WO2023282194A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2023282194A1
WO2023282194A1 PCT/JP2022/026417 JP2022026417W WO2023282194A1 WO 2023282194 A1 WO2023282194 A1 WO 2023282194A1 JP 2022026417 W JP2022026417 W JP 2022026417W WO 2023282194 A1 WO2023282194 A1 WO 2023282194A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2022/026417
Other languages
English (en)
French (fr)
Inventor
孝明 田中
智幸 大久保
善彰 財前
幸乃 宮本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022568990A priority Critical patent/JP7235188B1/ja
Priority to CN202280047502.2A priority patent/CN117651785A/zh
Priority to EP22837610.9A priority patent/EP4350013A1/en
Priority to KR1020237041431A priority patent/KR20240005829A/ko
Publication of WO2023282194A1 publication Critical patent/WO2023282194A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and its manufacturing method.
  • a motor core is divided into a stator core and a rotor core.
  • a large centrifugal force acts on the rotor core of an HEV drive motor due to its large outer diameter.
  • the rotor core has a very narrow portion (width: 1 to 2 mm) called a rotor core bridge portion due to its structure, and this portion is in a particularly high stress state during motor operation.
  • the motor since the motor repeatedly rotates and stops, a large repetitive stress due to centrifugal force acts on the rotor core, so the electromagnetic steel sheets used for the rotor core must have excellent fatigue properties.
  • the magnetic steel sheet used for the rotor core since the temperature of the rotor core rises to about 100°C to 150°C when the motor is driven, the magnetic steel sheet used for the rotor core must have excellent fatigue properties around 100°C.
  • the magnetic steel sheet used for the stator core desirably has high magnetic flux density and low core loss in order to achieve miniaturization and high output of the motor.
  • the properties required for the magnetic steel sheets used in motor cores are that the magnetic steel sheets for rotor cores should have excellent fatigue properties, and the magnetic steel sheets for stator cores should have high magnetic flux density and low iron loss. is.
  • the properties required for the rotor core and stator core are significantly different.
  • the rotor core material and the stator core material are simultaneously obtained by punching from the same material steel plate, and then the respective steel plates are laminated to assemble the rotor core or the stator core. is desirable.
  • Patent Document 1 discloses manufacturing a high-strength non-oriented electrical steel sheet and punching the steel sheet into a rotor core material.
  • a technique for manufacturing a high-strength rotor core and a low-iron-loss stator core from the same material is disclosed, in which a stator core material is sampled and layered to assemble the rotor core and the stator core, and then strain relief annealing is performed only on the stator core.
  • the yield stress is improved by using a high-strength non-oriented electrical steel sheet, but the warm temperature, which is the most important property, There is concern that the punching fatigue strength of the steel is not necessarily improved.
  • the punching fatigue strength is the fatigue strength in the case where the end face is not processed such as polishing after punching.
  • stress relief annealing at high temperature is required to promote grain growth, and the introduction of equipment for that is costly. Except for manufacturers, there is the problem that it is difficult to spread the technology from an economic point of view.
  • the present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a non-oriented magnet having good fatigue properties suitable for rotor cores and excellent magnetic properties suitable for stator cores.
  • An object of the present invention is to provide an electrical steel sheet and to propose a method for manufacturing the non-oriented electrical steel sheet at low cost.
  • a non-oriented electrical steel sheet in % by mass, C: 0.01% or less, Si: 2.0% or more and 5.0% or less, Mn: 0.05% or more and 5.00% or less, P: 0.1% or less, S: 0.01% or less, Al: 3.0% or less and N: 0.0050% or less, Si + Al is 4.5% or more, and the balance is Fe and inevitable impurities,
  • the average crystal grain size X1 is 60 ⁇ m or more and 200 ⁇ m or less
  • the standard deviation S1 of the crystal grain size distribution is expressed by the following formula ( 1 ): S1 / X1 ⁇ 0.75 ( 1 ) and a skewness ⁇ 1 of grain size distribution of 1.50 or less.
  • the component composition is further mass %, The non-oriented electrical steel sheet according to [1] above, containing Co: 0.0005% or more and 0.0050% or less.
  • the component composition is further mass %, The non-oriented electrical steel sheet according to [1] or [2] above, containing Cr: 0.05% or more and 5.00% or less.
  • the component composition is further mass %, Ca: 0.001% or more and 0.100% or less,
  • the component composition is further mass %, The non-oriented electrical steel sheet according to any one of [1] to [4] above, containing any one or two of Sn: 0.001% or more and 0.200% or less and Sb: 0.001% or more and 0.200% or less.
  • the component composition is further mass %, Cu: 0% or more and 0.5% or less, Ni: 0% or more and 0.5% or less, Ti: 0% or more and 0.005% or less, Nb: 0% or more and 0.005% or less, V: 0% or more and 0.010% or less, Ta: 0% or more and 0.002% or less, B: 0% or more and 0.002% or less, Ga: 0% or more and 0.005% or less, Pb: 0% or more and 0.002% or less, Zn: 0% or more and 0.005% or less, Mo: 0% or more and 0.05% or less, W: 0% or more and 0.05% or less,
  • the non-oriented electrical steel sheet according to any one of [1] to [5] above, containing one or more of Ge: 0% or more and 0.05% or less and As: 0% or more and 0.05% or less.
  • the pickled hot-rolled sheet has a final pass entrance temperature T1 of 50 °C or higher, a final pass rolling reduction r of 15% or higher, and a final pass strain rate ⁇ m of 100 s -1 or higher and 1000 s.
  • the cold - rolled sheet is heated to an annealing temperature T2 of 875°C or higher and 1050°C or lower under the condition that the average heating rate V1 from 500°C to 700°C is 10°C/s or more, and then cooled to
  • a method for manufacturing a non-oriented electrical steel sheet comprising:
  • the present invention it is possible to provide a non-oriented electrical steel sheet that has both properties suitable for rotor cores, such as high punching fatigue strength in warm conditions, and properties suitable for stator cores, such as excellent magnetic properties. Therefore, by using the non-oriented electrical steel sheet of the present invention, a high-performance motor core can be provided at low cost with good material yield. Even if the steel sheet of the present invention is subjected to strain relief annealing for the purpose of reducing the increase in iron loss due to strain during punching, the above effects are not affected at all.
  • C 0.01% or less C is a harmful element that forms carbides during use of the motor, causes magnetic aging, and deteriorates iron loss characteristics.
  • the C content in the steel sheet should be 0.01% or less.
  • the C content is 0.004% or less.
  • the C content is preferably 0.0001% or more because the steel sheet with excessively reduced C content is very expensive.
  • Si 2.0% to 5.0%
  • Si has the effect of increasing the specific resistance of steel and reducing iron loss, and also has the effect of increasing the strength of steel through solid-solution strengthening.
  • the Si content should be 2.0% or more.
  • the Si content if the Si content exceeds 5.0%, the saturation magnetic flux density decreases and the magnetic flux density remarkably decreases, so the upper limit of the Si content is set to 5.0%. Therefore, the Si content should be in the range of 2.0% or more and 5.0% or less.
  • the Si content is preferably 2.5% or more and 5.0% or less, more preferably 3.0% or more and 5.0% or less.
  • Mn 0.05% to 5.00%
  • Mn is an element useful for increasing the specific resistance and strength of steel. In order to obtain such effects, the Mn content must be 0.05% or more. On the other hand, when the Mn content exceeds 5.00%, the precipitation of MnC may be promoted and the magnetic properties may be degraded, so the upper limit of the Mn content was made 5.00%. Therefore, the Mn content should be 0.05% or more and 5.00% or less.
  • the Mn content is preferably 0.1% or more and preferably 3.0% or less.
  • P 0.1% or less
  • P is a useful element used for adjusting the strength (hardness) of steel.
  • the P content exceeds 0.1%, the toughness decreases and cracks are likely to occur during working, so the P content is made 0.1% or less.
  • the lower limit of the P content is not specified, it is preferable that the P content is 0.001% or more because a steel sheet with an excessively reduced P content is very expensive.
  • the P content is preferably 0.003% or more and preferably 0.08% or less.
  • S 0.01% or less S is an element that forms fine precipitates and adversely affects iron loss characteristics. In particular, if the S content exceeds 0.01%, the adverse effects become noticeable, so the S content is made 0.01% or less.
  • the S content is preferably 0.0001% or more because the steel sheet with excessively reduced S is very expensive.
  • the S content is preferably 0.0003% or more, preferably 0.0080% or less, and more preferably 0.005% or less.
  • Al 3.0% or less
  • Al is a useful element that has the effect of increasing the specific resistance of steel and reducing iron loss.
  • the Al content is preferably 0.005% or more.
  • the Al content is more preferably 0.01% or more, still more preferably 0.015% or more.
  • the Al content exceeds 3.0%, nitridation of the surface of the steel sheet may be promoted and the magnetic properties may be degraded, so the upper limit of the Al content was made 3.0%.
  • the Al content is preferably 2.0% or less.
  • N is an element that forms fine precipitates and adversely affects iron loss characteristics. In particular, if the N content exceeds 0.0050%, the adverse effect becomes remarkable, so the N content is made 0.0050% or less.
  • the N content is preferably 0.003% or less. Although the lower limit of the N content is not specified, it is preferable that the N content is 0.0005% or more because steel sheets with excessively reduced N are very expensive.
  • the N content is preferably 0.0008% or more and preferably 0.0030% or less.
  • Si + Al 4.5% or more
  • the balance other than the above components is Fe and unavoidable impurities.
  • the composition of the electrical steel sheet of another embodiment may contain, in addition to the above components (elements), a predetermined amount of one or more selected from the elements described later, depending on the required properties. can be done.
  • Co 0.0005% to 0.0050%
  • Co has the effect of reinforcing the effect of reducing the skewness of the grain size distribution of the annealed sheet by appropriately controlling Si + Al and cold rolling conditions. That is, by adding a small amount of Co, the skewness of the grain size distribution can be stably reduced. In order to obtain such effects, the Co content should be 0.0005% or more. On the other hand, if the content of Co exceeds 0.0050%, the effect saturates and unnecessarily increases the cost. Therefore, the above component composition preferably further contains Co: 0.0005% or more and 0.0050% or less.
  • the above component composition preferably further contains Cr: 0.05% or more and 5.00% or less.
  • Ca 0.001% to 0.100%
  • Ca is an element that fixes S as a sulfide and contributes to the reduction of iron loss.
  • the Ca content should be 0.001% or more.
  • the upper limit of the Ca content is set to 0.100%.
  • Mg 0.001% to 0.100%
  • Mg is an element that fixes S as a sulfide and contributes to the reduction of iron loss. In order to obtain such effects, the Mg content should be 0.001% or more. On the other hand, when the content of Mg exceeds 0.100%, the effect saturates and the cost is unnecessarily increased.
  • REM 0.001% to 0.100% REM is a group of elements that fix S as sulfides and contribute to the reduction of iron loss. In order to obtain such effects, the REM content should be 0.001% or more. On the other hand, when the content of REM exceeds 0.100%, the effect saturates and the cost unnecessarily increases.
  • the above component composition further contains one or more of Ca: 0.001% to 0.100%, Mg: 0.001% to 0.100%, and REM: 0.001% to 0.100%. is preferred.
  • Sn 0.001% or more and 0.200% or less
  • Sn is an element that is effective in improving the magnetic flux density and reducing iron loss by improving the texture.
  • the Sn content should be 0.001% or more.
  • the Sn content exceeds 0.200%, the effect saturates and unnecessarily increases the cost.
  • Sb 0.001% or more and 0.200% or less
  • Sb is an element that is effective in improving the magnetic flux density and reducing iron loss by improving the texture.
  • the Sb content should be 0.001% or more.
  • the content of Sb exceeds 0.200%, the effect saturates, and the cost unnecessarily increases.
  • the above component composition preferably further contains one or two of Sn: 0.001% or more and 0.200% or less and Sb: 0.001% or more and 0.200% or less.
  • Cu 0% to 0.5%
  • Cu is an element that improves the toughness of steel and can be added as appropriate. However, when the Cu content exceeds 0.5%, the effect saturates, so when Cu is added, the upper limit of the Cu content is set at 0.5%.
  • the Cu content is more preferably 0.01% or more and more preferably 0.1% or less. Note that the Cu content may be 0%.
  • Ni 0% or more and 0.5% or less
  • Ni is an element that improves the toughness of steel and can be added as appropriate. However, when the Ni content exceeds 0.5%, the effect saturates, so when Ni is added, the upper limit of the Ni content is set to 0.5%. When Ni is added, the Ni content is more preferably 0.01% or more and more preferably 0.1% or less. Note that the Ni content may be 0%.
  • Ti 0% to 0.005%
  • Ti forms fine carbonitrides and increases the strength of the steel sheet by precipitation strengthening, thereby improving the punching fatigue strength in warm conditions, so it can be added as appropriate.
  • the content of Ti exceeds 0.005%, it deteriorates grain growth in the annealing process and causes an increase in iron loss. Therefore, when adding Ti, the upper limit of the Ti content is set to 0.005%.
  • Ti content is more preferably 0.002% or less. Note that the Ti content may be 0%.
  • Nb 0% or more and 0.005% or less Nb forms fine carbonitrides and increases the strength of the steel sheet through precipitation strengthening, thereby improving the punching fatigue strength in warm conditions, so it can be added as appropriate.
  • the content of Nb exceeds 0.005%, it deteriorates the grain growth in the annealing process and causes an increase in iron loss. Therefore, when Nb is added, the upper limit of the Nb content is set to 0.005%.
  • the Nb content is more preferably 0.002% or less. Note that the Nb content may be 0%.
  • V 0% or more and 0.010% or less V forms fine carbonitrides and increases the strength of the steel sheet by precipitation strengthening, thereby improving the punching fatigue strength in warm conditions, so it can be added as appropriate.
  • the content of V exceeds 0.010%, it deteriorates grain growth in the annealing process and causes an increase in iron loss. Therefore, when V is added, the upper limit of the V content is set to 0.010%.
  • the V content is more preferably 0.005% or less. Note that the V content may be 0%.
  • Ta 0% or more and 0.002% or less Ta forms fine carbonitrides and increases the strength of the steel sheet through precipitation strengthening, thereby improving the punching fatigue strength in warm conditions, so it can be added as appropriate. .
  • the upper limit of the Ta content is set to 0.0020%.
  • Ta content is more preferably 0.001% or less. Note that the Ta content may be 0%.
  • B 0% or more and 0.002% or less B can be added as appropriate in order to form fine nitrides and increase the steel sheet strength by precipitation strengthening, thereby improving the punching fatigue strength in warm conditions.
  • the content of B exceeds 0.002%, the grain growth in the annealing process is deteriorated, resulting in an increase in core loss. Therefore, when B is added, the upper limit of the B content is set to 0.002%.
  • the B content is more preferably 0.001% or less. Note that the B content may be 0%.
  • Ga 0% or more and 0.005% or less Ga forms fine nitrides and increases the steel sheet strength by precipitation strengthening, thereby improving the punching fatigue strength in warm conditions, so it can be added as appropriate.
  • the content of Ga exceeds 0.005%, it deteriorates grain growth in the annealing process and causes an increase in iron loss. Therefore, when Ga is added, the upper limit of the Ga content is set to 0.005%.
  • Ga content is more preferably 0.002% or less. Note that the Ga content may be 0%.
  • Pb 0% or more and 0.002% or less Pb forms fine Pb particles and increases the strength of the steel sheet by precipitation strengthening, thereby improving the punching fatigue strength in warm conditions.
  • the content of Pb exceeds 0.002%, it deteriorates the grain growth in the annealing process and causes an increase in iron loss. Therefore, when Pb is added, the upper limit of the Pb content is set to 0.002%.
  • the Pb content is more preferably 0.001% or less. Note that the Pb content may be 0%.
  • Zn 0% or more and 0.005% or less
  • Zn is an element that increases fine inclusions and increases core loss. In particular, when the content exceeds 0.005%, the adverse effects become remarkable. Therefore, even when Zn is added, the Zn content is in the range of 0% or more and 0.005% or less. The Zn content is more preferably 0.003% or less. Note that the Zn content may be 0%.
  • Mo 0% or more and 0.05% or less Mo forms fine carbides and increases the strength of the steel sheet by precipitation strengthening, thereby improving the punching fatigue strength in warm conditions, so it can be added as appropriate.
  • the content of Mo exceeds 0.05%, it deteriorates the grain growth in the annealing process and causes an increase in iron loss. Therefore, when Mo is added, the upper limit of the Mo content is set to 0.05%.
  • Mo content is more preferably 0.02% or less. Note that the Mo content may be 0%.
  • W 0% or more and 0.05% or less W can be added as appropriate in order to form fine carbides and increase the steel sheet strength by precipitation strengthening, thereby improving the punching fatigue strength in warm conditions.
  • the content of W exceeds 0.05%, it deteriorates the grain growth in the annealing process and causes an increase in iron loss. Therefore, when W is added, the upper limit of the W content is set to 0.05%.
  • the W content is more preferably 0.02% or less. Note that the W content may be 0%.
  • Ge 0% or more and 0.05% or less Ge is an element effective in improving magnetic flux density and reducing iron loss by improving the texture, so it can be added as appropriate.
  • the Ge content exceeds 0.05%, the effect saturates, so when Ge is added, the upper limit of the Ge content is made 0.05% or less.
  • the Ge content is more preferably 0.002% or more and more preferably 0.01% or less. Note that the Ge content may be 0%.
  • As 0% or more and 0.05% or less As is an element effective in improving magnetic flux density and reducing iron loss by improving the texture, so it can be added as appropriate.
  • As content exceeds 0.05%, the effect saturates, so when adding As, the upper limit of the As content is made 0.05% or less.
  • the As content is more preferably 0.002% or more and more preferably 0.01% or less. Note that the As content may be 0%.
  • the balance other than the above components is Fe and unavoidable impurities.
  • the warm punching fatigue strength is the value required for the rotor material of the motor applied to HEV or EV (hereinafter referred to as HEV/EV motor).
  • HEV/EV motor the value required for the rotor material of the motor applied to HEV or EV.
  • the non-oriented electrical steel sheet of the present invention has an average grain size X1 of 200 ⁇ m or less.
  • the value required for the rotor material for warm punching fatigue strength is 300 MPa or more.
  • the average grain size X1 is set to 60 ⁇ m or more. This makes it possible to achieve the target iron loss characteristic (W 10/400 ⁇ 13.0 (W/kg)).
  • the grain size distribution skewness ⁇ 1 is set to 1.50 or less.
  • the skewness ⁇ 1 of the grain size distribution is preferably 1.20 or less , more preferably 1.00 or less. It should be noted that the lower limit of the skewness ⁇ 1 does not need to be specified in particular, but it is usually 0 or more even when manufactured by making full use of the technique of the present invention.
  • the skewness ⁇ 1 can be obtained according to the procedure described in Examples below.
  • the motor core can be formed of a rotor core, which is a laminate of non-oriented electromagnetic steel sheets, and a stator core, which is a laminate of non-oriented electromagnetic steel sheets. Since the rotor core has high punching fatigue strength in a warm state and the stator core has excellent magnetic properties, the motor core can easily achieve miniaturization and high output.
  • the method for manufacturing the non-oriented electrical steel sheet of the present invention will be described. Schematically, it is a method in which a steel material having the above chemical composition is used as a starting material, and a hot rolling process, an optional hot-rolled sheet annealing process, a pickling process, a cold rolling process, and an annealing process are sequentially performed. , the non-oriented electrical steel sheet of the present invention described above can be obtained.
  • other conditions are not particularly limited as long as the chemical composition of the steel material, the conditions of the cold rolling process, and the conditions of the annealing process are within predetermined ranges.
  • the method for manufacturing the motor core is not particularly limited, and a generally known method can be used.
  • the steel material is not particularly limited as long as it has the chemical composition described above for the non-oriented electrical steel sheet.
  • a method for melting the steel material is not particularly limited, and a known melting method using a converter or an electric furnace can be employed. From issues such as productivity, it is preferable to make a slab (steel material) by a continuous casting method after melting. good.
  • a hot-rolling process is a process of obtaining a hot-rolled sheet by subjecting a steel material having the above chemical composition to hot-rolling.
  • the hot-rolling process is not particularly limited as long as it is a process in which a steel material having the above composition is heated and hot-rolled to obtain a hot-rolled sheet having a predetermined size. Applicable.
  • a steel material is heated to a temperature of 1000°C or more and 1200°C or less, and the heated steel material is subjected to hot rolling at a finish rolling delivery temperature of 800°C or more and 950°C or less.
  • appropriate post-rolling cooling for example, the temperature range of 450 ° C to 950 ° C is cooled at an average cooling rate of 20 ° C / s to 100 ° C / s
  • a hot-rolling process of coiling at a coiling temperature of 400° C. or higher and 700° C. or lower to obtain a hot-rolled sheet having a predetermined size and shape can be mentioned.
  • the hot-rolled sheet annealing step is a step of annealing the hot-rolled sheet by heating and maintaining the hot-rolled sheet at a high temperature.
  • the hot-rolled sheet annealing process is not particularly limited, and a common hot-rolled sheet annealing process can be applied. Note that this hot-rolled sheet annealing step is not essential and can be omitted.
  • the pickling step is a step of pickling the hot-rolled sheet after the hot-rolling step or any hot-rolled sheet annealing step.
  • the pickling process is not particularly limited as long as it can be pickled to the extent that the steel plate after pickling can be cold-rolled.
  • a conventional pickling process using hydrochloric acid or sulfuric acid can be applied.
  • the pickling process may be performed continuously in the same line as the hot-rolled sheet annealing process, or may be performed in a separate line.
  • the cold rolling step is a step of cold rolling the pickled hot-rolled sheet (pickled sheet). More specifically, in the cold rolling process, the pickled hot-rolled sheet is subjected to a final pass entry temperature T1 of 50 °C or higher, a final pass rolling reduction r of 15% or higher, and a final pass strain of 15% or higher. Cold rolling is performed at a speed ⁇ m of 100 s ⁇ 1 or more and 1000 s ⁇ 1 or less to obtain a cold rolled sheet. In the cold rolling process, as long as the above cold rolling conditions are satisfied, the cold rolled sheet having a predetermined size may be obtained by cold rolling twice or more with intermediate annealing as necessary. The conditions for intermediate annealing in this case are not particularly limited, and conventional intermediate annealing can be applied.
  • the final pass entrance temperature T1 shall be 50 °C or higher.
  • the reason why the final pass entrance temperature T1 is set to 50 ° C. or more is to set the skewness ⁇ 1 of the grain size distribution in the obtained non-oriented electrical steel sheet to 1.50 or less and form the desired steel sheet structure.
  • the strain distribution of the cold-rolled sheet is biased, and the grain growth selectivity is emphasized in the subsequent annealing process. skewness increases.
  • the final pass entrance temperature T1 is preferably 55°C or higher, more preferably 60°C or higher. Although the upper limit of the final pass entrance temperature T1 is not particularly limited, the final pass entrance temperature T1 is preferably 300° C. or less from the viewpoint of seizure of the steel sheet to the rolls.
  • the rolling reduction r of the final pass shall be 15% or more.
  • the reason why the rolling reduction r of the final pass is set to 15% or more is to obtain the effects of a series of cold rolling controls and form a desired steel sheet structure. If the rolling reduction r of the final pass is less than 15%, the rolling reduction is too low, making it difficult to control the structure after annealing. On the other hand, when the rolling reduction r of the final pass is 15% or more, the effect of a series of cold rolling control is exhibited. As a result, a desired steel sheet structure is obtained.
  • the draft r of the final pass is preferably 20% or more.
  • the upper limit of the rolling reduction ratio r of the final pass is not particularly limited, an excessively high rolling reduction ratio requires a large capacity of the apparatus and makes it difficult to control the shape of the cold-rolled sheet. Usually less than 50%.
  • the final pass strain rate ⁇ m is preferably 150 s ⁇ 1 or more and preferably 800 s ⁇ 1 or less.
  • v R is the peripheral velocity of the roll (mm/s)
  • R' is the radius of the roll (mm)
  • h1 is the plate thickness at the entrance side of the roll (mm)
  • r is the rolling reduction (%).
  • the annealing step is a step of annealing the cold-rolled sheet that has undergone the cold-rolling step. More specifically, in the annealing step, the cold-rolled sheet that has undergone the cold rolling step is annealed at an annealing temperature of 875°C or higher and 1050°C or lower under the condition that the average heating rate V1 from 500°C to 700°C is 10°C/s or higher. After heating to T2, it is cooled to obtain a cold - rolled annealed sheet (non-oriented electrical steel sheet).
  • an insulating coating can be applied to the surface.
  • the method of coating and the type of coating are not particularly limited, and a conventional insulating coating process can be applied.
  • the average heating rate V1 from 500°C to 700°C is set to 10°C/s or more.
  • the reason why the average heating rate V1 is set to 10°C/s or more is that the standard deviation S1 of the grain size distribution in the obtained non-oriented electrical steel sheet satisfies the above formula ( 1 ), and the desired steel sheet structure This is to form
  • the average heating rate V1 is less than 10° C./s, excessive recovery reduces the frequency of recrystallization nuclei formation and increases the location dependence of the number of recrystallization nuclei.
  • the standard deviation S1 of the crystal grain size distribution becomes large, and the above formula ( 1 ) is no longer satisfied.
  • the average heating rate V1 is 10° C./s or more, the frequency of recrystallization nuclei is high and the location dependence of the number of recrystallization nuclei is small. As a result, the standard deviation S1 of the crystal grain size distribution becomes small, and the above formula ( 1 ) is satisfied.
  • the average heating rate V1 from 500°C to 700°C is preferably 20°C/s or more, more preferably 50°C/s or more.
  • the upper limit of the average temperature increase rate V1 is not particularly limited, but if the temperature increase rate is excessively high, temperature unevenness is likely to occur, so the average temperature increase rate V1 is preferably 500°C/s or less. .
  • the annealing temperature T2 is 875° C or higher and 1050°C or lower.
  • the reason for setting the annealing temperature T2 to 875° C or higher and 1050°C or lower is as follows. If the annealing temperature T2 is less than 875°C, the recrystallized grains do not grow sufficiently, and the average grain size X1 of the obtained non-oriented electrical steel sheet cannot be 60 ⁇ m or more. On the other hand, when the annealing temperature T2 is 875° C. or higher, sufficient grain growth occurs and the average grain size can be 60 ⁇ m or higher, and the desired steel sheet structure can be obtained.
  • the annealing temperature T2 is preferably above 900°C. On the other hand, if the annealing temperature T2 is higher than 1050° C., the recrystallized grains grow excessively and the average grain size X1 cannot be made 200 ⁇ m or less. Therefore, the annealing temperature T2 should be 1050° C or less. The annealing temperature T2 is preferably below 1025°C.
  • the steel is heated to the annealing temperature T2 and then cooled.
  • This cooling is preferably performed at a cooling rate of 50° C./s or less from the viewpoint of preventing uneven cooling.
  • a hot-rolled sheet with a thickness of 2.0 mm was obtained by subjecting the obtained slab to hot rolling.
  • the obtained hot-rolled sheet was subjected to hot-rolled sheet annealing and pickling by a known method, and then cold-rolled to the sheet thickness shown in Table 2 to obtain a cold-rolled sheet.
  • the obtained cold-rolled sheet was annealed under the conditions shown in Table 2 and then coated by a known method to obtain a cold-rolled annealed sheet (non-oriented electrical steel sheet).
  • ⁇ Evaluation> (Observation of microstructure) A test piece for structure observation was taken from the obtained cold-rolled and annealed sheet. Next, the thickness of the sampled test piece was reduced by chemical polishing so that the position corresponding to 1/4 of the thickness of the rolled surface (ND surface) became the observation surface, and the surface was mirror-finished. Electron backscatter diffraction (EBSD) measurements were performed on the mirrored observation plane to obtain local orientation data. At this time, the step size was set to 10 ⁇ m, and the measurement area was set to 100 mm 2 or more. The width of the measurement area was appropriately adjusted so that the number of crystal grains in the subsequent analysis was 5000 or more. The measurement may be performed by scanning the entire area once, or by combining the results of multiple scans using the Combo Scan function. Analysis software: OIM Analysis 8 was used to analyze the obtained local orientation data.
  • the grain boundaries are defined as follows: Grain Tolerance Angle of 5°, Minimum Grain Size of 2, Minimum Anti Grain Size of 2, Multiple Rows Requirement and Anti-Grain Multiple Rows Requirement.
  • Grain Size Diameter in microns
  • X i grain size from Grain File Type 2
  • the average grain size X 1 , standard deviation S 1 and skewness ⁇ 1 were calculated for all obtained grain information.
  • the following formulas were used for the calculation. In the above formula, n is the number of crystal grains, and Xi is each crystal grain size data ( i : 1, 2, . . . , n).
  • a motor core obtained by combining a rotor core formed by laminating the cold-rolled annealed sheets according to the present invention and a stator core formed by laminating the same heat-treated sheets had excellent warm fatigue characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

ロータコアに適した良好な疲労特性を有し、しかもステータコアに適した優れた磁気特性を有する無方向性電磁鋼板を提供する。 無方向性電磁鋼板は、質量%で、C:0.01%以下、Si:2.0%以上5.0%以下、Mn:0.05%以上5.00%以下、P:0.1%以下、S:0.01%以下、Al:3.0%以下およびN:0.005%以下を含み、Si+Alが4.5%以上であり、残部がFeおよび不可避不純物である成分組成を有し、鋼板中の結晶粒について、平均結晶粒径X1が60μm以上200μm以下であり、結晶粒径分布の標準偏差S1がS1/X1<0.75を満たし、かつ、結晶粒径分布の歪度γ1が1.50以下である。

Description

無方向性電磁鋼板およびその製造方法
 本発明は、無方向性電磁鋼板およびその製造方法に関する。
 近年、電気機器に対する省エネルギー化への要求が世界的に高まっている。これに伴い、回転機の鉄心に使用される無方向性電磁鋼板に対しても、より優れた磁気特性が要求されるようになってきている。また、最近では、HEV(ハイブリッド車)やEV(電気自動車)の駆動モータ等において、小型化・高出力化のニーズが強く、かかるニーズに応じるため、モータの回転数を上昇させることが検討されている。
 モータコアは、ステータコアとロータコアとに分けられるが、HEV駆動モータのロータコアには、その外径が大きいことから、大きな遠心力が働く。また、ロータコアは、構造上、ロータコアブリッジ部と呼ばれる非常に狭い部分(幅:1~2mm)が存在し、該部分は、モータ駆動中には特に高応力状態となる。さらに、モータが回転と停止とを繰り返すことでロータコアには遠心力による大きな繰り返し応力が働くことから、ロータコアに用いられる電磁鋼板は、優れた疲労特性を有する必要がある。特に、モータの駆動によってロータコアの温度は100℃~150℃程度まで上昇することから、ロータコアに用いられる電磁鋼板は、100℃近辺で優れた疲労特性を有する必要がある。
 一方、ステータコアに用いられる電磁鋼板は、モータの小型化・高出力化を達成するため、高磁束密度かつ低鉄損であることが望ましい。すなわち、モータコアに使用される電磁鋼板に求められる特性として、ロータコア用の電磁鋼板は優れた疲労特性を有すること、また、ステータコア用の電磁鋼板は高磁束密度かつ低鉄損であることが理想的である。
 このように、同じモータコアに使用される電磁鋼板であっても、ロータコアとステータコアとでは、要求される特性が大きく異なる。しかし、モータコアの製造においては、材料歩留りおよび生産性を高めるため、同一の素材鋼板からロータコア材とステータコア材とを打抜き加工により同時に採取し、その後、それぞれの鋼板を積層してロータコアまたはステータコアに組み立てることが望ましい。
 モータコア用の高強度で低鉄損の無方向性電磁鋼板を製造する技術として、例えば、特許文献1には、高強度の無方向性電磁鋼板を製造し、該鋼板から打抜き加工でロータコア材とステータコア材とを採取して積層し、ロータコアおよびステータコアを組み立てた後、ステータコアのみに歪取り焼鈍を施すといった、高強度のロータコアと低鉄損のステータコアとを同一素材から製造する技術が開示されている。
特開2008-50686号公報
 しかしながら、上記特許文献1に開示の技術では、本発明者らの検討によると、高強度の無方向性電磁鋼板を使用することにより降伏応力は向上するが、最も重要な特性である温間での打抜き疲労強度は必ずしも向上するとは限らない点が懸念される。ここで、打抜き疲労強度とは、打抜き加工を施した後、研磨等の端面の加工を行わない場合の疲労強度である。さらに、特許文献1に開示の技術では、粒成長を促進するのに高温での歪取り焼鈍が要求される点、そのための設備の導入にコストがかかることから、すでに焼鈍設備を有する一部のメーカーを除き、経済的観点より技術の普及が進みにくいといった問題がある。
 本発明は、上記従来技術が抱える問題点に鑑みてなされたものであり、その目的は、ロータコアに適した良好な疲労特性を有し、しかもステータコアに適した優れた磁気特性を有する無方向性電磁鋼板を提供するとともに、該無方向性電磁鋼板を安価に製造する方法について提案することにある。
 本発明者らが上記課題の解決に関し鋭意検討したところ、結晶粒径分布を制御することによって、打抜き疲労強度、特に温間での打抜き疲労強度が高く、しかも低鉄損である無方向性電磁鋼板が得られることを知見するに到った。さらに、冷間圧延の最終パスにおける条件の適正化を図ることにより、結晶粒径分布を制御できることも見出した。
 本発明はかかる知見に基づきなされたものであり、以下の構成を有する。
[1]無方向性電磁鋼板であって、
 質量%で、
 C:0.01%以下、
 Si:2.0%以上5.0%以下、
 Mn:0.05%以上5.00%以下、
 P:0.1%以下、
 S:0.01%以下、
 Al:3.0%以下および
 N:0.0050%以下
を含み、Si+Alが4.5%以上であり、残部がFeおよび不可避不純物である成分組成を有し、
 鋼板中の結晶粒について、平均結晶粒径Xが60μm以上200μm以下であり、結晶粒径分布の標準偏差Sが次式(1):
 S/X<0.75 …(1)
を満たし、かつ、結晶粒径分布の歪度γが1.50以下であることを特徴とする、無方向性電磁鋼板。
[2]前記成分組成は、さらに質量%で、
 Co:0.0005%以上0.0050%以下
を含む、前記[1]に記載の無方向性電磁鋼板。
[3]前記成分組成は、さらに質量%で、
 Cr:0.05%以上5.00%以下
を含む、前記[1]または[2]に記載の無方向性電磁鋼板。
[4]前記成分組成は、さらに質量%で、
 Ca:0.001%以上0.100%以下、
 Mg:0.001%以上0.100%以下および
 REM:0.001%以上0.100%以下
のいずれか1種または2種以上を含む、前記[1]から[3]のいずれかに記載の無方向性電磁鋼板。
[5]前記成分組成は、さらに質量%で、
 Sn:0.001%以上0.200%以下および
 Sb:0.001%以上0.200%以下
のいずれか1種または2種を含む、前記[1]から[4]のいずれかに記載の無方向性電磁鋼板。
[6]前記成分組成は、さらに質量%で、
 Cu:0%以上0.5%以下、
 Ni:0%以上0.5%以下、
 Ti:0%以上0.005%以下、
 Nb:0%以上0.005%以下、
 V:0%以上0.010%以下、
 Ta:0%以上0.002%以下、
 B:0%以上0.002%以下、
 Ga:0%以上0.005%以下、
 Pb:0%以上0.002%以下、
 Zn:0%以上0.005%以下、
 Mo:0%以上0.05%以下、
 W:0%以上0.05%以下、
 Ge:0%以上0.05%以下および
 As:0%以上0.05%以下
のいずれか1種または2種以上を含む、前記[1]から[5]のいずれかに記載の無方向性電磁鋼板。
[7]前記[1]から[6]のいずれかに記載の無方向性電磁鋼板を製造する方法であって、
 前記[1]から[6]のいずれかに記載の成分組成を有する鋼素材に、熱間圧延を施して熱延板を得る熱間圧延工程と、
 前記熱延板に酸洗を施す酸洗工程と、
 前記酸洗が施された前記熱延板に、最終パス入側温度Tが50℃以上、最終パスの圧下率rが15%以上、および最終パスのひずみ速度εが100s-1以上1000s-1以下の条件にて冷間圧延を施して冷延板を得る冷間圧延工程と、
 前記冷延板を、500℃から700℃の平均昇温速度Vが10℃/s以上の条件にて、875℃以上1050℃以下の焼鈍温度Tまで加熱したのち、冷却して、無方向性電磁鋼板である冷延焼鈍板を得る焼鈍工程と、
を備える、無方向性電磁鋼板の製造方法。
 本発明によれば、温間での打抜き疲労強度が高いというロータコアに適した特性と、磁気特性に優れるというステータコアに適した特性とを併せ持つ無方向性電磁鋼板を提供することができる。従って、本発明の無方向性電磁鋼板を用いることにより、高性能なモータコアを材料歩留りよく安価に提供することができる。なお、打抜き時の歪みによる鉄損の上昇を低減することを目的として、本発明の鋼板に歪取り焼鈍を施しても、上記効果は何ら影響を受けない。
 以下、本発明の詳細を、その限定理由とともに説明する。
<無方向性電磁鋼板の成分組成>
 本発明の無方向性電磁鋼板が有する好適な成分組成について説明する。成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.01%以下
 Cは、モータの使用中に炭化物を形成して磁気時効を起こし、鉄損特性を劣化させる有害元素である。磁気時効を回避するためには、鋼板におけるC含有量は0.01%以下とする。好ましくは、C含有量は0.004%以下である。なお、C含有量の下限は、特に規定しないが、過度にCを低減した鋼板は非常に高価であることから、C含有量は0.0001%以上であることが好ましい。
Si:2.0%以上5.0%以下
 Siは、鋼の固有抵抗を高め、鉄損を低減する効果があり、また、固溶強化により鋼の強度を高める効果がある。このような効果を得るためには、Si含有量を2.0%以上とする。一方、Si含有量が5.0%を超えると、飽和磁束密度の低下に伴い磁束密度が顕著に低下するため、Si含有量の上限は5.0%とした。従って、Si含有量は、2.0%以上5.0%以下の範囲とする。Si含有量は、好ましくは2.5%以上5.0%以下であり、より好ましくは3.0%以上5.0%以下である。
Mn:0.05%以上5.00%以下
 Mnは、Siと同様、鋼の固有抵抗および強度を高めるのに有用な元素である。このような効果を得るためには、Mn含有量を0.05%以上とする必要がある。一方、Mn含有量が5.00%を超えると、MnCの析出を促進して磁気特性を劣化させる場合があるため、Mn含有量の上限は5.00%とした。従って、Mn含有量は、0.05%以上5.00%以下とする。Mn含有量は、好ましくは0.1%以上であり、また、好ましくは3.0%以下である。
P:0.1%以下
 Pは、鋼の強度(硬さ)の調整に用いられる有用な元素である。しかし、P含有量が0.1%を超えると、靱性が低下し、加工時に割れを生じやすいため、P含有量は0.1%以下とする。なお、P含有量の下限は、特に規定しないが、過度にPを低減した鋼板は非常に高価であることから、P含有量は0.001%以上であることが好ましい。P含有量は、好ましくは0.003%以上であり、また、好ましくは0.08%以下である。
S:0.01%以下
 Sは、微細析出物を形成して鉄損特性に悪影響を及ぼす元素である。特に、S含有量が0.01%を超えると、その悪影響が顕著になるため、S含有量は0.01%以下とする。なお、S含有量の下限は、特に規定しないが、過度にSを低減した鋼板は非常に高価であることから、S含有量は0.0001%以上であることが好ましい。S含有量は、好ましくは0.0003%以上であり、また、好ましくは0.0080%以下であり、より好ましくは0.005%以下である。
Al:3.0%以下
 Alは、Siと同様、鋼の固有抵抗を高め、鉄損を低減する効果がある有用な元素である。このような効果を得るためには、Al含有量を0.005%以上とすることが好ましい。Al含有量は、より好ましくは0.01%以上であり、さらに好ましくは0.015%以上である。一方、Al含有量が3.0%を超えると、鋼板表面の窒化を助長し、磁気特性を劣化させることがあるため、Al含有量の上限は3.0%とした。Al含有量は、好ましくは2.0%以下である。
N:0.0050%以下
 Nは、微細析出物を形成して鉄損特性に悪影響を及ぼす元素である。特に、N含有量が0.0050%を超えると、その悪影響が顕著になるため、N含有量は0.0050%以下とする。N含有量は、好ましくは0.003%以下である。なお、N含有量の下限は、特に規定しないが、過度にNを低減した鋼板は非常に高価であることから、N含有量は0.0005%以上であることが好ましい。N含有量は、好ましくは0.0008%以上であり、また、好ましくは0.0030%以下である。
Si+Al:4.5%以上
 Si+Al(SiおよびAlの合計含有量)を4.5%以上とし、さらに適切な条件で冷間圧延を施すことにより、冷延焼鈍板の結晶粒径分布の歪度を下げる効果がある。これにより、打抜き疲労強度が上昇する。従って、Si+Alは4.5%以上とする。なお、Si+Alを4.5%以上とし、さらに適切な冷間圧延を組み合わせることにより結晶粒径分布の歪度が低下する理由は、不明である。ただしこの点に関し、本発明者らは、冷間圧延時に活動する、辷り系のバランスが変化し、再結晶の核生成サイトが冷延板中に均一に分散されることによって生じた効果であると推測している。
 一実施形態の電磁鋼板の成分組成において、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、別の実施形態の電磁鋼板の成分組成は、さらに要求特性に応じて、上記成分(元素)に加えて、後述する元素のうちから選ばれる1種または2種以上を所定量含有することができる。
Co:0.0005%以上0.0050%以下
 Coには、Si+Alおよび冷間圧延条件の適切な制御により焼鈍板の結晶粒径分布の歪度が低下する作用を補強する効果がある。すなわち、Coの微量添加により、結晶粒径分布の歪度を安定的に低下させることができる。このような効果を得るためには、Co含有量を0.0005%以上とすればよい。一方、Coは、含有量が0.0050%を超えると効果が飽和し、いたずらにコストの上昇を招くため、Coを添加する場合には、Co含有量の上限を0.0050%とした。従って、上記成分組成は、さらに、Co:0.0005%以上0.0050%以下を含むことが好ましい。
Cr:0.05%以上5.00%以下
 Crは、鋼の固有抵抗を高め、鉄損を低減する効果がある。このような効果を得るためには、Cr含有量を0.05%以上とすればよい。一方、Crは、含有量が5.00%を超えると、飽和磁束密度の低下に伴い磁束密度が顕著に低下するため、Crを添加する場合には、Cr含有量の上限を5.00%とした。従って、上記成分組成は、さらに、Cr:0.05%以上5.00%以下を含むことが好ましい。
Ca:0.001%以上0.100%以下
 Caは、硫化物としてSを固定し、鉄損低減に寄与する元素である。このような効果を得るためには、Ca含有量を0.001%以上とすればよい。一方、Caは、含有量が0.100%を超えると効果が飽和し、いたずらにコストの上昇を招くため、Caを添加する場合には、Ca含有量の上限を0.100%とした。
Mg:0.001%以上0.100%以下
 Mgは、硫化物としてSを固定し、鉄損低減に寄与する元素である。このような効果を得るためには、Mg含有量を0.001%以上とすればよい。一方、Mgは、含有量が0.100%を超えると効果が飽和し、いたずらにコストの上昇を招くため、Mgを添加する場合には、Mg含有量の上限を0.100%とした。
REM:0.001%以上0.100%以下
 REMは、硫化物としてSを固定し、鉄損低減に寄与する元素群である。このような効果を得るためには、REM含有量を0.001%以上とすればよい。一方、REMは、含有量が0.100%を超えると効果が飽和し、いたずらにコストの上昇を招くため、REMを添加する場合には、REM含有量の上限を0.100%とした。
 同様の観点で、上記成分組成は、さらに、Ca:0.001%以上0.100%以下、Mg:0.001%以上0.100%以下およびREM:0.001%以上0.100%以下のいずれか1種または2種以上を含むことが好ましい。
Sn:0.001%以上0.200%以下
 Snは、集合組織改善により磁束密度向上および鉄損低減に効果的な元素である。このような効果を得るためには、Sn含有量を0.001%以上とすればよい。一方、Snは、含有量が0.200%を超えると効果が飽和し、いたずらにコストの上昇を招くため、Snを添加する場合には、Sn含有量の上限を0.200%とした。
Sb:0.001%以上0.200%以下
 Sbは、集合組織改善により磁束密度向上および鉄損低減に効果的な元素である。このような効果を得るためには、Sb含有量を0.001%以上とすればよい。一方、Sbは、含有量が0.200%を超えると効果が飽和し、いたずらにコストの上昇を招くため、Sbを添加する場合には、Sb含有量の上限を0.200%とした。
 同様の観点で、上記成分組成は、さらに、Sn:0.001%以上0.200%以下およびSb:0.001%以上0.200%以下のいずれか1種または2種を含むことが好ましい。
Cu:0%以上0.5%以下
 Cuは、鋼の靭性を向上させる元素であり、適宜、添加することができる。しかし、Cuは、含有量が0.5%を超えると効果が飽和するため、Cuを添加する場合には、Cu含有量の上限を0.5%とした。Cuを添加する場合には、Cu含有量は、より好ましくは0.01%以上であり、また、より好ましくは0.1%以下である。なお、Cu含有量は、0%であってもよい。
Ni:0%以上0.5%以下
 Niは、鋼の靭性を向上させる元素であり、適宜、添加することができる。しかし、Niは、含有量が0.5%を超えると効果が飽和するため、Niを添加する場合には、Ni含有量の上限を0.5%とした。Niを添加する場合には、Ni含有量は、より好ましくは0.01%以上であり、また、より好ましくは0.1%以下である。なお、Ni含有量は、0%であってもよい。
 Ti:0%以上0.005%以下 
 Tiは、微細な炭窒化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Tiは、含有量が0.005%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Tiを添加する場合には、Ti含有量の上限を0.005%とした。Ti含有量は、より好ましくは0.002%以下である。なお、Ti含有量は、0%であってもよい。
Nb:0%以上0.005%以下
 Nbは、微細な炭窒化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Nbは、含有量が0.005%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Nbを添加する場合には、Nb含有量の上限を0.005%とした。Nb含有量は、より好ましくは0.002%以下である。なお、Nb含有量は、0%であってもよい。
V:0%以上0.010%以下
 Vは、微細な炭窒化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Vは、含有量が0.010%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Vを添加する場合には、V含有量の上限を0.010%とした。V含有量は、より好ましくは0.005%以下である。なお、V含有量は、0%であってもよい。
Ta:0%以上0.002%以下
 Taは、微細な炭窒化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Taは、含有量が0.002%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Taを添加する場合には、Ta含有量の上限を0.0020%とした。Ta含有量は、より好ましくは0.001%以下である。なお、Ta含有量は、0%であってもよい。
 B:0%以上0.002%以下
 Bは、微細な窒化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Bは、含有量が0.002%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Bを添加する場合には、B含有量の上限を0.002%とした。B含有量は、より好ましくは0.001%以下である。なお、B含有量は、0%であってもよい。
 Ga:0%以上0.005%以下
 Gaは、微細な窒化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Gaは、含有量が0.005%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Gaを添加する場合には、Ga含有量の上限を0.005%とした。Ga含有量は、より好ましくは0.002%以下である。なお、Ga含有量は、0%であってもよい。
Pb:0%以上0.002%以下
 Pbは、微細なPb粒子を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Pbは、含有量が0.002%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Pbを添加する場合には、Pb含有量の上限を0.002%とした。Pb含有量は、より好ましくは0.001%以下である。なお、Pb含有量は、0%であってもよい。
 Zn:0%以上0.005%以下
 Znは、微細介在物を増加させ鉄損を増加させる元素であり、特に、含有量が0.005%を超えると、悪影響が顕著になる。よって、Znを添加する場合であっても、Zn含有量は0%以上0.005%以下の範囲とした。Zn含有量は、より好ましくは0.003%以下である。なお、Zn含有量は、0%であってもよい。
 Mo:0%以上0.05%以下
 Moは、微細炭化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Moは、含有量が0.05%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Moを添加する場合には、Mo含有量の上限を0.05%とした。Mo含有量は、より好ましくは0.02%以下である。なお、Mo含有量は、0%であってもよい。
 W:0%以上0.05%以下
 Wは、微細炭化物を形成し、析出強化により鋼板強度を高めることを介して温間での打抜き疲労強度を向上させるため、適宜、添加することができる。一方、Wは、含有量が0.05%を超えると、焼鈍工程における粒成長性を劣化させ、鉄損の増加を招く。よって、Wを添加する場合には、W含有量の上限を0.05%とした。W含有量は、より好ましくは0.02%以下である。なお、W含有量は、0%であってもよい。
 Ge:0%以上0.05%以下
 Geは、集合組織の改善により磁束密度の向上および鉄損低減に効果的な元素であるため、適宜、添加することができる。一方、Geは、含有量が0.05%を超えると効果が飽和するため、Geを添加する場合には、Ge含有量の上限を0.05%以下とした。Ge含有量は、より好ましくは0.002%以上であり、また、より好ましくは0.01%以下である。なお、Ge含有量は、0%であってもよい。
As:0%以上0.05%以下
 Asは、集合組織の改善により磁束密度の向上および鉄損低減に効果的な元素であるため、適宜、添加することができる。一方、Asは、含有量が0.05%を超えると効果が飽和するため、Asを添加する場合には、As含有量の上限を0.05%以下とした。As含有量は、より好ましくは0.002%以上であり、また、より好ましくは0.01%以下である。なお、As含有量は、0%であってもよい。
 以上の成分組成において、上記した成分以外の残部は、Feおよび不可避的不純物である。
<無方向性電磁鋼板のミクロ組織>
 次に、本発明の無方向性電磁鋼板におけるミクロ組織(結晶粒の態様)について説明する。
(平均結晶粒径X:60μm以上200μm以下)
 本発明者らの検討によると、鋼板中の結晶粒が微細であることで、打抜き疲労強度が向上することが判明した。すなわち、平均結晶粒径Xが200μm以下であれば、温間での打抜き疲労強度がHEVまたはEVに適用するモータ(以下、HEV/EVモータという)のロータ用材料で必要とされる値を満足し得るため、本発明の無方向性電磁鋼板においては、平均結晶粒径Xを200μm以下とした。ここで、温間での打抜き疲労強度について、ロータ用材料で必要とされる値とは、300MPa以上である。
 一方で、平均結晶粒径Xが過度に微細であると、鉄損が上昇する。そこで、本発明の無方向性電磁鋼板においては、平均結晶粒径Xを60μm以上とした。これにより、目標の鉄損特性(W10/400≦13.0(W/kg))を達成できる。
(結晶粒径分布の標準偏差S:式(1)を満足)
 結晶粒径分布の標準偏差の値が平均結晶粒径に対して大きい場合には、鉄損の低減に不利な過度に微細な粒や過度に粗大な粒が多数存在することになるため、鉄損が上昇する。そこで、本発明の無方向性電磁鋼板においては、鉄損がHEV/EVモータのステータ用材料で必要とされる上記目標値を示すために、結晶粒径分布の標準偏差Sが次式(1):
 S/X<0.75 …(1)
を満たすようにすることとした。また、本発明の無方向性電磁鋼板は、結晶粒径分布の標準偏差Sが次式(1’):
 S/X<0.70 …(1’)
を満たすことが好ましい。
(結晶粒径分布の歪度γ:1.50以下)
 本発明者らは、結晶粒径分布の歪度を制御することにより、温間での打抜き疲労強度の高い、かつ低鉄損の無方向性電磁鋼板を実現できることを見出した。結晶粒径分布の歪度を、前述した結晶粒径分布の標準偏差Sと同時に制御することによって、このような効果を得られる。すなわち、結晶粒径分布の歪度が大きいということは、結晶粒径分布が粗大粒側の裾が長い分布を示していて、平均粒径に対し粗大な粒が高確率に存在することを意味している。このような粗大な結晶粒は、打抜き時に亀裂を生じやすいだけでなく、局所的なひずみ集中を生じ易い。100℃程度の温間の条件ではひずみ集中部がひずみ時効により硬質化し、組織中で硬度の不均一が増強されることから、特に100℃程度の温間での打抜き疲労特性を劣化させる。さらに、粗大な結晶粒は渦電流損の増加を誘発し、鋼板全体としての鉄損特性を劣化させる。具体的には、結晶粒径分布の歪度γが1.50以下であれば、温間での打抜き疲労限がHEV/EVモータのロータ用材料で必要とされる上記値を満足するとともに、鉄損がHEV/EVモータのステータ用材料で必要とされる、上記値を示すこととなる。このため、本発明の無方向性電磁鋼板においては、結晶粒径分布の歪度γを1.50以下とした。結晶粒径分布の歪度γは、好ましくは1.20以下であり、より好ましくは1.00以下である。なお、上記歪度γの下限は、特に規定する必要はないが、本発明の手法を駆使して製造した場合においても通常0以上である。
 なお、歪度γは、後述の実施例に記載する手順に従って求めることができる。
<モータコア>
 モータコアは、上記の無方向性電磁鋼板の積層体であるロータコアと、上記の無方向性電磁鋼板の積層体であるステータコアとにより形成することができる。該モータコアは、ロータコアは温間での打抜き疲労強度が高く、かつステータコアは磁気特性に優れていることから、小型化かつ高出力化を容易に実現することができる。
<無方向性電磁鋼板の製造方法>
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
 概略的には、上記成分組成を有する鋼素材を出発素材として、熱間圧延工程、任意の熱延板焼鈍工程、酸洗工程、冷間圧延工程、焼鈍工程を順次行う方法であり、これにより、上述した本発明の無方向性電磁鋼板を得ることができる。本発明においては、鋼素材の成分組成、冷間圧延工程、および焼鈍工程の条件が所定の範囲内であれば、それ以外の条件は特に限定されない。なお、モータコアの製造方法に関しては、特に限定されず、通常公知の手法を用いることができる。
(鋼素材)
 鋼素材は、無方向性電磁鋼板について既述した成分組成を有する鋼素材であれば、特に限定されない。
 鋼素材の溶製方法としては、特に限定されず、転炉または電気炉等を用いた公知の溶製方法を採用できる。生産性等の問題から、溶製後に、連続鋳造法によりスラブ(鋼素材)とすることが好ましいが、造塊-分塊圧延法または薄スラブ連鋳法等の公知の鋳造方法によりスラブとしてもよい。
(熱間圧延工程)
 熱間圧延工程は、上記成分組成を有する鋼素材に、熱間圧延を施すことにより、熱延板を得る工程である。熱間圧延工程は、上記成分組成を有する鋼素材を加熱し、熱間圧延を施して、所定寸法の熱延板が得られる工程であれば、特に限定されず、常用の熱間圧延工程を適用できる。
 常用の熱間圧延工程としては、例えば、鋼素材を1000℃以上1200℃以下の温度に加熱し、加熱した鋼素材に、800℃以上950℃以下の仕上圧延出側温度で熱間圧延を施し、熱間圧延が終了した後、適正な圧延後冷却(例えば、450℃以上950℃以下の温度域を、20℃/s以上100℃/s以下の平均冷却速度で冷却する)を施して、400℃以上700℃以下の巻取温度で巻き取り、所定寸法形状の熱延板とする、熱間圧延工程が挙げられる。
(熱延板焼鈍工程)
 熱延板焼鈍工程は、上記熱延板を加熱し高温保持することにより、熱延板を焼鈍する工程である。熱延板焼鈍工程は、特に限定されず、常用の熱延板焼鈍工程を適用できる。なお、この熱延板焼鈍工程は必須ではなく、省略することもできる。
(酸洗工程)
 酸洗工程は、上記熱間圧延工程または任意の上記熱延板焼鈍工程の後の熱延板に、酸洗を施す工程である。酸洗工程は、酸洗後の鋼板に冷間圧延を施すことができる程度に酸洗できる工程であれば、特に限定されず、例えば塩酸または硫酸等を使用する常用の酸洗工程を適用できる。この酸洗工程は、上記熱延板焼鈍工程を行う場合には、当該熱延板焼鈍工程と同一ライン内で連続して実施しても良いし、別ラインで実施しても良い。
(冷間圧延工程)
 冷間圧延工程は、上記酸洗が施された熱延板(酸洗板)に、冷間圧延を施す工程である。より詳細に、冷間圧延工程では、上記酸洗が施された熱延板に、最終パス入側温度Tが50℃以上、最終パスの圧下率rが15%以上、および最終パスのひずみ速度εが100s-1以上1000s-1以下の条件で冷間圧延を施して、冷延板を得る。なお、冷間圧延工程では、上記の冷間圧延条件を満たしている限り、必要に応じて中間焼鈍をはさんだ2回以上の冷間圧延により所定寸法の冷延板としてもよい。この場合の中間焼鈍の条件としては、特に限定されず、常用の中間焼鈍を適用できる。
[最終パス入側温度T:50℃以上]
 冷間圧延工程において、最終パス入側温度Tは50℃以上とする。最終パス入側温度Tを50℃以上とした理由は、得られる無方向性電磁鋼板における結晶粒径分布の歪度γを1.50以下とし、所望の鋼板組織を形成するためである。
 最終パス入側温度Tが50℃未満の場合には、冷延板のひずみ分布に偏りが生じ、続く焼鈍工程で粒成長の選択性が強調されるため、焼鈍板の結晶粒径分布の歪度が大きくなる。この理由は明確ではないが、発明者らは、最終パス入側温度Tを50℃未満とすることで、活動する辷り系の種類が制限され、不均一な変形が起こりやすくなるためと推測している。
 一方、最終パス入側温度Tが50℃以上である場合には、後述する焼鈍工程後において結晶粒径分布の歪度γは1.50以下となる。その結果、所望の鋼板組織が得られる。
 最終パス入側温度Tは、好ましくは55℃以上であり、より好ましくは60℃以上である。なお、最終パス入側温度Tの上限は、特に限定されないが、鋼板のロールへの焼付きの観点から、最終パス入側温度Tは300℃以下であることが好ましい。
[最終パスの圧下率r:15%以上]
 冷間圧延工程において、最終パスの圧下率rは15%以上とする。最終パスの圧下率rを15%以上とした理由は、一連の冷間圧延制御の効果を得て、所望の鋼板組織を形成するためである。
 最終パスの圧下率rが15%未満の場合には、圧下率が低すぎるために、焼鈍後の組織を制御するのが難しくなる。一方、最終パスの圧下率rが15%以上である場合には、一連の冷間圧延制御の効果が発揮される。その結果、所望の鋼板組織が得られる。
 最終パスの圧下率rは、好ましくは20%以上である。なお、最終パスの圧下率rの上限は、特に限定されないが、高すぎる圧下率は多大な装置能力を要求し、また冷延板の形状制御も難しくなることから、最終パスの圧下率rは通常50%以下である。
[最終パスのひずみ速度ε:100s-1以上1000s-1以下]
 冷間圧延工程において、最終パスのひずみ速度εは100s-1以上1000s-1以下とする。最終パスのひずみ速度εを100s-1以上1000s-1以下とした理由は、圧延中の破断を抑制しつつ、得られる無方向性電磁鋼板における結晶粒径分布の歪度γを1.50以下とし、所望の鋼板組織を形成するためである。
 最終パスのひずみ速度εが100s-1未満である場合には、冷延板のひずみ分布に偏りが生じ、続く焼鈍工程で粒成長の選択性が強調されるため、焼鈍板の結晶粒径分布の歪度γが大きくなる。この理由は明確ではないが、発明者らは、ひずみ速度が低いことにより流動応力が低下し、変形しやすい結晶方位の結晶粒にひずみが集中し易くなり、不均一な変形が生じ易いためと推測している。一方、最終パスのひずみ速度εが1000s-1超である場合には、流動応力が過度に増大し、圧延中の脆性破断を生じ易くなる。
 最終パスのひずみ速度εが100s-1以上1000s-1以下である場合には、圧延中の破断を抑制しつつ、後述する焼鈍工程後において結晶粒径分布の歪度γが1.50以下になる。その結果、所望の鋼板組織が得られる。
 最終パスのひずみ速度εは、好ましくは150s-1以上であり、また、好ましくは800s-1以下である。
 なお、冷間圧延時の各パスにおけるひずみ速度εは、下記のEkelundの近似式を用いて導出した。
Figure JPOXMLDOC01-appb-M000001
 ここで、vRはロール周速度(mm/s)、R’はロール半径(mm)、hはロール入側板厚(mm)、rは圧下率(%)である。
(焼鈍工程)
 焼鈍工程は、冷間圧延工程を経た冷延板に、焼鈍を施す工程である。より詳細に、焼鈍工程では、冷間圧延工程を経た冷延板を、500℃から700℃の平均昇温速度Vが10℃/s以上の条件で、875℃以上1050℃以下の焼鈍温度Tまで加熱したのち、冷却して、冷延焼鈍板(無方向性電磁鋼板)を得る。なお、焼鈍工程の後には、表面に絶縁コーティングを施すことができる。コーティングの方法およびコーティングの種類としては、特に限定されず、常用の絶縁コーティング工程を適用できる。
[500℃から700℃の平均昇温速度V:10℃/s以上]
 焼鈍工程において、500℃から700℃の平均昇温速度Vは10℃/s以上とする。平均昇温速度Vを10℃/s以上とした理由は、得られる無方向性電磁鋼板における結晶粒径分布の標準偏差Sが上記の式(1)を満たすようにし、所望の鋼板組織を形成するためである。
 平均昇温速度Vが10℃/s未満である場合には、過度の回復により再結晶核の生成頻度が低下し、再結晶核数の場所依存性が大きくなる。その結果、微細な結晶粒と粗大な結晶粒が混在することになり、結晶粒径分布の標準偏差Sが大きくなり、上記式(1)を満たさなくなる。
 一方、平均昇温速度Vが10℃/s以上である場合には、再結晶核の生成頻度が高く、再結晶核数の場所依存性が小さくなる。その結果、結晶粒径分布の標準偏差Sが小さくなり、上記式(1)を満たすようになる。
 500℃から700℃の平均昇温速度Vは、好ましくは20℃/s以上であり、より好ましくは50℃/s以上である。なお、平均昇温速度Vの上限は、特に限定されないが、過度に昇温速度が高いと温度ムラを生じ易いことから、平均昇温速度Vは500℃/s以下であることが好ましい。
[焼鈍温度T:875℃以上1050℃以下]
 焼鈍工程において、焼鈍温度Tは875℃以上1050℃以下とする。焼鈍温度Tを875℃以上1050℃以下とした理由は、次の通りである。
 焼鈍温度Tが875℃未満である場合には、再結晶粒が十分に粒成長せず、得られる無方向性電磁鋼板における平均結晶粒径Xを60μm以上とすることができない。一方、焼鈍温度Tが875℃以上である場合には、十分な粒成長が生じ平均結晶粒径を60μm以上とすることができ、所望の鋼板組織が得られる。焼鈍温度Tは、好ましくは900℃以上である。
 一方、焼鈍温度Tが1050℃超である場合には、再結晶粒が過度に成長し、平均結晶粒径Xを200μm以下とすることができない。従って、焼鈍温度Tは1050℃以下とする。焼鈍温度Tは、好ましくは1025℃以下である。
 焼鈍工程では、上記の焼鈍温度Tまで加熱したのち、冷却する。この冷却は、冷却ムラ防止の観点から、50℃/s以下の冷却速度にて行うことが好ましい。
 以下に実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
<冷延焼鈍板(無方向性電磁鋼板)の製造>
 表1に示す成分組成を有する溶鋼を、通常公知の手法により溶製し、連続鋳造して厚み230mmのスラブ(鋼素材)とした。
 得られたスラブに、熱間圧延を施すことにより、板厚2.0mmの熱延板を得た。得られた熱延板に、公知の手法により熱延板焼鈍および酸洗を施し、次いで、表2に示す板厚まで冷間圧延を施し、冷延板を得た。
 得られた冷延板に、表2に示す条件で焼鈍を施し、次いで公知の手法によりコーティングを施し、冷延焼鈍板(無方向性電磁鋼板)を得た。
<評価>
(ミクロ組織の観察)
 得られた冷延焼鈍板から、組織観察用の試験片を採取した。次いで、採取した試験片を、圧延面(ND面)で、板厚の1/4に相当する位置が観察面となるように、化学研磨により減厚して鏡面化した。鏡面化した観察面に対し、電子線後方散乱回折(EBSD)測定を実施し、局所方位データを得た。このとき、ステップサイズ:10μm、測定領域:100mm2以上とした。測定領域の広さは、続く解析において結晶粒の数が5000個以上となるように適宜調整した。なお、測定は全域を1回のスキャンで行っても良いし、Combo Scan機能を利用して複数回のスキャン結果を結合しても良い。解析ソフト:OIM Analysis 8を用いて、得られた局所方位データの解析を行なった。
 データ解析に先立ち、解析ソフトのPartition PropertiesにてFormula:GCI[&;5.000,2,0.000,0,0,8.0,1,1,1.0,0;]>0.1 の条件で粒平均データ点の選別を行い、解析に不適なデータ点を除外した。このとき、有効なデータ点は98%以上であった。
 以上のように調整したデータに対して、結晶粒界の定義として、Grain Tolerance Angle を5°、Minimum Grain Sizeを2、Minimum Anti Grain Sizeを2、Multiple Rows RequirementおよびAnti-Grain Multiple Rows Requirementは共にOFFとして、以下の解析を行った。
 前処理を施したデータに対して、Export Grain File 機能を用いて結晶粒の情報を出力した。Grain File Type 2の Grain Size (Diameter in microns)を結晶粒径(X)として用いた。得られたすべての結晶粒の情報に対して、平均結晶粒径X、標準偏差Sおよび歪度γをそれぞれ計算した。計算には下記の各式を用いた。
Figure JPOXMLDOC01-appb-M000002
 上記式中、nは結晶粒の数、Xは各結晶粒径データ(i:1、2、・・・、n)である。
(温間での打抜き疲労強度の評価)
 得られた冷延焼鈍板から、圧延方向を長手方向とした引張疲労試験片(JIS Z2275:1978に準拠した1号試験片、b:15mm、R:100mmと同じ形状)を打抜きにより採取し、温間での疲労試験に供した。上記疲労試験は、試験温度:100℃、引張り-引張り(片振り)、応力比(=最小応力/最大応力):0.1および周波数:20Hzの条件で行い、繰り返し数10回において疲労破断を起こさない最大応力を温間打抜き疲労限として測定した。温間打抜き疲労限が300MPa以上の場合に、温間での打抜き疲労強度に優れると評価した。
(磁気特性の評価)
 得られた冷延焼鈍板から、長さ方向を圧延方向および圧延直角方向とする、幅30mm、長さ280mmの磁気測定用試験片を採取し、JIS C2550-1:2011に準拠し、エプスタイン法で冷延焼鈍板の鉄損W10/400を測定した。W10/400≦13.0(W/kg)の場合に、鉄損特性が良いと評価した。
 上記の結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000008
 3の結果から、本発明に従う無方向性電磁鋼板は、いずれも、優れた温間での打抜き疲労強度と優れた鉄損特性とを両立していることがわかる。なお、本発明に従う冷延焼鈍板を積層してなるロータコアと、同熱処理板を積層してなるステータコアとを組み合わせて得たモータコアは、優れた温間疲労特性を有していた。
 さらに、打抜き時のひずみによる鉄損低減を回復する目的で鋼板に歪取り焼鈍を施したところ、本発明の効果に何ら影響はなく、優れた温間での打抜き疲労強度と優れた鉄損特性が両立されていた。

Claims (7)

  1.  無方向性電磁鋼板であって、
     質量%で、
     C:0.01%以下、
     Si:2.0%以上5.0%以下、
     Mn:0.05%以上5.00%以下、
     P:0.1%以下、
     S:0.01%以下、
     Al:3.0%以下および
     N:0.0050%以下
    を含み、Si+Alが4.5%以上であり、残部がFeおよび不可避不純物である成分組成を有し、
     鋼板中の結晶粒について、平均結晶粒径Xが60μm以上200μm以下であり、結晶粒径分布の標準偏差Sが次式(1):
     S/X<0.75 …(1)
    を満たし、かつ、結晶粒径分布の歪度γが1.50以下であることを特徴とする、無方向性電磁鋼板。
  2.  前記成分組成は、さらに質量%で、
     Co:0.0005%以上0.0050%以下
    を含む、請求項1に記載の無方向性電磁鋼板。
  3.  前記成分組成は、さらに質量%で、
     Cr:0.05%以上5.00%以下
    を含む、請求項1または2に記載の無方向性電磁鋼板。
  4.  前記成分組成は、さらに質量%で、
     Ca:0.001%以上0.100%以下、
     Mg:0.001%以上0.100%以下および
     REM:0.001%以上0.100%以下
    のいずれか1種または2種以上を含む、請求項1から3のいずれか1項に記載の無方向性電磁鋼板。
  5.  前記成分組成は、さらに質量%で、
     Sn:0.001%以上0.200%以下および
     Sb:0.001%以上0.200%以下
    のいずれか1種または2種を含む、請求項1から4のいずれか1項に記載の無方向性電磁鋼板。
  6.  前記成分組成は、さらに質量%で、
     Cu:0%以上0.5%以下、
     Ni:0%以上0.5%以下、
     Ti:0%以上0.005%以下、
     Nb:0%以上0.005%以下、
     V:0%以上0.010%以下、
     Ta:0%以上0.002%以下、
     B:0%以上0.002%以下、
     Ga:0%以上0.005%以下、
     Pb:0%以上0.002%以下、
     Zn:0%以上0.005%以下、
     Mo:0%以上0.05%以下、
     W:0%以上0.05%以下、
     Ge:0%以上0.05%以下および
     As:0%以上0.05%以下
    のいずれか1種または2種以上を含む、請求項1から5のいずれか1項に記載の無方向性電磁鋼板。
  7.  請求項1から6のいずれか1項に記載の無方向性電磁鋼板を製造する方法であって、
     請求項1から6のいずれか1項に記載の成分組成を有する鋼素材に、熱間圧延を施して熱延板を得る熱間圧延工程と、
     前記熱延板に酸洗を施す酸洗工程と、
     前記酸洗が施された前記熱延板に、最終パス入側温度Tが50℃以上、最終パスの圧下率rが15%以上、および最終パスのひずみ速度εが100s-1以上1000s-1以下の条件にて冷間圧延を施して冷延板を得る冷間圧延工程と、
     前記冷延板を、500℃から700℃の平均昇温速度Vが10℃/s以上の条件にて、875℃以上1050℃以下の焼鈍温度Tまで加熱したのち、冷却して、無方向性電磁鋼板である冷延焼鈍板を得る焼鈍工程と、
    を備える、無方向性電磁鋼板の製造方法。
PCT/JP2022/026417 2021-07-08 2022-06-30 無方向性電磁鋼板およびその製造方法 WO2023282194A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022568990A JP7235188B1 (ja) 2021-07-08 2022-06-30 無方向性電磁鋼板およびその製造方法
CN202280047502.2A CN117651785A (zh) 2021-07-08 2022-06-30 无方向性电磁钢板及其制造方法
EP22837610.9A EP4350013A1 (en) 2021-07-08 2022-06-30 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR1020237041431A KR20240005829A (ko) 2021-07-08 2022-06-30 무방향성 전자 강판 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021113867 2021-07-08
JP2021-113867 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282194A1 true WO2023282194A1 (ja) 2023-01-12

Family

ID=84801813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026417 WO2023282194A1 (ja) 2021-07-08 2022-06-30 無方向性電磁鋼板およびその製造方法

Country Status (6)

Country Link
EP (1) EP4350013A1 (ja)
JP (1) JP7235188B1 (ja)
KR (1) KR20240005829A (ja)
CN (1) CN117651785A (ja)
TW (1) TW202307229A (ja)
WO (1) WO2023282194A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180213A (ja) * 2000-12-14 2002-06-26 Nkk Corp 無方向性電磁鋼板
JP2008050686A (ja) 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
US20140373340A1 (en) * 2011-09-16 2014-12-25 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
JP2018178198A (ja) * 2017-04-14 2018-11-15 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180213A (ja) * 2000-12-14 2002-06-26 Nkk Corp 無方向性電磁鋼板
JP2008050686A (ja) 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
US20140373340A1 (en) * 2011-09-16 2014-12-25 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
JP2018178198A (ja) * 2017-04-14 2018-11-15 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法
JP2019019355A (ja) * 2017-07-13 2019-02-07 新日鐵住金株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法

Also Published As

Publication number Publication date
CN117651785A (zh) 2024-03-05
KR20240005829A (ko) 2024-01-12
JPWO2023282194A1 (ja) 2023-01-12
TW202307229A (zh) 2023-02-16
EP4350013A1 (en) 2024-04-10
JP7235188B1 (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
EP3859032B1 (en) Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
JP6825758B1 (ja) 無方向性電磁鋼板とその製造方法およびモータコア
US20220064751A1 (en) Non-oriented electrical steel sheet and method for producing same
JP7235188B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7235187B1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
JP7231134B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7231133B1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
WO2023282195A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2023282197A1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
TWI836685B (zh) 無方向性電磁鋼板及其製造方法
TWI837908B (zh) 無方向性電磁鋼板及其製造方法、以及馬達鐵芯
JP7439993B2 (ja) 無方向性電磁鋼板およびその製造方法
JP7371815B1 (ja) 無方向性電磁鋼板およびその製造方法
TWI829403B (zh) 無方向性電磁鋼板及其製造方法
TW202417656A (zh) 無方向性電磁鋼板及其製造方法
TW202417647A (zh) 無方向性電磁鋼板及其製造方法、以及馬達鐵芯

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022568990

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237041431

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022837610

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022837610

Country of ref document: EP

Effective date: 20231218

WWE Wipo information: entry into national phase

Ref document number: 18574305

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2301008583

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280047502.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/000391

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE