WO2013031650A1 - 弾性波装置及びその製造方法 - Google Patents

弾性波装置及びその製造方法 Download PDF

Info

Publication number
WO2013031650A1
WO2013031650A1 PCT/JP2012/071343 JP2012071343W WO2013031650A1 WO 2013031650 A1 WO2013031650 A1 WO 2013031650A1 JP 2012071343 W JP2012071343 W JP 2012071343W WO 2013031650 A1 WO2013031650 A1 WO 2013031650A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
wave device
lithium
lithium tantalate
lithium niobate
Prior art date
Application number
PCT/JP2012/071343
Other languages
English (en)
French (fr)
Inventor
神藤 始
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013531259A priority Critical patent/JP5992912B2/ja
Publication of WO2013031650A1 publication Critical patent/WO2013031650A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure

Definitions

  • the present invention relates to an acoustic wave device using an acoustic wave such as a bulk wave and a surface acoustic wave, and a method for manufacturing the same, and more particularly, directly or indirectly on a piezoelectric substrate mainly composed of lithium niobate.
  • the present invention relates to an acoustic wave device having a structure in which piezoelectric films mainly composed of lithium are laminated, and a method for manufacturing the same.
  • Example 2 of Patent Document 1 a bulk wave resonator having a structure in which a LiTaO 3 thin plate is laminated on a Si substrate is disclosed.
  • Patent Document 2 discloses a surface acoustic wave element having a structure in which a 41 ° Y-cut X-propagation LiNbO 3 thin plate is bonded to a 36 ° Y-cut X-propagation LiTaO 3 substrate.
  • a LiTaO 3 thin plate is laminated on a Si substrate.
  • the linear expansion coefficient of the Si substrate is 3.35 ppm / ° C.
  • the linear expansion coefficient of the LiTaO 3 thin plate is 16.1 ppm / ° C. Therefore, the difference in linear expansion coefficient between the two is large. For this reason, when exposed to a processing step involving heat history or a use environment, there is a possibility that peeling occurs between the Si substrate and the LiTaO 3 thin plate.
  • the linear expansion coefficient in the acoustic wave propagation direction of the 36 ° Y-cut X-propagation LiTaO 3 substrate is 16.1 ppm / ° C., which is perpendicular to the X axis.
  • the linear expansion coefficient of is 8.2 ppm / ° C.
  • the linear expansion coefficient in the elastic wave propagation direction is 15.4 ppm / ° C.
  • the linear expansion coefficient in the direction perpendicular to the X axis is 10.9 ppm / ° C.
  • An object of the present invention is an acoustic wave device having a structure in which a piezoelectric substrate mainly composed of lithium niobate and a piezoelectric film mainly composed of lithium tantalate are laminated, and the difference in linear expansion coefficient between the two It is an object to provide an elastic wave device and a method for manufacturing the same.
  • An acoustic wave device includes a piezoelectric substrate mainly composed of lithium niobate, a piezoelectric film laminated on the piezoelectric substrate and mainly composed of lithium tantalate, and the piezoelectric film. And an electrode formed on the upper surface and / or the lower surface, and when the Euler angles are ( ⁇ , ⁇ , ⁇ ), the Euler angles ⁇ of the lithium niobate and the lithium tantalate are 0 °, When the Euler angle ⁇ of lithium oxide is ⁇ LT and the Euler angle ⁇ of lithium niobate is ⁇ LN, ⁇ LT and ⁇ LN are in the hatched region X of FIG.
  • the ⁇ LT and ⁇ LN are represented by the following coordinates shown in the left column and the right column of Table 1 below in a coordinate system in which ⁇ LN is the x axis and ⁇ LT is the y axis. It is within the range of each region surrounded by a line connecting the points in order.
  • the difference in linear expansion coefficient between lithium niobate and lithium tantalate can be within 2 ppm / ° C. More preferably, the values of ⁇ LT and ⁇ LN are within the range of each region surrounded by a line connecting the points represented by the following coordinates shown in the left column and the right column of Table 2 below.
  • the linear expansion coefficient difference between the piezoelectric substrate mainly composed of lithium niobate and the piezoelectric film mainly composed of lithium tantalate can be set to 1 ppm / ° C. or less.
  • An acoustic wave device includes a piezoelectric substrate mainly composed of lithium niobate, a piezoelectric film laminated on the piezoelectric substrate and mainly composed of lithium tantalate, and the piezoelectric film. And electrodes formed on the upper surface and / or the lower surface.
  • the Euler angle ⁇ of lithium tantalate and lithium niobate is 0 °
  • the Euler angle ⁇ of lithium tantalate is ⁇ LT
  • the polarities of polarization of the lithium tantalate and lithium niobate are the same.
  • the charge generated by lithium tantalate due to the pyroelectric phenomenon cancels out the charge generated by lithium niobate. Therefore, the bonding strength at the interface is hardly lowered.
  • the electrical conductivity of the piezoelectric film is 1 ⁇ 10 ⁇ 14 ⁇ ⁇ 1 cm ⁇ 1 or more and 1 ⁇ 10 ⁇ 9 ⁇ ⁇ 1 cm ⁇ 1 or less. is there. In this case, even if exposed to a high temperature, the electrode is hardly destroyed by the pyroelectric charge.
  • the method for manufacturing an elastic wave device according to the present invention is the method for manufacturing the elastic wave device configured according to the present invention.
  • the manufacturing method includes a step of preparing a piezoelectric substrate mainly composed of lithium niobate, a step of directly or indirectly stacking a piezoelectric film mainly composed of lithium tantalate on the piezoelectric substrate, Forming an electrode on at least one of the upper surface and the lower surface.
  • the Curie temperature of lithium tantalate is 300 ° C. or higher. Heat at the following temperature. In this case, since heating is performed at 300 ° C. or more and below the Curie temperature of lithium tantalate, damage due to thermal stress can be suppressed. Therefore, the piezoelectricity of the piezoelectric film made of lithium tantalate can be effectively recovered.
  • the step of forming the electrode may be performed after the step (b) of ion implantation from one surface of the piezoelectric plate.
  • an acoustic wave device having a structure having a lower electrode on the lower surface of the piezoelectric film made of lithium tantalate and an upper electrode on the upper surface can be provided.
  • a sacrificial layer is formed so as to cover a part of the lower electrode.
  • a piezoelectric substrate containing lithium niobate as a main component is laminated on the ion-implanted surface of the piezoelectric plate so as to cover the sacrificial layer.
  • the sacrificial layer is extinguished to form a cavity in the portion where the sacrificial layer was provided. Thereby, a bulk wave resonator in which the sacrificial layer portion is hollow can be obtained.
  • ⁇ LT and ⁇ LN are in the hatched region X in FIG. 5, so that the piezoelectric substrate mainly composed of lithium niobate and the piezoelectric material mainly composed of lithium tantalate.
  • the difference in linear expansion coefficient from the film can be 2 ppm / ° C. or less. Therefore, even when exposed to a processing process or environment where a thermal history is applied, peeling or floating between the piezoelectric substrate and the piezoelectric film hardly occurs.
  • ⁇ LN and ⁇ LT are within the specific range, so that the linear expansion coefficient of the piezoelectric substrate mainly composed of lithium niobate and the main component composed of lithium tantalate.
  • the linear expansion coefficient of the piezoelectric film can be made closer. Therefore, even when exposed to a processing process or environment where a thermal history is applied, peeling or floating between the piezoelectric substrate and the piezoelectric film hardly occurs.
  • a piezoelectric substrate mainly composed of lithium niobate and lithium tantalate even when exposed to a processing step or usage environment with thermal history, It is possible to provide an elastic wave device according to the present invention in which peeling or floating between the piezoelectric film and the main component is difficult to occur.
  • FIG. 1 is a front sectional view showing a bulk wave resonator as an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the Euler angles ⁇ and ⁇ and the linear expansion coefficient of lithium tantalate.
  • FIG. 3 is a diagram showing the relationship between the Euler angles ⁇ and ⁇ and the linear expansion coefficient in lithium niobate.
  • FIG. 4 is a graph showing the relationship between the linear expansion coefficient of lithium tantalate having an Euler angle ⁇ of 0 ° or 90 ° and lithium niobate having an Euler angle ⁇ of 0 ° or 90 ° and the Euler angle ⁇ .
  • FIG. 1 is a front sectional view showing a bulk wave resonator as an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the Euler angles ⁇ and ⁇ and the linear expansion coefficient of lithium tantalate.
  • FIG 5 is a diagram showing the relationship between the difference in linear expansion coefficient between LiNbO 3 and LiTaO 3 and ⁇ LT and ⁇ LN.
  • 6 (a) to 6 (e) are front sectional views for explaining a manufacturing process of the acoustic wave device according to the first embodiment of the present invention.
  • FIGS. 7A to 7C are front sectional views for explaining a manufacturing process of the acoustic wave device according to the first embodiment of the present invention.
  • FIGS. 8A to 8D are front sectional views for explaining a manufacturing process of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 1 is a schematic front sectional view showing a bulk wave resonator as an elastic wave device according to an embodiment of the present invention.
  • the acoustic wave device 1 includes a piezoelectric substrate 2 whose main component is lithium niobate.
  • the piezoelectric substrate 2 may be formed only from lithium niobate (LiNbO 3 ), but a material obtained by doping LiNbO 3 with a metal element may be used. That is, the piezoelectric substrate 2 only needs to have lithium niobate as a main component as described above.
  • the thickness of the piezoelectric substrate 2 is not particularly limited, but is about 0.05 to 0.5 mm.
  • a dielectric film 3 is laminated on the piezoelectric substrate 2.
  • the dielectric film 3 is formed by laminating a plurality of dielectric layers 3a and 3c.
  • the dielectric layer 3a is made of SiO 2
  • dielectric layer 3c is made of SiO 2.
  • the number of stacked dielectric layers is not limited to this.
