WO2013038020A1 - Nichtkornorientiertes höherfester elektroband mit hoher polarisation und verfahren zu seiner herstellung - Google Patents

Nichtkornorientiertes höherfester elektroband mit hoher polarisation und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2013038020A1
WO2013038020A1 PCT/EP2012/068276 EP2012068276W WO2013038020A1 WO 2013038020 A1 WO2013038020 A1 WO 2013038020A1 EP 2012068276 W EP2012068276 W EP 2012068276W WO 2013038020 A1 WO2013038020 A1 WO 2013038020A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
mpa
thickness
strength
electrical
Prior art date
Application number
PCT/EP2012/068276
Other languages
English (en)
French (fr)
Inventor
Franz Dorninger
Roman Sonnleitner
Herbert Kreuzer
Original Assignee
Voestalpine Stahl Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl Gmbh filed Critical Voestalpine Stahl Gmbh
Priority to EP12759723.5A priority Critical patent/EP2756106A1/de
Priority to US14/344,952 priority patent/US20140373340A1/en
Priority to MX2014003159A priority patent/MX2014003159A/es
Publication of WO2013038020A1 publication Critical patent/WO2013038020A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • the invention relates to a high-strength electrical tape with high polarization and a method for producing the high-strength electrical tape with high polarization and its use.
  • Stator and rotor packages of electric motors and generators as well as disk packs of transformers are made of so-called electrical steel.
  • Electrical steel is a strip steel sheet, for example, with thicknesses between 0.1 mm and 2 mm.
  • This strip steel sheet is punched into the required shapes and from the individual stamped components, the corresponding packages are assembled, which are then processed to fer ⁇ term electric motors, generators or transformers.
  • both the rotor and the stator parts are usually punched out of the same sheet in order to reduce the waste, and therefore have the same properties.
  • an iron core (packetized sheet) used in a coil is determined by its ferromagnetic properties which are preset by the steel manufacturer, or at least to the extent be Prepared ⁇ tet that they are adjusted by a final annealing at the user, the permeability and thus increases the magnetic flux density in the coil. As a result, the number of turns can be reduced in order to achieve a required inductance.
  • the iron of the core is an electrical conductor, in a coil of iron core through which alternating current flows, a current flows in a quasi-shorted winding called eddy current. This eddy current is reduced when the core is not made of a piece of iron but from a stack of iron sheets already described.
  • the most important selection criterion for the core material is the usable polarization, ie the highest possible induction at a given field strength should be present.
  • the core loss is a decision ⁇ the criterion.
  • Such electrical bands are made of a relatively soft steel material. Particularly in engine and generator, it is interesting to reduce the air gaps for manufacturers on the one hand, because this increases the magnetic efficiency to ⁇ the other hand, occur especially at very high speed rotating Mo ⁇ motors and generators in particular extremely high centrifugal forces. Especially with generators, the rotors can be relatively large, so that in the moving masses very high centrifugal forces may occur. On the one hand, these very high centrifugal forces cause stretching to take place, so that very narrow air gaps are difficult to realize; on the other hand, the high centrifugal forces can also lead to a failure of the rotor material.
  • the object of the invention is to provide a high-strength electrical steel, which in addition to a high strength has very good magnetic properties and in comparison to high Si or high Al alloyed electrical steel high polarization values.
  • the object is achieved with an electrical steel with the features of claim 1.
  • Advantageous developments are characterized in the dependent claims. It is one another object to provide a method for producing a tape. The object is achieved by a method with the Merkma ⁇ len of claim 9.
  • Advantageous developments are characterized in the dependent claims.
  • Roe (transverse to the rolling direction): 400 MPa - 650 MPa, in particular 420 - 620 MPa
  • Rm (transverse to the rolling direction): 500 MPa - 700 MPa, in particular 520 to 650 MPa
  • the polarization at 5000 A / m (J50) should achieve the following minimum value irrespective of the thickness of the material and of the strength:
  • Thickness 0, 65 mm: 3 ⁇ P15 ⁇ 8 W / kg
  • Thickness 1 mm 4.5 ⁇ P15 ⁇ 12 W / kg
  • the solidification mechanism in the invention is based on the so-called solid solution hardening.
  • silicon is used for the solid solution hardening, but the hardness effect of the silicon is limited and is about +70 MPa per added mass% silicon. The effect is achieved in that sit in the cubic body centered grid of a fully ferritic electrical steel, the silicon atoms on Git ⁇ ter, ie substituting iron.
  • an alloying concept with phosphorus is preferred according to the invention, whose solid solution strengthening effect per added mass% phosphorus is significantly higher than that of silicon or aluminum. While alloying of silicon and aluminum has the advantage that by increasing the resistivity decrease the hysteresis losses, which brings a positive effect on the magnetic properties, but at the same time decrease the polarization values and thus the magneti ⁇ rule properties deteriorate.
