WO2013031491A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2013031491A1
WO2013031491A1 PCT/JP2012/070055 JP2012070055W WO2013031491A1 WO 2013031491 A1 WO2013031491 A1 WO 2013031491A1 JP 2012070055 W JP2012070055 W JP 2012070055W WO 2013031491 A1 WO2013031491 A1 WO 2013031491A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
vehicle speed
switching
series
generated
Prior art date
Application number
PCT/JP2012/070055
Other languages
English (en)
French (fr)
Inventor
潤 齋藤
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to EP12827372.9A priority Critical patent/EP2733034B1/en
Priority to CN201280042072.1A priority patent/CN104024073B/zh
Priority to US14/241,692 priority patent/US9346461B2/en
Priority to KR1020147005017A priority patent/KR101529837B1/ko
Publication of WO2013031491A1 publication Critical patent/WO2013031491A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/946Characterized by control of driveline clutch

Definitions

  • the present invention relates to a control device for a hybrid vehicle, and more particularly to operation control of a clutch that transmits power of an internal combustion engine.
  • hybrid vehicles using both an internal combustion engine and an electric motor as a power source have been developed.
  • a hybrid system of a hybrid vehicle there are roughly divided into a series mode and a parallel mode.
  • the series mode is a system in which a generator is driven by the power of an internal combustion engine, and an electric motor coupled to a drive shaft is driven by electric power obtained by the generator to drive the vehicle.
  • the parallel mode the drive shaft is driven by the power of the internal combustion engine, the electric motor coupled to the drive shaft is driven by the electric power obtained from the storage battery, and the power of the internal combustion engine and the electric motor are driven according to the driving state of the vehicle.
  • the vehicle is driven using either one or both of the power.
  • the internal combustion engine is used only for driving the generator, and the internal combustion engine can be operated in the most efficient operation state of the internal combustion engine regardless of the operation state of the vehicle. Can be better.
  • the drive shaft is driven by the power output from the internal combustion engine, and the power of the internal combustion engine is not converted to electric power by the generator, and loss due to conversion to electric power by the generator is lost. Therefore, it is possible to further improve fuel efficiency compared to the series mode.
  • the series mode and the parallel mode are comprehensively determined from the fuel consumption and the output torque, and are switched at a vehicle speed that improves the balance.
  • the series mode and the parallel mode are comprehensively determined from the fuel consumption and the output torque, and are switched at a vehicle speed that improves the balance.
  • the driver requests a large torque when traveling at a vehicle speed higher than the switching vehicle speed,
  • the maximum torque that can be generated as a vehicle cannot be generated.
  • the present invention has been made to solve such problems, and the object of the present invention is to provide a hybrid vehicle that can generate the maximum torque as a vehicle and can improve the motion performance of the vehicle. It is to provide a control device.
  • a control apparatus for a hybrid vehicle includes an internal combustion engine and an electric motor mounted on a vehicle, drive wheels driven by at least one of the internal combustion engine and the electric motor, and the internal combustion engine.
  • a generator driven by an engine to generate electric power, a secondary battery for storing electric power generated by the electric generator, and supplying the stored electric power to the electric motor; and an intervening system between the internal combustion engine and the driving wheel.
  • a clutch for connecting / disconnecting the power transmitted from the internal combustion engine to the driving wheel, and the driving by the power generated by the electric motor by the power supplied from the secondary battery or the generator by opening the clutch.
  • Mode switching control means for switching between the parallel mode for driving the drive wheels, and the mode switching control means matches the maximum torque that can be generated in the series mode and the maximum torque that can be generated in the parallel mode.
  • the series mode and the parallel mode are switched according to the vehicle speed.
  • the vehicle further comprises an operation state switching means for switching the operation state of the vehicle to a first operation mode and a second operation mode in which the power consumption of the secondary battery is suppressed from the first operation mode.
  • the switching control unit is configured so that the maximum torque that can be generated in the series mode matches the maximum torque that can be generated in the parallel mode.
  • the series mode and the parallel mode are driven at a vehicle speed lower than the switching vehicle speed in the first driving mode. It is preferable to switch the mode (Claim 2).
  • the battery further comprises a secondary battery remaining amount detecting means for detecting a charging rate of the secondary battery, and the mode switching control means can be generated in the series mode when the charging rate is a predetermined value or more.
  • the mode switching control means can be generated in the series mode when the charging rate is a predetermined value or more. Switching between the series mode and the parallel mode at a vehicle speed at which the maximum torque that can be generated in the parallel mode and the maximum torque that can be generated in the parallel mode coincide with each other, The vehicle speed for switching between the series mode and the parallel mode may be reduced as the charging rate of the secondary battery decreases based on the detection result of the secondary battery remaining amount detecting means.
  • the switching of the hybrid system from the series mode to the parallel mode is switched at a vehicle speed at which the maximum torque that can be generated in the series mode and the maximum torque that can be generated in the parallel mode match. I have to. Therefore, the hybrid system is switched to a vehicle speed that matches the maximum torque that can be generated in each mode, and the maximum output torque of the vehicle can always be generated, so that the motion performance of the vehicle can be improved. Item 1).
  • the driving state switching means When the driving state switching means is the first driving mode, switching between the series mode and the parallel mode is performed at a vehicle speed at which the maximum torque that can be generated in the series mode and the maximum torque that can be generated in the parallel mode match.
  • the driving state switching means When the driving state switching means is in the second driving mode, the series mode and the parallel mode are switched at a vehicle speed lower than the switching speed between the series mode and the parallel mode in the first driving mode. Yes.
  • the vehicle speed for switching from the series mode to the parallel mode in the second operation mode is made lower than the vehicle speed in the first operation mode, for example, when the vehicle is traveling at a low speed, the series mode is changed to the parallel mode.
  • the period for generating power by driving the generator with the internal combustion engine in the series mode can be shortened. Therefore, driving a generator with an internal combustion engine in series mode and obtaining power results in poor energy conversion efficiency at the generator. Therefore, shortening the period during which the generator is driven with the internal combustion engine reduces the loss due to energy conversion.
  • the fuel consumption of the internal combustion engine can be improved (claim 2).
  • the travel distance of the secondary battery can be increased.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a control device for a hybrid vehicle according to the present invention. It is a block diagram of ECU of the control apparatus of the hybrid vehicle which concerns on this invention. It is a control flowchart of hybrid system switching control concerning the present invention. It is a figure which shows the relationship between the torque of the control apparatus of the hybrid vehicle which concerns on this invention, and a vehicle speed. It is a figure which shows the relationship between the charging rate of the high voltage battery which concerns on this invention, and switching vehicle speed.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a control device for a hybrid vehicle according to the present invention.
  • FIG. 2 is a block diagram of the HV-ECU of the hybrid vehicle control apparatus according to the present invention.
  • the configuration of the hybrid vehicle control device will be described below.
  • a vehicle 1 in which a control device for a hybrid vehicle according to the present invention is used includes an engine (internal combustion engine) 4 to which fuel is supplied from a fuel tank 2 via a fuel pipe 3 and a high-voltage battery (travel device).
  • This is a hybrid vehicle in which a charging cable extending from an external power source is connected to the high-voltage battery 5 with a charger.
  • the hybrid vehicle control apparatus includes an engine 4, a high voltage battery 5, a generator 6, a travel motor 9, a clutch 10, and a vehicle speed sensor mounted on the vehicle 1. 11, a travel mode switch (driving state switching means) 12, and a control device for performing comprehensive control of the vehicle, including an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), and a central processing unit
  • the engine 4 generates power according to the amount of operation of an accelerator pedal (not shown) of the driver.
  • the power generated by the engine 4 is transmitted to the drive shaft 14 that drives the drive wheels 15 via the generator 6 and the clutch 10 via the speed reducer 13 with a fixed gear ratio.
  • the high voltage battery 5 is composed of a secondary battery such as a lithium ion battery. Further, the high voltage battery 5 includes a battery module including a plurality of battery cells each having a cell monitoring unit for monitoring the battery cell, and a temperature of the battery module based on the output of the cell monitoring unit. And a battery monitoring unit that monitors a state of charge (hereinafter referred to as SOC) and the like.
  • SOC state of charge
  • the generator 6 is driven by the engine 4 to generate electric power, and supplies power to the high voltage battery 5 or the traveling motor 9 via the inverter 8.
  • the operation of the generator 6 is controlled by the inverter 8.
  • the inverter 8 controls the power generation of the generator 6 and the driving of the traveling motor 9 based on a control signal from the HV-ECU 20.
  • the clutch 10 is interposed between the engine 4 and the drive shaft 14, and connects / disconnects transmission of power of the engine 4 to the drive shaft 14 based on a control signal from the HV-ECU 20.
  • the vehicle speed sensor 11 is provided at the hub portion at the end of the drive shaft 14 and detects the vehicle speed of the vehicle 1.
  • the travel mode switch 12 is a dial type switch.
  • the driving mode switch 12 is operated by the driver and rotates the driving mode switch 12 so that the driver arbitrarily selects, for example, a normal mode (first driving mode) in which the exercise performance during driving is emphasized, or during driving.
  • a traveling mode such as an ECO mode (second operation mode) for suppressing power consumption and fuel consumption is switched.
  • the first operation mode is described as a normal mode and the second operation mode is described as an ECO mode.
  • the first operation mode is the power mode and the second operation mode is described.
  • the mode can also be considered as a normal mode.
  • the HV-ECU 20 is a control device for performing overall control of the vehicle 1 and includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), a timer, and the like. Consists of. On the input side of the HV-ECU 20, the battery monitoring unit of the high voltage battery 5, the vehicle speed sensor 11, and the travel mode switch 12 are connected, and detection information from these devices is input.
  • the engine 4, the inverter 8, and the clutch 10 are connected to the output side of the HV-ECU 20.
  • the HV-ECU 20 includes a switching vehicle speed determination unit 21, a series / parallel switching determination unit 22, and a clutch control unit 23.
  • the switching vehicle speed determination unit 21 determines the driving mode requested by the driver based on the switch position information of the driving mode switch 12 operated by the driver, and sets the vehicle speed for switching between the hybrid series mode and the parallel mode. Do.
  • the series / parallel switching determination unit 22 switches between the series mode and the parallel mode based on the switching vehicle speed set for the travel mode determined by the switching vehicle speed determination unit 21 and the vehicle speed detected by the vehicle speed sensor 11. Make a decision.
  • the clutch control unit 23 controls connection / disconnection of the clutch 10 based on the determination result in the series / parallel switching determination unit 22.
  • the thus configured HV-ECU 20 controls the inverter 8 and the clutch 10 based on the vehicle speed detected by the vehicle speed sensor 11 to drive the vehicle 1 only with the power of the driving motor 9.
  • the vehicle travels by switching between the series mode to be driven and the parallel mode in which the vehicle 1 is driven by the power of the engine 4 and the driving motor 9.
  • the clutch 10 is disengaged and power transmission from the engine 4 to the drive shaft 14 via the speed reducer 13 is disabled.
  • the inverter 8 is controlled to generate electric power by the generator 6 using the power of the engine 4, and the electric power generated by the generator 6 and the electric power stored in the high voltage battery 5 are supplied to the traveling motor 9.
  • FIG. 3 is a control flowchart of the hybrid system switching control.
  • FIG. 4 is a diagram showing the relationship between the torque of the control device for the hybrid vehicle and the vehicle speed, and the thick solid line in the figure indicates the maximum torque that can be generated in the series mode.
  • the maximum torque in the series mode is the maximum torque that can be generated by the traveling motor 9 by the electric power supplied from the high voltage battery 5 and the generator 6.
  • the thick broken line in the figure indicates the maximum torque that can be generated in the parallel mode.
  • the maximum torque in the parallel mode is determined by the maximum torque that can be generated in the engine 4 indicated by a thin one-dot chain line in the figure and the electric power supplied only from the high voltage battery 5 indicated by the thin two-dot chain line in the figure. This is the sum of the maximum torque that can be generated by the motor 9.
  • a vehicle speed Vn in the figure is a vehicle speed at which the hybrid system switches from the series mode to the parallel mode when the travel mode is the normal mode (first operation mode).
  • the vehicle speed Vn is set to a vehicle speed at which the maximum torque based on the vehicle speed in the series mode matches the maximum torque based on the vehicle speed in the parallel mode.
  • the vehicle speed Ve in the figure is a vehicle speed at which the hybrid system switches from the series mode to the parallel mode when the travel mode is the ECO mode (second operation mode).
  • the vehicle speed Ve is set to a vehicle speed lower than the vehicle speed Vn.
  • step S10 it is determined whether or not the ECO mode is set. Specifically, the switching vehicle speed determination unit 21 determines whether or not the travel mode is the ECO mode from the switch position information of the travel mode switch 12. If the determination result is true (Yes) and the travel mode is the ECO mode, the process proceeds to step S12, and the switching vehicle speed Vc is set to the vehicle speed Ve shown in FIG. Then, the process proceeds to step S16. If the determination result is NO (No) and the traveling mode is the normal mode, the switching vehicle speed Vc is set to the vehicle speed Vn shown in FIG. Then, the process proceeds to step S16.