  • the dielectric film 3 may be formed of a single dielectric layer. Since the dielectric film 3 is made of a dielectric material such as SiO 2 , it has a positive frequency temperature coefficient TCF. Therefore, the dielectric film 3 can reduce the absolute value of TCF.
  • a cavity 7 as a hollow portion is formed in the dielectric film 3.
  • the cavity 7 is provided so as not to hinder the vibration of the resonance part described later.
  • the dielectric layer 3a is formed with a recess opened on the upper surface for forming the cavity 7.
  • the dielectric layer 3 c is laminated on the dielectric layer 3 a and is provided so as to close the upper surface of the cavity 7.
  • Such a cavity 7 is formed by eliminating a sacrificial layer inserted in a portion where the cavity 7 is formed in a later step.
  • a lower electrode 4 is formed on the dielectric film 3.
  • the lower electrode 4 has a structure in which a Ti film 4b is laminated on an Al—Cu film 4a.
  • the lower electrode 4 is not limited to these metals and can be formed of an appropriate conductive material.
  • the lower electrode 4 is not limited to a plurality of metal layers, and may have a structure in which a single metal film is laminated.
  • a piezoelectric film 5 is laminated on the lower electrode 4.
  • the piezoelectric film 5 contains lithium tantalate as a main component. That is, the piezoelectric film 5 may be formed only of LiTaO 3, or may be formed by doping a metal element LiTaO 3.
  • the film thickness of the piezoelectric film 5 is about 0.5 to 2 ⁇ m, which is much thinner than the piezoelectric substrate 2.
  • the upper electrode 6 is formed on the piezoelectric film 5.
  • the upper electrode 6 has a structure in which a Ti film 6a, an Al—Cu film 6b, and a Ti film 6c are stacked.
  • the upper electrode 6 is not limited to these metals and can be formed of an appropriate conductive material.
  • the upper electrode 6 is not limited to a structure in which a plurality of metal films are stacked, and may be formed of a single metal film.
  • a wiring electrode 8 is formed on the upper electrode 6 to be electrically connected to the outside.
  • the wiring electrode 8 is made of Al.
  • the lower electrode 4 is electrically connected to a similar wiring electrode in a portion not shown.
  • the piezoelectric film 5 is excited by applying an AC electric field between the lower electrode 4 and the upper electrode 6. Since the cavity 7 is formed below the piezoelectric film 5, the vibration of the piezoelectric film 5 is difficult to be prevented. Above the cavity 7, the portion where the piezoelectric film 5, the lower electrode 4, and the upper electrode 6 exist constitutes a vibrating portion.
  • the dielectric film 3 is not necessarily provided. That is, the cavity 7 may be configured by forming an open recess in the upper surface of the piezoelectric substrate 2. However, as described above, the temperature characteristics can be improved by providing the dielectric film 3. In addition, by forming a sacrificial layer in the dielectric film 3 and eliminating the sacrificial layer, the cavity 7 can be easily formed.
  • Euler angles of lithium tantalate and lithium niobate are represented by ( ⁇ , ⁇ , ⁇ ).
  • the acoustic wave device 1 of this embodiment is characterized in that the Euler angle ⁇ of the lithium niobate and lithium tantalate is 0 °, the Euler angle ⁇ of lithium tantalate is ⁇ LT, and the Euler angle ⁇ of lithium niobate is ⁇ LN.
  • ⁇ LT and ⁇ LN are in the hatched region X in FIG.
  • the absolute value of the difference between the linear expansion coefficient of the piezoelectric substrate 2 containing lithium niobate as a main component and the linear expansion coefficient of the piezoelectric film 5 containing lithium tantalate as a main component may be within 2 ppm / ° C. it can. Therefore, even if a thermal history is applied in the manufacturing process and under the usage environment, peeling or the like hardly occurs between the piezoelectric substrate as the support substrate and the piezoelectric film. Therefore, even when the acoustic wave device 1 is manufactured by a high-temperature process of 100 ° C. or higher, the yield is unlikely to decrease. This will be described in more detail below.
  • FIG. 2 is a diagram showing the relationship between Euler angle ⁇ and linear expansion coefficient when ⁇ is changed in the range of 0 ° to 180 ° in a LiTaO 3 single crystal with Euler angles (0 °, ⁇ , ⁇ ). is there.
  • FIG. 3 shows the relationship between the Euler angle ⁇ and the linear expansion coefficient when ⁇ is changed from 0 ° to 180 ° in a LiNbO 3 single crystal having an Euler angle (0 °, ⁇ , ⁇ ).
  • the piezoelectric characteristics, optical characteristics, pyroelectric characteristics, and the like of LiTaO 3 are dependent on the crystal orientation. Therefore, when an elastic wave device or the like is configured, the crystal orientation of LiTaO 3 is selected according to desired characteristics.
  • the elastic wave device 1 first, the crystal orientation of the piezoelectric film 5 mainly composed of lithium tantalate, which is a functional film that determines characteristics, is determined. Thereby, the cut surface of the wafer mainly composed of lithium tantalate for producing the acoustic wave device 1 is determined.
  • the cut surface close to this linear expansion coefficient is the Euler angle (0 °, 120 °, ⁇ ) or (180 °, 60 °, 180 ° ⁇ ).
  • the cut surface of lithium niobate is selected in accordance with the linear expansion coefficient of the cut surface of lithium tantalate, which is a functional film, the difference in linear expansion coefficient between the two surfaces over the entire ⁇ direction of the cut surface A small lithium tantalate / lithium niobate laminate structure can be obtained.
  • the difference in linear expansion coefficient between lithium tantalate and lithium niobate depends on ⁇ LT and ⁇ LN.
  • FIG. 5 shows that there is a cut surface of lithium niobate having a small difference in linear expansion coefficient in the ⁇ 90 ° direction with respect to the cut surface of lithium tantalate.
  • subjected the hatching of the oblique line of FIG. 5 the absolute value of a linear expansion coefficient difference is 2 ppm / degrees C or less.
  • the inventors of the present application have found that the difference in linear expansion coefficient between lithium tantalate and lithium niobate is greatly dependent on the above-described ⁇ LT and ⁇ LN, and using ⁇ LT and ⁇ LN in the region X, the linear expansion coefficient This is the first finding that the difference can be within 2 ppm / ° C.
  • the absolute value of the difference in linear expansion coefficient between them can be made 2 ppm / ° C. or less.
  • the points represented by the respective coordinates shown in the left column and right column of Table 3 below are connected in order. If it is within the range of each region surrounded by an ellipse, the difference in linear expansion coefficient can be made 2 ppm / ° C. or less.
  • lithium tantalate has piezoelectricity. Accordingly, when excessive thermal strain is applied, unnecessary charges are generated. For example, when a sensor device is configured using the elastic wave device 1, such electric charge becomes a noise component. In the acoustic wave device 1 of the present embodiment, since the difference in linear expansion coefficient between lithium tantalate and lithium niobate is small, it is possible to suppress noise components associated with such thermal strain.
  • the piezoelectric film 5 made of lithium tantalate constituting the functional unit is provided in an air gap type bulk wave device having a cavity 7, a pyroelectric sensor, a piezoelectric microphone, or the like.
  • the performance deteriorates when it comes into contact with other members such as a lid.
  • the piezoelectric film 5 is warped or bent due to a temperature change. Therefore, the piezoelectric film 5 may come into contact with the support substrate or the lid material.
  • a combination of ⁇ LT and ⁇ LN shown in Table 3 is selected, such undesired contact can be suppressed.
  • ⁇ LT and ⁇ LN are within the range of each region surrounded by a line connecting points represented by coordinates shown in the left column and right column of Table 4 below.
  • the absolute value of the linear expansion coefficient difference in the ⁇ 90 ° direction can be set to 1 ppm / ° C. or less.
  • the difference in linear expansion coefficient between lithium tantalate and lithium niobate is even smaller than in the case of Table 3. Therefore, the thermal stress accompanying the temperature change and the deformation of the piezoelectric film 5 can be further effectively suppressed.
  • the upper limit of the processing temperature in the manufacturing process can be increased by about 200 to 300 ° C.
  • ⁇ LT is in the following ranges
  • lithium tantalate and lithium niobate having the same crystal orientation were used if ⁇ LT and ⁇ LN were within the following specific ranges. It can be seen that the absolute value of the linear expansion coefficient difference can be made smaller than in the case.
  • the SiO 2 film 3A is formed instead of the dielectric layers 3a and 3c.
  • the piezoelectric substrate 2 made of lithium niobate with Euler angles (180 °, 74.6 °, 180 °) shown in FIG. 6A and the Euler angles (0 °, A piezoelectric plate 5A made of lithium tantalate (125 °, 0 °) is prepared.
  • the conductivity of the piezoelectric substrate 2 and the piezoelectric plate 5A was set to 3 ⁇ 10 ⁇ 13 ⁇ ⁇ 1 cm ⁇ 1 by doping the metal element.
  • This conductivity can be realized by a known technique in which some oxygen atoms are desorbed in addition to doping with a metal element.
  • H + ions are implanted into one surface of the piezoelectric plate 5A with an implantation energy of 180 KeV so as to have a concentration of 8 ⁇ 10 16 ions / cm 2 using an ion implanter.
  • the ions to be implanted are not limited to hydrogen ions, and helium may be used.
  • an ion concentration distribution is generated in the thickness direction in the piezoelectric plate 5A.
  • a portion having the highest ion concentration is indicated by a broken line in FIG.
  • the implanted ion high concentration portion 5a which is the portion having the highest ion concentration, indicated by a broken line, both portions are easily separated by heating and applying external stress.
  • the piezoelectricity is slightly lowered by the ion implantation. This piezoelectricity can be recovered by a heat treatment described later.
  • the distance from the ion implantation side surface of the piezoelectric plate 5A to the implanted ion high concentration portion 5a is about 1 ⁇ m.
  • a method of separating by the implanted ion high concentration portion 5a is described in JP-T-2002-534886.
  • the lower electrode 4 is formed on the surface of the piezoelectric plate 5A on which the ions have been implanted.
  • an electron beam evaporation machine and photolithography are used for the formation of the lower electrode 4.
  • a Ti film having a thickness of 10 nm and an Al—Cu film having a thickness of 75 nm formed by doping a small amount of copper are formed on the surface of the piezoelectric plate 5A, and the lower electrode 4 is formed.
  • the Ti film is an adhesion improving film for improving the adhesion between the Al—Cu film and the piezoelectric plate 5A.
  • the surface of the piezoelectric plate 5A is slightly etched with hydrofluoric acid to be cleaned.
  • the Al—Cu film is biaxially oriented and becomes an epitaxial film. Therefore, electrical resistance can be reduced and migration resistance can be increased. Therefore, the power durability of the lower electrode 4 can be improved.
  • the sacrificial layer 11 is partially formed on the surface of the piezoelectric plate 5A on which the lower electrode 4 is formed, using an electron beam evaporation machine and a photolithography technique.
  • the sacrificial layer 11 disappears in a later step, and is provided to form the cavity 7 described above.
  • the sacrificial layer 11 is formed of a Cu film having a thickness of 2 ⁇ m.
  • SiO 2 film 3A is formed on the entire surface of the piezoelectric plate 5A on which the lower electrode 4 and the sacrificial layer 11 are formed using an RF sputtering apparatus.
  • SiO 2 is preferably doped with a trivalent or pentavalent element to have a conductivity of 1 ⁇ 10 ⁇ 14 ⁇ ⁇ 1 cm ⁇ 1 or more. Thereby, it is possible to suppress discharge breakdown and deterioration of adhesion strength due to pyroelectric charges during heating in a later step. Note that oxygen defects may be provided in SiO 2 to increase the conductivity.
  • the polishing method is not particularly limited, and after rough polishing with a grinder, precise polishing may be performed with a CMP apparatus or a polisher. After polishing, it is desirable to clean using an appropriate cleaning method.
  • the surface of the SiO 2 film 3A is hydrophilized by cleaning it with oxygen plasma.
  • the substrate is heated to 200 ° C. in a vacuum, and the piezoelectric substrate 2 is bonded to the flattened surface of the SiO 2 film 3A.
  • strong thermal stress remains in the vicinity of room temperature, which is the operating temperature of the acoustic wave device, when bonding is performed at such a high bonding temperature.
  • the piezoelectric film 5 containing lithium tantalate as a main component may be warped.
  • the two are positioned so that the X axis of the piezoelectric substrate 2 and the X axis of the piezoelectric plate 5A are substantially parallel.
  • the Euler angles of lithium tantalate and lithium niobate are as described above. Therefore, when the piezoelectric film 5 is disposed below the piezoelectric substrate 2, the plus direction of both polarization axes is upward. That is, the polarities of polarization of lithium tantalate and lithium niobate are made uniform. Therefore, the charges generated on the opposing surfaces of lithium tantalate and lithium niobate, which are generated by the pyroelectric effect or the piezoelectric effect, have different polarities. Therefore, since they attract each other, it is difficult for the bonding strength to deteriorate. Therefore, it can process at a higher temperature.
  • the surface of the piezoelectric substrate 2 and the SiO 2 film 3A are irradiated with Ar ions in a vacuum to remove damaged layers and impurities on the surface and clean them. After such cleaning, the SiO 2 film 3A may be bonded to the piezoelectric substrate 2 by applying pressure at room temperature.
  • the laminated structure shown in FIG. 7B is heated in a vacuum. More specifically, the temperature is raised from room temperature, that is, 25 ° C. to 250 ° C. in 1 hour, and maintained at 250 ° C. for 10 minutes. Then, as shown in FIG. 7C, an external force is applied in the direction away from the piezoelectric substrate 2 to divide the piezoelectric plate 5A in the implanted ion high concentration portion 5a. That is, the piezoelectric plate 5A is separated into the piezoelectric film 5 and the remaining piezoelectric plate portion 5c.
  • the piezoelectric film 5 has a thickness of 1 ⁇ m.
  • the temperature is raised to 500 ° C., and the piezoelectricity deteriorated by hydrogen ion implantation is recovered.
  • the piezoelectricity of lithium tantalate is restored by heating. It shows a recovery tendency from 300 ° C., and recovers when heated to a temperature of 500 to 550 ° C.
  • the temperature exceeds 590 ° C. to 600 ° C., which is the Curie temperature of lithium tantalate, the polarization is released. Therefore, it is desirable to perform this heating below the Curie temperature.
  • the piezoelectric film 5 is thinned by polishing to a thickness of 850 nm. This thinning can be performed by dry etching, reverse sputtering using plasma, or the like. Alternatively, wet etching using an etchant generally used for etching lithium tantalate may be used. Furthermore, these methods may be appropriately combined.
  • the piezoelectric film 5 formed as described above exhibits a good distribution with a film thickness distribution of 1% or less. In this way, the structure shown in FIG.
  • the upper electrode 6 is formed on the piezoelectric film 5.
  • the upper electrode 6 can be formed by using an electron beam vapor deposition machine and a photolithography technique.
  • a Ti film having a thickness of 10 nm and an Al—Cu film made of aluminum having a thickness of 75 nm formed by doping a small amount of copper are formed.
  • the Ti film is provided to improve adhesion.
  • the lower electrode 4, the piezoelectric film 5, and the upper electrode 6 are patterned to form a recess H in which the sacrificial layer 11 is exposed in order to form a portion constituting the vibrating portion. To do.
  • a copper etching solution is infiltrated from the recess H to melt the sacrificial layer 11 and form the cavity 7.
  • the acoustic wave device 1 as a bulk wave resonator having the cavity 7 can be obtained.
  • the SiO 2 film 3A is formed as the dielectric layer.
  • the dielectric film 3 has a structure in which the dielectric layers 3a and 3c are stacked. Also good.
  • the piezoelectric film 5 having a small thickness distribution of 1% or less and a smooth surface can be easily obtained by a simple process.
  • the heating temperature for recovering the piezoelectricity is 590 ° C. to 600 ° C. or less, which is the Curie temperature of lithium tantalate, and it is desirable to heat at a temperature close to this Curie temperature.
  • defects associated with thermal stress due to a difference in linear expansion coefficient between lithium tantalate and lithium niobate are likely to occur.
  • such a problem can be suppressed by using the combination of ⁇ LT and ⁇ LN in the above-described region X of FIG.
  • Euler angles ⁇ LT and ⁇ LN of lithium tantalate and lithium niobate can be selected so that the linear expansion coefficient difference between the two is close. It is very effective.
  • a method has been shown in which ions are implanted into a piezoelectric plate made of LiTaO 3 and separated at a high concentration portion of the implanted ions to obtain a piezoelectric film.
  • This is not a limitation.
  • a method for obtaining a piezoelectric film may be used a method of cutting the piezoelectric plate made of LiTaO 3, a method may be used for film formation by a CVD method or the like a thin film of LiTaO 3.
  • the Euler angles and the meanings of the Euler angles and the polarities of polarization are as follows.
  • the Za axis is rotated ⁇ around the Xa axis to obtain the Z ′ axis.
  • a plane including the Xa axis and having the Z ′ axis as a normal line was a cut surface of the substrate.
  • An axis X ′ direction obtained by rotating the Xa axis counterclockwise about the Z ′ axis is defined as the ⁇ direction.
  • the crystal axes X, Y, and Z of the lithium tantalate crystal and lithium niobate crystal given as the initial values of the Euler angles are arbitrary among the three equivalent a-axes with the Z axis parallel to the c axis.
  • the Y axis is the normal direction of the plane including the X axis and the Z axis.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the lithium tantalate crystal or the lithium niobate crystal in the present invention may be crystallographically equivalent.
  • crystals belonging to the trigonal system 3m point group such as lithium tantalate crystal and lithium niobate crystal ( A) Formula is formed.
  • F is a characteristic of the functional device.
  • Formula (A) includes a state in which the polarity of the polarization axis is inverted up and down. Even if the linear expansion coefficients of lithium tantalate and lithium niobate are aligned to suppress the generation of thermal stress, if the polarization axis is opposed, for example, the pyroelectric charge associated with temperature changes is caused by lithium tantalate and lithium niobate. Accumulation at the interface causes a problem that the junction is destroyed by an electric repulsive force or the device is destroyed by an electric discharge.
  • charge can be neutralized by aligning the positive and negative polarity of the polarization, or a material with a high conductivity can be provided at the interface between lithium tantalate and lithium niobate, and a material with a high conductivity can be routed.
  • it is effective to allow the charge to escape to the outside or to neutralize the charge by increasing the conductivity of lithium tantalate or lithium niobate.
  • the conductivity of lithium tantalate or lithium niobate By setting the conductivity of lithium tantalate or lithium niobate to 1 ⁇ 10 ⁇ 14 or more, the pyroelectric charge accompanying temperature change can be neutralized.
  • the dielectric in a structure in which a dielectric such as SiO 2 is disposed and bonded to the interface between lithium tantalate and lithium niobate, the dielectric has a conductivity of 1 ⁇ 10 ⁇ 14 ⁇ ⁇ 1 cm ⁇ . If it is less than 1, the charge generated by pyroelectricity is accumulated at the interface between LiTaO 3 and the dielectric, or at the interface between LiNbO 3 and the dielectric, and the junction with the dielectric is destroyed, or the device is destroyed by discharge. Produce. In order to suppress this problem, the electric charge can be neutralized by setting the conductivity of the dielectric to 1 ⁇ 10 ⁇ 14 ⁇ ⁇ 1 cm ⁇ 1 or more.
  • acoustic wave device 2 ... piezoelectric substrate 3 ... dielectric film 3a, 3c ... dielectric layer 3A ... SiO 2 film 4 ... lower electrode 4a ... Al-Cu film 4b ... Ti film 5 ... piezoelectric film 5A ... piezoelectric plate 6 ... Upper electrode 6a ... Ti film 6b ... Al-Cu film 6c ... Ti film 7 ... cavity 8 ... wiring electrode 11 ... sacrificial layer

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 タンタル酸リチウムを主成分とする圧電膜と、ニオブ酸リチウムを主成分とする圧電基板とを有する積層構造を用いた弾性波装置であって、タンタル酸リチウムとニオブ酸リチウムとの間の線膨張率差を小さくすることができる、弾性波装置を提供する。 ニオブ酸リチウムを主成分とする圧電基板2と、圧電基板2上に直接または間接に積層されており、タンタル酸リチウムを主成分とする圧電膜5と、圧電膜5の上面及び/または下面に形成された電極4,6とを備え、ニオブ酸リチウム及びタンタル酸リチウムのオイラー角φは0°であり、タンタル酸リチウムのオイラー角のθをθLT、ニオブ酸リチウムのオイラー角のθをθLNとした場合、θLT及びθLNが図5のハッチングを付した領域X内にある、弾性波装置1。

Description

弾性波装置及びその製造方法
 本発明は、バルク波や弾性表面波などの弾性波を利用した弾性波装置及びその製造方法に関し、より詳細には、ニオブ酸リチウムを主成分とする圧電基板上に、直接または間接にタンタル酸リチウムを主成分とする圧電膜が積層されている構造を有する弾性波装置及びその製造方法に関する。
 従来、共振子や帯域フィルタなどに弾性波装置が広く用いられている。下記の特許文献1の実施例2では、Si基板上にLiTaO薄板を積層した構造を有するバルク波共振子が開示されている。
 また、下記の特許文献2には、36°YカットX伝搬のLiTaO基板上に、41°YカットX伝搬のLiNbO薄板を接合した構造を有する弾性表面波素子が開示されている。
WO2009/081651 特開平6-326553号公報
 特許文献1に記載のバルク波共振子では、Si基板上にLiTaO薄板が積層されている。Si基板の線膨張率は3.35ppm/℃であり、LiTaO薄板の線膨張率は16.1ppm/℃である。従って、両者の線膨張率差が大きい。そのため、熱履歴を伴う加工工程や使用環境に晒されると、Si基板と、LiTaO薄板との間で剥離が生じるおそれがあった。
 同様に、特許文献2に記載の弾性表面波素子においても、36°YカットX伝搬のLiTaO基板の弾性波伝搬方向の線膨張率は、16.1ppm/℃であり、X軸と垂直方向の線膨張率は8.2ppm/℃である。他方、41°YカットX伝搬のLiNbO薄板では、弾性波伝搬方向の線膨張率が15.4ppm/℃であり、X軸と垂直方向の線膨張率は10.9ppm/℃である。両者のX軸を揃えてLiTaO基板上にLiNbO薄板を接合した場合には、弾性波伝搬方向の線膨張率差は0.7ppm/℃程度と小さい。しかし、X軸と垂直方向の線膨張率差は2.7ppm/℃と大きかった。そのため、熱履歴を伴う加工工程や使用環境に晒されると、LiTaO基板と、LiNbO薄板との間で剥離や浮きが生じるおそれがあった。
 本発明の目的は、ニオブ酸リチウムを主成分とする圧電基板と、タンタル酸リチウムを主成分とする圧電膜とを積層してなる構造を有する弾性波装置であって、両者の線膨張率差を小さくすることができる、弾性波装置及びその製造方法を提供することにある。
 本願の第1の発明に係る弾性波装置は、ニオブ酸リチウムを主成分とする圧電基板と、前記圧電基板上に積層されており、タンタル酸リチウムを主成分とする圧電膜と、前記圧電膜の上面及び/または下面に形成された電極とを備え、オイラー角を(φ,θ,ψ)としたときに、前記ニオブ酸リチウム及び前記タンタル酸リチウムのオイラー角φが0°であり、タンタル酸リチウムのオイラー角のθをθLT、ニオブ酸リチウムのオイラー角のθをθLNとした場合、θLT及びθLNが、図5のハッチングを付した領域X内にある。
 第1の発明のある特定の局面では、前記θLT及びθLNが、θLNをx軸、θLTをy軸とした座標系において、下記の表1の左欄及び右欄にそれぞれ示す下記座標で表される点を順に結ぶ線により囲まれた各領域の範囲内にある。この場合には、ニオブ酸リチウムとタンタル酸リチウムとの線膨張率差を2ppm/℃以内とすることができる。より好ましくは、前記θLT及びθLNの値が、下記の表2の左欄及び右欄にそれぞれ示す下記座標で表される点を順に結ぶ線により囲まれた各領域の範囲内にある。この場合に、ニオブ酸リチウムを主成分とする圧電基板と、タンタル酸リチウムを主成分とする圧電膜との線膨張率差を1ppm/℃以下とすることができる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本願の第2の発明の弾性波装置は、ニオブ酸リチウムを主成分とする圧電基板と、前記圧電基板上に積層されており、タンタル酸リチウムを主成分とする圧電膜と、前記圧電膜の上面及び/または下面に形成された電極とを備える。第2の発明では、タンタル酸リチウム及びニオブ酸リチウムのオイラー角φが0°であり、タンタル酸リチウムのオイラー角のθをθLT、ニオブ酸リチウムのオイラー角のθをθLNとしたときに、57.9°≦θLT≦122.1°かつθLN=90°とされている。
 第1及び第2の発明の他の特定の局面では、前記タンタル酸リチウム及びニオブ酸リチウムの分極の極性が同一である。この場合には、焦電現象によりタンタル酸リチウムが発生する電荷と、ニオブ酸リチウムにおいて発生する電荷とが相殺される。従って、界面における接合強度の低下が生じ難い。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記圧電膜の導電率が、1×10-14Ω-1cm-1以上、1×10-9Ω-1cm-1以下である。この場合には、高温に晒されたとしても、焦電荷による電極の破壊が生じ難い。
 本発明の弾性波装置の製造方法は、本発明に従って構成された上記弾性波装置の製造方法である。この製造方法は、ニオブ酸リチウムを主成分とする圧電基板を用意する工程と、前記圧電基板上に直接または間接にタンタル酸リチウムを主成分とする圧電膜を積層する工程と、前記圧電膜の上面及び下面の少なくとも一方に電極を形成する工程を備える。そして、前記圧電基板上に前記タンタル酸リチウムを主成分とする圧電膜を積層する工程が、
 (a)前記圧電膜より厚みの厚いタンタル酸リチウムを主成分とする圧電板を用意する工程と、
 (b)前記圧電板の一方面からイオン注入する工程と、
 (c)前記イオン注入が行われた圧電板の前記一方面から該圧電板を直接または間接にニオブ酸リチウムを主成分とする前記圧電基板上に積層する工程と、
 (d)前記圧電板を加熱しつつ、前記圧電板の注入イオン濃度が最も高い注入イオン高濃度部分において圧電膜と残りの圧電板部分とを分離し、前記圧電基板側に前記圧電膜を残存させる工程とを有する。
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記圧電板を加熱しつつ前記圧電膜と残りの圧電板部分とを分離する工程において、300℃以上かつタンタル酸リチウムのキュリー温度以下の温度で加熱する。この場合には、300℃以上かつタンタル酸リチウムのキュリー温度以下で加熱するため、熱応力による損傷を抑制することができる。従って、タンタル酸リチウムからなる圧電膜の圧電性を効果的に回復させることができる。
 本発明に係る弾性波装置の製造方法のさらに特定の局面では、前記電極を形成する工程が、前記圧電板の一方面からイオン注入する工程(b)の後に、該イオン注入された圧電板の一方面に下部電極を形成する工程と、前記圧電基板側に圧電膜を残存させる工程(d)の後に、残存した圧電膜上に上部電極を形成する工程とを有する。この場合には、タンタル酸リチウムからなる圧電膜の下面に下部電極を、上面に上部電極を有する構造の弾性波装置を提供することができる。
 より好ましくは、前記下部電極形成後に、下部電極の一部を覆うように犠牲層を形成する。次に、前記犠牲層を覆うように前記圧電板のイオン注入された面にニオブ酸リチウムを主成分とする圧電基板を積層する。さらに、前記工程(d)の後に犠牲層を消滅させて、犠牲層が設けられていた部分に空洞を形成する。それによって、犠牲層部分が空洞とされているバルク波共振装置を得ることができる。
 第1の発明に係る弾性波装置では、θLT及びθLNが図5のハッチングを付した領域X内にあるため、ニオブ酸リチウムを主成分とする圧電基板と、タンタル酸リチウムを主成分とする圧電膜との間の線膨張率差を2ppm/℃以下とすることができる。従って、熱履歴が加わる加工工程や環境に晒されたとしても、圧電基板と上記圧電膜との間の剥離や浮きが生じ難い。
 第2の発明に係る弾性波装置では、θLN及びθLTが上記特定の範囲内とされているため、ニオブ酸リチウムを主成分とする圧電基板の線膨張率と、タンタル酸リチウムを主成分とする圧電膜の線膨張率とを近づけることができる。従って、熱履歴が加わる加工工程や環境に晒されたとしても、圧電基板と上記圧電膜との間の剥離や浮きが生じ難い。
 本発明に係る弾性波装置の製造方法によれば、上記のように、熱履歴を伴う加工工程や使用環境に晒されたとしても、ニオブ酸リチウムを主成分とする圧電基板と、タンタル酸リチウムを主成分とする圧電膜との間の剥離や浮きが生じ難い、本発明の弾性波装置を提供することが可能となる。
図1は、本発明の第1の実施形態に係る弾性波装置としてのバルク波共振子を示す正面断面図である。 図2は、タンタル酸リチウムのオイラー角のθ及びψと線膨張率との関係を示す図である。 図3は、ニオブ酸リチウムにおけるオイラー角のθ及びψと線膨張率との関係を示す図である。 図4は、オイラー角のψが0°または90°のタンタル酸リチウム及びオイラー角ψが0°または90°のニオブ酸リチウムの線膨張率とオイラー角のθとの関係を示す図である。 図5は、LiNbOとLiTaOとの線膨張率差と、θLT及びθLNとの関係を示す図である。 図6(a)~(e)は、本発明の第1の実施形態の弾性波装置の製造工程を説明するための各正面断面図である。 図7(a)~(c)は、本発明の第1の実施形態の弾性波装置の製造工程を説明するための各正面断面図である。 図8(a)~(d)は、本発明の第1の実施形態の弾性波装置の製造工程を説明するための各正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、本発明の実施形態に係る弾性波装置としてのバルク波共振子を示す模式的正面断面図である。
 弾性波装置1は、ニオブ酸リチウムを主成分とする圧電基板2を有する。圧電基板2は、ニオブ酸リチウム(LiNbO)のみから形成されていてもよいが、LiNbOに金属元素をドープした材料を用いてもよい。すなわち、圧電基板2は、上記のようにニオブ酸リチウムを主成分とするものであればよい。
 圧電基板2の厚みは、特に限定されないが、0.05~0.5mm程度である。
 上記圧電基板2上に、誘電体膜3が積層されている。誘電体膜3は、本実施形態では、複数の誘電体層3a、3cを積層することにより形成されている。誘電体層3aはSiOからなり、誘電体層3cはSiOからなる。もっとも、複数の誘電体層の積層数はこれに限定されない。また、誘電体膜3は単一の誘電体層により形成されていてもよい。誘電体膜3は、SiOなどの誘電体材料からなるため、正の周波数温度係数TCFを有する。従って、誘電体膜3によりTCFの絶対値を小さくすることができる。
 また本実施形態では、上記誘電体膜3中に中空部としてのキャビティ7が形成されている。キャビティ7は、後述する共振部の振動を阻害しないために設けられている。より詳細には、誘電体層3aに、上記キャビティ7を形成するための、上面に開いた凹部が形成されている。他方、誘電体層3cは、誘電体層3a上に積層されており、かつ上記キャビティ7の上面を閉成するように設けられている。このようなキャビティ7は、キャビティ7が形成される部分に挿入された犠牲層を後工程で消失させることにより形成されている。
 誘電体膜3上には下部電極4が形成されている。下部電極4は、Al―Cu膜4a上に、Ti膜4bを積層した構造を有する。下部電極4は、これらの金属に限らず、適宜の導電性材料により形成することができる。また、下部電極4は、複数の金属層からなるものに限らず、単一の金属膜を積層した構造であってもよい。
 下部電極4上には、圧電膜5が積層されている。圧電膜5は、タンタル酸リチウムを主成分とする。すなわち、圧電膜5は、LiTaOのみから形成されていてもよく、LiTaOに金属元素をドープすることにより形成されていてもよい。
 上記圧電膜5の膜厚は、0.5~2μm程度と、圧電基板2よりも非常に薄い。
 上記圧電膜5上には、上部電極6が形成されている。上部電極6は、Ti膜6a、Al-Cu膜6b、Ti膜6cを積層した構造を有する。上部電極6は、これらの金属に限らず、適宜の導電性材料により形成することができる。また、上部電極6は、複数の金属膜を積層した構造に限らず、単一の金属膜により形成されていてもよい。
 上部電極6上に、外部と電気的に接続するための配線電極8が形成されている。本実施形態では、配線電極8は、Alからなる。また、特に図示はしないが、下部電極4は、図示されていない部分において、同様の配線電極に電気的に接続されている。
 本実施形態の弾性波装置1では、下部電極4と、上部電極6との間に交流電界を印加することにより、圧電膜5が励振される。この圧電膜5の下方にキャビティ7が形成されているため、この圧電膜5の振動が妨げられ難い。キャビティ7の上方において、圧電膜5と、下部電極4及び上部電極6とが存在している部分が振動部を構成している。
 なお、誘電体膜3は必ずしも設けられずともよい。すなわち、キャビティ7は、圧電基板2の上面に開いた凹部を形成することにより構成されていてもよい。もっとも、前述したように、誘電体膜3を設けることにより、温度特性を改善することができる。加えて、誘電体膜3内に犠牲層を形成し、犠牲層を消失させることにより、上記キャビティ7を容易に形成することができる。
 本明細書においては、タンタル酸リチウムやニオブ酸リチウムのオイラー角を(φ,θ,ψ)で表す。本実施形態の弾性波装置1の特徴は、上記ニオブ酸リチウム及びタンタル酸リチウムのオイラー角φが0°であり、タンタル酸リチウムのオイラー角θをθLT、ニオブ酸リチウムのオイラー角θをθLNとした場合、θLT及びθLNが、図5のハッチングを付した領域X内にあることにある。それによって、ニオブ酸リチウムを主成分とする圧電基板2の線膨張率と、タンタル酸リチウムを主成分とする圧電膜5の線膨張率との差の絶対値を2ppm/℃以内とすることができる。従って、製造工程において、並びに使用環境の下で熱履歴が加わったとしても、支持基板としての圧電基板と圧電膜間において剥離等が生じ難い。よって、100℃以上の高温プロセスにより、弾性波装置1を製造した場合であっても、歩留りの低下が生じ難い。これを、以下においてより詳細に説明する。
 図2は、オイラー角(0°,θ,ψ)のLiTaO単結晶におけるθを0°~180°の範囲で変化させた場合のオイラー角のψと線膨張率との関係を示す図である。また、図3は、オイラー角(0°,θ,ψ)のLiNbO単結晶におけるθを0°~180°と変化させた場合のオイラー角のψと、線膨張率との関係を示す。
 図2及び図3において、ψ=0°方向及び ψ=180°方向の線膨張率はオイラー角のθに対して一定であることがわかる。これに対して、オイラー角のθが90°方向または270°方向の線膨張率は、θに大きく依存することがわかる。
 LiTaOの圧電特性、光学特性及び焦電特性などは、結晶方位に対して依存性を有する。従って、弾性波装置などを構成する場合、所望とする特性に応じて、LiTaOの結晶方位を選択する。上記弾性波装置1では、特性を決定する機能膜であるタンタル酸リチウムを主成分とする圧電膜5の結晶方位を先ず決定する。それによって、弾性波装置1を製造するためのタンタル酸リチウムを主成分とするウェハーのカット面が決定されることになる。
 例えば、カット面が、42°Yカット、すなわちオイラー角(0°,132°,ψ)や、(180°,48°,180°-ψ)のタンタル酸リチウムの場合、ψ=0°方向の線膨張率は16.1ppm/℃であり、ψ=90°方向の線膨張率は9.5ppm/℃である。
 ニオブ酸リチウムにおいて、この線膨張率と近いカット面は、オイラー角(0°,120°,ψ)または(180°,60°,180°-ψ)である。ニオブ酸リチウムでは、ψ=0°方向の線膨張率は15.4ppm/℃であり、ψ=90°方向の線膨張率は9.5ppm/℃である。タンタル酸リチウムとニオブ酸リチウムのψを一致させて、タンタル酸リチウムとニオブ酸リチウムとを接合すれば、両者の線膨張率の差は、ψ=0°方向で0.7ppm/℃であり、ψ=90°方向の線膨張率差は、0ppm/℃となる。
 上記のように、機能膜であるタンタル酸リチウムのカット面の線膨張率に合わせて、ニオブ酸リチウムのカット面を選択すれば、カット面のψ方向全体に渡り、両者の線膨張率差が小さいタンタル酸リチウム/ニオブ酸リチウム積層構造を得ることができる。
 図5は、タンタル酸リチウムとニオブ酸リチウムのψ=90°方向の線膨張率の差Δαと、θLNと、θLTとの関係を示す図である。図5から明らかなように、タンタル酸リチウムとニオブ酸リチウムとの線膨張率の差は、θLT及びθLNに依存することがわかる。また、図5から、タンタル酸リチウムのカット面に対し、ψ90°方向の線膨張率差の小さいニオブ酸リチウムのカット面の存在することがわかる。そして、図5の斜線のハッチングを付して示した領域X内においては、線膨張率差の絶対値が2ppm/℃以下である。本願発明者らは、タンタル酸リチウムとニオブ酸リチウムとの線膨張率差が、上記θLT及びθLNに大きく依存することを見出し、上記領域X内のθLTと、θLNとを用いれば、線膨張率差を2ppm/℃以内とし得ることを初めて見出したものである。このように、両者のφを0°とし、θLT及びθLNを上記特定の組み合わせとすることにより、両者の線膨張率差の絶対値を2ppm/℃以下とすることができる。
 図5の結果を具体的に示すと、θLNをx軸、θLTをy軸とした座標系において、下記の表3の左欄及び右欄にそれぞれ示す各座標で表されている点を順に結んだ線で囲まれた各領域の範囲内とすれば、線膨張率差を2ppm/℃以下とすることができる。
Figure JPOXMLDOC01-appb-T000005
 従って、上記の範囲内となるように、θLT及びθLNを選択すれば、ψ=90°方向におけるタンタル酸リチウムとニオブ酸リチウムとの線膨張率差の絶対値を2ppm/℃以下とすることができる。よって、製造工程や使用時熱履歴が加わる処理が施されたとしても、タンタル酸リチウムとニオブ酸リチウムとの積層体が破壊され難い。
 さらに、タンタル酸リチウムは圧電性を有する。従って、過大な熱歪みが加わると、不要な電荷が発生する。例えば、弾性波装置1を用いてセンサデバイスを構成した場合には、このような電荷がノイズ成分となる。本実施形態の弾性波装置1では、タンタル酸リチウムとニオブ酸リチウムとの線膨張率差が小さいため、このような熱歪みに伴うノイズ成分を抑制することができる。
 また、上記実施形態の弾性波装置1のように、キャビティ7を有するエアギャップ型のバルク波デバイスや、焦電センサもしくは圧電マイクなどでは、機能部を構成するタンタル酸リチウムからなる圧電膜5が蓋材などの他の部材に接触すると性能が劣化する。また、圧電膜5と、圧電基板2や圧電基板2にさらに積層される支持基板などとの線膨張率差が大きくなると、温度変化により、圧電膜5に反りや撓みが生じる。そのため、支持基板もしくは蓋材などに圧電膜5が接触するおそれがある。しかしながら、表3に示すθLTとθLNとの組み合わせを選択すれば、このような所望でない接触を抑制することができる。
 より好ましくは、θLTと、θLNとは、下記の表4の左欄及び右欄にそれぞれ示す各座標で表される点を順に結んだ線で囲まれた各領域の範囲内であること望ましい。表4に示す組み合わせを用いた場合には、ψ90°方向の線膨張率差の絶対値を1ppm/℃以下とすることができる。
Figure JPOXMLDOC01-appb-T000006
 この場合には、タンタル酸リチウムとニオブ酸リチウムとの線膨張率差が表3の場合よりも、さらに小さくなる。そのため、温度変化に伴う熱応力や圧電膜5の変形をより一層効果的に抑制することができる。加えて、製造工程における加工温度の上限を、200~300℃程度高めることができる。
 図4は、オイラー角(0°,θ,ψ)のタンタル酸リチウム及びニオブ酸リチウムにおけるオイラー角θに対するψ=0°方向及び90°方向の線膨張率の関係を示す図である。タンタル酸リチウムとニオブ酸リチウムの線膨張率は、θ=24.4°及び155.6°で交差している。また、図4から明らかなように、θLTが下記のそれぞれの範囲の場合に、θLTとθLNとを下記の特定の範囲内とすれば、同一結晶方位のタンタル酸リチウム及びニオブ酸リチウムを用いた場合に比べて、線膨張率差の絶対値を小さくし得ることがわかる。
 0.0°≦θLT≦24.4°の場合は、θLT>θLN、かつ、0.0°≦θLNとし、
 24.4°<θLT≦90.0°の場合は、θLT<θLN、かつ、90.0°≧θLNとし、
 90.0°<θLT<155.6°の場合は、θLT>θLN、かつ、90.0°≦θLNとし、
 155.6°≦θLT≦180.0°の場合は、θLT<θLN、かつ、180.0°≦θLN
 また、θLTが57.9°~122.1°の範囲内であれば、タンタル酸リチウムの線膨張率は7.5ppm/℃以下となる。すなわち、ニオブ酸リチウムの線膨張率が最小となるθLN=90°の線膨張率7.5ppm/℃よりも、タンタル酸リチウムの線膨張率が小さくなる。タンタル酸リチウムからなる圧電膜5に求める機能による制約によって、θLT=57.9°~122.1°としなければならないことがある。この場合には、θLN=90°のニオブ酸リチウムを用いればよい。それによって、ニオブ酸リチウムの線膨張率を、可能な限りタンタル酸リチウムの線膨張率に近づけることができる。従って、θLTが57.9°~122.1°のタンタル酸リチウムとθLN=90°のニオブ酸リチウムとを組み合わせて、最も高い加工温度で弾性波装置1を製造することができる。また、タンタル酸リチウムを主成分とする圧電膜5の使用時の熱応力も効果的に抑制することができる。
 例えば、θLT=90°の場合、線膨張率差の絶対値は3.4ppm/℃となる。そのため、熱応力による問題が生じる。しかしながら、圧電膜5に求められる特性により、θLT=90°を選択しなければならない場合には、その範囲内においてタンタル酸リチウムとニオブ酸リチウムとの線膨張率差を最小とすることができる。
 次に、上記実施形態の弾性波装置とほぼ同様である弾性波装置の製造方法を、図6~図8を参照して説明する。本製造方法では、誘電体層3a、3cに代えて、SiO膜3Aを形成する。
 本製造方法では、図6(a)に示すオイラー角(180°,74.6°,180°)のニオブ酸リチウムからなる圧電基板2と、圧電膜を形成するためのオイラー角(0°,125°,0°)のタンタル酸リチウムからなる圧電板5Aとを用意する。この場合、ψ=90°方向のタンタル酸リチウム及びニオブ酸リチウムの線膨張率は共に8.04ppm/℃である。また、ψ=0°方向の線膨張率は、タンタル酸リチウムでは16.1ppm/℃であり、ニオブ酸リチウムでは15.4ppm/℃と近接している。
 なお、金属元素をドープすることにより、圧電基板2及び圧電板5Aの導電率は3×10-13Ω-1cm-1とした。この導電率は、金属元素のドープの他、若干の酸素原子を脱離させたりする公知技術により実現することができる。
 次に、図6(b)に示すように、イオン注入機を用いて注入エネルギー180KeVで圧電板5Aの一方面に8×1016イオン/cmの濃度となるようにHイオンを注入する。注入するイオンとしては、水素イオンに限らず、ヘリウムなどを用いてもよい。
 イオン注入を行うと、圧電板5A内において厚み方向にイオン濃度分布が生じる。最もイオン濃度が高い部分を図6(b)において破線で示す。破線で示す、イオン濃度が最も高い部分である注入イオン高濃度部分5aでは、加熱し、外部応力を加えれば容易に両側の部分が分離する。もっとも、上記イオン注入により、圧電性が若干低下する。この圧電性は、後述する熱処理により回復させることができる。圧電板5Aのイオン注入側の面から注入イオン高濃度部分5aまでの距離は約1μmである。注入イオン高濃度部分5aにより分離する方法は、特表2002-534886号公報に記載されている。
 次に、図6(c)に示すように、上記圧電板5Aのイオン注入が行われた面上に、下部電極4を形成する。下部電極4の形成には、電子ビーム蒸着機及びフォトリソグラフィーを用いる。具体的には、圧電板5Aの表面に、10nmの厚みのTi膜と、銅を微量ドープしてなる75nmの厚みのAl-Cu膜とを成膜し、下部電極4を形成する。なお、Ti膜は、Al-Cu膜と圧電板5Aとの間の密着性を高めるための密着性改善膜である。
 Ti膜の成膜前に、フッ硝酸により圧電板5Aの表面をわずかにエッチングし、清浄化することが好ましい。それによって、Al-Cu膜が2軸配向し、エピタキシャル膜となる。そのため、電気抵抗を低めることができ、耐マイグレーション性を高めることができる。従って、下部電極4の耐電力性を高めることができる。
 次に図6(d)に示すように、電子ビーム蒸着機及びフォトリソグラフィー技術を用い、圧電板5Aの下部電極4が形成されている面に、部分的に、犠牲層11を形成する。犠牲層11は、後の工程で消失し、前述したキャビティ7を形成するために設けられている。犠牲層11は、本実施形態では、2μmの厚みのCu膜により形成した。
 次に、図6(e)に示すように、RFスパッタ装置を用い、上記圧電板5Aの下部電極4及び犠牲層11が形成されている面の全面にSiO膜3Aを形成する。SiOには、3価または5価の元素をドープすることにより、導電率を1×10-14Ω-1cm-1以上とすることが望ましい。それによって、後の工程における加熱時の焦電荷による放電破壊や密着強度の劣化を抑制することができる。なお、SiOに酸素欠陥を設け、それによって導電率を高めてもよい。
 次に、CMP装置を用い、犠牲層11上のSiO膜の厚みをほぼ500nmとなるように研磨する。この研磨により、図7(a)に示すように、SiO膜3Aの犠牲層11が形成されている側とは反対側の面が平坦面となる。なお、研磨方法は特に限定されず、グラインダーによる粗研磨の後、CMP装置やポリッシャーにより精密研磨を行ってもよい。研磨の後、適宜の洗浄方法を用いて清浄化することが望ましい。
 次に、図7(b)に示すように、SiO膜3Aの表面を酸素プラズマで清浄化することにより親水化処理する。次に、真空中で200℃に加熱し、SiO膜3Aの上記平坦化された面に圧電基板2を接合する。タンタル酸リチウムとニオブ酸リチウムの線膨張率差が大きな組み合わせの場合には、このような高い接合温度で接合すると、弾性波装置の使用温度である室温付近において強い熱応力が残留する。その結果、タンタル酸リチウムを主成分とする圧電膜5に反りが生じるおそれがある。よって、パッケージの蓋材やキャビティ7の下面に接触するという不具合が生じるおそれがある。本実施形態では、線膨張率差が小さいため、最終的に形成される圧電膜5の反りを抑制することができる。従って、上記のような問題を抑制することができる。
 上記接合に際しては、圧電基板2のX軸と、圧電板5AのX軸がほぼ平行となるように両者を位置決めする。なお、タンタル酸リチウム及びニオブ酸リチウムのオイラー角は前述の通りである。従って、圧電基板2の下方に、圧電膜5を上方に配置したとき、両者の分極軸のプラス方向が上方となる。すなわち、タンタル酸リチウムとニオブ酸リチウムの分極の極性が揃えられることになる。そのため、焦電効果や圧電効果により生じる、タンタル酸リチウムとニオブ酸リチウムの対向し合う面に生じる電荷が異極性となる。従って、互いに引き合うことになるため、接合強度の劣化が生じ難い。よって、より高い温度で加工することができる。
 なお、圧電基板2の表面と、上記SiO膜3Aに、真空中でArイオンを照射すること等により、表面の損傷層や不純物を取り除き、清浄化することが望ましい。このような清浄化後に、常温で加圧することにより、圧電基板2に、上記SiO膜3Aを接合してもよい。
 次に、図7(b)に示す積層構造体を真空中で加熱する。より具体的には、1時間で常温すなわち25℃から250℃に昇温し、10分間250℃に維持する。そして、図7(c)に示すように、圧電板5Aを圧電基板2から遠ざかる方向に外力を加えて圧電板5Aを注入イオン高濃度部分5aにおいて分割する。すなわち、圧電板5Aを、圧電膜5と残りの圧電板部分5cとに剥離する。本実施形態では、上記圧電膜5の厚みは、1μmの厚みとなる。
 次に、剥離後に500℃まで昇温し、水素イオン注入により劣化した圧電性を回復させる。タンタル酸リチウムの圧電性は、加熱により回復する。300℃から回復傾向を示し、500~550℃の温度まで加熱すると、回復する。タンタル酸リチウムのキュリー温度である590℃~600℃を超えると、分極が解放される。従って、この加熱はキュリー温度以下で行うことが望ましい。
 前記剥離後に、圧電膜5の表面はRa=10nm程度の表面粗さを有している。従って、弾性波装置1に必要な厚みまで圧電膜5を研磨するとともに、平滑化する。本実施形態では、850nmの厚みまで、研磨により圧電膜5を薄化する。この薄化は、ドライエッチング、プラズマを用いた逆スパッタなどに行い得る。また、一般にタンタル酸リチウムのエッチングに用いられているエッチャントを用いたウエットエッチングを用いてもよい。さらに、これらの方法を適宜組み合わせてもよい。
 上記のようにして形成された圧電膜5は、膜厚分布が1%以下と良好な分布を示す。このようにして、図8(a)に示す構造を得る。
 次に、図8(b)に示すように、圧電膜5上に、上部電極6を形成する。上部電極6の形成は、電子ビーム蒸着機及びフォトリソグラフィー技術を用いて行うことができる。本実施形態では、10nmの厚みのTi膜及び銅を微量ドープしてなる75nmの厚みのアルミニウムからなるAl-Cu膜を成膜する。Ti膜は、密着を改善するために設けられている。
 次に、図8(c)に示すように、振動部を構成する部分を形成するために、下部電極4、圧電膜5及び上部電極6をパターニングし、犠牲層11が露出する凹部Hを形成する。
 次に、凹部Hから、銅のエッチング液を浸入させ、上記犠牲層11を溶かし出し、キャビティ7を形成する。
 上記のようにして、図8(d)に示すように、キャビティ7を有するバルク波共振子としての弾性波装置1を得ることができる。なお、図6~図8では、誘電体層としてSiO膜3Aを形成したが、図1に示した実施形態のように、誘電体膜3を、誘電体層3a、3cを積層した構造としてもよい。
 このように、上記実施形態の製造方法では、簡便な工程で、厚み分布が1%以下と小さく、かつ表面が平滑な圧電膜5を容易に得ることができる。また、上記圧電性を回復するための加熱温度については、タンタル酸リチウムのキュリー温度である590℃~600℃以下であり、このキュリー温度に近い温度で加熱することが望ましい。しかしながら、300℃を超える温度で加熱すると、タンタル酸リチウムとニオブ酸リチウムの線膨張率差による熱応力に伴う不具合が生じやすくなる。これに対して、上述した図5の領域X内、あるいは前述した表3及び表4におけるθLT及びθLNの組み合わせを用いることにより、このような不具合を抑制することができる。すなわち、タンタル酸リチウムの熱履歴による損傷や反りを抑制するには、本発明に従って、タンタル酸リチウムとニオブ酸リチウムのオイラー角θLT及びθLNを選択して両者の線膨張率差を近接させることが非常に有効である。
 また、上記製造方法では、LiTaOからなる圧電板にイオンを注入して、注入イオン高濃度部分で分離して圧電膜を得る方法を示したが、本実施形態における弾性波装置の製造方法はこれに限るものではない。たとえば、圧電膜を得る方法として、LiTaOからなる圧電板を削る方法を用いてもよいし、LiTaOの薄膜をCVD法などで成膜する方法を用いてもよい。
 なお、本明細書においてオイラー角、並びにオイラー角と分極の極性の意味は以下の通りである。
 <オイラー角>
 本明細書において、基板の切断面と熱膨張率の方向を表現するオイラー角(φ,θ,ψ)は、文献「弾性波素子技術ハンドブック」(日本学術振興会弾性波素子技術第150委員会、第1版第1刷、平成13年11月30日発行、549頁)記載の右手系オイラー角を用いた。すなわち、タンタル酸リチウム結晶やニオブ酸リチウム結晶の結晶軸X、Y、Zに対し、Z軸を軸としてX軸を反時計廻りにφ回転しXa軸を得る。次に、Xa軸を軸としてZ軸を反時計廻りにθ回転しZ′軸を得る。Xa軸を含み、Z′軸を法線とする面を基板の切断面とした。そして、Z′軸を軸としてXa軸を反時計廻りにψ回転した軸X′方向をψ方向とした。
 また、オイラー角の初期値として与えるタンタル酸リチウム結晶やニオブ酸リチウム結晶の結晶軸X、Y、Zは、Z軸をc軸と平行とし、X軸を等価な3方向のa軸のうち任意の1つと平行とし、Y軸はX軸とZ軸を含む面の法線方向とする。
 <等価なオイラー角と分極の極性>
 本発明におけるタンタル酸リチウム結晶やニオブ酸リチウム結晶のオイラー角(φ,θ,ψ)は結晶学的に等価であればよい。例えば、非特許文献(日本音響学会誌36巻3号、1980年、140~145頁)によれば、タンタル酸リチウム結晶やニオブ酸リチウム結晶のような三方晶系3m点群に属する結晶では(A)式が成り立つ。
 F(φ,θ,ψ)=F(60°-φ,-θ,ψ)
         =F(60°+φ,-θ,180°-ψ)
         =F(φ,180°+θ,180°-ψ)
         =F(φ,θ,180°+ψ)        …式(A)
 ここで、Fは、機能性デバイスの特性である。
 なお、式(A)には分極軸の極性が上下反転する状態も含まれる。タンタル酸リチウムとニオブ酸リチウムの線膨張率を揃えて熱応力の発生を抑制しても、分極軸が対抗している場合、たとえば、温度変化に伴う焦電荷がタンタル酸リチウムとニオブ酸リチウムの界面に蓄積され、電気的な反発力により接合が破壊されたり、放電によりデバイスが破壊されるといった不具合を生じる。このような不具合を避けるには、分極の正負極性を揃えることで電荷を中和したり、タンタル酸リチウムとニオブ酸リチウムの界面に導電率の大きな材料を配して導電率の大きな材料を経由して電荷を外部に逃がしたり、タンタル酸リチウムやニオブ酸リチウムの導電率を上げて電荷を中和したり、といった手段が有効である。タンタル酸リチウムやニオブ酸リチウムの導電率は1×10-14以上とすることで温度変化に伴う焦電荷が中和できる。
 また、前述のように、タンタル酸リチウムとニオブ酸リチウムとの界面にSiOなどの誘電体を配して接合した構造体では、誘電体の導電率が1×10-14Ω-1cm-1より小さいと焦電などで発生した電荷がLiTaOと誘電体の界面やLiNbOと誘電体の界面に蓄積され、誘電体との接合が破壊されたり、放電によりデバイスが破壊されたりする不具合を生じる。この不具合を抑制するには、誘電体の導電率を1×10-14Ω-1cm-1以上とすることで、電荷を中和できる。
1…弾性波装置
2…圧電基板
3…誘電体膜
3a,3c…誘電体層
3A…SiO
4…下部電極
4a…Al-Cu膜
4b…Ti膜
5…圧電膜
5A…圧電板
6…上部電極
6a…Ti膜
6b…Al-Cu膜
6c…Ti膜
7…キャビティ
8…配線電極
11…犠牲層

Claims (10)

  1.  ニオブ酸リチウムを主成分とする圧電基板と、
     前記圧電基板上に積層されており、タンタル酸リチウムを主成分とする圧電膜と、
     前記圧電膜の上面及び/または下面に形成された電極とを備え、オイラー角を(φ,θ,ψ)としたときに、前記ニオブ酸リチウム及び前記タンタル酸リチウムのオイラー角φが0°であり、タンタル酸リチウムのオイラー角のθをθLT、ニオブ酸リチウムのオイラー角のθをθLNとした場合、θLT及びθLNが、図5のハッチングを付した領域X内にある、弾性波装置。
  2.  前記θLT及びθLNが、θLNをx軸、θLTをy軸とした座標系において、下記の表1の左欄及び右欄にそれぞれ示す下記座標で表される点を順に結ぶ線により囲まれた各領域の範囲内にある、請求項1に記載の弾性波装置。
    Figure JPOXMLDOC01-appb-T000001
  3.  前記θLT及びθLNの値が、下記の表2の左欄及び右欄にそれぞれ示す下記座標で表される点を順に結ぶ線により囲まれた各領域の範囲内にある、請求項2に記載の弾性波装置。
    Figure JPOXMLDOC01-appb-T000002
  4.  ニオブ酸リチウムを主成分とする圧電基板と、
     前記圧電基板上に積層されており、タンタル酸リチウムを主成分とする圧電膜と、
     前記圧電膜の上面及び/または下面に形成された電極とを備え、オイラー角(φ,θ,ψ)としたときに、タンタル酸リチウム及びニオブ酸リチウムのオイラー角φが0°であり、タンタル酸リチウムのオイラー角のθをθLT、ニオブ酸リチウムのオイラー角のθをθLNとしたときに、57.9°≦θLT≦122.1°かつθLN=90°とされている、弾性波装置。
  5.  前記タンタル酸リチウム及びニオブ酸リチウムの分極の極性が同一である、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記圧電膜の導電率が、1×10-14Ω-1cm-1以上、1×10-9Ω-1cm-1以下である、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  請求項1~6のいずれか1項に記載の弾性波装置の製造方法であって、
     ニオブ酸リチウムを主成分とする圧電基板を用意する工程と、
     前記圧電基板上に直接または間接にタンタル酸リチウムを主成分とする圧電膜を積層する工程と、
     前記圧電膜の上面及び下面の少なくとも一方に電極を形成する工程とを備え、
     前記圧電基板上に前記タンタル酸リチウムを主成分とする圧電膜を積層する工程が、
     (a)前記圧電膜より厚みの厚いタンタル酸リチウムを主成分とする圧電板を用意する工程と、
     (b)前記圧電板の一方面からイオン注入する工程と、
     (c)前記イオン注入が行われた圧電板の前記一方面から該圧電板を直接または間接にニオブ酸リチウムを主成分とする前記圧電基板上に積層する工程と、
     (d)前記圧電板を加熱しつつ、前記圧電板の注入イオン濃度が最も高い注入イオン高濃度部分において圧電膜と残りの圧電板部分とを分離し、前記圧電基板側に前記圧電膜を残存させる工程とを有する、弾性波装置の製造方法。
  8.  前記圧電板を加熱しつつ前記圧電膜と残りの圧電板部分とを分離する工程において、300℃以上かつタンタル酸リチウムのキュリー温度以下の温度で加熱する、請求項7に記載の弾性波装置の製造方法。
  9.  前記電極を形成する工程が、前記圧電板の一方面からイオン注入する工程(b)の後に、該イオン注入された圧電板の一方面に下部電極を形成する工程と、
     前記圧電基板側に圧電膜を残存させる工程(d)の後に、残存した圧電膜上に上部電極を形成する工程とを有する、請求項7または8に記載の弾性波装置の製造方法。
  10.  前記下部電極形成後に、下部電極の一部を覆うように犠牲層を形成し、
     前記犠牲層を覆うように前記圧電板のイオン注入された面にニオブ酸リチウムを主成分とする圧電基板を積層し、
     前記工程(d)の後に犠牲層を消滅させて、犠牲層が設けられていた部分に空洞を形成し、それによってバルク波装置を得る、請求項9に記載の弾性波装置の製造方法。
PCT/JP2012/071343 2011-09-02 2012-08-23 弾性波装置及びその製造方法 WO2013031650A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531259A JP5992912B2 (ja) 2011-09-02 2012-08-23 弾性波装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-191812 2011-09-02
JP2011191812 2011-09-02

Publications (1)

Publication Number Publication Date
WO2013031650A1 true WO2013031650A1 (ja) 2013-03-07

Family

ID=47756140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071343 WO2013031650A1 (ja) 2011-09-02 2012-08-23 弾性波装置及びその製造方法

Country Status (2)

Country Link
JP (1) JP5992912B2 (ja)
WO (1) WO2013031650A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518313A (ja) * 2019-12-31 2022-03-15 中芯集成電路(寧波)有限公司上海分公司 共振器及びその形成方法
WO2022264914A1 (ja) * 2021-06-17 2022-12-22 株式会社村田製作所 弾性波装置
WO2023238473A1 (ja) * 2022-06-10 2023-12-14 株式会社村田製作所 弾性波装置及びフィルタ装置
WO2023248558A1 (ja) * 2022-06-22 2023-12-28 株式会社村田製作所 弾性波装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299999A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 弾性表面波フィルタ及びその製造方法
JP2010171955A (ja) * 2008-12-24 2010-08-05 Ngk Insulators Ltd 複合基板の製造方法及び複合基板
WO2011013553A1 (ja) * 2009-07-30 2011-02-03 日本碍子株式会社 複合基板及びその製造方法
JP2011124738A (ja) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd 圧電デバイスの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435789B2 (ja) * 1993-03-15 2003-08-11 松下電器産業株式会社 表面弾性波素子
JPWO2005050836A1 (ja) * 2003-11-19 2007-06-14 株式会社村田製作所 端面反射型弾性表面波装置及びその製造方法
JP4955200B2 (ja) * 2004-09-22 2012-06-20 信越化学工業株式会社 剥離可能なタンタル酸リチウム単結晶複合基板
JP5433367B2 (ja) * 2008-11-19 2014-03-05 日本碍子株式会社 ラム波装置
JP5367612B2 (ja) * 2009-02-17 2013-12-11 日本碍子株式会社 ラム波装置
CN102577120B (zh) * 2009-10-13 2015-04-01 株式会社村田制作所 声表面波装置
JP5569537B2 (ja) * 2009-11-26 2014-08-13 株式会社村田製作所 圧電デバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299999A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 弾性表面波フィルタ及びその製造方法
JP2010171955A (ja) * 2008-12-24 2010-08-05 Ngk Insulators Ltd 複合基板の製造方法及び複合基板
WO2011013553A1 (ja) * 2009-07-30 2011-02-03 日本碍子株式会社 複合基板及びその製造方法
JP2011124738A (ja) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd 圧電デバイスの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518313A (ja) * 2019-12-31 2022-03-15 中芯集成電路(寧波)有限公司上海分公司 共振器及びその形成方法
JP7255910B2 (ja) 2019-12-31 2023-04-11 中芯集成電路(寧波)有限公司上海分公司 共振器及びその形成方法
WO2022264914A1 (ja) * 2021-06-17 2022-12-22 株式会社村田製作所 弾性波装置
WO2023238473A1 (ja) * 2022-06-10 2023-12-14 株式会社村田製作所 弾性波装置及びフィルタ装置
WO2023248558A1 (ja) * 2022-06-22 2023-12-28 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
JP5992912B2 (ja) 2016-09-14
JPWO2013031650A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
WO2013031651A1 (ja) 弾性波装置及びその製造方法
KR102428548B1 (ko) 접합 방법
US9385301B2 (en) Method for manufacturing composite piezoelectric substrate
JP6036926B2 (ja) 圧電デバイス
US9564574B2 (en) Piezoelectric device and method for manufacturing piezoelectric device
JP5817830B2 (ja) 圧電バルク波装置及びその製造方法
JP5716833B2 (ja) 圧電バルク波装置及びその製造方法
JP5716831B2 (ja) 圧電バルク波装置及びその製造方法
US11942915B2 (en) Bulk acoustic wave resonator device and method of manufacturing thereof
JP5992912B2 (ja) 弾性波装置及びその製造方法
JP5716832B2 (ja) 圧電バルク波装置及びその製造方法
CN117118388A (zh) 一种多层复合晶圆及薄膜弹性波器件
JP5682201B2 (ja) 圧電デバイスの製造方法
CN115208349A (zh) 一种声表面波滤波器
TWI768765B (zh) 用於製作射頻裝置用壓電結構之方法,該壓電結構可用於壓電層的移轉,以及移轉該壓電層之方法
CN114499432A (zh) 一种异质薄膜衬底、其制备方法和滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827042

Country of ref document: EP

Kind code of ref document: A1