  • alloying of silicon and aluminum has the advantage that by increasing the resistivity decrease the hysteresis losses, which brings a positive effect on the magnetic properties, but at the same time decrease the polarization values and thus the magneti ⁇ rule properties deteriorate.
  • Varia ⁇ tion of the elements silicon, aluminum, manganese and phosphorus have shown that only the addition of phosphorus increases both the strength values, lowering the core loss and does not adversely affect the polarizations.
  • the prediction formula is valid if the influencing variables fulfill the following conditions:
  • the forecast formula is valid, fulfill if the predictors follow ⁇ de conditions:
  • J50 (mT) 1.886 + C * I, 57 - Si * 0.021 - Mn * 0.046 - Al * 0.022 + P * 0.003 - T * 139 * 10-6
  • the forecast formula is valid, fulfill if the predictors follow ⁇ de conditions:
  • the formula is in the above ranges within the tolerances for the individual influencing variables for material in a thickness of 0.5 mm applicable, but is not suitable for material deviate ⁇ chender thickness (z. B. 0.35 mm or 0.65 mm) be used with the same coefficients. However, a rough estimate of the influence of the individual alloying elements is permissible.
  • the formula is within the tolerances for the individual sizes for material in thickness in the above ranges 0.5 mm, but can not be used with material of different thickness (eg 0.35 mm or 0.65 mm) with the same coefficients. However, a rough estimate of the influence of the individual alloying elements is permissible.
  • Phosphorus is known as an element which segregates to the grain boundaries that predominantly ⁇ and thereby weaken the grain boundaries, thus leading to the grain boundary fracture. But the sedentary primarily at the grain boundaries dissolved carbon prevents that Phos ⁇ phor weakens the grain boundaries. This effect leads to a surprisingly good ductility.
  • the inventive combination of silicon, aluminum and phosphorus the skilled person would usually expect a high brittleness, which surprisingly does not occur.
  • the positi ve ⁇ effect of phosphorus to lower the eddy current loss is known. In the invention it has been found that it is advantageous to work with an increased reel temperature, in particular between approximately 600 ° C to 750 ° C.
  • an electrical steel strip is adjusted so that the limits of the following elements are met:
  • the carbon content is ⁇ 0.005 mass%, silicon 2.2 mass% - 2.6 mass%, manganese 0.4 mass% - 0.6 mass%, phosphorus 0.14 mass% - 0, 19 mass%, sulfur ⁇ 0.008 mass%, aluminum 0.9 mass% - 1.3 mass%, stick material ⁇ ⁇ 0.0070 mass%, titanium ⁇ 0.005 mass%, vanadium ⁇ 0.01 mass%, chromium ⁇ 0.05 mass%, niobium ⁇ 0.02 mass% and molybdenum ⁇ 0.01 mass%, remainder: incidental impurities ⁇ units. Concerning some elements or impurities, the following values are sought:
  • J50 reaches a value> 1.65 T regardless of the strip thickness in the range between 0.2 mm and 1.5 mm, in particular between 0, 3 mm and 1 mm)
  • the core losses are dependent on the Blechdi ⁇ bridge, there may be exemplified the following common thicknesses will follow ⁇ so specified for all ranges of strength:
  • Thickness 0, 65 mm: 3 ⁇ P15 ⁇ 8 W / kg
  • Thickness 1 mm 4.5 ⁇ P15 ⁇ 12 W / kg
  • the invention relates to a high-strength electrical tape, wherein the electrical steel strip consists of a steel alloy, wherein the limits of the following elements are met:
  • the invention is exemplified erläu ⁇ tert reference to a drawing. It shows:
  • FIG. 1 shows a micrograph of a steel strip which is not in accordance with the invention and has a thickness of 0.5 mm;
  • FIG. 2 shows a band according to the invention with a thickness of 0.65 mm
  • Figure 3 a non-inventive tape having a thickness of
  • band 1 has a high silicon content and was annealed at 970 ° C. It has a rough structure.
  • the tape 4 of the invention shown in Figure 2 has a thickness of 0.65 mm has a very high phosphorus content and is annealed at 850 ° C. It has a fine-grained, fully rekris ⁇ tallillones structure.
  • Figure 3 shows the electrical steel strip number 5 from the examples which is not according to the invention, in a thickness of
  • J50 polarization at a field strength of 5,000 A / m
  • the examples refer to 3 different material thicknesses (0.35 mm, 0.5 mm and 0.65 mm) in different strength levels.
  • the hot strip is cold-rolled strip to a cold rolling process continu ously ⁇ rolled to a cold-rolled strip thickness of 0.5 mm. Subsequently ⁇ touchedd the material on a continuous hereglüh- aggregate was annealed at a meltglühtemperatur s of 970 ° C for 60 seconds. Two tapes with different analysis concept were produced: Volume 1 with increased silicon content, Volume 2 with increased phosphorus content:
  • the hot strip is cold-rolled strip to a cold rolling process continu ously ⁇ rolled to a cold strip thickness of 0.65 mm. On closing ⁇ the material was at a continuous
  • the hot strip is cold-rolled strip to a cold rolling process continu ously ⁇ rolled to a cold strip thickness of 0.35 mm. On closing ⁇ the material was at a continuous

Abstract

Die Erfindung betrifft ein höherfestes, nicht kornorientiertes Elektroband mit hoher Polarisation, wobei das Elektroband aus einer Stahllegierung besteht, wobei die Grenzen der folgenden Elemente eingehalten werden: Mn 0,35 Masse-% - 0,65 Masse-%, Si 2,0 Masse-% - 3,0 Masse-%, Al 0,8 Masse-% - 1,4 Masse-%, P 0,14 Masse-% - 0,24 Masse-% sowie in Verfahren zu dessen Herstellung.

Description

NICHTKORNORIENTIERTES HÖHERFESTES ELEKTROBAND MIT HOHER POLARISATION UND
VERFAHREN ZU SEINER HERSTELLUNG
Die Erfindung betrifft ein höherfestes Elektroband mit hoher Polarisation und ein Verfahren zum Herstellen des höherfesten Elektrobandes mit hoher Polarisation sowie dessen Verwendung.
Stator- und Rotorpakete von Elektromotoren und Generatoren sowie Lamellenpakete von Transformatoren werden aus sogenanntem Elektroband hergestellt. Bei Elektroband handelt es sich um ein Bandstahlblech, beispielsweise mit Dicken zwischen 0,1 mm und 2 mm.
Dieses Bandstahlblech wird in die benötigten Formen gestanzt und aus den einzelnen gestanzten Bestandteilen werden die entsprechenden Pakete zusammengefügt, welche anschließend zu fer¬ tigen Elektromotoren, Generatoren oder Transformatoren verarbeitet werden. Bei diesen Stanzverfahren werden üblicherweise, um den Verschnitt zu reduzieren, sowohl die Läufer- als auch die Statorteile aus demselben Blech gestanzt, haben also die entsprechend gleichen Eigenschaften. Wird in einer Spule ein derartiger Eisenkern (paketierte Bleche) eingesetzt, so wird durch dessen ferromagnetische Eigenschaften, die vom Stahlhersteller voreingestellt werden, oder zumindest soweit vorberei¬ tet werden, dass sie durch ein abschließendes Glühen beim Anwender eingestellt werden, die Permeabilität und damit auch die magnetische Flussdichte in der Spule erhöht. Hierdurch kann die Anzahl der Windungen verringert werden, um eine benötigte Induktivität zu erreichen. Weil das Eisen des Kerns ein elektrischer Leiter ist, fließt in einer von Wechselstrom durchflossenen Spule mit Eisenkern in diesem ein Strom in einer quasi kurz geschlossenen Windung, der Wirbelstrom genannt wird. Dieser Wirbelstrom wird geringer, wenn der Kern nicht aus einem Stück Eisen sondern aus einem Stapel der bereits beschriebenen Eisenbleche besteht.
Elektroband soll eine leichte Magnetisierbarkeit aufweisen, d.h. die benötigte Polarisation J bzw. Induktion (Flussdichte) B schon bei einer kleinen Feldstärke H erreichen. Dadurch können die Wicklungsströme und der Materialbedarf für Wicklung und Kern klein gehalten werden.
Des Weiteren soll es einen niedrigen Ummagnetisierungsverlust P aufweisen, d.h. nur einen kleinen Teil an elektrischer Leistung in Wärme umsetzen, um einen hohen Wirkungsgrad und eine konstruktiv leichte Wärmeabfuhr zu erreichen.
Bei Kleinmaschinen ist das wichtigste Auswahlkriterium für den Kernwerkstoff die nutzbare Polarisation, d.h. es soll eine möglichst hohe Induktion bei einer vorgegebenen Feldstärke vorhanden sein. Mit zunehmender Leistung und Einschaltdauer kommt dem Verlust an elektrischer Energie und damit dem Prob¬ lem der Wärmeabfuhr wachsende Bedeutung zu. Bei großen Maschinen ist deshalb der Ummagnetisierungsverlust ein entscheiden¬ des Kriterium.
Derartige Elektrobänder bestehen aus einem relativ weichen Stahlmaterial. Insbesondere im Motoren- und Generatorenbau ist es für die Hersteller einerseits interessant die Luftspalte zu verringern, weil dies die magnetische Effektivität erhöht, an¬ dererseits treten insbesondere bei sehr schnell drehenden Mo¬ toren und insbesondere Generatoren sehr hohe Fliehkräfte auf. Insbesondere bei Generatoren können die Rotoren relativ groß sein, so dass bei den bewegten Massen sehr hohe Fliehkräfte auftreten können. Diese sehr hohen Fliehkräfte führen einerseits dazu, dass eine Streckung stattfindet, so dass sehr enge Luftspalte schwierig zu realisieren sind, andererseits können die hohen Fliehkräfte auch zu einem Versagen des Rotormaterials führen.
Um diesen Problemen zu begegnen ist es aus dem Stand der Technik bekannt, Elektroband mit höheren Festigkeitseigenschaften auszubilden .
Um die Festigkeitseigenschaften von Elektroband zu erhöhen wird üblicherweise mit Aluminium-Silizium-Legierungskonzepten gearbeitet. Solche Legierungskonzepte sind beispielsweise aus der JP 2010090474 A bekannt, bei der ein relativ hoher Siliziumanteil eingesetzt wird. Einen allgemeineren Überblick lie¬ fert ein Skriptum "4th International Conference on Magnetism and Metallurgy", WMM '10, Freiberg, Germany, "Magnetic and Me- chanical Properties of Newly Developed High-Strength Non- Oriented Electrical Steel", Seiten 277 bis 281.
Zudem sind aus der EP 2031 079 AI ein hochfestes elektromagne¬ tisches Stahlband und ein Verfahren zum Herstellen desselbigen bekannt. Aus dieser Schrift ist es bekannt, dass Kupfer den Rekristallisationsgrad steigert, wobei der Gehalt geringer als 0,1 Masse-%, insbesondere geringer als 0,01 Masse-% sein soll.
Aufgabe der Erfindung ist es ein höherfestes Elektroband zu schaffen, welches neben einer hohen Festigkeit sehr gute magnetische Eigenschaften und im Vergleich zu hoch Si- oder hoch AI legiertem Elektroband hohe Polarisationswerte hat.
Die Aufgabe wird mit einem Elektroband mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet. Es ist eine weitere Aufgabe ein Verfahren zur Herstellung eines Bandes zu schaffen. Die Aufgabe wird mit einem Verfahren mit den Merkma¬ len des Anspruchs 9 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.
Die hier beschriebenen Festigkeiten liegen in folgenden Berei
Reh (quer zur Walzrichtung) : 400 MPa - 650 MPa, insbesondere 420 - 620 MPa
Rm (quer zur Walzrichtung) : 500 MPa - 700 MPa, insbesondere 520 bis 650 MPa
Die Polarisation bei 5000A/m (J50) soll erfindungsgemäß dabei folgenden Mindestwert unabhängig von der Dicke des Materials und von der Festigkeit erreichen:
J 50 > 1, 65 T
Die Ummagnetisierungsverluste sind abhängig von der Blechdi¬ cke, können beispielhaft für folgende gängige Dicken folgen¬ dermaßen angegeben werden (für sämtliche Festigkeitsbereiche) :
Dicke 0,35 mm: 2,3 < P15 < 6 W/kg
Dicke 0 , 5 mm: 2,5 < P15 < 7 W/kg
Dicke 0 , 65 mm: 3 < P15 < 8 W/kg
Dicke 1 mm: 4,5 < P15 < 12 W/kg
Der Verfestigungsmechanismus bei der Erfindung beruht auf der sogenannten Mischkristall-Härtung. Im Stand der Technik wird Silizium für die Mischkristall-Härtung verwendet, wobei der Härteeffekt des Siliziums allerdings beschränkt ist und etwa +70 MPa pro zugegebenem Masse-% Silizium beträgt. Der Effekt wird dadurch erzielt, dass beim kubisch raumzentrierten Gitter eines vollferritischen Elektroblechs die Siliziumatome am Git¬ ter sitzen, d. h. Eisen substituieren.
Werden nachfolgend Gehalte angegeben, verstehen sich diese immer als Masse-%.
Im Gegensatz zu üblichen Legierungskonzepten wird erfindungsgemäß ein Legierungskonzept mit Phosphor bevorzugt, dessen Mischkristall verfestigende Wirkung je zugegebenem Masse-% Phosphor deutlich höher ist als die von Silizium oder Aluminium. Zulegieren von Silizium und Aluminium hat zwar den Vorteil, dass durch Erhöhung des spezifischen Widerstandes die Ummagnetisierungsverluste sinken, was einen positiven Effekt für die magnetischen Eigenschaften bringt, allerdings gleichzeitig die Polarisationswerte sinken und damit die magneti¬ schen Eigenschaften verschlechtert werden. Versuche mit Varia¬ tion von den Elementen Silizium, Aluminium, Mangan und Phosphor haben gezeigt, dass einzig die Zugabe von Phosphor sowohl die Festigkeitswerte steigert, die Ummagnetisierungsverluste senkt und die Polarisationen nicht negativ beeinflusst.
Folgende lineare Zusammenhänge zwischen den Legierungselemen¬ ten und der Glühtemperatur und den magnetischen und mechanischen Eigenschaften konnten für Material in Dicke 0,5 mm unter den unten angegebenen Bedingungen ermittelt werden:
Zugfestigkeit Rm (MPa) :
Rm (MPa) = 556 + C*2438 + Si*76,3 + Mn*46,3 + P*341 +
Al*33,03 - T*0,311
Durch diese Linearkombination können 95, 6 % der Variabilität der Zielgröße Rm erklärt werden (RA2=0,956). Der nichterklärbare, zufällige Fehler ist normalverteilt mit σ=7, 27.
Die Prognoseformel ist gültig, falls die Einflußgrößen folgen- de Bedingungen erfüllen:
C Kohlenstoff in wt%: 0 , 002<=C<=0 , 008
Si Silizium in wt%: 0,5 <=Si<=3,2
Mn Mangan in wt%: 0,2 <=Mn<=0,65
P Phosphor in wt%: 0,01 <=P<=0,18
AI Aluminium in wt%: 0,1 < 1,3
T Glühtemperatur in °C: 800<=T<=980
Glühdauer in sec: 60
Ummagnetisierungsverluste P15 bei 1,5T und 50 Hz:
P15 (W/kg) = 14,44 + C*34,7 - Si*0,355 + Mn*0,413 - P*l,893 - Al*0,199 - T*0,0111
Durch diese Linearkombination können 87,9 % der Variabilität der Zielgröße P15 erklärt werden (RA2=0,879).
Der nichterklärbare, zufällige Fehler ist normalverteilt mit o=0, 246.
Die Prognoseformel ist gültig, falls die Einflußgrößen folgen¬ de Bedingungen erfüllen:
C Kohlenstoff in wt%: 0,002<=C<=0,
Si Silizium in wt%: 0,5 <=Si<=3,2
Mn Mangan in wt%: 0,2 <=Mn<=0,65
P Phosphor in wt%: 0,01 <=P<=0,18 AI Aluminium in wt%: 0,1 < 1,3
T Glühtemperatur in °C: 750<=T<=980
Glühdauer in sec: 60 Polarisation J50 bei 5000 A/m:
J50 (mT) = 1,876 + C*l,57 - Si *0,021 - Mn* 0,046 - Al*0,022 + P*0,003 - T *139*10-6
Durch diese Linearkombination können 86,3 % der Variabilität der Zielgröße J50 erklärt werden (RA2=0,863).
Der nichterklärbare, zufällige Fehler ist normalverteilt mit o=0, 009.
Die Prognoseformel ist gültig, falls die Einflußgrößen folgen¬ de Bedingungen erfüllen:
C Kohlenstoff in wt%: 0 , 002<=C<=0 , 008
Si Silizium in wt%: 0,5 <=Si<=3,2
Mn Mangan in wt%: 0,2 <=Mn<=0,65
P Phosphor in wt%: 0,01 <=P<=0,18
AI Aluminium in wt%: 0,1 < 1,3
T Glühtemperatur in °C: 750<=T<=980
Glühdauer in sec: 60
Die Formel ist in den oben genannten Bereichen innerhalb der Toleranzen für die einzelnen Einflußgrößen für Material in Dicke 0,5 mm anwendbar, kann aber nicht für Material mit abwei¬ chender Dicke (z. B. 0,35 mm oder 0,65 mm) mit denselben Koeffizienten verwendet werden. Eine grobe Abschätzung für den Einfluss der einzelnen Legierungselemente ist aber zulässig. Beispiel zur Anwendung der Formel:
Material mit der Zusammensetzung:
C: 0,004 wt%
Si: 2,4 wt%
AI: 1,0 wt%
Mn: 0,5 wt%
P: 0,01 wt% erreicht bei einer Glühtemperatur von 980 °C entsprechend der Formel folgende Werte:
P15 : 2, 83 W/kg
J50: 1,651 T
Rm: 504 MPa
Eine Erhöhung von Si um 1 wt% auf 3,4 wt% bei gleichzeitiger Beibehaltung der anderen Elemente bringt folgende Änderungen der mechanischen und magnetischen Eigenschaften:
P15: 2,48 W/kg: Reduktion um 0,355 W/kg
J50: 1,63 T: Reduktion um 0,021 T
Rm: 580 MPa: Steigerung um 76 MPa
Wird nun der P Gehalt um 0,2 wt% erhöht auf 0,21 wt% bei gleichzeitiger Beibehaltung der anderen Elemente:
P15: 2,45 W/kg: Reduktion um 0,379 W/kg
J50: 1,635 T: Steigerung um 0,006 T
Rm: 572 MPa: Steigerung um 68 MPa
Das Beispiel zeigt, dass Phosphor und Silizium bei der ent¬ sprechenden Steigerung der Elemente in der Analyse jeweils in ähnlichem Umfang die Ummagnetisierungsverluste erniedrigen und die Zugfestigkeit erhöhen (positiv beeinflussen) , lediglich aber P die Polarisationen nicht negativ beeinflusst.
Folgender Einfluss der Legierungselemente und der Glühtempera¬ tur auf die magnetischen und mechanischen Eigenschaften konnte für Material in Dicke 0,5 mm unter den unten angegebenen Bedingungen ermittelt werden:
Zugfestigkeit Rm (MPa) :
Rm (MPa) = 556 + C*2438 + Si*76,3 + Mn*46,3 + P*341 +
Al*33,03 - T*0,311
Ummagnetisierungsverluste P15 bei 1,5T und 50 Hz:
P15 (W/kg) = 14,44 + C*34,7 - Si*0,355 + Mn*0,413 - P*l,893 - Al*0,199 - T*0,0111
Polarisation J50 bei 5000 A/m:
J50 (mT) = 1,876 + C*l,57 - Si *0,026 - Mn* 0,046 - Al*0,0218 + P*0,003 - T *139*10-6 wobei
C Kohlenstoff in wt%: < 0,006
Si Silizium in wt%: 0,3 < Si < 3,5
Mn Mangan in wt%: 0,2 < Mn < 1
P Phosphor in wt%: 0,01 < 0,24
AI Aluminium in wt%: 0,3 < 1,5
T Glühtemperatur in °C: 740 - 1000 (insbesondere 850 - 980°C) Glühdauer in sec: 60
Die Formel ist in den oben genannten Bereichen innerhalb der Toleranzen für die einzelnen Größen für Material in Dicke 0,5 mm anwendbar, kann aber nicht für Material mit abweichender Dicke (z. B. 0,35 mm oder 0,65 mm) mit den gleichen Koeffizienten verwendet werden. Eine grobe Abschätzung für den Einfluss der einzelnen Legierungselemente ist aber zulässig.
Beispiel zur Anwendung der Formel:
Material mit der Zusammensetzung:
C: 0,004 wt%
Si: 2,4 wt%
AI: 1,0 wt%
Mn: 0,5 wt%
P: 0,01 wt% erreicht bei einer Glühtemperatur von 980 °C entsprechend der Formel folgende Werte:
P15 : 2, 83 W/kg
J50 : 1, 639 T
Rm: 504 MPa
Eine Erhöhung von Si um 1 wt% auf 3,4 wt% bei gleichzeitiger Beibehaltung der anderen Elemente bringt folgende Änderungen der mechanischen und magnetischen Eigenschaften:
P15: 2,48 W/kg: Reduktion um 0,355 W/kg
J50: 1,613 T: Reduktion um 0,026 T
Rm: 580 MPa: Steigerung um 76 MPa
Wird nun der P Gehalt um 0,2 wt% erhöht auf 0,21 wt% bei gleichzeitiger Beibehaltung der anderen Elemente:
P15: 2,45 W/kg: Reduktion um 0,379 W/kg
J50: 1,635 T: Steigerung um 0,006 T Rm: 572 MPa: Steigerung um 68 MPa
Das Beispiel zeigt, dass Phosphor und Silizium bei der ent¬ sprechenden Steigerung der Elemente in der Analyse jeweils in ähnlichem Umfang die Ummagnetisierungsverluste erniedrigen und die Zugfestigkeit erhöhen (positiv beeinflussen) , lediglich aber P die Polarisationen nicht negativ beeinflusst.
Hierbei haben Versuche gezeigt, dass mit einem P-Gehalt klei¬ ner als 0,14 Masse-% die erfindungsgemäß geforderten magneti¬ schen und mechanischen Eigenschaften über den gesamten Wertebereich nicht erreicht wurden. Bei einem P-Gehalt größer als 0,24 Masse-% hat sich in Versuchen gezeigt, dass die Herstell¬ barkeit nicht mehr gegeben ist. Im erfindungsgemäßen Bereich des P-Gehaltes von 0,14 Masse-% bis 0,24 Masse-% hat sich ge¬ zeigt, dass sowohl die Herstellbarkeit als auch das Erreichen der geforderten mechanischen und magnetischen Eigenschaften gegeben ist. Es ist bekannt, dass unterschiedliche Mechanismen für die Versprödung des Werkstoffes durch das Zulegieren von Si oder P verantwortlich sind. Silizium wirkt dabei als inhe- rent versprödend und bewirkt dadurch hauptsächlich Spaltbruch. Phosphor ist als Element bekannt, dass vorwiegend an die Korn¬ grenzen segregiert und dabei die Korngrenzen schwächt und so zum Korngrenzenbruch führt. Der vorwiegend an den Korngrenzen sitzende gelöste Kohlenstoff verhindert aber dabei, dass Phos¬ phor die Korngrenzen schwächt. Dieser Effekt führt zu einer überraschend guten Duktilität. Bei der erfindungsgemäßen Kombination von Silizium, Aluminium und Phosphor würde der Fachmann üblicherweise eine hohe Sprödigkeit erwarten, die jedoch überraschenderweise nicht auftritt. Zudem ist auch der positi¬ ve Effekt von Phosphor zur Absenkung der Wirbelstromverluste bekannt . Bei der Erfindung hat sich gezeigt, dass es vorteilhaft ist mit einer erhöhten Haspeltemperatur, insbesondere zwischen ca. 600°C bis 750°C zu arbeiten.
Erfindungsgemäß wird ein Elektroband so eingestellt, dass die Grenzen der folgenden Elemente eingehalten werden:
Mn 0, 35 - 0, 65
Si 2,0 - 3,0
AI 0,8 - 1,4
P 0,14 - 0,24
Insbesondere beträgt der Kohlenstoffgehalt < 0,005 Masse-%, Silizium 2,2 Masse-% - 2,6 Masse-%, Mangan 0,4 Masse-% - 0,6 Masse-%, Phosphor 0,14 Masse-% - 0,19 Masse-%, Schwefel < 0,008 Masse-%, Aluminium 0,9 Masse-% - 1,3 Masse-%, Stick¬ stoff < 0,0070 Masse-%, Titan < 0,005 Masse-%, Vanadium < 0,01 Masse-%, Chrom < 0,05 Masse-%, Niob < 0,02 Masse-% und Molybdän < 0,01 Masse-%, Rest: erschmelzungsbedingte Unrein¬ heiten. Bezüglich einige Elemente bzw. Verunreinigungen werden die folgenden Werte angestrebt:
Figure imgf000013_0001
Im Ergebnis wird ein höherfestes Elektroband erzielt mit einer Streckgrenze Reh zwischen 400 MPa und 650 MPa und einer Zug¬ festigkeit zwischen 500 MPa und 700 MPa, wobei folgende Pola¬ risation mindestens erreicht werden muss:
J50 erreicht einen Wert > 1,65 T unabhängig von der Banddicke im Bereich zwischen 0,2 mm und 1,5 mm, insbesondere zwischen 0 , 3 mm und 1 mm) Die Ummagnetisierungsverluste sind abhängig von der Blechdi¬ cke, können beispielhaft für folgende gängige Dicken folgen¬ dermaßen angegeben werden für sämtliche Festigkeitsbereiche:
Dicke 0,35 mm: 2,3 < P15 < 6 W/kg
Dicke 0 , 5 mm: 2,5 < P15 < 7 W/kg
Dicke 0 , 65 mm: 3 < P15 < 8 W/kg
Dicke 1 mm: 4,5 < P15 < 12 W/kg
Insbesondere betrifft die Erfindung ein höherfestes Elektro- band, wobei das Elektroband aus einer Stahllegierung besteht, wobei die Grenzen der folgenden Elemente eingehalten werden:
Mn 0,35 - 0,65
Si 2,0 - 3,0
AI 0,8 - 1,4
P 0,14 - 0,24
Für das Erreichen der hohen Polarisation für sämtliche Festigkeitsbereiche ist keine optionale Warmbandglühung zwischen dem Warm- und Kaltwalzen durchzuführen.
Die Erfindung wird anhand einer Zeichnung beispielhaft erläu¬ tert. Es zeigen dabei:
Figur 1: ein Schliffbild eines Stahlbandes, welches nicht er¬ findungsgemäß ist und eine Dicke von 0,5 mm besitzt;
Figur 2: ein erfindungsgemäßes Band mit 0,65 mm Dicke;
Figur 3: ein nicht-erfindungsgemäßes Band mit einer Dicke von
0,35 mm . Die Figuren zeigen drei unterschiedliche Elektrostahlbänder, wobei das in Figur 1 gezeigte und im nachfolgenden Beispiel als Band 1 bezeichnete Band ein hohen Siliziumanteil besitzt und bei 970 °C geglüht wurde. Es hat ein grobes Gefüge.
Das in Figur 2 gezeigte erfindungsgemäße Band 4 besitzt eine Dicke von 0,65 mm hat einen sehr hohen Phosphorgehalt und wird bei 850°C geglüht. Es hat ein feinkörniges, komplett rekris¬ tallisiertes Gefüge.
Figur 3 zeigt das Elektrostahlband Nummer 5 aus den Beispielen welches nicht erfindungsgemäß ist, bei einer Dicke von
0,35 mm. Es besitzt einen sehr hohen Siliziumgehalt und wurde bei 740°C geglüht und besitzt ein feinkörniges, komplett rekristallisiertes Gefüge.
Bei hoher Schlussglühtemperatur (970°C) lassen sich hohe
Festigkeiten und niedriger Ummagnetisierungsverluste auch im Vergleich zu Hochphosphor realisieren. Die erzielbaren Polarisationen sind allerdings deutlich geringer und erreichen die erfindungsgemäß geforderten J50 > 1,65 T nicht (Beispiel 1) .
Je geringer die Schlussglühtemperatur gewählt wird, desto höhere Festigkeiten bei gleichzeitig guten magnetischen Eigenschaften lassen sich durch das Hoch-Phosphor-Konzept realisie¬ ren (Beispiel 2 und 3) . Sichtbar ist die kornfeinernde Wirkung von Phosphor beim Band 4 (Figur 2), welches trotz deutlich höherer Temperatur (850°C zu 740°C) eine vergleichbare Korngröße wie das Band 5, welches nicht erfindungsgemäß ist (Figur 3) ermöglicht. Bei tieferen Glühtemperaturen (< 800°C) lassen sich höchste Festigkeiten mit hohem Phosphorgehalt erzielen. Die Unterscheidung zwischen grob und fein wird wie folgt defi¬ niert, grobes Gefüge weist Körner (die überwiegende Mehrzahl > 50 ym, insbesondere > 100 ym auf, während feines Gefüge Kör¬ ner < 50 ym aufweist. Selbstverständlich können vereinzelt Körner auftreten, die außerhalb dieser Grenzen liegen.
Die Erfindung wird anhand von Ausführungsbeispielen erläutert, wobei verschiedene erfindungsgemäße Zusammensetzungen angege¬ ben sind, wobei die Abkürzungen in den Beispielen wie folgt definiert sind:
Reh = obere Streckgrenze
Rm = Zugfestigkeit
A80 = Bruchdehnung
P15 = Ummagnetisierungsverlust bei 50 Hz und 1,5 T
J50 = Polarisation bei einer Feldstärke von 5.000 A/m
Folgende Beispiele von Produktionsproben sollen die oben beschriebenen Zusammenhänge dokumentieren und die Vorteile eines Hoch-Phosphor Konzeptes für das Erreichen von hochfestem
Elektroband mit hohen Polarisationswerten zeigen. Die Beispiele beziehen sich auf 3 unterschiedliche Materialdicken (0,35 mm, 0,5 mm und 0,65 mm) in unterschiedlichen Festigkeitsstufen .
Beispiel 1 :
ReH > 400 MPa, Rm > 500 MPa
Das Warmband wird zu Kaltband in einem Kaltwalzprozess konti¬ nuierlich gewalzt zu einer Kaltbanddicke von 0,5 mm. Anschlie¬ ßend wurde das Material an einem kontinuierliche Schlussglüh- aggregat bei einer Schlussglühtemperatur von 970°C für 60 s geglüht . Es wurden zwei Bänder mit unterschiedlichem Analysekonzept produziert: Band 1 mit erhöhtem Silizium Gehalt, Band 2 mit erhöhtem Phosphor Gehalt:
Band 1 Band 2 cht erfindungsgemäß) (erfindungsgemäß )
0,0038 0,0048
3, 22 2, 35
0, 98 1,04
0,45 0,56
0,014 0,15
Mit diesen Parametern ließen sich die folgenden Eigenschaften erzielen :
450 MPa 435 MPa
570 Mpa 553 MPa
23,6 % 27, 9%
2,58 W/kg 2, 64 W/kg
1, 642 T 1, 668 T
Beispiel 2 :
ReH > 480 MPa, Rm > 550 MPa
Das Warmband wird zu Kaltband in einem Kaltwalzprozess konti¬ nuierlich gewalzt zu einer Kaltbanddicke von 0,65 mm. An¬ schließend wurde das Material an einem kontinuierliche
Schlussglühaggregat bei einer Schlussglühtemperatur von 850°C für 75 s geglüht. Es wurden zwei Bänder mit unterschiedlichem Analysekonzept produziert: Band 3 mit erhöhtem Silizium Gehalt, Band 4 mit erhöhtem Phosphor Gehalt:
Band 3 Band 4 cht erfindungsgemäß) (erfindungsgemäß )
0,0048 0.0044
2,83 2, 34
0, 98 1, 02
0,43 0,51
0, 012 0,149
Mit diesen Parametern ließen sich die folgenden Eigenschaften erzielen :
495 MPa 535 MPa
590 Mpa 620 MPa
22,4 % 24, 1%
4, 85 W/kg 5, 14 W/kg
1, 647 T 1, 664 T
Beispiel 3:
ReH > 550 MPa, Rm > 600 MPa
Das Warmband wird zu Kaltband in einem Kaltwalzprozess konti¬ nuierlich gewalzt zu einer Kaltbanddicke von 0,35 mm. An¬ schließend wurde das Material an einem kontinuierliche
Schlussglühaggregat bei einer Schlussglühtemperatur von 740°C für 120 s geglüht. Es wurden zwei Bänder mit unterschiedlichem Analysekonzept produziert: Band 5 mit erhöhtem Silizium Gehalt, Band 6 mit erhöhtem Phosphor Gehalt:
Band 5 Band 6 cht erfindungsgemäß) (erfindungsgemäß )
0,0043 0,0041
3,25 2,39
1,01 1,05
0, 52 0,48
0,011 0, 193
Mit diesen Parametern ließen sich die folgenden Eigenschaften erzielen :
562 MPa 605 MPa
635 Mpa 652 MPa
19,4 % 18,1%
5, 15 W/kg 5, 04 W/kg
1, 648 T 1, 674 T
Es wird darauf hingewiesen, dass die Unterschiede in den Wer¬ ten zwischen den nicht erfindungsgemäßen Bändern und den erfindungsgemäßen Bändern in dem J50-Bereich teilweise nicht sehr hoch erscheinen mögen, tatsächlich ist es aber so, dass hier bereits Unterschiede im Tausendstelbereich entscheidend sind .

Claims

Patentansprüche
1. Höherfestes, nicht kornorientiertes Elektroband mit hoher Polarisation, dadurch gekennzeichnet, dass das Elektroband aus einer Stahllegierung besteht, wobei die Grenzen der folgenden Elemente eingehalten werden:
Mn 0,35 Masse-% - 0,65 Masse-%
Si 2,0 Masse-% - 3,0 Masse-%
AI 0,8 Masse-% - 1,4 Masse-%
P 0,14 Masse-% - 0,24 Masse-%
2. Elektroband nach Anspruch 1, dadurch gekennzeichnet, dass der Kohlenstoffgehalt unter 0,05 % beträgt.
3. Elektroband nach Anspruch 1, dadurch gekennzeichnet, dass die Stahlanalyse wie folgt eingestellt ist: c < 0, 005 Masse-%,
Si 2,3 Masse-% - 2,4 % Masse-,
Mn 0,48 Masse-% - 0,53 Masse-%,
P 0,14 Masse-% - 0,15 Masse-%,
S <0, 008 Masse-%,
AI 1,0 Masse-% - 1,1 Masse-%,
N < 0, 005 Masse-%,
Ti < 0, 005 Masse-%,
Vd < 0,01 Masse-%,
Cr < 0,02 Masse-%,
Nb < 0,02 Masse-%,
Mb < 0, 008 Masse-%,
Rest : Eisen sowie erschmelzungsbedingte Unreinheiten.
4. Elektroband nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bezüglich einige Elemente bzw Verunreinigungen die folgenden Werte eingehalten werden:
Figure imgf000021_0001
5. Elektroband nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass die Festigkeit Reh (quer zur Walzrichtung) 400 MPa bis 650 MPa, insbesondere 420 MPa bis 620 MPa beträgt.
6. Elektroband nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass die Festigkeit Rm (quer zur Walzrichtung) 500 MPa bis 700 MPa, vorzugsweise 520 MPa bis 650 MPa beträgt.
7. Elektroband nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polarisation bei 5.000 A/m (J50) unabhängig von der Dicke und von der Festigkeit
J50 > 1, 65 T beträgt .
Elektroband nach einem der vorhergehenden Ansprüche, durch gekennzeichnet, dass die Ummagnetisierungsverl abhängig von der Blechdicke wie folgt liegen:
Dicke 0,35 mm: 2,3 < P15 < 6 W/kg
Dicke 0 , 5 mm: 2,5 < P15 < 7 W/kg
Dicke 0 , 65 mm: 3 < P15 < 8 W/kg
Dicke 1 mm: 4,5 < P15 < 12 W/kg
9. Verfahren zum Herstellen eines Elektrobandes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zugfestigkeit Rm (MPa) mit der folgenden Formel eingestellt wird :
Rm (MPa) = 556 + C*2438 + Si*76,3 + Mn*46,3 + P*341 +
Al*33,03 - T*0,311
Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Ummagnetisierungsverlust P15 bei 1,5 T und 50 Hz wie folgt eingestellt wird:
P15 (W/kg) = 14,44 + C*34,7 - Si*0,355 + Mn*0,413 - P*l,893 - Al*0,199 - T*0,0111 wobei hierbei gilt:
C Kohlenstoff in wt% 0, 002<=C<=0, 00i
Si Silizium in wt%: 0,5 <=Si<=3,2
Mn Mangan in wt%: 0,2 <=Mn<=0, 65
P Phosphor in wt%: 0,01 <=P<=0,18
AI Aluminium in wt%: 0,1 < 1,3
T Glühtemperatur in 750<=T<=980
Glühdauer in sec: 60
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Polarisation J50 bei 5.000 A/m wie folgt einge¬ stellt wird:
J50 (mT) = 1,876 + C*l,57 - Si *0,021 - Mn* 0,046 - Al*0,022 + P*0,003 - T *139*10-6 wobei hierbei gilt:
C Kohlenstoff in wt%: 0, 002<=C<=0, 008
Si Silizium in wt%: 0,5 <=Si<=3,2
Mn Mangan in wt%: 0,2 <=Mn<=0, 65
P Phosphor in wt%: 0,01 <=P<=0,18
AI Aluminium in wt%: 0,1 < 1,3
T Glühtemperatur in °C: 750<=T<=980
Glühdauer in sec: 60 wobei erfindungsgemäß J50 > 1,65 T beträgt.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Glühtemperatur 700 °C bis 1.000 °C, insbesondere 750 °C bis 970 °C beträgt, wobei für 60 sec bis 200 sec geglüht wird, wobei Rm = 500 MPa bis 800 MPa, insbesondere 520 MPa bis 700 MPa und Reh = 400 MPa bis
700 MPa, insbesondere 420 MPa bis 650 MPa und J50 > 1,63 T.
13. Verwendung eines Elektrobandes nach einem der Ansprüche 1 bis 8, hergestellt mit einem Verfahren nach einem der Ansprüche 9 bis 12, für Rotor- und Statorlamellenpakete von Elektromotoren oder -generatoren oder Lamellenpaketen von Transformatoren .
PCT/EP2012/068276 2011-09-16 2012-09-17 Nichtkornorientiertes höherfester elektroband mit hoher polarisation und verfahren zu seiner herstellung WO2013038020A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12759723.5A EP2756106A1 (de) 2011-09-16 2012-09-17 Nichtkornorientiertes höherfester elektroband mit hoher polarisation und verfahren zu seiner herstellung
US14/344,952 US20140373340A1 (en) 2011-09-16 2012-09-17 Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
MX2014003159A MX2014003159A (es) 2011-09-16 2012-09-17 Cinta electrica de resistencia superior, de grano no orientado, con alta polarizacion y metodo para la produccion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011053723.6 2011-09-16
DE102011053723 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038020A1 true WO2013038020A1 (de) 2013-03-21

Family

ID=45771648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068276 WO2013038020A1 (de) 2011-09-16 2012-09-17 Nichtkornorientiertes höherfester elektroband mit hoher polarisation und verfahren zu seiner herstellung

Country Status (4)

Country Link
US (1) US20140373340A1 (de)
EP (1) EP2756106A1 (de)
MX (1) MX2014003159A (de)
WO (1) WO2013038020A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515323B2 (ja) * 2015-02-06 2019-05-22 日本製鉄株式会社 無方向性電磁鋼板
JP6476979B2 (ja) * 2015-02-19 2019-03-06 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP6658150B2 (ja) * 2016-03-16 2020-03-04 日本製鉄株式会社 電磁鋼板
DE102018201618A1 (de) 2018-02-02 2019-08-08 Thyssenkrupp Ag Nachglühfähiges, aber nicht nachglühpflichtiges Elektroband
CN112430775A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
WO2021167086A1 (ja) * 2020-02-20 2021-08-26 日本製鉄株式会社 無方向性電磁鋼板用熱延鋼板
CN114901850B (zh) * 2020-02-20 2023-09-26 日本制铁株式会社 无取向电磁钢板用热轧钢板
KR20230140602A (ko) * 2021-03-31 2023-10-06 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 무방향성 전자 강판의 제조 방법, 전동기 및 전동기의 제조 방법
WO2023282194A1 (ja) * 2021-07-08 2023-01-12 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2023282197A1 (ja) * 2021-07-08 2023-01-12 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法、ならびにモータコア
WO2023282195A1 (ja) * 2021-07-08 2023-01-12 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP7235187B1 (ja) * 2021-07-08 2023-03-08 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法、ならびにモータコア
JP7231133B1 (ja) * 2022-10-26 2023-03-01 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法、ならびにモータコア
JP7231134B1 (ja) * 2022-10-26 2023-03-01 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967654A (ja) * 1995-08-29 1997-03-11 Nkk Corp 鉄損特性の優れた無方向性電磁鋼板
JPH1060609A (ja) * 1995-08-28 1998-03-03 Nkk Corp 鉄損特性または低磁場特性の優れた無方向性電磁鋼板
JP2000160306A (ja) * 1998-11-30 2000-06-13 Sumitomo Metal Ind Ltd 加工性に優れた無方向性電磁鋼板およびその製造方法
EP2031079A1 (de) 2006-06-16 2009-03-04 Nippon Steel Corporation Hochfeste elektromagnetische stahlplatte und herstellungsverfahren dafür
JP2010090474A (ja) 2008-09-11 2010-04-22 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060609A (ja) * 1995-08-28 1998-03-03 Nkk Corp 鉄損特性または低磁場特性の優れた無方向性電磁鋼板
JPH0967654A (ja) * 1995-08-29 1997-03-11 Nkk Corp 鉄損特性の優れた無方向性電磁鋼板
JP2000160306A (ja) * 1998-11-30 2000-06-13 Sumitomo Metal Ind Ltd 加工性に優れた無方向性電磁鋼板およびその製造方法
EP2031079A1 (de) 2006-06-16 2009-03-04 Nippon Steel Corporation Hochfeste elektromagnetische stahlplatte und herstellungsverfahren dafür
JP2010090474A (ja) 2008-09-11 2010-04-22 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"4th International Conference on Magnetism and Metallurgy", MAGNETIC AND MECHANICAL PROPERTIES OF NEWLY DEVELOPED HIGH-STRENGTH NON-ORIENTED ELECTRICAL STEEL, pages 277 - 281

Also Published As

Publication number Publication date
US20140373340A1 (en) 2014-12-25
MX2014003159A (es) 2014-05-21
EP2756106A1 (de) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2013038020A1 (de) Nichtkornorientiertes höherfester elektroband mit hoher polarisation und verfahren zu seiner herstellung
DE102011053722B3 (de) Verfahren zum Herstellen eines höherfesten Elektrobandes, Elektroband und dessen Verwendung
EP2612942B1 (de) Nicht kornorientiertes Elektroband oder -blech, daraus hergestelltes Bauteil und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
EP1918407B1 (de) Weichmagnetische Legierung auf Eisen-Kobalt-Basis sowie Verfahren zu deren Herstellung
DE102017208146B4 (de) NO-Elektroband für E-Motoren
EP3712283B1 (de) Verfahren zum herstellen eines bands aus einer kobalt-eisen-legierung
DE102012212679A1 (de) Elektromagnetische Maschine und System mit Siliziumstahlblechen
JP2017057462A (ja) 無方向性電磁鋼板およびその製造方法
EP2840157B1 (de) Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
DE102019110872A1 (de) Blechpaket und Verfahren zum Herstellen einer hochpermeablen weichmagnetischen Legierung
EP3541969B1 (de) Verfahren zum herstellen eines bandes aus einer co-fe-legierung, band aus einer co-fe-legierung und blechpaket
EP3511429A1 (de) Elektroblechpaket und verfahren zu seiner herstellung
DE60020217T2 (de) Nicht-orientiertes magnetisches stahlblech mit reduzierter magnetischer anisotropie in hochfrequenzbereichen und hervorragender pressbearbeitbarkeit
JP5085963B2 (ja) 電磁棒鋼およびその製造方法
DE202022103395U1 (de) Elektroband
WO2019149582A1 (de) Nachglühfähiges, aber nicht nachglühpflichtiges elektroband
DE102012105605A1 (de) Weichmagnetische Legierung und Verfahren zur Herstellung einer weichmagnetischen Legierung
EP4027357A1 (de) Fecov-legierung und verfahren zum herstellen eines bands aus einer fecov-legierung
DE3103965A1 (de) Magnetlegierung
WO2020078529A1 (de) Verfahren zur herstellung eines no elektrobands mit zwischendicke
DE10327522B4 (de) Weichmagnetische Legierung, Schrittmotor für eine elektrische Uhr mit einem Stator aus dieser weichmagnetischen Legierung sowie Quarzuhr
DE102019133493A1 (de) Elektroband oder -blech, Verfahren zur Erzeugung hierzu und daraus hergestelltes Bauteil
WO2024074465A1 (de) Verfahren zum herstellen einer cofe-legierung für ein blechpaket
DE102015218439A1 (de) In seinen Ummagnetisierungsverlusten reduziertes Teil und Verfahren zu seiner Herstellung
WO2003014404A1 (de) Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344952

Country of ref document: US

Ref document number: MX/A/2014/003159

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012759723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012759723

Country of ref document: EP