  • step S16 it is determined whether or not the vehicle speed is equal to or higher than the switching vehicle speed Vc.
  • the series / parallel switching determination unit 22 determines whether or not the current vehicle speed detected by the vehicle speed sensor 11 is equal to or higher than the switching vehicle speed Vc set in step S12 or step S14. If the determination result is true (Yes) and the current vehicle speed is equal to or higher than the switching vehicle speed Vc, the process proceeds to step S18 to set the hybrid system to the parallel mode. Then, the process proceeds to step S22. If the determination result is NO (No) and the current vehicle speed is lower than the switching vehicle speed Vc, the hybrid system is set to the series mode. Then, the process proceeds to step S22.
  • step S22 it is determined whether or not the mode is a parallel mode. Specifically, in step S18, the clutch control unit 23 determines whether or not the parallel mode has been set. If the determination result is true (Yes) and the parallel mode is set, the process proceeds to step S24. If the determination result is NO (No) and the series mode is set, the process proceeds to step S26. In step S24, a control signal is output from the clutch control unit 23 to control the operation so that the clutch 10 is connected. In addition, the inverter 8 is controlled so that the generator 6 cannot generate power. Then, this routine is exited.
  • step S26 a control signal is output from the clutch control unit 23 to control the operation so that the clutch 10 is released.
  • the inverter 8 is controlled so that the generator 6 can generate power with the power of the engine 4. Then, this routine is exited.
  • the vehicle speed Vn at which the maximum torque that can be generated in the series mode and the maximum torque that can be generated in the parallel mode intersect in switching the hybrid system from the series mode to the parallel mode. To switch.
  • the switching of the hybrid system is set to the vehicle speed Vn at which the maximum torque that can be generated in each mode intersects, and the maximum output torque as the vehicle can always be generated, so that the motion performance of the vehicle can be improved.
  • the driving mode is the normal mode
  • the series mode and the parallel mode are switched at the vehicle speed Vn at which the maximum torque that can be generated in the series mode and the maximum torque that can be generated in the parallel mode intersect.
  • the ECO mode switching between the series mode and the parallel mode in the normal mode is switched between the series mode and the parallel mode at a vehicle speed Ve lower than the vehicle speed Vn.
  • the vehicle speed Ve for switching from the series mode to the parallel mode in the ECO mode is made lower than the vehicle speed Vn for the normal mode, and switching from the series mode to the parallel mode from when the vehicle is traveling at low speed
  • the period in which the generator 6 is driven by the engine 4 in the series mode to generate power can be shortened. Therefore, driving the generator 6 with the engine 4 in the series mode to obtain electric power has a low energy conversion efficiency in the generator 6. Therefore, the period of driving the generator 6 with the engine 4 is shortened to reduce the loss due to energy conversion.
  • the fuel consumption of the engine 4 can be improved.
  • the frequency of mode switching can be suppressed as compared with a vehicle that switches between the series mode and the parallel mode by an accelerator operation as a driver's torque request, so that the life of the clutch 10 is extended. Torque fluctuation at the time of mode switching can be suppressed.
  • the vehicle speed Ve for switching the hybrid system in the ECO mode is fixed, but the present invention is not limited to this.
  • the SOC of the high voltage battery 5 is used using a map as shown in FIG.
  • the vehicle speed Ve may be corrected based on the above.
