WO2013029463A1 - 投影系统及其发光装置 - Google Patents

投影系统及其发光装置 Download PDF

Info

Publication number
WO2013029463A1
WO2013029463A1 PCT/CN2012/079954 CN2012079954W WO2013029463A1 WO 2013029463 A1 WO2013029463 A1 WO 2013029463A1 CN 2012079954 W CN2012079954 W CN 2012079954W WO 2013029463 A1 WO2013029463 A1 WO 2013029463A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
conversion layer
excitation
emitting device
Prior art date
Application number
PCT/CN2012/079954
Other languages
English (en)
French (fr)
Inventor
胡飞
李屹
杨毅
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to JP2014527475A priority Critical patent/JP6037474B2/ja
Priority to EP12828624.2A priority patent/EP2749943B1/en
Priority to KR1020147007417A priority patent/KR101780318B1/ko
Priority to EP18171153.2A priority patent/EP3382451B1/en
Publication of WO2013029463A1 publication Critical patent/WO2013029463A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a projection system and a light emitting device thereof.
  • UHP lamps ultrahigh pressure mercury lamps
  • UHP lamps are commonly used as light sources in existing projectors.
  • UHP lamps use ultra-high pressure mercury vapor (above 1Mpa) to obtain visible light.
  • 1Mpa ultra-high pressure mercury vapor
  • the industry is looking for an environmentally friendly light source to replace UHP lamps.
  • FIG. 1 is a schematic structural diagram of a prior art light source system for a projector.
  • the light source system includes a solid state light source 11, a focusing system 12, a fluorescent device 13, and a driving device 14.
  • the solid state light source 11 produces an excitation light that is focused by the focusing system 12 and incident on the fluorescent device 13.
  • the fluorescent device 13 includes a plurality of color segments (not shown), wherein at least a portion of the color segments are coated with a fluorescent material.
  • the light modulating device 22 can only modulate a single color light pulse of a specific color in a color light sequence at a certain time, that is, a single color light pulse of different colors can only share one light in a time division multiplexing manner. Modulation device 22, thus resulting in a relatively low display brightness. At the same time, the rapid change of monochromatic light images of different colors can easily lead to color separation effects (color Breakup effect).
  • FIG. 3 is a schematic structural diagram of a prior art three-chip projection system.
  • the light sources 31, 32, 33 generate red, green, and blue light, respectively.
  • the three light modulation units 35, 36, and 37 respectively perform image modulation on the primary color lights of the respective colors.
  • the red, green, and blue light modulated by the light modulation units 35, 36, and 37, respectively, are combined by the light combining device 38, and further projected by the projection device 39.
  • color saturation is an important parameter to measure display quality.
  • high color saturation requires that each primary color of light have a relatively narrow spectral range.
  • color coordinates (0.33, 0.63) and color coordinates (0.65, 0.34) are often used as color standards for green and red light.
  • the x-coordinate of the green light in the normal display is not more than 0.33
  • the y-coordinate is not less than 0.63
  • the x-coordinate of the red light is not less than 0.65
  • the y-coordinate is not more than 0.34.
  • part of the primary color light needs to be obtained by means of fluorescence excitation.
  • the spectral range of the primary color light produced by fluorescence excitation is relatively wide, and filtering with a filter is required to obtain a relatively narrow spectral bandwidth and good color coordinates.
  • FIG. 4 is a spectrum diagram of green fluorescence used in the projection system shown in FIG.
  • curve 400 shows the spectral curve of the original green fluorescence, the color coordinates of which are (0.384, 0.577), wherein the x coordinate and the y coordinate are both away from the color standard of green light, and the curve 402 shows the green fluorescence after filtering modification.
  • the spectral curve has a color coordinate of (0.323, 0.63), and both the x coordinate and the y coordinate satisfy the color standard of green light.
  • the prior art three-chip projection system generally has technical problems of high cost and low efficiency.
  • the technical problem to be solved by the present invention is to provide a projection system and a light-emitting device thereof to reduce cost and improve efficiency.
  • a technical solution adopted by the present invention is to provide a light emitting device, the light emitting device comprising: an excitation light source for generating an excitation light; and a wavelength conversion device comprising a wavelength conversion layer,
  • the wavelength conversion layer at least partially converts the excitation light into a laser light, the laser light is broad spectrum light, or the mixed light of the laser light and the excitation light not converted by the wavelength conversion layer forms a broad spectrum light
  • a driving device for moving the excitation light relative to the wavelength conversion layer
  • a light separating device for dividing the broad spectrum light into at least two types of monochromatic light propagating along different paths.
  • the broad spectrum light is white light or yellow light.
  • the excitation light is ultraviolet or near-ultraviolet excitation light
  • the wavelength conversion layer comprises at least two of a red fluorescent material, a green fluorescent material, a yellow fluorescent material, and a blue fluorescent material.
  • the excitation light is ultraviolet or near-ultraviolet excitation light
  • the wavelength conversion layer comprises a yellow fluorescent material or a green fluorescent material.
  • the excitation light is blue excitation light
  • the wavelength conversion layer comprises a red fluorescent material and a green fluorescent material.
  • the received laser light includes a red-received laser light and a green-received laser light, and the mixed light of the red-red laser light, the green light-receiving light, and the blue excitation light that is not absorbed by the wavelength conversion layer forms the broad-spectrum light.
  • the received laser light comprises a red received laser light and a green received laser light
  • the mixed light of the red received laser light and the green received laser light forms the broad spectrum light
  • the excitation light is blue excitation light
  • the wavelength conversion layer comprises a yellow fluorescent material
  • the received laser light comprises a yellow received laser light
  • the yellow received laser light is the broad spectrum light
  • the received laser light comprises a yellow received laser light
  • the mixed light of the yellow received laser light and the blue excitation light not absorbed by the wavelength conversion layer forms the broad spectrum light.
  • the wavelength conversion layer includes a first wavelength conversion material that emits a first laser and a second wavelength conversion material that emits a second laser, the peak wavelength of the first laser being greater than the peak wavelength of the second laser;
  • a wavelength converting material and a second wavelength converting material are sequentially stacked on the substrate.
  • one of the at least two monochromatic lights is the excitation light that is not converted by the wavelength conversion layer.
  • the wavelength conversion layer causes the excitation light to act on the wavelength conversion layer along a predetermined path, and the wavelength conversion material of the wavelength conversion layer remains consistent along the predetermined path.
  • the wavelength conversion layer maintains the intensity and spectrum of the laser generated by it along a predetermined path.
  • the excitation light emitted by the excitation light source remains stable over time.
  • the driving device drives the wavelength conversion device to periodically rotate around a rotating shaft such that the excitation light periodically acts on the wavelength conversion layer along a circular path concentric with the rotating shaft.
  • the driving device drives the wavelength conversion device to reciprocally translate such that the excitation light reciprocates to the wavelength conversion layer along a linear path.
  • the wavelength conversion device further includes a substrate, the wavelength conversion layer is disposed on the substrate, and an air gap exists between the wavelength conversion layer and the substrate.
  • the wavelength conversion device further includes a dichroic filter layer disposed on an excitation light incident surface of the wavelength conversion layer, and the dichroic filter layer transmits the excitation light and reflects the laser light.
  • the wavelength conversion device further includes a reflective layer disposed on a surface of the wavelength conversion layer facing away from the excitation light incident surface, the light emitting device further comprising a reflective cover and a light collecting device, and the light reflecting of the reflective cover Facing the reflective layer, the reflective layer reflects the broad spectrum light to the reflector, the reflector concentrating the broad spectrum light to an entrance of the light collecting device, the light collecting device Broad spectrum light is directed to the spectroscopic device.
  • the reflector comprises an opening, and the excitation light is incident on the wavelength conversion layer through the opening.
  • the reflector is hemispherical, and the position of the wavelength conversion layer where the excitation light is incident is symmetrical with the position of the entrance of the light collecting device with respect to the center of the hemisphere.
  • the reflector has a semi-ellipsoid shape, and the position of the wavelength conversion layer where the excitation light is incident and the entrance of the light collecting device are respectively two focal points of the semi-ellipsoid.
  • the spectroscopic device is at least one color separation filter, and the dichroic filter transmits light in a part of a spectral range of the broad spectrum light, and light in other spectral ranges of the broad spectrum light reflection.
  • the light emitting device further comprises an auxiliary light source, and the auxiliary light source generates a monochromatic light.
  • the light emitting device further comprises a dichroic mirror that transmits one of the monochromatic light generated by the broad spectrum light and the auxiliary light source, reflects another light beam, and transmits and reflects Light is projected onto the beam splitter.
  • the monochromatic light generated by the auxiliary light source is red light or blue light.
  • a projection system which includes the light-emitting device according to any one of the above, wherein the monochromatic light is a primary color light, and further includes: Two light modulating means for respectively performing image modulation on the primary color light of the corresponding color emitted by the light splitting means; and combining means for combining the at least two primary colors of light modulated by the light modulating means .
  • FIG. 1 is a schematic structural view of a prior art light source system for a projector
  • FIG. 2 is a schematic structural view of a single-chip projection system using the light source system shown in FIG. 1;
  • FIG. 3 is a schematic structural view of a prior art three-chip projection system
  • Figure 4 is a spectrum diagram of green fluorescence used in the projection system shown in Figure 3;
  • Figure 5 is a spectrum diagram of red fluorescence used in the projection system shown in Figure 3;
  • Figure 6 is a schematic structural view of a preferred embodiment of the projection system of the present invention.
  • FIG. 7 is a schematic structural view of a preferred embodiment of a broad spectrum light source in a projection system of the present invention.
  • Figure 8 is a front elevational view of the fluorescent device in the broad spectrum light source shown in Figure 7;
  • Figure 9 is a spectrum diagram of broad spectrum light produced by the broad spectrum light source shown in Figure 7;
  • FIG. 10A is a schematic structural view of a preferred embodiment of a spectroscopic device in a projection system of the present invention.
  • FIG. 10B is a schematic structural view of another preferred embodiment of the spectroscopic device in the projection system of the present invention.
  • Figure 11 is a graph showing the transmittance of the color separation filter in the spectroscopic device shown in Figure 10A or Figure 10B;
  • Figure 12 is a spectrum diagram of the broad spectrum light shown in Figure 9 after being split by the spectroscopic device shown in Figure 10;
  • Figure 13 is a schematic view showing the structure of another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • Figure 14 is a front elevational view of the fluorescent device in the broad spectrum light source shown in Figure 13;
  • 15A is a schematic structural view of still another preferred embodiment of a broad spectrum light source in the projection system of the present invention.
  • 15B is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • 16 is a schematic structural view of still another embodiment of a broad spectrum light source in the projection system of the present invention.
  • FIG. 17 is a schematic structural view of still another embodiment of a broad spectrum light source in the projection system of the present invention.
  • FIG. 19 is a schematic structural view of still another embodiment of a broad spectrum light source in the projection system of the present invention.
  • Figure 20 is a block diagram showing still another embodiment of a broad spectrum light source in the projection system of the present invention.
  • FIG. 6 is a schematic structural view of a preferred embodiment of the projection apparatus of the present invention.
  • the projection apparatus of this embodiment mainly includes a broad spectrum light source 61, a light splitting means 62, light modulating means 63, 64 and 65, a light combining means 66, and a projection means 67.
  • the broad spectrum source 61 produces a broad spectrum of light.
  • the spectroscopic device 62 splits the broad spectrum light generated by the broad spectrum light source 61 and outputs at least two types of monochromatic light of different colors propagating along different paths.
  • the monochromatic light may be primary color light. Of course, in other embodiments, it may be monochromatic light of other wavelengths, or even light having a certain spectral range.
  • the broad spectrum light is white light
  • the spectroscopic device 62 splits the white light into three different colors of primary light of red light, green light, and blue light.
  • those skilled in the art can fully utilize the spectroscopic device 62 to split the broad spectrum light generated by the broad spectrum light source 61 into at least two primary colors of other different colors, which is not limited in the present invention.
  • the red light is further incident on the light modulating device 63, the image is modulated by the light modulating device 63, the green light is incident on the light modulating device 64, the image modulating is performed by the light modulating device 64, and the blue light is incident on the light modulating device 65, and modulated by the light.
  • the device 65 performs image modulation.
  • the red, green, and blue light modulated by the light modulating devices 63, 64, and 65 are further incident on the light combining device 66, combined by the light combining device 66, and projected by the projection device 67 after the light is combined.
  • only one light source is used to generate the primary color light of at least two colors, so that the number of light sources can be reduced and the cost can be reduced.
  • splitting the primary color light of at least two colors from a broad spectrum of light by means of spectroscopic means avoids energy loss caused by filtering a part of the spectral range of the fluorescent light as unwanted light in the prior art, thereby improving efficiency.
  • FIG. 7 is a schematic structural view of a preferred embodiment of a broad spectrum light source in the projection system of the present invention
  • FIG. 8 is a front view of the fluorescent device in the wide spectrum light source shown in FIG.
  • the broad spectrum light source of the present embodiment includes an excitation light source 71, a wavelength conversion device 72, and a driving device 73.
  • the excitation light source 71 generates an excitation light.
  • the wavelength conversion device 72 includes a substrate 721 and a wavelength conversion layer 722 disposed on the substrate 721.
  • the driving device 73 drives the fluorescent device 72 such that the excitation light acts on the wavelength conversion layer 722 along a predetermined path.
  • the driving device 73 is a rotating motor having a rotating shaft 731, and drives the wavelength converting device 72 to periodically rotate around the rotating shaft 731, so that the excitation light periodically acts on the wavelength conversion along a circular path concentric with the rotating shaft 731.
  • the wavelength conversion device 72 further includes a dichroic filter layer 724 disposed on the excitation light incident side of the wavelength conversion layer 722 for transmitting the excitation light generated by the excitation light source 71 and reflecting the wavelength conversion layer.
  • the laser generated by 722 is applied to increase the laser output efficiency of the wavelength conversion device 72.
  • the color separation filter layer 724 is adjacent to the wavelength conversion layer 722.
  • the wavelength converting material is for absorbing incident light of a certain wavelength and is excited to emit outgoing light different from the wavelength of the incident light.
  • wavelength converting materials including phosphors, fluorescent dyes, and quantum dots.
  • phosphors are most commonly used.
  • the wavelength conversion layer 722 is referred to as a fluorescent layer 722 at this time, and there are various methods for forming the fluorescent layer 722, one of which is to mix the phosphor with a certain adhesive, and then print or squeeze. Formed into a sheet.
  • the binder may be an organic binder such as silica gel or epoxy resin, or an inorganic binder such as nano alumina particles.
  • the fluorescent layer 722 includes at least one fluorescent material, and the fluorescent material of the fluorescent layer is consistent along the action path (predetermined path) of the excitation light, and the consistency is consistent including parameters such as formulation, composition, thickness, etc., so that fluorescence Layer 722 is capable of consistently producing the same fluorescence under excitation light.
  • the fluorescent layer 722 may be a mixture of a red fluorescent material and a green fluorescent material or a yellow fluorescent material. At this time, the red fluorescent material converts the blue excitation light into red fluorescence, and the green fluorescent material converts the blue excitation light into green fluorescence.
  • the remaining blue excitation light that is not converted by the fluorescent layer 722 forms a broad spectrum light as shown in FIG. 9 with red fluorescence and green fluorescence, and its color coordinate is (0.311, 0.328), belonging to the white light area.
  • the fluorescent layer 722 may also be a yellow fluorescent material, and the yellow fluorescent material converts the blue excitation light into yellow fluorescence, and the remaining blue excitation light and yellow fluorescence not converted by the fluorescent layer 722. A broad spectrum of light as shown in FIG. 9 is formed.
  • the excitation light may also be ultraviolet or near-ultraviolet excitation light.
  • the fluorescent layer 722 may include a red fluorescent material, a green fluorescent material, and a blue fluorescent material.
  • the red fluorescent material converts ultraviolet or near-ultraviolet excitation light into red fluorescence
  • the green fluorescent material converts ultraviolet or near-ultraviolet excitation light into green fluorescence
  • the blue fluorescent material converts ultraviolet or near-ultraviolet excitation light into Blue fluorescence.
  • the mixed light of red fluorescence, green fluorescence, and blue fluorescence also forms a broad spectrum of light.
  • the various wavelength conversion materials are uniformly mixed on the substrate 721 of the wavelength conversion device.
  • a plurality of wavelength converting materials of the wavelength conversion layer may also be stacked on the substrate 721. Since the wavelength converting material is relatively easy to absorb light shorter than the wavelength of the laser peak generated by the wavelength converting material, it is preferable that the wavelength of the peak wavelength of the laser generated is larger with respect to the wavelength converting material having a smaller peak wavelength of the generated laser light.
  • the wavelength converting material is disposed closer to the substrate to reduce the loss of the laser due to absorption by the wavelength converting material.
  • the excitation light of the embodiment can adopt excitation light of other colors, and only the mixed light of the fluorescence or fluorescence generated by the fluorescent layer 722 and the remaining excitation light not converted by the fluorescent layer 722 can be formed.
  • Broad spectrum light is required; moreover, there are only two types of fluorescent materials.
  • the broad spectrum light in the present invention means that the spectrum covers at least two of the three primary colors, for example, at least two of red, blue and green colors, that is, can be decomposed into red by wavelength splitting. Light of at least two of the three colors of blue and green.
  • FIG. 10A and FIG. 10B are schematic diagrams showing the structure of two preferred embodiments of the spectroscopic device in the projection system of the present invention, and FIG.
  • Figure 10B is another preferred embodiment of the spectroscopic device in the projection system of the present invention, wherein the transmittance curve of the second dichroic filter 84 is as shown at 902, and the transmittance curve of the first dichroic filter 83 is 900.
  • the structure can also divide broad spectrum light into red, green and blue light.
  • the color separation filters are used to different transmittances of light of different wavelengths. Light of different wavelengths is separated on the optical path in the form of transmission or reflection. If you only need to split the broad spectrum into two colors of two colors, you only need one color separation filter.
  • FIG. 13 is a schematic structural view of another preferred embodiment of the broad spectrum light source in the projection system of the present invention
  • FIG. 14 is a front view of the fluorescent device in the wide spectrum light source shown in FIG.
  • the broad spectrum light source of the present embodiment includes an excitation light source 91, a fluorescent device 92, and a driving device 93.
  • the excitation light source 91 generates an excitation light.
  • the fluorescent device 92 includes a substrate 921 and a fluorescent layer 922 disposed on the substrate 921.
  • the driving device 93 is a translation mechanism and drives the fluorescent device 92 to reciprocally translate in the direction D1 such that the excitation light reciprocates to the fluorescent layer 922 along a straight path. As shown in FIG.
  • the fluorescent layer 922 has a strip shape, and its longitudinal direction coincides with the moving direction D1 of the fluorescent device 92.
  • an air gap exists between the substrate 921 and the phosphor layer 922 to improve the conversion efficiency of the phosphor layer 922.
  • the present invention does not limit the driving means to cause the excitation light to act on the wavelength conversion layer along a predetermined path as long as the excitation light can be moved relative to the wavelength conversion layer.
  • the driving device may drive the excitation light source or the optical component between the excitation source and the wavelength conversion device such that the excitation light acts on the wavelength conversion layer along a predetermined path.
  • Figures 15A and 15B illustrate two other ways. 15A and 15B, FIG. 15A is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention; and FIG. 15B is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • the excitation light source 301 emits excitation light 303 which is incident on the fluorescent device 300 after penetrating through a convex lens 302.
  • the convex lens 302 is connected to a driving device (not shown), and the driving device drives the convex lens 302 to reciprocate in the D2 direction.
  • the excitation light 303 is respectively refracted into light rays 304A, 304B and 304C of different exit paths, and then incident on three different positions of 305A, 305B and 305C of the fluorescent device 300, respectively.
  • the convex lens continuously reciprocates between 302B and 302C, the path of the excitation light incident on the fluorescent device is a line between 305B and 305C.
  • the excitation light source 311 emits excitation light 313, is reflected by the mirror 312, and is incident on the fluorescent device 310.
  • the mirror 312 is connected to a driving device (not shown), and the driving device drives the mirror 312 to reciprocate in the D3 direction.
  • the excitation light 313 can be respectively reflected as Light rays 314A, 314B and 314C of different exit paths.
  • FIGS. 15A and 15B can be combined with the partial structure of the preferred embodiment of the broad spectrum light source of the present invention shown in FIG. 7, even if the wavelength conversion device 72 in FIG. 7 is not moved, the use of FIG. 15A or 15B is employed.
  • the convex lens 302 or the mirror 312 is rotated along its oblique central axis in such a manner as to change the direction in which the excitation light is incident, so that the excitation light periodically acts on the wavelength conversion layer 72 along a circular path concentric with the rotation axis 731.
  • FIG. 16 is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • the broad spectrum light source of the present embodiment includes an excitation light source 101, a fluorescent device 102, and a driving device 103.
  • the excitation light source 101 generates an excitation light.
  • the fluorescent device 102 includes a substrate 1021 and a fluorescent layer 1022 disposed on the substrate 1021.
  • the broad spectrum light source of this embodiment further includes a light collecting device 104.
  • the light collecting device 104 collects fluorescence or fluorescence emitted from the fluorescent layer 1022 of the fluorescent device 102 and unconverted excitation light, and guides the light to a spectroscopic device (not shown).
  • FIG. 17 is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • the broad spectrum light source of the present embodiment includes an excitation light source 111, a fluorescent device 112, a driving device 113, a light collecting device 114, and a reflection cover 115.
  • the excitation light source 111 generates an excitation light that is incident on the fluorescent layer 1122 of the fluorescent device 112 through the opening 1151 provided at the top of the reflector 115.
  • the fluorescent device 112 includes a reflective layer 1123 in addition to the substrate 1121 and the fluorescent layer 1122 disposed on the substrate 1121.
  • the reflective layer 1123 is disposed on the surface of the phosphor layer 1122 facing away from the incident surface of the excitation light, and is specifically disposed between the phosphor layer 1122 and the substrate 1121 in this embodiment.
  • a reflective layer 1123 is attached or plated on the surface of the substrate 1121, and then the wavelength conversion material is mixed with the binder and directly coated on the surface of the reflective layer to form a fluorescent layer.
  • FIG. 18 is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • the broad spectrum light source of the present embodiment includes an excitation light source 901, a fluorescent device 903, a collecting lens 904, a dichroic mirror 905, a first light source 906, a collecting lens 907, and a light homogenizing device 908.
  • the excitation light source 901 generates ultraviolet or near-ultraviolet excitation light
  • the fluorescent layer of the fluorescent device 903 includes a red fluorescent material and a green fluorescent material
  • the first light source 906 emits blue light.
  • the red fluorescent material converts ultraviolet or near-ultraviolet excitation light into red fluorescence
  • the green fluorescent material converts ultraviolet or near-ultraviolet excitation light into green fluorescence.
  • the mixed light of red fluorescence and green fluorescence forms a broad spectrum of light that is collected by the collection lens 904 from the first side of the dichroic mirror onto the dichroic mirror 905, while the blue light emitted by the first source 906 is
  • the second side of the dichroic mirror 905 is projected onto the dichroic mirror 905, which transmits the broad spectrum light and reflects the blue light from the first light source 906, thereby combining the broad spectrum light with the blue light beam. Light.
  • the combined broad-spectrum light and blue light are concentrated by the collecting lens 907 to the homogenizing device 908 and homogenized by the homogenizing device 908, and the homogenized light is projected to the spectroscopic device (not shown) and is separated by the spectroscopic device. Divided into at least two primary colors of light propagating along different paths.
  • blue light is directly supplied through the first light source 906.
  • the fluorescent layer in this embodiment may also include a blue fluorescent material, and when the blue fluorescent material converts ultraviolet or near-ultraviolet excitation light into blue fluorescent light, the first light source that emits blue light may be passed. 906 complements the blue light.
  • the excitation light source 901 in this embodiment can also generate blue excitation light, the red fluorescent material converts the blue excitation light into red fluorescence, and the green fluorescent material converts the blue excitation light into green fluorescence, the red fluorescent and green fluorescent light.
  • the mixed light of the blue excitation light that is not converted by the wavelength conversion layer forms broad-spectrum light; when the blue excitation light in the wide-spectrum light is insufficient, it can be supplemented by the blue light-emitting first light source 906.
  • the blue light component in the broad spectrum light is supplemented or directly provided by the first light source 906.
  • the fluorescent layer in this embodiment may include a green fluorescent material and a blue fluorescent material, and the green fluorescent material and the blue fluorescent material respectively convert ultraviolet or near-ultraviolet excitation light into green fluorescent light and blue fluorescent light, and may be emitted at this time.
  • the second light source of red light directly provides red light, which is combined into green light and blue fluorescent light by a dichroic mirror to form a beam of light.
  • the light emitted by the auxiliary light source (such as the first light source 906) and the broad spectrum light emitted from the wavelength conversion layer are combined by the dichroic mirror 905, and then split into at least two primary colors by the spectroscopic device.
  • the dichroic mirror 905 may not be disposed, and the wide-spectrum light emitted from the wavelength conversion layer is directly divided into at least two primary colors by the spectroscopic device, and the light emitted by the at least two primary colors and the auxiliary light source are respectively projected to 3 light modulation units.
  • FIG. 19 is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • the broad spectrum light source of this embodiment includes:
  • the excitation light source 1001 generates ultraviolet or near-ultraviolet excitation light that is incident on the fluorescent layer 1122 of the fluorescent device 1003 through the opening 1151 provided at the top of the reflection cover 1002.
  • the fluorescent device 1003 has the same configuration as the wavelength conversion device in the embodiment shown in FIG. 17, and includes a reflective layer (not labeled) in addition to a substrate (not shown) and a fluorescent layer (not labeled) provided on the substrate. ).
  • the fluorescent layer of the fluorescent device 1003 includes a red fluorescent material and a green fluorescent material. The red fluorescent material converts ultraviolet or near-ultraviolet excitation light into red fluorescence, while the green fluorescent material converts ultraviolet or near-ultraviolet excitation light into green fluorescence.
  • the mixed light of red fluorescence and green fluorescence forms a broad spectrum of light.
  • the reflective layer is disposed on a surface of the fluorescent layer facing away from the incident surface of the excitation light.
  • the reflective layer reflects broad spectrum light.
  • the reflector 1002 has a semi-ellipsoidal shape or a hemispherical shape with the light reflecting surface facing inward, and the reflective cover 1002 converges the broad spectrum light reflected by the reflective layer to the entrance of the light collecting device 1004, and the light collecting device 1004 guides the light to the collection.
  • the broad spectrum light is collected from the first side of the dichroic mirror onto the dichroic mirror 1007 via the collecting lens 1005, and the blue light emitted by the first light source 1006 is projected from the second side of the dichroic mirror 1007 to the dichroic color.
  • the dichroic mirror 1007 transmits the broad spectrum light and reflects the blue light from the first light source 1006, thereby combining the broad spectrum light with the blue light into a beam of light.
  • the combined broad-spectrum light and blue light are concentrated by the collecting lens 1009 to the homogenizing device 1008 and homogenized by the homogenizing device 1008.
  • blue light is directly supplied through the first light source 1006.
  • the fluorescent layer in this embodiment may also include a blue fluorescent material, and when the blue fluorescent material converts ultraviolet or near-ultraviolet excitation light into blue fluorescent light, the first light source that emits blue light may be passed. 1006 complements the blue light.
  • the excitation light source 1001 in this embodiment can also generate blue excitation light, the red fluorescent material converts blue excitation light into red fluorescence, and the green fluorescent material converts blue excitation light into green fluorescence, the red fluorescent and green fluorescent light.
  • the mixed light of the blue excitation light that is not converted by the wavelength conversion layer forms broad-spectrum light; when the blue excitation light in the wide-spectrum light is insufficient, it can be supplemented by the blue light-emitting first light source 1006.
  • the blue light component in the broad spectrum light is supplemented or directly provided by the first light source 1006.
  • the fluorescent layer in this embodiment may include a green fluorescent material and a blue fluorescent material, and the green fluorescent material and the blue fluorescent material respectively convert ultraviolet or near-ultraviolet excitation light into green fluorescent light and blue fluorescent light, and may be emitted at this time.
  • the second light source of red light directly provides red light, which is combined into green light and blue fluorescent light by a dichroic mirror to form a beam of light.
  • FIG. 20 is a schematic structural view of still another preferred embodiment of the broad spectrum light source in the projection system of the present invention.
  • the broad spectrum light source of this embodiment includes:
  • the excitation light source 1101 generates ultraviolet or near-ultraviolet excitation light
  • the fluorescent layer of the fluorescent device 1102 includes a red fluorescent material and a green fluorescent material, and further includes a surface disposed on the surface of the fluorescent layer facing away from the ultraviolet or near-ultraviolet excitation light incident surface. Reflective layer (not shown).
  • the first light source 1109 emits blue light.
  • the ultraviolet or near-ultraviolet excitation light generated by the excitation light source 1101 is directly projected from the first side of the dichroic mirror onto the dichroic mirror 1104, reflected by the dichroic mirror 1104, collected by the collection lens 1106, and projected onto the phosphor layer.
  • the red fluorescent material of the fluorescent layer converts ultraviolet or near-ultraviolet excitation light into red fluorescence
  • the green fluorescent material converts ultraviolet or near-ultraviolet excitation light into green fluorescence.
  • the mixed light of red fluorescence and green fluorescence forms a broad spectrum of light, reflected by the reflective layer, returns to the first side of the dichroic mirror along the same path, and is projected from the first side of the dichroic mirror onto the dichroic mirror 1104. .
  • the blue light emitted by the first light source 1109 is projected from the second side of the dichroic mirror 1104 onto the dichroic mirror 1104, and the dichroic mirror 1104 transmits the broad spectrum light and reflects the blue light from the first light source 1109, thereby Broad spectrum light and blue light combine to form a beam of light.
  • the combined broad spectrum light and blue light are concentrated by the collecting lens 1007 to the light homogenizing device 1108 and homogenized by the light homogenizing device 1108.
  • blue light is directly supplied through the first light source 1109.
  • the fluorescent layer in this embodiment may also include a blue fluorescent material, and when the blue fluorescent material converts ultraviolet or near-ultraviolet excitation light into blue fluorescent light, the first light source that emits blue light may be passed. 1109 complements the blue light.
  • the excitation light source 1101 in this embodiment can also generate blue excitation light, the red fluorescent material converts the blue excitation light into red fluorescence, and the green fluorescent material converts the blue excitation light into green fluorescence, the red fluorescent and green fluorescent light.
  • the mixed light of the blue excitation light that is not converted by the wavelength conversion layer forms broad-spectrum light; when the blue excitation light in the wide-spectrum light is insufficient, it can be supplemented by the blue light-emitting first light source 1109.
  • the blue light component in the broad spectrum light is supplemented or directly provided by the first light source 1109.
  • the fluorescent layer in this embodiment may include a green fluorescent material and a blue fluorescent material, and the green fluorescent material and the blue fluorescent material respectively convert ultraviolet or near-ultraviolet excitation light into green fluorescent light and blue fluorescent light, and may be emitted at this time.
  • the second light source of red light directly provides red light, which is combined into green light and blue fluorescent light by a dichroic mirror to form a beam of light.
  • the first light source 1109 is used as an auxiliary light source.
  • the light emitted by the auxiliary light source may also be projected to the light modulation unit along with the primary color light split by the light splitting means.
  • one of the primary colors of light split by the spectroscopic device may be directly provided by the auxiliary light source without using a dichroic mirror and other lenses.
  • a plurality of colors of phosphors are coated on a rotating substrate to realize timing output of a plurality of monochromatic lights, that is, color lights of a plurality of colors are in the time domain. differentiate.
  • the monochromatic light is not separated in the time domain, that is, it can be simultaneously transmitted at least for a predetermined time, so that for each monochromatic light, the optical energy loss generated by achieving a good color can be
  • the monochromatic light of another color that is simultaneously emitted is utilized, and thus has higher light utilization efficiency with respect to the monochromatic light sequence.
  • the relative luminance relationship of each monochromatic light is determined by the spectrum of the broad spectrum light. Therefore, if a stable color display output is desired, the spectral shape and intensity of the broad spectrum light must be required to be stable over time. Therefore, in the preferred embodiment of the present invention, the wavelength conversion device for generating broad-spectrum light maintains the material properties and physical properties of the wavelength conversion layer in the path illuminated by the excitation light. Further, the excitation light generated by the excitation source remains stable over time. For example, the wavelength conversion layer maintains its resulting laser intensity and spectrum consistent along a predetermined path. Of course, in other embodiments, the above strict requirements may not be required.
  • the splitting method is used to split the primary color light of at least two different colors from a wide beam of light, thereby avoiding the energy loss caused by filtering a part of the spectral range of the fluorescent light as unnecessary light in the prior art, thereby improving the efficiency.

