WO2013035956A1 - 트리알콕시실란의 제조방법 - Google Patents

트리알콕시실란의 제조방법 Download PDF

Info

Publication number
WO2013035956A1
WO2013035956A1 PCT/KR2012/002428 KR2012002428W WO2013035956A1 WO 2013035956 A1 WO2013035956 A1 WO 2013035956A1 KR 2012002428 W KR2012002428 W KR 2012002428W WO 2013035956 A1 WO2013035956 A1 WO 2013035956A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
solvent
reaction
trialkoxysilane
reactor
Prior art date
Application number
PCT/KR2012/002428
Other languages
English (en)
French (fr)
Inventor
양세인
김용일
김경열
김덕윤
카담아스럽
보리스압둘라크마놉
브라디미르로스히틴
샵캇사리크브
키카얏아수라바
아크멀살림보에브
술탄아지조브
사빌사이돕
Original Assignee
오씨아이 주식회사
인스티튜트 오브 아이온-플라즈마엔드 레이저 테크놀러지스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사, 인스티튜트 오브 아이온-플라즈마엔드 레이저 테크놀러지스 filed Critical 오씨아이 주식회사
Priority to US14/241,581 priority Critical patent/US9156861B2/en
Priority to CN201280043428.3A priority patent/CN103797018A/zh
Priority to EP12829300.8A priority patent/EP2754664B1/en
Priority to JP2014529602A priority patent/JP5836489B2/ja
Publication of WO2013035956A1 publication Critical patent/WO2013035956A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids

Definitions

  • the present invention relates to a method for producing a trialkoxysilane, and more particularly, to a method for producing a SiH (OR) type 3 trialkoxysilane, wherein R is a methyl, ethyl or propyl group having 1 to 3 carbon atoms.
  • the trialkoxysilane is used in various fields such as siliceous oligomers, monosilanes, solar energy or silicon production for semiconductors, and two basic methods are used to synthesize the trialkoxysilane.
  • the first is to synthesize in a fixed or fluidized bed in a vapor-gas environment.
  • Manufacturing in a vapor-gas environment involves the passage of alcohol vapor through a silicon powder bed comprising a catalyst located in a fixed bed or fluidized bed, which is not widely used due to the difficulty of maintaining a uniform temperature distribution throughout the reactor capacity. .
  • This drawback can be eliminated when the direct synthesis reaction takes place in the fluidized bed.
  • a method of diluting the gas in alcohol vapors can be used to prevent or minimize the temperature in the fluidized bed at its peak.
  • Argon, nitrogen, helium, neon, hydrogen and other gases may be used as the diluent gas.
  • the application of additional materials increases the manufacturing cost and the loss of trialkoxysilane and alcohol due to carryover of inert gas.
  • the synthesis can be performed at a lower pressure to improve the yield of the target trimethoxysilane, wherein the silicon conversion is 90%, selectivity is 84.2%, and at normal pressures are 65% and 48.8%, respectively.
  • the pressure is lowered, the reaction rate is reduced, and as a result, there is a disadvantage that the productivity is lowered.
  • [2] proposes to pass hydrogen along with alcohol vapor to the contact mass.
  • the hydrogen production and purification parts are separately required, thereby increasing the production cost.
  • the contact mass was activated with nitrogen and zinc was added as an accelerator at a reaction temperature of 280 ° C. or lower, the triethoxysilane content in the reaction mass was 87%, but the silicon conversion was very low, 23%.
  • the catalytic mass activation comprising silicon and catalyst is carried out stepwise at a temperature of less than 450 DEG C, in [2] and [5] at 300 to 350 DEG C, and under nitrogen or another inert gas atmosphere. Is preferred.
  • [6] to [9] propose a method of applying hydrogen for silicon and catalytic activity.
  • Activation with hydrogen is carried out in a fixed bed or fluidized bed at approximately 400 ° C.
  • the silicon and catalyst mixtures comprise at least 1.5% copper.
  • no information on the selectivity, reactivity and reaction stability is given.
  • [1] to [9] show that the synthesis of the fluidized bed to obtain triethoxysilane results in a high yield of triethoxysilane and a low silicon conversion rate when the reaction is performed under atmospheric pressure, and the reaction is performed at a low pressure.
  • the main synthetic index is improved, but this advantage is offset by the technical characteristics accordingly.
  • the liquefied material is additionally injected with alcohol, the value is partially increased, but some problems occur in the trialkoxysilane synthesis process in the fluidized bed, and slight carryover of silicon and the catalyst necessarily occurs, so that the filtration process for the final product Additionally required.
  • the second method involves the direct reaction of silicone and alcohol in suspension in the liquid solvent environment of the reactor with agitation.
  • the solvent is used to maintain a uniform temperature in the reaction mixture, greatly reducing the possibility of overheating of the reaction environment. It is possible to prevent side reactions, to increase the selectivity of the trialkoxysilane, and to increase the silicon conversion rate.
  • the high temperature up to 300 ° C. is maintained in the synthesis of trialkoxysilanes, so that the solvent used in the synthesis should not be decomposed at these temperatures.
  • the solvent must be able to effectively maintain a uniform temperature in the reaction system.
  • the silicon powder should be well dispersed, and should not cause oxidation in the reaction temperature range of 100 to 300 ° C.
  • [16] ⁇ [20] have a considerable induction period until the reaction is activated after the addition of the reaction raw material of silicon and alcohol, which can last from 1 hour to 12 hours.
  • the main reason for the induction period is known to be due to the oxide film on the silicon surface. It is proposed to add an activation step to the synthesis of trialkoxysilane to reduce the induction period.
  • Activation can take place in the reactor in which the reaction proceeds or in a separate device.
  • the activated silicon is preferably transferred to the reactor in a dry neutral environment. Activation takes place at 20-400 ° C., but 150-300 ° C. is preferred. It is proposed to use hydrogen and nitrogen together as an active gas and to activate silicon by methanol for the reaction between silicon and ethanol, because methanol has higher reaction activity on silicon than ethanol or higher alcohols. For example, adding 5% methanol to ethanol significantly increases the reaction rate.
  • reaction suspension containing 1 kg of silicon, 14.1 g of copper hydroxide and 2.1 kg of solvent MARLOTHERM ® S was activated at 150 to 250 ° C. for 65 minutes using hydrogen and nitrogen.
  • Methanol was fed for 5 hours at a rate of 4.3 g / min at 250 ° C.
  • the temperature was then lowered to 230 ° C., the methanol feed was stopped and ethanol was fed at the same rate, at which time the hydrogen feed was stopped and the nitrogen feed was maintained.
  • the total amount of active material is calculated stoichiometrically so that the divalent or monovalent copper catalyst is sufficient to be free copper.
  • the actual activation process takes considerable time, which is claimed to be due to the large surface of the silicon-copper mass (silicon particulate diameter 50-300 ⁇ m).
  • special conditions regarding the particle size of the catalyst used are also required.
  • the particle size should be in the range of 1 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, and more preferably 0.1 to 30 ⁇ m.
  • the specific surface area of the catalyst in the raw material is 0.1 to 2 m 2 / g, more preferably 10 to 50 m 2 / g.
  • Direct synthesis reactions of silicon using alcohols are possible in both periodic and continuous modes. In cyclic mode, silicon is all introduced into the reactor early in the process, but alcohol is supplied continuously until all of the silicon has reacted.
  • reaction temperature is carried out at 150 °C or more, so as not to exceed the temperature at which decomposition of alcohol and solvent occurs. It is preferable to make it at the temperature of 200-260 degreeC. In the case of methanol reaction, 220-250 degreeC is preferable, and in the case of ethanol, it is 200-240 degreeC. Direct synthesis reactions of trialkoxysilanes are possible with both high and low pressures, but atmospheric pressure is more preferred.
  • [21] and [22] propose to treat powdered silicon with hydrofluoric acid in order to remove the oxide film on the silicon surface before the operation for the purpose of shortening the induction period.
  • [10] and [22] propose to activate the reaction mass by maintaining a high temperature in nitrogen, argon and other inert environments, and [23] suggest that silicon and catalysts can be maintained in a mill for 8 hours in an inert atmosphere. It is suggested to premix.
  • [21] suggests the injection of alkyl chloride, hydrogen chloride and ammonium chloride to activate the silicon prior to synthesis
  • [24] suggests the injection of halides such as NH 4 HF 2 .
  • materials such as halides, alkyl halides and methanol are injected into the reactor prior to synthesis, the distillation step of the target is added to remove impurities of the target, which means that the preparation of trialkoxysilanes is complicated.
  • side reactions may form oligoalkoxysiloxanes, moisture and other side reactions in addition to the main synthesis reactions of trialkoxysilanes, which are present in the reaction environment. May accumulate at and slow down the synthesis process.
  • the metals present in the form of impurities in the silicon synthesis are included in the catalyst, and the metal copper accumulates in the components of the solvent as a result of decomposition of the catalyst. As the residual silicon and the silicon and trialkoxysilane containing impurities accumulate, the reaction rate decreases. In this case, the solvent must be regenerated to continue using the solvent in the trialkoxysilane synthesis.
  • [1] proposed a method for producing a trialkoxysilane comprising a silicon grinding operation and an interaction process between silicon and alcohol ground under the action of a catalyst.
  • feedstock industrial silicones ground in air up to a particle size of 500 ⁇ m are used. Ethanol and methanol are used as alcohol reagents, and a copper-containing compound such as copper chloride (CuCl) is used as a catalyst. It is mixed with the pulverized silicon and activated by heating the catalyst by preheating for several hours at a temperature below 300 ° C to activate the technical interaction of alcohol and silicon. This technical method is used in other methods similar to [1].
  • CuCl copper chloride
  • halides are applied for the purpose of the interaction of silicones with alcohols, as organic and inorganic substances containing halogens, such as chlorides, fluorides, methyl bromide, ethyl bromide, ethylene trichloride, fluorine Hydrogen sulfide (HF), hydrogen chloride (HCl), HBr, HI, and the like.
  • halogens such as chlorides, fluorides, methyl bromide, ethyl bromide, ethylene trichloride, fluorine Hydrogen sulfide (HF), hydrogen chloride (HCl), HBr, HI, and the like.
  • HF fluorine Hydrogen sulfide
  • HCl hydrogen chloride
  • HBr HBr
  • HI HI
  • the method has significant drawbacks despite its usefulness.
  • the additional energy loss is significant by preheating the catalyst for a long time at temperatures below 300 ° ⁇ , resulting in longer overall process times and increased energy consumption
  • [26] includes a silicon grinding operation and an interaction between the alcohol and the ground silicon via a catalyst in an activated heating solvent environment.
  • the silicon is ground in air to a particle size of 500 ⁇ m.
  • Ethanol and methanol are used as alcohol reagents, and triethoxysilane and trimethoxysilane are obtained as final products, respectively.
  • a catalyst a compound containing copper is usually used, and mainly copper chloride (CuCl) is used.
  • Polyaromatic oil is used as the solvent, and the main technical process of the interaction between the pulverized silicone and the alcohol is performed in an environment where it is heated to 200 ° C. Reagent activation technology has been applied, the reason for applying this technique is as follows.
  • the applied technical measures are to separate unreacted silicon to compensate for the loss of solvent and catalyst,
  • the process was activated by adding the concentrated mixture of catalysts periodically to the reaction mass, but there is a technical disadvantage that the process becomes very complicated.
  • the addition of a new reagent in place of the bleeding portion does not consider the action of eliminating or shortening the reaction induction period because the reaction may be rapidly reduced or slowed down.
  • British Patent No. 2263113 Process for producing trialkoxysilanes / Yamada, Yoshinori, Harada, Katsuyoshi, 1993.
  • Japanese Patent Application Laid-Open No. 51-1692 Process for producing trialkoxysilanes / Hisashi Muraoka, Yokohama, Masafumi Asano, 1976.
  • the present invention aims to solve the following problems:
  • the present invention proposes to solve the above problems.
  • mTES is the triethoxysilane mass
  • mTEOS is the mass of tetraethoxysilane obtained per unit time as a result of the direct reaction
  • k1 and k2 are the molar ratios of silicon consumed during the synthesis of triethoxysilane and tetraethoxysilane, respectively;
  • the object of the present invention for solving the problems of the present invention as a preferred embodiment can be achieved by the following methods.
  • the object of the present invention is achieved by selecting silicone having a linear dimension of 20 mm to 20 cm before grinding.
  • the object of the present invention is also achieved by injecting the required amount of catalyst directly into the silicon mass during the grinding of the solvent environment.
  • the object of the present invention is also achieved by using the amount of catalyst used in the range of 1.0 to 10.0 wt% relative to silicon.
  • the object of the present invention is also achieved in that the mass ratio of solvent and silicon is from 1: 2 to 2: 1.
  • the object of the invention is also achieved by maintaining the solvent in an environment heated to 160-300 ° C. during trialkoxysilane synthesis.
  • the object of the present invention is also achieved by continuously mixing the suspension before feeding it to the reactor to maintain a stable ratio of silicon, solvent and catalyst in a continuous process mode.
  • the object of the invention is also achieved by keeping the amounts of silicon, solvent and catalyst in the reaction environment evenly throughout the entire synthesis of the trialkoxysilane.
  • the object of the present invention is also achieved by bleeding a solvent containing impurities formed in the components of the solvent as the reaction proceeds through a ceramic membrane filter installed in the reactor body.
  • the pore size of the ceramic membrane is from 1 to 10 ⁇ m.
  • the object of the present invention is also achieved by using a bleeding solvent in the reaction environment through the purification process in the process.
  • the raw material silicon in the raw material preparation operation, is pulverized in a solvent environment without contact with the atmosphere, and measures for preventing the formation of oxide film on the surface of the silicon are made, thereby ensuring the activation of the reaction in the technical process, Unlike the prior arts, the initial induction period of the silicone and alcohol reactions is significantly shortened, thereby shortening the process time and maximizing the productivity of the product.
  • the silicon grinding process which is a raw material preparation work, is performed in an environment using a solvent having the same component as the solvent used in the future synthesis process, the technical process is not complicated, and the continuous process is possible by continuously supplying the consumed suspension. .
  • the present invention can reduce the induction period of the direct synthesis reaction in the manufacturing process of the trialkoxysilane, and can be continuously synthesized by the continuous removal of impurities, thereby significantly shortening the overall process time and at the same time continuing production of the trialkoxysilane. Can be maximized.
  • TES triethoxysilane
  • the present invention relates to the production of trialkoxysilanes, including the activation of the reaction mass through the silicon grinding operation, in particular the interaction process of the ground silicon with anhydrous alcohol without contact with the atmosphere in the solvent environment, the removal of impurities and the replenishment of the amount of raw materials.
  • trialkoxysilane can be synthesized through the following sequential steps.
  • a trialkoxysilane represented by the following formula (1) may be preferably prepared.
  • R is a methyl, ethyl, propyl or isopropyl group having 1 to 3 carbon atoms.
  • the physical basis of the technical scheme proposed by the present invention in the first step of reagent activation is the condition that the grinding of the raw silicon is carried out in a solvent environment, not in the air as in the prior art methods, thereby allowing the natural oxide on the surface of the silicon particles to be produced after grinding. Prevent layer formation.
  • the oxide layer is necessarily created on all metal silicon surfaces when in contact with oxygen in the air. This oxidation reaction is possible at all temperatures, including room temperature, and is independent of the chemical purity of the silicon, ie can occur in any case where the silicon pulverization occurs in the air, as in the methods of the prior art.
  • the native oxide present on the surface of the pulverized silicon particles causes all difficulties in the technical process for the interaction of silicon with alcohol, namely reaction 'induction period' generation; The necessity of heating the mixture of the ground silicon and the catalyst of [1]; Unreacted silicon production due to incomplete reactions; The use of additional catalysts in the form of halides [1] or the need to recover the concentrated mixture to the reaction mass [26]; And as a result, the design of the technology and apparatus becomes very complex.
  • the main disadvantage of the method of the prior arts is excluded, because the grinding operation of the silicon is carried out in a liquid, that is, in a solvent environment so that the grinding operation does not come into contact with the atmosphere, and the oxide on the surface of the silicon particles produced as a result of grinding This is because no layer is formed. That is because it has an active surface. This is because there is no contact with air and at the same time no oxidation can occur by contact with the solvent, which solvent is used continuously in the chemical reactions of the main technical process for future direct use.
  • the technical solution according to the present invention prevents the formation of an oxide layer on the surface of the initial silicon particles, thereby ensuring the activation of the main technical process reagents, which are prepared to proceed directly to the trialkoxysilane synthesis reaction.
  • the pulverized particulate size of the method proposed by the present invention is 30 to 100 ⁇ m, which is 10 times smaller than [1] and [26], so that the area in which the major reagents come into contact with each other is much increased, and consequently the induction period is increased. Abruptly shortened.
  • silicon is pulverized to such a small size in air as in the method similar to [1] or the method proposed in [26]
  • the total surface area of the same amount of silicon is reduced rapidly by reducing the particle size. Since the natural oxide film is formed on the surface in the increased state, the induction period is increased and other negative properties are enhanced.
  • the invention uses a method of bleeding the suspension through a ceramic membrane filter to prevent removal of coarse silicon fine particles with reactivity in the reactor.
  • the amount of silicon supplied to the reactor as the suspension component remains the same as the amount of silicon reacted, and the amount of silicon reacted is determined according to the amount of trialkoxysilane synthesized and / or the amount of hydrogen formed as a result of the reaction.
  • the solvent is continuously bleeded at the reactor outlet and this amount of solvent is supplied to the reactor as a suspension component to replenish the bleeding amount to remove impurities from the reactor.
  • a linear dimension of 20 mm or more, preferably 20 mm to 20 cm, before grinding can be selected to reliably prevent the possibility that a considerable amount of silicon fine particles having an oxide on the surface will be introduced into the reaction mixture.
  • the characteristics appearing by adding the catalyst to the silicon mass before grinding the silicon is as follows. First, both materials are ground to the same size. Second, the materials are homogeneously mixed in the suspension of the solvent environment in which the grinding takes place as a feature of the invention.
  • the pore size in the ceramic membrane filter is 1 to 10 ⁇ m. If the pore is smaller than 1 ⁇ m, the filtration process becomes difficult, and if it is larger than 10 ⁇ m, the loss of silicon is increased because the reactive silicon fine particles are removed through the filter. If the initial size of the silicon fine particles is 30-100 ⁇ m, the appropriate pore size in the ceramic membrane filter is 5 ⁇ m, with the total loss of silicon being less than 0.5%.
  • the method proposed by the present invention is realized as follows.
  • the first silicon which is 98 to 99% pure metal silicon
  • the solvent functions as a thermal oil, and as the solvent, for example, alkylated benzene, alkylated naphthalene, polyaromatic oil, etc. may be used, and preferably, THERMINOL ® 66 or other polyaromatic oils may be used as in [26] and other similar methods. Can be.
  • the silicon grinding operation is carried out in the solvent environment until the particle size reaches 30 to 100 ⁇ m, and the obtained suspension is continuously supplied to the reactor using a metering pump so that the interaction between the silicon and the alcohol is continued. But do not separate the silicone powder from the solvent. In this case, a contact mass of the planned capacity and components is formed.
  • the suspension component added by the amount consumed in the synthesis process in order to maintain a continuous reaction is calculated by using the formula (1), consisting of silicon and the corresponding solvent and catalyst calculated from the amount of trialkoxysilane synthesized In this case, the reaction is continuously and stably added.
  • anhydrous alcohol used in the present invention well-known anhydrous ethanol or anhydrous methanol can be used.
  • a copper-containing catalyst such as copper chloride (CuCl) can be used.
  • the generated vapor-gas mixture and liquid are continuously removed from the reaction volume and separated by any well known technical method, including those used in [1] and [26] or other similar methods.
  • the desired triethoxysilane or trimethoxysilane is also separated by this general method.
  • the present invention can continuously bleed the solvent using a ceramic membrane filter, and in particular, the induction period can be drastically shortened through the difference in the grinding process of the raw silicon.
  • the prior art crushes the raw material silicon in general air, and inevitably an oxide film is formed on the silicon surface, so that an induction period, which is the most important factor in the synthesis of trialkoxysilane, necessarily exists, which is subsequently
  • the induction period when the raw material is additionally supplied by bleeding the suspension, the induction period must be passed, but in the present invention, the initial synthesis induction period must be eliminated and abruptly shortened when the trialkoxysilane is synthesized, and impurities can be continuously processed by using a ceramic membrane. There is an effect that can be removed continuously from.
  • An example of the method proposed by the present invention is based on the results of experiments in specially designed equipment for trialkoxysilane synthesis.
  • the preparation of triethoxysilane is carried out in a 9 L reactor with a working capacity, which is equipped with an electric heating control of the reaction capacity, and is equipped with an impeller stirrer with four wings whose rotation speed is controlled up to 300 to 1500 rpm. It was assumed that. 3.3 kg of metalsilicone were ground in a 6.6 kg solvent THERMINOL ® 66 environment using a Planetary Mill until the particulate size was 30-100 ⁇ m. In the milling process, 0.2 kg of cuprous chloride (CuCl) catalyst was added to the suspension.
  • CuCl cuprous chloride
  • mTES is the mass of triethoxysilane and mTEOS is the mass of tetraethoxysilane obtained per unit time as a result of the direct reaction.
  • Solvents with dissolved impurities are collected in a collection container for recycling. Vacuum is formed from the rear of the ceramic membrane filter to 10 mbar to filter off the unreacted silicon and catalyst and to drain the solvent. At this time, the solvent is continuously discharged from the reactor through the ceramic membrane, and the discharge amount is twice the mSi defined according to Equation 1, which is equal to the amount of the solvent introduced into the reactor as a suspension component. This allows the contact mass component to be kept constant and the level of the component in the reactor constant. The sample of the reactor is bleeded every three hours to adjust the contact mass component. The contact mass level in the reactor is checked visually through the reactor window.
  • the synthesis reaction started, the reaction rate increased rapidly for the first 60 minutes, then slowly increased to 120 minutes, and stabilized at the triethoxysilane synthesis level of 420-450 g / h. .
  • the silicone 600 g, THERMINOL ® 66 solvent 1200 g of a suspension component was continuously supplied for 500 minutes. During this period 3380 g of triethoxysilane and 141 g of tetraethoxysilane were obtained. The selectivity of the triethoxysilane was 96%.
  • Table 1 shows the results of the Examples and Comparative Examples.
  • the technical solution proposed by the present invention differs significantly from the conventional methods in that the raw material silicon is pulverized in a liquid environment in the raw material preparation operation, and measures for preventing the formation of an oxide film on the silicon surface are made.
  • Example 2 when the suspension is added (Examples 2 and 3), the effect of TES production, TES selectivity, and a significant shortening of the initial induction period were confirmed as compared with the comparative examples, and the bleeding process was also performed (Example 2). Compared with the comparative example, TES production was more than twice as high during the same reaction time.
  • the technical solution proposed by the present invention is simply realized by using the prior art equipment, and the above-described raw material preparation work (silicon grinding) is a solvent environment, that is, an environment in which a substance used for its original purpose in a future technical process is used as a solvent. The process is simplified and not complicated.
  • the silicon grinding process which is a raw material preparation operation
  • the technical process is not complicated, and the suspension is continuously supplied, and the ceramic membrane filter is continuously supplied. It is possible to maximize the productivity and economical efficiency by enabling continuous synthesis process through the continuous removal of impurities, which can drastically shorten the overall process time and continuously produce trialkoxysilane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

본 발명은 SiH(OR)3형 트리알콕시실란(여기서, R은 탄소수 1 내지 3의 메틸, 에틸, 프로필 또는 이소프로필기임)의 제조방법에 관한 것이며, 더욱 상세하게는 원료 실리콘을 용매 환경에서 대기와의 접촉없이 분쇄하여 실리콘 표면의 산화 반응을 방지함으로써 트리알콕시실란의 직접 합성의 초기 유도 기간을 획기적으로 감소시키고, 반응기 본체에 설치된 멤브레인 필터를 통해 용매의 일부를 지속적으로 선택하여 반응환경으로부터 불순물을 제거하는 공정들이 포함된다.

Description

트리알콕시실란의 제조방법
본 발명은 트리알콕시실란의 제조방법에 관한 것으로서, 더욱 상세하게는 SiH(OR)3형 트리알콕시실란(여기서, R은 탄소수 1 내지 3의 메틸, 에틸, 프로필기임)의 제조방법에 관한 것이다.

여기서 표시되는 괄호 [ ]내의 숫자는 본 발명의 참고로 인용된 선행기술문헌의 번호를 의미한다.
트리알콕시실란은 규산질 올리고머, 모노실란, 태양광에너지용 또는 반도체용 실리콘 생산 등 다양한 분야에 사용되며, 이러한 트리알콕시실란 합성에는 두 가지 기본적인 방법이 사용된다.
첫 번째 방법은 증기-가스 환경의 고정층이나 유동층에서 합성이 이루어지는 것이다. 증기-가스 환경에서 제조하는 방법은 고정층 또는 유동층에 위치한 촉매를 포함하는 실리콘 분말층을 통해 알코올 증기를 통과시키는 것인데, 고정층 반응기는 반응기 용량 전체에 고른 온도 분포의 유지에 따른 어려움으로 널리 사용되고 있지 않다. 유동층에서 직접적 합성 반응이 이루어지는 경우 이 같은 단점은 제거될 수 있다.
[1]에서는 알코올 증기에 가스를 희석하는 방법을 사용하여 유동층에서의 온도가 최고점에 도달하는 것을 방지하거나 최소화 시킬 수 있다. 희석 가스로는 아르곤, 질소, 헬륨, 네온, 수소 및 기타 가스가 사용될 수 있다. 그러나 추가 물질을 적용하는 경우 제조 비용이 증가하고, 불활성 가스의 캐리오버로 인해 트리알콕시실란과 알코올의 손실 또한 늘어난다. 한편 더 낮은 압력에서 합성을 진행하여 목적물인 트리메톡시실란의 산출력을 향상시킬 수 있는 데, 이 때 실리콘 전환율은 90%, 선택성은 84.2%이고, 보통 압력에서는 각각 65% 및 48.8% 이다. 그러나 압력이 낮아지면 반응속도가 감소하고, 결과적으로 생산성이 떨어지는 단점이 있다.
[2]에서는 접촉 매스에 알코올 증기와 함께 수소를 통과시킬 것을 제안한다. 트리알콕시실란 제조 기술 과정에 수소를 적용하는 경우 수소의 제조 및 정화 파트가 별도로 필요하고, 이로써 제조비용이 상승한다. 접촉 매스를 질소로 활성화하고, 반응 온도 280℃ 이하에서 아연을 촉진제로 추가했을 때, 반응 물질 내 트리에톡시실란 함유율은 87% 이었으나, 실리콘 전환율은 23%로 매우 낮았다.
[1]에서는 450℃ 미만의 온도에서, [2] 및 [5]에서는 300 ~ 350℃에서, 질소나 다른 불활성 가스 분위기하에서, 실리콘과 촉매를 포함하는 접촉 매스(mass) 활성화를 단계적으로 실시하는 것이 선호되고 있다.
[6] ~ [9]에서는 실리콘 및 촉매 활성을 위해 수소를 적용하는 방법이 제안되어 있다. 수소를 이용한 활성화는 대략 400℃ 온도에서 고정층 또는 유동층에서 실시한다. 실리콘 및 촉매 혼합물은 1.5% 이상의 구리를 포함한다. 그러나 이에 따른 선택성, 반응성 및 반응 안정성에 대한 정보는 제시되어 있지 않다.
[1] ~ [9]에서는 트리에톡시실란 획득을 목적으로 유동층에서 합성을 진행한 결과, 대기압 하에서 작업이 이루어진 경우 트리에톡시실란의 수율과 실리콘 전환율이 높지 않고, 낮은 압력에서 반응이 이루어진 경우에는 주요 합성 지수가 향상되지만 이에 따른 기술적 특성으로 상기 장점이 상쇄된다는 것이다. 또한 알코올과 함께 추가로 액화 물질을 주입하는 경우 수치가 일부 증가하나, 유동층 내 트리알콕시실란 합성 과정에 일부 문제점이 발생하고, 실리콘과 촉매의 미미한 캐리오버가 반드시 발생하여 최종산물에 대한 여과 공정이 추가로 요구된다.
두 번째 방법은 교반 장치가 달린 반응기의 액체 용매 환경에서 실리콘과 알코올이 서스펜션 상태로 직접 반응이 이루어지는 것인데, 용매를 사용하는 경우 반응 혼합물 내 온도를 균일하게 유지하여, 반응 환경의 과열 가능성을 크게 감소시키고 부반응을 방지할 수 있으며, 결과적으로 트리알콕시실란의 선택성을 높이고, 실리콘 전환율을 높일 수 있어 최근 널리 사용되고 있다.
트리알콕시실란의 합성시 300℃까지의 고온이 유지되므로 합성에 사용되는 용매는 이 같은 온도에서 분해되지 않는 것이어야 한다. 용매는 반응시스템 내의 균일한 온도를 효과적으로 유지할 수 있어야 한다. 또한 실리콘 분말이 잘 분산되도록 해야 할 뿐 아니라, 100 ~ 300℃ 반응 온도 범위에서 산화를 일으키지 않아야 한다.
[10], [11]은 알킬화 벤젠을, [12]는 알킬화 나프탈렌 - "THERMINOL" 오일의 사용을 제안하였다. THERMINOL® 59, 60, 66, DOWTHERM® HT, MARLOTHERM® S, MARLOTHERM® 및 기타 상표 제품의 고온 용매에 관한 상세 정보는 [13, 25]에 자세히 기술되어 있다.
[13], [14], [15]에서는 합성에 사용된 용매의 양을 용매:실리콘 = 1:2 ~ 4:1 범위로, 바람직하게는 1:1~2:1로 제안하고 있다.
[16] ~ [20]에서는 실리콘과 알코올의 반응 원료 투입후 반응이 활성화되는 시점까지 상당한 유도기간을 가지고, 이는 1시간 ~ 12시간까지 지속될 수 있다. 유도기간이 생기는 주요 원인은 실리콘 표면에 있는 산화피막 때문인 것으로 알려져 있다. 유도기간을 감소시키기 위해 트리알콕시실란의 합성 과정에 활성화 단계를 추가할 것을 제안한다.
[13]에서는 매우 상세하게 활성화 과정을 검토하였다. 활성화는 반응이 진행되는 해당 반응기 혹은 별도의 장치에서 이루어질 수 있다. 별도의 장치에서 활성화된 실리콘은 건조한 중성 환경에서 반응기로 이동시키는 것이 바람직하다. 활성화는 20 ~ 400℃에서 이루어지나, 150 ~ 300℃가 바람직하다. 활성 가스로 수소와 질소를 함께 사용하고, 실리콘과 에탄올의 반응을 위해 메탄올에 의한 실리콘 활성화를 제안하고 있는데, 그 이유는 메탄올이 에탄올이나 상위 알코올에 비해 실리콘에 대한 반응 활성도가 높기 때문이다. 예를 들면, 에탄올에 5%의 메탄올을 첨가하면 반응속도가 현저히 증가한다. 여기서는, 실리콘 1 kg, 구리 수산화물 14.1 g, 용매 MARLOTHERM®S 2.1 kg을 함유한 반응 서스펜션에 150 ~ 250℃로 65분간 수소와 질소를 이용한 활성화를 실시하였다. 250℃온도에서 4.3 g/분의 속도로 5시간 동안 메탄올을 공급하였다. 이후 온도를 230℃까지 낮추고, 메탄올 공급을 중단하고 동일한 속도로 에탄올을 공급하였는데, 이 때 수소 공급은 중단하고 질소 공급은 유지되었다. 활성 물질의 총량은 화학량론적으로 계산되며, 2가나 1가의 구리 촉매가 free copper가 되기에 충분한 양이 되도록 한다. 실제 활성 과정은 상당한 시간이 소요되는데, 이는 실리콘-구리 매스 표면이 크기 때문이라고 주장하고 있다(실리콘 미립자 직경 50 ~ 300 μm). 한편 사용되는 촉매의 입자도에 관한 특별한 조건도 요구된다. 미립자의 크기는 1 ~ 100 μm 범위이어야 하고, 0.1 ~ 50 μm가 바람직하며, 일반적으로 0.1 ~ 30 μm가 더욱 바람직하다. 동시에 원료물질 내 촉매의 비표면적은 0.1 ~ 2 m2/g 이고, 10 ~ 50 m2/g이 더욱 바람직하다. 알코올을 사용한 실리콘의 직접 합성 반응은 주기적 모드(periodic mode)와 연속 모드(continuous mode) 모두에서 가능하다. 주기적 모드에서 실리콘은 과정 초기에 모두 반응기에 투입하나, 알코올은 실리콘이 모두 반응하기까지 계속 공급한다. 산출량에 따라 일정량의 실리콘을 차례로 공급하고, 알코올은 계속 공급하는 방식 또한 가능하다. 연속 모드의 반응기의 경우는 작업 시작 이후 실리콘 또는 촉매를 함유한 실리콘만을 첨가한다. 이때, 촉매 함량은 최소로 하거나 함량을 조절하여, 알코올 분해를 일으키는 부반응이 일어나지 않도록 한다. 반응 온도는 150℃ 이상에서 진행하되, 알코올과 용매의 분해가 일어나는 온도를 넘지 않도록 한다. 200 ~ 260℃의 온도에서 이루어지는 것이 바람직하다. 메탄올 반응의 경우 220 ~ 250℃가 바람직하고, 에탄올인 경우 200 ~ 240℃로 한다. 트리알콕시실란의 직접 합성 반응은 높은 압력과 낮은 압력 모두 가능하나, 대기압이 더욱 바람직하다.
[21], [22]에서는 유도기간 단축을 목적으로 작업 전 실리콘 표면의 산화 피막을 제거하기 위하여 분말형 실리콘을 플루오르화수소산으로 처리할 것을 제안하고 있다.
[10], [22]에서는 질소, 아르곤 및 기타 불활성 환경에서 고온을 유지함으로 반응 매스를 활성화 할 것을 제안하고, [23]은 불활성 대기 상태에서 8시간 동안 밀(mill) 내에서 실리콘과 촉매를 사전 혼합할 것을 제안하고 있다.
[21]에서는 합성 전 실리콘의 활성화를 위해 염화알킬, 염화수소, 염화암모늄의 주입을, [24]는 NH4HF2 와 같은 할로겐화물의 주입을 제안하고 있다. 그러나 합성 전에 할로겐화물, 할로겐화 알킬 및 메탄올 같은 물질을 반응기에 주입할 경우 목적물의 불순물 제거를 위해 목적물의 증류단계가 추가되며 이는 곧, 트리알콕시실란의 제조 기술이 복잡해진다는 것을 의미한다.
따라서 트리알콕시실란의 직접 합성 과정에서 유도기간은 단순하게 이해할 수 없고, 효과적 해결방법도 존재하지 않다는 것을 알 수 있다. 합성과정에 추가 시약을 주입하는 경우 최종산물에서 이를 제거해야 하고, 이는 추가적인 단계를 발생시키며, 결과적으로 트리알콕시실란 제조 기술을 복잡하게 하고 제조 비용이 높아지게 된다.
[11], [13], [14], [17], [21]에서는 트리알콕시실란의 주요 합성 반응과 함께 부반응으로 올리고알콕시실록산, 수분 및 기타 부반응물이 형성될 수 있는데, 이들은 반응 환경 내에서 점차 누적되어 합성 과정의 속도를 저하시킬 수 있다. [14]에서는 실리콘 합성에서 불순물의 형태로 존재하는 금속이 촉매에 포함되어 사용되기 때문이며, 금속 구리는 촉매의 분해 결과 용매의 성분 내에서 축적된다. 이러한 잔류 실리콘과 불순물을 함유하고 있는 실리콘 및 트리알콕시실란이 축적되면 반응속도가 감소한다. 이러한 경우 트리알콕시실란 합성과정에서 용매를 계속 사용하려면 반드시 용매를 재생해야 한다.
