粘着層215(DA-3010、日立化成工業株式会社製)をスライドガラス211(基板)に2回貼り付け、その上に、剥離フィルムに形成された記録層を向かい合わせにして貼り付けた(図6の記録層214参照)。その後、剥離フィルムを剥離し、さらに、粘着層215(DA-3010)を記録層214の上に2回貼り合わせた。最後に、カバー層216としてポリカーボネートフィルム(ピュアエースC110、帝人化成株式会社)を貼り付けた。
 各層の膜厚は、MINICOM ELECTRONIC GAGE(TOKYO SEIMITSU)で測定したところ、下記の通りであった。
 スライドガラス   1000μm
 カバー層        80μm
 粘着層(1枚あたり) 各10μm
 記録層         12μm
[実施例2]
 実施例2においては、記録材料として、色素が結合された高分子バインダーを用いた。
(1)色素が結合された高分子バインダーとして下記に示す化合物を用いた。
Figure JPOXMLDOC01-appb-C000005
(2)記録媒体の作製
 2-ブタノン(和光純薬株製)を溶媒とし、上記の色素が結合された高分子バインダーを混合し、一時間撹拌して溶解させ、記録層溶液を作製した。そして、記録層溶液が異なる以外は実施例1と同様の材料および手順により、図6の構造の記録媒体を作製した。
 各層の膜厚は、MINICOM ELECTRONIC GAGE(TOKYO SEIMITSU)で測定したところ、下記の通りであった。
 スライドガラス   1000μm
 カバー層        80μm
 粘着層(1枚あたり) 各10μm
 記録層         11.5μm
<記録再生のテスト>
 記録用レーザとして、波長522nmのパルスレーザを用い、ピークパワー36.8W、パルス幅10μsecで、記録層の基板側界面、カバー側界面の順に記録を行った。
 記録スポットを再生するためのレーザとして、405nmのCW(Continuous Wave)レーザを用い、いくつかの厚み方向位置における反射強度を画像化した。すなわち、再生用レーザ光の反射光の強度に基づいて、反射強度の像を厚み方向のいくつかの位置において作成した。実施例1について、記録前後の状態を画像化した結果が図7から図10である。
 記録層の基板側界面に記録後に同界面を観察したところ、図7のように、High to Lowの状態(明るい未記録部分の中に、記録スポットが暗く見える状態)で記録スポットを観察することができた。
 その後、記録層の基板側界面から5μm手前側(カバー層側)に焦点を移動させたところ、図8のような像が得られた。すなわち、記録層の基板側界面に記録スポットを形成したことによっては、厚み方向に5μmずれた位置に、記録材料の損傷は見られなかった。このため、記録層の厚さとして5μmが確保されていれば、記録層の上下の界面に別の情報層を形成することができると確認された。
 さらに、記録層の基板側界面に記録後で、カバー層側界面に記録前において、カバー層側界面を観察したのが図9である。図9を見ると分かるように、サンプル作製時にできたと思われる欠陥はあったが、記録層の基板側界面の記録時の影響は確認されなかった。
 記録層のカバー層側の界面に記録後、同界面を観察した像が図10である。図10に示すように、カバー層側の界面にも、記録層の基板側界面と同様のHigh to Lowの状態で記録スポットを確認することができた。
 このように、光学顕微鏡により、基板側界面とカバー層側界面の記録スポットをそれぞれはっきりと確認できたので、記録スポットを光学的に読み取ることが十分可能であると確認できた。
<界面の変形の確認>
 実施例1について記録スポットを記録したものを、カバー層側の粘着層を剥がした上で、下記の原子間力顕微鏡(AFM)により形状測定した結果を3次元表示したのが図11である。なお、記録した界面のうち、記録層に対し、記録光の入射側(カバー層側)の界面を測定した。
 原子間力顕微鏡
  装置   ナノサーチ顕微鏡OLS-3500(オリンパス社製)
  観察条件 ダイナミックモード、走査範囲10μm、走査速度1Hz
       高アスペクト比プローブAR5-NCHR-20(ナノワールド社製)使用
 図11に示すように、記録光の入射側の界面において、粘着層に向けて突出する突起が形成されていることが確認できた。なお、記録層の基板側の界面の形状は、粘着層が密着していたため測定できていないが、カバー層側の界面と同じ条件で記録されているため、粘着層に向けて突出した記録マークが形成されていたものと考えられる。
<反射強度の確認>
 記録スポットを再生するためのレーザとして、405nmのCWレーザを用い、基板側から、焦点位置を徐々にカバー層側に移動させていって、反射光の強度を測定した。その結果、実施例1では、図12(a)のように、記録層の基板側の界面において小さいピークP1が検出され、カバー層側の界面において、ピークP1より大きいピークP2が検出された。また、実施例2では、図12(b)のように、記録層の基板側の界面においてピークP3が検出され、カバー層側の界面において、ピークP3と同等の高さのピークP4が検出された。このように、高分子バインダーに色素を分散させた記録層からなる実施例1では、基板側の界面とカバー層側の界面で異なる反射率となり、色素が結合された高分子バインダーを用いた記録層からなる実施例2では、基板側の界面とカバー層側の界面が同等の反射率となることが確認された。なお、この反射強度の測定は、未記録の記録媒体において行った。

Claims (9)

  1.  複数の記録層と、当該複数の記録層の間に設けられる粘着剤層からなる中間層とを備えた光情報記録媒体であって、
     前記記録層は、高分子バインダーと当該高分子バインダーに分散された色素とを有するか、または、色素が結合された高分子を有し、記録光の照射により屈折率が変化せず、隣接する2つの中間層との間で第1界面および第2界面を形成し、
     前記記録層の前記第1界面に隣接する領域または第2界面に隣接する領域に記録光を照射することで、色素が記録光を吸収して発生する熱により前記記録層中の高分子が変形し、前記第1界面または前記第2界面に、前記中間層に向かう凸形状が形成され、前記第1界面と前記第2界面の双方に別個の情報層として情報が記録されるようにしたことを特徴とする光情報記録媒体。
  2.  前記記録層の厚みは2μm以上であることを特徴とする請求項1に記載の光情報記録媒体。
  3.  前記第1界面と前記第2界面の反射率が同じであることを特徴とする請求項1に記載の光情報記録媒体。
  4.  前記記録層は、色素が結合された高分子を有することを特徴とする請求項3に記載の光情報記録媒体。
  5.  前記第1界面と前記第2界面の反射率が異なることを特徴とする請求項1に記載の光情報記録媒体。
  6.  前記記録層は、高分子バインダーと当該高分子バインダーに分散された色素とを有することを特徴とする請求項5に記載の光情報記録媒体。
  7.  前記色素は、多光子吸収化合物を含むことを特徴とする請求項1から請求項6のいずれか1項に記載の光情報記録媒体。
  8.  請求項1に記載の光情報記録媒体の製造方法であって、
     2枚の剥離シートの間に記録層および粘着剤層を積層した単位構造シートを形成する工程と、
     前記単位構造シートから前記剥離シートの一方を剥離して、他方の剥離シートが剥離された他の単位構造シートに貼り合わせる工程とを有することを特徴とする光情報記録媒体の製造方法。
  9.  高分子バインダーと当該高分子バインダーに分散された色素とを有するか、または、色素が結合された高分子を有し、記録光の照射により屈折率が変化しない複数の記録層と、当該複数の記録層の間に設けられる粘着剤層からなる中間層とを備えた光情報記録媒体を用意する工程と、
     前記記録層と前記中間層の界面のうち、前記記録層の厚み方向の一方側の界面に隣接する領域に集光した記録光を照射して当該一方側の界面を中間層に向かって凸となるように変形させて情報を記録する工程と、
     前記記録層と前記中間層の界面のうち、前記記録層の厚み方向の他方側の界面に隣接する領域に集光した記録光を照射して当該他方側の界面を中間層に向かって凸となるように変形させて情報を記録する工程と、
     を有することを特徴とする光情報記録媒体の記録方法。
PCT/JP2012/066147 2011-09-12 2012-06-25 光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法 WO2013038772A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280042821.0A CN103814407B (zh) 2011-09-12 2012-06-25 光学信息记录介质及其制造方法、以及光学信息记录介质的记录方法
US14/175,267 US20140153375A1 (en) 2011-09-12 2014-02-07 Optical information recording medium, method for manufacturing same and recording method for optical information recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011198297 2011-09-12
JP2011-198297 2011-09-12
JP2011-253759 2011-11-21
JP2011253759A JP5528416B2 (ja) 2011-09-12 2011-11-21 光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/175,267 Continuation US20140153375A1 (en) 2011-09-12 2014-02-07 Optical information recording medium, method for manufacturing same and recording method for optical information recording medium

Publications (1)

Publication Number Publication Date
WO2013038772A1 true WO2013038772A1 (ja) 2013-03-21

Family

ID=47883016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066147 WO2013038772A1 (ja) 2011-09-12 2012-06-25 光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法

Country Status (4)

Country Link
US (1) US20140153375A1 (ja)
JP (1) JP5528416B2 (ja)
CN (1) CN103814407B (ja)
WO (1) WO2013038772A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105246699A (zh) * 2013-05-27 2016-01-13 富士胶片株式会社 记录材料及光信息记录介质
WO2020050590A1 (ko) * 2018-09-06 2020-03-12 주식회사 엘지화학 화합물, 착색제 조성물, 감광재, 컬러필터 및 디스플레이 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5603276B2 (ja) * 2011-03-28 2014-10-08 富士フイルム株式会社 光情報記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755540A (en) * 1980-08-13 1982-04-02 Thomson Csf Heat and light method for writing information and information medium
JP2005259192A (ja) * 2004-03-09 2005-09-22 Lintec Corp 光記録媒体用粘接着シート、光記録媒体用多層構造体及び多層光記録媒体
JP2011076686A (ja) * 2009-10-01 2011-04-14 Sony Corp 記録装置、記録方法、光記録媒体
JP2011086327A (ja) * 2009-10-14 2011-04-28 Sony Corp 光記録媒体、光記録媒体の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW448443B (en) * 1998-08-05 2001-08-01 Matsushita Electric Ind Co Ltd Optical information storage media and production method as well as the storage reproducing method and device
US20050142318A1 (en) * 2003-12-25 2005-06-30 Lintec Corporation Pressure sensitive adhesive sheet, a multilayer structured article for photorecording media having the sheet and multilayer photorecording medium having the article
JP5356709B2 (ja) * 2008-03-27 2013-12-04 リンテック株式会社 多層光記録媒体用シート、光記録媒体用多層構造体及び多層光記録媒体
JP5265223B2 (ja) * 2008-03-27 2013-08-14 リンテック株式会社 多層光記録媒体用シート、光記録媒体用多層構造体及び多層光記録媒体
JP5264589B2 (ja) * 2008-03-28 2013-08-14 富士フイルム株式会社 同時2光子吸収3次元光記録媒体および同時2光子3次元光記録方法
JP2010272175A (ja) * 2009-05-22 2010-12-02 Fujifilm Corp 2光子吸収記録材料、それを用いた2光子吸収光記録再生方法および2光子吸収記録媒体
JP5215972B2 (ja) * 2009-10-06 2013-06-19 リンテック株式会社 多層光記録媒体製造用シート及び多層光記録媒体
JP5357114B2 (ja) * 2010-07-13 2013-12-04 富士フイルム株式会社 光情報記録媒体
JP5396343B2 (ja) * 2010-07-13 2014-01-22 富士フイルム株式会社 光情報記録媒体およびその製造方法
JP2012022735A (ja) * 2010-07-13 2012-02-02 Fujifilm Corp 光情報記録媒体の記録再生方法
JP5406134B2 (ja) * 2010-07-13 2014-02-05 富士フイルム株式会社 光情報記録媒体およびその製造方法
JP2012022734A (ja) * 2010-07-13 2012-02-02 Fujifilm Corp 光情報記録媒体および光情報記録方法
JP5553723B2 (ja) * 2010-10-19 2014-07-16 富士フイルム株式会社 光情報記録媒体
JP5603276B2 (ja) * 2011-03-28 2014-10-08 富士フイルム株式会社 光情報記録媒体
JP5703257B2 (ja) * 2011-05-13 2015-04-15 富士フイルム株式会社 非共鳴2光子吸収記録材料及び非共鳴高分子2光子吸収光情報記録媒体及び記録再生方法
JP5659189B2 (ja) * 2011-05-13 2015-01-28 富士フイルム株式会社 非共鳴2光子吸収材料、非共鳴2光子吸収記録材料、記録媒体、記録再生方法及び非共鳴2光子吸収化合物
JP5705049B2 (ja) * 2011-07-13 2015-04-22 富士フイルム株式会社 多層構造シートとその製造方法、光情報記録媒体および多層構造シートを用いた光情報記録媒体の製造方法
JP5726689B2 (ja) * 2011-09-13 2015-06-03 富士フイルム株式会社 多層構造シートの製造方法
JP5756779B2 (ja) * 2012-03-30 2015-07-29 富士フイルム株式会社 光情報記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755540A (en) * 1980-08-13 1982-04-02 Thomson Csf Heat and light method for writing information and information medium
JP2005259192A (ja) * 2004-03-09 2005-09-22 Lintec Corp 光記録媒体用粘接着シート、光記録媒体用多層構造体及び多層光記録媒体
JP2011076686A (ja) * 2009-10-01 2011-04-14 Sony Corp 記録装置、記録方法、光記録媒体
JP2011086327A (ja) * 2009-10-14 2011-04-28 Sony Corp 光記録媒体、光記録媒体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105246699A (zh) * 2013-05-27 2016-01-13 富士胶片株式会社 记录材料及光信息记录介质
CN105246699B (zh) * 2013-05-27 2018-07-24 富士胶片株式会社 记录材料及光信息记录介质
WO2020050590A1 (ko) * 2018-09-06 2020-03-12 주식회사 엘지화학 화합물, 착색제 조성물, 감광재, 컬러필터 및 디스플레이 장치

Also Published As

Publication number Publication date
JP5528416B2 (ja) 2014-06-25
CN103814407A (zh) 2014-05-21
CN103814407B (zh) 2016-12-28
US20140153375A1 (en) 2014-06-05
JP2013077368A (ja) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5705049B2 (ja) 多層構造シートとその製造方法、光情報記録媒体および多層構造シートを用いた光情報記録媒体の製造方法
JP5553723B2 (ja) 光情報記録媒体
JP5476329B2 (ja) 光情報記録媒体
JP5357114B2 (ja) 光情報記録媒体
JP6063960B2 (ja) 多層光情報記録ディスクの製造方法
JP5396343B2 (ja) 光情報記録媒体およびその製造方法
JP5528416B2 (ja) 光情報記録媒体およびその製造方法ならびに光情報記録媒体の記録方法
US9514779B2 (en) Method for manufacturing multilayer structure sheet, and optical information recording medium
US9406332B2 (en) Optical information recording medium
US9368144B2 (en) Optical information recording medium and method for manufacturing same
JP2012203968A (ja) 光情報記録媒体
US9792944B2 (en) Recording material and optical information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831600

Country of ref document: EP

Kind code of ref document: A1