  • the vehicle speed Ve for switching between the series mode and the parallel mode is decreased, and the vehicle 1 can be driven by the power of the engine 4. Reduction of SOC can be suppressed, and the travel distance by the high voltage battery 5 can be extended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 切換車速判定部(21)では、運転者により操作される走行モードスイッチのスイッチ位置情報に基づき、運転者が要求する走行モードを判定し、ハイブリッド方式をシリーズモードからパラレルモードへの切換車速の設定を行う。そして、シリーズパラレル切換判定部(22)では、切換車速判定部(21)で判定された走行モードに対し設定された切換車速と車速センサにて検出される車速とに基づいて、シリーズモードとパラレルモードとの切り換えの判定を行う。そして、クラッチ制御部(23)では、シリーズパラレル切換判定部(22)での判定結果に基づいてクラッチの断接の制御を行う。

Description

ハイブリッド車両の制御装置
 本発明は、ハイブリッド車両の制御装置に係り、詳しくは、内燃機関の動力を伝達するクラッチの作動制御に関する。
 近年、内燃機関と電動機との双方を設け、動力源とするハイブリッド車両が開発されている。ハイブリッド車両のハイブリッド方式として、大きく分けてシリーズモードとパラレルモードとがある。シリーズモードは、内燃機関の動力で発電機を駆動し、発電機により得られた電力にて駆動軸と結合された電動機を駆動し車両を走行させる方式である。また、パラレルモードは、内燃機関の動力で駆動軸を駆動し、蓄電池より得られた電力にて駆動軸に結合された電動機を駆動し、車両の運転状態に応じて内燃機関の動力と電動機の動力のどちらか一方或いは双方を用いて車両を走行させる方式である。
 このような、シリーズモードでは、内燃機関を発電機の駆動のみに用いており、車両の運転状態に関わらず内燃機関の最も効率のよい運転状態で内燃機関を運転することができるので、燃費を良くすることができる。そして、パラレルモードでは、内燃機関から出力される動力で駆動軸を駆動しており、内燃機関の動力を発電機にて電力に変換しておらず、発電機での電力への変換による損失がないため、シリーズモードよりも更に燃費を良くすることが可能である。
 しかしながら、シリーズモードでは、電動機のみで動力を発生させており、電動機の特性上高回転側での出力トルクが減少することが知られている。
 このようなことから、車両の低車速時には電動機の動力のみで走行するシリーズモードとし、車速が上昇すると内燃機関と電動機の動力で走行するパラレルモードとすることで、車両の燃費を悪化させることなく、動力性能を確保する技術が開発されている(特許文献1を参照)。
特開2003-237392号公報
 上記特許文献1のハイブリッド車両では、シリーズモードとパラレルモードとを燃費と出力トルクから総合的に判定して、バランスの良くなる車速で切り換えるようにしている。
 しかしながら、特許文献1のように燃費と出力とがバランスの良い車速でシリーズモードとパラレルモードとを切り換えるようにすると、切り換え車速よりも高い車速での走行時に運転者が大きなトルクを要求した場合には、車両として発生することのできる最大トルクを発生することができない問題がある。
 このように運転者の要求時に最大トルクの発生が不可であると車両の運動性能が悪化し好ましいことではない。
 本発明は、この様な問題を解決するためになされたもので、その目的とするところは、車両としての最大トルクを発生することができ、車両の運動性能を向上することのできるハイブリッド車両の制御装置を提供することにある。
 上記目的を達成するため、本願発明のハイブリッド車両の制御装置は、車両に搭載された内燃機関及び電動機と、前記内燃機関及び前記電動機のうち少なくともいずれか一方により駆動される駆動輪と、前記内燃機関により駆動されて発電する発電機と、前記発電機にて発電した電力を蓄電し、更に蓄電した電力を前記電動機に供給する二次電池と、前記内燃機関と前記駆動輪との間に介装され、前記内燃機関から前記駆動輪に伝達される動力を断接するクラッチと、前記クラッチを開放して前記二次電池又は前記発電機から供給される電力により前記電動機が発生した動力で前記駆動輪を駆動するシリーズモードと、前記クラッチを接続して前記内燃機関の動力と前記二次電池から供給される電力により前記電動機が発生した動力とで前記駆動輪を駆動するパラレルモードとの切り換えを行うモード切換制御手段と、を備え、前記モード切換制御手段は、前記シリーズモードで発生可能な最大トルクと前記パラレルモードで発生可能な最大トルクとが一致する車速にて前記シリーズモードと前記パラレルモードとを切り換えることを特徴とする(請求項1)。
 好ましくは、前記車両の運転状態を第1の運転モードと前記第1の運転モードより前記二次電池の電力消費量を抑制した第2の運転モードとに切り換える運転状態切換手段を備え、前記モード切換制御手段は、前記運転状態切換手段が前記第1の運転モードである場合には、前記シリーズモードで発生可能な最大トルクと前記パラレルモードで発生可能な最大トルクとが一致する車速にて前記シリーズモードと前記パラレルモードとの切り換えを行い、前記運転状態切換手段が前記第2の運転モードである場合には、前記第1の運転モードでの切り換え車速より低い車速で前記シリーズモードと前記パラレルモードとを切り換えるのがよい(請求項2)。
 また、好ましくは、前記二次電池の充電率を検出する二次電池残量検出手段と備え、前記モード切換制御手段は、前記充電率が所定値以上の場合には、前記シリーズモードで発生可能な最大トルクと前記パラレルモードで発生可能な最大トルクとが一致する車速にて前記シリーズモードと前記パラレルモードとの切り換えを行い、前記充電率が前記所定値未満となった場合には、前記二次電池残量検出手段の検出結果に基づき、前記二次電池の充電率が低下するにつれ、前記シリーズモードと前記パラレルモードとを切り換える車速を低下させるのがよい(請求項3)。
 本願発明のハイブリッド車両の制御装置によれば、シリーズモードからパラレルモードへのハイブリッド方式の切り換えをシリーズモードで発生可能な最大トルクとパラレルモードで発生可能な最大トルクとが一致する車速にて切り換えるようにしている。
 したがって、ハイブリッド方式の切り換えをそれぞれのモードで発生可能な最大トルクが一致する車速としており、車両として最大の出力トルクを常に発生することができるので、車両の運動性能を向上させることができる(請求項1)。
 また、運転状態切換手段が第1の運転モードである場合には、シリーズモードで発生可能な最大トルクとパラレルモードで発生可能な最大トルクとが一致する車速にてシリーズモードとパラレルモードとの切り換えを行い、運転状態切換手段が第2の運転モードである場合には、第1の運転モードでのシリーズモードとパラレルモードとの切り換え車速より低い車速でシリーズモードとパラレルモードとを切り換えるようにしている。
 このように、第2の運転モードでのシリーズモードからパラレルモードへの切り換える車速を第1の運転モードの車速よりも低くして、例えば車両が低速で走行している時からシリーズモードからパラレルモードに切り換えることで、シリーズモードでの内燃機関で発電機を駆動し発電を行う期間を短くできる。
 したがって、シリーズモードでの内燃機関で発電機を駆動し電力を得ることは発電機でのエネルギ変換効率が悪いことから、内燃機関で発電機の駆動する期間を短くすることにより、エネルギ変換による損失を低減でき、内燃機関の燃費を向上させることができる(請求項2)。
 また、二次電池の充電率が低下するにつれ、シリーズモードとパラレルモードとを切り換える車速を低下させるようにし、内燃機関の動力により車両を走行させることができるので二次電池の充電率の低減を抑制することができ、二次電池による走行距離を伸ばすことができる(請求項3)。
本発明に係るハイブリッド車両の制御装置を搭載した車両の概略構成図である。 本発明に係るハイブリッド車両の制御装置のECUのブロック図である。 本発明に係るハイブリッド方式切換制御の制御フローチャートである。 本発明に係るハイブリッド車両の制御装置のトルクと車速の関係を示す図である。 本発明に係る高電圧バッテリの充電率と切替車速の関係を示す図である。
 以下、本発明の実施の形態を図面に基づき説明する。
 図1は、本発明に係るハイブリッド車両の制御装置を搭載した車両の概略構成図である。図2は、本発明に係るハイブリッド車両の制御装置のHV-ECUのブロック図である。以下、ハイブリッド車両の制御装置の構成を説明する。
 本発明に係るハイブリッド車両の制御装置が用いられる車両1は、当該車両1の走行装置として、燃料タンク2より燃料配管3を介して燃料が供給されるエンジン(内燃機関)4と高電圧バッテリ(二次電池)5及びジェネレータ(発電機)6より高電圧回路7を介して高電圧の電力が供給されインバータ8により作動を制御される走行用モータ(電動機)9とを備え、図示しない充電リッドに外部電源より延びる充電ケーブルを接続し、充電器にて高電圧バッテリ5を充電することができるハイブリッド自動車である。
 図1に示すように、本発明に係るハイブリッド車両の制御装置は、車両1に搭載されるエンジン4と、高電圧バッテリ5と、ジェネレータ6と、走行用モータ9と、クラッチ10と、車速センサ11と、走行モードスイッチ(運転状態切換手段)12と、車両の総合的な制御を行うための制御装置であって、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)及び中央演算処理装置(CPU)等を含んで構成される電子コントロールユニット(以下、HV-ECUという)(モード切換制御手段)20とで構成されている。
 エンジン4は、運転者の図示しないアクセルペダルの操作量に応じて動力を発生するものである。当該エンジン4で発生した動力は、変速比が固定されている減速機13を介して、ジェネレータ6とクラッチ10を介して駆動輪15を駆動する駆動軸14とに伝達される。
 高電圧バッテリ5は、リチウムイオン電池等の二次電池で構成されるものである。また、高電圧バッテリ5は、電池セルを監視するセルモニタリングユニットを備える複数の電池セルを一つのモジュールとし更に複数のモジュールで構成される電池モジュールと、セルモニタリングユニットの出力に基づき電池モジュールの温度及び充電率(State Of Charge、以下、SOC)等を監視するバッテリモニタリングユニットとで構成されている。
 ジェネレータ6は、エンジン4により駆動されて発電し、インバータ8を介して高電圧バッテリ5或いは走行用モータ9に電力を供給するものである。また、ジェネレータ6の作動は、インバータ8により制御される。
 インバータ8は、HV-ECU20からの制御信号に基づきジェネレータ6の発電及び走行用モータ9の駆動を制御するものである。
 クラッチ10は、エンジン4と駆動軸14との間に介装され、HV-ECU20からの制御信号に基づき、駆動軸14へのエンジン4の動力の伝達を断接するものである。
 車速センサ11は、駆動軸14の端部のハブ部に設けられ、車両1の車速を検出するものである。
 走行モードスイッチ12は、ダイヤル式のスイッチである。走行モードスイッチ12は、運転者によって操作され、走行モードスイッチ12を回転させて、運転者が任意に例えば、走行時の運動性能を重視するNormalモード(第1の運転モード)や、走行時の電力消費及び燃料消費を抑制するECOモード(第2の運転モード)等の走行モードを切り換えるものである。尚、本実施例では、第1の運転モードをNormalモードとし、第2の運転モードをECOモードとして説明するが、別の実施例として第1の運転モードがPowerモードであって第2の運転モードがNormalモードと考えることもできる。
 HV-ECU20は、車両1の総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU)及びタイマ等を含んで構成される。
 HV-ECU20の入力側には、上記高電圧バッテリ5のバッテリモニタリングユニット、車速センサ11及び走行モードスイッチ12が接続されており、これらの機器からの検出情報が入力される。
 一方、HV-ECU20の出力側には、上記エンジン4、インバータ8及びクラッチ10が接続されている。
 図2に示すように、HV-ECU20は、切換車速判定部21と、シリーズパラレル切換判定部22と、クラッチ制御部23とで構成されている。
 切換車速判定部21は、運転者により操作される走行モードスイッチ12のスイッチ位置情報に基づき、運転者が要求する走行モードを判定し、ハイブリッド方式のシリーズモードとパラレルモードとを切り換える車速の設定を行う。
 シリーズパラレル切換判定部22は、切換車速判定部21で判定された走行モードに対し設定された切換車速と車速センサ11にて検出される車速とに基づいて、シリーズモードとパラレルモードとの切り換えの判定を行う。
 クラッチ制御部23は、シリーズパラレル切換判定部22での判定結果に基づいてクラッチ10の断接の制御を行う。
 このように、構成されたHV-ECU20は、ハイブリッド方式を車速センサ11にて検出される車速に基づき、インバータ8とクラッチ10とを制御して、走行用モータ9の動力のみで車両1を走行させるシリーズモードと、エンジン4と走行用モータ9の動力で車両1を走行させるパラレルモードとを切り換えて走行する。詳しくは、シリーズモードでは、クラッチ10を開放してエンジン4から減速機13を介して駆動軸14への動力の伝達を不可とする。そして、インバータ8を制御してエンジン4の動力でジェネレータ6にて電力を発電し、ジェネレータ6にて発電した電力と高電圧バッテリ5に蓄電された電力とを走行用モータ9に供給する。そして、走行用モータ9にて動力を発生させ、走行用モータ9の動力で車両1を走行させる。また、パラレルモードでは、インバータ8を制御してエンジン4の動力によるジェネレータ6での発電を不可とする。そして、クラッチ10を接続しエンジン4から減速機13を介して駆動軸14への動力の伝達を可能とする。また、高電圧バッテリ5に蓄電された電力を走行用モータ9に供給する。そして、走行用モータ9にて動力を発生させる。減速機13を介して伝達されるエンジン4の動力と走行用モータにて発生する動力とで車両1を走行させる。
 以下、このように構成された本発明に係るHV-ECU20でのハイブリッド方式切換制御について説明する。
 図3は、ハイブリッド方式切換制御の制御フローチャートである。また、図4は、ハイブリッド車両の制御装置のトルクと車速の関係を示す図であり、図中太実線はシリーズモードでの発生可能な最大トルクを示す。詳しくは、シリーズモードの最大トルクは、高電圧バッテリ5とジェネレータ6とから供給される電力により走行用モータ9で発生可能な最大トルクである。また、図中太破線はパラレルモードでの発生可能な最大トルクを示す。詳しくは、パラレルモードの最大トルクは、図中細一点鎖線で示されるエンジン4での発生可能な最大トルクと図中細二点鎖線で示される高電圧バッテリ5のみから供給される電力により走行用モータ9で発生可能な最大トルクとを合算したトルクである。また、図中の車速Vnは、走行モードがNormalモード(第1の運転モード)である時のハイブリッド方式がシリーズモードからパラレルモードへ切り換わる車速である。そして、当該車速Vnは、シリーズモードでの当該車速に基づく最大トルクとパラレルモードでの当該車速に基づく最大トルクとが一致する車速に設定されている。また、図中の車速Veは、走行モードがECOモード(第2の運転モード)である時のハイブリッド方式がシリーズモードからパラレルモードへ切り換わる車速である。そして、当該車速Veは、車速Vnよりも低い車速に設定されている。
 図3に示すように、ステップS10では、ECOモードか、否かを判別する。詳しくは、切換車速判定部21にて、走行モードスイッチ12のスイッチ位置情報より走行モードがECOモードであるか、否かを判別する。判別結果が真(Yes)で走行モードがECOモードであれば、ステップS12に進み、切換車速Vcを図4に示す車速Veとする。そして、ステップS16に進む。また、判別結果が否(No)で走行モードがNormalモードであれば、切換車速Vcを図4に示す車速Vnとする。そして、ステップS16に進む。
 ステップS16では、車速が切換車速Vc以上であるか、否かを判別する。詳しくは、シリーズパラレル切換判定部22にて、車速センサ11で検出される現在の車速がステップS12或いはステップS14で設定される切換車速Vc以上か、否かを判別する。判別結果が真(Yes)で現在の車速が切換車速Vc以上であれば、ステップS18に進み、ハイブリッド方式をパラレルモードとする。そして、ステップS22に進む。また、判別結果が否(No)で現在の車速が切換車速Vcより低ければ、ハイブリッド方式をシリーズモードとする。そして、ステップS22に進む。
 ステップS22では、パラレルモードか、否かを判別する。詳しくは、ステップS18で、クラッチ制御部23にて、パラレルモードに設定されたか、否かを判別する。判別結果が真(Yes)でパラレルモードに設定されていれば、ステップS24に進む。また、判別結果が否(No)でシリーズモードに設定されていれば、ステップS26に進む。
 ステップS24では、クラッチ制御部23より制御信号を出力してクラッチ10を接続するように作動を制御する。また、合わせてジェネレータ6で発電不能となるようにインバータ8を制御する。そして、本ルーチンを抜ける。
 ステップS26では、クラッチ制御部23より制御信号を出力してクラッチ10を開放するように作動を制御する。また、合わせてエンジン4の動力によりジェネレータ6で発電可能となるようにインバータ8を制御する。そして、本ルーチンを抜ける。
 このように、本発明に係るハイブリッド車両の制御装置では、シリーズモードからパラレルモードへのハイブリッド方式の切り換えをシリーズモードで発生可能な最大トルクとパラレルモードで発生可能な最大トルクとが交差する車速Vnにて切り換えるようにしている。
 したがって、ハイブリッド方式の切り換えをそれぞれのモードでの発生可能な最大トルクが交差する車速Vnとしており、車両として最大の出力トルクを常に発生することできるので、車両の運動性能を向上させることができる。
 また、走行モードがNormalモードである場合には、シリーズモードで発生可能な最大トルクとパラレルモードで発生可能な最大トルクとが交差する車速Vnにてシリーズモードとパラレルモードとを切り換え、走行モードがECOモードである場合には、Normalモードでのシリーズモードとパラレルモードとの切り換え車速Vnより低い車速Veでシリーズモードとパラレルモードとを切り換えるようにしている。
 このように、ECOモードでのシリーズモードからパラレルモードへの切り換える車速VeをNormalモードの車速Vnよりも低くして、車両が低速で走行している時からシリーズモードからパラレルモードに切り換えることは、シリーズモードでのエンジン4でジェネレータ6を駆動し発電を行う期間を短くできる。
 したがって、シリーズモードでのエンジン4でジェネレータ6を駆動し電力を得ることはジェネレータ6でのエネルギ変換効率が悪いことから、エンジン4でジェネレータ6の駆動する期間を短くすることにより、エネルギ変換による損失を低減でき、エンジン4の燃費を向上させることができる。
 また、本実施形態では、運転者のトルク要求としてアクセル操作によってシリーズモードとパラレルモードとを切り換えるような車両と比較して、モード切換えの頻度を抑えることができるので、クラッチ10の寿命を延ばすことができるとともに、モード切換え時におけるトルク変動を抑制することができる。
 以上で発明の実施形態の説明を終えるが、本発明の形態は実施形態に限定されるものではない。
 例えば、本実施形態は、ECOモードでのハイブリッド方式を切り換える車速Veを固定としているが、これに限定するものではなく、例えば、図5に示すようなマップを用いて、高電圧バッテリ5のSOCに基づいて車速Veを補正するようにしても良い。このことにより、高電圧バッテリ5のSOCが低下するにつれ、シリーズモードとパラレルモードとを切り換える車速Veを低下させるようにし、エンジン4の動力により車両1を走行させることができるので高電圧バッテリ5のSOCの低減を抑制することができ、高電圧バッテリ5による走行距離を伸ばすことができる。
  1 車両
  4 エンジン(内燃機関)
  5 高電圧バッテリ(二次電池)
  6 ジェネレータ(発電機)
  9 走行用モータ(電動機)
 10 クラッチ
 11 車速センサ
 12 走行モードスイッチ(運転状態切換手段)
 15 駆動輪
 20 HV-ECU(モード切換制御手段)
 21 切換車速判定部
 22 シリーズパラレル切換判定部
 23 クラッチ制御部

Claims (3)

  1.  車両に搭載された内燃機関及び電動機と、
     前記内燃機関及び前記電動機のうち少なくともいずれか一方により駆動される駆動輪と、
     前記内燃機関により駆動されて発電する発電機と、
     前記発電機にて発電した電力を蓄電し、更に蓄電した電力を前記電動機に供給する二次電池と、
     前記内燃機関と前記駆動輪との間に介装され、前記内燃機関から前記駆動輪に伝達される動力を断接するクラッチと、
     前記クラッチを開放して前記二次電池又は前記発電機から供給される電力により前記電動機が発生した動力で前記駆動輪を駆動するシリーズモードと、前記クラッチを接続して前記内燃機関の動力と前記二次電池から供給される電力により前記電動機が発生した動力とで前記駆動輪を駆動するパラレルモードとの切り換えを行うモード切換制御手段と、を備え、
     前記モード切換制御手段は、前記シリーズモードで発生可能な最大トルクと前記パラレルモードで発生可能な最大トルクとが一致する車速にて前記シリーズモードと前記パラレルモードとを切り換えることを特徴とするハイブリッド車両の制御装置。
  2.  請求項1記載のハイブリッド車両の制御装置であって、
     前記車両の運転状態を第1の運転モードと前記第1の運転モードより前記二次電池の電力消費量を抑制した第2の運転モードとに切り換える運転状態切換手段を備え、
     前記モード切換制御手段は、前記運転状態切換手段が前記第1の運転モードである場合には、前記シリーズモードで発生可能な最大トルクと前記パラレルモードで発生可能な最大トルクとが一致する車速にて前記シリーズモードと前記パラレルモードとの切り換えを行い、前記運転状態切換手段が前記第2の運転モードである場合には、前記第1の運転モードでの切り換え車速より低い車速で前記シリーズモードと前記パラレルモードとを切り換えることを特徴とする。
  3.  請求項1或いは2記載のハイブリッド車両の制御装置であって、
     前記二次電池の充電率を検出する二次電池残量検出手段と備え、
     前記モード切換制御手段は、前記充電率が所定値以上の場合には、前記シリーズモードで発生可能な最大トルクと前記パラレルモードで発生可能な最大トルクとが一致する車速にて前記シリーズモードと前記パラレルモードとの切り換えを行い、前記充電率が前記所定値未満となった場合には、前記二次電池残量検出手段の検出結果に基づき、前記二次電池の充電率が低下するにつれ、前記シリーズモードと前記パラレルモードとを切り換える車速を低下させることを特徴とする。
     
PCT/JP2012/070055 2011-09-01 2012-08-07 ハイブリッド車両の制御装置 WO2013031491A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12827372.9A EP2733034B1 (en) 2011-09-01 2012-08-07 Control device for hybrid vehicle
CN201280042072.1A CN104024073B (zh) 2011-09-01 2012-08-07 用于混合动力车辆的控制装置
US14/241,692 US9346461B2 (en) 2011-09-01 2012-08-07 Control device for determining vehicle speed for switching from series mode to parallel mode
KR1020147005017A KR101529837B1 (ko) 2011-09-01 2012-08-07 하이브리드 차량의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011190667A JP5720893B2 (ja) 2011-09-01 2011-09-01 ハイブリット車両の制御装置
JP2011-190667 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031491A1 true WO2013031491A1 (ja) 2013-03-07

Family

ID=47755993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070055 WO2013031491A1 (ja) 2011-09-01 2012-08-07 ハイブリッド車両の制御装置

Country Status (6)

Country Link
US (1) US9346461B2 (ja)
EP (1) EP2733034B1 (ja)
JP (1) JP5720893B2 (ja)
KR (1) KR101529837B1 (ja)
CN (1) CN104024073B (ja)
WO (1) WO2013031491A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052710A (ja) * 2011-09-01 2013-03-21 Mitsubishi Motors Corp ハイブリット車両の制御装置
EP2902287A1 (en) * 2014-01-30 2015-08-05 BYD Company Limited Vehicle and drive control method for the same
US9421966B2 (en) 2014-10-20 2016-08-23 Byd Company Limited Hybrid vehicle and shifting control method and power transmission system thereof
US9568081B2 (en) 2014-01-30 2017-02-14 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9568082B2 (en) 2014-01-30 2017-02-14 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9568065B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
US9568066B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Power transmission system and vehicle comprising the same
US9568080B2 (en) 2014-01-30 2017-02-14 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9849771B2 (en) 2015-01-16 2017-12-26 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
US9874266B2 (en) 2014-09-10 2018-01-23 Byd Company Limited Power transmission system and vehicle comprising the same
US9889734B2 (en) 2015-01-16 2018-02-13 Byd Company Limited Power transmission system and vehicle comprising the same
US9889733B2 (en) 2015-01-16 2018-02-13 Byd Company Limited Power transmission system and vehicle comprising the same
US9919699B2 (en) 2014-01-30 2018-03-20 Byd Company Limited Vehicle and method for controlling synchronizer of the same
US9944165B2 (en) 2014-01-30 2018-04-17 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US10166853B2 (en) 2015-01-16 2019-01-01 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
US10363806B2 (en) 2014-01-30 2019-07-30 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US10670123B2 (en) 2014-01-30 2020-06-02 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
CN113386730A (zh) * 2021-07-19 2021-09-14 中国第一汽车股份有限公司 混合动力汽车串并联驱动模式切换的控制方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566736B1 (ko) * 2013-12-26 2015-11-06 현대자동차 주식회사 하이브리드 차량의 전부하 모드 제어 장치 및 방법
CN105730447B (zh) * 2014-12-10 2019-06-11 北汽福田汽车股份有限公司 一种混合动力车整车模式切换控制方法及系统
CN104670218A (zh) * 2014-12-14 2015-06-03 励春亚 混联式混合动力系统分层结构多能源综合控制方法
BR112017026163B1 (pt) * 2015-06-09 2022-10-04 Nissan Motor Co., Ltd Dispositivo de controle de transição de modo para veículo híbrido
KR101664708B1 (ko) * 2015-06-17 2016-10-12 현대자동차주식회사 하이브리드 차량의 제어 방법
CN105035089A (zh) * 2015-08-07 2015-11-11 厦门金龙联合汽车工业有限公司 一种混联混合动力系统串并联切换控制算法
DE102015222691A1 (de) * 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
CN106853819B (zh) * 2015-12-09 2019-05-24 上海汽车集团股份有限公司 一种hcu及离合器工作模式切换的控制方法
US10112597B2 (en) * 2016-08-23 2018-10-30 Ford Global Technologies, Llc Automatic drive mode selection
CN106335496B (zh) * 2016-09-24 2018-09-21 苏州征之魂专利技术服务有限公司 一种混合动力新能源汽车优化节能控制装置
KR101776529B1 (ko) * 2016-10-13 2017-09-20 현대자동차주식회사 하이브리드 차량의 주행모드 제어방법 및 그 제어시스템
US10144411B2 (en) * 2017-01-13 2018-12-04 Gregorio M. Belloso Vehicle system
KR20180133018A (ko) * 2017-06-02 2018-12-13 현대자동차주식회사 차량용 배터리 시스템 및 제어방법
US10369896B2 (en) 2017-11-28 2019-08-06 GM Global Technology Operations LLC Apparatus and method for flexible DC fast charging of an electrified vehicle
US10432130B2 (en) * 2017-11-28 2019-10-01 GM Global Technology Operations LLC Electric powertrain and a method of operating the same
KR102592829B1 (ko) * 2018-12-03 2023-10-23 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 제어 방법
JP7023906B2 (ja) * 2019-09-06 2022-02-22 本田技研工業株式会社 車両の制御装置
CN112810599B (zh) * 2020-04-17 2022-04-12 长城汽车股份有限公司 车辆驱动控制方法、系统
US20240157932A1 (en) * 2021-03-18 2024-05-16 Nissan Motor Co., Ltd. Control method and control device for hybrid vehicle
CN114030457B (zh) * 2022-01-07 2022-03-15 北京航空航天大学 一种串并联混合动力系统双阈值工作模式切换控制方法
CN115303252A (zh) * 2022-09-06 2022-11-08 广州汽车集团股份有限公司 混动车辆及其模式切换控制方法和装置、存储介质
CN115782554B (zh) * 2022-10-11 2023-08-29 上汽通用五菱汽车股份有限公司 一种混合动力装置及混合动力系统
CN116215498A (zh) * 2023-03-10 2023-06-06 重庆长安汽车股份有限公司 混动车辆的驱动模式切换时机判定方法、驱动模式控制方法、装置、车辆、介质及设备
WO2024189808A1 (ja) * 2023-03-15 2024-09-19 三菱自動車工業株式会社 ハイブリッド車両
CN116552498B (zh) * 2023-05-31 2024-03-01 重庆赛力斯凤凰智创科技有限公司 一种混合动力模式的切换方法、装置及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259746A (ja) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag 動力車のための駆動装置
JPH11275710A (ja) * 1998-03-19 1999-10-08 Nissan Diesel Motor Co Ltd ハイブリッド駆動システム
JP2003237392A (ja) 2002-12-03 2003-08-27 Toyota Motor Corp 動力出力装置およびハイブリッド車両並びにその制御方法
JP2011156985A (ja) * 2010-02-01 2011-08-18 Toyota Motor Corp ハイブリッド車両の制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610290B2 (ja) 1988-04-27 1994-02-09 新日本製鐵株式会社 高炉の解体方法
JP3172490B2 (ja) * 1998-05-18 2001-06-04 株式会社日立製作所 ハイブリッド車
JP3402236B2 (ja) * 1999-01-13 2003-05-06 トヨタ自動車株式会社 動力出力装置およびハイブリッド車両並びにその制御方法
CN1291855C (zh) * 2002-12-08 2006-12-27 中国第一汽车集团公司 双电机混合动力汽车动力系统
US7497285B1 (en) * 2007-11-15 2009-03-03 Vladimir Radev Hybrid electric vehicle
CN101920652B (zh) * 2009-06-17 2014-06-25 上海捷能汽车技术有限公司 一种车用串/并联双电机多离合器混合动力驱动单元
US8182390B2 (en) * 2009-10-23 2012-05-22 GM Global Technology Operations LLC Method for controlling neutral modes in a multi-mode hybrid transmission
US8479851B2 (en) * 2009-10-27 2013-07-09 Magna Powertrain Of America, Inc. Electric drive unit with modular motor assembly
WO2012059997A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
JP5429400B2 (ja) * 2010-11-04 2014-02-26 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
US9102322B2 (en) * 2010-11-04 2015-08-11 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
WO2012087700A1 (en) * 2010-12-23 2012-06-28 Magna Powertrain Of America, Inc. Multi-speed transaxle for electric and hybrid vehicle application
US9168860B2 (en) * 2011-05-10 2015-10-27 Toyota Jidosha Kabushiki Kaisha Vehicle display device
JP5720893B2 (ja) * 2011-09-01 2015-05-20 三菱自動車工業株式会社 ハイブリット車両の制御装置
US9045136B2 (en) * 2013-02-08 2015-06-02 Efficient Drivetrains, Inc. Systems and methods for implementing dynamic operating modes and control policies for hybrid electric vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259746A (ja) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag 動力車のための駆動装置
JPH11275710A (ja) * 1998-03-19 1999-10-08 Nissan Diesel Motor Co Ltd ハイブリッド駆動システム
JP2003237392A (ja) 2002-12-03 2003-08-27 Toyota Motor Corp 動力出力装置およびハイブリッド車両並びにその制御方法
JP2011156985A (ja) * 2010-02-01 2011-08-18 Toyota Motor Corp ハイブリッド車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733034A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052710A (ja) * 2011-09-01 2013-03-21 Mitsubishi Motors Corp ハイブリット車両の制御装置
EP2902287A1 (en) * 2014-01-30 2015-08-05 BYD Company Limited Vehicle and drive control method for the same
US10670123B2 (en) 2014-01-30 2020-06-02 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9566978B2 (en) 2014-01-30 2017-02-14 Byd Company Limited Vehicle and drive control method for the same
US9568081B2 (en) 2014-01-30 2017-02-14 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9568082B2 (en) 2014-01-30 2017-02-14 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US10363806B2 (en) 2014-01-30 2019-07-30 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9944165B2 (en) 2014-01-30 2018-04-17 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9568080B2 (en) 2014-01-30 2017-02-14 Byd Company Limited Power transmission system for vehicle and vehicle comprising the same
US9919699B2 (en) 2014-01-30 2018-03-20 Byd Company Limited Vehicle and method for controlling synchronizer of the same
US9874266B2 (en) 2014-09-10 2018-01-23 Byd Company Limited Power transmission system and vehicle comprising the same
US9568066B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Power transmission system and vehicle comprising the same
US9568065B2 (en) 2014-09-10 2017-02-14 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
US9421966B2 (en) 2014-10-20 2016-08-23 Byd Company Limited Hybrid vehicle and shifting control method and power transmission system thereof
US9889734B2 (en) 2015-01-16 2018-02-13 Byd Company Limited Power transmission system and vehicle comprising the same
US9889733B2 (en) 2015-01-16 2018-02-13 Byd Company Limited Power transmission system and vehicle comprising the same
US9849771B2 (en) 2015-01-16 2017-12-26 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
US10166853B2 (en) 2015-01-16 2019-01-01 Byd Company Limited Transmission unit, power transmission system and vehicle comprising the same
CN113386730A (zh) * 2021-07-19 2021-09-14 中国第一汽车股份有限公司 混合动力汽车串并联驱动模式切换的控制方法
CN113386730B (zh) * 2021-07-19 2023-01-06 中国第一汽车股份有限公司 混合动力汽车串并联驱动模式切换的控制方法

Also Published As

Publication number Publication date
EP2733034B1 (en) 2018-11-14
CN104024073A (zh) 2014-09-03
JP2013052710A (ja) 2013-03-21
CN104024073B (zh) 2017-03-15
US9346461B2 (en) 2016-05-24
US20140195092A1 (en) 2014-07-10
JP5720893B2 (ja) 2015-05-20
EP2733034A4 (en) 2017-06-14
EP2733034A1 (en) 2014-05-21
KR20140033247A (ko) 2014-03-17
KR101529837B1 (ko) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5720893B2 (ja) ハイブリット車両の制御装置
US8742718B2 (en) Charging apparatus for vehicle
JP6070934B2 (ja) ハイブリッド車の走行モード切換制御装置
US9415698B2 (en) Hybrid vehicle
JP7020144B2 (ja) 電動車両及び電動車両の制御方法
JP2014184959A (ja) ハイブリッド車両及びその制御方法
US9623860B2 (en) Hybrid vehicle and control method therefor
JP5741153B2 (ja) 充電制御装置
JP2010273417A (ja) 電動車両
CN101708694A (zh) 一种电动汽车里程增加器控制系统及其控制方法
JP2016082677A (ja) 車両の電源装置
JP2016155484A (ja) ハイブリッド車両
JP5024558B2 (ja) 充電制御装置
JP2011073611A (ja) ハイブリッド車両の制御装置
KR20140071593A (ko) 하이브리드 차량의 충전 제어 방법
JP2006341708A (ja) ハイブリッド車の制御装置
JP2012056559A (ja) ハイブリッド車両の制御装置
JP2015013517A (ja) 車両の制御装置
JP6729161B2 (ja) ハイブリッド車両
WO2014038442A1 (ja) ハイブリッド車両の制御装置
JP2015050896A (ja) ハイブリッド車制御システム
JP2012086643A (ja) ハイブリッド車両の制御装置及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012827372

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147005017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE