WO2013027762A1 - 半導体ウェーハの製造方法 - Google Patents

半導体ウェーハの製造方法 Download PDF

Info

Publication number
WO2013027762A1
WO2013027762A1 PCT/JP2012/071185 JP2012071185W WO2013027762A1 WO 2013027762 A1 WO2013027762 A1 WO 2013027762A1 JP 2012071185 W JP2012071185 W JP 2012071185W WO 2013027762 A1 WO2013027762 A1 WO 2013027762A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
polishing
semiconductor wafer
wafer
grinding
Prior art date
Application number
PCT/JP2012/071185
Other languages
English (en)
French (fr)
Inventor
友裕 橋井
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Publication of WO2013027762A1 publication Critical patent/WO2013027762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a method for manufacturing a semiconductor wafer, and more particularly to a method for manufacturing a semiconductor wafer by processing a single crystal ingot made of a raw material semiconductor to obtain a semiconductor wafer.
  • a general method for manufacturing a semiconductor wafer includes a slicing process for slicing a single crystal ingot to obtain a thin disk-shaped wafer, and a chamfering process for chamfering the outer periphery of the wafer to prevent chipping and cracking of the sliced wafer. And a lapping process for flattening the surface of the chamfered wafer, a wet etching process for removing the work-affected layer generated during chamfering and lapping remaining on the wafer, and both sides or one side of the etched wafer with free abrasive grains. And a mirror polishing step of mirror polishing using the contained slurry.
  • a double-sided grinding process that simultaneously grinds the front and back surfaces of the wafer using a grindstone is adopted, or the surface of the wafer is subjected to rough grinding treatment such as lapping or double-headed grinding in order to increase the flatness of the wafer surface.
  • the side is subjected to in-feed single-side grinding with a cup-type grindstone for finish grinding.
  • the chamfering apparatus can chamfer the outer peripheral portion of the wafer with the original processing accuracy, and as a result, a semiconductor wafer having a stable chamfered shape can be manufactured. It has also been reported that the etching process can be omitted by performing a chamfering process after performing a double-sided simultaneous planar primary grinding process and then performing a double-sided simultaneous grinding (secondary grinding process) with a high-quality finishing grindstone. .
  • a polishing apparatus using CMP technology is used, and the surface of the wafer is mirror-polished while supplying a polishing liquid containing abrasive grains such as colloidal silica to the surface of the polishing cloth.
  • the mirror polishing process is performed in a plurality of stages.
  • a rough polishing process for the purpose of increasing the flatness of the wafer
  • a fine polishing process for the purpose of reducing the roughness of the wafer surface are performed.
  • primary polishing double-sided simultaneous polishing without a reference surface with excellent flatness is performed, and in single-side polishing, single-side polishing in which the wafer front side is held while holding the wafer back side is employed.
  • the semiconductor wafer is accommodated in the wafer holding hole of the carrier plate disposed between the upper surface plate and the lower surface plate, and in this state, while supplying slurry containing loose abrasive grains, each predetermined
  • the front and back surfaces of the wafer are simultaneously polished by the polishing cloth on the lower surface of the upper surface plate rotating at the speed and the polishing cloth on the upper surface of the lower surface plate. For this reason, there is a problem that the roll-off in which the polishing amount of the outer peripheral portion becomes larger than that of the central portion of the semiconductor wafer is increased, and the outer peripheral sagging occurs in the semiconductor wafer.
  • Patent Document 2 for the purpose of suppressing the peripheral sag of the wafer, the wafer surface is subjected to primary mirror polishing (double-side polishing treatment), followed by mirror polishing by the back surface reference polishing method, and then finish polishing (single-side polishing treatment). ) has been reported.
  • Patent Document 1 reports that the etching step can be omitted by performing double-sided simultaneous grinding (secondary grinding) with a high-quality finishing grindstone after the chamfering step.
  • the grinding process is performed using a grindstone, the generation of a work-affected layer (working damage) on the semiconductor wafer is inevitable. Therefore, if the wafer surface is not etched after the grinding process, a polishing process including removal of the work-affected layer is required in the subsequent mirror polishing process, and the amount of polishing becomes large and polishing takes a long time. there were.
  • Patent Document 1 and Patent Document 2 employ a method in which the front and back surfaces of the wafer are simultaneously mirror-polished with a polishing cloth on an upper and lower surface plate while supplying a slurry containing loose abrasive grains to a ground semiconductor wafer. It was. For this reason, there has been a problem that the outer peripheral sagging is likely to occur in the semiconductor wafer and the polishing rate is lower than that of the fixed abrasive.
  • the inventor has solved each of the above-described problems by supplying pure water (grinding liquid) that does not contain loose abrasive grains after slicing, while each surface plate surface of the upper and lower surface plates is supplied.
  • the front and back surfaces of the semiconductor wafer are simultaneously ground by the fixed abrasive layer formed on the surface (fixed abrasive double-sided grinding), and then the lower surface of the upper surface plate while supplying an alkaline aqueous solution (polishing liquid) that does not contain loose abrasive grains.
  • the front and back surfaces of the semiconductor wafer may be simultaneously polished (fixed abrasive double-sided polishing) with the fixed abrasive layer and the fixed abrasive layer on the upper surface of the lower surface plate.
  • the surface roughness after polishing equivalent to the case where the conventional method is adopted is secured, and the number of processes is reduced as compared with the conventional methods such as Patent Document 1 and Patent Document 2. It is possible to simultaneously reduce the equipment cost, the roll-off of the outer peripheral portion of the semiconductor wafer, the increase of the polishing rate, and the shortening of the polishing time associated therewith.
  • the semiconductor ingot is cut into a number of semiconductor wafers while supplying oil (processing fluid) containing free abrasive grains to the wire row during reciprocating travel. It was discovered that if a fixed abrasive wire with abrasive grains fixed on the outer peripheral surface was used, the amount of kerf loss in a single crystal ingot could be reduced compared to the conventional method using loose abrasive grains. Completed.
  • the present invention ensures the same surface roughness after polishing as in the conventional method, while reducing the number of processes, the equipment cost, and the roll-off of the outer peripheral portion of the semiconductor wafer as compared with the conventional method.
  • An object of the present invention is to provide a method for manufacturing a semiconductor wafer that can simultaneously satisfy an increase in polishing rate and a reduction in polishing time.
  • the present invention makes it easier to reuse semiconductor waste and reduces processing costs compared to the case of collecting semiconductor waste from a used slurry containing oil-based dispersant and free abrasive grains and reusing it.
  • An object of the present invention is to provide a semiconductor wafer manufacturing method that can reduce the amount of kerf loss in a single crystal ingot.
  • a first aspect of the present invention is a method for manufacturing a semiconductor wafer, in which abrasive grains are dispersed on an elastic substrate formed on an upper surface plate surface and a lower surface plate surface while supplying pure water that does not contain free abrasive particles.
  • the first fixed abrasive layer simultaneously grinds the front and back surfaces of a plurality of semiconductor wafers, and after the double-side grinding step, while supplying an alkaline aqueous solution free of free abrasive grains, Manufacturing of a semiconductor wafer including a double-side polishing step of simultaneously polishing front and back surfaces of a plurality of semiconductor wafers ground on both sides by a second fixed abrasive layer in which abrasive grains are dispersed on an elastic base material formed on a board surface Is the method.
  • the semiconductor wafer may be a silicon single crystal wafer.
  • the first fixed abrasive layer (fixed abrasive layer for grinding) may be one in which abrasive grains having an average particle size of less than 4 ⁇ m, preferably 1 ⁇ m or more and less than 4 ⁇ m are dispersed in an elastic substrate.
  • the elastic base material may be made of a kind of material selected from an epoxy resin, a phenol resin, an acrylic urethane resin, a polyurethane resin, a vinyl chloride resin, and a fluororesin.
  • the abrasive grains may be made of a kind of material selected from diamond, alumina, and zirconia.
  • the surface pressure applied to the semiconductor wafer from the fixed abrasive layer may be 250 to 400 g / cm 2 .
  • the roughness of the front and back surfaces of the semiconductor wafer after polishing is preferably 0.1 to 100 nm in RMS display.
  • the polishing rate of the front and back surfaces of the wafer may be 0.2 to 0.6 ⁇ m / min, preferably 0.3 to 0.5 ⁇ m / min.
  • the polishing amount of the front and back surfaces of the wafer may be 0.1 to 30 ⁇ m, preferably 0.2 to 20 ⁇ m.
  • the surface pressure applied to the semiconductor wafer from the fixed abrasive layer may be 100 to 400 g / cm 2 .
  • the second fixed abrasive layer (fixed abrasive layer for polishing) may be obtained by dispersing abrasive grains having an average particle size of 2 ⁇ m or more and 8 ⁇ m or less in an elastic substrate.
  • the thickness of the second fixed abrasive layer may be 0.1 to 20 mm, preferably 0.2 to 15 mm.
  • the elastic base material may be made of a kind of material selected from polyether resins, polyester resins, and polyurethane resins.
  • the abrasive grains may be made of a kind of silica-based material selected from fumed silica, colloidal silica, and the like.
  • the first fixed abrasive layer and the second fixed abrasive layer may be bonded to the surface of the surface plate body. In that case, the fixed abrasive layer may be composed of a plurality of pieces bonded to the surface of the surface plate body.
  • the alkaline aqueous solution containing no free abrasive grains may be an alkaline aqueous solution having a pH of 10 to 13, preferably a pH of 11 to 12.
  • the temperature of the alkaline aqueous solution may be 20 ° C. to 30 ° C.
  • the alkaline aqueous solution may be a kind of aqueous solution selected from inorganic alkaline agents such as KOH and NaOH, or organic alkaline agents such as amines and potassium carbonate.
  • the double-side grinding step may be performed using a sun gear (planetary gear) type grinding apparatus.
  • grinding may be performed by using a non-sun gear grinding device, holding the semiconductor wafer on a carrier plate, rotating the surface plate, and causing the carrier plate to perform a circular motion without rotation.
  • a sun gear (planetary gear) type polishing apparatus may be used, or a sunless gear type polishing apparatus is used to hold the semiconductor wafer on a carrier plate and rotate the surface plate.
  • polishing may be performed by causing the carrier plate to perform a circular motion without rotation.
  • a second aspect of the present invention is a method for manufacturing a semiconductor wafer according to the first aspect, wherein after the double-side grinding step and before the double-side polishing step, an outer peripheral portion of the double-side ground semiconductor wafer is provided.
  • the semiconductor wafer manufacturing method further includes a chamfering step of chamfering with a chamfering grindstone while supplying pure water not containing free abrasive grains.
  • a chamfering grindstone such as a # 800 to # 1500 metal bond grindstone can be used.
  • the chamfering amount may be 100 to 1000 ⁇ m.
  • a third aspect of the present invention is a method for manufacturing a semiconductor wafer according to the first or second aspect, further comprising a slicing step of slicing a semiconductor wafer to be subjected to the double-side grinding step from a semiconductor single crystal ingot.
  • the semiconductor wafer is sliced from a semiconductor single crystal ingot using a fixed abrasive wire having abrasive grains fixed on the outer peripheral surface.
  • the single crystal ingot may be a single crystal silicon ingot.
  • the fixed abrasive wire used in the slicing step has a metallic wire body and a metal plating layer formed on the surface of the wire body, and abrasive particles are embedded in the metal plating layer, and the metal A part of the abrasive grains may protrude from the surface of the plating layer.
  • the wire body can be selected from steel wires such as piano wires, tungsten wires, molybdenum wires and the like.
  • the wire may have a diameter of 50 to 500 ⁇ m.
  • the material of the abrasive grains fixed to the wire can be selected from diamond, silica, SiC, alumina, zirconia and the like. Diamond is particularly desirable.
  • the particle size (average particle size) of the abrasive grains fixed to the wire may be 1 to 100 ⁇ m.
  • the feed speed of the fixed abrasive wire is preferably adjusted to 0.05 to 2.00 m / min.
  • pure water As pure water (ultra-pure water), water having a purity of 1 / 1,000,000 g ( ⁇ g / liter) to 1 / trillion (ng / liter) per liter of water should be adopted as the mass of the dissolved material. Can do.
  • a thickener selected from alcohols and glycols such as ethylene glycol, diethylene glycol, and propylene glycol may be added to the pure water.
  • a fourth aspect of the present invention is a method for manufacturing a semiconductor wafer according to any one of the first to third aspects, wherein the double-side polishing is performed without performing an etching step after the double-side grinding step. It is a manufacturing method of a semiconductor wafer.
  • the front and back surfaces of the semiconductor wafer are simultaneously ground on both sides by a pair of upper and lower fixed abrasive layers, and then free abrasive While supplying an aqueous solution containing no grains, the front and back surfaces of the wafer are simultaneously polished on both sides by a pair of upper and lower fixed abrasive layers.
  • the wafer machining on the semiconductor wafer only from the fixed abrasive grains without using the free abrasive grains from the fixed abrasive double-sided grinding to the fixed abrasive double-sided polishing (rough polishing).
  • the processing rate of the semiconductor wafer from the fixed abrasive double-sided grinding to the fixed abrasive double-sided polishing increases, and the processing time of the semiconductor wafer can be greatly shortened.
  • the front and back surfaces of the sliced wafer are ground on both sides while supplying pure water that does not contain free abrasive grains.
  • the occurrence of scratches on the front and back surfaces of the wafer can be suppressed, and the front and back surfaces of the wafer can be ground at a high processing rate.
  • the flatness obtained in the two steps of the lapping step or double-headed grinding step and the finish grinding step that have been conventionally required can be obtained in one step of this fixed abrasive double-sided grinding, so the number of steps can be reduced. It is possible to shorten and suppress an increase in the area occupied by the facility.
  • polishing is performed with a fixed abrasive layer having a hardness higher than that of a conventional polishing cloth. Therefore, the polishing pressure that acts on the upper and lower surface plates from each rotating shaft during double-side polishing acts more uniformly on the entire polishing surface than in the case of the polishing cloth. Thereby, it is possible to suppress roll-off (peripheral sagging), which is a problem of the conventional method, and is generated by increasing the polishing amount of the outer peripheral portion of the wafer as compared with the central portion of the wafer.
  • polishing is performed while supplying an alkaline aqueous solution (polishing liquid) having a semiconductor etching function. For this reason, mechanical processing damage on the front and back surfaces of the wafer caused by the grinding action by the fixed abrasive is immediately chemically etched by the alkaline aqueous solution. As a result, even if the etching step is omitted, the surface roughness after polishing equivalent to that having the etching step can be obtained.
  • pure water that does not contain free abrasive grains is used as each processing liquid from slicing a semiconductor wafer to double-side polishing of fixed abrasive grains by double-side grinding and chamfering of fixed abrasive grains. Therefore, compared with the case where semiconductor waste is recovered from a used slurry containing a conventional oil-based dispersant and free abrasive grains and reused, the reuse process becomes easier and the processing cost can be reduced.
  • FIG. 1 is a perspective view of a fixed abrasive double-sided grinding (polishing) device used in a fixed abrasive double-sided grinding (polishing) step on the front and back surfaces of a semiconductor wafer in a semiconductor wafer manufacturing method according to Embodiment 1 of the present invention.
  • FIG. 1 It is a longitudinal cross-sectional view in the use condition of the fixed abrasive double-sided grinding (polishing) apparatus used at the fixed abrasive double-sided grinding (polishing) process among the manufacturing methods of the semiconductor wafer which concerns on Example 1 of this invention.
  • the circular motion without rotation of the carrier plate in the fixed abrasive double-sided grinding (polishing) apparatus used in the fixed abrasive double-sided grinding (polishing) step is described.
  • FIG. It is a front view which shows the use condition of the chamfering apparatus used at the chamfering process of a semiconductor wafer among the manufacturing methods of the semiconductor wafer which concerns on Example 1 of this invention.
  • B shows the silicon wafer manufactured by this invention method
  • A shows the silicon wafer manufactured by the conventional method.
  • B shows the silicon wafer manufactured by this invention method
  • A shows the silicon wafer manufactured by the conventional method.
  • the present invention provides a front and back surface of a plurality of semiconductor wafers by a fixed abrasive layer in which abrasive grains are dispersed in elastic base materials formed on an upper surface plate surface and a lower surface plate surface while supplying pure water not containing free abrasive particles.
  • the fixed abrasive double-sided grinding is performed at the same time, and after the fixed abrasive double-sided grinding, while supplying an alkaline aqueous solution containing no free abrasive grains, the abrasive grains are applied to the elastic base material formed on the upper and lower surface plates.
  • the semiconductor wafer to be used for the fixed abrasive double-side grinding is made from a single crystal ingot of a semiconductor by using a fixed abrasive wire in which abrasive grains are fixed to an outer peripheral surface while supplying pure water not containing free abrasive grains. It may be sliced. Further, during the period from the double-side grinding of the fixed abrasive to the double-side polishing of the fixed abrasive, chamfering is performed while supplying pure water not containing free abrasive grains to the outer periphery of the semiconductor wafer subjected to double-side grinding of the fixed abrasive. You may chamfer with a grindstone.
  • the fixed abrasive double-sided polishing may be performed without an etching process.
  • a single crystal ingot that is a raw material of the semiconductor wafer for example, a single crystal silicon ingot can be employed.
  • the semiconductor wafer for example, a single crystal silicon wafer can be employed.
  • Examples of the diameter of the semiconductor wafer include 300 mm and 450 mm.
  • a semiconductor wafer is obtained by slicing a single crystal ingot by various cutting methods. Slicing uses a wire saw, reciprocates a wire train given a predetermined tension, and presses a single crystal ingot while supplying a processing liquid (whether or not containing free abrasive grains) to this, A method of cutting (slicing) a large number of semiconductor wafers from a single crystal ingot is preferred.
  • a fixed abrasive wire is one in which abrasive grains are fixed to the outer peripheral surface of the wire.
  • the surface of the wire is covered with a metal plating layer containing a large number of abrasive grains, and a part of the abrasive grains protrudes from the surface of the metal plating layer.
  • steel wires such as a piano wire, a tungsten wire, a molybdenum wire, etc. are employable, for example.
  • the diameter of the wire may be 50 to 500 ⁇ m. If it is less than 50 ⁇ m, the wire is likely to be disconnected, and if it exceeds 500 ⁇ m, kerf loss increases, and the number of semiconductor wafers obtained by slicing one single crystal ingot decreases.
  • a preferred wire diameter is 70-400 ⁇ m. If it is this range, it will become possible to extract
  • Diamond, silica, SiC, alumina, zirconia, or the like can be used as a material for the abrasive grains fixed to the wire. Diamond is particularly desirable.
  • the particle size (average particle size) of the abrasive grains fixed to the wire may be 1 to 100 ⁇ m. If it is less than 1 ⁇ m, the cutting ability of the single crystal ingot by the fixed abrasive wire is lowered, and if it exceeds 100 ⁇ m, the abrasive grains are easily detached from the wire and the kerf loss is also increased.
  • a particularly preferable average grain size of the abrasive grains is 5 to 40 ⁇ m. Within this range, it is possible to stably obtain a high-quality semiconductor wafer with reduced warpage and processing scratches on the cutting surface.
  • the abrasive grains are attached to the outer peripheral surface of the wire using a thermosetting resin binder or a photo-curable resin binder, and the binder is thermoset or photocured.
  • the method can be adopted.
  • a method of electrodepositing abrasive grains on the outer peripheral surface of the wire, a method of depositing abrasive grains by forming an electrolytic plating layer on the outer peripheral surface of the wire, and the like can be employed.
  • the wire to be used is not limited to the electrodeposited abrasive wire, but may be a resin bond wire or the like.
  • the feed speed of the fixed abrasive wire is desirably adjusted to 0.05 to 2.00 m / min. If it is less than 0.05 m / min, the cutting ability of the single crystal ingot by the fixed abrasive wire is lowered, and if it exceeds 2.00 m / min, the wire may be broken.
  • a preferable feed rate of the fixed abrasive wire is 0.2 to 1.0 m / min. Within this range, it is possible to obtain a high-quality semiconductor wafer with reduced warpage and processing scratches on the cut surface.
  • pure water for example, the amount of dissolved substances such as sodium, iron, copper, zinc, etc. is from 1 / billion to 1 trillion (ng / l) per billion liters of water.
  • Water with a level of purity can be employed.
  • alcohols as thickeners and glycols such as ethylene glycol, diethylene glycol, and propylene glycol are added to pure water. Thereby, the viscosity of pure water increases and the high discharge effect of cutting waste is acquired.
  • a sun gear (planetary gear) type or a circular movement that does not rotate on the carrier plate is used as a wafer double-side grinding device.
  • a non-sun gear type that simultaneously grinds both the front and back surfaces of a semiconductor wafer.
  • This grinding process is a batch system in which a plurality of semiconductor wafers are processed simultaneously.
  • the fixed abrasive double-sided grinding apparatus is used in the non-sun gear type double-sided grinding method.
  • the fixed abrasive double-sided grinding device for example, a double-sided grinding device or a double-sided polishing device can be employed.
  • a fixed abrasive layer is attached to the lower surface of the upper surface plate and the upper surface of the lower surface plate in place of the polishing cloth.
  • a non-sun gear type fixed abrasive double-sided grinding device for example, a lower surface plate for grinding, in which a fixed abrasive layer for grinding one surface of a semiconductor wafer is formed on the upper surface (surface plate surface), and directly above the lower surface plate for grinding Between the upper surface plate for grinding, in which another fixed abrasive layer for grinding the other surface of the semiconductor wafer is formed on the lower surface (surface plate surface), and between the lower surface plate for grinding and the upper surface plate for grinding The wafer holding hole is formed by causing the carrier plate to perform a circular motion without rotation between the carrier plate in which a plurality of wafer holding holes for the semiconductor wafer are formed and the lower surface plate for grinding and the upper surface plate for grinding. It is possible to employ one having a carrier circular motion mechanism that simultaneously grinds the front and back surfaces of a plurality of semiconductor wafers held by the two fixed abrasive layers.
  • the rotational speed of the upper surface plate for grinding and the lower surface plate for grinding is 5 to 30 rpm. If it is less than 5 rpm, the processing rate of the semiconductor wafer is low, and if it exceeds 30 rpm, the semiconductor wafer may jump out of the wafer holding hole during processing.
  • the preferred rotational speed of both surface plates is 10 to 25 rpm. If it is this range, the double-sided grinding process of the semiconductor wafer which maintained the stable processing rate is attained, and flatness can be maintained. Both grinding surface plates may be rotated at the same speed or at different speeds. Moreover, the upper surface plate for grinding and the lower surface plate for grinding may be rotated in the same direction or in different directions. Note that, during wafer processing, the carrier plate is caused to perform a circular motion that does not involve rotation, so that both grinding surface plates need not necessarily be rotated.
  • the circular motion without rotation refers to a circle in which the carrier plate always rotates and swings (oscillates and rotates) while maintaining a state in which the carrier plate is decentered by a predetermined distance from the axes of the grinding upper and lower surface plates. Refers to exercise. By this circular motion without rotation, all points on the carrier plate draw a small circular locus having the same size (radius r).
  • a sun-gear-type fixed abrasive double-sided grinding apparatus is suitable for a large-diameter wafer having a diameter of 300 mm or more, for example, because there is no sun gear unlike the planetary gear type.
  • the front and back surfaces of the carrier plate are subjected to surface treatment such as EG coating, SUS coating, and titanium coating.
  • the number of wafer holding holes formed in the carrier plate is arbitrary. For example, it may be one, two to five, or more.
  • the circular motion speed without rotation of the carrier plate is 1 to 15 rpm. If it is less than 1 rpm, it is difficult to uniformly grind the wafer surface. If it exceeds 15 rpm, the end face of the semiconductor wafer held in the wafer holding hole may be damaged.
  • abrasive grains having a particle size (average particle size) of less than 4 ⁇ m, preferably 1 to 4 ⁇ m, are dispersed (for example, kneaded to be dispersed and solidified) on an elastic substrate. )
  • the pressing force given to the wafer by the abrasive grains is appropriately absorbed by the elastic base material, and it is possible to prevent the pressing force from being concentrated locally and to prevent the wafer surface from being scratched, and to achieve a high processing rate. Can be maintained.
  • the thickness of the fixed abrasive layer for grinding is 100 to 2000 ⁇ m.
  • the thickness is less than 100 ⁇ m, the base material holding the fixed abrasive layer may come into contact with the wafer. Moreover, when it exceeds 2000 micrometers, there exists a possibility that the intensity
  • the preferred thickness of the fixed abrasive layer is 300 to 1800 ⁇ m. Within this range, stable grinding of the semiconductor wafer can be achieved and the life of the fixed abrasive layer can be extended.
  • Diamond, alumina, zirconia, or the like can be used as a material for the abrasive grains for grinding.
  • a material of the elastic base material for grinding for example, a cured polymer system (epoxy resin, phenol resin, acrylic urethane resin, polyurethane resin, vinyl chloride resin, fluororesin) or the like can be employed.
  • the surface pressure on the semiconductor wafer during double-side grinding is preferably adjusted to be, for example, 250 to 400 g / cm 2 . If it is this range, the stable grinding
  • the processing fluid supplied to the semiconductor wafer by simultaneous grinding of the front and back surfaces pure water that does not contain loose abrasive grains is employed.
  • a small amount of the thickener may be added to pure water.
  • the processing fluid used for double-side grinding can be easily reused, and processing scratches on the surface of the semiconductor wafer due to aggregation of free abrasive grains can be prevented. Can do.
  • this chamfering process may be performed in advance before double-side grinding of fixed abrasive grains, or chamfering processes may be performed before and after double-side grinding of fixed abrasive grains.
  • conventional double-side grinding using slurries containing loose abrasive grains there is a problem that loose abrasive grains collide with the wafer end face, chipping and cracking occur on the wafer end face, and rough chamfering is performed before grinding. It is necessary to perform the chamfering process again after the processing.
  • the present invention since the present invention performs fixed abrasive double-sided grinding using pure water containing no loose abrasive grains, it is possible to omit rough chamfering before fixed abrasive double-sided grinding.
  • a chamfering grindstone such as # 800 to # 1500 metal bond can be employed.
  • the chamfering amount may be set to 100 to 1000 ⁇ m.
  • laser marking processing on the surface of the semiconductor wafer. This laser marking process may be performed before chamfering. In the laser marking process, in order to recognize a semiconductor wafer, a predetermined mark (bar code, number, symbol, figure, etc.) is engraved on the outer periphery of the wafer by a laser.
  • polishing of the front and back surfaces of the semiconductor wafer refers to polishing in which the roughness of the front and back surfaces of the semiconductor wafer after polishing is 0.1 to 100 nm in RMS display.
  • the front and back surfaces of the semiconductor wafer are polished simultaneously.
  • the fixed abrasive layer used in the fixed abrasive double-side polishing a layer obtained by dispersing (for example, kneading and solidifying) abrasive grains having a particle diameter (average particle diameter) of 2 to 8 ⁇ m in an elastic substrate can be employed. . Within this range, scratches are not generated on the processed surface of the semiconductor wafer, and a high polishing rate can be maintained.
  • the polishing rate is low, and if it exceeds 8 ⁇ m, there is a risk of processing scratches occurring on the surface of the semiconductor wafer. It is desirable to adjust the thickness of the fixed abrasive layer in the fixed abrasive double-side polishing to 0.1 to 20 mm. If the thickness is less than 0.1 mm, the base material holding the fixed abrasive layer may come into contact with the wafer, and if it exceeds 20 mm, the strength of the fixed abrasive layer may be reduced and the fixed abrasive layer may be damaged. .
  • the preferred thickness of the fixed abrasive layer is 0.2 to 15 mm. Within this range, stable grinding of the semiconductor wafer can be achieved and the life of the fixed abrasive layer can be extended.
  • silica including fumed silica
  • colloidal silica may be used.
  • a material for the elastic base material for polishing for example, a polyether-based resin, a polyester-based resin, a polyurethane-based resin, or the like can be employed.
  • the pressing force applied from the abrasive grains to the wafer during double-side polishing of the fixed abrasive grains is appropriately absorbed by the elastic base material, and it is possible to prevent the pressing force from being concentrated locally and generating scratches on the wafer surface.
  • a hard base material such as a metal bond or a resin bond that is generally used as a grinding wheel is used, abrasive grains are dispersed on the wafer surface, which is inappropriate. It is.
  • an aqueous alkaline solution containing no free abrasive grains can be used.
  • the alkaline agent various inorganic alkaline agents such as KOH and NaOH, and various organic alkaline agents such as amines and potassium carbonate can be employed. Since free abrasive grains are not used, processing scratches on the surface of the semiconductor wafer due to aggregation of the free abrasive grains can be prevented.
  • a semiconductor wafer that has undergone processing such as fixed-abrasive double-sided grinding, chamfering, and laser marking is etched to reduce the amount of processing distortion, and then washed.
  • An oxide film such as a natural oxide film adheres to the front and back surfaces of the cleaned semiconductor wafer. This oxide film cannot be removed by an etching reaction with an alkaline processing liquid, but in the polishing of the front and back surfaces of the semiconductor wafer, the oxide film attached to the front and back surfaces of the semiconductor wafer is removed by the fixed abrasive layer.
  • polishing of the front and back surfaces of the semiconductor wafer proceeds by an etching action with an alkaline solution used as a processing liquid, and a mirror polished surface of 0.1 to 100 nm can be obtained by RMS display as described above.
  • the preferred pH of the alkaline aqueous solution is 11-12. Within this range, a wafer with good surface roughness can be produced with high productivity.
  • the liquid temperature when using the alkaline aqueous solution is 20 ° C. to 30 ° C.
  • the polishing rate of the front and back surfaces of the wafer is desirably adjusted to 0.2 to 0.6 ⁇ m / min.
  • the preferable polishing rate for the front and back surfaces of the wafer is 0.3 to 0.5 ⁇ m / min. Within this range, a wafer with good surface roughness can be obtained with high productivity.
  • the polishing amount on the front and back surfaces of the wafer is desirably adjusted to 0.1 to 30 ⁇ m.
  • the preferable polishing amount on the front and back surfaces of the wafer is 0.2 to 20 ⁇ m. Within this range, a wafer with good surface roughness can be obtained with high productivity.
  • the double-side polishing apparatus may be a single-wafer type or a batch-type double-side polishing apparatus that simultaneously polishes a plurality of semiconductor wafers.
  • the surface pressure on the semiconductor wafer during double-side polishing is, for example, 100 to 400 g / cm 2 . Within this range, it is possible to polish the semiconductor wafer stably without reducing the polishing rate. If it is less than 100 g / cm 2 , the polishing rate of the semiconductor wafer will decrease, and if it exceeds 400 g / cm 2 , the semiconductor wafer will break due to high weighting.
  • finish polishing is high-precision polishing performed on the surface (surface to be polished) or the front and back surfaces of a semiconductor wafer.
  • finish polishing as a polishing cloth, a suede type finish polishing having a hardness (Shore hardness) of 60 to 70, a compression rate of 3 to 7%, and a compression modulus of 50 to 70% is employed.
  • polishing slurry an alkaline slurry containing free abrasive grains (silica or the like) having an average particle diameter of 20 to 40 nm is employed.
  • the conditions for final polishing are, for example, a polishing pressure of about 100 g / cm 2 , a polishing amount of about 0.1 ⁇ m, and a surface roughness of 0.1 nm or less in RMS display.
  • the finish polishing is mirror polishing applied to at least the wafer surface (device forming surface).
  • the surface is located above a polishing surface plate having a polishing cloth attached to the upper surface.
  • Semiconductor scraps include single crystal ingot grinding scraps generated during slicing, semiconductor wafer grinding scraps generated during grinding, wafer peripheral grinding (chamfering) scraps generated during chamfering, and wafer polishing scraps generated during polishing.
  • a natural precipitation method, a centrifugal separation method, or the like can be employed as a method for recovering semiconductor waste from wastewater.
  • the collected semiconductor waste is dried by heating or the like, and then made into a lump of a size that is easy to handle.
  • the manufacturing method of the semiconductor wafer of Example 1 includes a slicing step S101, a cleaning step S102, a fixed abrasive double-sided grinding step S103, a chamfering step S104, a laser marking step S105, and an alkali etching step.
  • S106, fixed abrasive double-side polishing step S107, and finish polishing step S108 are provided.
  • a crystal pulling step (not shown), from a silicon melt doped with a predetermined amount of boron in a crucible, a diameter of 306 mm, a length of a straight body portion of 2500 mm, and a specific resistance of 0.01 ⁇ ⁇ cm by the Czochralski method.
  • a single crystal silicon ingot having an initial oxygen concentration of 1.0 ⁇ 10 18 atoms / cm 3 is pulled up.
  • one single crystal silicon ingot is cut into a plurality of crystal blocks, and thereafter, outer peripheral grinding of each crystal block is performed.
  • the outer peripheral portion of the crystal block is subjected to outer peripheral grinding by 6 mm by an outer peripheral grinding apparatus having a resinoid grinding wheel containing # 200 abrasive grains (SiC). Thereby, each crystal block is formed in a cylindrical shape.
  • the wire saw 40 includes three wire saw groove rollers (hereinafter referred to as groove rollers) 41A to 41C arranged in a triangular shape when viewed from the front. Between these groove rollers 41A to 41C, one fixed abrasive wire 42 is wound at a constant pitch so as to be parallel to each other. As a result, the wire row 45 appears between the groove rollers 41A to 41C.
  • the fixed abrasive wire 42 is obtained by fixing diamond abrasive grains 44 having a particle diameter of 15 to 25 ⁇ m to a surface of a steel wire 43 having a diameter of 160 ⁇ m by a nickel plating 45 having a thickness of 7 ⁇ m (FIG. 3).
  • the fixed abrasive wire 42 is led out from the bobbin of the feeding device, is laid over each of the groove rollers 41A to 41C via the supply-side guide roller, and then is passed through the guide roller on the lead-out side of the winding device. It is wound on a bobbin. Since the fixed abrasive wire 42 reciprocates, the roles of the feeding device and the winding device are alternately changed.
  • the wire row 45 is reciprocated by the main motor between the three groove rollers 41A to 41C.
  • the middle of the two groove rollers 41A and 41B arranged on the lower side is the cutting position of the crystal block I.
  • a pure water supply nozzle 46 for continuously supplying pure water onto the wire row 45 is provided above one side of the cutting position. While supplying 10 liter / min of pure water from the pure water supply nozzle 46 to the wire row 45, the crystal block I is pressed at 1.0 mm / min from below onto the wire row 45 that is reciprocating at 1 m / min.
  • reference numeral 47 denotes a lifting block for the crystal block I.
  • a cleaning apparatus capable of cleaning oil on the surface of the silicon wafer after slicing is used and cleaned with a surfactant (FIG. 1).
  • the fixed abrasive double-side grinding apparatus 10 includes a carrier plate 11 made of glass epoxy having a disk shape in plan view in which three wafer holding holes 11a are formed around the plate axis line (in the circumferential direction) at 120 ° intervals.
  • the upper surface plate for grinding the front and back surfaces of the wafer by sandwiching the silicon wafer W inserted and held in the respective wafer holding holes 11a so as to be pivotable from above and below and moving it relative to the silicon wafer W ( An upper surface plate for grinding 12 and a lower surface plate (lower surface plate for grinding) 13 are provided.
  • a lower processing layer (fixed abrasive layer) 31 for grinding is formed on the upper surface (surface plate surface) of the lower surface plate 13, and an upper processing layer for grinding (another fixed abrasive layer) is formed on the lower surface (surface plate surface) of the upper surface plate 12.
  • Grain layer) 32 is formed.
  • the lower processing layer 31 for grinding and the upper processing layer 32 for grinding are first made of diamond abrasive grains (fixed) with a particle size (average particle size) of less than 4 ⁇ m on a cured polymer resin that is a raw material of the elastic substrates 33a and 34a.
  • Abrasive grains 33b and 34b are kneaded and solidified so that the degree of concentration becomes 100, and then cut into several mm squares to produce a large number of grindstone pieces 33 and 34. Next, these grindstone pieces 33, 34 are bonded to the opposing surfaces of both surface plates 12, 13 in a lattice shape, thereby forming both processed layers 31, 32.
  • the thickness of the elastic base materials 33a and 34a (the thickness of both processed layers 31 and 32) is 800 ⁇ m. Both processed layers 31 and 32 may be formed by directly bonding diamond abrasive grains 33b and 34b on the surfaces of the elastic base materials 33a and 34a.
  • the upper surface plate 12 is rotationally driven in the horizontal plane by the upper rotation motor 16 via a rotating shaft 12a extending upward. Further, the upper surface plate 12 is vertically moved up and down by an elevating device 18 that advances and retreats in the axial direction.
  • the elevating device 18 is used, for example, when the silicon wafer W is supplied to and discharged from the carrier plate 11.
  • the surface pressure of 250 g / cm 2 on the upper and lower surfaces of the silicon wafer W of the upper surface plate 12 and the lower surface plate 13 is applied by pressure means such as an air bag system (not shown) incorporated in the upper surface plate 12 and the lower surface plate 13. Done.
  • the lower surface plate 13 is rotated in the horizontal plane by the lower rotation motor 17 via the output shaft 17a.
  • the carrier plate 11 is circularly moved in a plane (horizontal plane) parallel to the surface of the plate 11 by the carrier circular motion mechanism 19 so that the plate 11 itself does not rotate.
  • the carrier circular motion mechanism 19 has an annular carrier holder 20 that holds the carrier plate 11 from the outside.
  • the carrier circular motion mechanism 19 and the carrier holder 20 are connected via a connection structure.
  • the connection structure is means for connecting the carrier plate 11 to the carrier holder 20 so that the carrier plate 11 does not rotate and can absorb the elongation of the carrier plate 11 during thermal expansion. That is, as shown in FIG. 4 and FIG. 5, the connecting structure includes a large number of pins 23 projecting from the inner peripheral flange 20 a of the carrier holder 20 at predetermined angles in the holder circumferential direction, and the outer periphery of the carrier plate 11. Among the portions, each pin 23 has a long hole-shaped pin hole 11b formed in a number corresponding to the corresponding position.
  • Each pin hole 11b has its hole length direction aligned with the plate radial direction so that the carrier plate 11 connected to the carrier holder 20 via the pin 23 can move slightly in the radial direction.
  • the outer periphery of the carrier holder 20 is provided with four bearing portions 20b that protrude outward every 90 °.
  • Each bearing portion 20b is provided with an eccentric shaft 24a projecting at an eccentric position on the upper surface of the small-diameter disk-shaped eccentric arm 24.
  • a rotating shaft 24 b is suspended from the center of each lower surface of the four eccentric arms 24.
  • Each rotary shaft 24b is attached to a bearing portion 25a disposed on the annular device base 25 every 90 ° in a state where each tip portion protrudes downward.
  • a sprocket 26 is fixed to the tip of each rotating shaft 24b protruding downward.
  • Each sprocket 26 has a series of timing chains 27 in a horizontal state.
  • Each sprocket 26 and the timing chain 27 constitute synchronizing means for simultaneously rotating the four rotating shafts 24b so that the four eccentric arms 24 perform a circular motion in synchronization.
  • one rotating shaft 24b is formed to be longer, and a tip portion thereof projects downward from the sprocket 26.
  • a power transmission gear 28 is fixed to this portion.
  • the gear 28 is engaged with a large-diameter driving gear 30 fixed to an output shaft extending upward of a circular motion motor 29 such as a geared motor.
  • a circular motion motor 29 for circular motion may be arrange
  • the carrier holder 20 collectively connected to each eccentric shaft 24 a, and by extension, the carrier plate 11 held by the holder 20, performs a circular motion without rotation in a horizontal plane parallel to the plate 11.
  • the center line of the carrier plate 11 turns while maintaining a state eccentric from the axis e of both surface plates 12 and 13 by a distance L.
  • This distance L is the same as the distance between the eccentric shaft 24a and the rotating shaft 24b. Due to this circular motion without rotation, all points on the carrier plate 11 draw a locus of a small circle of the same size (FIG. 6).
  • the silicon wafer W is inserted into each wafer holding hole 11a of the carrier plate 11 so as to be rotatable.
  • the grinding upper processing layer 32 rotating at 15 rpm together with the upper surface plate 12 is pressed against each wafer W at 250 g / cm 2
  • the lower grinding layer rotating at 15 rpm together with the lower surface plate 13 The processing layer 31 is pressed against each wafer surface at 250 g / cm 2 .
  • each eccentric arm 24 rotates synchronously in a horizontal plane, and the carrier holder 20 and the carrier plate 11 collectively connected to each eccentric shaft 24a are rotated in a horizontal plane parallel to the surface of the plate 11. Perform no circular motion at 7.5 rpm. As a result, the front and back surfaces of each silicon wafer W are ground at the same time while turning in a horizontal plane in the corresponding wafer holding holes 11a.
  • the silicon wafer W is processed by the fixed abrasive double-sided grinding apparatus 10 of the fixed abrasive method that can be performed in one process from rough grinding to finish grinding, the number of manufacturing processes of the silicon wafer W can be reduced, and the equipment cost is also reduced. Can be reduced. Moreover, since the crystal block I is sliced by the fixed abrasive wire 42 at the time of slicing as well as the double-sided simultaneous grinding of the fixed abrasive method, kerf loss during wafer production can also be reduced.
  • pure water can be adopted as a working fluid used in these three steps.
  • the surface pressure is increased to 250g / cm 2, which is higher than that of the sun gear type (100 to 150g / cm 2 ), and circular motion without rotation is performed. Since the front and back surfaces of each silicon wafer W are ground simultaneously, the grinding surface (processed surface) can be processed with high accuracy and with few scratches, while the processing rate is as high as 15 ⁇ m / min. Further, since the fixed abrasive double-side grinding apparatus 10 is used to process the silicon wafer W using the diamond abrasive grains 33b and 34b of less than 4 ⁇ m adhered (dispersed and solidified) on the surfaces of the elastic base materials 33a and 34a.
  • a surface having good flatness can be obtained for the silicon wafer W after slicing.
  • the silicon wafer W is in a free state placed in the wafer holding hole 11a of the carrier plate 11, in addition to good flatness, a good nanotopography (appears on the surface when the silicon wafer W is not attracted). Swell) can be obtained.
  • the elastic base materials 33a and 34a have elasticity, when the diamond abrasive grains 33b and 34b are pressed against the silicon wafer W, the elastic base material 33a, 34b receives the force that the silicon wafer W receives from the diamond abrasive grains 33b and 34b. 34a is relaxed, and it is possible to prevent the silicon wafer W from being damaged by local and excessive external force acting on the silicon wafer W.
  • the use of fine diamond abrasive grains 33b and 34b of less than 4 ⁇ m is a method in which the fixed abrasive double-side grinding apparatus 10 fixes the diamond abrasive grains 33b and 34b to the upper surface plate 12 and the lower surface plate 13 to perform wafer processing.
  • the chamfering grindstone 51 during rotation of the chamfering device 50 is pressed against the outer peripheral portion of the silicon wafer W to chamfer (FIG. 7).
  • the chamfering device 50 used here presses the outer peripheral portion of the silicon wafer W against the grinding surface (outer peripheral surface) of the rotating # 800 chamfering grindstone 51 while supplying pure water as a coolant. This is a device for chamfering the outer periphery of the wafer.
  • the silicon wafer W is vacuum-sucked on the upper surface of the turntable 52, and the turntable 52 is rotatably provided by a table motor 53. Further, a chamfering grindstone 51 is disposed in proximity to the rotary table 52.
  • the chamfering grindstone 51 is fixed to the tip of the rotation shaft 55 of the rotary motor 54 and is supported so as to be rotatable about the rotation shaft 55.
  • pure water is supplied to the chamfered surface of the silicon wafer W at 5 liters / minute.
  • the chamfered surface of the silicon wafer W may be mirrored after the chamfering step S104. Specifically, while supplying pure water, the chamfered portion (chamfered surface) of the silicon wafer W is pressed against a rotating cloth or buff around a vertical rotation axis, and the chamfered surface of the chamfered portion is mirror-finished. Finish.
  • a predetermined mark is imprinted on the outer peripheral portion of the silicon wafer W by a laser in order to recognize the wafer. That is, laser marking is performed on a bar code, a number, a symbol, a figure, or the like designated in advance on the terrace portion exposed to the outside.
  • the silicon wafer W is immersed in an alkaline etching solution (liquid temperature 60 ° C.) for 10 minutes.
  • the fixed abrasive double-side polishing step (S107) of the silicon wafer W will be described.
  • the fixed abrasive double-side grinding apparatus 10 used in the fixed abrasive double-side grinding shown in FIGS. 4 to 6 is used.
  • a lower processing layer (fixed grain layer) 31A for polishing is fixed on the upper surface of the lower surface plate 13 instead of the lower processing layer 31 for grinding, and the upper surface for grinding is fixed on the lower surface of the upper surface plate 12.
  • an upper processing layer for polishing (another fixed abrasive layer) 32A is fixed.
  • an alkaline aqueous solution mainly composed of KOH containing no free abrasive grains was employed as the polishing liquid.
  • the lower processing layer for polishing 31A and the upper processing layer for polishing 32A are kneaded with diamond abrasive grains 33b and 34b having a particle diameter (average particle diameter) of 4 ⁇ m in a cured polymer resin that is a raw material of the elastic base materials 33a and 34a. Then, it is dispersed and solidified and cut into several mm squares to obtain a large number of grinding stone pieces 33A, 34A. Both processed layers 31A and 32A are obtained by adhering these grindstone pieces 33A and 34A to the opposing surfaces of both surface plates 12 and 13 in a grid pattern.
  • the silicon wafer W is inserted into each wafer holding hole 11a of the carrier plate 11 so as to be rotatable.
  • the upper processing layer 32A for polishing rotating at 15 rpm together with the upper surface plate 12 is pressed against each wafer W at 250 g / cm 2
  • the lower processing layer 31A for polishing rotating at 15 rpm together with the lower surface plate 13 is applied to each wafer. Press against the surface at 250 g / cm 2 .
  • each eccentric arm 24 rotates synchronously in a horizontal plane, and the carrier holder 20 and the carrier plate 11 collectively connected to each eccentric shaft 24a are rotated in a horizontal plane parallel to the surface of the plate 11. Perform no circular motion at 15 rpm.
  • the polishing amount is 1 to 30 ⁇ m on one side of the wafer (processing strain is 5 to 10 ⁇ m on one side).
  • the single-side polishing apparatus includes a polishing surface plate on which a polishing cloth made of a hard urethane pad is stretched on the upper surface, and a polishing head disposed above the polishing surface plate. On the lower surface of the polishing head, three silicon wafers W, the surface of which is disposed downward, are attached by wax via a carrier plate.
  • both the front and back surfaces of the silicon wafer W are ground simultaneously with fixed abrasive grains, and after chamfering the outer periphery of the wafer, free abrasive grains are not included. Since both the front and back surfaces of the wafer are polished simultaneously on both sides of the wafer while supplying an alkaline aqueous solution, it is fixed to the silicon wafer W after slicing without using free abrasive grains, from fixed abrasive double-sided grinding to fixed abrasive double-sided polishing. It can be processed only with abrasive grains. As a result, the processing rate of the silicon wafer W from the fixed abrasive double-side grinding to the fixed abrasive double-side polishing increases, and the processing time of the silicon wafer W can be shortened.
  • polishing is performed with a lower processing layer for polishing having a higher hardness than conventional polishing cloths. Therefore, the polishing pressure that acts on the upper and lower surface plates from each rotating shaft during double-side polishing acts more uniformly on the entire polishing surface than in the case of the polishing cloth. Thereby, the roll-off which generate
  • polishing is performed while supplying an alkaline aqueous solution mainly composed of potassium carbonate having a silicon etching function. For this reason, mechanical processing damage on the front and back surfaces of the wafer caused by the grinding action by the fixed abrasive is immediately removed by chemical etching with an alkaline aqueous solution. As a result, even if the etching step S106 is omitted, the surface roughness after polishing equivalent to that having the etching step S106 can be ensured (for example, flatness is GBIR; about 170 nm, nanotopography; 2 mm ⁇ ) About 8.5 nm). In addition, when the etching step is omitted, the number of manufacturing steps of the silicon wafer W can be further reduced, and the equipment cost is further reduced.
  • the silicon wafer obtained by the semiconductor wafer manufacturing method according to Example 1 (test example; each right B in FIG. 8 and FIG. 9) and obtained by the conventional method.
  • the results of comparing the flatness of the surface roughness (FIG. 8) and the nanotopography (FIG. 9) of the silicon wafer (comparative example; left side A in FIGS. 8 and 9) are reported.
  • a lapping process using a working liquid (lapping liquid) containing free abrasive grains is employed instead of the fixed abrasive double-sided grinding process of Example 1, and both fixed abrasive grains of Example 1 are used.
  • a double-side polishing process using a planetary gear type double-side polishing apparatus using a polishing liquid containing loose abrasive grains was employed.
  • the flatness was 173.4 nm in GBIR
  • the nanotopography was 8.05 nm in 2 mm ⁇ .
  • the flatness was 186.6 nm in GBIR and the nanotopography was 8.97 nm in 2 mm ⁇ , and the flatness and nanotopography equivalent to the comparative example were obtained in the test example.
  • the embodiment in which the alkali etching step S106 is performed before double-side polishing of fixed abrasive grains is described as an example.
  • the etching process is not performed, and the wafer that has been chamfered or laser-marked is fixed as it is. Even when abrasive grain double-side polishing was performed, it was confirmed that a flatness result equivalent to that of Example 1 was obtained.

Abstract

 無砥粒の純水を供給しながら、上下定盤面の固定砥粒層により複数の半導体ウェーハを固定砥粒両面研削し、その後、遊離砥粒を含まないアルカリ水溶液を供給しながら、上下定盤面の固定砥粒層によりウェーハ表裏面を固定砥粒両面研磨する。固定砥粒層は、弾性基材に砥粒を分散させたものである。

Description

半導体ウェーハの製造方法
 この発明は、半導体ウェーハの製造方法、詳しくは原材料の半導体からなる単結晶インゴットを加工して半導体ウェーハを得る半導体ウェーハの製造方法に関する。
 本願は、2011年8月25日に、日本に出願された特願2011-183208号に基づき優先権を主張し、その内容をここに援用する。
 一般的な半導体ウェーハの製造方法は、単結晶インゴットをスライスして薄円板状のウェーハを得るスライス工程と、スライスしたウェーハの欠けや割れを防止するためにウェーハの外周部を面取りする面取り工程と、面取りしたウェーハの表面を平坦化するラッピング工程と、ウェーハに残留する面取り時およびラッピング時に発生した加工変質層を除去する湿式エッチング工程と、エッチングしたウェーハの両面または片面を、遊離砥粒を含むスラリーを使用して鏡面研磨する鏡面研磨工程とから構成されている。また、ラッピング工程に代えて砥石を用いてウェーハの表裏面を同時に研削する両頭研削工程を採用したり、ウェーハ表面の平坦度を高めるため、ラッピングまたは両頭研削などの粗研削処理後、ウェーハの表面側をカップ型砥石によるインフィード方式の片面研削を行って仕上げ研削する場合もある。
 さらに、近年、例えば特許文献1の半導体ウェーハの製造方法のように、面取り工程の前に、ラッピング工程に代えて両面研削盤によりウェーハの両面を同時に研削する両面同時平面一次研削工程を実施し、次に面取り工程を行い、その後、片面吸着によりカップ型砥石によるインフィード方式の片面研削により二次研削工程を行なうものが報告されている。
 特許文献1によれば、半導体ウェーハの両面同時平面研削後に面取りを行う。そのため、両面同時平面研削により平坦化され、厚さバラツキおよびうねりを抑えた半導体ウェーハの面取りが行われる。これにより、面取り装置は本来の加工精度でウェーハ外周部に面取りを施すことができ、その結果、面取り形状が安定した半導体ウェーハを製造することができる。また、両面同時平面一次研削工程を実施した後、面取り工程を行い、その後、高番手の仕上げ砥石による両面同時研削(二次研削工程)を行うことにより、エッチング工程を省略できることも報告されている。
 一方、特許文献1での鏡面研磨工程においては、CMP技術を応用した研磨装置が用いられ、研磨布の表面にコロイダルシリカなどの砥粒を含む研磨加工液を供給しながら、ウェーハ表面を鏡面研磨することが行われる。通常、鏡面研磨工程は複数段に分けて実施される。大別して、ウェーハの高平坦度化を目的とした粗研磨工程(一次研磨)と、ウェーハ表面の粗さ低減を目的とした精研磨工程(仕上げ研磨)とが実施される。一次研磨では、平坦性に優れる基準面を持たない両面同時研磨が行われ、仕上げ研磨では、ウェーハ裏面側を保持してウェーハ表面側を研磨する片面研磨が採用されている。
 しかしながら、両面同時研磨では、上定盤と下定盤との間に配置されたキャリアプレートのウェーハ保持孔に半導体ウェーハを収納し、この状態で、遊離砥粒を含むスラリーを供給しながら、それぞれ所定速度で回転中の上定盤の下面の研磨布と、下定盤の上面の研磨布とによりウェーハ表裏面を同時に研磨する。そのため、半導体ウェーハの中央部に比べて外周部の研磨量が大きくなるロールオフが増大し、半導体ウェーハに外周ダレが発生するという問題があった。
 そこで、特許文献2では、ウェーハの外周ダレの抑制を目的として、ウェーハ表面を一次鏡面研磨(両面研磨処理)し、その後、裏面基準研磨方式による鏡面研磨を行い、次に仕上げ研磨(片面研磨処理)することが報告されている。
特許第3328193号公報 特許第4038429号公報
 しかしながら、特許文献1の半導体ウェーハの製造方法では、半導体ウェーハの表面を平坦化する平面研削工程が、両面同時平面一次研削と二次研削という2つの工程から構成されていたため、設備点数が増加し、工程削減に余地が残るものであった。また、特許文献1では、面取り工程後に高番手の仕上げ砥石により両面同時研削(二次研削)を行うことで、エッチング工程を省略できる点も報告されている。しかしながら、砥石を用いた研削処理である以上、半導体ウェーハへの加工変質層(加工ダメージ)の発生は避けられない。そのため、研削工程後にウェーハ表面をエッチングしない場合には、後の鏡面研磨工程において、加工変質層の除去を含めた研磨加工が必要となり、研磨量が大きくなって研磨に長時間を要するという問題があった。
 一方、特許文献2の半導体ウェーハの製造方法では、両面研磨装置による一次鏡面研磨と、片面研磨装置による仕上げ研磨との間に、新たに裏面基準の鏡面研磨を追加する必要があり、設備点数の増加および生産性の低下という問題が発生していた。
 また、特許文献1および特許文献2は、研削後の半導体ウェーハに対して、遊離砥粒を含むスラリーを供給しながら、上下定盤の研磨布によりウェーハ表裏面を同時に鏡面研磨する方式を採用していた。そのため、半導体ウェーハに外周ダレが発生し易く、固定砥粒に比べて研磨レートも低いという問題があった。
 そこで、発明者は鋭意研究の結果、上述した課題を解消するためには、スライス後、遊離砥粒を含まない純水(研削液)を供給しながら、上定盤および下定盤の各定盤面に形成された固定砥粒層により半導体ウェーハの表裏面を同時に研削し(固定砥粒両面研削)、その後、遊離砥粒を含まないアルカリ水溶液(研磨液)を供給しながら、上定盤の下面の固定砥粒層と、下定盤の上面の固定砥粒層とにより半導体ウェーハの表裏面を同時に研磨(固定砥粒両面研磨)すればよいことに想到した。この構成とすれば、従来法を採用した場合と同等の研磨後の表面粗さを確保しながら、特許文献1および特許文献2などの従来法に比べて、工程数の削減と、これに伴う設備コストの低減と、半導体ウェーハの外周部のロールオフの低減と、研磨レートの増大と、これに伴う研磨時間の短縮とを同時に図ることができる。また、ワイヤソーによりスライスする場合、一般的には、往復走行中のワイヤ列に遊離砥粒を含むオイル(加工液)を供給しながら半導体インゴットを多数枚の半導体ウェーハに切断加工しているが、外周面に砥粒が固定された固定砥粒ワイヤを使用すれば、遊離砥粒を使用する従来法に比べて、単結晶インゴットのカーフロスの発生量も低減可能なことを知見し、この発明を完成させた。
 すなわち、この発明は、従来法による場合と同等の研磨後の表面粗さを確保しながら、従来法に比べて、工程数の削減、設備コストの低減、半導体ウェーハの外周部のロールオフの低減、研磨レートの増大および研磨時間の短縮を同時に満足させることができる半導体ウェーハの製造方法を提供することを目的としている。
 また、この発明は、従来のオイル系の分散剤および遊離砥粒を含む使用済みのスラリーから半導体屑を回収して再利用する場合に比べて、再利用の処理が容易となり、処理コストも低減することができるとともに、単結晶インゴットのカーフロスの発生量も低減することができる半導体ウェーハの製造方法を提供することを目的としている。
 本発明の第一の態様は、半導体ウェーハの製造方法であって、遊離砥粒を含まない純水を供給しながら、上定盤面および下定盤面に形成された弾性基材に砥粒を分散させた第一の固定砥粒層により、複数の半導体ウェーハの表裏面を同時に研削する両面研削工程と、前記両面研削工程後、遊離砥粒を含まないアルカリ水溶液を供給しながら、上定盤面および下定盤面に形成された弾性基材に砥粒を分散させた第二の固定砥粒層により、前記両面研削された複数の半導体ウェーハの表裏面を同時に研磨する両面研磨工程を含む、半導体ウェーハの製造方法である。
 上記第一の態様において、上記半導体ウェーハは、シリコン単結晶ウェーハであってもよい。
上記第一の固定砥粒層(研削用固定砥粒層)は、平均粒径4μm未満、好ましくは、1μm以上、4μm未満の砥粒を弾性基材に分散させたものであってもよい。前記弾性基材は、エポキシ樹脂、フェノール樹脂、アクリルウレタン樹脂、ポリウレタン樹脂、塩化ビニル樹脂、フッ素樹脂から選択される一種の素材からなるものであってもよい。前記砥粒は、ダイヤモンド、アルミナ、ジルコニアから選択される一種の素材からなるものでもよい。
 両面研削工程において、固定砥粒層から半導体ウェーハに負荷される面圧は、250~400g/cmであってもよい。
 両面研削工程において用いる、遊離砥粒を含まない純水は、溶解物の質量が水1リットル当たり10億分の1g(μg/リットル)~1兆分の1g(ng/リットル)レベルの純度を有する水であってもよい。
 上記第一の態様における、両面研磨工程において、研磨後の半導体ウェーハの表裏面のラフネスがRMS表示で0.1~100nmとなることが好ましい。前記両面研磨工程における、ウェーハ表裏面の研磨レートは、0.2~0.6μm/分、好ましくは、0.3~0.5μm/分であってもよい。ウェーハ表裏面の研磨量は、0.1~30μm、好ましくは、0.2~20μmであってもよい。前記両面研磨工程において、固定砥粒層から半導体ウェーハに負荷される面圧は、100~400g/cmであってもよい。  
 上記第二の固定砥粒層(研磨用固定砥粒層)は、平均粒径2μm以上、8μm以下の砥粒を弾性基材に分散させたものであってもよい。前記第二の固定砥粒層の厚さは0.1~20mm、好ましくは0.2~15mmであってもよい。前記弾性基材は、ポリエーテル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂から選択される一種の素材からなるものであってもよい。前記砥粒は、ヒュームドシリカ、コロイダルシリカなどから選択される一種のシリカ系素材からなるものでもよい。
 上記第一の固定砥粒層、第二の固定砥粒層は、定盤本体の表面に接着されたものでもよい。その場合、固定砥粒層は、定盤本体の表面に接着された複数の切片からなるものであってもよい。
 上記第一の態様の両面研磨工程において、遊離砥粒を含まないアルカリ水溶液は、pH10~13、好ましくはpH11~12のアルカリ水溶液であってもよい。前記アルカリ水溶液の温度は、20℃~30℃であってもよい。前記アルカリ水溶液は、KOH、NaOHなどの無機系アルカリ剤、またはアミン類、炭酸カリウムなどの有機系アルカリ剤から選択される一種の水溶液であってもよい。
 上記第一の態様において、前記両面研削工程は、サンギヤ(遊星歯車)方式の研削装置を用いて行ってもよい。あるいは、無サンギヤ方式の研削装置を用い、キャリアプレートに前記半導体ウェーハを保持し、前記定盤を回転させながら、前記キャリアプレートに自転をともなわない円運動をさせて研削を行ってもよい。
前記両面研磨工程においても、サンギヤ(遊星歯車)方式の研磨装置を用いてもよく、あるいは、無サンギヤ方式の研磨装置を用いて、キャリアプレートに前記半導体ウェーハを保持し、前記定盤を回転させながら、前記キャリアプレートに自転をともなわない円運動をさせて研磨を行ってもよい。
 本発明の第二の態様は、前記第一の態様にかかる半導体ウェーハの製造方法であって、前記両面研削工程後、前記両面研磨工程の前に、前記両面研削された半導体ウェーハの外周部に、遊離砥粒を含まない純水を供給しながら、面取り砥石による面取りを行う面取り工程をさらに含む、半導体ウェーハの製造方法である。
 上記第二の態様において、例えば、#800~♯1500のメタルボンド砥石などの面取り用砥石を用いることができる。面取り量は、100~1000μmであってもよい。
 本発明の第三の態様は、前記第一または第二の態様にかかる半導体ウェーハの製造方法であって、前記両面研削工程に供する半導体ウェーハを、半導体の単結晶インゴットからスライスするスライス工程をさらに含み、前記スライス工程では、外周面に砥粒が固定された固定砥粒ワイヤを使用して、半導体の単結晶インゴットから半導体ウェーハをスライスする、半導体ウェーハの製造方法である。
 上記第三の態様において、前記単結晶インゴットは、単結晶シリコンインゴットであってもよい。
 前記スライス工程で使用される固定砥粒ワイヤは、金属性のワイヤ本体と、前記ワイヤ本体の表面に形成された金属メッキ層を有し、前記金属メッキ層に砥粒が埋め込まれていて前記金属メッキ層の表面から砥粒の一部が突出しているものであってもよい。前記ワイヤ本体は、ピアノ線などの鋼線、タングステン線、モリブデン線などから選択できる。前記ワイヤの直径は、50~500μmであってもよい。
 前記ワイヤに固定される砥粒の素材は、ダイヤモンド、シリカ、SiC、アルミナ、ジルコニアなどから選択できる。
特にダイヤモンドが望ましい。
 前記ワイヤに固定される砥粒の粒径(平均粒径)は、1~100μmであってもよい。前記固定砥粒ワイヤの送り速度は、0.05~2.00m/minに調整することが望ましい。
 純水(超純水)としては、溶解物の質量が水1リットル当たり10億分の1g(μg/リットル)~1兆分の1g(ng/リットル)レベルの純度を有する水を採用することができる。アルコール類や、エチレングリコール、ジエチレングリコール、プロビレングリコールなどのグリコール類から選択される増粘剤を前記純水に添加してもよい。
 本発明の第四の態様は、前記第一から第三のいずれかの態様にかかる半導体ウェーハの製造方法であって、前記両面研削工程後、エッチング工程を経ずに、前記両面研磨を行う、半導体ウェーハの製造方法である。
 本発明によれば、遊離砥粒を含まない純水を供給しながら、ラッピングに代えて、半導体ウェーハの表裏面を上下一対の固定砥粒層により同時に固定砥粒両面研削し、その後、遊離砥粒を含まないアルカリ水溶液を供給しながらウェーハ表裏面を上下一対の固定砥粒層により同時に固定砥粒両面研磨する。これにより、半導体ウェーハに対して、固定砥粒両面研削から固定砥粒両面研磨(粗研磨)まで、遊離砥粒を使用せず、固定砥粒のみでウェーハ機械加工を行うことができる。その結果、固定砥粒両面研削から固定砥粒両面研磨までの半導体ウェーハの加工レートが増大し、半導体ウェーハの加工時間を大幅に短縮することができる。
 また、固定砥粒を用いた両面研削工程では、スライス加工されたウェーハの表裏面を、遊離砥粒が含まれていない純水を供給しながら固定砥粒両面研削するため、遊離砥粒を起因としたウェーハ表裏面へのキズ発生を抑制でき、高い加工レートでウェーハ表裏面を研削処理することができる。しかも、従来必要とされていたラッピング工程または両頭研削工程と仕上げ研削工程との2つの工程で得ていた平坦度を、この固定砥粒両面研削の1工程で得ることができるので、工程数を短縮しかつ設備の占有面積の増大を抑制することができる。
 さらに、固定砥粒両面研磨の工程では、従来法での研磨布に比べて高い硬度の固定砥粒層によって研磨する。そのため、両面研磨時に各回転軸から上下の定盤に作用する研磨圧力は、研磨布の場合より研磨作用面の全体に均一に作用する。これにより、従来法の課題であった、ウェーハ中央部に比べてウェーハ外周部の研磨量が増大して発生するロールオフ(外周ダレ)を抑制することができる。
 しかも、固定砥粒両面研磨時には、半導体のエッチング機能を有したアルカリ水溶液(研磨液)を供給しながら研磨する。そのため、固定砥粒による研削作用で発生したウェーハ表裏面の機械的な加工ダメージが、即時、アルカリ水溶液によって化学エッチングされる。その結果、仮にエッチング工程を省略しても、それを有する場合と同等の研磨後の表面粗さが得られる。特に、従来法のような遊離砥粒を含むアルカリ水溶液を用いた場合には、研磨前のレーザーマーキング処理によりウェーハ表面に形成された微小な凹部内へのアルカリ水溶液の進入が遊離砥粒によって阻害され、当該部位での加工歪を除去することが困難であったが、遊離砥粒を含まないアルカリ水溶液を使用するため、レーザーマーキング部位で発生した加工歪をエッチングにより確実に除去することができる。しかも、このようにエッチング工程を省略した場合には、エッチング専用装置が不要となり設備コストも低減することができる。
 また、本発明によれば、半導体ウェーハのスライスから、固定砥粒両面研削、面取りを経て固定砥粒両面研磨に達するまで、それぞれの加工液として遊離砥粒を含まない純水を用いる。そのため、従来のオイル系の分散剤および遊離砥粒を含む使用済みスラリーから半導体屑を回収して再利用する場合に比べて、再利用の処理が容易となり、処理コストも低減することができる。また、スライス工程では、遊離砥粒を含まない純水を供給しながら固定砥粒ワイヤを利用して単結晶インゴットから多数枚の半導体ウェーハをスライスするため、単結晶インゴットのカーフロスの発生量も低減することができる。
この発明の実施例1に係る半導体ウェーハの製造方法を示すフローシートである。 この発明の実施例1に係る半導体ウェーハの製造方法のうち、スライス工程を示す斜視図である。 この発明の実施例1に係る半導体ウェーハの製造方法のスライス工程で使用される固定砥粒ワイヤの一部拡大断面図である。 この発明の実施例1に係る半導体ウェーハの製造方法のうち、ウェーハ表裏面の固定砥粒両面研削(研磨)工程で使用される固定砥粒両面研削(研磨)装置の斜視図である。 この発明の実施例1に係る半導体ウェーハの製造方法のうち、固定砥粒両面研削(研磨)工程で使用される固定砥粒両面研削(研磨)装置の使用状態における縦断面図である。 この発明の実施例1に係る半導体ウェーハの製造方法のうち、固定砥粒両面研削(研磨)工程で使用される固定砥粒両面研削(研磨)装置におけるキャリアプレートの自転を伴わない円運動を説明する平面図である。 この発明の実施例1に係る半導体ウェーハの製造方法のうち、半導体ウェーハの面取り工程で使用される面取り装置の使用状態を示す正面図である。 本発明法と従来法とによって製造されたシリコンウェーハについて、それぞれフラットネスを比較した図であり、Bが本発明法によって製造されたシリコンウェーハ、Aが従来法によって製造されたシリコンウェーハを示す。 本発明法と従来法とによって製造されたシリコンウェーハについて、それぞれナノトポグラフィを比較した図であり、Bが本発明法によって製造されたシリコンウェーハ、Aが従来法によって製造されたシリコンウェーハを示す。
 以下、この発明の実施例を具体的に説明する。
 本発明は、遊離砥粒を含まない純水を供給しながら、上定盤面および下定盤面に形成された弾性基材に砥粒を分散させた固定砥粒層により、複数の半導体ウェーハの表裏面を同時に研削する固定砥粒両面研削を施し、該固定砥粒両面研削後、遊離砥粒を含まないアルカリ水溶液を供給しながら、上定盤面および下定盤面に形成された弾性基材に砥粒を分散させた固定砥粒層により、前記固定砥粒両面研削された複数の半導体ウェーハの表裏面を同時に研磨する固定砥粒両面研磨を行う半導体ウェーハの製造方法である。
前記固定砥粒両面研削に供する前記半導体ウェーハは、遊離砥粒を含まない純水を供給しながら、外周面に砥粒が固定された固定砥粒ワイヤを使用して、半導体の単結晶インゴットからスライスされたものであってもよい。また、前記固定砥粒両面研削後から前記固定砥粒両面研磨までの間に、前記固定砥粒両面研削された半導体ウェーハの外周部に、遊離砥粒を含まない純水を供給しながら、面取り砥石による面取りを行ってもよい。
 前記固定砥粒両面研削後、エッチング工程を経ずに前記固定砥粒両面研磨を行ってもよい。
 半導体ウェーハの原料である単結晶インゴットとしては、例えば単結晶シリコンインゴットなどを採用することができる。
 半導体ウェーハとしては、例えば単結晶シリコンウェーハなどを採用することができる。
 半導体ウェーハの直径としては、例えば300mm、450mmなどが挙げられる。
 半導体ウェーハは、単結晶インゴットを各種の切断方法によりスライスしたものである。スライスは、ワイヤソーを使用し、所定の張力を与えたワイヤ列を往復走行させ、これに加工液(遊離砥粒の含有の有無は問わない)を供給しながら単結晶インゴットを押し当てることで、単結晶インゴットから多数枚の半導体ウェーハを切断(スライス)する方法が好ましい。
 特に、ワイヤとして固定砥粒ワイヤを採用し、加工液として純水を採用することが望ましい。これにより、単結晶インゴットの高速切断が図れるとともに、遊離砥粒を使用しないので、切断に供する加工液の再利用を容易に行うことができる。固定砥粒ワイヤとは、ワイヤの外周面に砥粒が固定されたものである。例えば、ワイヤの表面に多数の砥粒を内蔵した金属メッキ層が被覆され、金属メッキ層の表面から砥粒の一部が突出するような形状を有している。
 固定砥粒ワイヤの本体となるワイヤとしては、例えばピアノ線などの鋼線、タングステン線、モリブデン線などを採用することができる。
 ワイヤの直径は50~500μmのものを採用すればよい。50μm未満ではワイヤが断線し易く、500μmを超えればカーフロスが増大し、1本の単結晶インゴットをスライスして得られる半導体ウェーハの枚数が減少する。好ましいワイヤの直径は70~400μmである。この範囲であれば、ワイヤを断線させることなく、効率よく半導体ウェーハの採取が可能となる。
 ワイヤに固定される砥粒の素材としては、ダイヤモンド、シリカ、SiC、アルミナ、ジルコニアなどを採用することができる。特にダイヤモンドが望ましい。
 ワイヤに固定される砥粒の粒径(平均粒径)は、1~100μmのものを採用すればよい。1μm未満では固定砥粒ワイヤによる単結晶インゴットの切削能力が低下し、100μmを超えると、ワイヤから砥粒が脱離し易くなり、カーフロスも大きくなってしまう。特に好ましい砥粒の平均粒径は、5~40μmであり、この範囲であれば、反りや切削面の加工傷が低減された高品質な半導体ウェーハを安定的に得ることができる。
  ワイヤの外周面に砥粒を固定させる方法としては、例えば、砥粒をワイヤの外周面に熱硬化性樹脂バインダまたは光硬化性樹脂バインダを用いて付着させ、そのバインダを熱硬化または光硬化させる方法を採用することができる。その他、ワイヤの外周面に砥粒を電着させる方法、ワイヤの外周面に電解メッキ層を形成して砥粒を着床させる方法などを採用することができる。なお、使用するワイヤは、電着砥粒ワイヤに限らず、レジンボンドワイヤなどでもよい。
 固定砥粒ワイヤの送り速度は、0.05~2.00m/minに調整することが望ましい。0.05m/min未満では、固定砥粒ワイヤによる単結晶インゴットの切削能力が低下し、2.00m/minを超えると、ワイヤが断線するおそれがある。固定砥粒ワイヤの好ましい送り速度は0.2~1.0m/minである。この範囲であれば、反りや切削面の加工傷が低減された高品質な半導体ウェーハが得られる。
 純水(超純水)としては、例えば、ナトリウム、鉄、銅、亜鉛などの溶解物質量が、水1リットル当たり10億分の1g(μg/リットル)~1兆分の1g(ng/リットル)レベルの純度を有する水を採用することができる。なお、切断屑によるワイヤの目詰まりを抑制できるように、供給する純水に少量の増粘剤を添加してもよい。例えば、増粘剤としてのアルコール類や、エチレングリコール、ジエチレングリコール、プロビレングリコールなどのグリコール類を純水に添加する。これにより、純水の粘性が高まり、切断屑の高い排出効果が得られる。
 次に、半導体ウェーハの表裏面の固定砥粒層による同時研削方法で使用可能なウェーハ両面研削装置としては、サンギヤ(遊星歯車)方式のもの、または、キャリアプレートに自転をともなわない円運動をさせて半導体ウェーハの表裏両面を同時に研削する無サンギヤ方式のものを採用することができる。この研削加工は、複数枚の半導体ウェーハを同時に処理するバッチ方式である。
 このうち、無サンギヤ方式の両面研削方法では固定砥粒両面研削装置が使用される。固定砥粒両面研削装置としては、例えば、両面研削装置、両面研磨装置などを採用することができる。両面研磨装置の場合には、上定盤の下面および下定盤の上面にそれぞれ研磨布に代えて、固定砥粒層が取り付けられる。
 無サンギヤ方式の固定砥粒両面研削装置としては、例えば、上面(定盤面)に半導体ウェーハの一方の面を研削する固定砥粒層が形成された研削用下定盤と、研削用下定盤の直上に配置され、下面(定盤面)に半導体ウェーハの他方の面を研削する別の固定砥粒層が形成された研削用上定盤と、研削用下定盤と研削用上定盤との間に設置され、半導体ウェーハのウェーハ保持孔が複数形成されたキャリアプレートと、研削用下定盤と研削用上定盤との間で、キャリアプレートに自転を伴わない円運動をさせることで、ウェーハ保持孔に保持された複数枚の半導体ウェーハの表裏面を、両固定砥粒層により同時に研削するキャリア円運動機構とを備えたものなどを採用することができる。
 研削用上定盤および研削用下定盤の回転速度は、5~30rpmである。5rpm未満では、半導体ウェーハの加工レートが低く、30rpmを超えると、加工中に半導体ウェーハがウェーハ保持孔から飛び出してしまう恐れがある。両定盤の好ましい回転数は10~25rpmである。この範囲であれば、安定的な加工レートを維持した半導体ウェーハの両面研削加工を可能とし、平坦性を維持することができる。
 両研削用定盤は、同一速度で回転させても、異なる速度で回転させてもよい。また、研削用上定盤および研削用下定盤は同じ方向へ回転させても、異なる方向へ回転させてもよい。なお、ウェーハ加工時、キャリアプレートに自転を伴わない円運動をさせるので、両研削用定盤は必ずしも回転させなくてもよい。
 ここでいう自転を伴わない円運動とは、キャリアプレートが研削用上定盤および研削用下定盤の軸線から所定距離だけ偏心させた状態を常に保持して旋回(揺動回転)するような円運動をいう。この自転を伴わない円運動によって、キャリアプレート上の全ての点は、同じ大きさ(半径r)の小円の軌跡を描くことになる。
 このような無サンギヤ方式の固定砥粒両面研削装置は、遊星歯車方式のもののようにサンギヤが存在しないので、例えば直径が300mm以上の大口径ウェーハ用として適している。
 キャリアプレートの表裏面は、EGコーティング、SUSコーティング、チタンコーティングなどの表面処理が施されている。
 キャリアプレートに形成されるウェーハ保持孔の形成数は任意である。例えば、1つ、2つ~5つでもそれ以上でもよい。
 キャリアプレートの自転を伴わない円運動速度は、1~15rpmである。1rpm未満では、ウェーハ面の均一な研削が困難であり、15rpmを超えると、ウェーハ保持孔に保持された半導体ウェーハの端面を傷つける恐れがある。
 固定砥粒両面研削で使用される固定砥粒層としては、弾性基材に粒径(平均粒径)4μm未満、好ましくは1~4μmの研削用の砥粒を分散(例えば混練して分散固化)させたものを採用することができる。これにより、砥粒がウェーハに与える押付力が弾性基材によって適切に吸収され、局所的に押付力が集中してウェーハ表面にキズが発生することを防止することができ、かつ高い加工レートを維持することができる。
 この研削用の固定砥粒層の厚さは100~2000μmである。100μm未満では固定砥粒層を保持している母材とウェーハとが接触する恐れがある。また、2000μmを超えると、固定砥粒層の強度が低下して固定砥粒層が破損する恐れがある。固定砥粒層の好ましい厚さは300~1800μmである。この範囲であれば、安定的な半導体ウェーハの研削加工が図れるとともに固定砥粒層の寿命が延長される。
 研削用の砥粒の素材としては、ダイヤモンド、アルミナ、ジルコニアなどを採用することができる。
 研削用の弾性基材の素材としては、例えば硬化ポリマー系(エポキシ樹脂、フェノール樹脂、アクリルウレタン樹脂、ポリウレタン樹脂、塩化ビニル樹脂、フッ素樹脂)などを採用することができる。
 両面研削加工時の半導体ウェーハに対する面圧は、例えば250~400g/cmとなるように調整することが望ましい。この範囲であれば、加工レートが低下しない安定的な半導体ウェーハの研削加工が可能となる。250g/cm未満では、半導体ウェーハの加工レートが低下し、400g/cmを超えると、高加重化により半導体ウェーハが割れる恐れがある。
 表裏面の同時研削で半導体ウェーハに供給される加工液としては、遊離砥粒を含まない純水を採用する。なお、切断屑による固定砥粒層の目詰まりを抑制するため、純水中に少量の前記増粘剤を添加してもよい。また、遊離砥粒を使用しないので、両面研削加工に供する加工液の再利用を容易に行うことができ、遊離砥粒の凝集を起因とした半導体ウェーハ表面への加工キズの発生を防止することができる。
 次に、固定砥粒両面研削された半導体ウェーハの外周部に面取り加工を施した方が望ましい。ただし、この面取り加工は、固定砥粒両面研削する前に予め実施してもよく、また固定砥粒両面研削の前後に、それぞれ面取り加工を施してもよい。遊離砥粒を含むスラリーを使用した従来の両面研削では、ウェーハ端面に遊離砥粒が衝突し、ウェーハ端面に欠け、割れを生じる問題があり、研削処理前には粗面取り加工が実施され、研削処理後に再度精面取り加工を実施する必要がある。一方、本発明は遊離砥粒を全く含まない純水を使用して固定砥粒両面研削を行うものであるため、固定砥粒両面研削前の粗面取り加工を省略することも可能である。
 面取り時に使用される面取り砥石としては、例えば、#800~♯1500のメタルボンドなどの面取り用砥石を採用することができる。ここでの面取り量は、100~1000μmに設定すればよい。この発明の面取り時には、面取り加工を円滑に行うため、ウェーハ外周面に遊離砥粒を含まない純水を供給することが望ましく、遊離砥粒を使用しないので、面取り加工に供する加工液の再利用を容易に行うことができる。
 次に、面取り加工後、半導体ウェーハの表面にレーザーマーキング処理を施した方が望ましい。このレーザーマーキング処理は面取り前に実施してもよい。レーザーマーキング処理では、半導体ウェーハを認識するため、ウェーハの外周部に、レーザーにより所定のマーク(バーコード、数字、記号、図形など)が刻印される。
 次に、半導体ウェーハの表裏面の研磨(粗研磨)とは、研磨後の半導体ウェーハの表裏面のラフネスがRMS表示で0.1~100nmとなる研磨をいう。ここでは、半導体ウェーハの表裏面を同時に研磨する。
 固定砥粒両面研磨で用いる固定砥粒層としては、弾性基材に粒径(平均粒径)2~8μmの砥粒を分散(例えば混練して分散固化)させたものを採用することができる。この範囲であれば、半導体ウェーハの加工面にキズが発生せず、しかも高い研磨レートを維持することができる。2μm未満では研磨レートが低く、8μmを超えると半導体ウェーハの表面に加工キズが発生してしまう恐れがある。
 固定砥粒両面研磨での固定砥粒層の厚さは0.1~20mmに調整することが望ましい。0.1mm未満では固定砥粒層を保持している母材とウェーハとが接触する恐れがあり、20mmを超えれば固定砥粒層の強度が低下し、固定砥粒層が破損する恐れがある。固定砥粒層の好ましい厚さは0.2~15mmである。この範囲であれば、安定的な半導体ウェーハの研削加工が図れるとともに固定砥粒層の寿命が延長される。
 研磨用の砥粒の素材としては、例えば、シリカ(ヒュームドシリカを含む)などを採用することができる。その他、コロイダルシリカなどでもよい。
 研磨用の弾性基材の素材としては、例えばポリエーテル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂などを採用することができる。これにより、固定砥粒両面研磨時に砥粒からウェーハに与える押付力が弾性基材によって適切に吸収され、局所的に押付力が集中してウェーハ表面にキズが発生することを防止することができる。なお、研削砥石として一般的に使用されるメタルボンドやレジンボンドのような硬質基材に砥粒を分散させたものを使用した場合には、ウェーハ表面に研削加工キズが発生してしまうため不適である。
 表裏面の同時研磨で半導体ウェーハに供給される加工液としては、遊離砥粒を含まないアルカリ水溶液を採用することができる。アルカリ剤としては、KOH、NaOHなどの各種の無機系アルカリ剤の他、アミン類、炭酸カリウムなどの各種の有機系アルカリ剤を採用することができる。遊離砥粒を使用しないので、遊離砥粒の凝集を起因とした半導体ウェーハ表面への加工キズの発生を防止することができる。
 通常、固定砥粒両面研削、面取り加工、レーザーマーキングなどの加工処理を受けた半導体ウェーハは、加工歪量を低減するためにエッチングが施され、その後、洗浄される。洗浄後の半導体ウェーハの表裏面には、自然酸化膜などの酸化膜が付着している。この酸化膜は、アルカリ加工液によるエッチング反応では除去することができないが、この半導体ウェーハの表裏面の研磨では、半導体ウェーハ表裏面に付着した酸化膜が固定砥粒層により除去される。その後は、加工液として使用するアルカリ溶液によるエッチング作用によって半導体ウェーハの表裏面の研磨が進行し、前述したようなRMS表示で0.1~100nmの鏡面研磨面を得ることができる。
 固定砥粒両面研磨時のアルカリ水溶液のpHは10~13に調整することが望ましい。pH10未満では、研磨レートが低く、pH13を超えるとウェーハ表面の粗さが悪化する恐れがある。アルカリ水溶液の好ましいpHは11~12である。この範囲であれば、面粗さが良好なウェーハを高い生産性で製造することができる。また、アルカリ水溶液の使用時の液温は、20℃~30℃である。
 ウェーハ表裏面の研磨レートは、0.2~0.6μm/分に調整することが望ましく、特に、ウェーハ表裏面の好ましい研磨レートは、0.3~0.5μm/分である。この範囲であれば、面粗さが良好なウェーハを高い生産性で得ることができる。
 ウェーハ表裏面の研磨量は、0.1~30μmに調整することが望ましく、特に、ウェーハ表裏面の好ましい研磨量は、0.2~20μmである。この範囲であれば、面粗さが良好なウェーハを高い生産性で得ることができる。
 半導体ウェーハの表裏面の研磨装置としては、例えば、前述したサンギヤ(遊星歯車)方式のもの、キャリアプレートに自転をともなわない円運動をさせ、半導体ウェーハの表裏両面を同時に研磨する無サンギヤ方式のものを採用することができる。また、両面研磨装置は、枚葉式のものを使用しても、複数枚の半導体ウェーハを同時に研磨するバッチ式の両面研磨装置を使用してもよい。
 両面研磨時の半導体ウェーハに対する面圧は、例えば100~400g/cmである。この範囲であれば、研磨レートが低下しない安定的な半導体ウェーハの研磨が可能となる。100g/cm未満では、半導体ウェーハの研磨レートが低下し、400g/cmを超えれば、高加重化により半導体ウェーハが割れる。
 次に、固定砥粒両面研磨後には、一般的に仕上げ研磨される。仕上げ研磨とは、半導体ウェーハの表面(被研磨面)または表裏面に対して施される高精度な研磨である。仕上げ研磨では、研磨布として、硬度(ショア硬度)が60~70、圧縮率が3~7%、圧縮弾性率が50~70%のスエードタイプの仕上げ研磨用のものが採用される。また、研磨スラリーとしては、平均粒径が20~40nmの遊離砥粒(シリカなど)を含むアルカリ溶液のものが採用される。
 仕上げ研磨の条件は、例えば、研磨圧が100g/cm前後、研磨量が0.1μm前後、表面ラフネスがRMS表示で0.1nm以下である。仕上げ研磨は、少なくともウェーハ表面(デバイス形成面)に施される鏡面研磨である。
 半導体ウェーハの表面のみの仕上げ研磨(表裏面の仕上げ研磨にも利用可能)で使用される片面鏡面研磨装置としては、例えば、上面に研磨布が貼着された研磨定盤の上方に、表面が下向きの半導体ウェーハが固定された研磨ヘッドを回転させながら徐々に下降し、研磨ヘッドの上面に貼着された研磨布に対して、所定の圧力で押し付けるものなどを採用することができる。
 この発明では、半導体ウェーハの固定砥粒ワイヤによるスライスから、固定砥粒両面研削、面取りを経て固定砥粒両面研磨に達するまで、それぞれの加工液として遊離砥粒を含まない純水を採用した方が望ましい。この場合には、従来のオイル系の分散剤および遊離砥粒を含む使用済みスラリーから半導体屑を回収して再利用する場合に比べて、再利用の処理が容易となり、処理コストも低減することができる。また、スライスでは、遊離砥粒を含まない純水を供給しながら固定砥粒ワイヤを利用して単結晶インゴットから多数枚の半導体ウェーハをスライスするため、単結晶インゴットのカーフロスの発生量も低減することができる。
 半導体屑としては、スライス時に発生する単結晶インゴットの研削屑、研削時に発生する半導体ウェーハの研削屑、面取り時に発生するウェーハ外周部の研削(面取り)屑、研磨時に発生するウェーハの研磨屑などが挙げられる。
 廃水からの半導体屑の回収方法としては、例えば、自然沈殿方法、遠心分離方法などを採用することができる。回収された半導体屑は加熱などを行って乾燥し、その後、取り扱い易い大きさの塊などにする。
 図1のフローシートを参照して、この発明の実施例1に係る半導体ウェーハの製造方法を説明する。
 すなわち、実施例1の半導体ウェーハの製造方法は、順次施されるスライス工程S101と、洗浄工程S102と、固定砥粒両面研削工程S103と、面取り工程S104と、レーザーマーキング工程S105と、アルカリエッチング工程S106と、固定砥粒両面研磨工程S107と、仕上げ研磨工程S108を備えている。
 以下、前記各工程を具体的に説明する。
 まず、図示しない結晶引き上げ工程において、坩堝内でボロンが所定量ドープされたシリコンの溶融液から、チョクラルスキー法により直径306mm、直胴部の長さが2500mm、比抵抗が0.01Ω・cm、初期酸素濃度1.0×1018atoms/cmの単結晶シリコンインゴットが引き上げられる。
 次に、結晶加工では、1本の単結晶シリコンインゴットが複数の結晶ブロックに切断され、その後、各結晶ブロックの外周研削が行われる。具体的には、♯200の砥粒(SiC)を含むレジノイド研削砥石を有した外周研削装置により、結晶ブロックの外周部が6mmだけ外周研削される。これにより、各結晶ブロックが円柱状に成形される。
 スライス工程S101では、図2に示すようにワイヤソー40を使用し、結晶ブロックIから直径300mmの多数枚のシリコンウェーハがスライスされる。
 ワイヤソー40は、正面視して三角形状に配置された3本のワイヤソー用グルーブローラ(以下、グルーブローラ)41A~41Cを備えている。これらのグルーブローラ41A~41C間には、1本の固定砥粒ワイヤ42が互いに平行となるように一定のピッチで巻き掛けられている。これにより、グルーブローラ41A~41C間にワイヤ列45が現出する。
 固定砥粒ワイヤ42は、直径160μmの鋼製ワイヤ43の表面に、粒径15~25μmのダイヤモンド砥粒44を、厚さ7μmのニッケルメッキ45により固定したものである(図3)。
 固定砥粒ワイヤ42は、繰出し装置のボビンから導出され、供給側のガイドローラを介して、各グルーブローラ41A~41Cに架け渡された後、導出側のガイドローラを介して、巻取り装置のボビンに巻き取られる。固定砥粒ワイヤ42は往復走行されるため、繰出し装置と巻取り装置との役割が交互に入れ代わる。ワイヤ列45は、3本のグルーブローラ41A~41C間でメインモータにより往復走行される。下側に配置された2本のグルーブローラ41A,41Bの中間が、結晶ブロックIの切断位置となっている。この切断位置の一側部の上方には、純水をワイヤ列45上に連続供給する純水供給ノズル46が設けられている。純水供給ノズル46から10リットル/minの純水をワイヤ列45に供給しながら、1m/minで往復走行中のワイヤ列45に、下方から結晶ブロックIを1.0mm/minで押し付ける。このように、スライス時には、遊離砥粒を含まない純水を供給しながら固定砥粒ワイヤを利用して結晶ブロックIから多数枚のシリコンウェーハWをスライスするため、結晶ブロックIのカーフロスの発生量を低減することができる。
 なお、図1において、47は結晶ブロックIの昇降台である。
 次の洗浄工程S102では、スライス後のシリコンウェーハの表面の油分を洗浄することができる洗浄装置を使用し、界面活性剤により洗浄される(図1)。
  次に、固定砥粒両面研削工程S103では、無サンギヤ方式の固定砥粒両面研削装置を用い、純水を供給しながら、シリコンウェーハの表裏面を同時に研削する。
 まず、図4~図6を参照して、固定砥粒両面研削装置10を詳細に説明する。
 固定砥粒両面研削装置10は、3個のウェーハ保持孔11aがプレート軸線回りに(円周方向に)120°ごとに形成された平面視して円板形状のガラスエポキシ製のキャリアプレート11と、それぞれのウェーハ保持孔11aに旋回自在に挿入されて保持されたシリコンウェーハWを上下方向から挟み込むとともに、シリコンウェーハWに対して相対的に移動させることでウェーハ表裏面を研削する上定盤(研削用上定盤)12および下定盤(研削用下定盤)13とを備えている。
 下定盤13の上面(定盤面)には研削用下側加工層(固定砥粒層)31が形成され、上定盤12の下面(定盤面)には研削用上側加工層(別の固定砥粒層)32が形成されている。研削用下側加工層31および研削用上側加工層32は、まず、弾性基材33a,34aの原料である硬化ポリマー系樹脂に、粒径(平均粒径)が4μm未満のダイヤモンド砥粒(固定砥粒)33b,34bを、集中度が100となるように混練して固化し、その後、これを数mm角にカットして多数の砥石片33,34を作製する。次に、これらの砥石片33,34を両定盤12,13の対向面にそれぞれ格子状に接着することで、両加工層31,32とする。弾性基材33a,34aの厚さ(両加工層31,32の厚さ)は800μmである。なお、両加工層31,32は、弾性基材33a,34aの表面上にダイヤモンド砥粒33b,34bを直接接着して形成してもよい。
 上定盤12は、上方に延びた回転軸12aを介して、上側回転モータ16により水平面内で回転駆動される。また、上定盤12は軸線方向へ進退させる昇降装置18により垂直に昇降させられる。昇降装置18は、例えば、シリコンウェーハWをキャリアプレート11に給排する際に使用される。なお、上定盤12および下定盤13のシリコンウェーハWの表裏両面に対する250g/cmの面圧は、上定盤12や下定盤13に組み込まれた図示しないエアバック方式などの加圧手段により行われる。
 下定盤13は、出力軸17aを介して、下側回転モータ17により水平面内で回転させられる。キャリアプレート11は、そのプレート11自体が自転しないように、キャリア円運動機構19によって、そのプレート11の面と平行な面(水平面)内で円運動する。
 キャリア円運動機構19は、キャリアプレート11を外方から保持する環状のキャリアホルダ20を有している。キャリア円運動機構19とキャリアホルダ20とは、連結構造を介して連結されている。連結構造とは、キャリアプレート11を、キャリアプレート11が自転せず、しかもキャリアプレート11の熱膨張時の伸びを吸収できるようにキャリアホルダ20に連結させる手段である。
 すなわち、連結構造は、図4および図5に示すように、キャリアホルダ20の内周フランジ20aに、ホルダ周方向へ所定角度ごとに突設された多数本のピン23と、キャリアプレート11の外周部のうち、各ピン23と対応する位置に対応する数だけ穿設された長孔形状のピン孔11bとを有している。
 各ピン孔11bは、ピン23を介してキャリアホルダ20に連結されたキャリアプレート11が、その半径方向へ若干移動できるように、その孔長さ方向をプレート半径方向と合致させている。各ピン孔11bにピン23を通してキャリアプレート11をキャリアホルダ20に装着することで、両面研磨時のキャリアプレート11の熱膨張による伸びが吸収される。また、各ピン23の元部の外ねじの直上部には、キャリアプレート11が載置されるフランジ20aが周設されている。
 キャリアホルダ20の外周部には、90°ごとに外方へ突出した4個の軸受部20bが配設されている。各軸受部20bには、小径円板形状の偏心アーム24の上面の偏心位置に突設された偏心軸24aが装着されている。また、4個の偏心アーム24の各下面の中心部には、回転軸24bが垂設されている。各回転軸24bは、環状の装置基体25に90°ごとに配設された軸受部25aに対して、各先端部を下方へ突出させた状態で装着されている。各回転軸24bの下方に突出した先端部には、それぞれスプロケット26が固定されている。そして、各スプロケット26には、一連にタイミングチェーン27が水平状態で架け渡されている。各スプロケット26とタイミングチェーン27とは、4個の偏心アーム24が同期して円運動を行うように、4本の回転軸24bを同時に回転させる同期手段を構成している。
 また、4本の回転軸24bのうち、1本の回転軸24bはさらに長尺に形成されており、その先端部がスプロケット26より下方に突出されている。この部分に動力伝達用のギヤ28が固定されている。ギヤ28は、例えばギヤドモータなどの円運動用モータ29の上方へ延びる出力軸に固着された大径な駆動用のギヤ30に噛合されている。なお、このようにタイミングチェーン27により同期させなくても、例えば各偏心アーム24に円運動用モータ29を配設させ、各偏心アーム24を個別に回転させてもよい。
 したがって、円運動用モータ29の出力軸を回転させれば、その回転力は、ギヤ30,28および長尺な回転軸24bに固定されたスプロケット26を介して、タイミングチェーン27に伝達される。そして、タイミングチェーン27が周転することで、残り3つのスプロケット26を介して、4つの偏心アーム24が同期して回転軸24bを中心に水平面内で回転する。これにより、各偏心軸24aに一括して連結されたキャリアホルダ20、ひいてはこのホルダ20に保持されたキャリアプレート11が、このプレート11に平行な水平面内で、自転をともなわない円運動を行う。
 すなわち、キャリアプレート11の中心線は、両定盤12,13の軸線eから距離Lだけ偏心した状態を保って旋回する。この距離Lは、偏心軸24aと回転軸24bとの距離と同じである。この自転をともなわない円運動により、キャリアプレート11上の全ての点は、同じ大きさの小円の軌跡を描く(図6)。
 次に、図4~図6を参照して、固定砥粒両面研削装置10を用いたシリコンウェーハWの固定砥粒両面研削工程を説明する。
 まず、キャリアプレート11の各ウェーハ保持孔11aにそれぞれ旋回自在にシリコンウェーハWを挿入する。次いで、この状態のまま、上定盤12とともに15rpmで回転中の研削用上側加工層32を、各ウェーハWに250g/cmで押し付けるとともに、下定盤13とともに15rpmで回転中の研削用下側加工層31を、各ウェーハ表面に250g/cmで押し付ける。
 その後、両加工層31,32をウェーハ表裏面に押し付けたまま、上定盤12から純水を2リットル/分で供給しながら、円運動用モータ29によりタイミングチェーン27を周転させる。これにより、各偏心アーム24が水平面内で同期回転し、各偏心軸24aに一括して連結されたキャリアホルダ20およびキャリアプレート11が、このプレート11の表面に平行な水平面内で、自転をともなわない円運動を7.5rpmで行う。その結果、各シリコンウェーハWは、対応するウェーハ保持孔11aにおいて水平面内で旋回しながら、表裏面が同時に研削加工される。
 このように、粗研削から仕上げ研削まで1工程で行える固定砥粒方式の固定砥粒両面研削装置10によりシリコンウェーハWを加工するので、シリコンウェーハWの製造工程数の削減が図れ、設備コストも低減することができる。しかも、固定砥粒方式の両面同時研削だけでなく、上述したスライス時、固定砥粒ワイヤ42によって結晶ブロックIをスライスするので、ウェーハ製造時のカーフロスも少なくすることができる。
 また、固定砥粒ワイヤ42を用いたワイヤソー40によるスライスと、固定砥粒両面研削装置10の研削用の上下定盤12,13による両面同時研削とを採用したので、後述の面取り装置50を用いる面取り工程を含めて、スライス、両面同時研削、面取りの各工程から排出される使用済みの加工液(廃水)中に含まれる砥粒の量が、従来品の遊離砥粒を含む研磨液(スラリー)の場合よりも減少させることができる。
 しかも、このように固定砥粒方式を採用したことで、これらの3つの工程で使用される加工液として純水を採用することができる。その結果、従来のオイル系の分散剤および遊離砥粒を含む使用済みスラリーからシリコン屑(半導体屑)を回収し、再利用する場合に比べて、再利用の処理が容易となり、処理コストも低減することができる。
 また、無サンギヤ方式の固定砥粒両面研削装置10を使用し、面圧を250g/cmと、サンギヤ方式(100~150g/cm)の場合より高めて、自転を伴わない円運動を行わせながら各シリコンウェーハWの表裏面を同時研削するので、15μm/分という高い加工レートでありながら、研削面(加工面)にキズが少ない高精度な加工を実現することができる。
 さらに、固定砥粒両面研削装置10を用いて、弾性基材33a,34aの表面上に接着(分散固化)された4μm未満のダイヤモンド砥粒33b,34bを利用してシリコンウェーハWを加工するので、スライス後のシリコンウェーハWに対して、良好な平坦度を有する表面を得ることができる。このとき、シリコンウェーハWはキャリアプレート11のウェーハ保持孔11aに載置された自由な状態であるので、良好な平坦度に加えて良好なナノトポグラフィ(シリコンウェーハWの非吸着状態時に表面に現われるうねり)を得ることができる。
 また、弾性基材33a,34aは弾性を有しているので、ダイヤモンド砥粒33b,34bをシリコンウェーハWに押し付けるとき、シリコンウェーハWがダイヤモンド砥粒33b,34bから受ける力を弾性基材33a,34aが緩和し、シリコンウェーハWに局所的で過剰な外力が作用してシリコンウェーハWにキズが発生することを防止可能である。
 さらに、4μm未満という微細なダイヤモンド砥粒33b,34bの使用は、固定砥粒両面研削装置10がダイヤモンド砥粒33b,34bを上定盤12および下定盤13に固定してウェーハ加工を行う方式を採用したことで可能となったものである。つまり、例えば従来のラッピング装置では、砥粒として遊離砥粒を採用していたため、粒度を微細化することは困難であったが、ここでは固定砥粒を採用したため、これを解消することができる。
 次の面取り工程S104では、面取り装置50の回転中の面取り用砥石51をシリコンウェーハWの外周部に押し付けて面取りする(図7)。
 ここで使用される面取り装置50は、クーラント液として純水を供給しながら、シリコンウェーハWの外周部を、回転中の#800の面取り用砥石51の研削作用面(外周面)に押し付けることで、このウェーハ外周部を面取りする装置である。
 シリコンウェーハWは回転テーブル52の上面に真空吸着され、回転テーブル52はテーブル用モータ53により回転自在に設けられている。また、回転テーブル52には面取り用砥石51が近接配置されている。面取り用砥石51は回転モータ54の回転軸55の先端に固着され、回転軸55を中心として回転自在に支持されている。面取り時、シリコンウェーハWの面取り面には純水が5リットル/分で供給される。
 なお、面取り工程S104の終了後に、シリコンウェーハWの面取り面を鏡面面取りしてもよい。具体的には、純水を供給しながら、シリコンウェーハWの面取り部(面取り面)を、垂直な回転軸を中心にして回転中のクロスやバフなどに押し付け、この面取り部の面取り面を鏡面に仕上げる。
 次に、レーザーマーキング工程S105では、ウェーハを認識するため、シリコンウェーハWの外周部に、レーザーにより所定のマークを刻印する。すなわち、外部に露出したテラス部分に、あらかじめ指定されたバーコード、数字、記号、図形などを、レーザーマーキングする。
 その後、アルカリエッチング工程S106では、シリコンウェーハWをアルカリ性エッチング液(液温60℃)に10分間浸漬する。
 次に、シリコンウェーハWの固定砥粒両面研磨工程(S107)を説明する。
 ここでは、図4~図6に示す固定砥粒両面研削で使用した固定砥粒両面研削装置10を利用する。具体的には、下定盤13の上面に、研削用下側加工層31に代えて研磨用下側加工層(固定砥粒層)31Aを固定し、上定盤12の下面に、研削用上側加工層32に代えて研磨用上側加工層(別の固定砥粒層)32Aを固定する。また、研磨液として、遊離砥粒を含まないKOHを主剤としたアルカリ水溶液を採用した。
 研磨用下側加工層31Aおよび研磨用上側加工層32Aは、弾性基材33a,34aの原料である硬化ポリマー系樹脂に、粒径(平均粒径)が4μmのダイヤモンド砥粒33b,34bを混練して分散固化し、それを数mm角にカットして多数の砥石片33A,34Aとする。両加工層31A,32Aは、これらの砥石片33A,34Aを両定盤12,13の対向面に格子状に接着したものである。
 シリコンウェーハWの固定砥粒両面研磨時には、まず、キャリアプレート11の各ウェーハ保持孔11aにそれぞれ旋回自在にシリコンウェーハWを挿入する。上定盤12とともに15rpmで回転中の研磨用上側加工層32Aを、各ウェーハWに250g/cmで押し付けるとともに、下定盤13とともに15rpmで回転中の研磨用下側加工層31Aを、各ウェーハ表面に250g/cmで押し付ける。
 その後、両加工層31A,32Aをウェーハ表裏面に押し付けたまま、上定盤12から遊離砥粒を含まないアルカリ水溶液(研磨液)を2リットル/分で供給しながら、円運動用モータ29によりタイミングチェーン27を周転させる。これにより、各偏心アーム24が水平面内で同期回転し、各偏心軸24aに一括して連結されたキャリアホルダ20およびキャリアプレート11が、このプレート11の表面に平行な水平面内で、自転をともなわない円運動を15rpmで行う。その結果、各シリコンウェーハWは、対応するウェーハ保持孔11aにおいて水平面内で旋回しながら、3枚のシリコンウェーハWの表裏面が同時に研磨加工される。研磨量は、ウェーハ片面1~30μm(加工歪みは片面5~10μm)である。
 次に、固定砥粒両面研磨されたシリコンウェーハWの表面が、図示しない片面研磨装置を利用して仕上げ研磨(S108)される。
 片面研磨装置は、上面に硬質ウレタンパッド製の研磨布が展張された研磨定盤と、この上方に配設された研磨ヘッドとを備えている。研磨ヘッドの下面には、表面が下向きに配置された3枚のシリコンウェーハWが、キャリアプレートを介してワックス貼着されている。
 片面研磨時には、研磨定盤と研磨ヘッドとを所定方向、所定速度で回転させながら研磨ヘッドを徐々に下降し、上記研磨液が5リットル/分で供給されている研磨布に押し付ける。これにより、各シリコンウェーハWの表面が0.5μmだけ鏡面研磨される。こうして仕上げ研磨されたシリコンウェーハWは、その後、所定の洗浄処理、各種のウェーハ検査を経て梱包され、デバイスメーカーへ出荷される。
 このように、スライス後、遊離砥粒を含まない純水を供給しながら、シリコンウェーハWの表裏面を同時に固定砥粒両面研削し、次にウェーハ外周部を面取り後、遊離砥粒を含まないアルカリ水溶液を供給しながらウェーハ表裏面を同時に固定砥粒両面研磨するため、スライス後のシリコンウェーハWに対して、固定砥粒両面研削から固定砥粒両面研磨まで、遊離砥粒を使用せず固定砥粒のみで加工することができる。その結果、固定砥粒両面研削から固定砥粒両面研磨までのシリコンウェーハWの加工レートが増大し、シリコンウェーハWの加工時間を短縮することができる。
 しかも、固定砥粒両面研磨の工程では、従来の研磨布に比べて高い硬度の研磨用下側加工層によって研磨する。そのため、両面研磨時に各回転軸から上下の定盤に作用する研磨圧力は、研磨布の場合より研磨作用面の全体に均一に作用する。これにより、従来法の課題であったウェーハ中央部に比べてウェーハ外周部の研磨量が増大して発生するロールオフを抑制することができる。
 さらに、固定砥粒両面研磨時には、シリコンのエッチング機能を有した炭酸カリウムを主剤とするアルカリ水溶液を供給しながら研磨する。そのため、固定砥粒による研削作用で発生したウェーハ表裏面の機械的な加工ダメージが、即時、アルカリ水溶液によって化学エッチングにより除去される。その結果、仮にエッチング工程S106を省略したとしても、エッチング工程S106を有した場合と同等の研磨後の表面粗さを確保することができる(例えばフラットネスがGBIR;170nm程度、ナノトポグラフィ;2mm□で8.5nm程度)。しかも、エッチング工程を省略した場合には、シリコンウェーハWの製造工程数のさらなる削減が図れ、さらに設備コストも低減する。
 ここで、図8および図9を参照して、実施例1に係る半導体ウェーハの製造方法により得られたシリコンウェーハ(試験例;図8および図9の各右側B)と、従来法により得られたシリコンウェーハ(比較例;図8および図9の各左側A)とについて、表面粗さのフラットネス(図8)と、ナノトポグラフィ(図9)とを比較した結果を報告する。
 従来法のウェーハ製造方法では、実施例1の固定砥粒両面研削工程に代えて遊離砥粒を含む加工液(ラッピング液)を用いたラッピング工程を採用するとともに、実施例1の固定砥粒両面研磨工程に代えて、遊離砥粒を含む研磨液を使用する遊星歯車方式の両面研磨装置を用いた両面研磨工程を採用した。
 検査の結果、比較例ではフラットネスがGBIRで173.4nm、ナノトポグラフィが2mm□で8.05nmであった。これに対して、試験例ではフラットネスがGBIRで186.6nm、ナノトポグラフィが2mm□で8.97nmであり、試験例は比較例と同等のフラットネスおよびナノトポグラフィが得られた。
 なお、本実施例では、固定砥粒両面研磨する前にアルカリエッチング工程S106を実施する形態を例にして説明したが、エッチング工程を実施せず、面取り加工やレーザーマーク処理されたウェーハをそのまま固定砥粒両面研磨した場合であっても、実施例1と同等な平坦度結果が得られることが確認された。
 本発明によれば、半導体ウェーハの研削および研磨にかかる加工時間を短縮することが可能である。また、ラッピング、エッチング等の従来の工程を省略することにより、装置、設備を単純化することが可能であり、半導体ウェーハの製造効率を向上することができる。そのため、この発明は、半導体からなる単結晶インゴットを加工し、半導体ウェーハを製造する技術として有用である。

Claims (5)

  1.  半導体ウェーハの製造方法であって、
     遊離砥粒を含まない純水を供給しながら、上定盤面および下定盤面に形成された弾性基材に砥粒を分散させた第一の固定砥粒層により、複数の半導体ウェーハの表裏面を同時に研削する両面研削工程と、
     前記両面研削工程後、遊離砥粒を含まないアルカリ水溶液を供給しながら、上定盤面および下定盤面に形成された弾性基材に砥粒を分散させた第二の固定砥粒層により、前記両面研削された複数の半導体ウェーハの表裏面を同時に研磨する両面研磨工程を含む
     半導体ウェーハの製造方法。
  2.  請求項1記載の半導体ウェーハの製造方法であって、前記両面研削工程後、前記両面研磨工程の前に、前記両面研削された半導体ウェーハの外周部に、遊離砥粒を含まない純水を供給しながら、面取り砥石による面取りを行う面取り工程をさらに含む、半導体ウェーハの製造方法。
  3.  請求項1または2記載の半導体ウェーハの製造方法であって、前記両面研削工程に供する半導体ウェーハを、半導体の単結晶インゴットからスライスするスライス工程をさらに含み、前記スライス工程では、外周面に砥粒が固定された固定砥粒ワイヤを使用して、半導体の単結晶インゴットから半導体ウェーハをスライスする、半導体ウェーハの製造方法。
  4.  請求項1または2記載の半導体ウェーハの製造方法であって、前記両面研削工程後、エッチング工程を経ずに、前記両面研磨を行う、半導体ウェーハの製造方法。
  5.  請求項3記載の半導体ウェーハの製造方法であって、前記両面研削工程後、エッチング工程を経ずに、前記両面研磨を行う、半導体ウェーハの製造方法。
PCT/JP2012/071185 2011-08-25 2012-08-22 半導体ウェーハの製造方法 WO2013027762A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-183208 2011-08-25
JP2011183208A JP2013045909A (ja) 2011-08-25 2011-08-25 半導体ウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2013027762A1 true WO2013027762A1 (ja) 2013-02-28

Family

ID=47746500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071185 WO2013027762A1 (ja) 2011-08-25 2012-08-22 半導体ウェーハの製造方法

Country Status (2)

Country Link
JP (1) JP2013045909A (ja)
WO (1) WO2013027762A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022160934A (ja) 2021-04-07 2022-10-20 信越半導体株式会社 ウェーハの加工方法及びウェーハ
JP7072180B1 (ja) * 2021-12-20 2022-05-20 有限会社サクセス 半導体結晶ウェハの製造方法および製造装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246216A (ja) * 1996-03-06 1997-09-19 Mitsubishi Materials Shilicon Corp 半導体ウェ−ハの製造方法
JPH11154655A (ja) * 1997-11-21 1999-06-08 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法
JP2002231669A (ja) * 2001-01-29 2002-08-16 Mitsubishi Materials Silicon Corp 半導体ウェーハ用研磨布およびこれを用いた半導体ウェーハの研磨方法
JP2004071833A (ja) * 2002-08-06 2004-03-04 Sumitomo Mitsubishi Silicon Corp 半導体ウェーハの両面研磨方法
JP2006100786A (ja) * 2004-09-03 2006-04-13 Disco Abrasive Syst Ltd ウェハの製造方法
JP2006297847A (ja) * 2005-04-25 2006-11-02 Nippei Toyama Corp 半導体ウエーハの製造方法およびワークのスライス方法ならびにそれらに用いられるワイヤソー
JP2006332281A (ja) * 2005-05-25 2006-12-07 Komatsu Electronic Metals Co Ltd 半導体ウェーハの製造方法および両面研削方法並びに半導体ウェーハの両面研削装置
JP2009302409A (ja) * 2008-06-16 2009-12-24 Sumco Corp 半導体ウェーハの製造方法
JP2009302408A (ja) * 2008-06-16 2009-12-24 Sumco Corp 半導体ウェーハの製造方法
JP2011003902A (ja) * 2009-06-17 2011-01-06 Siltronic Ag 両面で半導体ウェハを化学的に研削する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893749B2 (ja) * 1998-06-08 2007-03-14 信越半導体株式会社 薄板の加工方法および加工装置
JP2010263025A (ja) * 2009-05-01 2010-11-18 Okamoto Machine Tool Works Ltd シリコンインゴットの面取り加工装置およびそれを用いる角柱状シリコンインゴットの面取り加工方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246216A (ja) * 1996-03-06 1997-09-19 Mitsubishi Materials Shilicon Corp 半導体ウェ−ハの製造方法
JPH11154655A (ja) * 1997-11-21 1999-06-08 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法
JP2002231669A (ja) * 2001-01-29 2002-08-16 Mitsubishi Materials Silicon Corp 半導体ウェーハ用研磨布およびこれを用いた半導体ウェーハの研磨方法
JP2004071833A (ja) * 2002-08-06 2004-03-04 Sumitomo Mitsubishi Silicon Corp 半導体ウェーハの両面研磨方法
JP2006100786A (ja) * 2004-09-03 2006-04-13 Disco Abrasive Syst Ltd ウェハの製造方法
JP2006297847A (ja) * 2005-04-25 2006-11-02 Nippei Toyama Corp 半導体ウエーハの製造方法およびワークのスライス方法ならびにそれらに用いられるワイヤソー
JP2006332281A (ja) * 2005-05-25 2006-12-07 Komatsu Electronic Metals Co Ltd 半導体ウェーハの製造方法および両面研削方法並びに半導体ウェーハの両面研削装置
JP2009302409A (ja) * 2008-06-16 2009-12-24 Sumco Corp 半導体ウェーハの製造方法
JP2009302408A (ja) * 2008-06-16 2009-12-24 Sumco Corp 半導体ウェーハの製造方法
JP2011003902A (ja) * 2009-06-17 2011-01-06 Siltronic Ag 両面で半導体ウェハを化学的に研削する方法

Also Published As

Publication number Publication date
JP2013045909A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
WO2011105255A1 (ja) 半導体ウェーハの製造方法
US9293318B2 (en) Semiconductor wafer manufacturing method
TWI463555B (zh) 半導體晶圓的製造方法
JP5913839B2 (ja) 研磨方法
KR101139054B1 (ko) 반도체 웨이퍼의 양면 폴리싱 가공 방법
US8343873B2 (en) Method for producing a semiconductor wafer
JP5538253B2 (ja) 半導体ウェハの製造方法
CN1650404A (zh) 半导体晶片的制造方法及晶片
CN111630213B (zh) 单晶4H-SiC生长用籽晶及其加工方法
JP2009302409A (ja) 半導体ウェーハの製造方法
WO2015059868A1 (ja) 半導体ウェーハの製造方法
JPWO2005055302A1 (ja) 片面鏡面ウェーハの製造方法
JP5177290B2 (ja) 固定砥粒加工装置及び固定砥粒加工方法、並びに、半導体ウェーハ製造方法
JP6747599B2 (ja) シリコンウェーハの両面研磨方法
CN110871385A (zh) 双面抛光机与抛光方法
WO2013027762A1 (ja) 半導体ウェーハの製造方法
KR101303552B1 (ko) 반도체 웨이퍼의 양면을 화학적으로 그라인딩하는 방법
JP2002016025A (ja) 半導体ウェーハの製造方法及び製造装置
CN114523340B (zh) 研磨抛光成套装备、研磨抛光方法
CN108290268B (zh) 晶圆的双面研磨方法
JP2004356336A (ja) 半導体ウェーハの両面研磨方法
CN105729250A (zh) 一种自修整磁流变柔性抛光砂轮及其磨抛方法
JP2010153844A (ja) 活性層用ウェーハの製造方法
KR101151000B1 (ko) 웨이퍼 연마 장치 및 웨이퍼 제조 방법
JPWO2010119833A1 (ja) シリコンエピタキシャルウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826263

Country of ref document: EP

Kind code of ref document: A1