WO2013030918A1 - 光電式煙感知器 - Google Patents

光電式煙感知器 Download PDF

Info

Publication number
WO2013030918A1
WO2013030918A1 PCT/JP2011/069438 JP2011069438W WO2013030918A1 WO 2013030918 A1 WO2013030918 A1 WO 2013030918A1 JP 2011069438 W JP2011069438 W JP 2011069438W WO 2013030918 A1 WO2013030918 A1 WO 2013030918A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
smoke detector
photoelectric smoke
light receiving
Prior art date
Application number
PCT/JP2011/069438
Other languages
English (en)
French (fr)
Inventor
忠之 渋谷
卓也 大川
雅雄 井口
Original Assignee
日本フェンオール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本フェンオール株式会社 filed Critical 日本フェンオール株式会社
Priority to PCT/JP2011/069438 priority Critical patent/WO2013030918A1/ja
Priority to CN201180071170.3A priority patent/CN103597525B/zh
Priority to EP11871783.4A priority patent/EP2752828A4/en
Priority to US14/238,052 priority patent/US9297753B2/en
Priority to KR1020137028176A priority patent/KR101529127B1/ko
Priority to JP2013530902A priority patent/JP5834374B2/ja
Priority to RU2014101493/08A priority patent/RU2571581C2/ru
Priority to TW101131012A priority patent/TWI483218B/zh
Publication of WO2013030918A1 publication Critical patent/WO2013030918A1/ja
Priority to HK14104276.1A priority patent/HK1191129A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device

Definitions

  • the present invention relates to a photoelectric smoke detector using a light emitting element and a light receiving element.
  • the photoelectric smoke detector is a device for detecting smoke accompanying a fire in a space. Specifically, the smoke flowing into the housing of the photoelectric smoke detector is detected by light. Such photoelectric smoke detectors are installed in indoor spaces or spaces in various devices to detect smoke in the spaces.
  • the photoelectric smoke detector installed in such a space needs to be small.
  • the present applicant has proposed a small photoelectric smoke detector. This example will be outlined with reference to FIG. In the following description, the upper, lower, left, and right directions are based on the state shown in FIG.
  • the smoke detector 1 includes a cylindrical portion 2 and a flat box portion 3 extending upward from the cylindrical portion 2.
  • the cylindrical portion 2 has a function of allowing smoke to enter while preventing the entry of ambient light into the smoke detector 1 and introducing smoke into the smoke detector 1.
  • a chevron labyrinth 4 having a chevron shape (conical shape with a cut head) is provided at the lower surface opening of the cylindrical portion 2.
  • the central part of the chevron labyrinth 4 is raised in a chevron shape, and a plurality of openings 5 functioning as smoke inlets and blocking the entry of ambient light are provided at the peripheral part thereof.
  • the flat box portion 3 has a substantially rectangular parallelepiped shape and has a smoke detection function.
  • the horizontal width of the flat box portion 3 is the same as the outer diameter of the cylindrical portion 2, and the flat box portion 3 is positioned upward from the cylindrical portion 2 so that the central axis of the cylindrical portion 2 coincides with the central axis of its own. It extends.
  • Side small holes 7 are provided at the top of the flat box 3.
  • the side small holes 7 function as openings when the smoke is led out from the inside of the smoke detector 1 to the outside. That is, the smoke introduced into the inside of the smoke detector 1 from the opening 5 of the chevron labyrinth 4 or the side hole (not shown) of the cylindrical part 2 is led out from the side hole 7 of the flat box part 3. . Note that smoke may flow into the inside of the smoke detector 1 from the side small hole 7.
  • the light emitting element 8 is an element that is provided facing the detection area AR in the housing of the flat box portion 3 and emits inspection light to the detection area AR.
  • the light emitting element 8 is provided at a position above the internal space of the flat box 3 (upper left in FIG. 1) by the light emitting element accommodating portion 11.
  • the light emitting element accommodating portion 11 accommodates the light emitting element 8 so that the inspection light emitted from the light emitting element 8 is emitted only forward.
  • An optical window portion 12 is provided in front of the light emitting element housing portion 11.
  • the light receiving element 9 is provided in the lower left position of the internal space of the flat box part 3 by the light receiving element accommodating part 13.
  • the light receiving element accommodating portion 13 accommodates the light receiving element 9 at the bottom thereof, and an objective lens 14 is attached to the upper portion thereof.
  • the light receiving element 9 is provided facing the detection area AR at a position deviated from the optical path of the inspection light of the light emitting element 8, and receives the scattered light scattered by the inspection light hitting the smoke and detects the smoke.
  • the optical axis of the light emitting element 8 and the optical axis of the light receiving element 9 intersect at an angle of about 120 degrees, and the vicinity of the intersection is a smoke detection area AR.
  • a shielding plate 15 that prevents the inspection light from the light emitting element 8 from directly entering the light receiving element 9 without being scattered. Is provided.
  • the labyrinth piece 17 is formed so as to be inclined upward in the right direction, and guides the air flow from the lower side to the upper right direction on the lower surface.
  • the upper end of the labyrinth piece 17 is bent in the upper left direction. This end portion has a function of causing the air flow rising along the upper surface to go to the detection region AR.
  • the labyrinth piece 18 is formed at an upper left position with respect to the labyrinth piece 17 so as to be inclined upward in the left direction.
  • the labyrinth piece 18 guides a direct air flow from below, an air flow along the inclination of the lower inclined surface 13a of the light receiving element accommodating portion 13, and the like in the upper left direction.
  • the air flow toward the upper inclined surface 13b of the light receiving element accommodating portion 13 is directed toward the detection area AR by the inclined surface 13b.
  • a labyrinth piece 20 extending generally to the left is provided at the lower end position of the side small hole 7 of the flat box portion 3.
  • the labyrinth 20 is bent so as to go from the middle position to the upper left direction.
  • the air flow that passes through the detection region AR and is going to rise further is narrowed down by the upper inclined surface 11a of the light emitting element accommodating portion 11 and the lower inclined surface of the labyrinth piece 20, and reaches the upper surface of the internal space.
  • the flow is directed to the side small hole 7 and led out from the side small hole 7 by the flow pressure.
  • Reference numeral 21 denotes an insect net.
  • a labyrinth piece 22 is provided below the labyrinth piece 17.
  • the inspection light from the light emitting element 8 is emitted to the detection area AR.
  • the shielding plate 15 prevents the inspection light from directly entering the light receiving element 9. Further, disturbance light tries to enter from the opening 5 or the side hole 7 of the mountain-shaped labyrinth, but this disturbance light is blocked by the labyrinth pieces 17, 18, 20, 22 and the like.
  • the conventional photoelectric smoke detector described above can detect smoke accompanying a fire, but it is difficult to detect when the smoke concentration is low. That is, when smoke enters the detection area AR, the inspection light from the light emitting element 8 is scattered by the smoke, and the scattered light reaches the light receiving element 9 to detect the presence of smoke, but if the smoke concentration is low, The scattering amount of inspection light is reduced, making it difficult to detect.
  • the present invention has been made in view of the above circumstances, and provides a photoelectric smoke detector that is small and capable of detecting smoke with higher accuracy.
  • the present invention provides a photoelectric smoke detector that detects light flowing into a housing by light, and is provided facing the detection region in the housing and emits inspection light to the detection region.
  • a light-emitting element that is provided facing the detection region at a position deviated from the optical path of the inspection light of the light-emitting element, and a light-receiving element that receives the scattered light scattered when the inspection light hits the smoke and detects the smoke;
  • a reflection member provided in the housing and configured to deflect inspection light emitted from the light emitting element so as not to be incident on the light receiving element;
  • smoke can be detected with high accuracy.
  • FIG. 4 is a plan sectional view of FIG. 3. It is side surface sectional drawing which shows the conventional photoelectric smoke detector. It is side surface sectional drawing which shows the photoelectric smoke sensor of 2nd Embodiment of this invention. It is a graph which shows the characteristic of the light source of the light emitting element of the conventional photoelectric smoke detector. It is a graph which shows the characteristic of the light source of the light emitting element of the photoelectric smoke detector of 2nd Embodiment of this invention.
  • the photoelectric smoke detector of the present invention is a place where people gather such as general households and public facilities, factory semiconductor manufacturing equipment, machine tools, switchboards, industrial controllers, etc. that may cause a fire, etc. It is a highly sensitive smoke detector that can be installed in
  • the characteristic of the photoelectric smoke detector which concerns on this embodiment exists in the point which provided the reflection member.
  • a conventional photoelectric smoke detector having the same configuration as the present invention will be described based on FIG. 2, and then FIG. Based on this, the photoelectric smoke detector of this embodiment will be described.
  • the conventional photoelectric smoke detector of FIG. 2 is a photoelectric smoke detector on which the present invention is based.
  • the present invention is an improvement of the photoelectric smoke detector of FIG.
  • the optical path of the inspection light emitted from the light emitting element 8 is different from that in FIG. 2, but in FIG. 3, the photoelectric smoke detector having the configuration of FIG. In order to show that the reflecting member of the invention is provided, the optical path of the inspection light is left as it is.
  • the photoelectric smoke detector of FIG. 2 generally has the same configuration as the photoelectric smoke detector of FIG. 1 described above. Differences between the photoelectric smoke sensor of FIG. 2 and the photoelectric smoke sensor of FIG. 1 mainly depend on whether or not it has a cylindrical portion 2, a side hole 7, a labyrinth piece 20, and an insect net 21. is there. Other parts have the same configuration as the photoelectric smoke detector of FIG. For this reason, the same code
  • a small hole 24 is provided on the upper surface instead of the side small hole 7.
  • the inspection light emitted from the light emitting element 8 is reflected by the detection region side inner wall 3b of the housing 3a of the flat box part 3, as indicated by the arrows in FIG. A part of the reflected light is directly incident on the light receiving element 9. Further, the reflected light reflected by the protrusion 25 provided at the opening of the light receiving element 9 or the protrusion 17 a of the labyrinth 17 may also enter the light receiving element 9. These lights become noise and reduce the inspection accuracy of the photoelectric smoke detector.
  • the photoelectric smoke detector of the present embodiment controls reflected light (reflected light of inspection light emitted from the light emitting element 8) incident on the light receiving element 9. That is, the photoelectric smoke detector of the present embodiment mainly controls reflected light reflected by the detection region side inner wall 3b.
  • reflection members 32 and 33 are provided in the photoelectric smoke detector 31.
  • the reflection members 32 and 33 are members that reflect the inspection light emitted from the light emitting element 8 by deflecting it from the light receiving element 9 so as not to enter the light receiving element 9.
  • the reflection members 32 and 33 are provided on the detection region side inner wall 3b of the housing 3a, which is a position facing the light emitting element 8 with the detection region AR (see FIG. 1) interposed therebetween.
  • the reflecting members 32 and 33 are provided in the entire vertical direction of the detection region side inner wall 3 b. Further, as shown in FIG. 4, the reflecting members 32 and 33 include reflecting surfaces 32 a and 33 a whose planar shape is inclined in a V shape.
  • the reflecting surfaces 32 a and 33 a are surfaces for reflecting the inspection light emitted from the light emitting element 8 by deflecting it from the light receiving element 9 in a direction not toward the light receiving element 9.
  • the reflecting surface 32a is formed larger than the reflecting surface 33a.
  • the reflective surface 32a is provided on the side wall surface 3c side of the housing 3a and occupies a large area.
  • the reflective surface 33a is provided on the other side wall surface 3d side of the housing 3a and occupies an area smaller than that of the reflective surface 32a. Thereby, the inspection light emitted from the light emitting element 8 is irregularly reflected by the two reflecting surfaces 32a and 33a. Then, the inspection light is irregularly reflected by the two reflecting surfaces 32a and 33a, so that the reflected light is reflected in a direction not directed toward the light receiving element 9 (deviated from the light receiving element 9) as shown in FIG. It has become.
  • the areas and inclination angles of the two reflecting surfaces 32 a and 33 a are set so that the reflected light does not go to the light receiving element 9 because of the relationship with the light emitting element 8.
  • the reflected light there is also light reflected by changing the direction by 180 degrees by being reflected twice by the V-shaped reflecting surfaces 32a and 33a.
  • the inspection light is reflected twice, the luminance is greatly attenuated, and the amount of light is greatly reduced. For this reason, even if the reflected light (secondary reflected light) reflected twice is incident on the light receiving element 9, it becomes very weak light, so there is no problem.
  • parts other than the above-described configuration are not particularly limited. All configurations that can be incorporated into the photoelectric smoke detector of the present invention (peripheral configurations of existing photoelectric smoke detectors) can be applied to the present invention.
  • the photoelectric smoke sensor configured as described above operates as follows.
  • the inspection light emitted from the light emitting element 8 toward the detection area AR passes through the detection area AR and irradiates the reflecting members 32 and 33. There is also inspection light that irradiates the side wall surfaces 3c and 3d, but this light is reflected by the side wall surfaces 3c and 3d and irradiates the reflecting members 32 and 33.
  • the light is irregularly reflected by the V-shaped reflecting surfaces 32a and 33a, and the reflected light directed to the light receiving element 9 is eliminated. A part of the reflected light is directed to the light receiving element 9, but such light is reflected twice or more as described above and greatly attenuated.
  • Reflected light reflected by the reflecting surfaces 32a and 33a irradiates the opposing reflecting surfaces 33a and 32a or the side wall surfaces 3c and 3d. And most of the reflected light reflected by the reflecting surfaces 33a and 32a irradiates the side wall surfaces 3c and 3d, and is reflected by the side wall surfaces 3c and 3d. Also, most of the reflected light reflected by the side wall surfaces 3c and 3d is reflected again by irradiating the opposing side wall surfaces 3c and 3d. As a result, the reflected light of the inspection light gathers around the detection area AR and repeats reflection, and hardly enters the light receiving element 9.
  • FIG. 5 shows an overlap state between the irradiation angle of the inspection light of the light emitting element 8 and the viewing angle of the light receiving element 9 in the photoelectric smoke detector having the conventional light emitting element 8, light receiving element 9 and shielding plate 15.
  • FIG. 6 shows an overlap state between the irradiation angle of the inspection light of the light emitting element 41 and the viewing angle of the light receiving element 42 in the photoelectric smoke detector including the light emitting element 41, the light receiving element 42, and the shielding plate 43 of the present embodiment.
  • the light amount of the light source of the light emitting element 41 is increased.
  • the directivity of the light source was strengthened.
  • the exit angle of the inspection light was also reduced. Specifically, as shown in FIG. 8, compared with the conventional light source of FIG. That is, the inspection light is thinner and stronger than the conventional inspection light.
  • the shielding plate 43 is a member for preventing the inspection light from the light emitting element 41 from directly entering the light receiving element 42, provided between the light emitting element 41 and the light receiving element 42.
  • the shielding plate 43 is provided on the light emitting element 41 side, is close to the light emitting element 41 side, and is away from the light receiving element 42.
  • the light receiving element 42 is configured such that the focal length of the lens 44 is shortened to shorten the entire length of the light receiving element accommodating portion 45 so that the light receiving element 42 is moved away from the shielding plate 43. Thereby, the front of the light receiving element 42 is widened, and the light incident angle is widened.
  • This light incident angle is an angle at which light can be incident, that is, an incident angle of scattered light incident on the light receiving element 42 from within the housing 3a of the flat box portion 3. By expanding the light incident angle, the amount of scattered light that can be taken into the light receiving element 42, that is, the signal amount is increased.
  • An inclined member 45 a is provided inside the lens 44 in the light receiving element housing 45.
  • the inclined member 45a is disposed so as to cover the periphery of the lens 44 from the inside.
  • a conical (tapered) inclined surface 45b is provided on the surface of the inclined member 45a.
  • the inclined surface 45 b is a reflecting surface for reflecting the reflected light incident in the light receiving element accommodating portion 45 to the outside of the light receiving element accommodating portion 45.
  • the inclined surface 45 b provided in the periphery of the lens 44 reflects the reflected light incident in the light receiving element accommodating portion 45 to the outside and prevents it from entering the light receiving element 42.
  • the inclined surface 45b only needs to be able to reflect light, but may be mirror-finished for efficient reflection.
  • the protrusion 17a of the labyrinth piece 17 and the protrusion 25 of the opening of the light receiving element 42 shown in FIG. 5 are eliminated. This is because the projections 17 a and 25 may reflect the inspection light and enter the light receiving element 42.
  • the inspection light which is strong light hits the smoke and emits scattered light.
  • the scattered light becomes strong light in proportion to the inspection light and enters the light receiving element 42.
  • the light receiving element 42 since the light receiving element 42 has a wide light incident angle, it captures more scattered light and detects smoke.
  • the light emitting element 41 of the photoelectric smoke detector of the present example one having the following performance was used. That is, a light emitting element having an output of 11 mW, an applied voltage of 9 V, and an applied current of 550 mA was used.
  • a light emitting element of a conventional photoelectric smoke detector a light emitting element having an output of 11 mW, an applied voltage of 9 V, and an applied current of 300 mA was used. Thereby, the light quantity of the light emitting element 41 of a present Example has increased compared with the conventional light emitting element.
  • the light receiving element 42 of the photoelectric smoke detector of the present example was used having the following performance. That is, a light receiving element having a maximum sensitivity wavelength of 940 nm, a color temperature of 2856K, an open voltage of 0.35 V when the EV display value of the standard tungsten light bulb is 1000 Lx, and a short-circuit current of 75 ⁇ A was used.
  • ADL was 108 in the conventional photoelectric smoke detector, but was reduced to 13 in the conventional photoelectric smoke detector using the flat box portion 3 of the present invention.
  • the value is 25, which is significantly lower than that of the conventional photoelectric smoke sensor. That is, since the conventional photoelectric smoke detector using the flat box portion 3 of the present invention has been reduced to 13, the light quantity of the light emitting element 41 of the present embodiment can be increased.
  • ADL could be significantly reduced as compared with the conventional photoelectric smoke sensor.
  • the ADH was 147 in the conventional photoelectric smoke sensor, but was 90 in the conventional photoelectric smoke sensor using the flat box portion 3 of the present invention. In the photoelectric smoke detector of the present example, it was 109. As a result, there was no significant change in the signal amount.
  • the ADH-ADL was 39 in the conventional photoelectric smoke detector, but it was 77 in the conventional photoelectric smoke detector using the flat box portion 3 of the present invention.
  • the value was 84.
  • the value of 7.8 for the conventional photoelectric smoke sensor is 15.4 for the conventional photoelectric smoke sensor using the flat box portion 3 of the present invention. became.
  • the value was 17.
  • the amount of change increased almost twice as compared with the conventional method.
  • the S / N ratio was 0.37 in the conventional photoelectric smoke sensor, but was 5.93 in the conventional photoelectric smoke sensor using the flat box portion 3 of the present invention.
  • the value was 3.3.
  • the noise resistance of the photoelectric smoke sensor of this example was significantly improved compared to the conventional photoelectric smoke sensor.
  • the conventional photoelectric smoke detector using the flat box portion 3 of the present invention senses smoke with higher sensitivity than the conventional photoelectric smoke detector, and the photoelectric smoke detector of the present embodiment. It can be seen that smoke is detected with high sensitivity.
  • the photoelectric smoke detector of this embodiment has a higher ADH-ADL value than the conventional photoelectric smoke detector using the flat box portion 3 of the present invention, and detects smoke with high sensitivity. You can see that
  • the photoelectric smoke detector of this embodiment can detect smoke with high accuracy.
  • the V-shaped reflection surfaces 32a and 33a are provided by the reflection members 32 and 33.
  • one reflection surface 47a is provided by one large reflection member 47. It may be.
  • the inspection light is reflected by the reflecting surface 47a, and is irradiated on the side wall surface 3d and reflected by the side wall surface 3d.
  • the secondary reflected light is greatly attenuated. Accordingly, the inspection light from the light emitting element is reflected in a direction not toward the light receiving element. Also in this configuration, the same operations and effects as those in the first embodiment can be achieved.
  • a reflective surface 48a curved by the reflective member 48 may be provided.
  • the reflection surface 48a may be formed so that the reflected light gathers in the detection area AR and its periphery, like a concave mirror of a reflection telescope.
  • the reflection surface 48a reflects the inspection light from the light emitting element in the direction of gathering in the detection area. That is, the reflection surface 48a may be configured to be curved so that the inspection light and the reflected light are gathered in the detection area AR and its periphery so as to generate more scattered light due to the smoke flowing into the housing 3a.
  • the reflecting surface 48a may be a mirror surface. By making the reflecting surface 48a a mirror surface, more reflected light can be collected in the detection area AR and its periphery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 高い精度で煙を検知することができる光電式煙感知器を提供する。 本願発明は、筺体内に流入した煙を光によって検知する光電式煙感知器に関する。本願発明は、上記筺体内の検出領域に臨ませて設けられ検査光を当該検出領域に出射する発光素子と、当該発光素子の検査光の光路からそれた位置で上記検出領域に臨ませて設けられ、上記検査光が煙に当たって散乱した散乱光を受光して煙を検知する受光素子と、上記筺体内に設けられ、上記発光素子から出射した検査光を、上記受光素子に入射しないようにそらせて反射させる反射部材とを備えた。

Description

光電式煙感知器
 本発明は、発光素子及び受光素子を利用する光電式煙感知器に関するものである。
 光電式煙感知器は、空間の火災発生に伴う煙を検知するための機器である。具体的には、光電式煙感知器の筺体内に流入した煙を光によって検知する。このような光電式煙感知器は、室内空間や種々の装置内の空間に設置されて、その空間の煙を検知する。
 このような空間に設置される光電式煙感知器は、小型であることを要する。本出願人は、特許文献1において、小型の光電式煙感知器を提案した。この例を図1に基づいて概説する。なお、以下の説明においては、図1の状態を基準にして、上下左右としている。
 煙感知器1は、円筒部2と、円筒部2から上方に延びている平箱部3とから構成されている。
 円筒部2は、煙感知器1の内部への外乱光の進入を阻止しながら煙の侵入を許容して、煙を内部に導入させる機能を担っている。円筒部2の下面開口には、山形形状(頭部をカットした円錐形状)を有する山形ラビリンス4が設けられている。山形ラビリンス4は、その中央部が山形に盛り上がっていると共に、その周縁部に、煙の導入口として機能し且つ外乱光の進入を阻止する複数の開口5が設けられている。
 平箱部3は、おおむね直方体形状を有して、煙の検知機能を担っている。平箱部3の横幅は円筒部2の外径と同じになっており、円筒部2の中心軸と自己の中心軸とが一致するように、平箱部3は、円筒部2から上方に延びている。
 平箱部3の上部には側面小孔7が設けられている。この側面小孔7は、煙感知器1の内部から外部へ煙を導出する際の開口として機能するものである。すなわち、山形ラビリンス4の開口5や円筒部2の側面小孔(図示せず)から当該煙感知器1の内部に導入した煙を、平箱部3の側面小孔7から導出させるものである。なお、側面小孔7から煙感知器1の内部へ煙が流入する場合もある。
 煙感知器1の内部には、発光素子8及び受光素子9が設けられている。
 発光素子8は、平箱部3の筺体内の検出領域ARに臨ませて設けられ、検査光を当該検出領域ARに出射する素子である。発光素子8は、発光素子収容部11によって、平箱部3の内部空間の上方(図1中の左上方)の位置に設けられている。発光素子収容部11は、発光素子8から出射する検査光を前方へのみ出射させるように、発光素子8を収容している。発光素子収容部11の前方には、光学的窓部12が設けられている。
 受光素子9は、受光素子収容部13によって、平箱部3の内部空間の左下方の位置に設けられている。受光素子収容部13には、その底部に受光素子9を収容し、その上部に対物レンズ14を取り付けている。
 受光素子9は、発光素子8の検査光の光路からそれた位置で、上記検出領域ARに臨ませて設けられ、上記検査光が煙に当たって散乱した散乱光を受光して煙を検知する。具体的には、発光素子8の光軸と受光素子9の光軸とは、ほぼ120度程度の角度で交差するようになされており、その交差点近傍が煙の検出領域ARとなっている。これにより、検出領域ARに煙が存在すると、発光素子8からの検査光が煙で散乱し、その散乱光が受光素子9に到達して煙の存在を検知する。
 発光素子8と受光素子9との間(検出領域ARの左隣の位置)には、発光素子8からの検査光が散乱することなく直接受光素子9に入射することを防止する遮蔽板15が設けられている。
 受光素子収容部13の右方には、2個のラビリンス片17、18が設けられている。ラビリンス片17は、右上がり方向に傾斜させて形成され、下側からの空気流をその下面で右上方向に案内する。また、ラビリンス片17の上方向の端部は左上方向に曲がっている。この端部は、上面に沿って上昇してきた空気流を検出領域ARに向かうようにさせる機能を有する。ラビリンス片18は、ラビリンス片17に対して、左上の位置に、左上がり方向に傾斜させて形成されている。ラビリンス片18は、下方からの直接の空気流や、受光素子収容部13の下方傾斜面13aの傾斜に沿ってきた空気流などを左上方向に案内するものである。ラビリンス片18の左上方向には、受光素子収容部13の上方傾斜面13bがある。受光素子収容部13の上方傾斜面13bに向かった空気流は、その傾斜面13bにより検出領域ARの方向に向かうことになる。
 平箱部3の側面小孔7の下端位置には、おおむね左方に延びるラビリンス片20が設けられている。このラビリンス20は、その中間位置から左上方向に向かうように折り曲げられている。検出領域ARを通過し、さらに上昇しようとする空気流は、発光素子収容部11の上部傾斜面11aとラビリンス片20の下面傾斜面とによって絞り込まれて内部空間の上面に到達し、その後の空気流の圧力により、側面小孔7に向かい、側面小孔7から導出されるようになされている。なお、21は防虫網である。また、ラビリンス片17の下方には、ラビリンス片22が設けられている。
 そして、上記山形ラビリンス4、受光素子収容部13の下方傾斜面13a、ラビリンス片17,18,20,22等により、外乱光の内部への進入を押さえている。
 以上の構成により、発光素子8からの検査光が検出領域ARに出射される。このとき、遮蔽板15で受光素子9へ検査光が直接入射するのを防止している。また、外乱光が山形ラビリンスの開口5又は側面小孔7から侵入しようとするが、この外乱光は、ラビリンス片17,18,20,22等で阻止される。
 この状態で、山形ラビリンスの開口5又は側面小孔7から煙が侵入すると、その煙は、ラビリンス片17,18,20,22等を通って検出領域ARに侵入する。そして、発光素子8からの検査光が煙で散乱し、その散乱光が受光素子9に到達して煙の存在を検知する。
国際公開WO2006/112085号公報
 上述した従来の光電式煙感知器により、火災発生に伴う煙を検知することができるが、煙の濃度が薄いときは、検知しづらくなる。即ち、煙が検出領域ARに侵入すると、発光素子8からの検査光が煙で散乱し、その散乱光が受光素子9に到達して煙の存在を検知するが、煙の濃度が薄いと、検査光の散乱量が少なくなって、検知しづらくなる。
 このため、従来の光電式煙感知器よりも、さらに高い精度で煙を感知することができる光電式煙感知器が望まれる。
 本発明は、上記事情に鑑みなされたもので、小型で、且つさらに高い精度で煙を検知することができる光電式煙感知器を提供するものである。
 かかる課題を解決するために、本発明は、筺体内に流入した煙を光によって検知する光電式煙感知器において、上記筺体内の検出領域に臨ませて設けられ検査光を当該検出領域に出射する発光素子と、当該発光素子の検査光の光路からそれた位置で上記検出領域に臨ませて設けられ、上記検査光が煙に当たって散乱した散乱光を受光して煙を検知する受光素子と、上記筺体内に設けられ、上記発光素子から出射した検査光を、上記受光素子に入射しないようにそらせて反射させる反射部材とを備えたことを特徴とする。
 本発明によれば、高い精度で煙を検知することができるようになる。
従来の光電式煙感知器を示す側面断面図である。 従来の光電式煙感知器を示す側面断面図である。 本発明の第1実施形態の光電式煙感知器を示す側面断面図である。 図3の平面断面図である。 従来の光電式煙感知器を示す側面断面図である。 本発明の第2実施形態の光電式煙感知器を示す側面断面図である。 従来の光電式煙感知器の発光素子の光源の特性を示すグラフである。 本発明の第2実施形態の光電式煙感知器の発光素子の光源の特性を示すグラフである。 本発明の実施例に係る実験結果を示す表である。 本発明の第1変形例に係る光電式煙感知器の平面断面図である。 本発明の第2変形例に係る光電式煙感知器の平面断面図である。
 3 平箱部
 3a 筺体
 3b 検出領域側内壁
 3c 側壁面
 3d 側壁面
 8 発光素子
 9 直接受光素子
 17ラビリンス
 25 突起部
 31 光電式煙感知器
 32,33 反射部材
 32a、33a 反射面
 41 発光素子
 42 受光素子
 43 遮蔽板
 44 レンズ
 45 受光素子収容部
 47 反射部材
 47a 反射面
 48 反射部材
 48a 反射面
 以下に、本発明の実施形態について説明する。本発明の光電式煙感知器は、一般家庭や公共施設等の人が集まる場所、工場の半導体製造装置、工作機械、配電盤、工業用制御器などの、火災が発生する可能性のある機器等に設置できる高感度の煙検知器である。
(A)第1実施形態
 本実施形態に係る光電式煙感知器の特徴は、反射部材を設けた点にある。なおここでは、当該反射部材を、従来技術と比較しながら説明するために、まず図2に基づいて全体的に本願発明と同じ構成の従来の光電式煙感知器を説明し、次いで図3に基づいて本実施形態の光電式煙感知器を説明する。図2の従来の光電式煙感知器は、本願発明の基になった光電式煙感知器である。本願発明は、この図2の光電式煙感知器を改良したものである。なお、本実施形態の光電式煙感知器では、発光素子8から出射した検査光の光路は図2の場合と違っているが、図3では、図2の構成の光電式煙感知器に本発明の反射部材を設けることを示すために、検査光の光路はそのままにしている。
 図2の光電式煙感知器は、全体的には、上述した図1の光電式煙感知器とほぼ同様の構成を有している。図2の光電式煙感知器と図1の光電式煙感知器の相違点は主に、円筒部2と、側面小孔7と、ラビリンス片20と、防虫網21とを有するか否かである。他の部分は、図1の光電式煙感知器と同様の構成を有している。このため、同一部材には、同一符号を付して、その説明を省略する。なお、図2の光電式煙感知器では、側面小孔7の代わりに、上面に小孔24が設けられている。また、光電式煙感知器を具体的に設置する場合には、本実施形態で説明する構成以外にも必要な構成があり得るが、それらはすべて公知の構成であるため、ここでは省略する。
 この図2の構成の光電式煙感知器では、図2中の矢印のように、発光素子8から出射した検査光は、平箱部3の筺体3aの検出領域側内壁3bで反射して、その一部の反射光が直接受光素子9に入射する。さらに、受光素子9の開口部に設けられた突起部25やラビリンス17の突起部17aで反射した反射光も、受光素子9に入射する場合がある。これらの光は、ノイズとなり、光電式煙感知器での検査精度を低下させてしまう。
 本実施形態の光電式煙感知器は、この受光素子9に入射する反射光(発光素子8から出射した検査光の反射光)を制御するものである。即ち、本実施形態の光電式煙感知器は、主に検出領域側内壁3bで反射する反射光を制御するものである。具体的には、図3,4に示すように、光電式煙感知器31内に反射部材32,33を設けた。この反射部材32,33は、上記発光素子8から出射した検査光を、上記受光素子9に入射しないように、この受光素子9からそらせて反射させる部材である。反射部材32,33は、上記検出領域AR(図1参照)を挟んで上記発光素子8と対向する位置である、筺体3aの検出領域側内壁3bに設けられている。反射部材32,33は、図3に示すように、検出領域側内壁3bの上下方向全域に設けられている。さらに、反射部材32,33は、図4に示すように、平面形状がV字型に傾斜した反射面32a、33aを備えている。この反射面32a、33aは、発光素子8から出射した検査光を、受光素子9に向かわない方向に、受光素子9からそらせて反射させるための面である。反射面32aは、反射面33aよりも大きく形成されている。反射面32aは、筺体3aの一方の側壁面3c側に設けられて、広い面積を占めている。反射面33aは、筺体3aの他方の側壁面3d側に設けられて、反射面32aよりも狭い面積を占めている。これにより、発光素子8から出射した検査光は、2つの反射面32a、33aで変則的に反射するようになっている。そして、検査光を2つの反射面32a、33aで変則的に反射させることで、図4のように、反射光が、受光素子9に向かわない方向に(受光素子9からそらせて)反射するようになっている。2つの反射面32a、33aの面積や傾斜角は、発光素子8との関係で、反射光が受光素子9に向かわないように設定する。
 なお、反射光の中には、V字型の反射面32a、33aで、2回反射することで、180度方向を変えて反射する光もある。しかし、検査光が、2回反射すると、輝度が大幅に減衰して、光量が大幅に減少する。このため、2回反射した反射光(二次反射光)が受光素子9に入射しても、極めて弱い光になるため、問題にならない。
 また、上述した構成以外の部分は、特に限定されるものではない。本願発明の光電式煙感知器に組み込むことができる構成(既存の光電式煙感知器の周辺構成)はすべて本願発明に適用することができる。
 以上のように構成された光電式煙感知器では、次のように作用する。
 発光素子8から検出領域ARに向けて出射した検査光は、当該検出領域ARを透過して反射部材32,33を照射する。また、側壁面3c,3dを照射する検査光もあるが、この光は、側壁面3c,3dで反射して反射部材32,33を照射する。
 反射部材32,33では、V字型の反射面32a、33aで、光を変則的に反射させて、受光素子9に向かう反射光を無くす。反射光の一部は受光素子9に向かうが、そのような光は、上述のように2回以上反射して大幅に減衰しているため、問題にならない。
 反射面32a、33aで反射された反射光は、対向する反射面33a、32aか、側壁面3c,3dを照射する。そして、反射面33a、32aで反射した反射光は、ほとんどが側壁面3c,3dを照射して、この側壁面3c,3dで反射する。また、側壁面3c,3dで反射した反射光も、ほとんどが対向する側壁面3c,3dを照射して、再び反射する。これにより、検査光の反射光は、検出領域ARの周辺に集まって反射を繰り返し、ほとんど受光素子9に入射しなくなる。
 この状態で、外部から煙が侵入して、検出領域AR付近に達すると、発光素子8からの検査光が煙に当たって散乱し、その散乱光が受光素子9に入射して、煙を検知する。このとき、検出領域ARの周辺にも反射光が分布しているため、この部分でも散乱光が発生して、平箱部3の筺体3a内の散乱光が増加する。
 これにより、ノイズになる反射光が発光素子8に入射するのを大幅に減少させることができると共に煙による散乱光を増加させることができるため、受光素子9が、煙をより高精度に検出することができるようになる。
 この結果、従来の光電式煙感知器と同様に装置を小型に保ちながら、さらに高い精度で煙を検知することができるようになる。

(B)第2実施形態
 次に、本発明の第2実施形態について説明する。
 本実施形態では、図2の光電式煙感知器に対して、光源と、遮蔽板と、ラビリンス等の突起部とを改良したものである。なお、図5は、従来の発光素子8、受光素子9及び遮蔽板15を備えた光電式煙感知器における、発光素子8の検査光の照射角と、受光素子9の視野角との重複状態を示した図である。図6は、本実施形態の発光素子41、受光素子42及び遮蔽板43を備えた光電式煙感知器における、発光素子41の検査光の照射角と、受光素子42の視野角との重複状態を示した図である。
 本実施形態では、上記発光素子41の光源の光量を増加させた。さらに、光源の指向性を強めた。検査光の出射角度も絞った。具体的には、図7の従来の光源に比べて図8のように、指向性を強めて、細い光にした。即ち、従来の検査光よりも細くて強い検査光にした。
 遮蔽板43は、上記発光素子41と受光素子42との間に設けられて、発光素子41からの検査光が直接受光素子42に入射するのを防止するための部材である。
 遮蔽板43は、上記発光素子41側に設けられてこの発光素子41側に近づけ、受光素子42から遠ざけている。
 受光素子42は、そのレンズ44の焦点距離を短くして受光素子収容部45の全長を縮めて、当該受光素子42を上記遮蔽板43から遠ざけるように構成されている。これにより、受光素子42の前方を広げて、光入射角度を広げている。この光入射角度は、光が入射できる角度、即ち平箱部3の筺体3a内から受光素子42に入射する散乱光の入射角である。この光入射角度を広げることにより、受光素子42に取り込むことができる散乱光の量、即ち信号量を増やしている。
 受光素子収容部45内のうちレンズ44の内側には、傾斜部材45aが設けられている。傾斜部材45aは、レンズ44の周縁部を内側から覆うように配設されている。傾斜部材45aの表面には、円錐状(テーパ状)の傾斜面45bが設けられている。この傾斜面45bは、受光素子収容部45内に入射した反射光を受光素子収容部45外へ反射するための反射面である。発光素子41からの検査光が筺体3a内で反射した場合、その反射光はほとんど上記遮蔽板43等により遮られるが、一部は受光素子収容部45内に入射することがある。そして、このような反射光は、レンズ44の周辺に入射することが多い。このため、レンズ44の周辺に設けた傾斜面45bが、受光素子収容部45内に入射した反射光を外へ反射させて、受光素子42に入射するのを防止している。なお、この傾斜面45bは、光を反射できればよいが、効率的に反射させるために鏡面仕上げにしてもよい。
 さらに、図5に示すラビリンス片17の突起部17aと、受光素子42の開口の突起部25は、無くしている。これらの突起部17a,25は、検査光を反射させて、受光素子42に入射させる可能性があるためである。
 以上の構成の光電式煙感知器では、煙が検出領域AR(図1参照)に流入すると、強い光である検査光がこの煙に当たって散乱光を発する。この散乱光は、検査光に比例して強い光になり、受光素子42に入射する。
 さらに、受光素子42は、光入射角度が広いため、より多くの散乱光を取り込んで、煙を検知する。
 これにより、ノイズになる反射光が受光素子42に入射するのを大幅に減少させることができると共に受光素子42に入射する散乱光を増加させることができるため、煙をより高精度に検出することができるようになる。
 この結果、従来の光電式煙感知器と同様に装置を小型に保ちながら、さらに高い精度で煙を検知することができるようになる。

(C)実施例
 次に、上記第1実施形態と第2実施形態のすべての構成要件を組み合わせた光電式煙感知器を用いた実験結果について、従来の光電式煙感知器と比較して説明する。
 本実施例の光電式煙感知器の発光素子41として、以下の性能を備えたものを用いた。即ち、出力は11mW、印加電圧は9V、印加電流は550mAの発光素子を用いた。
 また、従来の光電式煙感知器の発光素子としては、出力は11mW、印加電圧は9V、印加電流は300mAの発光素子を用いた。これにより、本実施例の発光素子41は、従来の発光素子よりも光量が増えている。
 また、本実施例の光電式煙感知器の受光素子42として、以下の性能を備えたものを用いた。即ち、最大感度波長は940nmであり、色温度が2856Kで、標準タングステン電球のEV表示値1000Lxのときの開放電圧が0.35V、短絡電流が75μAの性能の受光素子を用いた。
 従来の光電式煙感知器の受光素子としても、上記本実施例の受光素子42と同様の受光素子を用いた。
 これらの光電式煙感知器を用いて、検知濃度5%/mの煙で実験を行った。この実験の結果は、図9の表のようになった。なおここでは、従来の光電式煙感知器と、本発明の反射部材32,33を備えた平箱部3に、従来の発光素子及び受光素子を取り付けた光電式煙感知器と、本実施例の光電式煙感知器の3つの光電式煙感知器について実験した。
 図9の表において、ADLは、従来の光電式煙感知器で108であったものが、本発明の平箱部3を用いた従来の光電式煙感知器では13まで低減した。本実施例の光電式煙感知器では25となり、従来の光電式煙感知器よりも大幅に低減した。即ち、本発明の平箱部3を用いた従来の光電式煙感知器で13まで低減したため、本実施例の発光素子41の光量を増やすことができるようになった。この結果、本実施例の光電式煙感知器では、ADLを従来の光電式煙感知器よりも大幅に低減させることができた。 
 また、ADHは、従来の光電式煙感知器で147であったものが、本発明の平箱部3を用いた従来の光電式煙感知器では90となった。本実施例の光電式煙感知器では109となった。この結果、信号量には大きな変化はなかった。
 これにより、ADH-ADLは、従来の光電式煙感知器で39であったものが、本発明の平箱部3を用いた従来の光電式煙感知器では77となった。本実施例の光電式煙感知器では84となった。1%/mの変化量に換算すると、従来の光電式煙感知器で7.8であったものが、本発明の平箱部3を用いた従来の光電式煙感知器では15.4となった。本実施例の光電式煙感知器では17となった。この結果、変化量が従来の比べてほぼ2倍に増加した。さらに、S/N比は、従来の光電式煙感知器で0.37であったものが、本発明の平箱部3を用いた従来の光電式煙感知器では5.93となった。本実施例の光電式煙感知器では3.3となった。この結果、本実施例の光電式煙感知器では、従来の光電式煙感知器に比べて、耐ノイズ性が大幅に向上した。
 これにより、従来の光電式煙感知器に比べて本発明の平箱部3を用いた従来の光電式煙感知器は高い感度で煙を感知しており、本実施例の光電式煙感知器も、高い感度で煙を感知していることが分かる。本実施例の光電式煙感知器は、特にADH-ADLの値が、本発明の平箱部3を用いた従来の光電式煙感知器よりもさらに高くなっており、高い感度で煙を感知していることが分かる。
 この結果、本実施例の光電式煙感知器は、高い精度で煙を感知することができるようになる。

(D)変形例
 上記各実施形態等に係る発明では、反射部材32,33等の構成要件を備えて構成したが、第1実施形態、第2実施形態及びこれらを組み合わせた実施例の3つの態様の組み合わせに限らず、他の組み合わせにしてもよい。上記各実施形態に記載の発明を構成する要件のうち、いずれか1つ又はいずれか2つ以上を適宜組み合わせて光電式煙感知器を構成してもよい。この場合も、上記各実施形態と同様の作用、効果を奏することができる。
 上記第1実施形態では、反射部材32,33により、V字型の反射面32a、33aを備えたが、図10に示すように、1つの大きな反射部材47によって1つ反射面47aを備えるようにしてもよい。これにより、検査光は、反射面47aで反射してすべて側壁面3dを照射してこの側壁面3dで反射される。そして、二次反射光は大幅に減衰する。これにより、発光素子からの検査光を、受光素子に向かわない方向に反射させる。この構成の場合も、上記第1実施形態と同様の作用、効果をすることができる。
 また、図11に示すように、反射部材48によって湾曲した反射面48aを備えるようにしてもよい。さらに、反射面48aを、反射望遠鏡の凹面鏡のように、反射光が検出領域ARやその周辺に集まるように形成してもよい。この反射面48aで、発光素子からの検査光を、検出領域に集まる方向に反射させる。即ち、筺体3a内に流入した煙による散乱光をより多く発生させるように、検出領域ARやその周辺に、検査光及び反射光を集まるように、反射面48aを湾曲させて構成してもよい。この場合において、反射面48aを鏡面にしてもよい。反射面48aを鏡面にすることで、より多くの反射光を検出領域ARやその周辺に集めることができる。
 これらの構成により、さらに高い精度で煙を検知することができるようになる。

Claims (7)

  1.  筺体内に流入した煙を光によって検知する光電式煙感知器において、
     上記筺体内の検出領域に臨ませて設けられ検査光を当該検出領域に出射する発光素子と、
     当該発光素子の検査光の光路からそれた位置で上記検出領域に臨ませて設けられ、上記検査光が煙に当たって散乱した散乱光を受光して煙を検知する受光素子と、
     上記筺体内に設けられ、上記発光素子から出射した検査光を、上記受光素子に入射しないようにそらせて反射させる反射部材とを備えたことを特徴とする光電式煙感知器。
  2.  請求項1に記載の光電式煙感知器において、
     上記反射部材が、上記検出領域を挟んで上記発光素子及び受光素子と対向する位置に設けられ、上記発光素子からの検査光を、上記受光素子に向かわない方向に反射させることを特徴とする請求項1に記載の光電式煙感知器。
  3.  請求項1に記載の光電式煙感知器において、
     上記反射部材が、上記検出領域を挟んで上記発光素子及び受光素子と対向する位置に設けられ、上記発光素子からの検査光を、上記検出領域に集まる方向に反射させることを特徴とする光電式煙感知器。
  4.  請求項1に記載の光電式煙感知器において、
     上記発光素子の光源の光量を増加させると共に指向性を強めたことを特徴とする光電式煙感知器。
  5.  請求項1に記載の光電式煙感知器において、
     上記発光素子と受光素子との間に設けられて当該発光素子からの検査光が直接当該受光素子に入射するのを防止する遮蔽板を、上記発光素子側に近づけ、且つ上記受光素子のレンズの焦点距離を短くして当該受光素子を上記遮蔽板から遠ざけて、当該受光素子の光入射角度を広げたことを特徴とする光電式煙感知器。
  6.  請求項1に記載の光電式煙感知器において、
     上記筺体内に、外乱光の侵入を防止して煙の侵入を許容するラビリンスを備え、当該ラビリンスの突起部及び上記受光素子の開口の突起部を無くしたことを特徴とする光電式煙感知器。
  7.  請求項1に記載の光電式煙感知器において、
     上記受光素子がレンズと共に受光素子収容部内に装着されると共に、当該受光素子収容部内の上記レンズの内側に傾斜部材が設けられ、
     当該傾斜部材が、上記受光素子収容部内の上記レンズの周辺に入射した反射光を受光素子収容部外へ反射する傾斜面を備えたことを特徴とする光電式煙感知器。
PCT/JP2011/069438 2011-08-29 2011-08-29 光電式煙感知器 WO2013030918A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2011/069438 WO2013030918A1 (ja) 2011-08-29 2011-08-29 光電式煙感知器
CN201180071170.3A CN103597525B (zh) 2011-08-29 2011-08-29 光电式烟感测器
EP11871783.4A EP2752828A4 (en) 2011-08-29 2011-08-29 PHOTOELECTRIC SMOKE DETECTOR
US14/238,052 US9297753B2 (en) 2011-08-29 2011-08-29 Photoelectric smoke sensor
KR1020137028176A KR101529127B1 (ko) 2011-08-29 2011-08-29 광전식 연기 감지기
JP2013530902A JP5834374B2 (ja) 2011-08-29 2011-08-29 光電式煙感知器
RU2014101493/08A RU2571581C2 (ru) 2011-08-29 2011-08-29 Фотоэлектрический датчик дыма
TW101131012A TWI483218B (zh) 2011-08-29 2012-08-27 Photoelectric smoke detectors
HK14104276.1A HK1191129A1 (en) 2011-08-29 2014-05-05 Photoelectric smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069438 WO2013030918A1 (ja) 2011-08-29 2011-08-29 光電式煙感知器

Publications (1)

Publication Number Publication Date
WO2013030918A1 true WO2013030918A1 (ja) 2013-03-07

Family

ID=47755473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069438 WO2013030918A1 (ja) 2011-08-29 2011-08-29 光電式煙感知器

Country Status (9)

Country Link
US (1) US9297753B2 (ja)
EP (1) EP2752828A4 (ja)
JP (1) JP5834374B2 (ja)
KR (1) KR101529127B1 (ja)
CN (1) CN103597525B (ja)
HK (1) HK1191129A1 (ja)
RU (1) RU2571581C2 (ja)
TW (1) TWI483218B (ja)
WO (1) WO2013030918A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD758464S1 (en) 2014-06-26 2016-06-07 Life Safety Distribution Ag Optical block
USD764558S1 (en) 2014-06-26 2016-08-23 Life Safety Distribution Ag Optical block
USD770929S1 (en) 2014-06-26 2016-11-08 Life Safety Distribution Ag Optical block
US10115280B2 (en) 2014-06-26 2018-10-30 Life Safety Distribution Ag Detector with optical block
CN109601019A (zh) * 2016-08-25 2019-04-09 西门子瑞士有限公司 用于根据散射光原理、借助用于使不同波长和散射光角度的另外的光脉冲入射的另外的led单元交错地接通来进行火灾探测的方法以及这样的散射光烟雾报警器
WO2020021764A1 (ja) * 2018-07-24 2020-01-30 ホーチキ株式会社 火災検出装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140293B (zh) * 2015-08-25 2020-04-14 日本芬翁股份有限公司 光电式烟雾传感器
RU2679166C1 (ru) * 2017-08-24 2019-02-06 Макарова Надежда Ильинична Датчик дыма
JP6819635B2 (ja) * 2018-03-14 2021-01-27 オムロン株式会社 光電センサ
JP7108917B2 (ja) * 2018-03-22 2022-07-29 パナソニックIpマネジメント株式会社 煙感知器
US11615684B2 (en) * 2020-11-24 2023-03-28 Pixart Imaging Inc. Smoke detector
US11913864B2 (en) * 2020-11-24 2024-02-27 Pixart Imaging Inc. Smoke detector with increased scattered light intensity
US11849716B2 (en) * 2022-01-17 2023-12-26 Honeywell International Inc. Insect guard for an aspirated smoke, gas, or air quality monitoring systems and devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182574A (ja) * 1993-12-24 1995-07-21 Matsushita Electric Works Ltd 住宅用火災警報器
JPH08263767A (ja) * 1995-03-24 1996-10-11 Nohmi Bosai Ltd 微粒子検出センサ
JP2004220155A (ja) * 2003-01-10 2004-08-05 Hochiki Corp 散乱光式煙感知器
WO2006112085A1 (ja) 2005-03-31 2006-10-26 Fenwal Controls Of Japan, Ltd. 光電式煙感知器
JP2008287452A (ja) * 2007-05-17 2008-11-27 U-Tec Kk 集光手段を備えた散乱光式煙検知器
JP2009003510A (ja) * 2007-06-19 2009-01-08 Panasonic Electric Works Co Ltd 煙感知器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431423A (en) * 1965-09-27 1969-03-04 Bausch & Lomb Forward scatter photometer
US3863076A (en) * 1973-07-24 1975-01-28 Electro Signal Lab Optical smoke detector
US4226533A (en) * 1978-09-11 1980-10-07 General Electric Company Optical particle detector
JP2533653B2 (ja) * 1989-09-26 1996-09-11 松下電工株式会社 光電式煙感知器
JP3046610B2 (ja) 1990-04-24 2000-05-29 松下電工株式会社 粉塵検出装置
GB9014015D0 (en) * 1990-06-23 1990-08-15 Dennis Peter N J Improvements in or relating to smoke detectors
GB2270157B (en) * 1992-08-28 1996-07-24 Hochiki Co Light scattering type smoke detector
GB9417484D0 (en) * 1993-09-07 1994-10-19 Hochiki Co Light scattering type smoke sensor
US5581241A (en) * 1994-08-12 1996-12-03 Voice Products Inc. Ultra-sensitive smoke detector
CA2293830C (en) * 1999-12-31 2008-07-29 Digital Security Controls Ltd. Photoelectric smoke detector and chamber therefor
GB2389176C (en) * 2002-05-27 2011-07-27 Kidde Ip Holdings Ltd Smoke detector
JP3912607B2 (ja) * 2002-06-19 2007-05-09 サンケン電気株式会社 半導体発光装置の製法
JP2004056010A (ja) * 2002-07-23 2004-02-19 Toyota Central Res & Dev Lab Inc 窒化物半導体発光素子
JP4773048B2 (ja) * 2003-09-30 2011-09-14 シチズン電子株式会社 発光ダイオード
CN100463006C (zh) * 2003-11-17 2009-02-18 报知机股份有限公司 光散射型烟雾传感器
JP4652716B2 (ja) 2004-04-21 2011-03-16 ニッタン株式会社 煙感知器
CN201000431Y (zh) * 2007-01-15 2008-01-02 张维国 烟雾探测室
US8085157B2 (en) * 2007-10-24 2011-12-27 Honeywell International Inc. Smoke detectors
JP2009229414A (ja) * 2008-03-25 2009-10-08 Osaka Gas Co Ltd 検知装置
RU2379760C1 (ru) * 2008-07-10 2010-01-20 Закрытое акционерное общество "Светлана-Оптоэлектроника" Оптический датчик дыма
RU85716U1 (ru) * 2008-12-30 2009-08-10 Общество с ограниченной ответственностью "Политен" Дымовая камера для извещателя пожарного дымового оптико-электронного
RU99641U1 (ru) * 2010-07-09 2010-11-20 Сергей Евгеньевич Мищенко Устройство для управления автомобильной сигнализацией с использованием оптического канала

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182574A (ja) * 1993-12-24 1995-07-21 Matsushita Electric Works Ltd 住宅用火災警報器
JPH08263767A (ja) * 1995-03-24 1996-10-11 Nohmi Bosai Ltd 微粒子検出センサ
JP2004220155A (ja) * 2003-01-10 2004-08-05 Hochiki Corp 散乱光式煙感知器
WO2006112085A1 (ja) 2005-03-31 2006-10-26 Fenwal Controls Of Japan, Ltd. 光電式煙感知器
JP2008287452A (ja) * 2007-05-17 2008-11-27 U-Tec Kk 集光手段を備えた散乱光式煙検知器
JP2009003510A (ja) * 2007-06-19 2009-01-08 Panasonic Electric Works Co Ltd 煙感知器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752828A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD758464S1 (en) 2014-06-26 2016-06-07 Life Safety Distribution Ag Optical block
USD764558S1 (en) 2014-06-26 2016-08-23 Life Safety Distribution Ag Optical block
USD770929S1 (en) 2014-06-26 2016-11-08 Life Safety Distribution Ag Optical block
US10115280B2 (en) 2014-06-26 2018-10-30 Life Safety Distribution Ag Detector with optical block
CN109601019A (zh) * 2016-08-25 2019-04-09 西门子瑞士有限公司 用于根据散射光原理、借助用于使不同波长和散射光角度的另外的光脉冲入射的另外的led单元交错地接通来进行火灾探测的方法以及这样的散射光烟雾报警器
WO2020021764A1 (ja) * 2018-07-24 2020-01-30 ホーチキ株式会社 火災検出装置
US11761890B2 (en) 2018-07-24 2023-09-19 Hochiki Corporation Fire detection device

Also Published As

Publication number Publication date
EP2752828A1 (en) 2014-07-09
CN103597525B (zh) 2015-09-30
JP5834374B2 (ja) 2015-12-24
KR101529127B1 (ko) 2015-06-16
JPWO2013030918A1 (ja) 2015-03-23
US20150146204A1 (en) 2015-05-28
RU2571581C2 (ru) 2015-12-20
KR20130143655A (ko) 2013-12-31
US9297753B2 (en) 2016-03-29
TW201329913A (zh) 2013-07-16
CN103597525A (zh) 2014-02-19
HK1191129A1 (en) 2014-07-18
EP2752828A4 (en) 2015-06-03
TWI483218B (zh) 2015-05-01
RU2014101493A (ru) 2015-07-27

Similar Documents

Publication Publication Date Title
JP5834374B2 (ja) 光電式煙感知器
JP5640247B2 (ja) 光電式煙感知器並びに吸引式煙感知システム
JP5972168B2 (ja) 吸引式煙感知システム
WO2013061968A1 (ja) 煙感知器
JP2022186842A (ja) 煙感知器
CN211044476U (zh) 一种烟感迷宫及烟感探测器
JP5046552B2 (ja) 光電式煙感知器
CN111080960A (zh) 一种带有导光散射结构的烟感探测装置
JP5145162B2 (ja) 煙感知器
JP2010040009A (ja) 煙感知器
JP5379369B2 (ja) 光電式煙感知器
JPH11248628A (ja) 光散乱式粒子検知センサ
CN110940619A (zh) 一种高精准烟雾探测器
JP2016115062A (ja) 光電式煙感知器
JP2010039937A (ja) 煙感知器
JP6470558B2 (ja) 光電式煙感知器
JP2009110433A (ja) 光電式煙感知器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530902

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137028176

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011871783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014101493

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14238052

Country of ref document: US