Abstract

一种发光装置,包括:用于产生激发光的激光发光源(71);包括波长转换层的波长转换装置(72),波长转换层(722)将激发光至少部分转换成受激光,受激光是宽谱光,或者受激光与未被波长转换层(722)转换的激发光的混合光形成宽谱光;使激发光相对波长转换层运动的驱动装置(73);将宽谱光分割成沿不同路径传播的至少两种单色光的分光装置(62)。还提供一种包括这种发光装置的投影系统。

Description

投影系统及其发光装置
技术领域
本发明涉及光学技术领域,特别是涉及一种投影系统及其发光装置。
背景技术
目前,在现有投影仪中通常使用超高压汞灯(UHP灯)作为光源。其中,UHP灯利用超高压汞蒸汽(1Mpa以上)放电获得可见光。但是,由于汞容易造成环境污染,因此业界正在寻求一种环境友好的光源来代替UHP灯。
请参见图1,图1是一种现有技术的投影仪用光源系统的结构示意图。如图1所示,该光源系统包括固态光源11、聚焦系统12、荧光装置13以及驱动装置14。固态光源11产生一激发光,该激发光经聚焦系统12聚焦后入射到荧光装置13上。荧光装置13包括多个色段(未图示),其中至少部分色段上涂覆有荧光材料。荧光装置13在驱动装置14的驱动下绕转轴15转动,以使得激发光依次作用于不同的色段上,进而产生由不同颜色的单色光脉冲形成的连续彩色光序列,例如红光脉冲、绿光脉冲、蓝光脉冲、红光脉冲……如此反复。
请参见图2,图2是一种应用图1所示的光源系统的单芯片投影系统的结构示意图。如图2所示,该投影系统包括光源系统21、光调制装置22以及投影装置23。光源系统21采用图1所示的方式形成一彩色光序列。该彩色光序列入射到光调制装置22,并由光调制装置22进行图像调制。经调制后的彩色光序列入射到投影装置23,并由投影装置23进行投影。在上述投影系统中,光调制装置22在某一时刻只能调制彩色光序列中的某一特定颜色的单色光脉冲,即不同颜色的单色光脉冲仅能以时分复用方式共用一个光调制装置22,因此导致显示亮度相对较低。同时,不同颜色的单色光图像的快速变化还容易导致色分离效应(color breakup effect)。
请参见图3,图3是一种现有技术的三芯片投影系统的结构示意图。如图3所示,为了解决图2所示的单芯片投影系统的上述技术问题。在图3所示的三芯片投影系统中,光源31、32、33分别产生红光、绿光和蓝光。三个光调制单元35、36和37分别对相应颜色的基色光进行图像调制。分别经光调制单元35、36和37调制后的红光、绿光和蓝光由合光装置38进行合光,并进一步由投影装置39进行投影。然而,在上述三芯片投影系统中,需要分别利用三个光源31、32、33提供三种不同颜色的基色光,因此其成本明显高于单芯片投影系统。
此外,在显示应用领域,色彩饱和度是衡量显示品质的一个重要参数。然而,高色彩饱和度需要各基色光具有相对较窄的光谱范围。例如,经常使用色坐标(0.33,0.63)和色坐标(0.65,0.34)作为绿光和红光的颜色标准。一般要求正常显示中的绿光的x坐标不大于0.33,y坐标不小于0.63,而红光的x坐标不小于0.65,y坐标不大于0.34。在上述三芯片投影系统中,部分基色光需要通过荧光激发的方式获得。荧光激发产生的基色光的光谱范围相对较宽,需要利用滤光片进行过滤才能获得相对较窄的光谱带宽以及良好的色坐标。
请参见图4,图4是图3所示的投影系统中使用的绿色荧光的光谱图。其中,曲线400显示原始的绿色荧光的光谱曲线,其色坐标为(0.384,0.577),其中的x坐标和y坐标均远离绿光的颜色标准,而曲线402显示经过滤修饰后的绿色荧光的光谱曲线,其色坐标为(0.323,0.63),其中的x坐标和y坐标均满足绿光的颜色标准。
同理,如图5所示,图5是图3所示的投影系统中使用的红色荧光的光谱图。其中,曲线500显示原始的红色荧光的光谱曲线,其色坐标为(0.608,0.391),其中的x坐标和y坐标均远离红光的颜色标准,而曲线502显示经过滤修饰后的红色荧光的光谱曲线,其色坐标为(0.66,0.34),其中的x坐标和y坐标均满足红光的颜色标准。
但是,经过上述过滤修饰后,绿光的亮度损失了12%,而红光的亮度损失了45%。因此,现有技术的三芯片投影系统普遍存在成本高及效率低的技术问题。
综上,需要提供一种投影系统,以解决现有技术的三芯片投影系统普遍存在成本高及效率低的技术问题。
发明内容
本发明主要解决的技术问题是提供一种投影系统及其发光装置,以降低成本且提高效率。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种发光装置,所述发光装置包括:激发光光源,用于产生一激发光;波长转换装置,包括一波长转换层,所述波长转换层将所述激发光至少部分转换成受激光,所述受激光是宽谱光,或者所述受激光与未被所述波长转换层转换的所述激发光的混合光形成宽谱光;驱动装置,用于使得所述激发光相对所述波长转换层运动;分光装置,用于将所述宽谱光分割成沿不同路径传播的至少两种单色光。
其中,所述宽谱光为白光或黄光。
其中,所述激发光为紫外或近紫外激发光,所述波长转换层包括红色荧光材料、绿色荧光材料、黄色荧光材料以及蓝色荧光材料中的至少两种。
其中,所述激发光为紫外或近紫外激发光,所述波长转换层包括黄色荧光材料或绿色荧光材料。
其中,所述激发光为蓝色激发光,所述波长转换层包括红色荧光材料和绿色荧光材料。
其中,所述受激光包括红色受激光和绿色受激光,该红色受激光、绿色受激光以及未被所述波长转换层吸收的蓝色激发光的混合光形成所述宽谱光。
其中,所述受激光包括红色受激光和绿色受激光,所述红色受激光与绿色受激光的混合光形成所述宽谱光。
其中,所述激发光为蓝色激发光,所述波长转换层包括黄色荧光材料。
其中,所述受激光包括黄色受激光,所述黄色受激光为所述宽谱光。
其中,所述受激光包括黄色受激光,所述黄色受激光与未被所述波长转换层吸收的蓝色激发光的混合光形成所述宽谱光。
其中,所述波长转换装置还包括一基板,所述波长转换层包括至少两种波长转换材料,所述至少两种波长转换材料层叠设置在所述基板上。
其中,所述波长转换层包括发出第一受激光的第一波长转换材料和发出第二受激光的第二波长转换材料,第一受激光的峰值波长比第二受激光的峰值波长大;第一波长转换材料、第二波长转换材料依次层叠设置在所述基板上。
其中,所述至少两种单色光包括红光、绿光以及蓝光中的至少两种。
其中,所述至少两种单色光中的一单色光为未被所述波长转换层转换的所述激发光。
其中,所述波长转换层使得所述激发光沿预定路径作用于所述波长转换层,所述波长转换层的波长转换材料沿所述预定路径保持一致。
其中,所述波长转换层沿预定路径上保持其产生的受激光强度和光谱一致。
其中,所述激发光光源发出的激发光随时间保持稳定不变。
其中,所述驱动装置驱动所述波长转换装置绕一转轴周期性转动,以使得所述激发光沿与所述转轴同心的圆形路径周期性作用于所述波长转换层。
其中,所述驱动装置驱动所述波长转换装置往复平移,以使得所述激发光沿直线路径往复作用于所述波长转换层。
其中,所述波长转换装置还包括一基板,所述波长转换层设置于所述基板上,且所述波长转换层与基板之间存在一空气间隙。
其中,所述波长转换装置还包括设置于所述波长转换层的激发光入射面的分色滤光层,所述分色滤光层透射所述激发光并反射所述受激光。
其中,所述波长转换装置还包括设置于所述波长转换层的背向所述激发光入射面的表面的反射层,所述发光装置还包括反射罩和光收集装置,所述反射罩的光反射面朝向所述反射层,所述反射层将所述宽谱光反射至所述反射罩,所述反射罩将所述宽谱光会聚到所述光收集装置的入口,所述光收集装置将宽谱光导引到所述分光装置。
其中,所述反射罩包括一开口,所述激发光通过开口入射到所述波长转换层。
其中,所述反射罩呈半球状,所述波长转换层被激发光入射的位置与光收集装置的入口的位置关于半球的球心对称。
其中,所述反射罩呈半椭球状,所述波长转换层被激发光入射的位置与光收集装置的入口的位置分别为半椭球的两个焦点。
其中,所述分光装置为至少一片分色滤光片,所述分色滤光片对所述宽谱光的一部分光谱范围内的光线透射,对所述宽谱光的其它光谱范围内的光线反射。
其中,所述发光装置还包括辅助光源,所述辅助光源产生一种单色光。
其中,所述发光装置还包括二向色镜,所述二向色镜透射宽谱光和辅助光源所产生的单色光中的一束光线,反射另外一束光线,并将透射和反射的光线投射至分光装置。
其中,所述辅助光源产生的单色光为红光或蓝光。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种投影系统,所述投影系统包括上述任一项所述的发光装置,所述单色光为基色光,还包括:至少两个光调制装置,用于分别对所述分光装置发出的相应颜色的基色光进行图像调制;合光装置,用于对所述光调制装置调制后的所述至少两种基色光进行合光。
本发明的有益效果是:区别于现有技术的情况,本发明的投影系统及其发光装置中可以仅利用一个光源来产生至少两种不同颜色的基色光,因此可减少光源数量,降低了成本。此外,利用分光方式从一束宽谱光中分割出至少两种不同颜色的基色光,避免了现有技术中将荧光的部分光谱范围作为无用光过滤掉而产生的能量损失,提高了效率。
附图说明
图1是一种现有技术的投影仪用光源系统的结构示意图;
图2是一种应用图1所示的光源系统的单芯片投影系统的结构示意图;
图3是一种现有技术的三芯片投影系统的结构示意图;
图4是图3所示的投影系统中使用的绿色荧光的光谱图;
图5是图3所示的投影系统中使用的红色荧光的光谱图;
图6是本发明投影系统一优选实施例的结构示意图;
图7是本发明投影系统中的宽谱光源一优选实施例的结构示意图;
图8是图7所示的宽谱光源中的荧光装置的主视图;
图9是图7所示的宽谱光源产生的宽谱光的光谱图;
图10A是本发明投影系统中的分光装置一优选实施例的结构示意图;
图10B是本发明投影系统中的分光装置另一优选实施例的结构示意图;
图11是图10A或图10B所示的分光装置中的分色滤光片的透射率曲线图;
图12是图9所示的宽谱光经图10所示的分光装置分光后的光谱图;
图13是本发明投影系统中的宽谱光源另一优选实施例的结构示意图;
图14是图13所示的宽谱光源中的荧光装置的主视图;
图15A是本发明投影系统中的宽谱光源又一优选实施例的结构示意图;
图15B是本发明投影系统中的宽谱光源再一优选实施例的结构示意图;
图16是本发明投影系统中的宽谱光源再一实施例的结构示意图;
图17是本发明投影系统中的宽谱光源再一实施例的结构示意图;
图18是本发明投影系统中的宽谱光源再一实施例的结构示意图;
图19是本发明投影系统中的宽谱光源再一实施例的结构示意图;
图20是本发明投影系统中的宽谱光源再一实施例的结构示意图。
具体实施方式
请参见图6,图6是本发明的投影装置的一优选实施例的结构示意图。如图6所示,本实施例的投影装置主要包括宽谱光源61、分光装置62、光调制装置63、64和65、合光装置66以及投影装置67。
宽谱光源61产生一宽谱光。分光装置62对宽谱光源61产生的宽谱光进行分割,并输出沿不同路径传播的不同颜色的至少两种单色光。在本实施例中,该单色光可以是基色光,当然,在其他实施例中也可以是其他波长的单色光,甚至是具有一定光谱范围的光线。
在本实施例中,宽谱光为白光,分光装置62将白光分割成红光、绿光和蓝光三种不同颜色的基色光。当然,本领域技术人员完全可以想到利用分光装置62将宽谱光源61产生的宽谱光分割成其它不同颜色的至少两种基色光,本发明对此不作限制。
红光进一步入射到光调制装置63,由光调制装置63进行图像调制,绿光入射到光调制装置64,由光调制装置64进行图像光调制,而蓝光入射到光调制装置65,由光调制装置65进行图像调制。经光调制装置63、64和65调制后的红光、绿光和蓝光进一步入射到合光装置66,由合光装置66进行合光,并在合光后由投影装置67进行投影。
在本实施例中,仅利用一个光源来产生至少两种颜色的基色光,因此可减少光源数量,降低了成本。此外,利用分光方式从一束宽谱光中分割至少两种颜色的基色光,避免了现有技术中将荧光的部分光谱范围作为无用光过滤掉而产生的能量损失,提高了效率。
下面将结合附图对本发明的投影装置中的各装置的优选实施例进行详细描述。
请参见图7-8,图7是本发明投影系统中的宽谱光源的一优选实施例的结构示意图,图8是图7所示的宽谱光源中的荧光装置的主视图。如图7所示,本实施例的宽谱光源包括激发光光源71、波长转换装置72以及驱动装置73。其中,激发光光源71产生一激发光。波长转换装置72包括基板721以及设置于基板721上的波长转换层722。驱动装置73驱动荧光装置72,使得激发光沿预定路径作用于波长转换层722。在本实施例中,驱动装置73为一具有转轴731的转动马达,并驱动波长转换装置72绕转轴731周期性转动,以使得激发光沿与转轴731同心的圆形路径周期性作用于波长转换层722。波长转换装置72还包括一分色滤光层724,该分色滤光层724设置于波长转换层722的激发光入射侧,用于透射激发光光源71产生的激发光,并反射波长转换层722产生的受激光,以提高波长转换装置72的受激光输出效率。优选的,分色滤光层724紧邻波长转换层722。此外,基板721与波长转换层722之间优选设置一空气间隙723,以提高波长转换层722的转换效率。如图8所示,在本实施例中,波长转换层722呈环状,并相对转轴731呈圆对称,由此可减少波长转换层722的使用量。在优选实施例中,波长转换层722的波长转换材料在整个环状结构中一致并均匀分布。
波长转换材料用于吸收某一个波长的入射光并受激发射出与入射光波长不同的出射光。波长转换材料有多个种类,包括荧光粉,荧光染料和量子点等,通常以荧光粉最为常用。以荧光粉为例,此时将波长转换层722称为荧光层722,有多种方法形成荧光层722,其中之一是将荧光粉与某种粘接剂混合在一起后,印刷或挤压成型成为片层状。该粘结剂可以是有机粘结剂如硅胶或环氧树脂,也可以无机粘结剂如纳米氧化铝颗粒。
在本实施例中,荧光层722包括至少一种荧光材料,且荧光层的荧光材料沿激发光的作用路径(预定路径)保持一致,该保持一致包括配方、成分、厚度等参数一致,使得荧光层722能够在激发光作用下持续产生相同的荧光。例如,在激发光为蓝色激发光时,荧光层722可以是红色荧光材料和绿色荧光材料的混合物或者是黄光荧光材料。此时,红色荧光材料将蓝色激发光转换成红色荧光,而绿色荧光材料将蓝色激发光转换成绿色荧光。随后,未被荧光层722转换的剩余蓝色激发光与红色荧光和绿色荧光形成如图9所示的宽谱光,其色坐标为(0.311, 0.328),属于白光区域。
在激发光为蓝色激发光时,荧光层722也可以是黄光荧光材料,黄光荧光材料将蓝色激发光转换呈黄色荧光,未被荧光层722转换的剩余蓝色激发光与黄色荧光形成如图9所示的宽谱光。此外,激发光也可以是紫外或近紫外激发光。此时,荧光层722可包括红色荧光材料、绿色荧光材料以及蓝色荧光材料。
本实施例中,红色荧光材料将紫外或近紫外激发光转换成红色荧光,而绿色荧光材料将紫外或近紫外激发光转换成绿色荧光,而蓝色荧光材料将紫外或近紫外激发光转换成蓝色荧光。红色荧光、绿色荧光以及蓝色荧光的混合光同样形成一宽谱光。
图8所示的波长转换层722包括至少两种波长转换材料时,各种波长转换材料是均匀混合地设置在波长转换装置的基板721上。波长转换层的多种波长转换材料也可以层叠设置在基板721上。由于波长转换材料较容易吸收比其产生的受激光峰值波长更短的光,因此优选地,相对于产生的受激光的峰值波长较小的波长转换材料,产生的受激光的峰值波长较大的波长转换材料设置在离基板更近的位置,从而减小受激光因被波长转换材料吸收而造成的损失。具体来说,波长转换层可以包括分别发出第一受激光与第二受激光的第一波长转换材料和第二波长转换材料,第一受激光的峰值波长比第二受激光的峰值波长大,第一波长转换材料设置在基板721上,第二波长转换材料设置在第一波长转换材料上。例如,波长转换层包括红色荧光材料和绿色荧光材料,由于红光的峰值波长比绿光的大,所以绿色荧光材料不容易吸收红光,而红色荧光材料容易吸收绿光,因此将红色荧光材料设置在基板721上,绿色荧光材料设置在红色荧光材料上,可以使得红光基本不被绿色荧光材料所吸收,从而减小光损失。
当然,本领域技术人员完全可以想到本实施例的激发光可以采用其它颜色的激发光,只需荧光层722产生的荧光或荧光与未被荧光层722转换的剩余激发光的混合光能够形成所需的宽谱光即可;而且,所采用的荧光材料也可以只有两种。本发明中的宽谱光,指的是其光谱至少覆盖三基色中的至少两种,例如红、蓝、绿三种颜色中的至少两种,即可以通过波长分光的形式,分解成红、蓝、绿三种颜色中的至少两种颜色的光。请参见图10-11,图10A和10B是本发明投影系统中的分光装置的两个优选实施例的结构示意图,图11是图10A或10B所示的分光装置中的各分色滤光片的透射率曲线图。如图10A所示,本发明投影系统中的分光装置的其中一个优选实施例包括第一分色滤光片81和第二分色滤光片82。其中,第一分色滤光片81与第二分色滤光片82相互垂直设置,宽谱光以45度角入射到第一分色滤光片81和第二分色滤光片82。如图11所示,第一分色滤光片81为一低通滤光片,其透射率如曲线900所示,并具体反射红光,透射绿光和蓝光。第二分色滤光片82为高通滤光片,其透射率如曲线902所示,并具体反射蓝光,透射红光和绿光。由此,经第一分色滤光片81和第二分色滤光片82共同作用后,宽谱光分割成红光、绿光和蓝光,分割成的红光、绿光和蓝光的光谱图如图12所示。对比图9和图12可知,分光装置的总输出光功率相对于宽谱光的光功率损失较小,仅为4%左右。分光装置有多种类型,属于现有技术,本发明并不做限制。
图10B是本发明投影系统中的分光装置的另一个优选实施例,其中第二分色滤光片84的透射率曲线如902所示,第一分色滤光片83的透射率曲线如900所示。与图10A原理相同,该结构同样可以把宽谱光分割成红光、绿光和蓝光。实际上,利用透射率如图11所示的两种分色滤光片,可以实现多种的摆放方式,最终都是利用分色滤光片对不同波长的光线的透过率不同而将不同波长的光线以透射或反射的形式在光路上分开。若只需要将宽谱光分成两种颜色的两束,则只需要一片分色滤光片。
请参见图13-14,图13是本发明投影系统中的宽谱光源另一优选实施例的结构示意图,图14是图13所示的宽谱光源中的荧光装置的主视图。本实施例的宽谱光源包括激发光光源91、荧光装置92以及驱动装置93。其中,激发光光源91产生一激发光。荧光装置92包括基板921以及设置于基板921上的荧光层922。在本实施例中,驱动装置93为一平移机构,并驱动荧光装置92沿方向D1往复平移,以使得激发光沿一直线路径往复作用于荧光层922。如图14所示,在本实施例中,荧光层922呈条状,并且其长度方向与荧光装置92的运动方向D1保持一致。优选的,基板921与荧光层922之间存在一空气隙以提高荧光层922的转换效率。
实际上,本发明不限定驱动装置要使激发光沿预定路径作用于波长转换层,只要能够使激发光相对波长转换层运动即可。此外,除了波长转换装置之外,驱动装置也可以驱动激发光光源,或激发光源与波长转换装置之间的光学部件,使得激发光沿预定路径作用于波长转换层。图15A和15B列举了两种其它方式。请参见图15A和15B,图15A是本发明投影系统中的宽谱光源又一优选实施例的结构示意图;图15B是本发明投影系统中的宽谱光源再一优选实施例的结构示意图。
在图15A中,激发光光源301发射激发光303,激发光303穿透一个凸透镜302后,入射于荧光装置300。凸透镜302与驱动装置(图中未画出)相连,驱动装置带动凸透镜302沿D2方向往复运动。当分别运动到302A,302B和302C三个位置时,激发光303分别被折射为不同出射路径的光线304A,304B和304C,进而分别入射到荧光装置300的305A,305B和305C三个不同的位置。若凸透镜连续地在302B和302C之间往复运动,则激发光入射于荧光装置的路径为305B和305C之间的一条连线。
图15B中,激发光光源311发射激发光313,经过反射镜312反射后入射到荧光装置310。反射镜312与驱动装置(图中未画出)相连,驱动装置带动反射镜312沿D3方向往复转动,当分别转动到312A,312B和312C三个角度的位置时可将激发光313分别反射为不同出射路径的光线314A,314B和314C。
同理,还可以将图15A和15B中描述的方式和图7所示的本发明宽谱光源优选实施例部分结构相结合,即使图7中波长转换装置72不动,采用图15A或15B中改变激发光入射方向的方式,将凸透镜302或反射镜312沿其倾斜的中心轴线旋转,使激发光沿与转轴731同心的圆形路径周期性作用于波长转换层72。
甚至,还可以使波长转换装置等光学元件不动,仅使激发光光源自身旋转或按一定角度反复转动,也能达到上述使激发光沿预定路径作用于荧光层的目的;或者使激发光、波长转换装置或激发光和波长转换装置之间的光学元件三者中的任意两个或以上一起配合运动,达到上述使激发光沿预定路径作用于荧光层的目的,在此不再一样赘述。
请参见图16,图16是本发明投影系统中的宽谱光源再一优选实施例的结构示意图。本实施例的宽谱光源包括激发光光源101、荧光装置102以及驱动装置103。其中,激发光光源101产生一激发光。荧光装置102包括基板1021以及设置于基板1021上的荧光层1022。本实施例的宽谱光源进一步包括一光收集装置104。光收集装置104收集经荧光装置102的荧光层1022出射的荧光或者荧光以及未被转换的激发光,并将上述光线导引到分光装置(未图示)。
请参见图17,图17是本发明投影系统中的宽谱光源再一优选实施例的结构示意图。本实施例的宽谱光源包括激发光光源111、荧光装置112、驱动装置113、光收集装置114以及反射罩115。
激发光光源111产生一激发光,该激发光经反射罩115顶部设置的开口1151入射到荧光装置112的荧光层1122上。荧光装置112除了包括基板1121以及设置于基板1121上的荧光层1122外,还包括一反射层1123。反射层1123设置于荧光层1122的背向激发光入射面的表面,并在本实施例中具体设置于荧光层1122与基板1121之间。当然,本领域技术人员完全可以想到将反射层1123设置于荧光层1122相对激发光传播路径下游的其它位置。反射层1123反射经荧光层1122出射的荧光或者荧光以及未被荧光层1122转换的激发光。反射罩115呈半椭球状或呈半球状且光反射面朝内,反射罩115将经反射层1123反射的荧光或者荧光以及未被荧光层1122转换的激发光会聚到光收集装置114的入口,光收集装置114将上述光线导引到分光装置(未图示)。
当反射罩115呈半球状,则荧光装置112被激发光入射的位置与光收集装置114的入口的位置关于半球球心对称。当反射罩是半椭球状,则荧光装置112被激发光入射的位置与光收集装置114的入口的位置分别为该半椭球的两个焦点。
本实施例中,基板1121表面贴附或电镀一层反射层1123,然后将波长转换材料与粘结剂混合后,直接涂覆于反射层的表面形成荧光层。
请参见图18,图18是本发明投影系统中的宽谱光源再一优选实施例的结构示意图。如图18所示,本实施例的宽谱光源包括激发光光源901、荧光装置903、收集透镜904、二向色镜905、第一光源906、聚光透镜907以及匀光装置908。其中,激发光光源901产生紫外或近紫外激发光,荧光装置903的荧光层包括红色荧光材料和绿色荧光材料,第一光源906发出蓝光。红色荧光材料将紫外或近紫外激发光转换成红色荧光,而绿色荧光材料将紫外或近紫外激发光转换成绿色荧光。红色荧光与绿色荧光的混合光形成一宽谱光,该宽谱光经收集透镜904收集从二向色镜的第一侧投射到二向色镜905上,而第一光源906发出的蓝光从二向色镜905的第二侧投射到二向色镜905上,二向色镜905透射该宽谱光并反射来自第一光源906的蓝光,从而将该宽谱光与蓝光合为一束光。合光后的宽谱光与蓝光经聚光透镜907汇聚到匀光装置908并被匀光装置908均匀化,被均匀化后的光再投射到分光装置(图未示),并被分光装置分割成沿不同路径传播的至少两种基色光。
本实施例中通过第一光源906直接提供蓝光。可以理解的是,本实施例中的荧光层也还可以包括蓝色荧光材料,当蓝色荧光材料将紫外或近紫外激发光转换成的蓝色荧光不够时,可以通过发蓝光的第一光源906补充蓝光。本实施例中的激发光光源901也可以产生蓝色激发光,红色荧光材料将蓝色激发光转换成红色荧光,而绿色荧光材料将蓝色激发光转换成绿色荧光,该红色荧光、绿色荧光及未被波长转换层转换的蓝色激发光的混合光形成宽谱光;当宽谱光中的蓝色激发光不够时,可以通过发蓝光的第一光源906补充。
本实施例中是用第一光源906补充或直接提供宽谱光中的蓝光成分,可以理解的是,其它基色光也可以由一光源补充或直接提供。例如,本实施例中的荧光层可以包括绿色荧光材料与蓝色荧光材料,绿色荧光材料与蓝色荧光材料分别将紫外或近紫外激发光转换成绿色荧光与蓝色荧光,此时可以用发出红光的第二光源直接提供红光,该红光通过二向色镜与绿色荧光、蓝色荧光合为一束光。
本实施例中,辅助光源(如第一光源906)发出的光与波长转换层出射的宽谱光通过二向色镜905合光后,再被分光装置分割成至少两种基色光。可以理解的是,也可以不设置二向色镜905,波长转换层出射的宽谱光直接被分光装置分割成至少两种基色光,该至少两种基色光与辅助光源发出的光分别投射到3个光调制单元上。
请参见图19,图19是本发明投影系统中的宽谱光源再一优选实施例的结构示意图。如图19所示,本实施例的宽谱光源包括:
激发光光源1001、荧光装置1003、光收集装置1004、反射罩1002、收集透镜1005、二向色镜1007、第一光源1006、聚光透镜1009以及匀光装置1008。
激发光光源1001产生紫外或近紫外激发光,该激发光经反射罩1002顶部设置的开口1151入射到荧光装置1003的荧光层1122上。荧光装置1003具有和图17所示的实施例中的波长转换装置相同的构造,除了包括基板(未标示)以及设置于基板上的荧光层(未标示)外,还包括一反射层(未标示)。荧光装置1003的荧光层包括红色荧光材料和绿色荧光材料。红色荧光材料将紫外或近紫外激发光转换成红色荧光,而绿色荧光材料将紫外或近紫外激发光转换成绿色荧光。红色荧光与绿色荧光的混合光形成一宽谱光。反射层设置于荧光层的背向激发光入射面的表面。反射层反射宽谱光。反射罩1002呈半椭球状或呈半球状且光反射面朝内,反射罩1002将经反射层反射的宽谱光会聚到光收集装置1004的入口,光收集装置1004将上述光线导引到收集透镜1005。
该宽谱光经收集透镜1005收集从二向色镜的第一侧投射到二向色镜1007上,而第一光源1006发出的蓝光从二向色镜1007的第二侧投射到二向色镜1007上。二向色镜1007透射该宽谱光并反射来自第一光源1006的蓝光,从而将该宽谱光与蓝光合为一束光。合光后的宽谱光与蓝光经聚光透镜1009汇聚到匀光装置1008并被匀光装置1008均匀化。
本实施例中通过第一光源1006直接提供蓝光。可以理解的是,本实施例中的荧光层也还可以包括蓝色荧光材料,当蓝色荧光材料将紫外或近紫外激发光转换成的蓝色荧光不够时,可以通过发蓝光的第一光源1006补充蓝光。本实施例中的激发光光源1001也可以产生蓝色激发光,红色荧光材料将蓝色激发光转换成红色荧光,而绿色荧光材料将蓝色激发光转换成绿色荧光,该红色荧光、绿色荧光及未被波长转换层转换的蓝色激发光的混合光形成宽谱光;当宽谱光中的蓝色激发光不够时,可以通过发蓝光的第一光源1006补充。
本实施例中是用第一光源1006补充或直接提供宽谱光中的蓝光成分,可以理解的是,其它基色光也可以由一光源补充或直接提供。例如,本实施例中的荧光层可以包括绿色荧光材料与蓝色荧光材料,绿色荧光材料与蓝色荧光材料分别将紫外或近紫外激发光转换成绿色荧光与蓝色荧光,此时可以用发出红光的第二光源直接提供红光,该红光通过二向色镜与绿色荧光、蓝色荧光合为一束光。
请参见图20,图20是本发明投影系统中的宽谱光源再一优选实施例的结构示意图。如图20所示,本实施例的宽谱光源包括:
激发光光源1101、荧光装置1102、收集透镜1106、二向色镜1104、第一光源1109、聚光透镜1007以及匀光装置1108。其中,激发光光源1101产生紫外或近紫外激发光,荧光装置1102的荧光层包括红色荧光材料和绿色荧光材料,还包括一设置于荧光层的背向紫外或近紫外激发光入射面的表面的反射层(未标示)。第一光源1109发出蓝光。
激发光光源1101产生的紫外或近紫外激发光直接从二向色镜的第一侧投射到二向色镜1104上,被二向色镜1104反射后并经收集透镜1106收集,投射至荧光层。荧光层的红色荧光材料将紫外或近紫外激发光转换成红色荧光,而绿色荧光材料将紫外或近紫外激发光转换成绿色荧光。红色荧光与绿色荧光的混合光形成一宽谱光,由反射层反射,沿相同路径返回至二向色镜的第一侧,从二向色镜的第一侧投射到二向色镜1104上。而第一光源1109发出的蓝光从二向色镜1104的第二侧投射到二向色镜1104上,二向色镜1104透射该宽谱光并反射来自第一光源1109的蓝光,从而将该宽谱光与蓝光合为一束光。合光后的宽谱光与蓝光经聚光透镜1007汇聚到匀光装置1108并被匀光装置1108均匀化。
本实施例中通过第一光源1109直接提供蓝光。可以理解的是,本实施例中的荧光层也还可以包括蓝色荧光材料,当蓝色荧光材料将紫外或近紫外激发光转换成的蓝色荧光不够时,可以通过发蓝光的第一光源1109补充蓝光。本实施例中的激发光光源1101也可以产生蓝色激发光,红色荧光材料将蓝色激发光转换成红色荧光,而绿色荧光材料将蓝色激发光转换成绿色荧光,该红色荧光、绿色荧光及未被波长转换层转换的蓝色激发光的混合光形成宽谱光;当宽谱光中的蓝色激发光不够时,可以通过发蓝光的第一光源1109补充。
本实施例中是用第一光源1109补充或直接提供宽谱光中的蓝光成分,可以理解的是,其它基色光也可以由一光源补充或直接提供。例如,本实施例中的荧光层可以包括绿色荧光材料与蓝色荧光材料,绿色荧光材料与蓝色荧光材料分别将紫外或近紫外激发光转换成绿色荧光与蓝色荧光,此时可以用发出红光的第二光源直接提供红光,该红光通过二向色镜与绿色荧光、蓝色荧光合为一束光。
上述实施例中,第一光源1109作为辅助光源来使用。在其他实施例中,辅助光源发出的光也可以与分光装置分出的基色光一起投射到光调制单元。当然,在其他实施例中,也可以不采用二向色镜和其他透镜等,直接由辅助光源来提供分光装置所分出的其中一种基色光。
以上可以理解,现有技术中,是通过在一个转动的基底上涂覆多种颜色的荧光粉,以实现多个单色光的时序输出,也就是说,多个颜色的色光在时域被区分开。此时为实现良好的单色颜色而导致必然的光能量损耗,这些被损耗掉的光能量无法被利用。而本发明中,单色光在时域不被分开,即可以至少在一个预定时间内同时发射,因此对于每一个单色光来说,为了实现良好的颜色所产生的光能量损耗,可以被同时发射的另一个颜色的单色光所利用,因此相对于单色光序列具有更高的光利用效率。
在本发明中,每一种单色光的相对亮度关系由宽谱光的光谱决定,因此若想得到稳定的颜色显示输出,必定要求该宽谱光的光谱形状和强度随时间是稳定不变。因此,在本发明较优实施例中,用于产生宽谱光的波长转换装置,在被激发光照射的路径上,其波长转换层的材料特性和物理特性保持一致。进一步的,激发光源产生的激发光,随时间保持稳定不变。比如,所述波长转换层沿预定路径上保持其产生的受激光强度和光谱一致。当然,在其他实施例中,也可以不需要上述的严格要求。
本发明的投影系统中仅利用一个光源来产生至少两种不同颜色的基色光,因此可减少光源数量,降低了成本。此外,利用分光方式从一束宽谱光中分割出至少两种不同颜色的基色光,避免了现有技术中将荧光的部分光谱范围作为无用光过滤掉而产生的能量损失,提高了效率。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (1)

  1. 1.一种发光装置,其特征在于,所述发光装置包括:
    激发光光源,用于产生一激发光;
    波长转换装置,包括一波长转换层,所述波长转换层将所述激发光至少部分转换成受激光,所述受激光是宽谱光,或者所述受激光与未被所述波长转换层转换的所述激发光的混合光形成宽谱光;
    驱动装置,用于使得所述激发光相对所述波长转换层运动;
    分光装置,用于将所述宽谱光分割成沿不同路径传播的至少两种单色光。
    2.根据权利要求1所述的发光装置,其特征在于,所述宽谱光为白光或黄光。
    3.根据权利要求1所述的发光装置,其特征在于,所述激发光为紫外或近紫外激发光,所述波长转换层包括红色荧光材料、绿色荧光材料、黄色荧光材料以及蓝色荧光材料中的至少两种。
    4. 根据权利要求1所述的发光装置,其特征在于,所述激发光为紫外或近紫外激发光,所述波长转换层包括黄色荧光材料或绿色荧光材料。
    5.根据权利要求1所述的发光装置,其特征在于,所述激发光为蓝色激发光,所述波长转换层包括红色荧光材料和绿色荧光材料。
    6.根据权利要求5所述的发光装置,其特征在于,所述受激光包括红色受激光和绿色受激光,该红色受激光、绿色受激光以及未被所述波长转换层吸收的蓝色激发光的混合光形成所述宽谱光。
    7.根据权利要求5所述的发光装置,其特征在于,所述受激光包括红色受激光和绿色受激光,所述红色受激光与绿色受激光的混合光形成所述宽谱光。
    8.根据权利要求1所述的发光装置,其特征在于,所述激发光为蓝色激发光,所述波长转换层包括黄色荧光材料。
    9.根据权利要求8所述的发光装置,其特征在于,所述受激光包括黄色受激光,所述黄色受激光为所述宽谱光。
    10.根据权利要求8所述的发光装置,其特征在于,所述受激光包括黄色受激光,所述黄色受激光与未被所述波长转换层吸收的蓝色激发光的混合光形成所述宽谱光。
    11.根据权利要求1所述的发光装置,其特征在于,所述波长转换装置还包括一基板,所述波长转换层包括至少两种波长转换材料,所述至少两种波长转换材料层叠设置在所述基板上。
    12.根据权利要求11所述的发光装置,其特征在于,所述波长转换层包括发出第一受激光的第一波长转换材料和发出第二受激光的第二波长转换材料,第一受激光的峰值波长比第二受激光的峰值波长大;第一波长转换材料、第二波长转换材料依次层叠设置在所述基板上。
    13.根据权利要求1所述的发光装置,其特征在于,所述至少两种单色光包括红光、绿光以及蓝光中的至少两种。
    14.根据权利要求1所述的发光装置,其特征在于,所述至少两种单色光中的一单色光为未被所述波长转换层转换的所述激发光。
    15.根据权利要求1所述的发光装置,其特征在于,所述波长转换层使得所述激发光沿预定路径作用于所述波长转换层,所述波长转换层的波长转换材料沿所述预定路径保持一致。
    16.根据权利要求15所述的发光装置,其特征在于,所述波长转换层沿所述预定路径上保持其产生的受激光强度和光谱一致。
    17.根据权利要求1所述的发光装置,其特征在于,所述激发光光源发出的激发光随时间保持稳定不变。
    18.根据权利要求1所述的发光装置,其特征在于,所述驱动装置驱动所述波长转换装置绕一转轴周期性转动,以使得所述激发光沿与所述转轴同心的圆形路径周期性作用于所述波长转换层。
    19.根据权利要求1所述的发光装置,其特征在于,所述驱动装置驱动所述波长转换装置往复平移,以使得所述激发光沿直线路径往复作用于所述波长转换层。
    20.根据权利要求1所述的发光装置,其特征在于,所述波长转换装置还包括一基板,所述波长转换层设置于所述基板上,且所述波长转换层与基板之间存在一空气间隙。
    21.根据权利要求1所述的发光装置,其特征在于,所述波长转换装置还包括设置于所述波长转换层的激发光入射面的分色滤光层,所述分色滤光层透射所述激发光并反射所述受激光。
    22.根据权利要求1所述的发光装置,其特征在于,所述波长转换装置还包括设置于所述波长转换层的背向所述激发光入射面的表面的反射层,所述发光装置还包括反射罩和光收集装置,所述反射罩的光反射面朝向所述反射层,所述反射层将所述宽谱光反射至所述反射罩,所述反射罩将所述宽谱光会聚到所述光收集装置的入口,所述光收集装置将宽谱光导引到所述分光装置。
    23.根据权利要求22所述的发光装置,其特征在于,所述反射罩包括一开口,所述激发光通过开口入射到所述波长转换层。
    24.根据权利要求22所述的发光装置,其特征在于,所述反射罩呈半球状,所述波长转换层被激发光入射的位置与光收集装置的入口的位置关于半球的球心对称。
    25.根据权利要求22所述的发光装置,其特征在于,所述反射罩呈半椭球状,所述波长转换层被激发光入射的位置与光收集装置的入口的位置分别为半椭球的两个焦点。
    26.根据权利要求1所述的发光装置,其特征在于,所述分光装置为至少一片分色滤光片,所述分色滤光片对所述宽谱光的一部分光谱范围内的光线透射,对所述宽谱光的其它光谱范围内的光线反射。
    27.根据权利要求1所述的发光装置,其特征在于,所述发光装置还包括辅助光源,所述辅助光源产生一种单色光。
    28.根据权利要求27所述的发光装置,其特征在于,所述发光装置还包括二向色镜,所述二向色镜透射宽谱光和辅助光源所产生的单色光中的一束光线,反射另外一束光线,并将透射和反射的光线投射至分光装置。
    29.根据权利要求27所述的发光装置,其特征在于,所述辅助光源产生的单色光为红光或蓝光。
    30.一种投影系统,其特征在于,所述投影系统包括如权利要求1至29中任一项所述的发光装置,所述单色光为基色光,还包括:
    至少两个光调制装置,用于分别对所述分光装置发出的相应颜色的基色光进行图像调制;
    合光装置,用于对所述光调制装置调制后的所述至少两种基色光进行合光。
PCT/CN2012/079954 2011-08-27 2012-08-10 投影系统及其发光装置 WO2013029463A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014527475A JP6037474B2 (ja) 2011-08-27 2012-08-10 投影システムおよびその発光デバイス
EP12828624.2A EP2749943B1 (en) 2011-08-27 2012-08-10 Projection system and light emitting device thereof
KR1020147007417A KR101780318B1 (ko) 2011-08-27 2012-08-10 투영 시스템 및 이의 발광 장치
EP18171153.2A EP3382451B1 (en) 2011-08-27 2012-08-10 Projection system and light emitting device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110249345.7A CN102650811B (zh) 2011-08-27 2011-08-27 投影系统及其发光装置
CN201110249345.7 2011-08-27

Publications (1)

Publication Number Publication Date
WO2013029463A1 true WO2013029463A1 (zh) 2013-03-07

Family

ID=46692837

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/073649 WO2013029370A1 (zh) 2011-08-27 2012-04-09 荧光粉层、器件及相应光源和投影系统、及相应制作方法
PCT/CN2012/079954 WO2013029463A1 (zh) 2011-08-27 2012-08-10 投影系统及其发光装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073649 WO2013029370A1 (zh) 2011-08-27 2012-04-09 荧光粉层、器件及相应光源和投影系统、及相应制作方法

Country Status (6)

Country Link
EP (2) EP2749943B1 (zh)
JP (3) JP6037474B2 (zh)
KR (1) KR101780318B1 (zh)
CN (2) CN102650811B (zh)
TW (1) TWI463242B (zh)
WO (2) WO2013029370A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274407B2 (en) 2011-09-22 2016-03-01 Delta Electronics, Inc. Phosphor device and illumination system and projection apparatus with the same
US10281810B2 (en) 2011-09-22 2019-05-07 Delta Electronics, Inc. Projection apparatus comprising phosphor wheel coated with phosphor agents for converting waveband light
US10688527B2 (en) 2011-09-22 2020-06-23 Delta Electronics, Inc. Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights with different wavelength peaks

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713454B (zh) 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN104730830A (zh) * 2013-03-19 2015-06-24 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
CN107632487B (zh) * 2013-04-20 2020-03-24 深圳光峰科技股份有限公司 发光装置及相关光源系统
JP6236891B2 (ja) * 2013-06-07 2017-11-29 ソニー株式会社 光源装置、及び画像表示装置
JP6136744B2 (ja) * 2013-08-15 2017-05-31 ソニー株式会社 光源装置、及び画像表示装置
JP6245469B2 (ja) * 2013-09-20 2017-12-13 カシオ計算機株式会社 光源ユニット及びプロジェクタ
CN109634041B (zh) * 2014-04-02 2020-12-15 深圳光峰科技股份有限公司 一种光源系统及投影系统
CN105025279B (zh) 2014-04-24 2017-03-01 深圳市绎立锐光科技开发有限公司 一种光源系统及投影显示装置
CN104181766B (zh) * 2014-07-25 2017-09-26 京东方科技集团股份有限公司 一种车载显示装置
CN105511091B (zh) * 2014-09-26 2021-06-08 深圳光峰科技股份有限公司 分光合光装置和投影显示系统
CN104503102A (zh) * 2014-12-12 2015-04-08 常州市武进区半导体照明应用技术研究院 用于调节激光照明的方法及激光照明装置
JP6127224B1 (ja) * 2015-06-16 2017-05-10 三菱電機株式会社 前照灯装置及び照明装置
CN107272315A (zh) * 2016-04-08 2017-10-20 中强光电股份有限公司 照明系统与投影装置
CN110275380B (zh) * 2016-04-19 2021-11-23 台达电子工业股份有限公司 荧光剂装置
KR102317105B1 (ko) 2016-05-24 2021-10-26 소니그룹주식회사 광원 장치 및 투영 표시 장치
JP6630702B2 (ja) * 2016-06-17 2020-01-15 富士フイルム株式会社 光源装置及び内視鏡システム
CN107728412B (zh) * 2016-08-11 2020-04-24 深圳光峰科技股份有限公司 一种光源装置及相关投影系统
CN106125482A (zh) * 2016-09-12 2016-11-16 海信集团有限公司 激光光源及激光投影设备
KR102293502B1 (ko) * 2016-10-17 2021-08-26 포커스라이트 테크놀로지스 인크 반도체 레이저 모듈 및 비침습적 의료용 방법
CN106353958A (zh) * 2016-11-10 2017-01-25 青岛蓝之虹光电技术有限公司 应用波长转换原理的新型反射式投影光源装置
CN106324963A (zh) * 2016-11-16 2017-01-11 青岛蓝之虹光电技术有限公司 应用波长转换原理的新型透射式背光光源装置
CN106681094B (zh) * 2016-12-23 2018-09-21 海信集团有限公司 一种荧光激发装置、投影光源及投影设备
CN106707669B (zh) * 2016-12-23 2018-08-24 海信集团有限公司 一种荧光激发装置、投影光源及投影设备
CN106773481B (zh) * 2016-12-23 2018-10-09 海信集团有限公司 一种投影光源及投影设备
JP2018132746A (ja) * 2017-02-17 2018-08-23 キヤノン株式会社 光学ユニット及びこれ用いた光源装置、投射型表示装置
CN109254486A (zh) * 2017-07-11 2019-01-22 深圳市光峰光电技术有限公司 光源装置及投影系统
CN109298523A (zh) * 2017-07-25 2019-02-01 深圳光峰科技股份有限公司 色轮及应用所述色轮的光源系统、投影系统
CN107656413A (zh) * 2017-10-27 2018-02-02 苏州佳世达光电有限公司 一种投影装置
CN111357283A (zh) * 2017-11-14 2020-06-30 昕诺飞控股有限公司 在与色轮一起使用时启用数字轮辐的固态光源
CN109917610B (zh) * 2017-12-12 2020-12-01 中强光电股份有限公司 光源模块以及投影装置
CN207799321U (zh) * 2018-01-26 2018-08-31 中强光电股份有限公司 投影装置及照明系统
JP7134692B2 (ja) * 2018-04-25 2022-09-12 キヤノン株式会社 光源装置および画像投射装置
CN110632814A (zh) 2018-06-25 2019-12-31 中强光电股份有限公司 照明系统以及投影装置
CN208537894U (zh) * 2018-06-29 2019-02-22 中强光电股份有限公司 照明系统及投影装置
CN110764172A (zh) * 2018-07-26 2020-02-07 无锡视美乐激光显示科技有限公司 扩散滤光片、激光光源装置及其投影机
JP6880462B2 (ja) * 2018-10-01 2021-06-02 カシオ計算機株式会社 光源装置及び投影装置
CN111381424A (zh) * 2018-12-28 2020-07-07 青岛海信激光显示股份有限公司 激光光源及激光投影机
CN109737354A (zh) * 2019-03-01 2019-05-10 苏州晶清光电科技有限公司 远近光一体的照明灯
CN109681839A (zh) * 2019-03-01 2019-04-26 苏州晶清光电科技有限公司 一种远近光一体的激光照明灯
CN109668112A (zh) * 2019-03-01 2019-04-23 苏州晶清光电科技有限公司 一种激光照明灯
CN113311653B (zh) * 2021-05-06 2022-06-28 无锡视美乐激光显示科技有限公司 一种波长转换装置、光源装置及投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825836A (zh) * 2009-03-02 2010-09-08 鸿富锦精密工业(深圳)有限公司 光源系统
CN101995748A (zh) * 2009-08-20 2011-03-30 精工爱普生株式会社 投影机
CN102023468A (zh) * 2009-09-15 2011-04-20 卡西欧计算机株式会社 光源装置及投影器
CN102073115A (zh) * 2010-11-19 2011-05-25 苏州佳世达光电有限公司 荧光粉色轮及应用其的投影机
CN102141721A (zh) * 2010-02-01 2011-08-03 鸿富锦精密工业(深圳)有限公司 投影机
CN102193296A (zh) * 2010-03-18 2011-09-21 精工爱普生株式会社 照明装置及投影机

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171121C (zh) * 2001-05-25 2004-10-13 普基亚光电股份有限公司 高集光效率的集光组件及包括此组件的显示装置
JP2003207599A (ja) * 2002-01-16 2003-07-25 Konica Corp 放射線画像変換パネル及び放射線画像変換パネルの作製方法
JP4054594B2 (ja) * 2002-04-04 2008-02-27 日東光学株式会社 光源装置及びプロジェクタ
CN1311272C (zh) * 2002-09-14 2007-04-18 邱新萍 彩色投影显示装置
JP2004317800A (ja) * 2003-04-16 2004-11-11 Seiko Epson Corp 空間光変調装置、表示装置、プロジェクタ、及び表示装置の調光方法
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
WO2006133214A2 (en) * 2005-06-07 2006-12-14 Optical Research Associates Phosphor wheel illuminator
JP2007156270A (ja) * 2005-12-07 2007-06-21 Sharp Corp 光源装置及び投射型画像表示装置
WO2007143347A2 (en) * 2006-06-02 2007-12-13 3M Innovative Properties Company Fluorescent volume light source
RU2427753C2 (ru) * 2006-06-02 2011-08-27 Конинклейке Филипс Электроникс Н.В. Светоизлучающее устройство, формирующее цветной и белый свет
US20090128781A1 (en) * 2006-06-13 2009-05-21 Kenneth Li LED multiplexer and recycler and micro-projector incorporating the Same
JP2008052070A (ja) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd カラーホイール、可視光光源、投射型画像表示装置、投射型画像表示方法
US7605380B2 (en) * 2006-12-21 2009-10-20 Konica Minolta Medical & Graphics, Inc. Radiation image conversion panel
JP2008305883A (ja) * 2007-06-06 2008-12-18 Seiko Epson Corp レーザ光源及びプロジェクタ
WO2009069010A1 (en) * 2007-11-28 2009-06-04 Koninklijke Philips Electronics N.V. Illumination system, method and projection device for controlling light emitted during a spoke time period
TWI358601B (en) * 2008-03-14 2012-02-21 Young Optics Inc Light-mixing device and projector
CN101539270B (zh) * 2008-03-17 2011-06-08 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
CN101893204B (zh) * 2009-05-20 2012-03-07 绎立锐光科技开发(深圳)有限公司 光源及其光转换方法、光转换装置及该光源的应用系统
JP4883376B2 (ja) * 2009-06-30 2012-02-22 カシオ計算機株式会社 蛍光体基板及び光源装置、プロジェクタ
JP4742349B2 (ja) * 2009-06-30 2011-08-10 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5255527B2 (ja) * 2009-07-03 2013-08-07 デクセリアルズ株式会社 色変換部材および表示装置
JP5406638B2 (ja) * 2009-08-31 2014-02-05 カシオ計算機株式会社 光源装置及びプロジェクタ
WO2011037057A1 (ja) * 2009-09-28 2011-03-31 日本電気株式会社 光源装置およびそれを用いた投射型表示装置
JP5348492B2 (ja) * 2009-09-29 2013-11-20 カシオ計算機株式会社 光変換装置、光源ユニット及びプロジェクタ
JP5500341B2 (ja) * 2009-10-28 2014-05-21 カシオ計算機株式会社 光源ユニット及びプロジェクタ
JP2011112753A (ja) * 2009-11-25 2011-06-09 Seiko Epson Corp 光源装置及びプロジェクター
US8556437B2 (en) * 2009-12-17 2013-10-15 Stanley Electric Co., Ltd. Semiconductor light source apparatus and lighting unit
JP5530167B2 (ja) * 2009-12-18 2014-06-25 スタンレー電気株式会社 光源装置および照明装置
JP5530171B2 (ja) * 2009-12-25 2014-06-25 スタンレー電気株式会社 照明装置
JP5418839B2 (ja) * 2010-01-27 2014-02-19 カシオ計算機株式会社 光源ユニット及びプロジェクタ
US8936368B2 (en) * 2010-01-29 2015-01-20 Nec Display Solutions, Ltd. Illumination optical system and projector using the same
JP5492582B2 (ja) * 2010-01-29 2014-05-14 日立コンシューマエレクトロニクス株式会社 投写型映像表示装置
JP5550368B2 (ja) * 2010-02-03 2014-07-16 スタンレー電気株式会社 光源装置および照明装置
JP5491888B2 (ja) * 2010-02-05 2014-05-14 日立コンシューマエレクトロニクス株式会社 投写型表示装置
GB2477569A (en) * 2010-02-09 2011-08-10 Sharp Kk Lamp having a phosphor.
JP5671666B2 (ja) * 2010-02-12 2015-02-18 日立マクセル株式会社 固体光源装置及び投射型表示装置
US8474997B2 (en) * 2010-04-07 2013-07-02 Appotronics Corporation Limited High brightness illumination device using double-sided excitation of wavelength conversion materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825836A (zh) * 2009-03-02 2010-09-08 鸿富锦精密工业(深圳)有限公司 光源系统
CN101995748A (zh) * 2009-08-20 2011-03-30 精工爱普生株式会社 投影机
CN102023468A (zh) * 2009-09-15 2011-04-20 卡西欧计算机株式会社 光源装置及投影器
CN102141721A (zh) * 2010-02-01 2011-08-03 鸿富锦精密工业(深圳)有限公司 投影机
CN102193296A (zh) * 2010-03-18 2011-09-21 精工爱普生株式会社 照明装置及投影机
CN102073115A (zh) * 2010-11-19 2011-05-25 苏州佳世达光电有限公司 荧光粉色轮及应用其的投影机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274407B2 (en) 2011-09-22 2016-03-01 Delta Electronics, Inc. Phosphor device and illumination system and projection apparatus with the same
US9726335B2 (en) 2011-09-22 2017-08-08 Delta Electronics, Inc. Phosphor device and manufacturing method thereof having a second phosphor agent to increase the luminous intensity of a converted color light
US10281810B2 (en) 2011-09-22 2019-05-07 Delta Electronics, Inc. Projection apparatus comprising phosphor wheel coated with phosphor agents for converting waveband light
US10310363B2 (en) 2011-09-22 2019-06-04 Delta Electronics, Inc. Phosphor device with spectrum of converted light comprising at least a color light
US10688527B2 (en) 2011-09-22 2020-06-23 Delta Electronics, Inc. Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights with different wavelength peaks
US10758937B2 (en) 2011-09-22 2020-09-01 Delta Electronics, Inc. Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights

Also Published As

Publication number Publication date
CN102650811A (zh) 2012-08-29
EP2749943A4 (en) 2015-08-19
EP3382451A1 (en) 2018-10-03
WO2013029370A1 (zh) 2013-03-07
TWI463242B (zh) 2014-12-01
EP3382451B1 (en) 2019-05-15
JP6510106B2 (ja) 2019-05-08
JP2018151635A (ja) 2018-09-27
KR101780318B1 (ko) 2017-10-10
KR20140083995A (ko) 2014-07-04
JP6037474B2 (ja) 2016-12-07
EP2749943A1 (en) 2014-07-02
JP6406679B2 (ja) 2018-10-17
CN105549311B (zh) 2018-11-13
JP2017072840A (ja) 2017-04-13
CN105549311A (zh) 2016-05-04
EP2749943B1 (en) 2018-06-13
TW201310157A (zh) 2013-03-01
CN102650811B (zh) 2016-01-27
JP2014525653A (ja) 2014-09-29

Similar Documents

Publication Publication Date Title
WO2013029463A1 (zh) 投影系统及其发光装置
WO2016015552A1 (zh) 发光装置及投影系统
WO2014169784A1 (zh) 发光装置及投影系统
US10466580B2 (en) Projection system
WO2016165569A1 (zh) 发光装置和投影系统
WO2016161932A1 (zh) 发光装置和投影显示设备
US10830416B2 (en) Light guide component and light source device
WO2018166038A1 (zh) 光源装置及投影系统
US20120127435A1 (en) Light source device and image display apparatus
US9170423B2 (en) Light module for a projection apparatus and method for generating the blue component in a light module for a projection apparatus
US20140211170A1 (en) Illuminator and image display device
US20160195231A1 (en) Lighting arrangement
US10701327B2 (en) Projection display apparatus
CN1713022A (zh) 偏振分束器和液晶投影仪装置
US9410678B2 (en) Illumination apparatus light source apparatus using illumination apparatus and image display apparatus
US20210011363A1 (en) Projection system
KR20170133936A (ko) 광원 장치 및 이를 포함하는 영상투사장치
TW201335691A (zh) 光源系統及包含該光源系統之投影裝置
CN109188709B (zh) 一种偏振光转换装置及光源系统
JP2007093970A (ja) 投写型映像表示装置
US20150301345A1 (en) Illumination system, projection apparatus and illumination switch method
JP7341740B2 (ja) 光源装置および画像投射装置
JP2017215573A (ja) 投写型映像表示装置
KR100411431B1 (ko) 프로젝터
WO2021037239A1 (zh) 一种投影光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147007417

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012828624

Country of ref document: EP