[16]에서는 트리알콕시실란의 주요 합성 지수의 효율 증대를 위해 트리알콕시실란화 반응의 촉진제로 알루미늄(0.01 ~ 10%, 더욱 바람직하게 0.1 ~ 2%), [2]에서는 아연, [25]에서는 단일결합 이상의 인 산화물을 갖는 유기 및 비유기 화합물 등의 사용을 제안하고 있으나, 그 효과에 관련된 정보는 제시되어 있지 않다.
[1]에서는 실리콘 분쇄 작업 및 촉매의 작용하에 분쇄된 실리콘 및 알코올의 상호작용 과정을 포함하는 트리알콕시실란의 제조 방법을 제안하였다.
공급원료로 미립자 크기 500 μm까지 공기 중에서 분쇄시킨 공업용 실리콘을 사용한다. 알코올 시약으로는 에탄올과 메탄올을 사용하고, 촉매로는 염화 제일 구리(CuCl)와 같이 구리를 함유한 화합물을 사용한다. 이를 분쇄시킨 실리콘과 혼합하고, 300℃ 이하의 온도에서 몇 시간 동안 사전 가열함으로써 촉매를 활성화시켜 알코올과 실리콘의 기술적 상호작용을 활성화 시킨다. 이 같은 기술적 방법은 [1]과 유사한 다른 방법에서도 사용된다. 이와 함께 실리콘과 알코올의 상호작용을 위한 목적으로 할로겐화물 형태의 추가적인 촉매를 적용하는데, 할로겐 성분을 함유하는 유기물 및 비유기물로서, 염화물, 불화물, 메틸 브롬화물, 에틸 브롬화물, 에틸렌 트리염화물, 플루오르화수소(HF), 염화수소(HCl), HBr, HI 등이 있다. 상기 방법은 유용성에도 불구하고 현저한 단점들이 있다. 그 중 중요한 것은 촉매를 300°С 이하의 온도에서 오랫동안 사전 열처리함으로써 추가적 에너지 손실이 상당하다는 것인데, 이로써 전체 공정 시간이 길어지고 에너지 소비가 증가하게 된다. 또한 공정의 활성화를 위해 가스형 할로겐화물을 적용하는 기술적 방안은 환경적으로 안전하지 않다.
[26]에서는 실리콘 분쇄 작업 및 시약이 활성화된 가열 용매 환경에서 촉매를 통한 알코올과 분쇄 실리콘간의 상호작용 과정을 포함한다. 볼밀(ball mill)을 사용하여 실리콘을 미립자 내지 500 μm 크기로 공기 중에서 분쇄한다. 알코올 시약으로는 에탄올과 메탄올을 사용하며, 최종 산물로 각각 트리에톡시실란이나 트리메톡시실란을 얻게 된다. 촉매로는 보통 구리를 함유한 화합물을 사용하는데 주로 염화 제일 구리(CuCl)를 사용한다. 용매로는 폴리방향족 오일을 사용하고, 이를 200℃까지 가열한 환경에서 분쇄된 실리콘과 알코올간 상호작용의 주요 기술적 공정이 이루어진다. 시약의 활성화 기술이 적용되었는 바, 이 기술이 적용된 이유는 다음과 같다. 기술된 도식에 따라 트리알콕시실란을 제조함에 있어 원료 물질 내 존재하는 불순물이 반응 매스에 축적되어, 반응 매스가 고르지 않게 소모되고, 용매의 일부가 원료 물질에 존재하는 불순물로 인한 부반응에 소모됨으로써, 미반응 실리콘이 나타난다. 따라서 시약을 활성화하는 기술을 적용하는데, 이 기술은 미반응 실리콘을 함유하고 있는 반응 혼합물 서스펜션을 블리딩(bleeding)하고 침전시켜, 적정량의 용매와 촉매를 추가하여 농축된 서스펜션을 공정으로 복구시키는 것이다. 상기 작업은 미반응 실리콘이 침적물의 형태로 반응기에 축적됨에 따라 기술 공정 기간 동안 수 차례 실시된다. 다른 유사 방법과 마찬가지로 부반응의 감소, 산물의 수율 증대, 원료의 손실 감소 및 장비 생산성의 증대임에도 불구하고, 적용된 기술적 방안 즉, 용매와 촉매의 손실을 보충하기 위해 미반응 실리콘을 분리하고, 용매와 촉매의 농축혼합물을 반응매스로 주기적으로 반복하여 추가하는 방법으로 공정을 활성화하였지만, 공정이 매우 복잡해지는 기술적 단점이 있다. 또한 블리딩(bleeding)된 부분 대신 새로운 시약의 분량을 첨가함에 있어, 반응이 급격히 감소하거나 둔화될 가능성이 있기 때문에 반응 유도기간의 제거 또는 단축에 따른 조치를 고려하지 않고 있다.
[선행기술문헌]
[특허문헌]
[1] 미국특허등록 제5,260,471호 : Process for producing trialkoxysilane / Yashinori Yamada 1993.
[2] 미국특허등록 제3,072,700호 : Process for producing silanes / Nicolas P.V. de wit 1963.
[3] 일본특허등록 제06065258호 : Preparation of trialkoxysilanes / Harada, Masayoshi, Yamada, Yoshinori, 1994.
[4] 영국특허등록 제2263113호 : Process for producing trialkoxysilanes / Yamada, Yoshinori, Harada, Katsuyoshi, 1993.
[5] 일본특허등록 제05178864호 : Preparation of trialkoxysilanes / Yamada, Yoshinori, Harada, Masayoshi, 1993.
[6] 미국특허등록 제3,641,077호 : Metod for preparing alkoxy derivatives of silicon germanium tin thallium and arsenic / Rochov E.G. 1972.
[7] 미국특허등록 제2,380,997호 : Contact masses / Patnode Winton. 1945.
[8] 미국특허등록 제2,473,260호 : Preparation of tetramethyl silicate / Rochov E.G. 1946.
[9] 미국특허등록 제4,314,908호 : Preparation of reaction mass for the production of methylchlorosilane / Downing James; Wells James, 1982.
[10] 미국특허등록 제4,727,173호 : Process for producing trialkoxysilanes / Mendicino F.D. 1988.
[11] 미국특허등록 제3,775,457호 : Method of manufacturing alkoxysilanes/ Hisashi Muraoka, Yokohama, Kanagawa-ken. 27.11.73
[12] 미국특허등록 제762,939호 : Process for trialkoxysilane/ tetraalkoxysilane mixtures from silicon metal and alcohol. 1988.
[13] 미국특허등록 제5,783,720호 : Surfase-active additives in the direct synthesis of trialkoxysilanes / Mendicino, Frank, Childress. 1998.
[14] 미국특허등록 제6,090,965호 : Removal of dissolvent silicates from alcohol-silicon direct synthesis solvents / K.M.Lewis, Hua Yu. 2000.
[15] 미국특허등록 제5,166,384 (US) Method for the removal of siloxane dissolved in the solvent employed in the preparation of trimethoxysilane via methanol-silicon metal reaction/ Donald L. Bailey, Thomas E. Childress, Newport, both of Ohio. 1992.
[16] 미국특허등록 제5,362,897호 : Process for producing trialkoxysilane / Katsuyoshi Harada, Yashinori Yamada. 1994.
[17] 미국특허등록 제4,931,578호 : Process for the preparation of alkoxysilane / Yoshiro Ohta, Kamiida-chou, Izumi-ku. 1990.
[18] 일본특허등록 제06312994호 : Preparation of alkoxysilanes/ Harada, Masayoshi, Yamada, Yoshinori. 1994.
[19] 일본특허등록 제06312992호 : Preparation of alkoxysilanes/ Harada, Masayoshi, Yamada Yoshinori. 1994.
[20] 일본특허공개 소50-34540호 : Alkoxysilanes /Masafumi Asano, Kawasaki, Taizo Ohashi 1984.
[21] 일본특허공개 소51-1692호 : Process for producing trialkoxysilanes / Hisashi Muraoka, Yokohama, Masafumi Asano, 1976.
[22] 미국특허등록 제5,177,234호 : Preparation of alkoxysilanes by contecting a solution of hydrogen fluoride in an alcohol with silicon / Binh T.Nguyen. 1993.
[23] 미국특허등록 제4,487,949호 : Process for preparation of alkyl silicates/ Charles B. Mallon, Belle Mead, N.J., 1984.
[24] 유럽특허등록 제517398호 HF(염)와 실리콘 및 알코올을 이용한 알콕시실란 제조 / Bank, Speier, John Leopold, 1992.
[25] WO 2007/032865 : PROCESS FOR THE DIRECT SYNTHESIS OF TRIALKOXYSILANE
[26] 러시아연방특허번호 2235726 С1 : 알콕시실란 제조방법/ 고르쉬코프 A.S., 마르카체바 А.А., 스타로젠코 P.А., 2003.
위와 같은 종래 기술의 문제를 해결하기 위해, 본 발명은 다음과 같은 과제들을 해결하는 것을 목적으로 한다:
(i) 합성 반응의 유도기간 제거 또는 대폭 감소;
(ii) 반응 환경으로부터 용매를 오염시키고 부반응의 촉매가 될 수 있는 불순물, 또한 부반응에 따른 산물의 지속적인 제거 보장; 및
(iii) 연속 모드에서 트리알콕시실란의 합성반응 보장.
상기와 같은 과제 해결을 위한 구현예로서, 본 발명은
(a) 용매 환경 내에서 실리콘(Si)을 30 ~ 100 μm 미립자 크기로 분쇄하되, 향후 상기 용매를 트리알콕시실란 합성 과정에 직접 용매로 사용하도록 하는 용매 환경에서의 실리콘의 분쇄 단계;
(b) 트리알콕시실란을 합성하는 과정에서 반응에 소모된 양 만큼의 실리콘을 용매와 함께 서스펜션 상태로 계속 반응기에 공급하되, 서스펜션 성분으로 반응기에 공급되는 실리콘의 양과 반응과정에서 반응이 완료된 실리콘의 양을 동일하게 유지하도록, 다음 수학식 1을 이용하여 합성된 트리알콕시실란 양으로부터 서스펜션 소모량을 산출하여, 지속적이고 안정적으로 반응이 진행되도록 서스펜션을 공급하는 트리알콕시실란의 연속 합성단계,
[수학식 1]
mSi=k1·mTES+k2·mTEOS

위 식에서 mTES는 트리에톡시실란 질량, mTEOS는 직접 반응 결과 단위시간당 획득된 테트라에톡시실란의 질량, k1 및 k2는 각각 트리에톡시실란과 테트라에톡시실란의 합성 과정에서 실리콘의 소비된 몰비; 및
(c) 반응기로부터 세라믹 멤브레인 필터를 사용하여 연속적으로 용매를 블리딩(bleeding)하는 방식으로 반응기에 축적된 불순물을 제거하되, 상기 블리딩된 양만큼의 용매를 서스펜션 성분으로 반응기에 계속 공급하여 용매가 보충되도록 하는 불순물 제거단계를 포함하는 트리알콕시실란의 제조방법을 제공한다.
또한, 바람직한 구현예로서 본 발명의 과제 해결을 위한 본 발명이 목적 달성은 다음과 같은 방법들에 의해 달성될 수 있다.
본 발명의 목적은 분쇄되기 전의 선형치수가 20 mm ~ 20 cm인 실리콘을 선택하는 것으로 달성된다.
본 발명의 목적은 또한 용매 환경의 분쇄과정에서 필요량의 촉매를 실리콘 매스에 직접 투입하는 것으로 달성된다.
본 발명의 목적은 또한 촉매의 사용량을 실리콘 대비 1.0 ~ 10.0 wt%로 사용함으로써 달성된다.
본 발명의 목적은 또한 용매와 실리콘의 질량비가 1:2 ~ 2:1인 것으로 달성된다.
본 발명의 목적은 또한 트리알콕시실란 합성과정에서 용매를 160-300℃로 가열된 환경으로 유지하는 것으로 달성된다.
본 발명의 목적은 또한 연속 공정 모드에서 실리콘, 용매 및 촉매의 안정적 양비를 유지하기 위해 서스펜션을 반응기에 공급하기 전 지속적으로 섞어줌으로써 달성된다.
본 발명의 목적은 또한, 반응 환경의 실리콘, 용매 및 촉매의 양을 트리알콕시실란의 전체 합성과정에 걸쳐 고르게 유지함으로써 달성된다.
본 발명의 목적은 또한 반응이 진행됨에 따라 용매의 성분 내에서 형성되는 불순물이 포함된 용매를 반응기 본체에 설치된 세라믹 멤브레인 필터를 통해 블리딩(bleeding)하는 것으로써 달성된다.
본 발명의 목적은 또한, 세라믹 멤브레인의 기공의 크기가 1 ~ 10 μm 것으로 달성된다.
본 발명의 목적은 또한, 반응 환경에서 블리딩(bleeding)된 용매를 정화작업을 거쳐 공정에 사용하는 것으로 달성된다.
상기한 바와 같이, 본 발명에 따르면 원료 준비 작업에서 원료 실리콘을 대기와의 접촉 없이 용매 환경 내에서 분쇄하여, 실리콘 표면의 산화막 형성 방지를 위한 조치가 이루어지고, 기술공정에서 반응 활성화를 보장함으로서, 종래 기술들과 달리 실리콘과 알코올 반응 초기 유도기간을 획기적으로 단축함으로써 공정 시간을 단축하여, 산물의 생산성을 극대화할 수 있어 경제적이다.
또한, 원료 준비작업인 실리콘 분쇄 공정이 향후 합성 과정에서 사용되는 용매와 동일 성분의 용매를 사용한 환경에서 이루어지기 때문에 기술공정이 복잡하지 않고 단순화되고, 소모되는 서스펜션을 지속 공급하여 연속공정이 가능하다.
또한, 실리콘 분쇄에 습식 방법을 이용하여 공기 중 산소와의 상호작용 시 폭발 위험성이 있는 실리콘 미세 먼지의 발생을 방지하여 안정성을 확보할 수 있고, 세라믹 멤브레인 필터를 통해 용매를 블리딩하여 반응환경의 불순물을 지속적으로 제거하여, 연속 모드에서의 추가 공정 없이, 원료 실리콘의 반응 전환율을 지속적으로 높게 유지할 수 있어 경제적이다.
따라서 본 발명은 트리알콕시실란의 제조과정에서 직접 합성 반응의 유도기간 감소, 불순물의 지속적 제거를 통한 지속적인 합성공정 가능함으로써 전체 공정 시간의 획기적인 단축과 동시에 트리알콕시실란의 지속적인 생산이 가능하므로 생산성 및 경제성을 극대화할 수 있다.
도 1은 본 발명에 따른 각 실시예와 비교예에서 시간에 따른 반응생성물(트리에톡시실란; TES)의 수율을 나타낸 그래프이다.
본 발명은 실리콘 분쇄작업, 특히 용매 환경에서 대기와의 접촉 없이 분쇄된 실리콘과 무수알코올의 상호작용 과정, 불순물 제거 및 원료 물질의 소모량 만큼의 보충을 통한 반응 매스의 활성화를 포함하는 트리알콕시실란 제조방법으로서, 다음과 같은 순차적 단계를 통해 트리알콕시실란을 합성할 수 있다.
(a) 30 ~ 100 μm 미립자 크기로 실리콘을 분쇄하되 액체 환경, 좋기로는 용매 환경에서 실시하며, 향후 상기 액체(또는 용매)는 트리알콕시실란 합성 과정에 직접 용매로 투입하여 사용될 수 있다. 분쇄가 액체 환경에서 이루어지는 것이 중요하나, 더욱 바람직하게는 용매환경에서 이루어지는 것이 향후 사용되는 반응용매를 고려하여 바람직하다.
(b) 트리알콕시실란을 합성하는 과정에서 반응에 소모된 양 만큼의 실리콘을 용매와 함께 서스펜션 상태로 계속 반응기에 공급하되, 반응의 진행이 지속적이고 안정적인 상태가 유지되도록, 서스펜션 성분으로 반응기에 공급되는 실리콘의 양과 반응과정에서 반응이 완료된 실리콘의 양을 동일하게 한다. 이때 서스펜션이 소모되는 양과 서스펜션으로 공급되는 양은 합성된 트리알콕시실란 양으로부터 산출하며, 그 산출은 상기 수학식 1로부터 산출한다.
(c) 반응기로부터 세라믹 멤브레인 필터를 사용하여 연속적으로 용매를 블리딩하는 방식으로 반응기에 축적된 불순물을 제거하되, 상기 블리딩된 양만큼의 용매를 서스펜션 성분으로 반응기에 계속 공급하여 그 보충을 보장한다.
본 발명에서 다음 화학식 1로 표시되는 트리알콕시실란이 바람직하게 제조될 수 있다.
[화학식 1]
SiH(OR)3
상기 화학식 1에서 R은 탄소수 1 내지 3의 메틸, 에틸, 프로필 또는 이소프로필기이다.
시약 활성화의 첫 단계에서 본 발명이 제안하는 기술적 방안의 물리적 기초는 원료 실리콘의 분쇄가 선행 기술의 방법에서처럼 공기 중이 아닌, 용매 환경에서 이루어진다는 조건이며, 이로써 분쇄 후 생성되는 실리콘 미립자 표면에 자연 산화물 층 형성을 방지한다. 산화물 층은 공기 중의 산소와 접촉할 때 모든 금속실리콘 표면에 반드시 생성되는 것이다. 이러한 산화 반응은 실온을 포함한 모든 온도에서 가능하고, 실리콘의 화학적 순도와 무관한데, 즉 선행 기술들의 방법처럼 공기 중에서 실리콘 분쇄가 일어나는 방법인 어떤 경우에서라도 일어날 수 있다.
한편, 분쇄된 실리콘입자 표면에 존재하는 상기 자연 산화물은 실리콘과 알코올의 상호작용을 위한 기술적 공정에서의 모든 어려움을 유발시키는데, 즉 반응 ‘유도기간’ 발생; [1]의 분쇄된 실리콘과 촉매의 혼합물 가열의 필요성; 불완전 반응으로 인한 미반응 실리콘 생성; 할로겐화물 형태의 추가 촉매 사용[1] 또는 농축 혼합물을 반응 매스로 복구시켜야 할 필요성 [26]; 및 그 결과 기술 및 장치의 설계가 매우 복잡해지게 된다.
본 발명이 제안하는 방법의 경우 선행 기술들의 방법의 주요 단점이 배제되는데, 그 이유는 실리콘의 분쇄 작업이 대기와 접촉하지 않도록 액체, 즉 용매 환경에서 이루어지고, 분쇄결과 생성되는 실리콘입자 표면에 산화물 층이 형성되지 않기 때문이다. 즉, 활성 표면을 갖기 때문이다. 이는 공기와의 접촉이 없고, 이와 동시에 용매와의 접촉으로 산화가 이루어질 수 없기 때문이며, 상기 용매는 향후 직접적인 용도대로 주요 기술 공정의 화학반응에서 연속으로 사용된다. 이와 같이, 본 발명에 따른 기술적 방안으로 초기 실리콘 입자 표면에 산화물 층 형성이 방지되어, 트리알콕시실란 합성 반응이 바로 진행되도록 준비되는, 주요 기술 공정 시약의 활성화가 보장된다.
뿐만 아니라, 본 발명이 제안하는 방법의 분쇄된 미립자 크기는 30 ~ 100 μm로서 [1] 및 [26]보다 10배까지 작아서, 주요 시약들이 서로 접촉하는 면적이 훨씬 증가하고, 결과적으로 유도기간이 급격히 단축된다. 반대로 [1]과 유사한 방법이나 [26]의 실현 과정에서 제안된 방법에서와 같이 공기 중에서 이처럼 작은 크기로 실리콘을 분쇄할 경우, 미립자의 크기를 작게 함으로써 동일한 양의 실리콘이라도 그 총 표면적이 급격하게 증가한 상태에서 표면에 자연 산화막이 형성되기 때문에 유도기간의 증대를 가져오고, 기타 부정적인 특성이 강화된다.
[26]의 또 다른 주요 단점은 미반응 실리콘에 새롭게 시약을 첨가함으로써 여러 번에 걸쳐 반응 혼합물을 농축시키고, 이를 위해 주기적으로 서스펜션 내 침적물을 블리딩하고, 장시간 침전시켜야 하는 것인데, 본 발명은 상기 작업을 연속 모드에서 시행함으로써 문제를 해결한다. 여기서 본 발명은 반응성을 지닌 굵은 실리콘 미립자를 반응기에서 제거하는 것을 방지하기 위해 세라믹 멤브레인 필터를 통해 서스펜션을 블리딩하는 방법을 사용한다. 서스펜션 성분으로 반응기에 공급되는 실리콘의 양은 반응한 실리콘의 양과 동일하게 유지하고, 반응한 상기 실리콘 양은 합성된 트리알콕시실란 양 및/또는 반응 결과 형성된 수소의 양에 따라 결정된다. 반응기 배출구에서 용매를 계속 블리딩하고, 이와 같은 양의 용매를 서스펜션 성분으로 반응기에 공급하여 블리딩 된 양을 보충함으로써 반응기의 불순물을 제거한다.
분쇄 전 선형치수를 20 mm 이상, 바람직하게는 20 mm ~ 20 cm으로 선택하여, 표면에 산화물이 존재하는 상당량의 실리콘 미립자가 반응 혼합물에 투입될 가능성을 확실하게 방지할 수 있다.
본 발명에서 실리콘의 분쇄 전에 촉매를 실리콘 매스에 첨가함으로 나타나는 특징은 다음과 같다. 첫째, 두 물질을 동일한 크기로 분쇄한다. 둘째, 본 발명의 특징대로 분쇄가 이루어진 용매 환경의 서스펜션 내에서 상기 물질들이 균질로 혼합된다. 세라믹 멤브레인 필터내 기공의 크기는 1 ~ 10 μm 로 한다. 기공이 1 μm보다 작을 경우 여과 과정이 어려워지고, 10 μm 보다 큰 경우 반응성을 갖는 실리콘 미립자가 필터를 통해 제거됨으로 실리콘의 손실이 커진다. 실리콘 미립자의 최초 크기가 30 ~ 100 μm인 경우 세라믹 멤브레인 필터내 적절한 기공의 크기는 5 μm이며, 이 때 실리콘의 총 손실은 0.5% 미만이 된다.
본 발명이 제안하는 방법은 다음과 같이 실현된다. 예를 들어 순도 98~99 %의 금속 실리콘인 최초 실리콘을 헤머밀(미립자 크기 ~ 1 mm까지)과 일반 유성볼밀(planetary ball mill)을 이용하여 주어진 크기까지 분쇄하고, 작업 용량을 사전에 용매로 채운다. 용매는 열매체유의 기능을 하는데, 상기 용매로써 예컨대 알킬화벤젠, 알킬화나프탈렌, 폴리방향족오일 등이 사용될 수 있으며, 바람직하게는 [26] 및 기타 유사 방법에서와 같이 THERMINOL® 66또는 기타 폴리방향족 오일을 사용할 수 있다. 본 발명에 따라 상기 용매 환경 내에서 미립자 크기가 30 ~ 100 μm에 도달하기까지 실리콘 분쇄 작업을 실시하고, 획득된 서스펜션은 계량 펌프를 이용하여 반응기에 지속적으로 공급하여 실리콘과 알코올의 상호작용이 계속 일어나도록 하되, 실리콘 분말을 용매로부터 분리하지 않는다. 이때 반응기에서는 계획된 용량과 성분의 접촉 매스(contact mass)가 형성된다.
본 발명에서 지속적인 반응 유지를 위해 합성 과정에서 소비되는 양 만큼 첨가되는 서스펜션 성분은 수학식 1을 이용하여, 합성된 트리알콕시실란 양으로부터 계산된 실리콘과 이 때 해당되는 용매 및 촉매로 구성되어 산출되며, 지속적이고 안정적으로 반응에 투입된다.
본 발명에서 사용되는 무수알코올로서는 잘 알려진 무수 에탄올이나 무수 메탄올을 사용할 수 있다. 또한 촉매로서는 염화 제일 구리(CuCl)와 같은 구리 함유 촉매를 사용할 수 있다.
이와 같은 주요 공정은, 상기 언급된 것 처럼 THERMINOL® 59, THERMINOL® 60, THERMINOL® 66, DOWTHERM® HT, MARLOTHERM® S, MARLOTHERM® 또는 기타 폴리방향족 오일과 같이 끓는점이 높은 용매 환경에서, [26]과 같은 온도 범위인 180 ~ 260℃에서 이루어진다. 다시 말하면, 주요 기술공정의 핵심은 임의의 잘 알려진 형태의 반응 용량에 서스펜션(촉매가 첨가된 실리콘, 예를 들어 THERMINOL® 66와 같은 용매 환경에서 분쇄된 실리콘과 염화 제일 구리 분말을 포함)을 채우고, 그 혼합물을 강하게 섞으면서 180 ~ 260℃까지 가열한 뒤 에탄올이나 메탄올과 같은 알코올을 첨가한다. 발생된 증기-가스 혼합물 및 액체를 반응용량에서 지속적으로 제거하고, [1]과 [26] 또는 기타 유사방법에서 사용된 것을 포함하여 임의의 잘 알려진 기술적 방법으로 분리한다. 목적물인 트리에톡시실란 또는 트리메톡시실란 역시 이와 같은 일반적 방법으로 분리한다.
본 발명은 선행기술과는 달리 세라믹 멤브레인 필터를 이용하여 지속적으로 용매를 블리딩할 수 있으며, 특히 원료 실리콘의 분쇄과정에서 차이를 통해 유도기간을 획기적으로 단축할 수 있다.
이와 같이, 선행기술은 원료 실리콘을 일반 공기 중에서 분쇄하여, 필연적으로 실리콘 표면에 산화막이 형성되기 때문에, 트리알콕시실란의 합성에서 가장 중요한 요소인 유도기간(induction period)이 반드시 존재하고, 이는 후에 연속공정시 서스펜션을 블리딩하여 추가로 원료를 공급할 때도 반드시 유도기간을 거쳐야 하지만, 본 발명에서는 트리알콕시실란의 합성시 반드시 존재하는 초기 합성 유도기간의 제거 및 급격한 단축과 세라믹 멤브레인을 이용하여 불순물을 연속공정에서 지속적으로 제거할 수 있는 효과가 있다.
한편, 본 발명에 따르면 상기 공정 (a) 만 시행하고 나머지 합성공정은 종래의 방법들을 그대로 이용하는 경우도 상당한 개선효과가 확인되었으며, 상기 공정 (a), (b) 만 시행하고 (c) 공정을 시행하지 않은 공정 역시 우수한 효과가 있는 것으로 확인되었다. 따라서 (b) 또는 (b)와 (c) 가 생략된 공정들 역시 각각 다른 개선된 발명으로서 이해될 수 있다.

이하, 본 발명을 실시예에 의거 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.

본 발명이 제안하는 방법의 실시예는 트리알콕시실란 합성을 위해 특수 제작된 장비에서 실험한 결과를 기반으로 한다.

실시예 1.
트리에톡시실란의 제조는 작업용량 9 L 반응기에서 실시하며, 상기 반응기는 반응용량의 전기적 가열조절장치가 구비되고, 회전속도가 300 ~ 1500 rpm까지 조절되는 4 개의 날개가 있는 임펠러 교반기가 구비된 것으로 하였다. 3.3 kg 의 금속실리콘을 미립자 크기가 30 ~ 100 μm로 될 때까지 유성밀(Planetary Mill)을 사용하여 6.6 kg의 용매 THERMINOL® 66 환경에서 분쇄하였다. 분쇄 과정에서 0.2 kg의 염화 제일 구리(CuCl) 촉매를 서스펜션에 투입하였다. 교반기를 850 rpm로 연속 가동한 상태에서 242 + 2°С온도까지 접촉 매스를 가열하고, 계량 펌프 (Digital dosing pump) GRUNDFOS® DME 60-10 AR을 이용하여 건조 알코올로 에탄올을 시간당 600 ml 로 반응기에 공급하기 시작하였다. 반응기에서 액체 산물이 나타나는 시점 및 이후 30 분마다 시료를 채취하였다. 가스 크로마토그래프 Agilent® GC7890A에서 시료를 분석한 결과, 반응기에 알코올을 투입한지 10분이 경과하자 합성 반응이 시작되었고, 처음 60 분간 반응속도가 증가하였다. 트리에톡시실란의 합성 반응속도는 180 분 이후부터 감소하였고, 알코올 공급 260 분 후부터 완전히 둔화되었다. 이때 1635 g의 트리에톡시실란과 105 g의 테트라에톡시실란을 획득하였다. 트리에톡시실란의 선택성은 94% 이었다.

비교예
이 실험은 실시예 1에서와 같은 조건에서 실시되었고, 유일한 차이점은 반응 시약 준비과정에 있다. 금속실리콘은 미립자 크기가 30 ~ 100 μm로 될 때까지 유성밀(Planetary Mill)로 공기 중에서 분쇄하였다. 분쇄된 실리콘 3.3 kg, 용매로서 THERMINOL® 66 6.6 kg 및 0.2 kg의 염화 제일 구리(CuCl) 촉매를 반응기에 투입하고 반응을 시작하였다. 시료를 분석한 결과, 알코올 공급 150 분 후부터 금속실리콘과 에틸 알코올의 반응이 시작되었고, 이 후 반응 속도가 점차 증가하였다. 트리에톡시실란의 합성 반응은 알코올 공급 500 분이 지나자 둔화되었다. 500 분 동안 1435 g의 트리에톡시실란, 614 g의 테트라에톡시실란을 획득하였다. 트리에톡시실란의 선택성은 70% 이었다.

실시예 2
이 실험은 실시예 1과 같은 조건에서 실시되었고, 차이점은 무수에탄올과의 반응에서 용매의 소비에 따라 서스펜션 성분 내 용매와 실리콘의 질량 비율이 2:1인 상태로 실리콘을 지속적으로 반응기에 공급하는 것이다. 트리알콕시실란 합성 과정에서 서스펜션 성분의 실리콘이 반응기에 공급되었고, 이때 반응 결과 실리콘의 소비 속도와 같은 속도로 공급되었다. 시간 단위당 실리콘 소비량은 반응 매스-밸런스로부터 상기 수학식 1과 같은 공식에 따라 산출한다.
mSi=k1·mTES+k2·mTEOS
이때 mTES는 트리에톡시실란 질량, mTEOS는 직접반응 결과 단위시간당 획득된 테트라에톡시실란의 질량이다. 계수 k1 및 k2 는 각각 트리에톡시실란과 테트라에톡시실란의 합성에 있어 실리콘의 소비된 몰비에 관련된 계수이다. 본 실시예의 경우 k1=0.171, k2=0.135로 확인되었다. 이와 같이 서스펜션 성분의 실리콘을 상기 수학식 1에서 산출된 양만큼 지속적으로 반응기에 투입하였다. 동시에 반응기 본체에 설치된 세라믹 멤브레인 필터를 통해 반응기로부터 용매를 계속 블리딩하였다. 불순물이 녹아있는 용매는 재활용을 위해 수거용기에 모은다. 세라믹 멤브레인 필터의 뒤쪽으로부터 10 mbar까지 진공을 형성하여 미반응 실리콘 및 촉매를 여과후 용매를 배출한다. 이때 반응기로부터 세라믹 멤브레인을 통해 계속 용매가 배출되고, 배출량은 상기 수학식 1에 따라 규정된 mSi의 두 배로써, 서스펜션 성분으로 반응기에 투입되는 용매의 양과 동일하다. 이로써 접촉 매스 성분을 일정하게 유지하고, 반응기 내에서 상기 성분의 수준을 일정하게 유지할 수 있다. 3 시간 마다 반응기의 시료를 블리딩하여 접촉매스 성분을 조절한다. 반응기 내 접촉 매스 수준은 반응기 창을 통해 육안으로 확인한다. 반응기에 알코올을 공급한 지 10 분 후부터 합성 반응이 개시되고, 반응속도는 처음 60 분 동안 급격하게 증가하다가 이후 120 분까지 천천히 증가하고, 트리에톡시실란 합성 수준 420 ~ 450 g/h 에서 안정되었다. 500 분 동안 서스펜션 성분의 실리콘 600 g, THERMINOL® 66 용매 1200 g가 지속적으로 공급되었다. 이 기간 동안 3380 g 의 트리에톡시실란과 141 g의 테트라에톡시실란이 획득하였다. 트리에톡시실란의 선택성은 96%이었다.

실시예 3
이 실험은 실시예 2에서와 같은 조건과 같이 실리콘과 무수에탄올과의 반응에서 실리콘의 소비량을 수학식 1을 통해 산출하여, 서스펜션 성분 내 용매와 실리콘의 질량 비율이 2:1인 상태로 지속적으로 실리콘을 반응기에 공급하였다. 차이점은 세라믹 멤브레인 필터 장착을 하지 않고, 용매를 블리딩하지 않는 것이다. 반응기에 알코올 공급 시작 9 분째 합성 반응이 시작되었고, 처음 90 분 동안 반응속도가 증가하다가, 이후 트리에톡시실란이 400 g/h 되는 수준에서 안정되었다. 알코올 투입 시작 후 250 분에 반응 산물 내 다량의 거품 발생으로 반응이 중단되었다. 이 기간 동안 서스펜션 성분의 실리콘 290 g과 THERMINOL® 66 촉매 580 g을 반응기에 지속적으로 투입하였다. 용매의 추가 투입은 반응기 내 접촉 매스 양의 증가를 야기하였고, 반응기에서 거품이 배출되는 원인이 되었다. 반응 250 분간 1600 g의 트리에톡시실란과 120 g의 테트라에톡시실란이 획득되었다. 트리에톡시실란의 선택성은 93% 이었다.

다음 표 1은 상기 실시예와 비교예의 결과를 나타낸 것이다.
실리콘
분말
분쇄
방법 
에탄올
투입후
반응개시
(유도기간, 분)
투입량 블리딩량 결과
MG Si
(g)
용매
(g)
용매(g) TES
생산량(g)
TEOS
생산량(g)
TES선택성(%)
실시예 1 용매
환경
10 - - - 1635 105 93
비교예 공기 중 150 - - - 1435 614 70
실시예 2 용매
환경
10 600 1200 1200 3380 141 96
실시예 3 용매
환경
9 290 580 - 1600 120 94

상기한 바와 같이, 본 발명이 제안하는 기술적 방안이 종래 방법들과 다른 큰 차이점은 원료 준비 작업에서 원료 실리콘을 액체 환경내에서 분쇄하여, 실리콘 표면의 산화막 형성 방지를 위한 조치가 이루어지고, 기술공정에서 반응 활성화를 보장함으로서(실시예 1, 2, 3), 종래 기술들과 달리 실리콘과 알코올 반응 초기 유도기간을 획기적으로 단축함으로써 공정 시간을 단축하여, 산물의 생산성을 극대화할 수 있어 경제적이다.
또한 서스펜션의 투입을 실시하는 경우(실시예 2, 3) 비교예에 비해 TES 생산량, TES 선택성, 초기 유도기간의 획기적인 단축 등의 우수한 효과가 확인되었고, 블리딩 공정까지 시행하는 경우(실시예 2) 비교예에 비해 동일 반응 시간 동안 TES 생산량이 2배 이상으로 매우 우수한 효과를 나타내었다.
본 발명이 제안하는 기술적 해결안은 종래 기술 장비들을 사용하여 간단하게 실현되고, 상기 언급된 원료 준비작업(실리콘 분쇄)이 용매 환경 즉, 향후 기술공정에서 원래의 용도로 사용하는 물질을 용매로 사용한 환경에서 이루어지기 때문에 기술공정이 복잡하지 않고 단순화된다.
또한, 원료 준비작업인 실리콘 분쇄 공정이 향후 합성 과정에서 사용되는 용매와 동일 성분의 용매를 사용한 환경에서 이루어지기 때문에 기술공정이 복잡하지 않고 단순화되고, 소모되는 서스펜션을 지속 공급하고, 세라믹 멤브레인 필터를 이용하여 불순물의 지속적 제거를 통한 지속적인 합성공정 가능함으로써 전체 공정 시간의 획기적인 단축과 동시에 트리알콕시실란의 지속적인 생산이 가능하므로 생산성 및 경제성을 극대화할 수 있다.

상기 내용을 요약하여 본 발명이 제안하는 기술적 방안은 다음과 같은 효과가 있다:
- 직접 합성 반응의 유도기간 감소;
- 트리알콕시실란의 합성 반응 지속;
- 세라믹 멤브레인 필터를 통해 용매를 블리딩하여 반응환경의 불순물을 지속적으로 제거.
따라서 본 발명이 제안하는 방법을 실현함으로서 상시 본 발명에서 목적하는 모든 해결과제들이 해결된다.

Claims (12)

  1. (a) 용매 환경 내에서 실리콘(Si)을 30 ~ 100 μm 미립자 크기로 분쇄하되, 향후 상기 용매를 트리알콕시실란 합성 과정에 직접 용매로 사용하도록 하는 용매 환경에서의 실리콘의 분쇄 단계;
    (b) 트리알콕시실란을 합성하는 과정에서 반응에 소모된 양 만큼의 실리콘과 무수알코올의 서스펜션을 계속 반응기에 공급하되, 서스펜션 성분으로 반응기에 공급되는 실리콘의 양과 반응과정에서 반응이 완료된 실리콘의 양을 동일하게 유지하도록, 다음 수학식 1을 이용하여 합성된 트리알콕시실란 양으로부터 서스펜션 소모량을 산출하여, 지속적이고 안정적으로 반응이 진행되도록 서스펜션을 공급하는 트리알콕시실란의 연속 합성단계,
    [수학식 1]
    mSi=k1·mTES+k2·mTEOS
    위 식에서 mTES는 트리에톡시실란 질량, mTEOS는 직접 반응 결과 단위시간당 획득된 테트라에톡시실란의 질량, k1 및 k2는 각각 트리에톡시실란과 테트라에톡시실란의 합성 과정에서 실리콘의 소비된 몰비; 및
    (c) 반응기로부터 세라믹 멤브레인 필터를 사용하여 연속적으로 용매를 블리딩(bleeding)하는 방식으로 반응기에 축적된 불순물을 제거하되, 상기 블리딩된 양만큼의 용매를 서스펜션 성분으로 반응기에 계속 공급하여 용매가 보충되도록 하는 불순물 제거단계;
    를 포함하는 트리알콕시실란의 제조방법.
  2. 청구항 1에 있어서, 실리콘은 분쇄 전 선형치수가 20 mm ~ 20 cm인 것을 특징으로 하는 방법.



  3. 청구항 1에 있어서, 용매와 실리콘의 질량비가 1:2 ~ 2:1인 것을 특징으로 하는 방법.
  4. 청구항 1에 있어서, 촉매가 용매 환경의 분쇄과정에서 직접 실리콘 매스에 1.0 ~ 10.0 wt%의 양으로 투입되는 것을 특징으로 하는 방법.

  5. 청구항 1에 있어서, 촉매는 구리 함유 촉매인 것을 특징으로 하는 방법.
  6. 청구항 1에 있어서, 트리알콕시실란의 합성단계에서 용매를 160-300℃로 가열하는 것을 특징으로 하는 방법.
  7. 청구항 1에 있어서, 실리콘 분쇄단계에서 구리 함유 촉매를 사용하고, 무수알코올로 무수메탄올 또는 무수 에탄올을 사용하며, 합성단계에서 용매를 160-300℃로 가열하면서 상기 (a), (b), (c) 공정을 순차적으로 진행하는 것을 특징으로 하는 방법.
  8. 청구항 1에 있어서, 실리콘, 용매 및 촉매의 안정적인 비율 유지를 위해 반응기에 공급하기 전 서스펜션을 계속 섞어주는 것을 특징으로 하는 방법.
  9. 청구항 1에 있어서, 합성 과정 중에 용매에 녹아 있는 불순물과의 반응 과정에서 반응기 본체에 설치된 세라믹 멤브레인 필터를 통해 용매를 블리딩하는 것을 특징으로 하는 방법.
  10. 청구항 1에 있어서, 세라믹 멤브레인의 기공 크기가 1 ~ 10 μm인 것을 특징으로 하는 방법.
  11. 청구항 1에 있어서, 트리알콕시실란 합성의 전 과정에 걸쳐 반응 환경 내 실리콘, 용매, 촉매의 양이 일정하게 유지되는 것을 특징으로 하는 방법.
  12. 청구항 1에 있어서, 트리알콕시실란은 다음 화학식 1로 표시되는 것을 특징으로 하는 방법:


    [화학식 1]
    SiH(OR)3


    상기 화학식 1에서 R은 탄소수 1 내지 3의 메틸, 에틸, 프로필 또는 이소프로필기이다.

PCT/KR2012/002428 2011-09-06 2012-03-30 트리알콕시실란의 제조방법 WO2013035956A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/241,581 US9156861B2 (en) 2011-09-06 2012-03-30 Method for preparing trialkoxysilane
CN201280043428.3A CN103797018A (zh) 2011-09-06 2012-03-30 制备三烷氧基硅烷的方法
EP12829300.8A EP2754664B1 (en) 2011-09-06 2012-03-30 Method for preparing trialkoxysilane
JP2014529602A JP5836489B2 (ja) 2011-09-06 2012-03-30 トリアルコキシシランの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UZIAP20110393 2011-09-06
UZ1100393 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013035956A1 true WO2013035956A1 (ko) 2013-03-14

Family

ID=47832369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002428 WO2013035956A1 (ko) 2011-09-06 2012-03-30 트리알콕시실란의 제조방법

Country Status (6)

Country Link
US (1) US9156861B2 (ko)
EP (1) EP2754664B1 (ko)
JP (1) JP5836489B2 (ko)
KR (1) KR101422080B1 (ko)
CN (1) CN103797018A (ko)
WO (1) WO2013035956A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104387413B (zh) * 2014-11-03 2017-03-15 湖北武大有机硅新材料股份有限公司 一种直接法制备三烷氧基硅烷的生产方法
KR102060081B1 (ko) * 2019-04-29 2019-12-30 한국과학기술연구원 테트라알콕시실란의 연속 제조방법
CN110745834B (zh) * 2019-11-27 2021-09-10 鑫创新材料科技(徐州)有限公司 一种气凝胶的绿色生产工艺及其应用
CN113683635B (zh) * 2021-09-02 2024-03-26 上海赛奥分离技术工程有限公司 陶瓷膜技术在四甲基二乙烯基二硅氧烷生产中的应用方法

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380997A (en) 1941-09-26 1945-08-07 Gen Electric Contact masses
US2473260A (en) 1946-06-26 1949-06-14 Gen Electric Preparation of tetramethyl silicate
US3072700A (en) 1959-08-07 1963-01-08 Union Carbide Corp Process for producing silanes
US3641077A (en) 1970-09-01 1972-02-08 Eugene G Rochow Method for preparing alkoxy derivatives of silicon germanium tin thallium and arsenic
US3775457A (en) 1971-09-30 1973-11-27 Tokyo Shibaura Electric Co Method of manufacturing alkoxysilanes
JPS5034540A (ko) 1973-07-27 1975-04-02
JPS511692A (ja) 1974-06-26 1976-01-08 Asahi Chemical Ind Koseibutsushitsukorisuchinno seiseiho
US4314908A (en) 1979-10-24 1982-02-09 Union Carbide Corporation Preparation of reaction mass for the production of methylchlorosilane
US4487949A (en) 1983-11-22 1984-12-11 Union Carbide Corporation Process for the preparation of alkyl silicates
US4727173A (en) 1987-03-31 1988-02-23 Union Carbide Corporation Process for producing trialkoxysilanes from the reaction of silicon metal and alcohol
US4762939A (en) 1987-09-30 1988-08-09 Union Carbide Corporation Process for trialkoxysilane/tetraalkoxysilane mixtures from silicon metal and alcohol
US4931578A (en) 1987-02-23 1990-06-05 Tama Chemicals Co Ltd Process for the production of trialkoxysilanes
US5084590A (en) * 1991-06-24 1992-01-28 Union Carbide Chemicals & Plastics Technology Corporation Trimethoxysilane preparation via the methanol-silicon reaction using a continuous process and multiple reactors
US5166384A (en) 1992-04-07 1992-11-24 Union Carbide Chemicals & Plastics Technology Corporation Method for the removal of siloxane dissolved in the solvent employed in the preparation of trimethoxysilane via methanol-silicon metal reaction
EP0517398A1 (en) 1991-06-03 1992-12-09 Dow Corning Corporation Preparation of alkoxysilanes
GB2263113A (en) 1992-01-13 1993-07-14 Toa Gosei Chem Ind A process for producing trialkoxysilanes
JPH05178864A (ja) 1991-12-27 1993-07-20 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
JPH0665258A (ja) 1992-08-18 1994-03-08 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
JPH06312994A (ja) 1993-04-30 1994-11-08 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
JPH06312992A (ja) 1993-04-30 1994-11-08 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
US5362897A (en) 1993-04-30 1994-11-08 Toagosei Chemical Industry Co., Ltd. Process for producing trialkoxysilanes
US5783720A (en) 1996-10-10 1998-07-21 Osi Specialties, Inc. Surface-active additives in the direct synthesis of trialkoxysilanes
US6090965A (en) 1998-04-02 2000-07-18 Osi Specialties, Inc. Removal of dissolved silicates from alcohol-silicon direct synthesis solvents
US6580000B1 (en) * 2002-06-06 2003-06-17 Ak Research Company Process for the manufacture of alkoxysilanes and alkoxy orthosilicates
KR20030077594A (ko) * 2001-01-31 2003-10-01 크롬프톤 코포레이션 트리알콕시실란의 직접 합성을 위한 나노크기 구리 촉매전구체
RU2235726C1 (ru) 2003-05-28 2004-09-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт химии и технологии элементоорганических соединений" Способ получения алкоксисиланов
WO2007032865A2 (en) 2005-09-13 2007-03-22 Momentive Performance Materials Inc. Process for the direct synthesis of trialkoxysilane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034540B2 (ko) 1972-09-30 1975-11-10
CN1027508C (zh) * 1992-04-23 1995-01-25 化工部成都有机硅应用研究技术服务中心 直接法合成烷氧基硅烷
US7365220B2 (en) * 2005-09-29 2008-04-29 Momentive Performance Materials Inc. Process for the recovery of alkoxysilanes obtained from the direct reaction of silicon with alkanols
CN101353356A (zh) * 2008-09-22 2009-01-28 哈尔滨工业大学 直接合成三烷氧基硅烷的方法
GB0919830D0 (en) 2009-11-12 2009-12-30 Isis Innovation Preparation of silicon for fast generation of hydrogen through reaction with water

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380997A (en) 1941-09-26 1945-08-07 Gen Electric Contact masses
US2473260A (en) 1946-06-26 1949-06-14 Gen Electric Preparation of tetramethyl silicate
US3072700A (en) 1959-08-07 1963-01-08 Union Carbide Corp Process for producing silanes
US3641077A (en) 1970-09-01 1972-02-08 Eugene G Rochow Method for preparing alkoxy derivatives of silicon germanium tin thallium and arsenic
US3775457A (en) 1971-09-30 1973-11-27 Tokyo Shibaura Electric Co Method of manufacturing alkoxysilanes
JPS5034540A (ko) 1973-07-27 1975-04-02
JPS511692A (ja) 1974-06-26 1976-01-08 Asahi Chemical Ind Koseibutsushitsukorisuchinno seiseiho
US4314908A (en) 1979-10-24 1982-02-09 Union Carbide Corporation Preparation of reaction mass for the production of methylchlorosilane
US4487949A (en) 1983-11-22 1984-12-11 Union Carbide Corporation Process for the preparation of alkyl silicates
US4931578A (en) 1987-02-23 1990-06-05 Tama Chemicals Co Ltd Process for the production of trialkoxysilanes
US4727173A (en) 1987-03-31 1988-02-23 Union Carbide Corporation Process for producing trialkoxysilanes from the reaction of silicon metal and alcohol
US4762939A (en) 1987-09-30 1988-08-09 Union Carbide Corporation Process for trialkoxysilane/tetraalkoxysilane mixtures from silicon metal and alcohol
EP0517398A1 (en) 1991-06-03 1992-12-09 Dow Corning Corporation Preparation of alkoxysilanes
US5177234A (en) 1991-06-03 1993-01-05 Dow Corning Corporation Preparation of alkoxysilanes by contacting a solution of hydrogen fluoride in an alcohol with silicon
US5084590A (en) * 1991-06-24 1992-01-28 Union Carbide Chemicals & Plastics Technology Corporation Trimethoxysilane preparation via the methanol-silicon reaction using a continuous process and multiple reactors
JPH05178864A (ja) 1991-12-27 1993-07-20 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
GB2263113A (en) 1992-01-13 1993-07-14 Toa Gosei Chem Ind A process for producing trialkoxysilanes
US5260471A (en) 1992-01-13 1993-11-09 Toagosei Chemical Industry Co., Ltd. Process for producing trialkoxysilane
US5166384A (en) 1992-04-07 1992-11-24 Union Carbide Chemicals & Plastics Technology Corporation Method for the removal of siloxane dissolved in the solvent employed in the preparation of trimethoxysilane via methanol-silicon metal reaction
JPH0665258A (ja) 1992-08-18 1994-03-08 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
JPH06312992A (ja) 1993-04-30 1994-11-08 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
JPH06312994A (ja) 1993-04-30 1994-11-08 Toagosei Chem Ind Co Ltd トリアルコキシシランの製造方法
US5362897A (en) 1993-04-30 1994-11-08 Toagosei Chemical Industry Co., Ltd. Process for producing trialkoxysilanes
US5783720A (en) 1996-10-10 1998-07-21 Osi Specialties, Inc. Surface-active additives in the direct synthesis of trialkoxysilanes
US6090965A (en) 1998-04-02 2000-07-18 Osi Specialties, Inc. Removal of dissolved silicates from alcohol-silicon direct synthesis solvents
KR100625148B1 (ko) * 1998-04-02 2006-09-20 제너럴 일렉트릭 캄파니 알콜-규소 직접 합성 용매에서 용해된 규산염을 제거하는 방법
KR20030077594A (ko) * 2001-01-31 2003-10-01 크롬프톤 코포레이션 트리알콕시실란의 직접 합성을 위한 나노크기 구리 촉매전구체
US6580000B1 (en) * 2002-06-06 2003-06-17 Ak Research Company Process for the manufacture of alkoxysilanes and alkoxy orthosilicates
RU2235726C1 (ru) 2003-05-28 2004-09-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт химии и технологии элементоорганических соединений" Способ получения алкоксисиланов
WO2007032865A2 (en) 2005-09-13 2007-03-22 Momentive Performance Materials Inc. Process for the direct synthesis of trialkoxysilane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2754664A4 *

Also Published As

Publication number Publication date
JP5836489B2 (ja) 2015-12-24
EP2754664A4 (en) 2014-07-16
EP2754664B1 (en) 2016-12-28
CN103797018A (zh) 2014-05-14
US20140364639A1 (en) 2014-12-11
US9156861B2 (en) 2015-10-13
KR20130027074A (ko) 2013-03-14
JP2014525473A (ja) 2014-09-29
EP2754664A1 (en) 2014-07-16
KR101422080B1 (ko) 2014-07-22

Similar Documents

Publication Publication Date Title
JP5527520B2 (ja) アルコキシシランの調製工程
WO2013035956A1 (ko) 트리알콕시실란의 제조방법
EP3847178B1 (en) Method for preparing alkylalkoxysilanes
KR101153590B1 (ko) 페닐클로로실란의 제조 방법
EP1368359B1 (en) Continuous transesterification process for alkoxyorganosilicon compounds
EP2099809B1 (en) Process for preparing organic silane compounds having beta-cyano ester group
JP6014771B2 (ja) トリアルコキシシランを用いたモノシランの製造方法
CN108084219B (zh) 一种二(二乙基氨基)硅烷合成方法
EP2797855B1 (en) Method of producing an organic silicon compound
EP2032588B1 (en) Method for preparation of alkoxysilanes having reduced halide content
Kim et al. 111111 Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
TWI549910B (zh) 製備三烷氧矽烷之方法
JP3658901B2 (ja) アルコキシシランの製造方法
KR101344356B1 (ko) 모노실란 및 테트라알콕시실란의 제조방법
KR20110005910A (ko) 모노실란 및 테트라알콕시실란의 제조방법
EP3039027B1 (en) Slurry phase direct synthesis of organohalosilanes from cyclone fines
US20200339609A1 (en) Method for continuous production of tetraalkoxysilane
TWI535657B (zh) 利用三烷氧基矽烷製備甲矽烷的方法
KR19990085368A (ko) 테트라알콕시실란의 제조방법
JPH0723383B2 (ja) アルコキシシラン類の製造方法
JPH03190888A (ja) アミノシラン化合物の製造方法
JPH06312993A (ja) トリアルコキシシランの製造方法
JPH10182661A (ja) アルコキシシランの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14241581

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012829300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012829300

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014529602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE