WO2013038668A1 - Mo-Wターゲット及びその製造方法 - Google Patents

Mo-Wターゲット及びその製造方法 Download PDF

Info

Publication number
WO2013038668A1
WO2013038668A1 PCT/JP2012/005812 JP2012005812W WO2013038668A1 WO 2013038668 A1 WO2013038668 A1 WO 2013038668A1 JP 2012005812 W JP2012005812 W JP 2012005812W WO 2013038668 A1 WO2013038668 A1 WO 2013038668A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
target
molybdenum
less
tungsten
Prior art date
Application number
PCT/JP2012/005812
Other languages
English (en)
French (fr)
Inventor
文平 馬
松本 博
純一 新田
清田 淳也
応樹 武井
坂本 純一
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020147004533A priority Critical patent/KR20140041869A/ko
Priority to CN201280044707.1A priority patent/CN103797153B/zh
Publication of WO2013038668A1 publication Critical patent/WO2013038668A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Definitions

  • the present invention relates to a Mo-W target for sputtering made of a molybdenum-tungsten-based sintered body and a method for producing the same.
  • Mo-W alloys have been used as electrodes or wiring materials for flat panel displays (FPD), solar cells, semiconductor elements and the like.
  • Such an alloy can be formed by a sputtering method, and a molybdenum-tungsten-based sintered body is widely used as a sputtering target.
  • a sputtering target formed of a sintered body is required to have a high relative density and fine and uniform crystal grains.
  • Patent Document 1 describes a method for producing a Mo—W alloy target having a tungsten content ratio of 30 to 70 wt%.
  • the relative density is increased by rolling at a predetermined temperature.
  • the specific density derived from the rolling direction appears in the sintered body although the relative density is improved. For this reason, the scattering direction of the target material is not isotropic during sputtering, resulting in a problem that the film thickness distribution of the sputtered film is generated on the substrate and the yield is lowered.
  • an object of the present invention is to provide a Mo—W target capable of improving the relative density without performing a rolling process, and a method for manufacturing the Mo—W target.
  • a method for manufacturing a Mo—W target includes deoxidizing a molybdenum powder at a temperature of 1100 ° C. or higher and 1300 ° C. or lower. Tungsten powder is mixed with the molybdenum powder that has been deoxidized. A mixed powder of the molybdenum powder and the tungsten powder is pressure-sintered at a predetermined temperature.
  • the Mo—W target according to an embodiment of the present invention is made of a sintered powder of a mixed powder containing molybdenum powder and tungsten powder. Weighted average by the composition ratio of molybdenum and tungsten with respect to the sum of the X-ray diffraction intensities in each of the (110), (200), (211), (220), (310), and (321) surface orientations of molybdenum and tungsten The content ratio of each of the above plane orientations is 25% or less.
  • FIG. 5 is a process flow illustrating a method for manufacturing a Mo—W target according to an embodiment of the present invention. It is one experimental result which shows the XRD chart of the Mo-W target which concerns on one Embodiment of this invention. It is a figure which shows the SEM image and WDX image of the Mo-W target which concern on one Embodiment of this invention.
  • the method for manufacturing a Mo—W target according to an embodiment of the present invention includes deoxidizing the molybdenum powder at a temperature of 1100 ° C. or higher and 1300 ° C. or lower. Tungsten powder is mixed with the molybdenum powder that has been deoxidized. A mixed powder of the molybdenum powder and the tungsten powder is pressure-sintered at a predetermined temperature.
  • the amount of oxygen contained in the molybdenum powder is reduced by deoxidizing the molybdenum powder at the above temperature.
  • hole (pore) at the time of sintering is suppressed, and densification of a sintered compact is accelerated
  • the deoxidation treatment of molybdenum powder is typically performed under reduced pressure or in a hydrogen atmosphere.
  • the treatment temperature is less than 1100 ° C., a sufficient deoxygenation effect cannot be obtained.
  • the treatment temperature exceeds 1300 ° C., molybdenum crystals grow and the crystal grain size tends to increase. A large crystal grain size is not preferable because abnormal discharge is induced during sputtering. Therefore, the deoxidation temperature of the molybdenum powder is set to 1100 ° C. or higher and 1300 ° C. or lower.
  • the molybdenum powder may be granulated to a predetermined size before the deoxygenation treatment.
  • the granulated powder of the molybdenum powder is deoxygenated.
  • the granulated powder may be crushed to a predetermined size after the deoxidation treatment.
  • the granulated powder deoxygenated at the above temperature is locally sintered and has a large particle size. If it is sintered as it is, a desired relative density cannot be obtained. Therefore, by pulverizing the deoxidized granulated powder, a sintered body having a desired relative density can be stably produced.
  • the mixed powder of the molybdenum powder and the tungsten powder is sintered by, for example, a pressure sintering method such as a HIP (hot isostatic pressing) method or a vacuum hot pressing method. Thereby, a high-density sintered compact can be produced.
  • a pressure sintering method such as a HIP (hot isostatic pressing) method or a vacuum hot pressing method.
  • the sintering temperature when the mixed powder is sintered by the HIP method is, for example, 1200 ° C. or more and 1500 ° C. or less.
  • the sintering temperature is less than 1200 ° C., the relative density of the sintered body is low, causing abnormal discharge and generation of particles.
  • the sintering temperature exceeds 1500 ° C., molybdenum and tungsten are alloyed, and generation of the main orientation resulting from the alloying cannot be prevented.
  • the Mo—W target produced in this way has X-ray diffraction intensity in each plane orientation of (110), (200), (211), (220), (310), (321) of molybdenum and tungsten.
  • the content ratio of each of the plane orientations obtained by weighted averaging with the composition ratio of the molybdenum and tungsten with respect to the total is 25% or less. Thereby, the film thickness can be made uniform during sputtering.
  • FIG. 1 is a process flow for explaining a method of manufacturing a Mo—W target according to an embodiment of the present invention.
  • a method for manufacturing a Mo—W target having a tungsten content ratio of 5 to 20 atomic% will be described.
  • the manufacturing method of the Mo—W target of this embodiment includes a molybdenum (Mo) powder granulation step (ST1), a deoxidation step (ST2), a crushing step (ST3), and a tungsten (W) powder. It has a mixing step (ST4), a pressure sintering step (ST5) of the mixed powder, and a machining step (ST6) of the sintered body.
  • Mo molybdenum
  • Mo powder As the raw material powder, for example, Mo powder having a purity of 99.95% or more and an average particle diameter of less than 10 ⁇ m is used. In this embodiment, Mo powder is granulated to a predetermined size (ST1). The purpose of the granulation treatment is to reduce the pores between the primary particles and increase the relative density after sintering.
  • Granulation method granulation size or shape are not particularly limited.
  • a piece of granulated powder having a size of several centimeters is produced by compacting the raw material powder between a pair of rolls.
  • deoxygenation of the granulated Mo powder is performed (ST2).
  • the deoxygenation method is not particularly limited.
  • a hydrogen reduction furnace is used, and the Mo powder is heated to a predetermined temperature in a hydrogen atmosphere.
  • the amount of oxygen adsorbed or combined with the granulated powder is reduced to 100 ppm or less.
  • the Mo powder is deoxidized at 1100 ° C. or higher and 1300 ° C. or lower.
  • the treatment temperature is less than 1100 ° C., a sufficient deoxygenation effect cannot be obtained.
  • the treatment temperature exceeds 1300 ° C., Mo crystals grow and the crystal grain size tends to increase. A large crystal grain size is not preferable because abnormal discharge is induced during sputtering.
  • a crushing step of the deoxidized Mo powder is performed (ST4).
  • the purpose of this step is to break up the local sintering that has progressed between the powders by heating associated with the deoxidation treatment, and to obtain a high-density sintered body in the subsequent sintering step.
  • the crushing method is not particularly limited, and in this embodiment, the granulated powder is crushed by a hammer mill, and the maximum particle size is adjusted to be, for example, 700 ⁇ m or less.
  • the pulverized Mo powder is mixed with the W powder weighed to achieve the above composition ratio (ST5).
  • W raw material powder for example, a powder having a purity of 99.99% or more, an average particle size of less than 10 ⁇ m, and an oxygen concentration of less than 500 ppm is used.
  • the mixing method is not particularly limited, and for example, a V-type mixer is used.
  • the W raw material powder may be deoxygenated in a hydrogen reduction furnace or the like before mixing. Thereby, oxygen in the W raw material powder is removed, so that the oxygen concentration in the sintered body can be further reduced.
  • a step of sintering the mixed powder of Mo powder and W powder into a predetermined shape is performed (ST5).
  • sintering method an HIP (hot isostatic pressing) method is employed, but other pressure sintering methods such as HP (hot pressing) may be employed.
  • the sintering temperature is not particularly limited, and is, for example, 1200 ° C. or higher and 1500 ° C. or lower.
  • the pressure at this time is, for example, 120 to 150 MPa, and the holding time at the maximum temperature is, for example, 4 hours.
  • the sintering temperature is less than 1200 ° C., the relative density of the sintered body is low, causing abnormal discharge and generation of particles.
  • the sintering temperature exceeds 1500 ° C., Mo and W are alloyed, and generation of the main orientation resulting from the alloying cannot be prevented.
  • a stainless steel can having a predetermined shape is filled with a mixed powder of pulverized powder of Mo granulated flake powder and W raw material powder at a tap density (bulk density) of 50% or more while applying vibration. Thereafter, the can is placed in a vacuum heating and deaeration furnace, the inside is evacuated, and then sealed by welding. And the said can is installed in a HIP apparatus, and the said mixed powder is sintered on the sintering conditions mentioned above.
  • the produced sintered body is machined to a predetermined target size (ST6). Thereby, the Mo—W target of this embodiment is manufactured.
  • the target shape may be circular or rectangular.
  • the machining is mainly performed by cutting and polishing. If necessary, the sintered body may be subjected to heat treatment for the purpose of removing internal strain or the like before machining.
  • the sintered body processed into a predetermined shape is bonded to a backing plate (not shown) to constitute a target assembly.
  • Mo-W target The Mo—W target produced as described above has an oxygen concentration of 100 ppm or less, a relative density of 97% or more, and an average crystal grain size of 20 ⁇ m or less. As a result, it is possible to obtain a Mo—W target in which abnormal discharge and generation of particles are suppressed and stable sputterability can be secured.
  • the Mo powder is subjected to deoxygenation before sintering, a high-purity Mo—W target having a low oxygen content can be stably produced.
  • Mo—W system in which Mo is higher in composition ratio than W as in the present embodiment, it is possible to efficiently control the oxygen concentration of the sintered body by performing deoxidation treatment of the Mo powder. Become.
  • the generation of the main orientation derived from the rolling process can be suppressed.
  • the scattering direction of the target material becomes isotropic during sputtering, and the film thickness of the sputtered film formed on the substrate can be made uniform to improve the yield.
  • the crystal phase of the Mo—W target of this embodiment is not a MoW alloy phase in which Mo and W are solid-solved with each other, but a mixed phase of the Mo phase and the W phase.
  • the content ratio of the X-ray diffraction peaks of Mo and W crystal faces (110), (200), (211), (220), (310) and (321) is weighted by the composition ratio of Mo and W.
  • the ratio of each plane orientation when averaged is 25% or less.
  • the crystal orientation of the target surface is isotropic in any direction, and the target constituent particles sputtered by collision with ions in the plasma during sputtering are scattered isotropically and deposited on the substrate.
  • the Mo—W thin film can be formed on the substrate with a film thickness distribution of ⁇ 5% or less, and the film thickness uniformity can be improved.
  • the specific resistance of the Mo—W film formed on the substrate can be reduced and the durability against the etching solution can be reduced. Can be improved.
  • Example 1 Mo raw material powder having a purity of 99.95% or more and an average particle size of less than 10 ⁇ m is granulated to several centimeters in size, and the granulated powder is deoxygenated in a hydrogen reduction furnace. Crushed to be less than. The deoxygenation temperature was 1200 ° C.
  • W raw material powder having a purity of 99.99% or more, an average particle size of less than 10 ⁇ m, and an oxygen concentration of less than 500 ppm was mixed with the Mo crushed powder so that the W content ratio was 15 atomic%.
  • the mixed powder of Mo and W was sealed in a stainless steel can and subjected to HIP treatment (pressure sintering).
  • the HIP treatment temperature (sintering temperature) was 1300 ° C., the pressure was 125 MPa, and the holding time at the maximum temperature was 4 hours.
  • the Mo-15at% W sintered body produced as described above is machined into a predetermined target shape (a disk shape with a diameter of 25.4 cm and a thickness of 6 mm), and its target characteristics (X-ray diffraction characteristics, average crystal) Particle size, relative density, oxygen concentration) were evaluated.
  • the above target was bonded to a backing plate and incorporated into a sputtering apparatus.
  • the Mo and W relative to the sum of the X-ray diffraction intensities in the plane orientations (110), (200), (211), (220), (310), (321) of Mo and W respectively.
  • the content ratios of the plane orientations obtained by weighted averaging with the composition ratio of W were evaluated.
  • FIG. 2 is an XRD chart of the Mo—W sintered body produced in Example 1.
  • (A) is the target surface
  • (B) is a cross section
  • (C) is a molybdenum phase
  • (D) is a tungsten phase.
  • Each is shown. From (A) and (B), it is confirmed that the sintered body has a uniform crystal structure as a whole. From (C) and (D), clear diffraction peaks are observed on the (110), (200), (211), (220), (310), and (321) planes in both Mo and W. The presence of the MoW alloy phase was hardly recognized from this XRD chart.
  • FIGS. 3A to 3D are SEM (scanning electron microscope) images of the Mo—W sintered body produced in Example 1, and images of 100 times, 300 times, 500 times and 1000 times, respectively.
  • Show. 3E and 3F are WDX (wavelength dispersive X-ray spectrometry) images of the Mo-W sintered body
  • FIG. 3E is a mapping image of Mo in the image of (D)
  • FIG. The mapping image of W in the image of (D) is shown, respectively.
  • the Mo phase was clearly separated from the W phase, and the presence of the MoW phase was not confirmed.
  • Table 2 shows the X-ray diffraction intensity of Mo and W in the plane orientations (110), (200), (211), (220), (310), and (321) of the sintered body produced in Example 1. Measured value Is (items 2 and 7), standard sample strength Io (items 1 and 6) in the respective plane orientations of Mo and W, content ratio (item 11) of the respective plane orientations of the sintered body, and the like are shown. .
  • the diffraction intensity of each surface of (200), (211), (220), (310), and (321) is expressed as a relative value when the diffraction intensity of the (110) surface is 100.
  • the content ratio of other crystal planes is calculated in the same manner (items 3 and 4). Note that the value of the denominator in the above formula is ( ⁇ (Is / Io) ⁇ ) is about 5.69 (item 2 remarks).
  • the content ratio of each crystal orientation plane of W is also calculated as described above (item 8).
  • the value of the denominator of the calculation formula at this time is about 2.43 (item 7 remarks).
  • the X-ray diffraction intensity content ratio of each crystal orientation of Mo and W calculated as described above is weighted and averaged by the composition ratio of Mo and W. That is, the content ratio of Mo and W in each crystal plane is [Mo content ratio] ⁇ 0.85 + [W content ratio] ⁇ 0.15
  • Each is calculated by the following formula. The results are shown in items 10 and 11.
  • the (110) plane has a higher content ratio than the other planes, and the (110) plane constitutes the main orientation.
  • the content ratio of the (110) plane was about 21%.
  • the average particle size was measured by using a cross-sectional SEM photograph of the sintered body and visually judging based on a particle size table of “ASTM (American Society for Testing and Materials) E112” (JIS (Japanese Industrial Standards) G0551). In this example, the average crystal grain size of the sintered body was less than 20 ⁇ m.
  • the relative density of the sintered body was obtained by calculating the ratio between the apparent density of the sintered body and the theoretical density (11.58 g / cm 3 ).
  • the apparent density is obtained by machining the obtained sintered body and measuring the outer circumference and thickness using a caliper, micrometer or three-dimensional measuring instrument to determine the volume, and then measuring the weight with an electronic balance. And obtained from the formula of (weight / volume). In this example, the relative density of the sintered body was 97.50%.
  • the target film thickness is 3000 mm, and there are 4 points (13 points in total) at a center point on the glass substrate and radii of 30 mm, 50 mm and 75 mm on two axes orthogonal to the center.
  • the film thickness was measured.
  • the film thickness distribution was defined as ⁇ 1/2 of the value obtained by dividing the difference (d) between the maximum value and the minimum value in the average value (D) of the 13 points. That is, the value of the film thickness distribution was obtained from the calculation formula of (d / D) ⁇ ( ⁇ 1/2) [%]. According to this example, the film thickness distribution was ⁇ 4%.
  • Example 2 Target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the W content ratio was 5 atomic% and the HIP treatment temperature (sintering temperature) was 1400 ° C.
  • the X-ray diffraction peak of MoW is “nearly absent”, the content ratio of the main orientation is 20%, the average crystal grain size is less than 20 ⁇ m, the relative density is 98%, and the oxygen concentration is 50 ppm or less.
  • the film thickness distribution was ⁇ 4%, and abnormal discharge was “none”.
  • Example 3 Target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the W content ratio was 20 atomic% and the HIP treatment temperature (sintering temperature) was 1200 ° C.
  • the W content ratio was 20 atomic% and the HIP treatment temperature (sintering temperature) was 1200 ° C.
  • the X-ray diffraction peak of MoW is “nearly absent”, the content ratio of the main orientation is 22%, the average crystal grain size is less than 20 ⁇ m, the relative density is 97.3%, and the oxygen concentration is It was 60 ppm or less, the film thickness distribution was ⁇ 5%, and abnormal discharge was “none”.
  • Example 4 Target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the deoxygenation temperature of the Mo granulated powder was 1100 ° C. As a result, as shown in Table 1, the X-ray diffraction peak of MoW is “nearly none”, the main orientation content ratio is 18%, the average crystal grain size is less than 20 ⁇ m, the relative density is 98.5%, and the oxygen concentration is It was 50 ppm or less, the film thickness distribution was ⁇ 4%, and abnormal discharge was “none”.
  • Example 5 The target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the deoxygenation temperature of the Mo granulated powder was 1300 ° C. and the HIP processing temperature (sintering temperature) was 1500 ° C.
  • the deoxygenation temperature of the Mo granulated powder was 1300 ° C.
  • the HIP processing temperature sining temperature
  • Example 1 Target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the deoxygenation treatment temperature of the Mo granulated powder was 1000 ° C. and the HIP treatment temperature (sintering temperature) was 1400 ° C.
  • the X-ray diffraction peak of MoW is “Yes”
  • the main orientation content ratio is 35%
  • the average crystal grain size is less than 40 ⁇ m
  • the relative density is 96.5%
  • the oxygen concentration is 50 ppm.
  • the film thickness distribution was ⁇ 8%
  • abnormal discharge was “present”.
  • Example 2 The target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the deoxygenation temperature of the Mo granulated powder was 1400 ° C. and the HIP processing temperature (sintering temperature) was 1100 ° C.
  • the X-ray diffraction peak of MoW is “nearly absent”, the main orientation content ratio is 18%, the average crystal grain size is less than 20 ⁇ m, the relative density is 95.5%, and the oxygen concentration is It was 40 ppm or less, the film thickness distribution was ⁇ 5%, and abnormal discharge was “present”.
  • Example 3 Target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the deoxygenation treatment temperature of the Mo granulated powder was 1400 ° C. and the HIP treatment temperature (sintering temperature) was 1600 ° C.
  • the X-ray diffraction peak of MoW is “Yes”
  • the main orientation content ratio is 40%
  • the average crystal grain size is less than 50 ⁇ m
  • the relative density is 99%
  • the oxygen concentration is 60 ppm or less
  • the film thickness distribution was ⁇ 10%
  • abnormal discharge was “present”.
  • Example 4 Target characteristics and sputtering characteristics were evaluated in the same manner as in Example 1 except that the deoxygenation treatment temperature of the Mo granulated powder was 1000 ° C. and the HIP treatment temperature (sintering temperature) was 1100 ° C.
  • the X-ray diffraction peak of MoW is “nearly absent”, the main orientation content ratio is 19%, the average crystal grain size is less than 20 ⁇ m, the relative density is 95%, and the oxygen concentration is 50 ppm or less.
  • the film thickness distribution was ⁇ 5%, and abnormal discharge was “present”.
  • the Mo—W sintered bodies (targets) of Examples 1 to 5 in which the HIP treatment temperature (sintering temperature) is 1200 ° C. or more and 1500 ° C. or less, a relative density of 97% or more can be stably obtained.
  • the alloying reaction between Mo and W can be prevented, and the content ratio of X-ray diffraction intensity in the main direction can be suppressed to 25% or less. Thereby, since the sputtered particles can be scattered isotropically from the target surface, the uniformity of the film thickness can be improved.
  • a method for producing a Mo—W target having a W content ratio of 5 to 20 atomic% has been described.
  • the W content is not limited to this, and a Mo content having a W content ratio of 5 to 95 atomic% is described.
  • the present invention can also be applied to the manufacture of a -W target.
  • Mo powder granulated powder
  • W powder may also be targeted for deoxidation treatment.

Abstract

【課題】圧延処理を施すことなく相対密度の向上を図ることができるMo-Wターゲット及びその製造方法を提供する。 【解決手段】モリブデン粉末を1100℃以上1300℃以下の温度で脱酸素処理し、脱酸素処理した上記モリブデン粉末にタングステン粉末を混合し、上記モリブデン粉末と上記タングステン粉末との混合粉末を所定温度で加圧焼結する。これにより焼結時の空孔(ポア)の発生が抑制され、焼結体の高密度化が促進される。したがって上記製造方法によれば、圧延処理を施すことなく焼結体の高密度化を図ることができるので、スパッタ成膜時における膜厚の均一化を実現することができる。

Description

Mo-Wターゲット及びその製造方法
 本発明は、モリブデン-タングステン系焼結体からなるスパッタリング用のMo-Wターゲット及びその製造方法に関する。
 近年、フラットパネルディスプレイ(FPD)、太陽電池、半導体素子等の電極あるいは配線用材料として、モリブデン-タングステン(Mo-W)合金が用いられている。このような合金はスパッタリング法で形成することが可能であり、スパッタリング用ターゲットとしてはモリブデン-タングステン系の焼結体が広く用いられている。焼結体で形成されたスパッタリング用ターゲットは、相対密度が高く、結晶粒が微細で均一であることが要求される。
 例えば下記特許文献1には、タングステン含有比率が30~70重量%のMo-W合金ターゲットの製造方法が記載されている。ここでは、モリブデン粉末とタングステン粉末との混合粉末をプレス成形して焼結した後、所定温度で圧延処理を施すことで相対密度を高めるようにしている。
特開平9-3635号公報
 しかしながら焼結体を圧延処理すると、相対密度は向上するものの、圧延方向に由来する特有の結晶方位が焼結体に現れてしまう。このため、スパッタ時においてターゲット材の飛散方向が等方的でなくなり、基板上でスパッタ膜の膜厚分布が生じてしまい、歩留まりが低下するという問題がある。
 以上のような事情に鑑み、本発明の目的は、圧延処理を施すことなく相対密度の向上を図ることができるMo-Wターゲット及びその製造方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係るMo-Wターゲットの製造方法は、モリブデン粉末を1100℃以上1300℃以下の温度で脱酸素処理することを含む。
 脱酸素処理した前記モリブデン粉末にタングステン粉末が混合される。
 上記モリブデン粉末と上記タングステン粉末との混合粉末が所定温度で加圧焼結される。
 本発明の一形態に係るMo-Wターゲットは、モリブデン粉末とタングステン粉末とを含む混合粉末の焼結体からなる。
 モリブデン及びタングステンの(110),(200),(211),(220),(310),(321)の各面方位におけるX線回折強度の総和に対する、当該モリブデン及びタングステンの組成比率で加重平均した上記面方位各々の含有比率がいずれも25%以下である。
本発明の一実施形態に係るMo-Wターゲットの製造方法を説明する工程フローである。 本発明の一実施形態に係るMo-WターゲットのXRDチャートを示す一実験結果である。 本発明の一実施形態に係るMo-WターゲットのSEM像及びWDX像を示す図である。
 本発明の一実施形態に係るMo-Wターゲットの製造方法は、モリブデン粉末を1100℃以上1300℃以下の温度で脱酸素処理することを含む。
 脱酸素処理した前記モリブデン粉末にタングステン粉末が混合される。
 上記モリブデン粉末と上記タングステン粉末との混合粉末が所定温度で加圧焼結される。
 上記製造方法においては、モリブデン粉末を上記温度で脱酸素処理することで、モリブデン粉末に含まれる酸素の量を低減する。これにより焼結時の空孔(ポア)の発生が抑制され、焼結体の高密度化が促進される。したがって上記製造方法によれば、圧延処理を施すことなく焼結体の高密度化を図ることができるので、スパッタ成膜時における膜厚の均一化を実現することができる。
 モリブデン粉末の脱酸素処理は、典型的には、減圧下あるいは水素雰囲気下で行われる。処理温度が1100℃未満の場合、十分な脱酸素効果が得られない。一方、処理温度が1300℃を超えると、モリブデン結晶が成長し、結晶粒径が大きくなる傾向にある。結晶粒径が大きくなるとスパッタ時の異常放電が誘発されるため、好ましくない。したがってモリブデン粉末の脱酸素処理温度は、1100℃以上1300℃以下とされる。
 上記モリブデン粉末は、脱酸素処理前に、所定サイズに造粒されてもよい。この場合、当該モリブデン粉末の造粒粉が脱酸素処理される。
 これにより、一次粒子間の空孔が小さくなり、焼結後の相対密度を高めることができる。
 上記造粒粉は、脱酸素処理後、所定サイズに解砕されてもよい。
 上記温度で脱酸素処理された造粒粉は、局所的に焼結が進行し粒子サイズが大きくなり、そのまま焼結すると所望とする相対密度が得られなくなる。そこで脱酸素処理された造粒粉を解砕することで、所望とする相対密度を有する焼結体を安定に作製することが可能となる。
 上記モリブデン粉末と上記タングステン粉末との混合粉末は、例えば、HIP(熱間等方圧プレス)法や真空ホットプレス法等の加圧焼結法によって焼結される。
 これにより高密度の焼結体を作製することができる。
 上記混合粉末をHIP法で焼結するときの焼結温度は、例えば、1200℃以上1500℃以下とされる。
 焼結温度が1200℃未満の場合、焼結体の相対密度が低く、異常放電やパーティクルの発生原因となる。また、焼結温度が1500℃を超えると、モリブデンとタングステンとが合金化し、当該合金化に起因する主方位の生成を阻止できなくなる。
 このようにして作製されたMo-Wターゲットは、モリブデン及びタングステンの(110),(200),(211),(220),(310),(321)の各面方位におけるX線回折強度の総和に対する、当該モリブデン及びタングステンの組成比率で加重平均した上記面方位各々の含有比率がいずれも25%以下となる。これにより、スパッタ時において膜厚の均一化を図ることができる。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係るMo-Wターゲットの製造方法を説明する工程フローである。本実施形態では、タングステン含有比率が5~20原子%のMo-Wターゲットの製造方法について説明する。
 本実施形態のMo-Wターゲットの製造方法は、モリブデン(Mo)粉末の造粒工程(ST1)と、脱酸素工程(ST2)と、解砕工程(ST3)と、タングステン(W)粉末との混合工程(ST4)と、混合粉末の加圧焼結工程(ST5)と、焼結体の機械加工工程(ST6)とを有する。
(Mo粉末の造粒)
 原料粉末としては、例えば、純度が99.95%以上、平均粒径が10μm未満のMo粉末が用いられる。本実施形態では、Mo粉末が所定サイズに造粒される(ST1)。造粒処理の目的は、一次粒子間の空孔を小さくし、焼結後の相対密度を高くすることにある。
 造粒方法、造粒のサイズあるいは形状は特に限定されない。本実施形態では、一対のロール間で原料粉末を圧粉することで、数センチ大の片状の造粒粉が作製される。
(Mo粉末の脱酸素処理)
 続いて、造粒したMo粉末の脱酸素処理が行われる(ST2)。脱酸素処理方法は特に限定されず、本実施形態では水素還元炉が用いられ、水素雰囲気下においてMo粉末が所定温度に加熱される。これにより造粒粉に吸着あるいは化合した酸素の量(例えば600~800ppm)が、100ppm以下にまで低減される。
 上記Mo粉末は、1100℃以上1300℃以下で脱酸素処理される。処理温度が1100℃未満の場合、十分な脱酸素効果が得られない。一方、処理温度が1300℃を超えると、Moの結晶が成長し、結晶粒径が大きくなる傾向にある。結晶粒径が大きくなるとスパッタ時の異常放電が誘発されるため、好ましくない。Mo粉末の脱酸素処理温度を1100℃以上1300℃以下とすることにより、Mo粉末の酸素含有量を低減し微細な結晶組織を有する焼結体を安定に作製することができる。
(Mo造粒粉の解砕)
 続いて、脱酸素処理したMo粉末の解砕工程が行われる(ST4)。この工程の目的は、脱酸素処理に伴う加熱で粉末間に進行した局所的な焼結を解砕し、後の焼結工程で高密度の焼結体を得ることにある。解砕方法は特に限定されず、本実施形態ではハンマーミルによって造粒粉が解砕され、最大粒径が例えば700μm以下となるように調整される。
(W粉末との混合)
 次に、解砕されたMo粉末は、上記組成比となるように秤量されたW粉末と混合される(ST5)。W原料粉末には、例えば、純度が99.99%以上、平均粒径が10μm未満、酸素濃度が500ppm未満の粉末が用いられる。混合方法は特に限定されず、例えばV型ミキサーが用いられる。
 また必要に応じて、W原料粉末は、混合前に、水素還元炉等において脱酸素処理が行われてもよい。これによりW原料粉末中の酸素が除去されるため、焼結体中の酸素濃度の更なる低減を図ることができる。
(加圧焼結)
 続いて、Mo粉末とW粉末との混合粉末を所定形状に焼結する工程が行われる(ST5)。焼結方法としては、HIP(熱間等方圧プレス)法が採用されるが、これ以外にもHP(ホットプレス)等の他の加圧焼結法が採用されてもよい。
 焼結温度は、特に限定されず、例えば1200℃以上1500℃以下とされる。このときの圧力は、例えば120~150MPa、最高温度での保持時間は例えば4時間とされる。焼結温度が1200℃未満の場合、焼結体の相対密度が低く、異常放電やパーティクルの発生原因となる。また、焼結温度が1500℃を超えると、MoとWとが合金化し、当該合金化に起因する主方位の生成を阻止できなくなる。焼結温度を1200℃以上1500℃以下とすることにより、97%以上の相対密度と結晶方位異方性の小さい焼結体を安定に作製することができる。
 HIPによる焼結体の作製方法の一例を以下に示す。まず、所定形状のステンレス製の缶に、Mo造粒片状粉末の解砕粉とW原料粉末との混合粉末を、振動を与えながらタップ密度(嵩密度)50%以上で充填する。その後、上記缶を真空加熱脱気炉に設置して内部を真空排気した後、溶接により封止する。そして、当該缶をHIP装置へ設置し、上述した焼結条件で上記混合粉末を焼結する。
(機械加工)
 作製された焼結体は、所定のターゲットサイズの機械加工される(ST6)。これにより本実施形態のMo-Wターゲットが作製される。ターゲット形状は円形でもよいし矩形でもよい。機械加工は主として、切削加工、研磨加工により行われる。必要に応じて、機械加工前に、内部歪の除去等を目的として焼結体の熱処理が行われてもよい。所定形状に加工された焼結体は、図示しないバッキングプレートにボンディングされることでターゲットアセンブリを構成する。
(Mo-Wターゲット)
 以上のようにして製造されるMo-Wターゲットは、100ppm以下の酸素濃度と、97%以上の相対密度と、20μm以下の平均結晶粒径とを有する。これにより、異常放電やパーティクルの発生が抑えられ、安定したスパッタ性を確保できるMo-Wターゲットを得ることができる。
 本実施形態によれば、焼結前に、Mo粉末の脱酸素処理が行われるので、酸素含有量の少ない高純度なMo-Wターゲットを安定に製造することができる。特に本実施形態のようにMoの方がWよりも組成比の高いMo-W系においては、Mo粉末の脱酸素処理を行うことによって焼結体の酸素濃度を効率よく制御することが可能となる。
 また焼結体の酸素濃度が少なくなることで、焼結体内部での空孔(ポア)の発生が阻止され、これにより97%以上の相対密度を有するMo-Wターゲットを安定して生成することが可能となる。
 さらに、焼結後において圧延処理を要することなく97%以上の相対密度を得ることができるため、圧延処理に由来する主方位の生成が抑えられる。これにより、スパッタ時においてターゲット材の飛散方向が等方的となり、基板上に成膜されるスパッタ膜の膜厚を均一化して、歩留まりの向上を図ることができる。
 特に本実施形態のMo-Wターゲットの結晶相は、MoとWとが相互に固溶したMoWの合金相ではなく、Mo相とW相との混在相が主体となる。このため、Mo及びWの各結晶面(110),(200),(211),(220),(310)及び(321)のX線回折ピークの含有比率をMo及びWの組成比率で加重平均したときの各面方位の比率がいずれも25%以下となる。その結果、ターゲット表面の結晶配向性はいずれの方向にも等方性であり、スパッタ時にプラズマ中のイオンとの衝突によりスパッタされるターゲット構成微粒子は等方的に飛散し基板上へ成膜される。これにより基板上にMo-W薄膜を±5%以下の膜厚分布で成膜でき、膜厚均一性を高めることが可能となる。
 そして本実施形態のMo-Wターゲットにおいては、W含有比率を5~20原子%にすることで、基板上に形成されるMo-W膜の比抵抗を低減できるとともに、エッチング液に対する耐久性を向上させることができる。
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されない。
 (実施例1)
 純度99.95%以上、平均粒径10μm未満のMo原料粉末を数センチ大に造粒し、その造粒粉を水素還元炉において脱酸素処理した後、当該造粒粉を最大粒径が700μm未満となるように解砕した。脱酸素処理温度は1200℃とした。次いで、当該Moの解砕粉に、純度99.99%以上、平均粒径10μm未満、酸素濃度500ppm未満のW原料粉末を、W含有比率が15原子%となるように混合した。続いて、これらMoとWの混合粉末をステンレス製の缶に封入し、HIP処理(加圧焼結)した。HIP処理温度(焼結温度)は1300℃、圧力は125MPa、最高温度での保持時間は4時間とした。
 以上のようにして作製されたMo-15at%W焼結体を所定のターゲット形状(直径25.4cm、厚み6mmの円板形状)に機械加工し、そのターゲット特性(X線回折特性、平均結晶粒径、相対密度、酸素濃度)を評価した。
 さらに、上記ターゲットをバッキングプレートにボンディングしてスパッタ装置へ組み込んだ。そして、真空チャンバをArガス0.3Paの雰囲気に調整し、ターゲットに1kWのDC電力を印加して、直径6インチのガラス基板上にMo-W膜を形成したときのスパッタ特性(膜厚分布、異常放電の有無)を評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [X線回折特性]
 ターゲット表面のX線回折特性として、MoW相の回折ピークの有無と、主方位の含有比率を評価した。X線回折測定装置には、株式会社リガク製「RINT X-Ray Diffractmeter」を使用した。
 主方位の含有比率に関しては、Mo及びW各々の面方位(110),(200),(211),(220),(310),(321)におけるX線回折強度の総和に対する、当該Mo及びWの組成比率で加重平均した上記面方位の含有比率をそれぞれ評価した。
 図2は、実施例1で作製されたMo-W焼結体のXRDチャートであり、(A)はターゲット表面、(B)は断面、(C)はモリブデン相、(D)はタングステン相をそれぞれ示している。(A),(B)より、当該焼結体は全体的に均一な結晶組織を有していることが確認される。また(C),(D)より、Mo及びWのいずれにも(110),(200),(211),(220),(310),(321)面に明確な回折ピークが認められる。また、MoWの合金相の存在は、このXRDチャートからは、ほとんど認められなかった。
 図3(A)~(D)は、実施例1で作製されたMo-W焼結体のSEM(scanning electron microscope)像であり、100倍、300倍、500倍及び1000倍の画像をそれぞれ示している。図3(E),(F)は上記Mo-W焼結体のWDX(wavelength dispersive X-ray spectrometry)像であり、(E)は(D)の画像におけるMoのマッピング像、(F)は(D)の画像におけるWのマッピング像をそれぞれ示している。(D)~(F)に示すように、Mo相のW相とは明確に分離され、MoW相の存在は確認されなかった。
 表2は、実施例1で作製された焼結体の面方位(110),(200),(211),(220),(310),(321)におけるMo及びWのX線回折強度の測定値Is(項目2,7)、Mo及びWの上記各面方位における標準サンプル強度Io(項目1,6)、焼結体の上記各面方位の含有比率(項目11)等を示している。ここで、(200)、(211)、(220)、(310)及び(321)の各面の回折強度は、(110)面の回折強度を100としたときの相対値で表した。
Figure JPOXMLDOC01-appb-T000002
 例えばMoの(110)結晶面の含有比は、以下の式で計算される。
  (110)= {Is(110)/Io(110)}/{Σ(Is/Io)}
  ここで、Σ(Is/Io)={Is(110)/Io(110)}+{Is(200)/Io(200)}+……+{Is(321)/Io(321)}
 他の結晶面の含有比についても同様に算出される(項目3,4)。なお上記式の分母の値は({Σ(Is/Io)})は、約5.69である(項目2備考)。
 Wの各結晶方位面の含有比も上述のようにして算出される(項目8)。このときの計算式の分母の値は、約2.43である(項目7備考)。
 上述のようにして算出されたMo、Wの各結晶方位のX線回折強度含有比は、Mo、Wの組成比率で加重平均される。すなわち、各結晶面のMo及びWの含有比は、
 [Mo含有比]×0.85+[W含有比]×0.15
の式で各々算出される。その結果を項目10,11に示す。本実施例では、(110)面が他の面よりも含有比が高く、当該(110)面が主方位を構成する。その(110)面の含有比は約21%であった。
 [平均結晶粒径]
 平均粒径の測定は、焼結体の断面SEM写真を用い、「ASTM(American Society for Testing and Materials)E112」(JIS(Japanese Industrial Standards) G0551)の粒度表に基づく目視判断とした。本実施例では、焼結体の平均結晶粒径は20μm未満であった。
 [相対密度]
 焼結体の相対密度は、焼結体の見掛け密度と理論密度(11.58g/cm)との比を計算により求めた。見掛け密度は、得られた焼結体を機械加工して外周及び厚みの寸法をノギス、マイクロメータ或いは3次元測定器を用いて測定して体積を求め、次に、電子天秤にて重量を測定し、(重量/体積)の式から求めた。本実施例では、焼結体の相対密度は97.50%であった。
 [酸素濃度]
 焼結体の酸素濃度の測定には、ICP分光分析装置(株式会社島津製作所製「ICPS-8100」)を用いた。測定の結果、本実施例の焼結体の酸素濃度は60ppm以下であった。
 [膜厚分布測定]
 膜厚分布の測定に際しては、目標膜厚を3000Åとし、ガラス基板上の中心1点と、当該中心で直交する2軸上における半径30mm、50mm及び75mmの位置の4点(計13点)の膜厚を測定した。そして、上記13点の膜厚の平均値(D)で、これらの最大値と最小値の差(d)を除した値の±1/2を膜厚分布とした。すなわち、膜厚分布の値は、(d/D)×(±1/2)[%]の計算式より求めた。本実施例によれば、膜厚分布は±4%であった。
 [異常放電]
 異常放電の評価については、10kWHrのスパッタ積算時間において、ターゲットにアーキングが生じた場合を「×」、アーキングが生じなかった場合を「○」とした。本実施例によれば、異常放電は認められなかった。
(実施例2)
 W含有比率を5原子%、HIP処理温度(焼結温度)を1400℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「ほぼ無し」、主方位の含有比率は20%、平均結晶粒径は20μm未満、相対密度は98%、酸素濃度は50ppm以下、膜厚分布は±4%、異常放電は「無し」であった。
(実施例3)
 W含有比率を20原子%、HIP処理温度(焼結温度)を1200℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「ほぼ無し」、主方位の含有比率は22%、平均結晶粒径は20μm未満、相対密度は97.3%、酸素濃度は60ppm以下、膜厚分布は±5%、異常放電は「無し」であった。
(実施例4)
 Mo造粒粉の脱酸素処理温度を1100℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「ほぼ無し」、主方位の含有比率は18%、平均結晶粒径は20μm未満、相対密度は98.5%、酸素濃度は50ppm以下、膜厚分布は±4%、異常放電は「無し」であった。
(実施例5)
 Mo造粒粉の脱酸素処理温度を1300℃、HIP処理温度(焼結温度)を1500℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「ほぼ無し」、主方位の含有比率は23%、平均結晶粒径は20μm未満、相対密度は99%、酸素濃度は60ppm以下、膜厚分布は±5%、異常放電は「無し」であった。
(比較例1)
 Mo造粒粉の脱酸素処理温度を1000℃、HIP処理温度(焼結温度)を1400℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「有り」、主方位の含有比率は35%、平均結晶粒径は40μm未満、相対密度は96.5%、酸素濃度は50ppm以下、膜厚分布は±8%、異常放電は「有り」であった。
(比較例2)
 Mo造粒粉の脱酸素処理温度を1400℃、HIP処理温度(焼結温度)を1100℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「ほぼ無し」、主方位の含有比率は18%、平均結晶粒径は20μm未満、相対密度は95.5%、酸素濃度は40ppm以下、膜厚分布は±5%、異常放電は「有り」であった。
(比較例3)
 Mo造粒粉の脱酸素処理温度を1400℃、HIP処理温度(焼結温度)を1600℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「有り」、主方位の含有比率は40%、平均結晶粒径は50μm未満、相対密度は99%、酸素濃度は60ppm以下、膜厚分布は±10%、異常放電は「有り」であった。
(比較例4)
 Mo造粒粉の脱酸素処理温度を1000℃、HIP処理温度(焼結温度)を1100℃とした以外は、実施例1と同様な方法で、ターゲット特性及びスパッタ特性を評価した。その結果、表1に示すように、MoWのX線回折ピークは「ほぼ無し」、主方位の含有比率は19%、平均結晶粒径は20μm未満、相対密度は95%、酸素濃度は50ppm以下、膜厚分布は±5%、異常放電は「有り」であった。
 表1の結果より、Mo粉末(造粒粉)の脱酸素処理温度が1100℃以上1300℃以下である実施例1~5のMo-W焼結体(ターゲット)によれば、モリブデン粉末に含まれる酸素の量を効果的に低減することができる。これにより焼結時の空孔(ポア)の発生を抑制し、焼結体の相対密度の向上を図ることができる。また結晶粒の粗大化が阻止されるので、微細な均一組織を有するMo-W焼結体を得ることができる。さらに圧延処理を施すことなく焼結体の高密度化を図ることができるので、スパッタ成膜時における膜厚の均一化を実現することができる。
 また、HIP処理温度(焼結温度)が1200℃以上1500℃以下である実施例1~5のMo-W焼結体(ターゲット)によれば、97%以上の相対密度を安定して得ることができるとともに、MoとWの合金化反応を阻止し、主方位のX線回折強度の含有比率を25%以下に抑えることができる。これによりターゲット表面からスパッタ粒子を等方的に飛散させることができるため、膜厚の均一性を高めることができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。
 例えば以上の実施形態では、W含有比率が5~20原子%のMo-Wターゲットの製造方法について説明したが、W含有量はこれに限定されず、W含有比率が5~95原子%のMo-Wターゲットの製造にも本発明は適用可能である。
 また以上の実施形態ではMo粉末(造粒粉)のみを脱酸素処理の対象としたが、これに加えて、W粉末をも脱酸素処理の対象としてもよい。これにより焼結体の相対密度の更なる向上を図ることができる。
 ST1…Mo粉末造粒工程
 ST2…Mo粉末脱酸素処理工程
 ST3…Mo造粒粉解砕工程
 ST4…W粉末混合工程
 ST5…加圧焼結工程
 ST6…機械加工工程

Claims (7)

  1.  モリブデン粉末を1100℃以上1300℃以下の温度で脱酸素処理し、
     脱酸素処理した前記モリブデン粉末にタングステン粉末を混合し、
     前記モリブデン粉末と前記タングステン粉末との混合粉末を所定温度で加圧焼結する
     Mo-Wターゲットの製造方法。
  2.  請求項1に記載のMo-Wターゲットの製造方法であって、
     前記モリブデン粉末を脱酸素処理する前に、前記モリブデン粉末を所定サイズに造粒し、
     前記モリブデン粉末の造粒粉を脱酸素処理する
     Mo-Wターゲットの製造方法。
  3.  請求項2に記載のMo-Wターゲットの製造方法であって、
     前記造粒粉を脱酸素処理した後、前記造粒粉を解砕する
     Mo-Wターゲットの製造方法。
  4.  請求項1に記載のMo-Wターゲットの製造方法であって、
     前記混合粉末を、HIP(熱間等方圧プレス)法で焼結する
     Mo-Wターゲットの製造方法。
  5.  請求項4に記載のMo-Wターゲットの製造方法であって、
     前記所定温度は、1200℃以上1500℃以下である
     Mo-Wターゲットの製造方法。
  6.  モリブデン粉末とタングステン粉末とを含む混合粉末の焼結体からなるMo-Wターゲットであって、
     モリブデン及びタングステンの(110),(200),(211),(220),(310),(321)の各面方位におけるX線回折強度の総和に対する、当該モリブデン及びタングステンの組成比率で加重平均した上記面方位各々の含有比率がいずれも25%以下である
     Mo-Wターゲット。
  7.  請求項6に記載のMo-Wターゲットであって、
     100ppm以下の酸素濃度と、97%以上の相対密度と、20μm以下の平均結晶粒径とを有する
     Mo-Wターゲット。
PCT/JP2012/005812 2011-09-13 2012-09-13 Mo-Wターゲット及びその製造方法 WO2013038668A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147004533A KR20140041869A (ko) 2011-09-13 2012-09-13 Mo-W 타겟 및 그 제조 방법
CN201280044707.1A CN103797153B (zh) 2011-09-13 2012-09-13 Mo-W靶材及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-199104 2011-09-13
JP2011199104 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013038668A1 true WO2013038668A1 (ja) 2013-03-21

Family

ID=47882917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005812 WO2013038668A1 (ja) 2011-09-13 2012-09-13 Mo-Wターゲット及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2013038668A1 (ja)
KR (1) KR20140041869A (ja)
CN (1) CN103797153B (ja)
TW (1) TWI599668B (ja)
WO (1) WO2013038668A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255379A (zh) * 2013-04-16 2013-08-21 洛阳高新四丰电子材料有限公司 一种平面显示器用钼钨合金溅射靶材及其制备方法
KR101364607B1 (ko) 2013-09-11 2014-02-20 한국지질자원연구원 금속 몰리브덴 분말의 산소 저감에 의한 소결체의 결정립 미세화 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593807B (zh) * 2015-07-27 2017-08-01 Hitachi Metals Ltd 靶材
CN106977202A (zh) * 2017-04-05 2017-07-25 北京冶科纳米科技有限公司 一种高纯低密度氧化钨靶材的制备工艺及氧化钨靶材
CN109440065B (zh) * 2018-11-09 2020-07-14 南昌大学 一种镁合金表面钨化钼纳米级耐蚀薄膜的制备方法
CN111254396A (zh) * 2020-01-21 2020-06-09 洛阳高新四丰电子材料有限公司 一种钼钨合金溅射靶材的制备方法
CN111763862B (zh) * 2020-06-29 2022-03-29 自贡硬质合金有限责任公司 一种钨钼合金及其制备方法
CN111621753B (zh) * 2020-07-29 2020-11-17 江苏集萃先进金属材料研究所有限公司 靶材坯料及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045066A (ja) * 1998-07-27 2000-02-15 Hitachi Metals Ltd Mo系ターゲット材およびその製造方法
JP2004217990A (ja) * 2003-01-14 2004-08-05 Toshiba Corp スパッタリングターゲットとその製造方法
JP2005307225A (ja) * 2004-04-16 2005-11-04 Hitachi Metals Ltd Moターゲット材
JP2008280570A (ja) * 2007-05-09 2008-11-20 Hitachi Metals Ltd MoNb系焼結スパッタリングターゲット材の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913694B2 (ja) * 1993-12-14 2007-05-09 株式会社東芝 配線形成用Mo−Wターゲットとそれを用いたMo−W配線薄膜および液晶表示装置
CN101352759A (zh) * 2008-09-02 2009-01-28 金堆城钼业股份有限公司 一种制取特种钼粉的方法
CN101792897A (zh) * 2010-04-06 2010-08-04 韩伟东 薄膜太阳能电池用高纯钼靶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045066A (ja) * 1998-07-27 2000-02-15 Hitachi Metals Ltd Mo系ターゲット材およびその製造方法
JP2004217990A (ja) * 2003-01-14 2004-08-05 Toshiba Corp スパッタリングターゲットとその製造方法
JP2005307225A (ja) * 2004-04-16 2005-11-04 Hitachi Metals Ltd Moターゲット材
JP2008280570A (ja) * 2007-05-09 2008-11-20 Hitachi Metals Ltd MoNb系焼結スパッタリングターゲット材の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255379A (zh) * 2013-04-16 2013-08-21 洛阳高新四丰电子材料有限公司 一种平面显示器用钼钨合金溅射靶材及其制备方法
KR101364607B1 (ko) 2013-09-11 2014-02-20 한국지질자원연구원 금속 몰리브덴 분말의 산소 저감에 의한 소결체의 결정립 미세화 방법

Also Published As

Publication number Publication date
KR20140041869A (ko) 2014-04-04
CN103797153B (zh) 2016-11-23
TWI599668B (zh) 2017-09-21
JPWO2013038668A1 (ja) 2015-03-23
CN103797153A (zh) 2014-05-14
TW201319291A (zh) 2013-05-16

Similar Documents

Publication Publication Date Title
WO2013038668A1 (ja) Mo-Wターゲット及びその製造方法
JP6479788B2 (ja) スパッタリングターゲット及びその製造方法
JP2021515106A (ja) 粉末冶金スパッタリングターゲット及びその製造方法
EP3608438B1 (en) Tungsten silicide target and method of manufacturing same
JP7269407B2 (ja) タングステンシリサイドターゲット部材及びその製造方法、並びにタングステンシリサイド膜の製造方法
TWI550117B (zh) 濺鍍靶及濺鍍靶之製造方法
US9689067B2 (en) Method for producing molybdenum target
JP2015196885A (ja) 極低酸素・超高純度クロムターゲットの製造方法および極低酸素・超高純度クロムターゲット
JP7108606B2 (ja) スパッタリングターゲット
EP3124647B1 (en) Sputtering target comprising al-te-cu-zr alloy, and method for producing same
JP5988140B2 (ja) MoTiターゲット材の製造方法およびMoTiターゲット材
JP6415361B2 (ja) 粗粒であり、かつ、均粒、球状のチタンシリサイド粉末およびその製造方法
WO2024004554A1 (ja) タングステンターゲットおよびその製造方法
CN116727669A (zh) 铬烧结体及其制造方法、溅射靶以及带铬膜的基板的制造方法
EP3170916A1 (en) SPUTTERRING TARGET COMPRISING Al-Te-Cu-Zr-BASED ALLOY AND METHOD OF MANUFACTURING SAME
CN116964242A (zh) 溅射靶及其制造方法
WO2016052380A1 (ja) タングステンスパッタリングターゲット及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147004533

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013533504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831824

Country of ref document: EP

Kind code of ref document: A1