WO2013031946A1 - 軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体 - Google Patents

軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体 Download PDF

Info

Publication number
WO2013031946A1
WO2013031946A1 PCT/JP2012/072155 JP2012072155W WO2013031946A1 WO 2013031946 A1 WO2013031946 A1 WO 2013031946A1 JP 2012072155 W JP2012072155 W JP 2012072155W WO 2013031946 A1 WO2013031946 A1 WO 2013031946A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
mass
squeaking noise
ethylene
Prior art date
Application number
PCT/JP2012/072155
Other languages
English (en)
French (fr)
Inventor
望月勇
江川和也
Original Assignee
テクノポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノポリマー株式会社 filed Critical テクノポリマー株式会社
Priority to EP12828558.2A priority Critical patent/EP2752454B1/en
Priority to US14/241,219 priority patent/US9353249B2/en
Publication of WO2013031946A1 publication Critical patent/WO2013031946A1/ja
Priority to US15/140,518 priority patent/US9777147B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/04Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/006Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners

Definitions

  • the present invention relates to a thermoplastic resin composition that reduces the occurrence of squeaking noise and a structure that reduces the squeaking noise made of the composition, and more specifically, stagnation that occurs when at least two parts come into contact with each other and rub against each other.
  • the present invention relates to a thermoplastic resin composition capable of greatly reducing sound and a squeaking noise reducing structure comprising the composition.
  • Styrenic resin typified by ABS resin is widely used in automobiles, home appliances, office automation equipment, etc. due to its excellent moldability, mechanical properties, chemical resistance, and secondary processability.
  • parts made of styrenic resin typified by ABS resin are members made of other resins such as polyethylene and polyvinyl chloride, and other members such as lining sheets and foams such as chloroprene rubber, natural rubber, polyester, and polyethylene. If it is used for a part that comes into contact with and rubs, a squeaking noise may be generated.
  • a vehicle ventilator made of ABS resin is equipped with a valve shutter that uses chloroprene rubber foam or the like as a sealing material to adjust the air volume, and seals when the valve shutter is rotated to adjust the air volume. The material and the case of the ventilator may rub against each other and a squeaking noise may occur.
  • styrene resins such as ABS resin and ASA resin are amorphous resins, they have a higher coefficient of friction compared to crystalline resins such as polyethylene, polypropylene, and polyacetal.
  • the stick-slip phenomenon occurs due to a large friction coefficient, and an abnormal sound (stagnation sound) may occur.
  • the stick-slip phenomenon occurs when two objects rub against each other.
  • the object M When the force to be restored by the spring becomes equal to the static friction force, the object M starts to slide in the direction opposite to the driving speed V. At this time, the object M receives a dynamic frictional force, so that the sliding stops at the time of FIG. 2C when the dynamic force of the spring becomes equal to the dynamic frictional force, that is, adheres to the drive base. It moves in the same direction as the driving speed V (FIG. 2 (d)). This is called a stick-slip phenomenon. As shown in FIG. 1, it is said that if the difference ⁇ between the static friction coefficient ⁇ s at the upper end of the sawtooth waveform and the friction coefficient ⁇ l at the lower end of the sawtooth waveform is large, itching is likely to occur. .
  • the dynamic friction coefficient is an intermediate value between ⁇ s and ⁇ l.
  • Non-Patent Document 1 it is known that the stick-slip phenomenon appears prominently when the friction speed dependency of the friction coefficient obtained by Ammonton-Coulomb law takes a negative value (see Non-Patent Document 1). Therefore, by making the dependency of the friction coefficient on the friction speed close to zero or a positive value not less than zero, it is possible to suppress the occurrence of the stick-slip phenomenon and reduce the generation of the squeaking noise.
  • Patent Document 1 a technique for blending an organosilicon compound with a PC / ABS resin
  • Patent Document 2 a technique for blending a flame retardant, a flame retardant aid, and silicone oil with an ABS resin
  • Patent Document 2 a technique for blending silicone oil into a modified polystyrene resin
  • Patent Document 4 a technology for blending an alkali (earth) metal salt of alkane sulfonic acid into an ABS resin
  • Patent Document 5 A technique for blending a modified polyorganosiloxane containing at least one reactive group selected from an epoxy group, a carboxyl group and an acid anhydride group (see Patent Document 5) is disclosed.
  • the stagnation noise reduction effect by these methods is not sufficient, and even if it shows a certain level of stagnation noise prevention effect immediately after molding, the effect persists poorly, especially when placed at high temperatures for a long time Has a problem that its effect is greatly reduced. Furthermore, when using parts made of styrenic resin represented by ABS resin in combination, even if these methods are used, the effect of reducing the squeaking noise cannot be sufficiently obtained, and the use range is limited. was there.
  • the present invention has the effect of reducing the squeaking noise even when the styrenic resin member is used for a portion that rubs against each other, and the squeaking noise is remarkably reduced and the squeaking noise is reduced even when left at a high temperature for a long time.
  • the resin composition capable of providing a structure including a styrenic resin part that is maintained without deterioration and further has excellent impact resistance and molded appearance, and a squeaking noise reducing structure comprising the composition The purpose is to provide.
  • silicone oil is blended in the resin composition for the purpose of improving the slidability of the molded product, and when melt-kneading or devolatilizing a rubber-reinforced vinyl resin with an extruder, It may be added for the purpose of preventing deterioration of the rubber-reinforced vinyl-based resin due to a rise in the resin temperature due to shear force in the extruder. In the step of polymerizing the rubbery polymer, silicone oil may be added for the same purpose as described above. As a result of intensive studies to solve the above problems, the present inventors have determined that the silicon content contained in the thermoplastic resin composition [X] containing a specific rubber-reinforced vinyl resin is within a specific range.
  • the present invention was completed by discovering that the resin composition was maintained without being used, and further excellent in impact resistance and molding appearance.
  • thermoplastic resin composition containing rubber-reinforced vinyl resin [A] obtained by polymerizing vinyl monomer [b1] in the presence of ethylene / ⁇ -olefin rubbery polymer [a1] having a Tm (melting point) of 0 ° C. or higher.
  • a thermoplastic resin composition [X] comprising: The thermoplastic resin for reducing squeaking noise, wherein the silicon content in the thermoplastic resin composition [X] is 0.15% by mass or less with respect to 100% by mass of the thermoplastic resin composition [X]. Resin composition. 2. 2.
  • thermoplastic resin composition for sound reduction 3.
  • a rubber-reinforced vinyl resin [A] is obtained by polymerizing a vinyl monomer [b1] in the presence of an ethylene / ⁇ -olefin rubber polymer [a1] having a Tm (melting point) of 0 ° C. or higher.
  • the ethylene / ⁇ -olefin rubbery polymer [a1] is composed of 5 to 95% by mass of ethylene and 95 to 5% by mass of ⁇ -olefin (however, the total of ethylene and ⁇ -olefin is 100% by mass).
  • the graft ratio of the rubber-reinforced vinyl resin [A] is 10 to 150% by mass, and the intrinsic viscosity [ ⁇ ] (30 ° C. in methyl ethyl ketone) of the acetone-soluble component is 0.1 to 1.5 dl / g.
  • thermoplastic resin composition for reducing stagnation noise according to any one of 1 to 4 above, wherein: 6). Any one of 1 to 5 above, wherein the intrinsic viscosity [ ⁇ ] (in methyl ethyl ketone, 30 ° C.) of the acetone-soluble component of the thermoplastic resin composition [X] is 0.1 to 1.5 dl / g.
  • the thermoplastic resin composition for reducing squeaking noise as described in 1. 7). 7.
  • thermoplastic resin composition for reducing squeaking noise as described in 1. 9. Any one of 1 to 7 above, wherein the silicon content in the thermoplastic resin composition [X] is 0.07% by mass or less with respect to 100% by mass of the thermoplastic resin composition [X]. The thermoplastic resin composition for reducing squeaking noise as described in 1. 10. Any one of 1 to 7 above, wherein the silicon content in the thermoplastic resin composition [X] is 0.03% by mass or less with respect to 100% by mass of the thermoplastic resin composition [X]. The thermoplastic resin composition for reducing squeaking noise as described in 1. 11.
  • the contact part is an automobile interior part, a switch part, an office equipment part, a home appliance part, a desk lock part, a house interior part, or an indoor door opening / closing damper part.
  • the stagnation sound reducing structure according to any one of the above.
  • a meter visor for automobile interior comprising a contact component comprising the thermoplastic resin composition [X] according to any one of claims 1 to 10.
  • a center panel for automobile interior comprising a contact part made of the thermoplastic resin composition [X] according to any one of claims 1 to 10.
  • a console box for automobile interior comprising a contact part made of the thermoplastic resin composition [X] according to any one of claims 1 to 10.
  • a switch bezel for automobile interior comprising a contact part made of the thermoplastic resin composition [X] according to any one of claims 1 to 10.
  • a part including the part consisting of the component [X] by making the silicon content of the thermoplastic resin composition [X] containing the specific rubber-reinforced vinyl resin into a specific range. Even if they are rubbed together, the generation of squeaking noise is remarkably reduced, and even when placed at high temperatures for a long time, the squeaking noise reduction effect is maintained without deterioration, and also excellent in impact resistance and molded appearance It is possible to obtain a stagnation sound reduction structure.
  • FIG. 1 is an explanatory diagram of the stick-slip phenomenon.
  • FIGS. 2A, 2B, 2C, and 2D are stick-slip model diagrams.
  • thermoplastic resin composition for reducing squeaking noise in the present invention is obtained by polymerizing a vinyl monomer [b1] in the presence of an ethylene / ⁇ -olefin rubber polymer [a1] having a Tm (melting point) of 0 ° C. or higher.
  • (co) polymerization means homopolymerization and copolymerization
  • (meth) acryl means acryl and / or methacryl
  • (meth) acrylate Means acrylate and / or methacrylate.
  • Rubber reinforced vinyl resin [A] (hereinafter also referred to as “component [A]”):
  • the component [A] used in the present invention is obtained by polymerizing a vinyl monomer [b1] in the presence of an ethylene / ⁇ -olefin rubber polymer [a1] having a Tm (melting point) of 0 ° C. or more.
  • the rubber-reinforced vinyl resin made of a mixture of the rubber-reinforced vinyl resin [A1] alone and / or the vinyl monomer [b2] with the (co) polymer [B].
  • the (co) polymer [B] is obtained by polymerizing the vinyl monomer [b2] in the absence of a rubbery polymer.
  • Ethylene / ⁇ -olefin rubbery polymer [a1] (hereinafter also referred to as “component [a1]”):
  • the ethylene / ⁇ -olefin rubbery polymer [a1] used in the present invention is not particularly limited except that Tm (melting point) is 0 ° C. or higher.
  • Tm is a value obtained by measuring endothermic changes at a constant temperature increase rate of 20 ° C. per minute using a DSC (differential scanning calorimeter), and reading the peak temperature of the obtained endothermic pattern. , JIS K7121-1987.
  • the Tm is preferably 0 to 120 ° C., more preferably 10 to 100 ° C., and particularly preferably 20 to 80 ° C.
  • the rubber is crystallized around room temperature where parts are often used. Since it does not have the property, it is inferior in the effect of reducing itchiness.
  • those that do not clearly show the endothermic change peak are those that have substantially no crystallinity in the rubbery polymer and are judged to have no Tm, and the above Tm is 0 ° C. or higher. It is not included in the rubbery polymer. Those in which Tm does not exist are inferior in the effect of reducing itchiness.
  • the rubbery polymer having a melting point (Tm) means that the rubbery polymer has a crystalline part. If a crystalline part is present in the rubbery polymer, it is considered that the generation of the squeaking noise is suppressed in order to suppress the occurrence of the slip stick phenomenon.
  • the glass transition temperature (Tg) of the rubbery polymer is preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower, and particularly preferably ⁇ 40 ° C. or lower. If the glass transition temperature exceeds ⁇ 20 ° C., impact resistance may be insufficient.
  • the glass transition temperature can be determined according to JIS K7121-1987 using a DSC (differential scanning calorimeter) in the same manner as the measurement of Tm (melting point).
  • Examples of the ⁇ -olefin constituting the component [a1] include ⁇ -olefins having 3 to 20 carbon atoms. Specific examples include propylene, 1-butene, 1-pentene, 1-hexene, 4- Examples thereof include methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1-eicosene and the like. These ⁇ -olefins can be used alone or in admixture of two or more.
  • the carbon number of the ⁇ -olefin is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 8.
  • the mass ratio of ethylene: ⁇ -olefin is usually 5 to 95:95 to 5, preferably 50 to 95:50 to 5, more preferably 60 to 95:40 to 5, particularly preferably 70 to 90:30 to 10. It is.
  • the ⁇ -olefin weight ratio exceeds 95, the resulting rubber-reinforced vinyl resin is not preferable because the impact resistance is insufficient. If it is less than 5, the rubber elasticity of the rubber polymer [a1] is not sufficient, and the impact resistance of the resin composition is not sufficient.
  • the Mooney viscosity (ML1 + 4, 100 ° C .; conforming to JIS K6300) of component [a1] is usually 5 to 80, preferably 10 to 65, more preferably 10 to 45.
  • the Mooney viscosity exceeds 80, the fluidity of the resulting rubber-reinforced vinyl resin may be insufficient.
  • the Mooney viscosity is less than 5, the resulting molded article may have insufficient impact resistance. There is.
  • the ethylene / ⁇ -olefin rubbery polymer [a1] is usually an ethylene / ⁇ -olefin copolymer that does not contain a non-conjugated diene component from the viewpoint of reducing squeaking noise.
  • the non-conjugated diene component include 5-ethylidene-2-norbornene and dicyclopentadiene.
  • the blending amount is preferably 3% by mass or less based on 100% by mass of ethylene and ⁇ -olefin.
  • the component [a1] is more preferably an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, or an ethylene / 1-octene copolymer, and particularly preferably an ethylene / propylene copolymer.
  • Vinyl monomers [b1] and [b2] are not particularly limited as long as both are polymerizable compounds having an unsaturated bond.
  • the vinyl monomers [b1] and [b2] usually contain an aromatic vinyl compound and a vinyl cyanide compound.
  • other copolymerizable vinyl monomers such as (meth) acrylic acid ester and maleimide compound, carboxyl group, acid anhydride group, hydroxyl group, amino group, amide group, epoxy group, A copolymerizable functional group-containing vinyl monomer having at least one functional group such as an oxazoline group may be used in combination.
  • the vinyl monomer [b2] used for forming the (co) polymer [B] may be the same as or different from the vinyl monomer [b1].
  • the aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring.
  • examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinyltoluene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinylxylene, vinylnaphthalene, monochlorostyrene, dichloromethane.
  • examples thereof include styrene, monobromostyrene, dibromostyrene, and fluorostyrene. These can be used alone or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferred.
  • vinyl cyanide compound examples include acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more. Of these, acrylonitrile is preferred.
  • Examples of the (meth) acrylic acid ester include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, acrylic acid Acrylic esters such as phenyl and benzyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacrylic acid And methacrylic acid esters such as octadecyl acid, cyclohexyl methacrylate, phenyl methacrylate, and benzyl methacrylate.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide and the like. These can be used alone or in combination of two or more. Of these, N-cyclohexylmaleimide and N-phenylmaleimide are preferable.
  • a method for introducing a monomer unit comprising this maleimide compound into a polymer there is a method in which maleic anhydride is copolymerized in advance and then imidized.
  • examples of the unsaturated compound having a carboxyl group include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid. . These can be used alone or in combination of two or more.
  • Examples of the unsaturated compound having an acid anhydride group include maleic anhydride, itaconic anhydride, and citraconic anhydride. These can be used alone or in combination of two or more.
  • Examples of unsaturated compounds having a hydroxyl group include hydroxystyrene, 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3 -Hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, N- (4-hydroxyphenyl) maleimide and the like. These can be used alone or in combination of two or more.
  • unsaturated compounds having an amino group aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminomethyl acrylate, diethylaminomethyl acrylate, 2-dimethylaminoethyl acrylate, aminoethyl methacrylate, propylaminoethyl methacrylate , Dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, 2-dimethylaminoethyl methacrylate, phenylaminoethyl methacrylate, p-aminostyrene, N-vinyldiethylamine, N-acetylvinylamine, acrylicamine, methacrylamine, N- Examples include methylacrylamine.
  • Examples of the unsaturated compound having an amide group include acrylamide, N-methylacrylamide, methacrylamide, N-methylmethacrylamide and the like. These can be used alone or in combination of two or more.
  • Examples of the unsaturated compound having an epoxy group include glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether. These can be used alone or in combination of two or more.
  • Examples of the unsaturated compound having an oxazoline group include vinyl oxazoline. These can be used alone or in combination of two or more.
  • the types and amounts of the vinyl monomers [b1] and [b2] are selected according to the purpose, application, etc., but the total amount of the aromatic vinyl compound and the vinyl cyanide compound is the vinyl monomer. It is usually 30 to 100% by mass, preferably 50 to 100% by mass, and more preferably 70 to 100% by mass with respect to 100% by mass of the total mass.
  • the content of the other copolymerizable vinyl monomer is usually 0 to 70% by mass, preferably 0 to 50% by mass, more preferably 0 to 30% with respect to 100% by mass of the whole vinyl monomer. % By mass.
  • the content of the functional group-containing vinyl monomer is usually 0 to 40% by mass, preferably 0 to 30% by mass, more preferably 0 to 20% by mass with respect to 100% by mass of the total amount of vinyl monomers. %.
  • the use ratio of aromatic vinyl compound and vinyl cyanide compound is usually 40 to 85% by mass / 15 to 60% by mass when the total of these is 100% by mass. It is preferably 45 to 85% by mass / 15 to 55% by mass, particularly preferably 60 to 85% by mass / 15 to 40% by mass.
  • the rubber-reinforced vinyl resin [A] is a polymer component containing an ethylene / ⁇ -olefin rubbery polymer [a1], but the containing form is not particularly limited.
  • (Co) polymers of vinyl monomers are included.
  • this graft copolymer may contain a rubbery polymer to which a (co) polymer of a vinyl monomer is not grafted.
  • the content of the ethylene / ⁇ -olefin rubbery polymer [a1] is exemplified below. (1) When the ethylene / ⁇ -olefin rubbery polymer [a1] is contained as a graft copolymer. (2) The case where the ethylene / ⁇ -olefin rubber polymer [a1] is contained as an ungrafted rubber polymer. Of these, (1) is particularly preferred.
  • Examples of the rubber-reinforced vinyl resin [A] of the above aspect (1) are as follows.
  • [I] A rubber-reinforced vinyl resin [A1] obtained by polymerizing a vinyl monomer [b1] in the presence of the ethylene / ⁇ -olefin rubber polymer [a1].
  • [Ii] A mixture comprising the above [i] and a (co) polymer [B] of the vinyl monomer [b2] (hereinafter also referred to as “(co) polymer [B]”).
  • [ii] is particularly preferable because the amount of the ethylene / ⁇ -olefin rubber polymer [a1] in the rubber-reinforced vinyl resin [A] can be freely adjusted.
  • the rubber-reinforced vinyl resin [A] may be a combination of the above [i] and [ii].
  • the manufacturing method of said rubber reinforced vinyl resin [A1] is demonstrated.
  • the polymerization method include known polymerization methods such as emulsion polymerization, solution polymerization, suspension polymerization, and bulk polymerization.
  • the vinyl monomers may be charged all at once, or may be reacted by dividing or continuously adding them.
  • the rubbery polymer may be added or reacted in the whole or in part during the polymerization with the vinyl monomer.
  • the amount of the rubbery polymer used is usually 5 to 80% by mass, preferably 10 to 70% by mass, when the total of the rubbery polymer and the vinyl monomer is 100% by mass.
  • the method for producing the rubber-reinforced vinyl resin [A1] is preferably solution polymerization and bulk polymerization, more preferably solution polymerization, and a combination of these methods.
  • a polymerization initiator When the above rubber-reinforced vinyl resin [A1] is produced by emulsion polymerization, a polymerization initiator, a chain transfer agent, an emulsifier, water and the like are usually used. In addition, when the said rubbery polymer is not a latex form but a solid form, it can be used as a latex form by re-emulsification.
  • a polymerization initiator a combination of an organic peroxide such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide and a reducing agent represented by a sugar-containing pyrophosphate formulation, a sulfoxylate formulation, etc.
  • Redox polymerization initiators by: persulfates such as potassium persulfate; peroxides such as benzoyl peroxide (BPO), lauroyl peroxide, tert-butyl peroxylaurate, tert-butyl peroxymonocarbonate; Examples thereof include azo polymerization initiators such as 2′-azobis (isobutyronitrile). These can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is usually 0.05 to 5% by mass, preferably 0.1 to 1% by mass, based on the vinyl monomer [b1].
  • the polymerization initiator is usually added all at once or continuously to the reaction system.
  • chain transfer agents examples include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, tert-tetradecyl mercaptan; terpinolenes, ⁇ -Methylstyrene dimer, tetraethylthiuram sulfide, acrolein, methacrolein, allyl alcohol, 2-ethylhexylthioglycol and the like. These can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is usually 0.05 to 2% by mass with respect to the vinyl monomer [b1].
  • the emulsifier examples include anionic surfactants and nonionic surfactants.
  • anionic surfactant examples include sulfates of higher alcohols; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; aliphatic sulfonates such as sodium lauryl sulfate; rosinates and phosphates.
  • nonionic surfactants include polyethylene glycol alkyl ester compounds and alkyl ether compounds. These can be used alone or in combination of two or more.
  • the amount of the emulsifier is usually 0.3 to 5% by mass with respect to the vinyl monomer [b1].
  • Emulsion polymerization can be performed under known conditions depending on the type and amount of the vinyl monomer [b1] and the polymerization initiator used.
  • the latex obtained by the above emulsion polymerization is usually purified by coagulating with a coagulant to form a polymer component in powder form, and then washing with water and drying.
  • the coagulant include inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid, lactic acid, and citric acid. These can be used alone or in combination of two or more. Further, depending on the required performance, washing may be carried out after adding an alkali component or an acid component after solidification to neutralize it.
  • a solvent used in known radical polymerization, for example, aromatic hydrocarbons such as ethylbenzene and toluene; ketones such as methyl ethyl ketone and acetone; halogenated hydrocarbons such as dichloromethylene and carbon tetrachloride. Acetonitrile, dimethylformamide, N-methylpyrrolidone, etc. can be used. These can be used alone or in combination of two or more.
  • polymerization initiator examples include organic peroxides such as ketone peroxide, dialkyl peroxide, diacyl peroxide, peroxy ester, and hydroperoxide. These can be used alone or in combination of two or more.
  • chain transfer agents include mercaptans, terpinolenes, ⁇ -methylstyrene dimers, and the like. These can be used alone or in combination of two or more.
  • Solution polymerization can be performed under known conditions according to the type of vinyl monomer [b1], polymerization initiator, and the like to be used.
  • the polymerization temperature is usually in the range of 80 to 140 ° C.
  • it can also manufacture without using a polymerization initiator in the case of solution polymerization.
  • polymerization initiator, chain transfer agent and the like used in these methods are not particularly limited, but the same compounds as those exemplified in emulsion polymerization and solution polymerization can be used.
  • the graft ratio of the rubber-reinforced vinyl resin [A1] obtained as described above is usually 10 to 150% by mass, preferably 20 to 120% by mass, particularly preferably 30 to 70% by mass. If the graft ratio is less than 10% by mass, the density of the (co) polymer of the vinyl monomer [b1] graft-polymerized on the surface of the rubbery polymer is decreased, or the graft chain length is shortened. The impact resistance may not be sufficient.
  • the layer made of the (co) polymer of the vinyl monomer [b1] on the surface of the rubbery polymer becomes thick, and the above (copolymer) grafted inside the rubbery polymer. ) Since the polymer layer develops, the rubber elasticity decreases, and as a result, the impact resistance may decrease.
  • the graft ratio can be obtained by the following formula.
  • S is a mixture of 1 g of rubber-reinforced vinyl resin in 20 ml of acetone, shaken with a shaker for 2 hours under a temperature condition of 25 ° C., and then centrifuged under a temperature condition of 5 ° C.
  • This is the mass (g) of insoluble matter obtained by centrifuging for 60 minutes at (rotation speed: 23,000 rpm) and separating insoluble matter and soluble matter
  • T is contained in 1 gram of rubber-reinforced vinyl resin. It is the mass (g) of the rubbery polymer.
  • the mass of the rubbery polymer can be obtained by a method of calculating from a polymerization prescription and a polymerization conversion rate, a method of obtaining from an infrared absorption spectrum (IR), and the like.
  • the intrinsic viscosity [ ⁇ ] (measured in methyl ethyl ketone at 30 ° C.) of the acetone-soluble component of the rubber-reinforced vinyl resin [A1] is usually 0.1 to 1.5 dl / g, preferably 0. .2 to 0.8 dl / g.
  • the intrinsic viscosity [ ⁇ ] is within the above range, the physical property balance between molding processability and impact resistance is excellent.
  • the intrinsic viscosity [ ⁇ ] was measured by the following method. First, acetone (acetonitrile in the case where the rubber polymer is an acrylic rubber) of the rubber-reinforced vinyl resin [A1] was dissolved in methyl ethyl ketone to prepare five samples having different concentrations. The intrinsic viscosity [ ⁇ ] was determined from the results of measuring the reduced viscosity of each concentration at 30 ° C. using an Ubbelohde viscosity tube. The unit is dl / g. The intrinsic viscosity can be adjusted by appropriately selecting the type and amount of chain transfer agent used during production, the type and amount of polymerization initiator, the polymerization temperature, and the like.
  • (Co) polymer [B] (hereinafter also referred to as “component [B]”): 2-1.
  • Production method of (co) polymer [B] The (co) polymer [B] polymerizes the vinyl monomer [b2] by a known method such as solution polymerization, bulk polymerization, emulsion polymerization or suspension polymerization in the absence of a rubbery polymer. Can be manufactured.
  • the polymerization may be thermal polymerization without using a polymerization initiator, or may be catalytic polymerization using a polymerization initiator.
  • the intrinsic viscosity [ ⁇ ] (measured in methyl ethyl ketone at 30 ° C.) of the polymer [B] is usually 0.1 to 1.5 dl / g, preferably 0.2 to 1.0 dl / g. When the intrinsic viscosity [ ⁇ ] is within the above range, the physical property balance between molding processability and impact resistance is excellent.
  • the intrinsic viscosity [ ⁇ ] was measured by the following method. First, the above (co) polymer [B] was dissolved in methyl ethyl ketone to prepare 5 samples having different concentrations. The intrinsic viscosity [ ⁇ ] was determined from the results of measuring the reduced viscosity of each concentration at 30 ° C. using an Ubbelohde viscosity tube. The unit is dl / g. The intrinsic viscosity can be adjusted by appropriately selecting the type and amount of chain transfer agent used during production, the type and amount of polymerization initiator, the polymerization temperature, and the like.
  • Silicone oil [C] (hereinafter also referred to as “component [C]”):
  • the silicone oil as the component [C] used in the present invention is mainly used when a rubber-reinforced vinyl resin is melt-kneaded or devolatilized by an extruder and the resin temperature rises due to shear force in the extruder.
  • a known resin can be used as long as it has a polyorganosiloxane structure and is added to prevent deterioration of the reinforced vinyl resin.
  • the silicone oil [C] may be a non-modified silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, or a part of the side chain in the polyorganosiloxane structure and / or the polyorgano It may be a modified silicone oil in which various organic groups are introduced into one terminal part of the siloxane structure or both terminal parts of the polyorganosiloxane structure.
  • the modified silicone oil include alkyl-modified silicone oil, alkyl-aralkyl-modified silicone oil, polyether-modified silicone oil, fluorine-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, methylstyryl-modified silicone oil, and methylchlorine.
  • Phenyl silicone oil methyl hydrogen silicone oil, amino modified silicone oil, epoxy modified silicone oil, carboxyl modified silicone oil, acrylic modified silicone oil, methacryl modified silicone oil, mercapto modified silicone oil, phenol modified silicone oil, carbinol modified silicone Oil etc. can be used. These can be used alone or in combination of two or more.
  • the amount of the silicone oil [C] used is such that the silicon content in the thermoplastic resin composition [X] is 0.15% by mass or less, preferably 0.1% with respect to 100% by mass of the thermoplastic resin composition. It is not more than mass%, more preferably not more than 0.07 mass%, still more preferably not more than 0.03% by mass.
  • the silicon content in the thermoplastic resin composition [X] exceeds 0.15% by mass, a squeaking noise is generated when the same materials are used in combination, and a silver streak is generated near the gate, resulting in a molded appearance. Damaged.
  • the silicon content in the thermoplastic resin composition [X] was measured with a fluorescent X-ray analyzer MagiX PRO manufactured by PANalytal.
  • Thermoplastic resin composition [X] is obtained by mixing the above component [A] and, if desired, the above component [B] at a predetermined blending ratio, and melt-kneading.
  • the amount of component [B] is preferably 5 to 70% by mass, more preferably 10 to 60% by mass, based on 100% by mass of the total of component [A] and component [B].
  • the intrinsic viscosity [ ⁇ ] (measured in methyl ethyl ketone at 30 ° C.) of the acetone-soluble component of the thermoplastic resin composition [X] is usually 0.1 to 1.5 dl / g, preferably 0. .3 to 0.7 dl / g.
  • the intrinsic viscosity [ ⁇ ] is within the above range, the physical property balance between molding processability and impact resistance is excellent.
  • the intrinsic viscosity [ ⁇ ] was measured by the following method. First, the acetone-soluble portion of the thermoplastic resin composition [X] (acetonitrile when the rubbery polymer is an acrylic rubber) was dissolved in methyl ethyl ketone to prepare five samples having different concentrations. The intrinsic viscosity [ ⁇ ] was determined from the results of measuring the reduced viscosity of each concentration at 30 ° C. using an Ubbelohde viscosity tube. The unit is dl / g.
  • the content of the ethylene / ⁇ -olefin-based rubbery polymer [a1] in the component [A] is 5 to 30% by mass with respect to 100% by mass of the thermoplastic resin composition [X], preferably Is 5 to 25% by mass, particularly preferably 5 to 20% by mass. If this total amount is less than 5% by mass, the effect of reducing squeaking noise and moldability are inferior, while if it exceeds 30% by mass, the heat resistance decreases.
  • thermoplastic resin composition [X] can be used as necessary with a filler, a nucleating agent, a lubricant, a heat stabilizer, an antioxidant, an ultraviolet absorber, a flame retardant, an antiaging agent, a plasticizer.
  • Various additives such as an agent, an antibacterial agent, and a coloring agent can be contained within a range that does not impair the object of the present invention.
  • thermoplastic resin composition [X] of the present invention may be prepared by using other resins such as polyethylene, polypropylene, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, and polyamide as necessary. It can be contained in a range.
  • each component is mixed at a predetermined blending ratio using a tumbler mixer, a Henschel mixer, etc., and then a single screw extruder, twin screw extruder, Banbury mixer, kneader, roll, feeder. It can be manufactured by melt-kneading under suitable conditions using a mixer such as a ruder.
  • a preferred kneader is a twin screw extruder.
  • each component may be kneaded in a lump or may be kneaded in multiple stages.
  • the melt kneading temperature is usually 200 to 300 ° C, preferably 220 to 280 ° C.
  • thermoplastic resin composition [X] of the present invention has the same heat resistance in the stick-slip test measured by the method described in the examples below using a stick and slip measuring device SSP-02 manufactured by ZIEGLER.
  • the abnormal noise risk measured using the contact parts made of the plastic resin composition [X] is 1 mm / second and 10 mm / second at each load of 5N and 40N.
  • the abnormal sound level is preferably 5 or less, and more preferably 3 or less. According to the German Automobile Manufacturers Association standard (VDA203-260), if the abnormal noise level is 3 or less, it is acceptable.
  • the abnormal noise risk value measured using contact parts made of the same thermoplastic resin composition [X] uses an ethylene / ⁇ -olefin rubber polymer with a Tm (melting point) of 0 ° C. or less, and is thermoplastic. It can adjust by making silicon content in resin composition [X] into a predetermined quantity.
  • the structure in the present invention is assembled by contacting at least two contact parts.
  • the structure of the present invention includes a contact part obtained by molding the thermoplastic resin composition [X].
  • two or more contact parts are the thermoplastic resin composition [X]. It consists of a molded body.
  • thermoplastic resins including the thermoplastic resin composition [X] of the present invention
  • thermosetting resins and the like.
  • the contact part made of the thermoplastic resin composition [X] is particularly effective when at least two contact parts are made of the thermoplastic resin composition [X] of the present invention. It is more effective when all the parts are made of the thermoplastic resin composition [X] of the present invention.
  • thermoplastic resin examples include polyvinyl chloride, polyethylene, polypropylene, AS resin, ABS resin, AES resin, ASA resin, PMMA, polystyrene, high impact polystyrene, EVA, polyamide (PA), polyethylene terephthalate, and polybutylene terephthalate. , Polycarbonate (PC), polylactic acid, PC / ABS, PC / AES, PA / ABS, PA / AES and the like. These can be used alone or in combination of two or more.
  • thermosetting resin examples include phenol resin, epoxy resin, urea resin, melamine resin, and unsaturated polyester resin. These can be used alone or in combination of two or more.
  • Examples of the rubber include chloroprene rubber, polybutadiene rubber, ethylene / propylene rubber, various synthetic rubbers such as SEBS, SBS, and SIS, and natural rubber. These can be used alone or in combination of two or more.
  • Examples of the organic material include insulation board, MDF (medium fiber board), hard board, particle board, lumbar core, LVL (single board laminate), OSB (orientation board), PSL (pararam), WB (wafer). Board), hard fiberboard, soft fiberboard, lumbar core plywood, board core plywood, special core-plywood, veneer core-plywood, laminated sheet / board of paper impregnated with tap resin, small pieces of crushed (old) paper, etc.
  • -Boards obtained by mixing a linear body with an adhesive and heating and compressing, various kinds of wood, and the like. These can be used alone or in combination of two or more.
  • the inorganic material include calcium silicate board, flexible board, homocement board, gypsum board, sizing gypsum board, reinforced gypsum board, gypsum lath board, decorative gypsum board, composite gypsum board, various ceramics, and glass. These can be used alone or in combination of two or more.
  • iron, aluminum, copper, various alloys, etc. are mentioned as a metal material. These can be used alone or in combination of two or more.
  • the contact parts in the present invention can be suitably used for various structures in parts for automobile interiors, office equipment, parts for home interiors, parts for home appliances, and the like having parts to be contacted, joined and fitted to each other. .
  • automobile interior parts it is possible to significantly reduce the squeaking noise that occurs when parts come into contact with each other and rub against each other, for example, due to vibration during vehicle travel. Furthermore, it is excellent in safety at the time of collision by performing ductile fracture.
  • Such automotive interior parts include door trim, door lining, pillar garnish, console, console box, center panel, door pocket, ventilator, duct, air conditioner, instrument visor, instrument panel upper garnish, instrument panel upper garnish, A / T indicator, On / off switches (slide part, slide plate), switch bezel, grill front defroster, grill side defroster, lid cluster, cover intro, masks (mask switch, mask radio, etc.), glove box, pockets (pocket deck, pocket) Card), steering wheel horn pad, switch parts, car navigation exterior parts, and the like.
  • it can be particularly suitably used as a ventilator for automobiles, plate blades for air conditioners for automobiles, valve shutters, louvers, switch parts, car navigation exterior parts, and the like.
  • Office equipment parts can greatly reduce the squeaking noise that occurs when they come into contact with other parts and rub against each other by, for example, vibration during operation of the equipment and opening and closing of the desk drawer. Furthermore, it is excellent in safety, such as a collision, by performing ductile fracture.
  • Such contact parts for office equipment can be suitably used for exterior parts, interior parts, parts around switches, parts of movable parts, desk lock parts, desk drawers, and the like.
  • Residential interior parts can greatly reduce the squeaking noise caused by contact and rubbing with other parts, for example, by opening and closing doors and sliding doors. Furthermore, it is excellent in safety, such as a collision, by performing ductile fracture.
  • Such home interior parts can be suitably used as shelf doors, chair dampers, table folding leg movable parts, door opening / closing dampers, sliding door rails, curtain rails, and the like.
  • Household appliance parts can significantly reduce the squeaking noise that occurs when they come into contact with other parts and rub against each other, for example, due to vibration during device operation.
  • Such home appliance parts can be suitably used for exterior parts such as cases and housings, interior parts, parts around switches, parts of movable parts, and the like.
  • Evaluation method The measurement method of silicon content and the measurement / evaluation method of various evaluation items in the following Examples and Comparative Examples are shown below.
  • thermoplastic resin composition shown in Table 1 was injection molded at a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. using an EC40 injection molding machine manufactured by Toshiba Machine.
  • An injection-molded plate having a length of 25 mm, a width of 50 mm, and a thickness of 2 mm was used as a test piece, and the amount of silicon in a range of 25 mm in diameter at the center of the test piece was measured with a fluorescent X-ray analyzer MagiX PRO manufactured by PANalytal. The results are shown in Table 1.
  • thermoplastic resin composition of the contact parts 1 and 2 listed in Table 2 was injection molded at a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. using an IS-170FA injection molding machine manufactured by Toshiba Machine.
  • a test piece having a length of 60 mm, a width of 100 mm, a thickness of 4 mm and a length of 50 mm, a width of 25 mm, and a thickness of 4 mm was cut out from an injection-molded plate of 150 mm, width 100 mm, and thickness 4 mm with a disc saw, and finished with sandpaper of # 100 After chamfering the part, fine burrs were removed with a cutter knife, and two large and small plates were used as test pieces for the contact parts 1 and 2. Two test pieces of the contact parts 1 and 2 are aged in an oven adjusted to 80 ° C. ⁇ 5 ° C. for 300 hours, cooled at 25 ° C.
  • thermoplastic resin composition of the contact part 1 listed in Table 2 was injection molded at a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. with a Toshiba Machine IS-170FA injection molding machine.
  • a test piece with a length of 60 mm, a width of 100 mm, and a thickness of 4 mm was cut out from a 100 mm, 4 mm thick injection molded plate with a disc saw, and the edges were chamfered with sandpaper of # 100, and then a fine burr was removed with a cutter knife. This was removed and used as a test piece of the contact part 1.
  • Polycarbonate resin S-300 (trade name) manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • thermoplastic resin composition for the contact part 2 is used as a thermoplastic resin composition for the contact part 2 using a Toshiba Machine IS-170FA injection molding machine with a cylinder temperature of 270 ° C., an injection pressure of 50 MPa, and a mold temperature.
  • a test piece of length 50 mm, width 25 mm, thickness 4 mm was cut out from an injection-molded plate 150 mm long, 100 mm wide, 4 mm thick, which was injection-molded at 60 ° C., and edged with a sandpaper of count # 100. After chamfering, fine burrs were removed with a cutter knife and used as a test piece for the contact part 2.
  • Two test pieces of the contact parts 1 and 2 are aged in an oven adjusted to 80 ° C. ⁇ 5 ° C.
  • thermoplastic resin composition of the contact part 1 listed in Table 2 was injection molded at a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. with a Toshiba Machine IS-170FA injection molding machine.
  • a test piece with a length of 60 mm, a width of 100 mm, and a thickness of 4 mm was cut out from a 100 mm, 4 mm thick injection molded plate with a disc saw, and the edges were chamfered with sandpaper of # 100, and then a fine burr was removed with a cutter knife. This was removed and used as a test piece of the contact part 1.
  • test piece made of SUS304 having a length of 50 mm, a width of 25 mm, and a thickness of 4 mm was chamfered with a sandpaper of # 100 and used as a test piece for the contact component 2.
  • Two test pieces of the contact parts 1 and 2 are aged in an oven adjusted to 80 ° C. ⁇ 5 ° C. for 300 hours, cooled at 25 ° C.
  • thermoplastic resin composition of the contact part 1 listed in Table 2 was injection molded at a cylinder temperature of 250 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. with a Toshiba Machine IS-170FA injection molding machine.
  • a test piece with a length of 60 mm, a width of 100 mm, and a thickness of 4 mm was cut out from a 100 mm, 4 mm thick injection molded plate with a disc saw, and the edges were chamfered with sandpaper of # 100, and then a fine burr was removed with a cutter knife. This was removed and used as a test piece of the contact part 1.
  • a glass test piece having a length of 50 mm, a width of 25 mm, and a thickness of 4 mm was chamfered with sandpaper of count # 100 and used as a test piece for the contact part 2.
  • Two test pieces of the contact parts 1 and 2 are aged in an oven adjusted to 80 ° C. ⁇ 5 ° C. for 300 hours, cooled at 25 ° C.
  • thermoplastic resin composition of Table 1 was injection molded with an EC40 injection molding machine manufactured by Toshiba Machine at a cylinder temperature of 250 ° C., an injection pressure of 80 MPa, a mold temperature of 60 ° C., and a 1 mm diameter center pin gate mold with a diameter of 80 mm.
  • Five disk-shaped molded articles each having a thickness of 2 mm were collected. The obtained five test pieces were visually observed, and the molded appearance was judged according to the following evaluation criteria. The results are shown in Table 1.
  • Silver streaks did not occur in the vicinity of the gates in all five test pieces.
  • X Five test pieces contained silver streaks near the gate.
  • Table 2 shows the appearance of the molded structure. The appearance of the entire structure including the contact parts 1 and 2 was judged and evaluated in two stages: ⁇ : good and x: bad.
  • AES-1 A 20 liter stainless steel autoclave equipped with a ribbon stirrer blade, an auxiliary agent continuous addition device, a thermometer, etc., was used as an ethylene / ⁇ -olefin rubbery polymer [a1] as an ethylene / propylene copolymer (ethylene / propylene).
  • Propylene 78/22 (%), Mooney viscosity (ML1 + 4, 100 ° C) 20, melting point (Tm) 40 ° C, glass transition temperature (Tg) -50 ° C 22 parts, styrene 55 parts, acrylonitrile 23 parts , 0.5 parts of t-dodecyl mercaptan and 110 parts of toluene were charged, the internal temperature was raised to 75 ° C., and the contents of the autoclave were stirred for 1 hour to obtain a homogeneous solution.
  • the internal temperature was cooled to 100 ° C., and 0.2 parts of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenol) -propionate, dimethyl silicone oil; KF-96-100 cSt (trade name) : Shin-Etsu Silicone Co., Ltd.) 0.02 part was added, the reaction mixture was extracted from the autoclave, unreacted substances and solvent were distilled off by steam distillation, and an extruder with a 40 mm ⁇ vent (cylinder temperature 220 ° C., degree of vacuum) 760 mmHg) was used to substantially degas the volatiles and pelletize.
  • the resulting ethylene / ⁇ -olefin rubber-reinforced vinyl resin had a graft ratio of 70% and an intrinsic viscosity [ ⁇ ] of acetone-soluble component of 0.47 dl / g.
  • Propylene / dicyclopentadiene copolymer ethylene / propy
  • the internal temperature was cooled to 100 ° C., and 0.2 parts of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenol) -propionate, dimethyl silicone oil; KF-96-100 cSt (trade name) : Shin-Etsu Silicone Co., Ltd.) 0.02 part was added, the reaction mixture was extracted from the autoclave, unreacted substances and solvent were distilled off by steam distillation, and a 40 mm ⁇ vented extruder (cylinder temperature 220 ° C., vacuum) 760 mmHg), the volatile matter was substantially degassed and pelletized.
  • the resulting ethylene / ⁇ -olefin rubber-reinforced vinyl resin had a graft rate of 60% and an intrinsic viscosity [ ⁇ ] of acetone-soluble component of 0.45 dl / g.
  • A-3 ABS-1 In a polymerizer with a stirrer, 280 parts of water and diene rubber polymer [a2], 60 parts of polybutadiene latex having a weight average particle diameter of 0.26 ⁇ m and a gel fraction of 90% (in terms of solid content), sodium formaldehyde sulfoxylate 0.3 parts, 0.0025 parts of ferrous sulfate and 0.01 parts of disodium ethylenediaminetetraacetate were added, and after deoxidation, the mixture was heated to 60 ° C. with stirring in a nitrogen stream, and then 10 parts of acrylonitrile and 30 parts of styrene.
  • a monomer mixture consisting of 0.2 parts of t-dodecyl mercaptan and 0.3 parts of cumene hydroperoxide was continuously added dropwise at 60 ° C. over 5 hours. After completion of the dropwise addition, the polymerization temperature was set to 65 ° C. and stirring was continued for 1 hour, and then the polymerization was terminated to obtain a latex of a graft copolymer. The polymerization conversion rate was 98%. Thereafter, 0.2 part of 2,2′-methylene-bis (4-ethylene-6-tert-butylphenol) is added to the obtained latex, and calcium chloride is added to coagulate, washing, filtering and drying steps. After that, a powdery resin composition was obtained. The graft ratio of the obtained resin composition was 40%, and the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.38 dl / g.
  • B-1 AS-1 A synthesis apparatus in which two jacketed polymerization reactors equipped with ribbon blades were connected was used. After purging nitrogen gas into each reactor, the first reactor was charged with a mixture of 75 parts of styrene, 25 parts of acrylonitrile and 20 parts of toluene, and 0.15 part of tert-dodecyl mercaptan as a molecular weight regulator. was dissolved in 5 parts of toluene and a solution in which 0.1 part of dicumyl peroxide as a polymerization initiator was dissolved in 5 parts of toluene, and polymerization was carried out at 110 ° C.
  • the average residence time of the supplied monomers and the like was 2 hours, and the polymerization conversion after 2 hours was 56%.
  • the obtained polymer solution was continuously taken out by a pump provided outside the first reactor and supplied to the second reactor.
  • the amount continuously taken out is the same as the amount supplied to the first reactor.
  • polymerization was performed at 130 ° C. for 2 hours, and the polymerization conversion after 2 hours was 74%.
  • the polymer solution was recovered from the second reactor, and this was introduced into an extruder with a biaxial three-stage vent. Then, the unreacted monomer and toluene (polymerization solvent) were directly devolatilized to recover the styrene / acrylonitrile copolymer.
  • This styrene / acrylonitrile copolymer was used as Component [B-1].
  • the intrinsic viscosity [ ⁇ ] of this component [B-1] (in methyl ethyl ketone, 30 ° C.) was 0.60 dl / g.
  • D-1 Ethylene bis-stearic acid amide
  • Kao wax EB-P trade name: manufactured by Kao Corporation
  • D-2 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione
  • ADK STAB AO- 20 Product name: Made by ADEKA Corporation
  • D-3 Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite
  • ADK STAB PEP-24G trade name: manufactured by ADEKA Corporation
  • Examples 4 to 12 and Comparative Examples 5 to 9 Using the resin compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 4, contact parts 1 and 2 were prepared by the above-described method, and these were combined as shown in Table 2 to form a structure. Evaluation of stagnation noise, molding appearance and recyclability were evaluated by the above methods. Furthermore, as the contact component 2, those made of polycarbonate (Y3), metal (stainless steel) (Y4), and glass (Y5) were used, and the structures combined with these and the contact component 1 were similarly evaluated. . The evaluation results are shown in Table 2.
  • the structures using the resin compositions X1 to X3 of the present invention represented by Examples 4 to 6 as the contact parts 1 and 2 have an evaluation of squeaking noise and a molded appearance. It is good. Moreover, since the structure using each of these resin compositions X1, X2, and X3 does not require separation for each resin composition, the recyclability is good.
  • the structure of Example 7 is an example in which the resin compositions X1 and X3 are combined. Although the evaluation of the squeaking sound is excellent, the recyclability is inferior.
  • Example 8 is an example in which the resin composition X1 and the resin composition X5 having too much silicon content are combined, and although the evaluation of the squeaking noise is excellent, the molding appearance and the recyclability are inferior.
  • the structures of Examples 10 to 12 are examples in which the resin composition X1 and a different material are combined, and although the evaluation of the squeaking sound is excellent, the resin composition and the different material are required to be separated and the recyclability is inferior. Yes.
  • the structure of Comparative Example 5 is a rubber-reinforced vinyl resin [A-2] using an ethylene / ⁇ -olefin rubber polymer [a1] having no melting point (Tm) as the contact parts 1 and 2.
  • Comparative Example 6 is an example in which resin compositions X5 and X5 having too much silicon content are combined as the contact parts 1 and 2, and the evaluation of the squeaking noise and the molded appearance are inferior.
  • the structure of Comparative Example 7 is a rubber-reinforced vinyl resin [A-3] using a polybutadiene rubber polymer instead of the ethylene / ⁇ -olefin rubber polymer [a1] as the contact parts 1 and 2. ], And the evaluation of the squeaking sound is inferior.
  • Comparative Example 8 is a rubber-reinforced vinyl resin [A-3] using a polybutadiene rubber polymer instead of the ethylene / ⁇ -olefin rubber polymer [a1] as the contact parts 1 and 2. ], which is a combination of resin compositions Y2 and Y2 containing succinic acid, and the evaluation of the squeaking noise and the molded appearance are inferior.
  • the structure of Comparative Example 9 is an example in which resin components Y1 and Y2 containing a rubber-reinforced vinyl resin [A-3] using a polybutadiene rubber polymer are combined as the contact parts 1 and 2. The evaluation of stagnation noise and the molded appearance are inferior, and the recyclability is inferior because the resin compositions Y1 and Y2 need to be separated.
  • thermoplastic resin composition of the present invention has an excellent squeaking noise reduction effect for a wide range of materials regardless of the material of the contact component to be assembled, contact between components, It can be seen that the present invention is suitable for automobile interior parts, office equipment, house interior parts, home appliance parts, and the like having parts to be joined and fitted.
  • thermoplastic resin composition for reducing squeaking noise significantly reduces the squeaking noise that occurs when two or more parts rub against each other, and reduces the squeaking noise reducing effect even when left at high temperatures for a long time. It is possible to provide a structure made of a contact component that is maintained without any impact, and further has excellent impact resistance. It can be suitably used for home interior parts, home appliance parts, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Vehicle Step Arrangements And Article Storage (AREA)

Abstract

 Tm(融点)が0℃以上のエチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下にビニル系単量体〔b1〕を重合して得られるゴム強化ビニル系樹脂〔A〕を含有してなる熱可塑性樹脂組成物〔X〕であって、前記熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.15質量%以下であることを特徴とする軋み音低減用熱可塑性樹脂組成物を提供する。本発明によれば、部品同士が擦れ合うときに発生する軋み音が著しく低減され、かつ高温下に長時間置かれた場合でも軋み音低減効果が維持され、更に、耐衝撃性及び成形外観に優れた構造体を提供することができる。

Description

軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体
 本発明は軋み音の発生を低減する熱可塑性樹脂組成物及び該組成物からなる軋み音を低減した構造体に関し、さらに詳しくは、少なくとも2個の部品同士が接触して擦れ合うことにより発生する軋み音を大幅に低減させることのできる熱可塑性樹脂組成物及び該組成物からなる軋み音低減構造体に関する。
 ABS樹脂に代表されるスチレン系樹脂は、その優れた成形性、機械的特性、耐薬品性、二次加工性により、自動車、家電、OA機器等において広範囲に使用されている。
 しかし、ABS樹脂に代表されるスチレン系樹脂からなる部品をポリエチレン、ポリ塩化ビニル等の他の樹脂からなる部材や、クロロプレンゴム、天然ゴム、ポリエステル、ポリエチレン等の内張りシートやフォームなどの他の部材と接触して擦れ合うような部位に用いると、軋み音(擦れ音)が発生することがある。たとえばABS樹脂製の車両用ベンチレータには、風量を調整するためにクロロプレンゴム製フォームなどをシール材として使用したバルブシャッターが内部に装着されており、風量調整のためにバルブシャッターを回転させるとシール材とベンチレータのケースとが互いに擦れ合い、軋み音が発生する場合がある。
 さらに、スチレン系樹脂からなる部品同士を擦り合わせると、軋み音が発生しやすいことが知られている。そのため、例えば振動、回転等により、互いに接触する部品同士が擦り合わされる部位には、スチレン系樹脂からなる部品同士を組み合わせて使用することが忌避されている。
 ABS樹脂、ASA樹脂等のスチレン系樹脂は非晶性樹脂であるため、結晶性樹脂であるポリエチレン、ポリプロピレン、ポリアセタールなどの樹脂と比較すると摩擦係数が高く、自動車内のエアコン吹き出し口やカーステレオのボタン等のように、他樹脂からなる部材と嵌合する場合に、摩擦係数が大きいために図1に示されるようなスティックスリップ現象が発生し、異音(軋み音)が発生する場合がある。スティックスリップ現象とは、2つの物体が擦れ合う時に発生するもので、図2(a)のモデルで示されるように駆動速度Vで動く駆動台の上にバネでつながれた物体Mが置かれた場合、物体Mは先ず静摩擦力の作用により駆動速度Vで移動する台とともに図2(b)のように右方向に移動する。そしてバネによって元に戻されようとする力が、この静摩擦力と等しくなったとき、物体Mは駆動速度Vと逆の方向に滑り出す。このときに、物体Mは動摩擦力を受けることになるので、バネの力とこの動摩擦力が等しくなった図2(c)の時点で滑りが止まり、すなわち駆動台に付着することになり、再び駆動速度Vと同じ方向に移動することになる(図2(d))。これをスティックスリップ現象といい、図1に示されるように、ノコギリ波形上端の静摩擦係数μsと、ノコギリ波形下端の摩擦係数μlの差のΔμが大きいと、軋み音が発生しやすくなるといわれている。尚、動摩擦係数はμsとμlの中間の値になる。
 これらの軋み音は、例えば自動車内装等に用いた場合、乗車時の快適性、静粛性を損ねる大きな原因となるため、軋み音の低減が強く要求されている。
 一方、アモントン・クーロンの法則により求めた摩擦係数の摩擦速度依存性が負の値をとると、スティックスリップ現象が顕著に現れることが知られている(非特許文献1参照)。そこで、上記摩擦係数の摩擦速度依存性をゼロに近づけるか、若しくはゼロ以上の正の値とすることで、スティックスリップ現象の発生を抑制し、軋み音の発生を低減させることが可能である。
 これらの軋み音の発生を防止するため、部材表面にテフロン(登録商標)コーティングを施す方法、テフロン(登録商標)テープを装着する方法、シリコーンオイルを塗布する方法などが行なわれてきたが、装着、塗布といった工程は非常に煩雑で手間がかかるばかりでなく、高温下に長時間置かれた場合は効果が持続しないという問題があった。
 また、軋み音の発生を低減させる為に材料自体を改質する方法として、ABS樹脂にシリコーンオイルを配合する方法、ABS樹脂にエポキシ含有オレフィン共重合体を配合する方法などが提案されている。たとえば、PC/ABS樹脂に有機ケイ素化合物を配合する技術(特許文献1参照)が、またABS樹脂に難燃剤、難燃助剤およびシリコーンオイルを配合する技術(特許文献2参照)が、またゴム変性ポリスチレン樹脂にシリコーンオイルを配合する技術(特許文献3参照)が、またABS樹脂にアルカンスルホン酸のアルカリ(土類)金属塩を配合する技術(特許文献4参照)が、さらにはABS樹脂にエポキシ基、カルボキシル基および酸無水物基から選ばれる少なくとも1種の反応基を含有する変性ポリオルガノシロキサンを配合する技術(特許文献5参照)が開示されている。
 しかしながら、これらの方法による軋み音の低減効果は十分とはいえず、成形直後にはある程度の軋み音防止効果を示しても効果の持続性が乏しく、特に、高温下に長時間置かれた場合にはその効果が大幅に低下するという問題があった。
 さらに、ABS樹脂に代表されるスチレン系樹脂からなる部品同士を組み合わせて用いる場合には、これら方法を用いても、軋み音の低減効果が十分に得られず、その使用範囲が制限される問題があった。
特公昭63-56267号公報 特許第2798396号公報 特許第2688619号公報 特許第2659467号公報 特開平10-316833号公報
表面科学Vol.24, No.6, PP 328-333, 2003
 本発明は、かかる実情に鑑み、スチレン系樹脂からなる部材同士を互いに擦れ合う部位に用いても、軋み音の発生が著しく低減され、かつ高温下に長時間置かれた場合においても軋み音低減効果が低下せずに維持され、さらには耐衝撃性および成形外観に優れたスチレン系樹脂製の部品を含む構造体を提供することが可能な樹脂組成物及び該組成物からなる軋み音低減構造体を提供することを目的とする。
 ところで、シリコーンオイルは、成形品の摺動性を向上させるなどの改質目的で樹脂組成物中に配合される他、ゴム強化ビニル系樹脂を押出機で溶融混練したり脱揮する際において、押出機中で剪断力により樹脂温度が上昇してゴム強化ビニル系樹脂が劣化変色するのを防止する等の目的で添加される場合がある。また、ゴム質重合体を重合する段階においても、上記と同じ目的で、シリコーンオイルが添加される場合がある。
 本発明者らは、上記課題を解決すべく鋭意研究を行った結果、特定のゴム強化ビニル系樹脂を含有してなる熱可塑性樹脂組成物〔X〕中に含まれるケイ素含有量を特定の範囲にすることで、上記成分〔X〕からなる部品を含む部品同士を擦れあわせても、軋み音の発生が著しく低減され、かつ高温下に長時間置かれた場合においても軋み音低減効果が低下せずに維持され、さらには耐衝撃性および成形外観に優れていることを見出し、本発明を完成するに至った。
 本発明によれば、下記の軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体が提供される。
1. Tm(融点)が0℃以上のエチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下にビニル系単量体〔b1〕を重合して得られるゴム強化ビニル系樹脂〔A〕を含有してなる熱可塑性樹脂組成物〔X〕であって、
 前記熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.15質量%以下であることを特徴とする軋み音低減用熱可塑性樹脂組成物。
2. エチレン・α-オレフィン系ゴム質重合体〔a1〕の含有量が、熱可塑性樹脂組成物〔X〕100質量%に対して5~30質量%であることを特徴とする上記1に記載の軋み音低減用熱可塑性樹脂組成物。
3. ゴム強化ビニル系樹脂〔A〕が、Tm(融点)が0℃以上のエチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下にビニル系単量体〔b1〕を重合して得られるゴム強化ビニル系樹脂〔A1〕と、ビニル系単量体〔b2〕の(共)重合体〔B〕とを含有してなることを特徴とする上記1又は2に記載の軋み音低減用熱可塑性樹脂組成物。
4. エチレン・α-オレフィン系ゴム質重合体〔a1〕が、エチレン5~95質量%及びα-オレフィン95~5質量%(ただし、エチレン及びα-オレフィンの合計で100質量%)からなることを特徴とする上記1乃至3の何れかに記載の軋み音低減用熱可塑性樹脂組成物。
5. ゴム強化ビニル系樹脂〔A〕のグラフト率が10~150質量%であり、アセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)が0.1~1.5dl/gであることを特徴とする上記1乃至4の何れかに記載の軋み音低減用熱可塑性樹脂組成物。
6. 熱可塑性樹脂組成物〔X〕のアセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)が0.1~1.5dl/gであることを特徴とする上記1乃至5の何れかに記載の軋み音低減用熱可塑性樹脂組成物。
7. エチレン・α-オレフィン系ゴム質重合体〔a1〕が、エチレン・プロピレン共重合体であることを特徴とする上記1乃至6の何れかに記載の軋み音低減用熱可塑性樹脂組成物。
8. 熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.1質量%以下であることを特徴とする上記1乃至7の何れかに記載の軋み音低減用熱可塑性樹脂組成物。
9. 熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.07質量%以下であることを特徴とする上記1乃至7の何れかに記載の軋み音低減用熱可塑性樹脂組成物。
10. 熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.03質量%以下であることを特徴とする上記1乃至7の何れかに記載の軋み音低減用熱可塑性樹脂組成物。
11. 少なくとも2個の接触用部品を含む構造体であって、前記接触用部品が上記1乃至10の何れかに記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする軋み音低減構造体。
12. 接触用部品の2個以上が、請求項1乃至10の何れかに記載の熱可塑性樹脂組成物〔X〕からなることを特徴とする上記11に記載の軋み音低減構造体。
13. ジグラー(ZIEGLER)社製のスティック&スリップ測定装置SSP-02を使用して測定される異音リスク値が、以下の全ての測定条件において3以下であることを特徴とする上記12に記載の軋み音低減低減構造体。
 測定条件
 荷重:5N、40N
 速度:1mm/秒、10mm/秒
14. 接触用部品が自動車内装用部品、スイッチ部品、事務機器用部品、家電用部品、デスク用ロック部品、住宅用内装部品、又は室内扉の開閉ダンパー部品であることを特徴とする上記11乃至13の何れかに記載の軋み音低減構造体。
15. 請求項1乃至10の何れかに記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用メーターバイザー。
16. 請求項1乃至10の何れかに記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用センターパネル。
17. 請求項1乃至10の何れかに記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用コンソールボックス。
18. 請求項1乃至10の何れかに記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用スイッチベゼル。
 本発明によれば、特定のゴム強化ビニル系樹脂を含有してなる熱可塑性樹脂組成物〔X〕のケイ素含有量を特定の範囲にすることで、上記成分〔X〕からなる部品を含む部品同士を擦れあわせても、軋み音の発生が著しく低減され、かつ高温下に長時間置かれた場合においても軋み音低減効果が低下せずに維持され、さらには耐衝撃性および成形外観に優れた軋み音低減構造体を得ることが可能となる。
図1はスティックスリップ現象の説明図である。 図2(a)、(b)、(c)、(d)はスティックスリップのモデル図である。
 以下、本発明を詳細に説明する。
 本発明における軋み音低減用熱可塑性樹脂組成物は、Tm(融点)が0℃以上のエチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下にビニル系単量体〔b1〕を重合して得られるゴム強化ビニル系樹脂〔A〕を含有してなる熱可塑性樹脂組成物〔X〕であって、前記熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.15質量%以下であることを特徴とする。
 尚、本明細書において、「(共)重合」とは、単独重合および共重合を意味し、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
1.ゴム強化ビニル系樹脂〔A〕(以下、「以下、成分〔A〕」ともいう。):
 本発明で使用する成分〔A〕は、Tm(融点)が0℃以上のエチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下にビニル系単量体〔b1〕を重合して得られるゴム強化ビニル系樹脂〔A1〕単独、及び/または、ビニル系単量体〔b2〕の(共)重合体〔B〕との混合物からなるゴム強化ビニル系樹脂である。(共)重合体〔B〕は、ゴム質重合体の非存在下にビニル系単量体〔b2〕を重合して得られる。
 1-1.エチレン・α-オレフィン系ゴム質重合体〔a1〕(以下「成分〔a1〕ともいう。):
 本発明に用いられるエチレン・α-オレフィン系ゴム質重合体〔a1〕は、Tm(融点)が0℃以上であることの他は特に制限はない。ここで、Tmは、DSC(示差走査熱量計)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度を読みとった値であり、詳細は、JIS K7121-1987に記載されている。上記Tmは、好ましくは0~120℃、より好ましくは10~100℃、特に好ましくは20~80℃であり、Tmが0℃未満では、部品が使用されることの多い室温付近でゴムが結晶性を持たないため、軋み音の低減効果に劣る。尚、DSCの測定において、吸熱変化のピークを明瞭に示さないものは、実質的にゴム質重合体に結晶性がないものであり、Tmを持たないものと判断し、上記Tmが0℃以上のゴム質重合体には含まれないものとする。Tmが存在しないものは、軋み音の低減効果に劣る。
 ゴム質重合体に融点(Tm)があることは、該ゴム質重合体が結晶性部分を有することを意味している。ゴム質重合体中に結晶性部分が存在すると、上記スリップスティック現象の発生を抑制する為、軋み音の発生が抑制されるものと考えられる。
 また、ゴム質重合体のガラス転移温度(Tg)は、好ましくは、-20℃以下であり、より好ましくは、-30℃以下であり、特に好ましくは、-40℃以下である。ガラス転移温度が、-20℃を超えると、耐衝撃性が不十分になる場合がある。尚、上記ガラス転移温度は、Tm(融点)の測定と同様に、DSC(示差走査熱量計)を用い、JIS K7121-1987に準拠して求めることができる。
 上記成分〔a1〕を構成するα-オレフィンとしては、例えば、炭素数3~20のα-オレフィンが挙げられ、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、1-エイコセンなどが挙げられる。これらのα-オレフィンは、単独でまたは2種以上を混合して使用することができる。α-オレフィンの炭素数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~8である。炭素数が20を超えると共重合性が低下し、成形品の表面外観が十分でなくなる場合がある。エチレン:α-オレフィンの質量比は、通常5~95:95~5、好ましくは50~95:50~5、より好ましくは60~95:40~5、特に好ましくは70~90:30~10である。
 α-オレフィンの重量比が95を超えると、得られるゴム強化ビニル系樹脂の耐衝撃性が不十分となり好ましくない。また、5未満でも、ゴム質重合体〔a1〕のゴム弾性が十分でなくなるため、樹脂組成物の耐衝撃性が十分でなくなる。
 また、成分〔a1〕のムーニー粘度(ML1+4、100℃;JIS K6300に準拠)は、通常5~80、好ましくは10~65、より好ましくは10~45である。ムーニー粘度が80を超えると、得られるゴム強化ビニル系樹脂の流動性が不十分になる場合があり、またムーニー粘度が5未満になると、得られる成形品の耐衝撃性が不十分となる場合がある。
 上記エチレン・α-オレフィン系ゴム質重合体〔a1〕は、軋み音低減の観点から、通常、非共役ジエン成分を含有しないエチレン・α-オレフィン共重合体が用いられる。非共役ジエン成分としては、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン等が挙げられる。上記成分〔a1〕が非共役ジエン成分を含有する場合、その配合量は、エチレン及びα-オレフィンを100質量%として、3質量%以下が好ましい。非共役ジエン成分の配合量が3質量%を超えると、ゴムの結晶性が低下し、軋み音の低減効果が十分でなくなる可能性がある。上記成分〔a1〕は、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-オクテン共重合体がさらに好ましく、エチレン・プロピレン共重合体が特に好ましい。
 1-2.ビニル系単量体〔b1〕、〔b2〕:
 上記ビニル系単量体〔b1〕及び〔b2〕は、いずれも、不飽和結合を有する重合性化合物であれば、特に限定されない。
 上記ビニル系単量体〔b1〕及び〔b2〕は、通常、芳香族ビニル化合物及びシアン化ビニル化合物を含む。その他、必要に応じて、(メタ)アクリル酸エステル、マレイミド化合物等の他の共重合可能なビニル系単量体、カルボキシル基、酸無水物基、ヒドロキシル基、アミノ基、アミド基、エポキシ基、オキサゾリン基等の官能基を1種以上有する共重合可能な官能基含有ビニル系単量体を併用してもよい。
 また、(共)重合体〔B〕の形成に用いるビニル系単量体〔b2〕は、上記ビニル系単量体〔b1〕と同一であってもよいし、異なっていてもよい。
 上記芳香族ビニル化合物としては、少なくとも1つのビニル結合と、少なくとも1つの芳香族環とを有する化合物であれば、特に限定されることなく用いることができる。その例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルトルエン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルキシレン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、スチレン及びα-メチルスチレンが好ましい。
 上記シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、アクリロニトリルが好ましい。
 上記(メタ)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸アミル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸アミル、メタクリル酸ヘキシル、メタクリル酸オクチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル等のメタクリル酸エステルが挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、メタクリル酸メチルが好ましい。
 上記マレイミド化合物としては、マレイミド、N-メチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、N-シクロヘキシルマレイミド及びN-フェニルマレイミドが好ましい。
 尚、このマレイミド化合物からなる単量体単位を重合体に導入する方法としては、予め、無水マレイン酸を共重合させ、その後、イミド化する方法がある。
 上記の官能基含有ビニル系単量体のうち、カルボキシル基を有する不飽和化合物としては、アクリル酸、メタクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 酸無水物基を有する不飽和化合物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 ヒドロキシル基を有する不飽和化合物としては、ヒドロキシスチレン、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、N-(4-ヒドロキシフェニル)マレイミド等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 アミノ基を有する不飽和化合物としては、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、アクリル酸ジメチルアミノメチル、アクリル酸ジエチルアミノメチル、アクリル酸2-ジメチルアミノエチル、メタクリル酸アミノエチル、メタクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノメチル、メタクリル酸ジエチルアミノメチル、メタクリル酸2-ジメチルアミノエチル、メタクリル酸フェニルアミノエチル、p-アミノスチレン、N-ビニルジエチルアミン、N-アセチルビニルアミン、アクリルアミン、メタクリルアミン、N-メチルアクリルアミン等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 アミド基を有する不飽和化合物としては、アクリルアミド、N-メチルアクリルアミド、メタクリルアミド、N-メチルメタクリルアミド等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 エポキシ基を有する不飽和化合物としては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 オキサゾリン基を有する不飽和化合物としては、ビニルオキサゾリン等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 上記ビニル系単量体〔b1〕及び〔b2〕は、目的、用途等に応じてその種類及び使用量が選択されるが、芳香族ビニル化合物及びシアン化ビニル化合物の合計量は、ビニル系単量体全量100質量%に対して、通常30~100質量%、好ましくは50~100質量%、より好ましくは70~100質量%である。上記他の共重合可能なビニル系単量体の含有量は、ビニル系単量体全体100質量%に対して通常0~70質量%、好ましくは0~50質量%、より好ましくは0~30質量%である。上記官能基含有ビニル系単量体の含有量は、ビニル系単量体全量100質量%に対して、通常0~40質量%、好ましくは、0~30質量%、より好ましくは0~20質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率(芳香族ビニル化合物/シアン化ビニル化合物)は、これらの合計を100質量%とした場合、通常40~85質量%/15~60質量%、好ましくは45~85質量%/15~55質量%、特に好ましくは60~85質量%/15~40質量%である。
 1-3.上記ゴム強化ビニル系樹脂〔A〕の製造方法:
 上記ゴム強化ビニル系樹脂〔A〕は、エチレン・α-オレフィン系ゴム質重合体〔a1〕を含有する重合体成分であるが、その含有形態は特に限定されない。
 上記ゴム強化ビニル系樹脂〔A〕には、通常、ビニル系単量体の(共)重合体がゴム質重合体にグラフトしているグラフト共重合体と、ゴム質重合体にグラフトしていないビニル系単量体の(共)重合体が含まれる。ただし、このグラフト共重合体に、ビニル系単量体の(共)重合体がグラフトしていない、ゴム質重合体が含まれていてもよい。
 また、上記のエチレン・α-オレフィン系ゴム質重合体〔a1〕の含有態様は、以下に例示される。
(1)エチレン・α-オレフィン系ゴム質重合体〔a1〕が、グラフト共重合体として含有される場合。
(2)エチレン・α-オレフィン系ゴム質重合体〔a1〕が、未グラフトのゴム質重合体として含有される場合。
 これらのうち、(1)が特に好ましい。
 上記態様(1)のゴム強化ビニル系樹脂〔A〕としては、以下に例示される。
[i]上記エチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下に、ビニル系単量体〔b1〕を重合して得られたゴム強化ビニル系樹脂〔A1〕。
[ii]上記[i]と、ビニル系単量体〔b2〕の(共)重合体〔B〕(以下、「(共)重合体〔B〕」ともいう。)とからなる混合物。
 これらのうち、ゴム強化ビニル系樹脂〔A〕中のエチレン・α-オレフィン系ゴム質重合体〔a1〕の量を自由に調整できる点で[ii]が特に好ましい。
 尚、上記ゴム強化ビニル系樹脂〔A〕としては、上記[i]及び[ii]の組み合わせであってもよい。
 次に、上記のゴム強化ビニル系樹脂〔A1〕の製造方法について、説明する。
 重合方法としては、乳化重合、溶液重合、懸濁重合、塊状重合等の公知の重合方法が挙げられる。いずれにおいても、ゴム質重合体の存在下に、ビニル系単量体を一括投入して反応させてもよいし、分割又は連続添加して反応させてもよい。また、ゴム質重合体は、全量又は一部を、ビニル系単量体との重合の途中で添加して反応させてもよい。
 尚、ゴム質重合体の使用量は、ゴム質重合体とビニル系単量体の合計を100質量%とした場合、通常5~80質量%、好ましくは10~70質量%である。
 上記のゴム強化ビニル系樹脂〔A1〕の製造方法は、溶液重合及び塊状重合が好ましく、更に好ましくは溶液重合であり、これらの方法を組み合わせたものであってもよい。
 上記のゴム強化ビニル系樹脂〔A1〕を乳化重合で製造する場合には、通常、重合開始剤、連鎖移動剤、乳化剤、水等が用いられる。尚、上記ゴム質重合体がラテックス状でなく、固形状である場合には、再乳化によりラテックス状として使用することができる。
 重合開始剤としては、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の有機過酸化物と、含糖ピロリン酸処方、スルホキシレート処方等で代表される還元剤との組み合わせによるレドックス系重合開始剤;過硫酸カリウム等の過硫酸塩;ベンゾイルパーオキサイド(BPO)、ラウロイルパーオキサイド、tert-ブチルパーオキシラウレイト、tert-ブチルパーオキシモノカーボネート等の過酸化物;2,2’-アゾビス(イソブチロニトリル)等のアゾ系重合開始剤等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。上記重合開始剤の使用量は、上記ビニル系単量体〔b1〕に対し、通常、0.05~5質量%、好ましくは0.1~1質量%である。
 上記重合開始剤は、通常、反応系に一括添加又は連続添加される。
 連鎖移動剤としては、オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ヘキシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、tert-テトラデシルメルカプタン等のメルカプタン類;ターピノーレン類、α-メチルスチレンのダイマー、テトラエチルチウラムスルフィド、アクロレイン、メタクロレイン、アリルアルコール、2-エチルヘキシルチオグリコール等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。上記連鎖移動剤の使用量は、上記ビニル系単量体〔b1〕に対し、通常、0.05~2質量%である。
 乳化剤としては、アニオン系界面活性剤及びノニオン系界面活性剤が挙げられる。アニオン系界面活性剤としては、高級アルコールの硫酸エステル;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウム等の脂肪族スルホン酸塩;ロジン酸塩、リン酸塩等が挙げられる。また、ノニオン系界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、アルキルエーテル型化合物等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。上記乳化剤の使用量は、上記ビニル系単量体〔b1〕に対し、通常、0.3~5質量%である。
 乳化重合は、用いるビニル系単量体〔b1〕、重合開始剤等の種類、量に応じ、公知の条件で行うことができる。上記乳化重合により得られたラテックスは、通常、凝固剤により凝固させ、重合体成分を粉末状とし、その後、これを水洗、乾燥することによって精製される。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化ナトリウム等の無機塩;硫酸、塩酸等の無機酸;酢酸、乳酸、クエン酸等の有機酸等が用いられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。また、要求される性能に応じて、凝固後にアルカリ成分又は酸成分を添加し中和処理した後、洗浄してもよい。
 上記のゴム強化ビニル系樹脂〔A1〕を溶液重合により製造する場合には、通常、溶媒、重合開始剤、連鎖移動剤等が用いられる。
 溶媒としては、公知のラジカル重合で使用される不活性重合溶媒、例えば、エチルベンゼン、トルエン等の芳香族炭化水素;メチルエチルケトン、アセトン等のケトン類;ジクロルメチレン、四塩化炭素等のハロゲン化炭化水素;アセトニトリル、ジメチルホルムアミド、N-メチルピロリドン等を用いることができる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 重合開始剤としては、ケトンパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、ハイドロパーオキサイド等の有機過酸化物が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 連鎖移動剤としては、メルカプタン類、ターピノーレン類、α-メチルスチレンのダイマー等が挙げられる。これらは、単独であるいは2種以上を組み合わせて用いることができる。
 溶液重合は、用いるビニル系単量体〔b1〕、重合開始剤等の種類に応じ、公知の条件で行うことができる。重合温度は、通常80~140℃の範囲である。尚、溶液重合に際し、重合開始剤を使用せずに製造することもできる。
 塊状重合及び懸濁重合による場合も、公知の方法を適用することができる。これらの方法において用いる重合開始剤、連鎖移動剤等は特に制限はないが、乳化重合、溶液重合において例示した化合物と同じものを用いることができる。
 1-5.ゴム強化ビニル系樹脂〔A〕の物性:
 上記のようにして得られた、ゴム強化ビニル系樹脂〔A1〕のグラフト率は、通常10~150質量%、好ましくは20~120質量%、特に好ましくは30~70質量%である。このグラフト率が10質量%未満では、ゴム質重合体表面にグラフト重合したビニル系単量体〔b1〕の(共)重合体の密度が低くなったり、グラフト鎖長が短くなったりするため、耐衝撃性が十分でない場合がある。一方、150質量%を超えると、ゴム質重合体表面におけるビニル系単量体〔b1〕の(共)重合体からなる層が厚くなり、また、ゴム質重合体の内部にグラフトした上記(共)重合体からなる層が発達するため、ゴム弾性が低下し、その結果、耐衝撃性が低下する場合がある。
 上記グラフト率は、下記式により求めることができる。
 グラフト率(質量%)={(S-T)/T}×100
 上記式中、Sはゴム強化ビニル系樹脂1グラムをアセトン20mlに投入し、25℃の温度条件下で、振とう機により2時間振とうした後、5℃の温度条件下で、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分と可溶分とを分離して得られる不溶分の質量(g)であり、Tはゴム強化ビニル系樹脂1グラムに含まれるゴム質重合体の質量(g)である。このゴム質重合体の質量は、重合処方及び重合転化率から算出する方法、赤外線吸収スペクトル(IR)により求める方法等により得ることができる。
 また、上記ゴム強化ビニル系樹脂〔A1〕のアセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃で測定)は、いずれも、通常0.1~1.5dl/g、好ましくは0.2~0.8dl/gである。極限粘度[η]が上記範囲内にあれば、成形加工性及び耐衝撃性の物性バランスに優れる。
 なお、上記極限粘度[η]の測定は下記方法で行った。まず、上記ゴム強化ビニル系樹脂〔A1〕のアセトン(ゴム質重合体がアクリル系ゴムの場合はアセトニトリル)可溶分をメチルエチルケトンに溶解させ、濃度の異なるものを5点作った。ウベローデ粘度管を用い、30℃で各濃度の還元粘度を測定した結果から、極限粘度[η]を求めた。単位は、dl/gである。
 上記極限粘度は、製造時に用いる連鎖移動剤の種類及び使用量、重合開始剤の種類及び使用量、重合温度等を適宜選択することにより調整することができる。
2.(共)重合体〔B〕(以下、「成分〔B〕」ともいう。):
2-1.(共)重合体〔B〕の製造方法:
 上記(共)重合体〔B〕は、ゴム質重合体の非存在下、ビニル系単量体〔b2〕を、溶液重合、塊状重合、乳化重合、懸濁重合等の公知の方法で重合することにより製造することができる。上記重合は、重合開始剤を用いない熱重合であってもよいし、重合開始剤を用いる触媒重合であってもよい。
2-2.(共)重合体〔B〕の物性:
 上記重合体〔B〕の極限粘度[η](メチルエチルケトン中、30℃で測定)は、通常0.1~1.5dl/g、好ましくは0.2~1.0dl/gである。極限粘度[η]が上記範囲内にあれば、成形加工性と耐衝撃性の物性バランスに優れる。
 なお、上記極限粘度[η]の測定は下記方法で行った。まず、上記(共)重合体〔B〕をメチルエチルケトンに溶解させ、濃度の異なるものを5点作った。ウベローデ粘度管を用い、30℃で各濃度の還元粘度を測定した結果から、極限粘度[η]を求めた。単位は、dl/gである。
 上記極限粘度は、製造時に用いる連鎖移動剤の種類及び使用量、重合開始剤の種類及び使用量、重合温度等を適宜選択することにより調整することができる。
3. シリコーンオイル〔C〕(以下、「成分〔C〕」ともいう。):
 本発明で使用する成分〔C〕としてのシリコーンオイルは、主として、ゴム強化ビニル系樹脂を押出機で溶融混練したり脱揮する際において、押出機中で剪断力により樹脂温度が上昇してゴム強化ビニル系樹脂が劣化変色するのを防止するために添加されるもので、ポリオルガノシロキサン構造を持つものであれば公知のものを用いることができる。シリコーンオイル〔C〕は、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等の未変性シリコーンオイルであってもよいし、ポリオルガノシロキサン構造中の側鎖の一部及び/又はポリオルガノシロキサン構造の片末端部分、又は、ポリオルガノシロキサン構造の両末端部分に各種有機基が導入された変性シリコーンオイルであってもよい。上記変性シリコーンオイルとしては、アルキル変性シリコーンオイル、アルキル・アラルキル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、フッ素変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、メチルスチリル変性シリコーンオイル、メチル塩素化フェニルシリコーンオイル、メチルハイドロジエンシリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、アクリル変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、フェノール変性シリコーンオイル、カルビノール変性シリコーンオイル等を使用することができる。これらは単独で又は2種以上組み合わせて用いることができる。
 シリコーンオイル〔C〕の使用量は、熱可塑性樹脂組成物〔X〕中のケイ素含有量が該熱可塑性樹脂組成物100質量%に対して0.15質量%以下であり、好ましくは0.1質量%以下、より好ましくは0.07質量%以下、更に好ましくは0.03質量%以下である。熱可塑性樹脂組成物〔X〕中のケイ素含有量が0.15質量%を超えると、同種材を組み合わせて用いた場合に軋み音が発生する他、ゲート付近にシルバーストリークが発生し成形外観が損なわれる。
 熱可塑性樹脂組成物〔X〕中のケイ素含有量は、PANalytial社製、蛍光X線分析装置MagiX PROにより測定した。
4.熱可塑性樹脂組成物〔X〕:
 本発明における熱可塑性樹脂組成物〔X〕は、上記成分〔A〕、所望により上記成分〔B〕を所定の配合比率で混合し、溶融混練することにより得られる。上記成分〔B〕の配合量は、上記成分〔A〕と上記成分〔B〕の合計100質量%に対して、好ましくは5~70質量%、より好ましくは10~60質量%である。
 また、上記熱可塑性樹脂組成物〔X〕のアセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃で測定)は、いずれも、通常0.1~1.5dl/g、好ましくは0.3~0.7dl/gである。極限粘度[η]が上記範囲内にあれば、成形加工性及び耐衝撃性の物性バランスに優れる。
 なお、上記極限粘度[η]の測定は下記方法で行った。まず、上記熱可塑性樹脂組成物〔X〕のアセトン(ゴム質重合体がアクリル系ゴムの場合はアセトニトリル)可溶分をメチルエチルケトンに溶解させ、濃度の異なるものを5点作った。ウベローデ粘度管を用い、30℃で各濃度の還元粘度を測定した結果から、極限粘度[η]を求めた。単位は、dl/gである。
 上記成分〔A〕中のエチレン・α-オレフィン系ゴム質重合体〔a1〕の含有量は、上記熱可塑性樹脂組成物〔X〕を100質量%に対して5~30質量%であり、好ましくは5~25質量%、特に好ましくは5~20質量%である。この合計量が5質量%未満では軋み音の低減効果、成形性に劣り、一方、30質量%を超えると耐熱性が低下する。
 上記の如く本発明における熱可塑性樹脂組成物〔X〕は、必要に応じて、充填剤、造核剤、滑剤、熱安定剤、酸化防止剤、紫外線吸収剤、難燃剤、老化防止剤、可塑剤、抗菌剤、着色剤等の各種添加剤を、本発明の目的を損なわない範囲で含有することができる。
 さらに、本発明の熱可塑性樹脂組成物〔X〕は、必要に応じて、他の樹脂、例えばポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリアミド等を、本発明の目的を損なわない範囲で含有することができる。
 本発明の熱可塑性樹脂組成物〔X〕は、各成分を所定の配合比で、タンブラーミキサーやヘンシェルミキサーなどで混合した後、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ロール、フィーダールーダー等の混合機を用いて、適当な条件下で溶融混練して製造することができる。好ましい混練機は、二軸押出機である。さらに、それぞれの成分を混練するに際しては、それぞれの成分を一括して混練しても、多段、分割配合して混練してもよい。尚、バンバリーミキサー、ニーダー等で混練した後、押出機によりペレット化することもできる。また、充填材のうち繊維状のものは、混練中での切断を防止するためにサイドフィーダーにより押出機の途中から供給する方が好ましい。溶融混練温度は、通常200~300℃、好ましくは220~280℃である。
 本発明の熱可塑性樹脂組成物〔X〕は、ジグラー(ZIEGLER)社製のスティック&スリップ測定装置SSP-02を用いて後述する実施例に記載の方法で測定されるスティックスリップ試験において、同じ熱可塑性樹脂組成物〔X〕からなる接触用部品同士を用いて測定される異音リスクが、5N、および、40Nの各荷重で、1mm/秒、および、10mm/秒の各速度のいずれにおいても異音レベルが5以下であることが好ましく、3以下であることがさらに好ましい。ドイツ自動車工業会の基準(VDA203-260)によれば、上記異音レベルが3以下なら合格である。
 同じ熱可塑性樹脂組成物〔X〕からなる接触用部品同士用いて測定される異音リスク値は、Tm(融点)が0℃以下のエチレン・α-オレフィン系ゴム質重合体を用い、熱可塑性樹脂組成物〔X〕中のケイ素含有量を所定の量にすることで、調整することができる。
5. 構造体:
 本発明における構造体は、少なくとも2個の接触用部品を接触するように組み付けてなるものである。本発明の構造体は、上記熱可塑性樹脂組成物〔X〕を成形して得られる接触用部品を含むもので、好ましくは、2個以上の接触用部品が上記熱可塑性樹脂組成物〔X〕の成形体からなる。該熱可塑性樹脂組成物〔X〕から接触用部品を製造する方法には何等制限はなく、射出成形、射出圧縮成形、ガスアシスト成形、プレス成形、カレンダー成形、Tダイ押出成形、異形押出成形、フィルム成形等公知の方法により製造することができる。
 本発明の構造体に含まれる接触用部品が接触する他の部品の素材は特に制限はなく、例えば、熱可塑性樹脂(本発明の熱可塑性樹脂組成物〔X〕も含む)、熱硬化性樹脂、ゴム、有機質材料、無機質材料、金属材料等が挙げられる。熱可塑性樹脂組成物〔X〕からなる接触用部品は、特に、少なくとも2個の接触用部品同士が本発明の熱可塑性樹脂組成物〔X〕からなる場合に効果的であり、更に、接触用部品の全てが本発明の熱可塑性樹脂組成物〔X〕からなる場合に一層効果的である。
 熱可塑性樹脂としては、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、AS樹脂、ABS樹脂、AES樹脂、ASA樹脂、PMMA、ポリスチレン、耐衝撃性ポリスチレン、EVA、ポリアミド(PA)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート(PC)、ポリ乳酸、PC/ABS、PC/AES、PA/ABS、PA/AES等が挙げられる。これらは、単独で又は2種以上の組み合わせで使用できる。
 熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
 ゴムとしては、クロロプレンゴム、ポリブタジエンゴム、エチレン・プロピレンゴム、SEBS、SBS、SIS等の各種合成ゴム、天然ゴム等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
 有機質材料としては、例えば、インシュレーションボード、MDF(中質繊維板)、ハードボード、パーティクルボード、ランバーコア、LVL(単板積層材)、OSB(配向性ボード)、PSL(パララム)、WB(ウェハーボード)、硬質繊維板、軟質繊維板、ランバーコア合板、ボードコア合板、特殊コア-合板、ベニアコア-ベニヤ板、タップ樹脂を含浸させた紙の積層シート・板、(古)紙等を砕いた細かい小片・線状体に接着剤を混合して加熱圧縮したボード、各種の木材等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
 無機質材料としては、例えば、ケイ酸カルシウムボード、フレキシブルボード、ホモセメントボード、石膏ボード、シージング石膏ボード、強化石膏ボード、石膏ラスボード、化粧石膏ボード、複合石膏ボード、各種セラミック、ガラス等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
 更に、金属材料としては、鉄、アルミニウム、銅、各種の合金等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
 本発明における接触用部品は、部品同士の接触、接合、嵌合する箇所を有する自動車内装用部品、事務用機器、住宅内装用部品、家電用部品等における各種構造体に好適に用いることができる。
 自動車内装用部品は、例えば車両走行時の振動により、部品同士が接触し、擦れ合うことにより発生する軋み音を大幅に低減させることが可能ある。さらには、延性破壊することにより、衝突時の安全性に優れる。このような自動車内装用部品としてはドアトリム、ドアライニング、ピラーガーニッシュ、コンソール、コンソールボックス、センターパネル、ドアポケット、ベンチレータ、ダクト、エアコン、メーターバイザー、インパネアッパーガーニッシュ、インパネロアガーニッシュ、A/T インジケーター、オンオフスイッチ類(スライド部、スライドプレート)、スイッチベゼル、グリルフロントデフロスター、グリルサイドデフロスター、リッドクラスター、カバーインストロアー、マスク類(マスクスイッチ、マスクラジオなど)、グローブボックス、ポケット類(ポケットデッキ、ポケットカードなど)、ステアリングホイールホーンパッド、スイッチ部品、カーナビゲーション用外装部品等を挙げることができる。その中でも、自動車用ベンチレータ、自動車用エアコンの板状羽根、バルブシャッター、ルーバー、スイッチ部品、カーナビゲーション用外装部品等として特に好適に用いることができる。
 事務機器用部品は、例えば機器作動時の振動、デスク引き出しの開閉により、他の部品と接触し、擦れ合うことにより発生する軋み音を大幅に低減させることが可能である。さらには、延性破壊することにより、衝突等の安全性に優れる。このような事務用機器用の接触用部品としては、外装部品、内装部品、スイッチまわりの部品、可動部の部品、デスクロック部品、デスク引き出し等に好適に用いることができる。
 住宅内装用部品は、例えば扉、引き戸の開閉により、他の部品と接触し、擦れ合うことにより発生する軋み音を大幅に低減させることが可能である。さらには、延性破壊することにより、衝突等の安全性に優れる。このような住宅内装用部品としては、シェルフ扉、チェアダンパー、テーブル折りたたみ脚可動部品、扉開閉ダンパー、引き戸レール、カーテンレール等として好適に用いることができる。
 家電用部品は、例えば機器作動時の振動により、他の部品と接触し、擦れ合うことにより発生する軋み音を大幅に低減させることが可能である。このような家電用部品としては、ケース、ハウジング等の外装部品、内装部品、スイッチまわりの部品、可動部の部品等に好適に用いることができる。
 以下、実施例を挙げ、本発明をさらに具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に何等制約されるものではない。尚、実施例中、部および%は特に断らない限り質量基準である。
(1)評価方法:
 下記の実施例及び比較例における、ケイ素含有量の測定方法及び各種評価項目の測定・評価方法を以下に示す。
(1-1)ケイ素含有量の測定方法
 表1に記載の熱可塑性樹脂組成物を東芝機械製EC40射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形し、縦25mm、横50mm、厚さ2mmの射出成形プレートを試験片とし、PANalytial社製、蛍光X線分析装置 MagiX PRO にて試験片中央部の直径25mmの範囲のケイ素量を測定した。結果を表1に示す。
(1-1)軋み音評価I(異音リスク値):
(実施例4~9、比較例5~9について)
 表2に記載の接触用部品1、2の各熱可塑性樹脂組成物を東芝機械製IS-170FA射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形した、縦150mm、横100mm、厚さ4mmの射出成形プレートから、縦60mm、横100mm、厚さ4mm及び縦50mm、横25mm、厚さ4mmの試験片をディスクソーで切り出し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去し、大小2枚のプレートを接触用部品1、2の試験片として用いた。
 接触用部品1、2の、2枚の試験片を80℃±5℃に調整したオーブンで300時間エージングし、25℃で24時間冷却後、接触用部品1の大きな試験片と接触用部品2の小さな試験片をジグラ社製スティックスリップ試験機SSP-02に固定し、荷重5N、40N、速度1mm/秒、10mm/秒の条件で、振幅20mmで3回擦り合わせたときの異音リスク値から以下評価基準により軋み音性を判定した。異音リスク値が大きいほど軋み音の発生リスクは高くなる。結果を表2に示す。
○:試験した条件で最も高い異音リスク値 1~3
△:試験した条件で最も高い異音リスク値 4~5
×:試験した条件で最も高い異音リスク値 6~10
(実施例10について)
 表2に記載の接触用部品1の熱可塑性樹脂組成物を東芝機械製IS-170FA射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形した、縦150mm、横100mm、厚さ4mmの射出成形プレートから、縦60mm、横100mm、厚さ4mmの試験片をディスクソーで切り出し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去し、接触用部品1の試験片として用いた。
 接触用部品2の熱可塑性樹脂組成物として三菱エンジニアリングプラスチックス社製のポリカーボネート樹脂S-300(商品名)を東芝機械製IS-170FA射出成形機によりシリンダ温度270℃、射出圧力50MPa、金型温度60℃にて射出成形した、縦150mm、横100mm、厚さ4mmの射出成形プレートから、縦50mm、横25mm、厚さ4mmの試験片をディスクソーで切り出し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去し、接触用部品2の試験片として用いた。
 接触用部品1、2の、2枚の試験片を80℃±5℃に調整したオーブンで300時間エージングし、25℃で24時間冷却後、接触用部品1の大きな試験片と接触用部品2の小さな試験片をジグラ社製スティックスリップ試験機SSP-02に固定し、荷重5N、40N、速度1mm/秒、10mm/秒の条件で、振幅20mmで3回擦り合わせたときの異音リスク値から上記評価基準により軋み音性を判定した。異音リスク値が大きいほど軋み音の発生リスクは高くなる。結果を表2に示す。
(実施例11について)
 表2に記載の接触用部品1の熱可塑性樹脂組成物を東芝機械製IS-170FA射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形した、縦150mm、横100mm、厚さ4mmの射出成形プレートから、縦60mm、横100mm、厚さ4mmの試験片をディスクソーで切り出し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去し、接触用部品1の試験片として用いた。
 縦50mm、横25mm、厚さ4mmのSUS304製の試験片を、番手#100のサンドペーパーで端部を面取りし、接触用部品2の試験片として用いた。
 接触用部品1、2の、2枚の試験片を80℃±5℃に調整したオーブンで300時間エージングし、25℃で24時間冷却後、接触用部品1の大きな試験片と接触用部品2の小さな試験片をジグラ社製スティックスリップ試験機SSP-02に固定し、荷重5N、40N、速度1mm/秒、10mm/秒の条件で、振幅20mmで3回擦り合わせたときの異音リスク値から上記評価基準により軋み音性を判定した。異音リスク値が大きいほど軋み音の発生リスクは高くなる。結果を表2に示す。
(実施例12について)
 表2に記載の接触用部品1の熱可塑性樹脂組成物を東芝機械製IS-170FA射出成形機によりシリンダ温度250℃、射出圧力50MPa、金型温度60℃にて射出成形した、縦150mm、横100mm、厚さ4mmの射出成形プレートから、縦60mm、横100mm、厚さ4mmの試験片をディスクソーで切り出し、番手#100のサンドペーパーで端部を面取りした後、細かなバリをカッターナイフで除去し、接触用部品1の試験片として用いた。
 縦50mm、横25mm、厚さ4mmのガラス製の試験片を、番手#100のサンドペーパーで端部を面取りし、接触用部品2の試験片として用いた。
 接触用部品1、2の、2枚の試験片を80℃±5℃に調整したオーブンで300時間エージングし、25℃で24時間冷却後、接触用部品1の大きな試験片と接触用部品2の小さな試験片をジグラ社製スティックスリップ試験機SSP-02に固定し、荷重5N、40N、速度1mm/秒、10mm/秒の条件で、振幅20mmで3回擦り合わせたときの異音リスク値から上記評価基準により軋み音性を判定した。異音リスク値が大きいほど軋み音の発生リスクは高くなる。結果を表2に示す。
(1-2)軋み音評価II(実用評価):
 表2に記載の接触用部品1、2の各熱可塑性樹脂組成物を株式会社日本製鋼所製の射出成形機「J-100E」(型式名)を用い、それぞれISOダンベル試験片5枚を射出成形し、その後、これらの試験片を80℃のギアオーブンに200時間放置した。次に、接触用部品1であるISOダンベル試験片5枚と、接触用部品2であるISOダンベル試験片5枚を交互に重ね合わせて構造体とし、この両端を手でひねって軋み音の発生の状況を評価した。評価は5回行い、下記評価基準に基づき判定を行った。
 同様に、ギヤオーブンに400時間放置した条件での評価も行った。結果を表2に示す。
 軋み音低減効果の評価:
○:5回の評価全てにおいて、軋み音の発生は僅かであった。
△:5回の評価において、軋み音の発生が顕著な場合が含まれていた(5回の評価全てにおいて、軋み音の発生が顕著なものは除く)。
×:5回の評価全てにおいて、軋み音の発生が顕著であった。
(1-3)成形外観評価(シルバー)
 表1の熱可塑性樹脂組成物を東芝機械製EC40射出成形機によりシリンダ温度250℃、射出圧力80MPa、金型温度60℃にて射出成形し、直径1mmのセンターピンゲートの金型にて直径80mm、厚さ2mmの円盤状成形品を各5枚採取した。得られた5枚の試験片を目視観察し、下記評価基準により成形外観の判定を行なった。結果を表1に示す。
○:5枚の試験片全てにおいてゲート付近にシルバーストリークは発生しなかった。
×:5枚の試験片においてゲート付近にシルバーストリークが発生したものが含まれていた。
 尚、表2に構造体の成形外観を示したが、これは接触用部品1、2からなる構造体全体についての外観を判定し、○:良好、×:不良の2段階で評価した。
成分〔A〕
A-1:AES-1
 リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブに、エチレン・α-オレフィン系ゴム質重合体〔a1〕として、エチレン・プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4 ,100℃)20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)22部、スチレン55部、アクリロニトリル23部、t-ドデシルメルカプタン0.5部、トルエン110部を仕込み、内温を75℃に昇温して、オートクレーブ内容物を1時間攪拌して均一溶液とした。その後、t-ブチルパーオキシイソプロピルモノカーボネート0.45部を添加し、内温を更に昇温して、100℃に達した後は、この温度を保持しながら、攪拌回転数100rpmとして重合反応を行った。重合反応開始後4時間目から、内温を120℃に昇温し、この温度を保持しながら更に2時間反応を行って重合反応を終了した。その後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部、ジメチルシリコーンオイル;KF-96-100cSt(商品名:信越シリコーン株式会社製)0.02部を添加した後、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒を留去し、さらに40mmφベント付き押出機(シリンダー温度220℃、真空度760mmHg)を用いて揮発分を実質的に脱気させ、ペレット化した。得られたエチレン・α-オレフィン系ゴム強化ビニル系樹脂のグラフト率は70%、アセトン可溶分の極限粘度[η]は0.47dl/gであった。
A-2:AES-2
  リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブに、A-1で用いたエチレン・α-オレフィン系ゴム質重合体〔a1〕に代えてエチレン・プロピレン・ジシクロペンタジエン共重合体(エチレン/プロピレン/ジシクロペンタジエン=63/32/5(%)、ムーニー粘度(ML1+4 ,100℃)33、融点(Tm)は無し、ガラス転移温度(Tg)は-52℃)30部、スチレン45部、アクリロニトリル25部、t-ドデシルメルカプタン0.5部、トルエン140部を仕込み、内温を75℃に昇温して、オートクレーブ内容物を1時間攪拌して均一溶液とした。その後、t-ブチルパーオキシイソプロピルモノカーボネート0.45部を添加し、内温を更に昇温して、100℃に達した後は、この温度を保持しながら、攪拌回転数100rpmとして重合反応を行った。重合反応開始後4時間目から、内温を120℃に昇温し、この温度を保持しながら更に2時間反応を行って重合反応を終了した。その後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部、ジメチルシリコーンオイル;KF-96-100cSt(商品名:信越シリコーン株式会社製)0.02部を添加した後、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒とを留去し、さらに40mmφベント付き押出機(シリンダー温度220℃、真空度760mmHg)を用いて揮発分を実質的に脱気させ、ペレット化した。得られたエチレン・α-オレフィン系ゴム強化ビニル系樹脂のグラフト率は60%、アセトン可溶分の極限粘度[η]は0.45dl/gであった。
A-3:ABS-1
 攪拌機付き重合器に、水280部およびジエン系ゴム質重合体〔a2〕として、重量平均粒子径0.26μm、ゲル分率90%のポリブタジエンラテックス60部(固形分換算)、ナトリウムホルムアルデヒドスルホキシレート0.3部、硫酸第一鉄0.0025部、エチレンジアミン四酢酸二ナトリウム0.01部を仕込み、脱酸素後、窒素気流中で撹拌しながら60℃に加熱した後、アクリロニトリル10部、スチレン30部、t-ドデシルメルカプタン0.2部、クメンハイドロパーオキサイド0.3部からなる単量体混合物を60℃で5時間かけて連続的に滴下した。滴下終了後、重合温度を65℃にし、1時間撹拌続けた後、重合を終了させ、グラフト共重合体のラテックスを得た。重合転化率は98%であった。その後、得られたラテックスに、2,2′-メチレン-ビス(4-エチレン-6-t-ブチルフェノール)0.2部を添加し、塩化カルシウムを添加して凝固し、洗浄、濾過および乾燥工程を経てパウダー状の樹脂組成物を得た。得られた樹脂組成物のグラフト率は40%、アセトン可溶分の極限粘度[η]は0.38dl/gであった。
B-1:AS-1
 リボン翼を備えたジャケット付き重合用反応器を、2基連結した合成装置を用いた。各反応器内に、窒素ガスをパージした後、1基目の反応器に、スチレン75部、アクリロニトリル25部及びトルエン20部からなる混合物と、分子量調節剤であるtert-ドデシルメルカプタン0.15部をトルエン5部に溶解した溶液と、重合開始剤であるジクミルパーオキサイド0.1部をトルエン5部に溶解した溶液とを連続的に供給し、110℃で重合を行った。供給した単量体等の平均滞留時間は2時間であり、2時間後の重合転化率は56%であった。
 次いで、得られた重合体溶液を、1基目の反応器の外部に設けられたポンプにより、連続的に取り出して、2基目の反応器に供給した。連続的に取り出す量は、1基目の反応器に供給する量と同じである。尚、2基目の反応器においては、130℃で2時間重合を行い、2時間後の重合転化率は74%であった。
 その後、2基目の反応器から、重合体溶液を回収し、これを、2軸3段ベント付き押出機に導入した。そして、直接、未反応単量体及びトルエン(重合用溶媒)を脱揮し、スチレン・アクリロニトリル共重合体を回収した。このスチレン・アクリロニトリル共重合体を、成分〔B-1〕として用いた。
 この成分〔B-1〕の極限粘度[η](メチルエチルケトン中、30℃)は、0.60dl/gであった。
(2-2)成分〔C〕(シリコーンオイル):
C-1:ジメチルシリコーンオイル;KF-96-100cSt(商品名:信越シリコーン株式会社製)、25℃の動粘度は100cStであった。
(2-3)成分〔D〕添加剤:
D-1:エチレン・ビスステアリン酸アマイド;カオーワックス EB-P(商品名:花王株式会社製)
D-2:1,3,5-トリス(3,5-ジ-t-ブチル-4-ハイドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン;アデカスタブ AO-20(商品名:株式会社ADEKA製)
D-3:ビス(2,4-ジ-t-ブチルフェニル)ペンタエリストールジホスファイト;アデカスタブ PEP-24G(商品名:株式会社ADEKA製)
実施例1~3及び比較例1~4
 表1に記載の配合割合で、上記成分〔A〕~〔D〕をそれぞれヘンシェルミキサーにより混合した後、二軸押出機(日本製鋼所製、TEX44α、バレル設定温度250℃)で溶融混練し、ペレット化することにより樹脂組成物X、Yを得た。
 得られた樹脂組成物X、Yで上記したように評価用の各試験片を成形した。そして得られた試験片を用いて、前記の方法で評価した。評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例4~12及び比較例5~9
 上記実施例1~3、比較例1~4で得られた樹脂組成物を用いて、前記方法で接触用部品1、2を作製し、これを表2に示すように組み合わせて構造体とし、前記方法で軋み音の評価、成形外観及びリサイクル性を評価した。更に、接触用部品2として、ポリカーボネート製(Y3)、金属(ステンレス)製(Y4)、ガラス製(Y5)のものを用い、これらと接触用部品1と組み合わせた構造体についても同様に評価した。評価結果を表2に示す。
 表1に示すように、実施例1~3に代表される本発明の樹脂組成物X1~X3は、いずれも成形外観が良好である。
 これに対し、比較例2及び比較例4の樹脂組成物X5及びY2はケイ素含有量が多過ぎる例であり成形外観が劣っている。比較例1及び比較例3の樹脂組成物X4及びY1はケイ素含有量が少ないため成形外観が良好である。
 また、表2に示すように、接触用部品1、2として、実施例4~6に代表される本発明の樹脂組成物X1~X3を用いた構造体は、軋み音の評価及び成形外観が良好である。また、これらの樹脂組成物X1、X2、X3同士をそれぞれ用いた構造体は、樹脂組成物ごとでの分別が必要でないためリサイクル性が良好である。
 実施例7の構造体は、樹脂組成物X1とX3を組み合わせた例であり、軋み音の評価は優れているものの、リサイクル性が劣っている。
 実施例8の構造体は、樹脂組成物X1とケイ素含有量が多過ぎる樹脂組成物X5を組み合わせた例であり、軋み音の評価は優れているものの、成形外観及びリサイクル性が劣っている。
 実施例10~12の構造体は、樹脂組成物X1と異種材料を組み合わせた例であり、軋み音の評価は優れているものの、樹脂組成物と異種材料の分別が必要でリサイクル性が劣っている。
 一方、比較例5の構造体は、接触用部品1、2として、融点(Tm)を有しないエチレン・α-オレフィン系ゴム質重合体〔a1〕を用いたゴム強化ビニル系樹脂〔A-2〕を含有する樹脂組成物X4、X4を組み合わせた例であり、軋み音の評価が劣っている。
 比較例6の構造体は、接触用部品1、2として、ケイ素含有量が多過ぎる樹脂組成物X5、X5を組み合わせた例であり、軋み音の評価及び成形外観が劣っている。
 比較例7の構造体は、接触用部品1、2として、エチレン・α-オレフィン系ゴム質重合体〔a1〕に代えてポリブタジエン系ゴム質重合体を用いたゴム強化ビニル系樹脂〔A-3〕を含有する樹脂組成物Y1、Y1を組み合わせた例であり、軋み音の評価が劣っている。
 比較例8の構造体は、接触用部品1、2として、エチレン・α-オレフィン系ゴム質重合体〔a1〕に代えてポリブタジエン系ゴム質重合体を用いたゴム強化ビニル系樹脂〔A-3〕を含有する樹脂組成物Y2、Y2を組み合わせた例であり、軋み音の評価及び成形外観が劣っている。
 比較例9の構造体は、接触用部品1、2として、ポリブタジエン系ゴム質重合体を用いたゴム強化ビニル系樹脂〔A-3〕を含有する樹脂組成物Y1、Y2を組み合わせた例であり、軋み音の評価及び成形外観が劣り、また、樹脂組成物Y1、Y2の分別が必要なためリサイクル性が劣っている。
 以上から明らかなように、本発明の熱可塑性樹脂組成物は、組み付け相手である接触用部品の材質を問わず広汎な材質に対して優れた軋み音低減効果を有し、部品同士の接触、接合、嵌合する箇所を有する自動車内装用部品、事務用機器、住宅内装用部品、家電用部品等に好適であることがわかる。
 本発明の軋み音低減用熱可塑性樹脂組成物は、2個以上の部品が擦れ合うときに発生する軋み音が著しく低減され、かつ高温下に長時間置かれた場合においても軋み音低減効果が低下せずに維持され、さらには耐衝撃性に優れた接触用部品からなる構造体を提供することができ、部品同士が接触、接合、嵌合する箇所を有する自動車内装用部品、事務用機器、住宅内装用部品、家電用部品等に好適に用いることができる。
 M 物体
 V 駆動速度
 μs ノコギリ波形上端の静摩擦係数
 μl ノコギリ波形下端の摩擦係数
 Δμ μs-μl

Claims (18)

  1.  Tm(融点)が0℃以上のエチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下にビニル系単量体〔b1〕を重合して得られるゴム強化ビニル系樹脂〔A〕を含有してなる熱可塑性樹脂組成物〔X〕であって、
     前記熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.15質量%以下であることを特徴とする軋み音低減用熱可塑性樹脂組成物。
  2.  エチレン・α-オレフィン系ゴム質重合体〔a1〕の含有量が、熱可塑性樹脂組成物〔X〕100質量%に対して5~30質量%であることを特徴とする請求項1に記載の軋み音低減用熱可塑性樹脂組成物。
  3.  ゴム強化ビニル系樹脂〔A〕が、Tm(融点)が0℃以上のエチレン・α-オレフィン系ゴム質重合体〔a1〕の存在下にビニル系単量体〔b1〕を重合して得られるゴム強化ビニル系樹脂〔A1〕と、ビニル系単量体〔b2〕の(共)重合体〔B〕とを含有してなることを特徴とする請求項1又は2に記載の軋み音低減用熱可塑性樹脂組成物。
  4.  エチレン・α-オレフィン系ゴム質重合体〔a1〕が、エチレン5~95質量%及びα-オレフィン95~5質量%(ただし、エチレン及びα-オレフィンの合計で100質量%)からなることを特徴とする請求項1乃至3の何れか1項に記載の軋み音低減用熱可塑性樹脂組成物。
  5.  ゴム強化ビニル系樹脂〔A〕のグラフト率が10~150質量%であり、アセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)が0.1~1.5dl/gであることを特徴とする請求項1乃至4の何れか1項に記載の軋み音低減用熱可塑性樹脂組成物。
  6.  熱可塑性樹脂組成物〔X〕のアセトン可溶分の極限粘度[η](メチルエチルケトン中、30℃)が0.1~1.5dl/gであることを特徴とする請求項1乃至5の何れか1項に記載の軋み音低減用熱可塑性樹脂組成物。
  7.  エチレン・α-オレフィン系ゴム質重合体〔a1〕が、エチレン・プロピレン共重合体であることを特徴とする請求項1乃至6の何れか1項に記載の軋み音低減用熱可塑性樹脂組成物。
  8.  熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.1質量%以下であることを特徴とする請求項1乃至7の何れか1項に記載の軋み音低減用熱可塑性樹脂組成物。
  9.  熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.07質量%以下であることを特徴とする請求項1乃至7の何れか1項に記載の軋み音低減用熱可塑性樹脂組成物。
  10.  熱可塑性樹脂組成物〔X〕中のケイ素含有量が、該熱可塑性樹脂組成物〔X〕100質量%に対して0.03質量%以下であることを特徴とする請求項1乃至7の何れか1項に記載の軋み音低減用熱可塑性樹脂組成物。
  11.  少なくとも2個の接触用部品を含む構造体であって、前記接触用部品が請求項1乃至10の何れか1項に記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする軋み音低減構造体。
  12.  接触用部品の2個以上が、請求項1乃至10の何れか1項に記載の熱可塑性樹脂組成物〔X〕からなることを特徴とする請求項11に記載の軋み音低減構造体。
  13.  ジグラー(ZIEGLER)社製のスティック&スリップ測定装置SSP-02を使用して測定される異音リスク値が、以下の全ての測定条件において3以下であることを特徴とする請求項12に記載の軋み音低減構造体。
     測定条件
     荷重:5N、40N
     速度:1mm/秒、10mm/秒
  14.  接触用部品が自動車内装用部品、スイッチ部品、事務機器用部品、家電用部品、デスク用ロック部品、住宅用内装部品、又は室内扉の開閉ダンパー部品であることを特徴とする請求項11乃至13の何れか1項に記載の軋み音低減構造体。
  15.  請求項1乃至10の何れか1項に記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用メーターバイザー。
  16.  請求項1乃至10の何れか1項に記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用センターパネル。
  17.  請求項1乃至10の何れか1項に記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用コンソールボックス。
  18.  請求項1乃至10の何れか1項に記載の熱可塑性樹脂組成物〔X〕からなる接触用部品を含むことを特徴とする自動車内装用スイッチベゼル。
PCT/JP2012/072155 2011-09-02 2012-08-31 軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体 WO2013031946A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12828558.2A EP2752454B1 (en) 2011-09-02 2012-08-31 Thermoplastic resin composition for squeaking noise reduction and squeaking noise reducing structure
US14/241,219 US9353249B2 (en) 2011-09-02 2012-08-31 Thermoplastic resin composition for reduction of squeaking noises and structure of reduced squeaking noises
US15/140,518 US9777147B2 (en) 2011-09-02 2016-04-28 Thermoplastic resin composition for reduction of squeaking noises and structure of reduced squeaking noises

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011191596 2011-09-02
JP2011-191596 2011-09-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/241,219 A-371-Of-International US9353249B2 (en) 2011-09-02 2012-08-31 Thermoplastic resin composition for reduction of squeaking noises and structure of reduced squeaking noises
US15/140,518 Division US9777147B2 (en) 2011-09-02 2016-04-28 Thermoplastic resin composition for reduction of squeaking noises and structure of reduced squeaking noises

Publications (1)

Publication Number Publication Date
WO2013031946A1 true WO2013031946A1 (ja) 2013-03-07

Family

ID=47756421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072155 WO2013031946A1 (ja) 2011-09-02 2012-08-31 軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体

Country Status (4)

Country Link
US (2) US9353249B2 (ja)
EP (1) EP2752454B1 (ja)
JP (2) JP6050637B2 (ja)
WO (1) WO2013031946A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168078A1 (ja) * 2013-04-08 2014-10-16 テクノポリマー株式会社 接触用部品、および該接触用部品を含む構造体
JP2016088000A (ja) * 2014-11-07 2016-05-23 テクノポリマー株式会社 積層フィルム
JP2016087999A (ja) * 2014-11-07 2016-05-23 テクノポリマー株式会社 積層フィルム
JP2016144888A (ja) * 2015-02-06 2016-08-12 テクノポリマー株式会社 メッキされた部品からなる異音の発生が抑制された物品
WO2019021546A1 (ja) * 2017-07-28 2019-01-31 テクノUmg株式会社 摺動性樹脂組成物及びその成形体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510772B2 (ja) * 2014-07-03 2019-05-08 テクノUmg株式会社 インサート成形用フィルム
JP6738142B2 (ja) * 2014-12-25 2020-08-12 テクノUmg株式会社 ミリ波を透過する樹脂部品並びにこれを備えるミリ波用レドーム及びミリ波レーダー
JP6737713B2 (ja) * 2015-02-10 2020-08-12 テクノUmg株式会社 メッキされた部品を備えた物品
EP3699212A4 (en) * 2017-08-29 2021-10-06 Techno-UMG Co., Ltd. THERMOPLASTIC RESIN COMPOSITION AND SHAPED BODY WITH REDUCED RATTLING NOISE
KR20210018795A (ko) * 2018-04-05 2021-02-18 디디피 스페셜티 일렉트로닉 머티리얼즈 유에스 9 엘엘씨 스틱-슬립 개질제의 마스터배치를 함유하는 열가소성 조성물
JP7287113B2 (ja) * 2019-05-27 2023-06-06 テクノUmg株式会社 三次元造形物の製造方法
EP4153680B1 (de) 2020-05-18 2024-02-28 Covestro Deutschland AG Polycarbonat-blend mit verringerten störgeräuschen

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356267B2 (ja) 1979-07-12 1988-11-07 Sumitomo Naugatuck
JP2659467B2 (ja) 1991-03-22 1997-09-30 鐘淵化学工業株式会社 擦れ音を低減した自動車内装部品
JP2688619B2 (ja) 1989-04-13 1997-12-10 出光石油化学株式会社 ゴム変性スチレン系樹脂組成物
JP2798396B2 (ja) 1988-09-20 1998-09-17 電気化学工業株式会社 難燃性樹脂組成物
JPH10316833A (ja) 1997-05-21 1998-12-02 Toray Ind Inc 撥水性熱可塑性樹脂組成物
JP2002265772A (ja) * 2001-03-15 2002-09-18 Ube Cycon Ltd 摺動性樹脂組成物
JP2003261760A (ja) * 2002-03-11 2003-09-19 Asahi Kasei Corp 熱可塑性樹脂組成物
JP2011137066A (ja) * 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2011137067A (ja) * 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2011162592A (ja) * 2010-02-05 2011-08-25 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109438A (ja) * 1973-02-21 1974-10-17
FR2299349A1 (fr) * 1975-02-03 1976-08-27 Ugine Kuhlmann Procede de preparation de copolymeres greffes
JPS57182347A (en) * 1981-05-06 1982-11-10 Mitsui Toatsu Chem Inc Rubber-modified styrene resin composition
JPS62143957A (ja) * 1985-12-18 1987-06-27 Sumitomo Chem Co Ltd スチレン系樹脂組成物
JPH01188544A (ja) * 1988-01-22 1989-07-27 Showa Denko Kk 樹脂組成物
JPH02294348A (ja) * 1989-05-08 1990-12-05 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JP2678382B2 (ja) * 1989-05-25 1997-11-17 本田技研工業株式会社 自動車用内外装部品
DE69124812T2 (de) * 1990-01-23 1997-06-12 Bayer Antwerpen Nv Witterungsbeständige Pfropfpolymere mit verbesserter Schlagfestigkeit und verbessertem Schmelzflussverhalten
KR100445932B1 (ko) * 1995-10-31 2004-10-15 신닛테츠가가쿠 가부시키가이샤 고무변성방향족비닐계수지조성물및이의제조방법
JPH10139958A (ja) * 1996-11-06 1998-05-26 Tonen Chem Corp 外装用ポリオレフィン組成物
JPH1188544A (ja) * 1997-09-05 1999-03-30 Sekisui Chem Co Ltd 警報システム
JP4072839B2 (ja) * 1998-10-14 2008-04-09 テクノポリマー株式会社 ゴム変性スチレン系熱可塑性樹脂組成物
JP2001131368A (ja) * 1999-11-02 2001-05-15 Nippon A & L Kk 押出し成形用熱可塑性樹脂樹脂組成物
US6737453B2 (en) * 1999-12-09 2004-05-18 Techno Polymer Co., Ltd. Flame retardant thermoplastic resin composition
JP2003020378A (ja) * 2001-07-06 2003-01-24 Nippon A & L Kk 透明摺動性熱可塑性樹脂組成物
WO2003066317A1 (en) * 2002-02-06 2003-08-14 Green Tokai Co., Ltd. Improved rocker panel and method for minimizing sag lines in molded part
JP2004210891A (ja) * 2002-12-27 2004-07-29 Umg Abs Ltd 複合熱可塑性樹脂組成物及びその成形品
JP2005178276A (ja) * 2003-12-22 2005-07-07 Shin Etsu Polymer Co Ltd 加飾フィルム及びその製造方法
CN2750365Y (zh) * 2004-09-10 2006-01-04 鸿富锦精密工业(深圳)有限公司 电脑面板组合
JP4970909B2 (ja) * 2005-11-30 2012-07-11 テクノポリマー株式会社 ダイレクト鍍金用樹脂組成物、成形品及び鍍金成形品
JP2010158961A (ja) * 2009-01-07 2010-07-22 Honda Motor Co Ltd メータバイザ構造
JP5729914B2 (ja) * 2009-04-08 2015-06-03 テクノポリマー株式会社 軋み音を低減した自動車内装部品
EP2418246B1 (en) 2009-04-08 2014-08-20 Techno Polymer Co., Ltd. Automobile interior part with reduced squeaking noises
JP6146890B2 (ja) * 2010-08-27 2017-06-14 テクノポリマー株式会社 軋み音を低減した熱可塑性樹脂組成物製接触用部品
JP5698040B2 (ja) * 2011-03-14 2015-04-08 株式会社Screenホールディングス 熱処理方法および熱処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356267B2 (ja) 1979-07-12 1988-11-07 Sumitomo Naugatuck
JP2798396B2 (ja) 1988-09-20 1998-09-17 電気化学工業株式会社 難燃性樹脂組成物
JP2688619B2 (ja) 1989-04-13 1997-12-10 出光石油化学株式会社 ゴム変性スチレン系樹脂組成物
JP2659467B2 (ja) 1991-03-22 1997-09-30 鐘淵化学工業株式会社 擦れ音を低減した自動車内装部品
JPH10316833A (ja) 1997-05-21 1998-12-02 Toray Ind Inc 撥水性熱可塑性樹脂組成物
JP2002265772A (ja) * 2001-03-15 2002-09-18 Ube Cycon Ltd 摺動性樹脂組成物
JP2003261760A (ja) * 2002-03-11 2003-09-19 Asahi Kasei Corp 熱可塑性樹脂組成物
JP2011137066A (ja) * 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2011137067A (ja) * 2009-12-28 2011-07-14 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品
JP2011162592A (ja) * 2010-02-05 2011-08-25 Techno Polymer Co Ltd 軋み音を低減した自動車内装部品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE SURFACE SCIENCE OF JAPAN, vol. 24, no. 6, 2003, pages 328 - 333
See also references of EP2752454A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168078A1 (ja) * 2013-04-08 2014-10-16 テクノポリマー株式会社 接触用部品、および該接触用部品を含む構造体
CN105102533A (zh) * 2013-04-08 2015-11-25 大科能树脂有限公司 接触用部件、以及包含该接触用部件的结构体
JPWO2014168078A1 (ja) * 2013-04-08 2017-02-16 テクノポリマー株式会社 接触用部品、および該接触用部品を含む構造体
US9708482B2 (en) 2013-04-08 2017-07-18 Techno Polymer Co., Ltd. Contacting component and structure containing said contacting component
US10189982B2 (en) 2013-04-08 2019-01-29 Techno Polymer Co., Ltd. Contacting component and structure containing said contacting component
CN111995825A (zh) * 2013-04-08 2020-11-27 大科能宇菱通株式会社 接触用部件、以及包含该接触用部件的结构体
JP2016088000A (ja) * 2014-11-07 2016-05-23 テクノポリマー株式会社 積層フィルム
JP2016087999A (ja) * 2014-11-07 2016-05-23 テクノポリマー株式会社 積層フィルム
JP2016144888A (ja) * 2015-02-06 2016-08-12 テクノポリマー株式会社 メッキされた部品からなる異音の発生が抑制された物品
WO2019021546A1 (ja) * 2017-07-28 2019-01-31 テクノUmg株式会社 摺動性樹脂組成物及びその成形体

Also Published As

Publication number Publication date
JP2013064124A (ja) 2013-04-11
US9777147B2 (en) 2017-10-03
EP2752454A1 (en) 2014-07-09
JP6050637B2 (ja) 2016-12-21
US20160237272A1 (en) 2016-08-18
JP6486884B2 (ja) 2019-03-20
US20140206803A1 (en) 2014-07-24
EP2752454B1 (en) 2016-10-19
EP2752454A4 (en) 2015-04-22
JP2017020050A (ja) 2017-01-26
US9353249B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
JP6486884B2 (ja) 軋み音低減用熱可塑性樹脂組成物及び軋み音低減構造体
JP6146890B2 (ja) 軋み音を低減した熱可塑性樹脂組成物製接触用部品
JP5937716B2 (ja) 軋み音を低減した接触用部品
WO2010117020A1 (ja) 軋み音を低減した自動車内装部品
JP6535596B2 (ja) 接触用部品、および該接触用部品を含む構造体
JP5528142B2 (ja) 軋み音を低減した自動車内装部品
JP2013112812A (ja) 軋み音低減用熱可塑性樹脂組成物、接触用部品及び構造体
JP6087330B2 (ja) 軋み音を低減した熱可塑性樹脂組成物及び成形品
JP5820040B2 (ja) 軋み音を低減した熱可塑性樹脂組成物製接触用部品
JP6530836B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6344749B2 (ja) 熱可塑性樹脂組成物製接触用部品
JP2016180124A (ja) 軋み音低減用熱可塑性樹脂組成物、接触用部品及び構造体
JP6085016B2 (ja) 熱可塑性樹脂組成物及び成形品
JP5797802B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6010170B2 (ja) 熱可塑性樹脂組成物及び成形品
JP2014133896A (ja) 軋み音を低減した自動車内装部品
JP6357030B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP2017201040A (ja) 熱可塑性樹脂組成物製嵌合品
JP6087383B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6444364B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6251323B2 (ja) 熱可塑性樹脂組成物成形品の製造方法
JP2015120939A (ja) 熱可塑性樹脂組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14241219

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012828558

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012828558

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE