WO2013027756A1 - 超音波プローブ及び超音波診断装置 - Google Patents

超音波プローブ及び超音波診断装置 Download PDF

Info

Publication number
WO2013027756A1
WO2013027756A1 PCT/JP2012/071163 JP2012071163W WO2013027756A1 WO 2013027756 A1 WO2013027756 A1 WO 2013027756A1 JP 2012071163 W JP2012071163 W JP 2012071163W WO 2013027756 A1 WO2013027756 A1 WO 2013027756A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration element
sub
unit
element groups
ultrasonic probe
Prior art date
Application number
PCT/JP2012/071163
Other languages
English (en)
French (fr)
Inventor
尾名 康裕
浩之 四方
武内 俊
隆司 久保田
秀樹 小作
裕 大貫
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to US13/979,865 priority Critical patent/US20130303917A1/en
Priority to CN2012800107050A priority patent/CN103415256A/zh
Publication of WO2013027756A1 publication Critical patent/WO2013027756A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor

Definitions

  • Embodiments described herein relate generally to an ultrasonic probe and an ultrasonic diagnostic apparatus.
  • the ultrasonic diagnostic apparatus acquires biological information of a subject by transmitting an ultrasonic wave into the subject using an ultrasonic probe and receiving a reflected wave thereof.
  • Ultrasonic transmission / reception is performed by a plurality of vibration elements provided in the ultrasonic probe.
  • the directivity of each vibration element is determined in advance depending on its structure. Therefore, in order to generate ultrasonic waves in a wide range, a structure that can ensure wide directivity is required.
  • a region having a high sound pressure (hereinafter sometimes referred to as “grating lobe”) may be formed in a direction different from the direction in which the ultrasonic wave is desired to be generated.
  • the grating lobe has a problem that a virtual image is generated in the ultrasonic diagnostic image.
  • the embodiment has been made to solve the above-described problems, and an object thereof is to provide an ultrasonic probe and an ultrasonic diagnostic apparatus that can reduce the degree of generation of a virtual image generated in an ultrasonic diagnostic image.
  • the ultrasonic probe includes a vibration element unit in which a plurality of vibration element groups are arranged, and a selection unit.
  • Each of the plurality of vibration element groups includes first to nth sub vibration element groups. Radiation surfaces of the vibration elements included in the first to nth sub vibration element groups are arranged in different directions for each sub vibration element group.
  • the selection means is provided for selectively driving a predetermined sub-vibration element group among the first to n-th sub-vibration element groups based on an external drive signal.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe, a transmission / reception unit, and a selection control unit.
  • the ultrasonic probe includes a vibration element unit in which a plurality of vibration element groups are arranged, and a selection unit.
  • Each of the plurality of vibration element groups includes first to nth sub vibration element groups. Radiation surfaces of the vibration elements included in the first to nth sub vibration element groups are arranged in different directions for each sub vibration element group.
  • the selection means is provided for selectively driving a predetermined sub-vibration element group among the first to n-th sub-vibration element groups based on the drive signal.
  • the transmission / reception means transmits / receives ultrasonic waves by transmitting a drive signal to the vibration elements included in the first to nth sub vibration element groups.
  • the selection control unit controls the operation of the selection unit.
  • FIG. 1 is a block diagram of the ultrasonic diagnostic apparatus 100.
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 1 and a main body 2.
  • the main body 2 includes a transmission / reception unit 3, a signal processing unit 4, an image generation unit 5, a synthesis unit 6, a display control unit 7, a user interface (UI) 8, and a control unit 9. ing.
  • the ultrasonic probe 1 and the main body 2 are connected via a cable (not shown) provided in the ultrasonic probe 1.
  • the ultrasonic probe 1 is provided with a vibration element unit 10 in which a plurality of vibration element groups each having a predetermined number of vibration elements as a group are arranged.
  • the ultrasonic probe 1 can be connected to the main body 2 to transmit ultrasonic waves to the subject and receive reflected waves from the subject as echo signals. Details of the configuration of the vibration element unit 10 will be described later.
  • the transmission / reception unit 3 supplies a drive signal to the ultrasonic probe 1 to generate an ultrasonic wave, and receives an echo signal received by the ultrasonic probe 1.
  • the transmission / reception unit 3 outputs the received echo signal to the signal processing unit 4.
  • the transmission / reception unit 3 includes a transmission unit 31 and a reception unit 32. In the present embodiment, a plurality of transmission / reception units 3 are provided corresponding to the number of vibration elements. Further, the transmission / reception unit 3 may be provided in the ultrasonic probe 1.
  • the transmission / reception unit 3 in the embodiment is an example of “transmission / reception means”.
  • the transmitter 31 supplies a drive signal to the ultrasonic probe 1 to generate an ultrasonic wave.
  • the transmission unit 31 supplies a drive signal to the ultrasonic probe 1 to transmit ultrasonic waves beamformed to a predetermined focal point.
  • the beam form with respect to a predetermined focal point is made, for example, by phase matching between an acoustic lens (not shown) and an array direction (X direction described later).
  • the transmission unit 31 includes, for example, a clock generator (not shown), a transmission delay circuit, and a pulsar circuit.
  • the clock generator generates a clock signal that determines the transmission timing and transmission frequency of the ultrasonic signal.
  • the transmission delay circuit transmits a delay when transmitting an ultrasonic wave according to a focusing delay time for focusing the ultrasonic wave to a predetermined depth and a deflection delay time for transmitting the ultrasonic wave in a predetermined direction.
  • deflection delay time control for transmitting ultrasonic waves in a predetermined direction is particularly important.
  • the pulsar circuit has pulsars corresponding to the number of individual channels corresponding to the ultrasonic vibration elements.
  • the pulsar circuit generates a drive pulse (drive signal) at a transmission timing subjected to a delay, and supplies the drive pulse (drive signal) to the vibration element of the ultrasonic probe 1.
  • the receiving unit 32 receives an echo signal received by the ultrasonic probe 1.
  • the receiving unit 32 performs a delay process on the received echo signal, thereby converting the analog echo signal into digital data subjected to phasing addition.
  • the receiving unit 32 includes, for example, a gain circuit (not shown), an A / D converter, a reception delay circuit, and an adder.
  • the gain circuit amplifies (applies gain) the echo signal output from the vibration element of the ultrasonic probe 1 for each reception channel.
  • the A / D converter converts the amplified echo signal into a digital signal.
  • the reception delay circuit gives a delay time necessary for determining the reception directivity to the echo signal converted into the digital signal.
  • the reception delay circuit digitally combines a focusing delay time for focusing ultrasonic waves from a predetermined depth and a deflection delay time for setting reception directivity with respect to a predetermined direction. Is given to the echo signal.
  • the delay time is not necessarily a simple calculation of the convergence delay amount and the deflection angle delay amount, but is calculated according to a predetermined formula and principle.
  • the adder adds echo signals given delay times. By the addition, the reflection component from the direction corresponding to the reception directivity is emphasized. In other words, the echo signal obtained from the predetermined direction is phased and added by the reception delay circuit and the adder.
  • the receiving unit 32 outputs the echo signal subjected to the delay process to the signal processing unit 4.
  • the signal processing unit 4 performs various signal processing on the echo signal output from the transmission / reception unit 3.
  • the signal processing unit 4 includes a B mode processing unit.
  • the B-mode processing unit receives the echo signal from the transmission / reception unit 3 and visualizes the amplitude information of the echo signal.
  • the B-mode processing unit performs bandpass filter processing on the echo signal, then detects the envelope of the output signal, and performs compression processing by logarithmic transformation on the detected data.
  • the signal processing unit 4 may have a CFM (Color Flow Mapping) processing unit.
  • the CFM processing unit visualizes blood flow information. Blood flow information includes information such as speed, distribution, or power.
  • the signal processing unit 4 may have a Doppler processing unit.
  • the Doppler processing unit extracts the Doppler shift frequency component by phase detection of the echo signal, and generates a Doppler frequency distribution representing the blood flow velocity by performing FFT processing.
  • the signal processing unit 4 outputs an echo signal (ultrasonic raster data) subjected to the signal processing to the image generation unit 5.
  • the image generation unit 5 generates ultrasonic image data based on the echo signal (ultrasonic raster data) after the signal processing output from the signal processing unit 4.
  • the image generation unit 5 includes, for example, a DSC (Digital Scan Converter).
  • the image generation unit 5 converts the echo signal after the signal processing represented by the signal line of the scanning line into image data represented by the orthogonal coordinate system (scan conversion processing).
  • the image generation unit 5 generates B-mode image data representing the shape of the tissue of the subject by performing scan conversion processing on the echo signal subjected to signal processing by the B-mode processing unit.
  • the image generation unit 5 outputs ultrasonic image data to the synthesis unit 6.
  • the ultrasound probe 1 and the transmission / reception unit 3 scan a cross section in the subject with ultrasound, and the image generation unit 5 B-mode image data (tomographic image data) that two-dimensionally represents the shape of the tissue in the cross section. Is generated.
  • the ultrasonic probe 1 and the transmission / reception unit 3 may acquire volume data by scanning a three-dimensional region with ultrasonic waves.
  • the image generation unit 5 may generate three-dimensional image data that three-dimensionally represents the shape of the tissue by performing volume rendering on the volume data.
  • the image generation unit 5 may generate image data (MPR image data) in an arbitrary cross section by performing MPR (Multi Planar Reconstruction) processing on the volume data.
  • MPR image data Multi Planar Reconstruction
  • the ultrasonic diagnostic apparatus may include an image storage unit (not shown).
  • the image storage unit stores data obtained by the ultrasonic diagnostic apparatus according to this embodiment.
  • the image storage unit stores the echo signal output from the transmission / reception unit 3.
  • the image storage unit may store the ultrasonic raster data output from the signal processing unit 4.
  • the image storage unit may store ultrasonic image data such as tomographic image data output from the image generation unit 5.
  • the combining unit 6 generates combined image data by combining a plurality of ultrasonic image data.
  • the composition of the image data by the composition unit 6 is performed by a known method.
  • the composite image data can be generated by assigning a weight corresponding to the depth at which the ultrasound image data is acquired to each of the plurality of ultrasound image data and averaging the images.
  • the combining unit 6 outputs the combined image data to the display control unit 7.
  • Display control unit 7 receives the composite image data from the composite unit 6 and causes the display unit 81 to display a composite image based on the composite image data.
  • the user interface (UI) 8 includes a display unit 81 and an operation unit 82.
  • the display unit 81 includes a monitor such as a CRT or a liquid crystal display.
  • the operation unit 82 includes an input device such as a keyboard and a mouse.
  • Control unit 9 The control unit 9 controls the operation of each unit of the ultrasonic diagnostic apparatus 100. For example, the control unit 9 transmits a delay signal to the transmission / reception unit 3 to control ultrasonic transmission / reception.
  • each function of the image generation unit 5, the synthesis unit 6, and the display control unit 7 may be executed by a program.
  • each of the image generation unit 4, the synthesis unit 6, and the display control unit 7 includes a processing device (not shown) such as a CPU, GPU, or ASIC and a storage device (not shown) such as a ROM, RAM, or HDD. It may be.
  • the storage device includes an image generation program for executing the function of the image generation unit 5, a synthesis program for executing the function of the synthesis unit 6, and a display processing program for executing the function of the display control unit 7. , Is stored.
  • a processing device such as a CPU executes functions of each unit by executing each program stored in the storage unit.
  • FIG. 2 is a perspective view of the vibration element unit 10.
  • FIG. 3 is an enlarged view of an XZ cross section of the vibration element unit 10. In FIG. 3, a part of the vibration element unit 10 is omitted.
  • the vibration element unit 10 includes a pedestal 11 and a plurality of vibration element groups L.
  • the pedestal 11 is formed of a material that can be used for a semiconductor process, such as a quartz (SiO 2 ) substrate or a silicon (Si) substrate.
  • a plurality of vibration element groups L are arranged on the upper surface of the base 11.
  • the seven vibration element groups L 1 to L 7 formed in a row are arranged in an array, but the number of vibration element groups L is not limited to this.
  • the scanning direction of the vibration element unit 10 is the X direction
  • the direction perpendicular to the scanning direction along the upper surface of the base 11 (the “elevation direction”)
  • the Y direction the direction perpendicular to the scanning direction along the upper surface of the base 11
  • the thickness direction of the base 11 is the Z direction.
  • each of the plurality of vibration element groups L includes a base 12 and a sub vibration element group T.
  • each vibration element group L includes three sub vibration element groups T 1 to T 3 .
  • the number of sub vibration element groups T is not limited to three (generally, the first to nth sub vibration element groups (n ⁇ 2) can be provided).
  • the base 12 is provided in a row on the upper surface of the base 11 and has a surface 13 on which the sub vibration element group T is disposed.
  • the base 12 is formed in a trapezoidal convex shape.
  • three surfaces 13 are formed in accordance with the number of sub-vibration element groups T.
  • the sub vibration element group T 1 is disposed on the surface 13a
  • the sub vibration element group T 2 is disposed on the surface 13b
  • the sub vibration element group T 3 is disposed on the surface 13c.
  • the sub vibration element group T includes a plurality of vibration elements t.
  • the plurality of vibration elements t are arranged in a row in the elevation direction (Y direction).
  • the vibration element included in the sub vibration element group T 1 is t 1
  • the vibration element included in the sub vibration element group T 2 is t 2
  • the vibration element included in the sub vibration element group T 3 is t 3.
  • the vibration element t receives the signal from the transmission unit 31 and transmits ultrasonic waves from the radiation surface.
  • the vibration element t receives an echo signal from the subject and sends it to the receiving unit 32.
  • the radiation surface of the vibration element t of each sub-vibration element group T is arranged in a different direction for each sub-vibration element group T. That is, in the embodiment, the radiation surfaces of the vibration elements t 1 , t 2 , and t 3 are arranged in different directions.
  • the radiation surfaces of the vibration elements t are arranged in the same direction (for example, the radiation surface of the vibration element t 1 of the vibration element group L 1 and the vibration element group). And is arranged in the same direction as the radiation surface of the vibration element t 1 of L 2 ).
  • a piezoelectric body or a MUT (Micromachining Ultrasound Transducer) element can be used as the vibration element t.
  • the MUT element includes cMUT (Capacitive Micromachining Ultrasound Transducer) and pMUT (Piezoelectric Microsounding Transducer).
  • a groove portion 14 is provided between the base portions 12. By providing the groove portion 14, it is possible to acoustically separate the sub-vibration element group T arranged in each base portion 12.
  • FIG. 4 is a perspective view of the vibration element unit 10 ′.
  • FIG. 5 is an enlarged view of the XZ cross section of the vibration element unit 10 ′′.
  • a configuration in which a plurality of vibration element groups L ′ (16 in FIG. 4) are arranged on a columnar base 12 ′ arranged in a matrix may be used.
  • sub vibration element groups T ′ (T 1 ′ and T 2 ′) are arranged on the upper surface 13 d and the side surface 13 e of the cylinder.
  • the base 12 ′′ may be divided into three, and the sub vibration element groups T 1 ′′ to T 3 ′′ may be arranged on each of them.
  • the base 12 may have a configuration in which a plurality of sub vibration element groups T can be arranged. More specifically, the base 12 may have a configuration in which the radiation surface of the vibration element t is arranged in a different direction for each sub vibration element group T. Therefore, the base 12 is not limited to a convex shape, and may be a concave shape. The base 12 may be formed integrally with the pedestal 11.
  • FIG. 6 is a block diagram showing an outline of an ultrasonic diagnostic apparatus for explaining the present embodiment. In FIG. 6, only one vibration element group L is shown. Some of the configurations are omitted.
  • FIG. 8 is a flowchart showing the operation of the ultrasonic diagnostic apparatus.
  • a plurality of vibration element groups L for example, 96
  • a number of signal lines SL equal to the plurality of vibration element groups L
  • sub vibrations included in one vibration element group L A sub signal line sl corresponding to the element group T, the same number of connection parts C as the plurality of vibration element groups L, and a switch control part 91 are provided.
  • FIG. 6 only one vibration element group L, one signal line SL, one connection portion C, and sub signal lines sl 1 to sl 3 are shown.
  • the signal line SL has one end connected to the transmission / reception unit 3 (the transmission unit 31 and the reception unit 32) in the main body 2, and the other end connected to at least one of the sub signal lines sl 1 to sl 3 via the connection unit C. It is possible.
  • the signal line SL is connected to the transmission / reception unit 3 through a cable (not shown).
  • each of the sub signal lines sl 1 to sl 3 is provided so as to be connectable to the other end of the signal line SL, and the other end is connected to each of the sub vibrating element groups T 1 to T 3 .
  • the sub signal lines sl are provided from the first sub signal line sl 1 to the nth sub signal line sl n (n ⁇ 2) according to the number of sub vibration element groups T.
  • connection portion C is used to selectively drive a predetermined sub-vibration element group among the plurality of sub-vibration element groups T based on a drive signal from the outside such as the main body 2.
  • the connection portion C includes the same number of switches c as the sub signal lines sl.
  • three switches c 1 to c 3 corresponding to the sub signal lines sl 1 to sl 3 are provided.
  • the switch c switches between connection and disconnection of the sub signal line sl with respect to the signal line SL.
  • the connection part C should just be provided with respect to the some vibration element group L at least one.
  • the connection part C in the present embodiment is an example of “selection means”.
  • the switches c 1 to c 3 in the present embodiment are an example of “first switching means”.
  • the switch control unit 91 controls the operation of the connection unit C. Specifically, the switch control unit 91 switches each of the switches c. For example, when a delay signal that drives only the sub vibration element T 1 is transmitted from the control unit 9, the switch control unit 91 operates the switch c 1 based on the delay information, and the signal line SL and the sub signal line sl. 1 is connected. In this state, the sub-transducers group T 1 receives a transmission signal (driving signal) from the transmission unit 31 (first pulser 31a), it is possible to transmit the ultrasonic waves. Note that the number of switches c operated by the switch control unit 91 is not limited to one.
  • One switch control unit 91 can simultaneously operate a plurality of switches c (for example, c 1 and c 2 ). As a result, a plurality of sub vibration element groups (for example, T 1 and T 2 ) can be driven simultaneously.
  • the switch control unit 91 in this embodiment is an example of a “selection control unit”.
  • At least one switch control unit 91 is provided for the plurality of vibration element groups L. Further, when the switch control unit 91 is provided for each of the plurality of vibration element groups L, different control can be performed on each of the vibration element groups L. For example, in the vibration element group L 1 , the switch c 1 is operated so as to drive only the sub vibration element group T 1 , and in the vibration element group L 2 , the switch c 3 is operated so as to drive only the sub vibration element group T 3 . be able to.
  • the transmission unit 31 in the present embodiment includes a first pulsar 31a, a second pulsar 31b, and a third pulsar 31c as pulsars. Each pulsar generates a different pulse.
  • one pulser is selected from the first pulser 31a, the second pulser 31b, and the third pulser 31c.
  • the selected pulser generates a drive signal, and supplies the drive signal to the vibration element t of the sub vibration element group T via the signal line SL and the sub signal line sl.
  • the receiving unit 32 in the present embodiment includes a first gain unit 32a, a second gain unit 32b, and a third gain unit 32c as gain circuits. Each gain unit applies a different gain to the echo signal.
  • one gain unit is selected from the first gain unit 32a, the second gain unit 32b, and the third gain unit 32c.
  • the selected gain unit applies a predetermined gain to the echo signal received by the vibration element t and sends it to a post-processing unit such as the signal processing unit 4.
  • the control unit 9 in the present embodiment is configured to include a calculation unit 92.
  • the calculation unit 92 calculates how much the direction in which the ultrasonic wave input by the operation unit 82 or the like is transmitted is deviated from the reference direction.
  • the reference direction is a direction arbitrarily set with respect to the ultrasonic transmission direction in the vibration element group L.
  • the control unit 9 determines the sub vibration element group T to be driven based on the calculation result of the calculation unit 92, and transmits delay information (information for switch control) based on the sub vibration element group T to the switch control unit 91.
  • the processing by the calculation unit 92 and the control unit 9 can be performed for each vibration element group L. That is, the control unit 9 can transmit different delay signals to the respective vibration element groups L.
  • FIG. 7 is an XZ cross-sectional view of one vibration element group L when viewed from the side surface (Y direction).
  • the direction in which ultrasonic waves are transmitted is “S”
  • the reference direction is “P”
  • the angle with respect to the reference direction is “ ⁇ ”.
  • the angle between the ultrasonic beams transmitted from each vibration element t in one vibration element group L is “ ⁇ ”.
  • the calculation unit 92 calculates the angle ⁇ of the ultrasonic transmission direction S with respect to the reference direction P.
  • the control unit 9 determines the vibration element t (sub vibration element group T) to be driven based on the relationship between the angle ⁇ and the angle ⁇ .
  • the relationship between the angle ⁇ and the angle ⁇ is predetermined by a table as shown in Table 1, for example.
  • the operation of the ultrasonic diagnostic apparatus 100 according to the present embodiment will be described with reference to FIG.
  • the reference direction P shall be predetermined.
  • control unit 9 determines the direction S in which the ultrasonic wave is transmitted (S10).
  • the calculation unit 92 calculates how much the direction S of transmitting the ultrasonic wave determined in S10 is deviated from the reference direction P (angle ⁇ ) (S11).
  • the control unit 9 determines the vibration element t to be driven from the table data or the like based on the calculation result in S11 (S12). Here, it is assumed that the vibrating elements t 1 is determined.
  • the control unit 9 transmits a delay signal and delay information based on the determination result in S12 to the switch control unit 91 and the transmission / reception unit 3.
  • the switch control unit 91 drives the switch c 1 on the basis of the delay information, thereby connecting the signal line SL and the sub signal line sl 1 (S13).
  • Transmitter 31 of the transceiver unit 3 drives the first pulser 31a on the basis of the delay signal, and transmits a drive signal to the vibrating element t 1. Vibrating elements t 1 based on a drive signal for transmitting ultrasonic waves to a subject (S14).
  • the receiving unit 32 of the transmitting / receiving unit 3 drives the first gain unit 32a based on the delay signal, and receives the echo signal with a predetermined gain (S15).
  • the echo signal to which the gain is applied in S15 is sent to the signal processing unit 4 and the like (not shown in FIG. 6), and after predetermined processing (S16), the synthesis unit 6 obtains image data ( S17).
  • the display unit 81 displays an image based on the image data obtained in S17.
  • the ultrasonic probe 1 includes a vibration element unit 10 in which a plurality of vibration element groups L (for example, L 1 to L 96 ) are arranged.
  • Each of the plurality of vibration element groups L includes first to n-th sub vibration element groups T (T 1 to T n ).
  • the ultrasonic probe 1 has a selection means (connection part C).
  • the selection means (connector C) selectively selects a predetermined sub-vibration element group T from the first to n-th sub-vibration element groups T (T 1 to T n ) based on an external drive signal. It is provided for driving.
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 1, a transmission / reception unit (transmission / reception unit 3), and a selection control unit (switch control unit 91).
  • the ultrasonic probe 1 has a vibration element unit 10 in which a plurality of vibration element groups L (for example, L 1 to L 96 ) are arranged.
  • Each of the plurality of vibration element groups L includes first to n-th sub vibration element groups T (T 1 to T n ).
  • the ultrasonic probe 1 has a selection means (connection part C).
  • the selection means (connection portion C) is for selectively driving a predetermined sub-vibration element group T among the first to n-th sub-vibration element groups T (T 1 to T n ) based on the drive signal. Is provided.
  • the transmission / reception means sends the drive signal to the vibration elements t (t 1 to t n ) included in the first to n-th sub vibration element groups T (T 1 to T n ). Send and receive ultrasound.
  • the selection control unit controls the operation of the selection unit (connection unit C).
  • the ultrasonic probe 1 includes a signal line SL and first to nth sub signal lines sl.
  • the signal lines SL are provided in the same number as the plurality of vibration element groups L (for example, L 1 to L 96 ), and one end is connected to the apparatus main body.
  • One end of each of the first to nth sub signal lines sl (sl 1 to sl n ) is provided so as to be connectable to the other end of the signal line SL, and the other end of each of the first to nth sub vibrating element groups T (T 1 to T n ).
  • the selection means (connection portion C) has the same number of first switching means (switches c) as the first to n-th sub signal lines sl (sl 1 to sl n ).
  • the first switching unit (switch c) switches between connection and non-connection of the first to n-th sub signal lines sl (sl 1 to sl n ) with respect to the signal line L.
  • the selection means (connection portion C) selects the sub vibration element group T (T 1 to T n ) to be driven based on the drive signal from the outside by switching each of the first switching means (switch c).
  • the ultrasonic probe 1 in the ultrasonic diagnostic apparatus 100 includes a signal line SL and first to n-th sub signal lines sl.
  • the signal lines SL are provided in the same number as the plurality of vibration element groups L (for example, L 1 to L 96 ), and one end is connected to the apparatus main body.
  • One end of each of the first to nth sub signal lines sl (sl 1 to sl n ) is provided so as to be connectable to the other end of the signal line SL, and the other end of each of the first to nth sub vibrating element groups T (T 1 to T n ).
  • connection portion C has the same number of first switching means (switches c) as the first to n-th sub signal lines sl (sl 1 to sl n ).
  • the first switching unit (switch c) switches between connection and non-connection of the first to n-th sub signal lines sl (sl 1 to sl n ) with respect to the signal line L.
  • the selection control unit (switch control unit 91) switches the first switching unit (switch c) to drive the sub vibration element group T (T) based on the drive signal from the transmission / reception unit (transmission / reception unit 3). 1 to T n ) are selected.
  • the vibration element t can be driven only in the direction in which ultrasonic waves are to be transmitted / received for each of the plurality of vibration element groups L, so that a grating lobe is hardly formed. Accordingly, it is possible to reduce the degree of occurrence of a virtual image generated in the ultrasonic diagnostic image. Further, since the first switching unit and the first to nth sub signal lines sl are provided, one signal line SL is sufficient for each vibration element group L. Therefore, even if the number of vibrating elements t is increased in order to obtain high spatial resolution, the number of signal lines SL does not change, and the cable does not become thick.
  • FIG. 9 is a block diagram showing an outline of an ultrasonic diagnostic apparatus for explaining the present embodiment. In FIG. 9, only one vibration element group L is shown. Some of the configurations are omitted.
  • FIG. 10 is a flowchart showing the operation of the ultrasonic diagnostic apparatus. Detailed description of the same configuration as that of the first embodiment will be omitted.
  • a plurality of vibration element groups L for example, 96
  • a number of signal lines SL ′ equal to the plurality of vibration element groups L
  • subs included in one vibration element group L The sub signal line sl ′ corresponding to the vibration element group T, the same number of connection portions C ′ as the plurality of vibration element groups L, and the switch control unit 91 are provided.
  • FIG. 9 only one vibration element group L, one signal line SL ′, one connection portion C ′, and sub signal lines sl ′ 1 to sl ′ 3 are shown.
  • the vibration element t used in the present embodiment is a MUT element.
  • One end of the signal line SL ′ is connected to the transmission / reception unit 3 (the transmission unit 31 and the reception unit 32) in the main body 2, and the other end is connected to the sub signal lines sl ′ 1 to sl ′ 3 .
  • the signal line SL ′ is connected to the transmission / reception unit 3 through a cable (not shown).
  • the sub signal lines sl ′ 1 to sl ′ 3 have one end connected to the other end of the signal line SL ′ and the other end connected to each of the sub vibrating element groups T 1 to T 3 .
  • the sub signal line sl ′ is provided from the first sub signal line sl ′ 1 to the nth sub signal line sl ′ n (n ⁇ 2) according to the number of the sub vibration element groups T. Yes.
  • connection portion C ′ is used to selectively drive a predetermined sub-vibration element group among the plurality of sub-vibration element groups T based on a drive signal from the outside such as the main body 2.
  • the connection portion C ′ includes a number of switches c ′ equal to the number of sub signal lines sl ′.
  • three switches c'1 ⁇ c'3 corresponding to the respective sub-signal lines SL '1 ⁇ SL' 3 is provided.
  • the switch c ′ is provided to selectively apply a bias voltage from a bias power source 15 (described later) to the first to n-th sub vibrating element groups.
  • at least one connection portion C ′ may be provided for the plurality of vibration element groups L.
  • the connecting portion C ′ in the present embodiment is an example of “selecting means”.
  • the switches c ′ 1 to c ′ 3 in the present embodiment are an example of “second switching means”.
  • the switch control unit 91 controls the operation of the connection unit C ′. Specifically, the switch control unit 91 switches each of the switches c ′. For example, when a delay signal for driving only the sub vibration element T 1 is transmitted from the control unit 9, the switch control unit 91 operates the switch c ′ 1 on the basis of the delay information, and a bias power source 15 (described later). The sub signal line sl ′ 1 is connected. In this state, the bias power source 15 applies a bias voltage to the sub vibrating element group T 1 via the sub signal line sl ′ 1 . This makes it possible to only the sub-transducers group T 1 is receiving a transmission signal (driving signal) from the transmission unit 31 (first pulser 31a), for transmitting ultrasonic waves.
  • a transmission signal driving signal
  • the switch c ′ operated by the switch control unit 91 is not limited to one.
  • One switch control unit 91 can simultaneously operate a plurality of switches c ′ (for example, c ′ 1 and c ′ 2 ).
  • a plurality of sub vibration element groups for example, T 1 and T 2 .
  • the switch control unit 91 in this embodiment is an example of a “selection control unit”.
  • At least one switch control unit 91 is provided for the plurality of vibration element groups L.
  • the sub-vibration element groups T for example, T 1
  • the switch control unit 91 is provided for each of the plurality of vibration element groups L, different control can be performed on each of the vibration element groups L. For example, in the vibration element group L 1 , the switch c ′ 1 is operated so as to drive only the sub vibration element group T 1 , and in the vibration element group L 2 , the switch c ′ 3 is driven so as to drive only the sub vibration element group T 3. It can be operated.
  • a bias power supply 15 is provided in the main body 2.
  • the bias power supply 15 generates a bias voltage to be applied to the sub vibration element group T (vibration element t) via the connection unit C ′ based on the delay signal from the control unit 9.
  • the operation of the ultrasonic diagnostic apparatus 100 according to the present embodiment will be described with reference to FIG.
  • the reference direction P shall be predetermined.
  • control unit 9 determines the direction S in which the ultrasonic wave is transmitted (S20).
  • the calculation unit 92 calculates how much the direction S in which the ultrasonic wave determined in S20 is transmitted with respect to the reference direction P is shifted (angle ⁇ ) (S21).
  • the controller 9 determines the vibration element t to be driven from the table data or the like based on the calculation result in S21 (S22). Here, it is assumed that the vibrating elements t 1 is determined.
  • the control unit 9 transmits a delay signal and delay information based on the determination result in S22 to the bias power source 15, the switch control unit 91, and the transmission / reception unit 3.
  • the switch control unit 91 drives the switch c ′ 1 based on the delay information, and connects the bias power supply 15 and the sub signal line sl ′ 1 (S23). As a result, a bias voltage is applied to the vibration element t 1 via the sub signal line sl ′ 1 and the vibration element t 1 becomes operable (S24).
  • Transmitter 31 of the transceiver unit 3 drives the first pulser 31a on the basis of the delay signal, and transmits a drive signal to the vibrating element t 1. Vibrating elements t 1 based on a drive signal for transmitting ultrasonic waves to a subject (S25).
  • the reception unit 32 of the transmission / reception unit 3 drives the first gain unit 32a based on the delay signal, and receives the echo signal with a predetermined gain (S26).
  • the echo signal to which the gain is applied in S15 is sent to the signal processing unit 4 and the like (not shown in FIG. 9), and after predetermined processing (S27), the synthesis unit 6 obtains image data ( S28).
  • the display unit 81 displays an image based on the image data obtained in S28.
  • the vibration element t included in the ultrasonic probe 1 is a MUT element.
  • the selection means (connection portion C ′) has the same number of second switching means (switches c ′) as the first to nth sub-vibration element groups T (T 1 to T n ).
  • the second switching means (switch c ′) selectively applies the bias voltage from the bias power supply 15 to the first to n-th sub vibration element groups T (T 1 to T n ). Then, the selection means (connection portion C ′) selects the sub vibration element group T (T 1 to T n ) to be driven based on the drive signal from the outside by switching each of the second switching means (switch c ′). To do.
  • the vibration element t included in the ultrasonic diagnostic apparatus 100 is a MUT element.
  • the selection means (connection portion C ′) has the same number of second switching means (switches c ′) as the first to nth sub-vibration element groups T (T 1 to T n ).
  • the second switching means (switch c ′) selectively applies the bias voltage from the bias power supply 15 to the first to n-th sub vibration element groups T (T 1 to T n ).
  • the selection control unit switches the second switching unit (switch c ′) to drive the sub vibration element group T (T 1 ) based on the drive signal from the transmission / reception unit (transmission / reception unit 3). To T n ).
  • the vibration element t only in the direction in which the ultrasonic wave is desired to be transmitted / received can be driven for each of the plurality of vibration element groups L, so that the grating lobe is hardly formed. Accordingly, it is possible to reduce the degree of occurrence of a virtual image generated in the ultrasonic diagnostic image.
  • the second switching unit and the first to n-th sub signal lines sl ′ are provided, one signal line SL ′ is sufficient for each vibration element group L. Therefore, even if the number of vibrating elements t is increased, the number of signal lines SL ′ does not change, and the cable does not become thick.
  • FIG. 11 is a block diagram showing an outline of an ultrasonic diagnostic apparatus for explaining the present embodiment.
  • FIG. 11 only one vibration element group L is shown. Some of the configurations are omitted.
  • FIG. 12 is a flowchart showing the operation of the ultrasonic diagnostic apparatus. Detailed description of the same configurations as those of the first embodiment and the second embodiment will be omitted.
  • a plurality of vibration element groups L for example, 96 pieces
  • the same number of signal lines SL ′′ as the sub vibration element groups T included in each vibration element group L are provided in the ultrasonic probe 1. ing. In FIG. 11, only one vibration element group L (sub vibration element groups T 1 to T 3 ) and three signal lines SL ′′ 1 to SL ′′ 3 are shown.
  • One end of the signal line SL ′′ is connected to the sub vibration element group T, and the other end is connected to the transmission / reception unit 3 (transmission unit 31, reception unit) via a connection unit C ′′ (described later) provided in the main body unit 2. 32) can be connected.
  • a connection portion C ′′ is provided in the main body portion 2.
  • the connection unit C ′′ is connected to the transmission unit 31 when selectively driving a predetermined sub-vibration element group among the plurality of sub-vibration element groups T based on the drive signal from the transmission unit 31.
  • the connection unit C ′′ is connected to the reception unit 32 when receiving an echo signal acquired by the sub vibration element group T (vibration element t).
  • the connection portion C ′′ includes the same number of switches c ′′ as the signal line SL ′′.
  • three switches c ′′ 1 to c ′′ 3 corresponding to the signal lines SL ′′ 1 to SL ′′ 3 are provided.
  • the switch c ′′ is provided to switch the connection between the signal line SL ′′ and the transmission unit 31 and the reception unit 32.
  • the connection portion C ′′ in the present embodiment is an example of “selection unit”.
  • control unit 9 includes a timing control unit 93.
  • the timing control unit 93 controls the timing for switching the connection between the signal line SL ′′ and the transmission unit 31 and the reception unit 32. For example, the timing control unit 93 transmits delay information to the switch control unit 91 so as to connect the signal line SL ′′ 1 and the transmission unit 31 (first pulser 31a) based on the delay signal. Further, when detecting that the drive signal is transmitted from the transmission unit 31, the timing control unit 93 causes the switch control unit 91 to connect the signal line SL ′′ 1 and the reception unit 32 (first gain unit 32a). Send delay information. The switch control unit 91 controls the operation of the connection unit C ′′ (switch c ′′) based on the delay information from the timing control unit 93.
  • the operation of the ultrasonic diagnostic apparatus 100 according to the present embodiment will be described with reference to FIG.
  • the reference direction P shall be predetermined.
  • control unit 9 determines the direction S in which the ultrasonic wave is transmitted (S30).
  • the calculation unit 92 calculates how much the direction S of transmitting the ultrasonic wave determined in S30 is deviated from the reference direction P (angle ⁇ ) (S31).
  • the controller 9 determines the vibration element t to be driven from the table data or the like based on the calculation result in S31 (S32). Here, it is assumed that the vibrating elements t 1 is determined.
  • the control unit 9 transmits a delay signal based on the determination result in S32 to the timing control unit 93, the transmission unit 31, and the reception unit 32.
  • the timing control unit 93 transmits delay information to the switch control unit 91 so as to connect the signal line SL ′′ 1 to which the vibration element t 1 is connected and the first pulser 31 a in the transmission unit 31 based on the delay signal.
  • the switch controller 91 drives the switch c ′′ 1 based on the delay information to connect the signal line SL ′′ 1 and the first pulser 31a (S33).
  • Transmitter 31 drives the first pulser 31a on the basis of the delay signal, and transmits a drive signal to the vibrating element t 1. Vibrating elements t 1 based on a drive signal for transmitting ultrasonic waves to a subject (S34).
  • the timing control unit 93 transmits a connection signal to the switch control unit 91 so as to connect the signal line SL ′′ and the first gain unit 32a. .
  • the switch control unit 91 switches the switch c ′′ 1 based on the connection signal to connect the signal line SL ′′ 1 and the first gain unit 32a (S35).
  • the reception unit 32 of the transmission / reception unit 3 drives the first gain unit 32a based on the delay signal, and receives the echo signal with a predetermined gain (S36).
  • the echo signal to which the gain is applied in S36 is sent to the signal processing unit 4 and the like (not shown in FIG. 11), and after predetermined processing (S37), the synthesis unit 6 obtains image data ( S38).
  • the display unit 81 displays an image based on the image data obtained in S38.
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 1, a transmission unit (transmission unit 31), a reception unit (reception unit 32), a selection unit (connection unit C ′′), and a timing control unit. (Timing control unit 93) and selection control means (switch control unit 91).
  • the ultrasonic probe 1 has a vibration element unit in which a plurality of vibration element groups L (for example, L 1 to L 96 ) are arranged.
  • Each of the plurality of vibration element groups L (for example, L 1 to L 96 ) includes first to nth sub vibration element groups T (T 1 to T n ), and the first to nth sub vibration element groups.
  • the radiation surface of the vibration element t included in T (T 1 to T n ) is arranged in a different direction for each sub vibration element group T.
  • the transmission means transmits an ultrasonic wave by transmitting a drive signal to the vibration elements t included in the first to nth sub-vibration element groups T.
  • the receiving means receives an echo signal based on the transmitted ultrasonic waves.
  • the selection means (connection portion C ′′) selectively drives a predetermined sub-vibration element group T among the first to n-th sub-vibration element groups T (T 1 to T n ) based on the drive signal.
  • timing control unit 93 controls the timing for switching the connection between the selection unit (connection unit C ′′), the transmission unit (transmission unit 31), and the reception unit (reception unit 32).
  • the selection control unit controls the operation of the selection unit (connection unit C ′′) based on a signal from the timing control unit (timing control unit 93).
  • FIG. 13A is a diagram illustrating the directivity of ultrasonic waves transmitted from the vibration element ⁇ .
  • FIG. 13A shows the directivity when the vibration element ⁇ is viewed from the XZ direction.
  • FIG. 13B is a graph showing the relationship between the angle at which ultrasonic waves are transmitted and the pressure (sound pressure) of the ultrasonic waves in the configuration of FIG. 13A.
  • shaft of a graph shows the pressure (sound pressure) of an ultrasonic wave.
  • the horizontal axis of the graph indicates the angle at which ultrasonic waves are transmitted.
  • the center of the horizontal axis (Z direction) is an angle of 0 °
  • the + X direction is an angle +
  • the ⁇ X direction is an angle ⁇ .
  • a grating lobe may be formed in a direction different from the direction in which the ultrasonic wave is desired to be generated.
  • the grating lobe causes a problem that a virtual image is formed on the ultrasonic diagnostic image.
  • Example> 14A, 15A, and 16A are diagrams illustrating the directivity of ultrasonic waves transmitted from the vibration elements t (t 1 to t 3 ) provided in the base 12.
  • FIG. Here, the directivity when the vibration element t is viewed from the XZ direction is shown.
  • FIGS. 14A, 15A, and 16A only the vibration element t to be driven is illustrated.
  • FIGS. 14B, 15B, and 16B are graphs showing the relationship between the angle at which ultrasonic waves are transmitted and the pressure (sound pressure) of the ultrasonic waves in the configurations of FIGS. 14A, 15A, and 16A.
  • shaft of a graph shows the pressure (sound pressure) of an ultrasonic wave.
  • the horizontal axis of the graph indicates the angle at which ultrasonic waves are transmitted.
  • the center of the horizontal axis (Z direction) is an angle of 0 °
  • the + X direction is an angle +
  • the ⁇ X direction is an angle ⁇ .
  • the ultrasonic pressure (sound pressure) is increased to be transmitted in a direction facing the radiating surface of the transducer elements t 2 (angle 0 ° direction) .
  • the directivity of the sound pressure to make the vibrating element t 2 becomes wider.
  • the beam direction to form by driving a vibrating element t 2 are the vicinity of substantially Z-direction (reference direction P), the grating is formed hardly.
  • the pressure (sound pressure) of the ultrasonic waves transmitted in the direction in which the radiation surfaces of the vibration element t 1 and the vibration element t 2 face. Is higher than the other directions (see FIG. 15B).
  • the pressure (sound pressure) of the ultrasonic wave transmitted in the direction in which the radiation surface of the vibration element t 1 faces is higher than in other directions. (See FIG. 16B). Therefore, it is difficult for the grating lobe to be formed in a direction different from the direction in which the ultrasonic wave is desired to be generated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 超音波診断画像中に生じる虚像の発生度合いを低減することができる超音波プローブ及び超音波診断装置を提供する。実施形態に係る超音波プローブは、複数の振動素子群が配列された振動素子ユニットと、選択手段とを有する。複数の振動素子群のそれぞれは、第1から第nのサブ振動素子群を有する。第1から第nのサブ振動素子群に含まれる振動素子の放射面は、サブ振動素子群毎に異なる方向に向けて配置されている。選択手段は、外部からの駆動信号に基づいて、第1から第nのサブ振動素子群のうち、所定のサブ振動素子群を選択的に駆動させるために設けられている。

Description

超音波プローブ及び超音波診断装置
 本発明の実施形態は、超音波プローブ及び超音波診断装置に関する。
 超音波診断装置は、超音波プローブを用いて被検体内に超音波を送信してその反射波を受信することにより、被検体の生体情報を取得するものである。
 超音波の送受信は、超音波プローブに設けられた複数の振動素子によって行われる。各振動素子はその構造により、指向性が予め決まっている。従って、広範囲に超音波を発生させるためには指向性を広く確保できる構造が要求される。
特開平10-146337号公報
 しかしながら、指向性を広く確保した場合、超音波を発生させたい方向とは異なる方向に音圧の高い領域(以下、「グレーティングローブ」という場合がある)が形成される場合がある。このグレーティングローブにより、超音波診断画像中に虚像が生じるという問題があった。
 実施形態は、前述の問題点を解決するためになされたものであり、超音波診断画像中に生じる虚像の発生度合いを低減することができる超音波プローブ及び超音波診断装置を提供することを目的とする。
 この実施形態に係る超音波プローブは、複数の振動素子群が配列された振動素子ユニットと、選択手段とを有する。複数の振動素子群のそれぞれは、第1から第nのサブ振動素子群を有する。第1から第nのサブ振動素子群に含まれる振動素子の放射面は、サブ振動素子群毎に異なる方向に向けて配置されている。選択手段は、外部からの駆動信号に基づいて、第1から第nのサブ振動素子群のうち、所定のサブ振動素子群を選択的に駆動させるために設けられている。
 また、この実施形態に係る超音波診断装置は、超音波プローブと、送受信手段と、選択制御手段とを有する。超音波プローブは、複数の振動素子群が配列された振動素子ユニットと、選択手段とを有する。複数の振動素子群のそれぞれは、第1から第nのサブ振動素子群を有する。第1から第nのサブ振動素子群に含まれる振動素子の放射面は、サブ振動素子群毎に異なる方向に向けて配置されている。選択手段は、駆動信号に基づいて、第1から第nのサブ振動素子群のうち、所定のサブ振動素子群を選択的に駆動させるために設けられている。送受信手段は、第1から第nのサブ振動素子群に含まれる振動素子に対して駆動信号を送ることにより超音波の送受信を行わせる。選択制御手段は、選択手段の動作を制御する。
実施形態に共通の超音波診断装置の概略を示すブロック図である。 実施形態に共通の振動素子ユニットの構成の一例を示す図である。 実施形態に共通の振動素子ユニットの構成の一例を示す図である。 実施形態に共通の振動素子ユニットの構成の別例を示す図である。 実施形態に共通の振動素子ユニットの構成の別例を示す図である。 第1実施形態に係る超音波診断装置の詳細な構成を示すブロック図である。 第1実施形態に係る超音波診断装置の説明を補足するための図である。 第1実施形態に係る超音波診断装置の動作を示すフローチャートである。 第2実施形態に係る超音波診断装置の詳細な構成を示すブロック図である。 第2実施形態に係る超音波診断装置の動作を示すフローチャートである。 第3実施形態に係る超音波診断装置の詳細な構成を示すブロック図である。 第3実施形態に係る超音波診断装置の動作を示すフローチャートである。 比較例の構成を説明するための図である。 比較例を説明するためのグラフである。 実施例の構成を説明するための図である。 実施例を説明するためのグラフである。 実施例の構成を説明するための図である。 実施例を説明するためのグラフである。 実施例の構成を説明するための図である。 実施例を説明するためのグラフである。
 図1から図4を参照して、第1から第3実施形態に共通する超音波診断装置の構成について説明する。
<超音波診断装置の構成>
 図1は、超音波診断装置100のブロック図である。超音波診断装置100は、超音波プローブ1と、本体部2とを含んで構成されている。本体部2は、送受信部3と、信号処理部4と、画像生成部5と、合成部6と、表示制御部7と、ユーザインターフェース(UI)8と、制御部9とを含んで構成されている。超音波プローブ1と本体部2は、超音波プローブ1に設けられたケーブル(図示なし)を介して接続される。
(超音波プローブ1)
 超音波プローブ1には、所定の個数の振動素子を1つの群とする振動素子群が複数配列された振動素子ユニット10が配置されている。超音波プローブ1は、本体部2と接続されることにより被検体に超音波を送信し、被検体からの反射波をエコー信号として受信することができる。振動素子ユニット10の構成の詳細は後述する。
(送受信部3)
 送受信部3は、超音波プローブ1に駆動信号を供給して超音波を発生させ、超音波プローブ1が受けたエコー信号を受信する。送受信部3は、受信したエコー信号を信号処理部4に出力する。送受信部3は、送信部31と受信部32とを含んで構成されている。なお、本実施形態では、振動素子の数に対応して送受信部3は複数設けられている。また、送受信部3は超音波プローブ1内に設けられていてもよい。実施形態における送受信部3が「送受信手段」の一例である。
(送信部31)
 送信部31は、超音波プローブ1に駆動信号を供給して超音波を発生させる。送信部31は、超音波プローブ1に駆動信号を供給して所定の焦点にビームフォームされた超音波を送信させる。所定の焦点に対するビームフォームは、たとえば、図示しない音響レンズとアレイ方向(後述のX方向)との位相整合によりなされる。送信部31は、たとえば図示しないクロック発生器と、送信遅延回路と、パルサ回路とを有する。クロック発生器は、超音波信号の送信タイミングや送信周波数を決めるクロック信号を発生する。送信遅延回路は、超音波を所定の深さに集束させるための集束用遅延時間と、超音波を所定方向に送信するための偏向用遅延時間とに従って、超音波の送信時に遅延をかけて送信フォーカスを実施する。本実施形態では、特に、超音波を所定方向に送信するための偏向用遅延時間制御が重要である。パルサ回路は、超音波振動素子に対応する個別チャンネルの数分のパルサを有する。パルサ回路は、遅延がかけられた送信タイミングで駆動パルス(駆動信号)を生成し、超音波プローブ1の振動素子に駆動パルス(駆動信号)を供給する。
(受信部32)
 受信部32は、超音波プローブ1が受信したエコー信号を受信する。受信部32は、受信したエコー信号に対して遅延処理を行うことにより、アナログのエコー信号を整相加算されたデジタルのデータに変換する。受信部32は、たとえば図示しないゲイン回路と、A/D変換器と、受信遅延回路と、加算器を有する。ゲイン回路は、超音波プローブ1の振動素子から出力されるエコー信号を受信チャンネルごとに増幅する(ゲインをかける)。A/D変換器は、増幅されたエコー信号をデジタル信号に変換する。受信遅延回路は、デジタル信号に変換されたエコー信号に、受信指向性を決定するために必要な遅延時間を与える。具体的には、受信遅延回路は、所定の深さからの超音波を集束させるための集束用遅延時間と、所定方向に対して受信指向性を設定するための偏向用遅延時間とを、デジタルのエコー信号に与える。その遅延時間は、必ずしも収束用遅延量と偏向角用遅延量との単純計算ではなく、所定の公式・原理によって計算されるものである。加算器は、遅延時間が与えられたエコー信号を加算する。その加算によって、受信指向性に応じた方向からの反射成分が強調される。すなわち、受信遅延回路と加算器とによって、所定方向から得られたエコー信号は整相加算される。受信部32は、遅延処理が施されたエコー信号を信号処理部4に出力する。
(信号処理部4)
 信号処理部4は送受信部3から出力されたエコー信号に対して各種の信号処理を行う。たとえば、信号処理部4はBモード処理部を有する。Bモード処理部はエコー信号を送受信部3から受けて、エコー信号の振幅情報の映像化を行う。具体的には、Bモード処理部は、エコー信号に対してバンドパスフィルタ処理を行い、その後、出力信号の包絡線を検波し、検波されたデータに対して対数変換による圧縮処理を施す。また、信号処理部4はCFM(Color Flow Mapping)処理部を有していてもよい。CFM処理部は血流情報の映像化を行う。血流情報には、速度、分布、又はパワーなどの情報がある。また、信号処理部4はドプラ処理部を有していてもよい。ドプラ処理部はエコー信号を位相検波することによりドプラ偏移周波数成分を取り出し、FFT処理を施すことにより血流速度を表すドプラ周波数分布を生成する。信号処理部4は、信号処理が施されたエコー信号(超音波ラスタデータ)を画像生成部5に出力する。
(画像生成部5)
 画像生成部5は、信号処理部4から出力された信号処理後のエコー信号(超音波ラスタデータ)に基づいて超音波画像データを生成する。画像生成部5は、例えばDSC(Digital Scan Converter:デジタルスキャンコンバータ)を有する。画像生成部5は、走査線の信号列で表される信号処理後のエコー信号を、直交座標系で表される画像データに変換する(スキャンコンバージョン処理)。画像生成部5は、Bモード処理部によって信号処理が施されたエコー信号にスキャンコンバージョン処理を施すことにより、被検体の組織の形状を表すBモード画像データを生成する。画像生成部5は、合成部6に超音波画像データを出力する。
 たとえば、超音波プローブ1及び送受信部3は、被検体内の断面を超音波で走査し、画像生成部5は、断面における組織の形状を2次元的に表すBモード画像データ(断層像データ)を生成する。また、超音波プローブ1及び送受信部3は、3次元領域を超音波で走査することによりボリュームデータを取得してもよい。この場合、画像生成部5は、ボリュームデータにボリュームレンダリングを施すことにより、組織の形状を立体的に表す3次元画像データを生成してもよい。または、画像生成部5は、ボリュームデータにMPR(Multi Planar Reconstruction)処理を施すことにより、任意の断面における画像データ(MPR画像データ)を生成してもよい。
 この実施形態に係る超音波診断装置は、図示しない画像記憶部を備えていてもよい。画像記憶部は、この実施形態に係る超音波診断装置により得られたデータを記憶する。たとえば画像記憶部は、送受信部3から出力されたエコー信号を記憶する。また、画像記憶部は、信号処理部4から出力された超音波ラスタデータを記憶してもよい。また、画像記憶部は、画像生成部5から出力された断層像データなどの超音波画像データを記憶してもよい。
(合成部6)
 合成部6は、複数の超音波画像データを合成することにより、合成画像データを生成する。合成部6による画像データの合成は公知の手法により行われる。たとえば複数の超音波画像データそれぞれに対して当該超音波画像データが取得された深度に応じた重みを付け、それらの画像を加算平均することにより、合成画像データを生成することができる。
合成部6は、合成画像データを表示制御部7に出力する。
(表示制御部7)
 表示制御部7は、合成画像データを合成部6から受けて、合成画像データに基づく合成画像を表示部81に表示させる。
(ユーザインターフェース8)
 ユーザインターフェース(UI)8は、表示部81と操作部82とを有する。表示部81は、CRTや液晶ディスプレイなどのモニタで構成されている。操作部82は、キーボードやマウスなどの入力装置で構成されている。
(制御部9)
 制御部9は、超音波診断装置100の各部の動作を制御する。たとえば、制御部9は、送受信部3にディレイ信号を送信し、超音波の送受信を制御する。
 なお、画像生成部5、合成部6、及び表示制御部7のそれぞれの機能は、プログラムによって実行されてもよい。一例として、画像生成部4、合成部6、及び表示制御部7はそれぞれ、CPU、GPU、又はASICなどの図示しない処理装置と、ROM、RAM、又はHDDなどの図示しない記憶装置とによって構成されていてもよい。記憶装置には、画像生成部5の機能を実行するための画像生成プログラムと、合成部6の機能を実行するための合成プログラムと、表示制御部7の機能を実行するための表示処理プログラムと、が記憶されている。CPUなどの処理装置が、記憶部に記憶されている各プログラムを実行することにより、各部の機能を実行する。
<振動素子ユニットの構成>
 図2及び図3を用いて実施形態に共通する振動素子ユニット10の構成について詳述する。図2は、振動素子ユニット10の斜視図である。図3は振動素子ユニット10のX-Z断面の拡大図である。なお、図3において振動素子ユニット10の一部は省略されている。
 図2に示すように、振動素子ユニット10は、台座11、及び複数の振動素子群Lを含んで構成されている。
 台座11は、石英(SiO)基板やシリコン(Si)基板等の半導体プロセスに使用可能な材料によって形成されている。台座11の上面には、複数の振動素子群Lが配列される。実施形態では、列状に形成された7つの振動素子群L~Lがアレイ状に配置されているが、振動素子群Lの数はこれに限られない。実施形態において、振動素子ユニット10の走査方向をX方向とし、台座11の上面に沿って走査方向と垂直な方向(「エレベーション方向」)をY方向とし、台座11の厚み方向をZ方向とする。
 図2及び図3に示すように、複数の振動素子群Lはそれぞれ、基部12、サブ振動素子群Tを含んで構成されている。実施形態では、振動素子群Lそれぞれは、3つのサブ振動素子群T~Tを含んで構成されている。なお、サブ振動素子群Tの個数は3つに限られない(一般的には、第1から第nのサブ振動素子群(n≧2)まで設けることが可能である)。
 基部12は、台座11の上面に列状に設けられ、サブ振動素子群Tが配置される面13を有する。実施形態において、基部12は、台形の凸形状で形成されている。また、実施形態において、面13はサブ振動素子群Tの数に合わせ3つ(面13a、13b、13c)形成されている。面13aにはサブ振動素子群T、面13bにはサブ振動素子群T、面13cにはサブ振動素子群Tが配置されている。
 サブ振動素子群Tは、それぞれ複数の振動素子tを有している。実施形態において、複数の振動素子tはエレベーション方向(Y方向)に一列で配列されている。また、実施形態において、サブ振動素子群Tに含まれる振動素子をt、サブ振動素子群Tに含まれる振動素子をt、サブ振動素子群Tに含まれる振動素子をtとする。
 振動素子tは、送信部31からの信号を受けて放射面から超音波を送信する。また、振動素子tは、被検体からのエコー信号を受信し、受信部32に送る。基部12に複数のサブ振動素子群Tが配置された状態において、各サブ振動素子群Tの振動素子tの放射面は、サブ振動素子群T毎にそれぞれ異なる方向に向けて配置されている。すなわち、実施形態において、振動素子t、t、tの放射面はそれぞれ異なる方向に向けて配置されている。なお、実施形態では、複数の振動素子群Lにおいて、各振動素子tの放射面は同じ方向に向けて配置されている(たとえば振動素子群Lの振動素子tの放射面と振動素子群Lの振動素子tの放射面とは同じ方向に向けて配置されている)。
 振動素子tは、圧電体やMUT(Micromachining Ultrasound Transducer)素子を用いることができる。MUT素子には、cMUT(Capacitive Micromachining Ultrasound Transducer:静電容量型トランスデューサ)や、pMUT(Piezoelectric Micromachining Ultrasound Transducer:圧電型トランスデューサ)が含まれる。
 実施形態では、基部12の間に溝部14が設けられている。溝部14を設けることにより、各基部12に配置されたサブ振動素子群Tを音響的に分離することが可能となる。
<振動素子ユニットの変形例>
 振動素子ユニット10の構成は、図2に限られない。図4は振動素子ユニット10´の斜視図である。図5は、振動素子ユニット10´´のX-Z断面の拡大図である。
 たとえば、図4に示すように、マトリクス状に配置された円柱状の基部12´上に複数の振動素子群L´(図4では16個)が配列されている構成でもよい。この場合、円柱の上面13dと側面13eにサブ振動素子群T´(T´とT´)が配置されている。
 或いは、図5に示すように、基部12´´が3つに分割され、それぞれにサブ振動素子群T´´~T´´が配置される構成でもよい。
 このように、基部12は複数のサブ振動素子群Tを配置することができる構成であればよい。より具体的には、基部12は、振動素子tの放射面をサブ振動素子群T毎に異なる方向に向けて配置させるような構成であればよい。よって、基部12は凸形状に限らず凹形状であってもよい。また、基部12は台座11と一体に成形されていてもよい。
[第1実施形態]
 次に、図6から図8を参照して、第1実施形態に係る超音波診断装置について説明する。図6は、本実施形態を説明するための超音波診断装置の概略を示すブロック図である。なお、図6では、1つの振動素子群Lのみを示している。また、一部の構成を省略している。図8は、超音波診断装置の動作を示すフローチャートである。
<超音波プローブの構成>
 本実施形態において、超音波プローブ1内には、複数の振動素子群L(たとえば96個)、複数の振動素子群Lと等しい数の信号線SL、1つの振動素子群Lに含まれるサブ振動素子群Tに対応するサブ信号線sl、複数の振動素子群Lと等しい数の接続部C、スイッチ制御部91が設けられている。なお、図6では、1つの振動素子群L、1つの信号線SL、1つの接続部C及びサブ信号線sl~slのみを示す。
 信号線SLは、一端が本体部2内の送受信部3(送信部31及び受信部32)と接続され、他端が接続部Cを介してサブ信号線sl~slの少なくとも1つと接続可能となっている。なお、信号線SLは、ケーブル(図示なし)内を通って送受信部3と接続されている。
 サブ信号線sl~slは、一端が信号線SLの他端と接続可能に設けられ、他端がサブ振動素子群T~Tそれぞれと接続されている。なお、一般的にサブ信号線slは、サブ振動素子群Tの数に合わせて第1のサブ信号線slから第nのサブ信号線sl(n≧2)まで設けられている。
 接続部Cは、本体部2等の外部からの駆動信号に基づいて、複数のサブ振動素子群Tのうち、所定のサブ振動素子群を選択的に駆動させるために用いられる。具体的には、接続部Cは、サブ信号線slと等しい数のスイッチcを含んで構成されている。本実施形態では、サブ信号線sl~slそれぞれに対応するスイッチc~cの3つが設けられている。スイッチcは、信号線SLに対するサブ信号線slの接続と非接続とを切り替える。なお、接続部Cは、複数の振動素子群Lに対して少なくとも1つ設けられていればよい。本実施形態における接続部Cが「選択手段」の一例である。また、本実施形態におけるスイッチc~cは、「第1切替手段」の一例である。
 スイッチ制御部91は、接続部Cの動作を制御する。具体的には、スイッチ制御部91は、スイッチcそれぞれの切り替えを行う。たとえば、制御部9からサブ振動素子Tのみを駆動させるようなディレイ信号が送信されると、スイッチ制御部91はディレイ情報に基づいてスイッチcを動作させ、信号線SLとサブ信号線slを連結させる。この状態で、サブ振動素子群Tは、送信部31(第1パルサ31a)からの送信信号(駆動信号)を受け取り、超音波を送信することができる。なお、スイッチ制御部91が動作させるスイッチcは1つに限られない。一つのスイッチ制御部91が、複数のスイッチc(たとえばcとc)を同時に動作させることも可能である。その結果、複数のサブ振動素子群(たとえばTとT)を同時に駆動させることが可能となる。本実施形態におけるスイッチ制御部91は、「選択制御手段」の一例である。
 スイッチ制御部91は、複数の振動素子群Lに対して少なくとも1つ設けられていればよい。また、スイッチ制御部91が複数の振動素子群L毎に設けられている場合には、振動素子群Lそれぞれに対して異なる制御を行うことができる。たとえば、振動素子群Lではサブ振動素子群Tのみを駆動させるようスイッチcを動作させ、振動素子群Lでは、サブ振動素子群Tのみを駆動させるようスイッチcを動作させることができる。
<送信部の構成>
 本実施形態における送信部31は、パルサとして、第1パルサ31a、第2パルサ31b及び第3パルサ31cを含んで構成されている。各パルサは異なるパルスを発生させる。
 制御部9からのディレイ信号に基づき、第1パルサ31a、第2パルサ31b及び第3パルサ31cから一のパルサが選択される。選択されたパルサは、駆動信号を生成し、信号線SL及びサブ信号線slを介してサブ振動素子群Tの振動素子tに駆動信号を供給する。
<受信部の構成>
 本実施形態における受信部32は、ゲイン回路として、第1ゲイン部32a、第2ゲイン部32b及び第3ゲイン部32cを含んで構成されている。各ゲイン部はエコー信号に対して異なるゲインをかける。
 制御部9からのディレイ信号に基づき、第1ゲイン部32a、第2ゲイン部32b及び第3ゲイン部32cから一のゲイン部が選択される。選択されたゲイン部は、振動素子tで受信されたエコー信号に対して所定のゲインをかけて信号処理部4等の後処理部に送る。
<制御部の構成>
 本実施形態における制御部9は、算出部92を含んで構成されている。
 算出部92は、操作部82等により入力された超音波を送信する方向が基準方向に対してどれだけずれているかを算出する。基準方向とは、振動素子群Lにおける超音波の送信方向に対して任意に設定される方向である。
 制御部9は、算出部92の算出結果に基づいて駆動させるサブ振動素子群Tを決定し、それに基づくディレイ情報(スイッチ制御のための情報)をスイッチ制御部91に送信する。なお、算出部92及び制御部9による処理は振動素子群L毎に行うことができる。つまり、制御部9は、振動素子群Lそれぞれに対して異なるディレイ信号を送信することができる。
 算出部92及び制御部9の処理の一例を、図7を用いて具体的に説明する。図7は、1つの振動素子群Lを側面(Y方向)から見た場合のX-Z断面図である。ここでは、超音波を送信する方向を「S」とし、基準方向を「P」とする。また、基準方向に対する角度を「θ」とする。更に、一の振動素子群Lにおける各振動素子tから送信される超音波ビーム間の角度を「γ」であるとする。
 まず、算出部92は、基準方向Pに対する超音波の送信方向Sの角度θを算出する。制御部9は、角度θと角度γの関係に基づいて、駆動させる振動素子t(サブ振動素子群T)を決定する。角度γと角度θの関係はたとえば表1に示すようなテーブルにより予め定められている。
[表1]
Figure JPOXMLDOC01-appb-I000001
<動作>
 次に、図8を参照して本実施形態に係る超音波診断装置100の動作について説明する。なお、基準方向Pは、予め定められているものとする。
 超音波ビームのスキャンモードに基づいて、制御部9は、超音波を送信する方向Sを決定する(S10)。
 算出部92は、基準方向Pに対してS10で決定された超音波を送信する方向Sがどれだけずれているか(角度θ)を算出する(S11)。
 制御部9は、S11での算出結果に基づいてテーブルデータ等から駆動させる振動素子tを決定する(S12)。ここでは、振動素子tが決定されたものとする。
 制御部9は、スイッチ制御部91及び送受信部3に対しS12による決定結果に基づくディレイ信号及びディレイ情報を送信する。スイッチ制御部91は、ディレイ情報に基づいてスイッチcを駆動させ、信号線SLとサブ信号線slを接続させる(S13)。
 送受信部3の送信部31は、ディレイ信号に基づいて第1パルサ31aを駆動させ、駆動信号を振動素子tに送信する。駆動信号に基づいて振動素子tは被検体に対して超音波を送信する(S14)。
 送受信部3の受信部32は、ディレイ信号に基づいて第1ゲイン部32aを駆動させ、エコー信号に対して所定のゲインをかけて受信する(S15)。
 S15でゲインがかけられたエコー信号は信号処理部4等(図6では記載を省略している)に送られ、所定の処理がなされた後(S16)、合成部6で画像データを得る(S17)。表示部81は、S17で得られた画像データに基づく画像を表示させる。
<作用・効果>
 本実施形態の作用及び効果について説明する。
 本実施形態に係る超音波プローブ1は、複数の振動素子群L(たとえばL~L96)が配列された振動素子ユニット10を有する。複数の振動素子群Lのそれぞれは、第1から第nのサブ振動素子群T(T~T)を有する。第1から第nのサブ振動素子群T(T~T)に含まれる振動素子t(t~t)の放射面は、サブ振動素子群T(T~T)毎に異なる方向に向けて配置されている。また、超音波プローブ1は、選択手段(接続部C)を有する。選択手段(接続部C)は、外部からの駆動信号に基づいて、第1から第nのサブ振動素子群T(T~T)のうち、所定のサブ振動素子群Tを選択的に駆動させるために設けられている。
 また、本実施形態に係る超音波診断装置100は、超音波プローブ1と、送受信手段(送受信部3)と、選択制御手段(スイッチ制御部91)とを含んで構成されている。超音波プローブ1は、複数の振動素子群L(たとえばL~L96)が配列された振動素子ユニット10を有する。複数の振動素子群Lのそれぞれは、第1から第nのサブ振動素子群T(T~T)を有する。第1から第nのサブ振動素子群T(T~T)に含まれる振動素子t(t~t)の放射面は、サブ振動素子群T(T~T)毎にそれぞれ異なる方向に向けて配置されている。また、超音波プローブ1は、選択手段(接続部C)を有する。選択手段(接続部C)は、駆動信号に基づいて、第1から第nのサブ振動素子群T(T~T)のうち、所定のサブ振動素子群Tを選択的に駆動させるために設けられている。送受信手段(送受信部3)は、第1から第nのサブ振動素子群T(T~T)に含まれる振動素子t(t~t)に対して前記駆動信号を送ることにより超音波の送受信を行わせる。選択制御手段(スイッチ制御部91)は、選択手段(接続部C)の動作を制御する。
 このように構成することで、複数の振動素子群L毎に超音波を送受信したい方向のみの振動素子を駆動させることができるため、グレーティングローブが形成され難い。従って、超音波診断画像中に生じる虚像の発生度合いを低減することができる。
 また、本実施形態に係る超音波プローブ1は、信号線SLと、第1から第nのサブ信号線slとを有する。信号線SLは、複数の振動素子群L(たとえばL~L96)と等しい数だけ設けられ、一端が装置本体と接続される。第1から第nのサブ信号線sl(sl~sl)は、一端が信号線SLの他端と接続可能に設けられ、他端が第1から第nのサブ振動素子群T(T~T)それぞれと接続される。また、選択手段(接続部C)は、第1切替手段(スイッチc)を第1から第nのサブ信号線sl(sl~sl)と等しい数だけ有する。第1切替手段(スイッチc)は、信号線Lに対する第1から第nのサブ信号線sl(sl~sl)の接続と非接続とを切り替える。そして、選択手段(接続部C)は、第1切替手段(スイッチc)それぞれの切り替えにより、外部からの駆動信号に基づいて駆動させるサブ振動素子群T(T~T)を選択する。
 また、本実施形態に係る超音波診断装置100における超音波プローブ1は、信号線SLと、第1から第nのサブ信号線slとを有する。信号線SLは、複数の振動素子群L(たとえばL~L96)と等しい数だけ設けられ、一端が装置本体と接続される。第1から第nのサブ信号線sl(sl~sl)は、一端が信号線SLの他端と接続可能に設けられ、他端が第1から第nのサブ振動素子群T(T~T)それぞれと接続される。また、選択手段(接続部C)は、第1切替手段(スイッチc)を第1から第nのサブ信号線sl(sl~sl)と等しい数だけ有する。第1切替手段(スイッチc)は、信号線Lに対する第1から第nのサブ信号線sl(sl~sl)の接続と非接続とを切り替える。また、選択制御手段(スイッチ制御部91)は、第1切替手段(スイッチc)それぞれを切り替えることにより、送受信手段(送受信部3)からの駆動信号に基づいて駆動させるサブ振動素子群T(T~T)を選択する。
 このように構成することで、複数の振動素子群L毎に超音波を送受信したい方向のみの振動素子tを駆動させることができるため、グレーティングローブが形成され難い。従って、超音波診断画像中に生じる虚像の発生度合いを低減することができる。また、第1切替手段及び第1から第nのサブ信号線slが設けられることで、信号線SLは振動素子群L毎に一本で十分となる。よって、高い空間分解能を得るために振動素子tの数を増やした場合であっても信号線SLの数は変わらないため、ケーブルが太くなることがない。
[第2実施形態]
 次に、図9及び図10を参照して、第2実施形態に係る超音波診断装置について説明する。図9は、本実施形態を説明するための超音波診断装置の概略を示すブロック図である。なお、図9では、1つの振動素子群Lのみを示している。また、一部の構成を省略している。図10は、超音波診断装置の動作を示すフローチャートである。第1実施形態と同様の構成については詳細な説明を省略する。
<超音波プローブの構成>
 本実施形態において、超音波プローブ1内には、複数の振動素子群L(たとえば96個)、複数の振動素子群Lと等しい数の信号線SL´、1つの振動素子群Lに含まれるサブ振動素子群Tに対応するサブ信号線sl´、複数の振動素子群Lと等しい数の接続部C´、スイッチ制御部91が設けられている。なお、図9では、1つの振動素子群L、1つの信号線SL´、1つの接続部C´及びサブ信号線sl´~sl´のみを示す。また、本実施形態において用いられる振動素子tは、MUT素子である。
 信号線SL´は、一端が本体部2内の送受信部3(送信部31及び受信部32)と接続され、他端がサブ信号線sl´~sl´と接続されている。なお、信号線SL´は、ケーブル(図示なし)内を通って送受信部3と接続されている。
 サブ信号線sl´~sl´は、一端が信号線SL´の他端と接続され、他端がサブ振動素子群T~Tそれぞれと接続されている。なお、一般的にサブ信号線sl´は、サブ振動素子群Tの数に合わせて第1のサブ信号線sl´から第nのサブ信号線sl´(n≧2)まで設けられている。
 接続部C´は、本体部2等の外部からの駆動信号に基づいて、複数のサブ振動素子群Tのうち、所定のサブ振動素子群を選択的に駆動させるために用いられる。具体的には、接続部C´は、サブ信号線sl´と等しい数のスイッチc´を含んで構成されている。本実施形態では、サブ信号線sl´~sl´それぞれに対応するスイッチc´~c´の3つが設けられている。スイッチc´は、バイアス電源15(後述)からのバイアス電圧を第1から第nのサブ振動素子群に対して選択的に印加させるために設けられている。なお、接続部C´は、複数の振動素子群Lに対して少なくとも1つ設けられていればよい。本実施形態における接続部C´が「選択手段」の一例である。また、本実施形態におけるスイッチc´~c´は、「第2切替手段」の一例である。
 スイッチ制御部91は、接続部C´の動作を制御する。具体的には、スイッチ制御部91は、スイッチc´それぞれの切り替えを行う。たとえば、制御部9からサブ振動素子Tのみを駆動させるようなディレイ信号が送信されると、スイッチ制御部91はディレイ情報に基づいてスイッチc´を動作させ、バイアス電源15(後述)とサブ信号線sl´を連結させる。この状態で、バイアス電源15はサブ信号線sl´を介してバイアス電圧をサブ振動素子群Tに印加する。これにより、サブ振動素子群Tのみが、送信部31(第1パルサ31a)からの送信信号(駆動信号)を受け取り、超音波を送信することができる。なお、スイッチ制御部91が動作させるスイッチc´は1つに限られない。一つのスイッチ制御部91が、複数のスイッチc´(たとえばc´とc´)を同時に動作させることも可能である。その結果、複数のサブ振動素子群(たとえばTとT)を同時に駆動させることが可能となる。本実施形態におけるスイッチ制御部91は、「選択制御手段」の一例である。
 スイッチ制御部91は、複数の振動素子群Lに対して少なくとも1つ設けられていればよい。この場合は、振動素子群L(たとえばL~L96)のそれぞれに属するサブ振動素子群T(たとえばT)は、共通接続されている。また、スイッチ制御部91が複数の振動素子群L毎に設けられている場合には、振動素子群Lそれぞれに対して異なる制御を行うことができる。たとえば、振動素子群Lではサブ振動素子群Tのみを駆動させるようスイッチc´を動作させ、振動素子群Lでは、サブ振動素子群Tのみを駆動させるようスイッチc´を動作させることができる。
<本体部の構成>
 本実施形態では、本体部2内にバイアス電源15が設けられている。バイアス電源15は、制御部9からのディレイ信号に基づき、接続部C´を介してサブ振動素子群T(振動素子t)に印加させるバイアス電圧を発生させる。
<動作>
 次に、図10を参照して本実施形態に係る超音波診断装置100の動作について説明する。なお、基準方向Pは、予め定められているものとする。
 超音波ビームのスキャンモードに基づいて、制御部9は、超音波を送信する方向Sを決定する(S20)。
 算出部92は、基準方向Pに対してS20で決定された超音波を送信する方向Sがどれだけずれているか(角度θ)を算出する(S21)。
 制御部9は、S21での算出結果に基づいてテーブルデータ等から駆動させる振動素子tを決定する(S22)。ここでは、振動素子tが決定されたものとする。
 制御部9は、バイアス電源15、スイッチ制御部91及び送受信部3に対しS22による決定結果に基づくディレイ信号及びディレイ情報を送信する。スイッチ制御部91は、ディレイ情報に基づいてスイッチc´を駆動させ、バイアス電源15とサブ信号線sl´を接続させる(S23)。その結果、サブ信号線sl´を介して振動素子tにバイアス電圧が印加され、振動素子tが動作可能となる(S24)。
 送受信部3の送信部31は、ディレイ信号に基づいて第1パルサ31aを駆動させ、駆動信号を振動素子tに送信する。駆動信号に基づいて振動素子tは被検体に対して超音波を送信する(S25)。
 送受信部3の受信部32は、ディレイ信号に基づいて第1ゲイン部32aを駆動させ、エコー信号に対して所定のゲインをかけて受信する(S26)。
 S15でゲインがかけられたエコー信号は信号処理部4等(図9では記載を省略している)に送られ、所定の処理がなされた後(S27)、合成部6で画像データを得る(S28)。表示部81は、S28で得られた画像データに基づく画像を表示させる。
<作用・効果>
 本実施形態の作用及び効果について説明する。
 本実施形態に係る超音波プローブ1に含まれる振動素子tはMUT素子である。選択手段(接続部C´)は、第2切替手段(スイッチc´)を第1から第nのサブ振動素子群T(T~T)と等しい数だけ有する。第2切替手段(スイッチc´)は、バイアス電源15からのバイアス電圧を第1から第nのサブ振動素子群T(T~T)に対して選択的に印加させる。そして、選択手段(接続部C´)は、第2切替手段(スイッチc´)それぞれの切り替えにより、外部からの駆動信号に基づいて駆動させるサブ振動素子群T(T~T)を選択する。
 また、本実施形態に係る超音波診断装置100に含まれる振動素子tはMUT素子である。選択手段(接続部C´)は、第2切替手段(スイッチc´)を第1から第nのサブ振動素子群T(T~T)と等しい数だけ有する。第2切替手段(スイッチc´)は、バイアス電源15からのバイアス電圧を第1から第nのサブ振動素子群T(T~T)に対して選択的に印加させる。選択制御手段(スイッチ制御部91)は、第2切替手段(スイッチc´)それぞれを切り替えることにより、送受信手段(送受信部3)からの駆動信号に基づいて駆動させるサブ振動素子群T(T~T)を選択する。
 このように振動素子に印加するバイアス電圧を選択することにより、複数の振動素子群L毎に超音波を送受信したい方向のみの振動素子tを駆動させることができるため、グレーティングローブが形成され難い。従って、超音波診断画像中に生じる虚像の発生度合いを低減することができる。また、第2切替手段及び第1から第nのサブ信号線sl´が設けられることで、信号線SL´は振動素子群L毎に一本で十分となる。よって、振動素子tの数を増やした場合であっても信号線SL´の数は変わらないため、ケーブルが太くなることがない。
[第3実施形態]
 次に、図11及び図12を参照して、第3実施形態に係る超音波診断装置について説明する。図11は、本実施形態を説明するための超音波診断装置の概略を示すブロック図である。なお、図11では、1つの振動素子群Lのみを示している。また、一部の構成を省略している。図12は、超音波診断装置の動作を示すフローチャートである。第1実施形態及び第2実施形態と同様の構成については詳細な説明を省略する。
<超音波プローブの構成>
 本実施形態において、超音波プローブ1内には、複数の振動素子群L(たとえば96個)、各振動素子群Lに含まれるサブ振動素子群Tと等しい数の信号線SL´´が設けられている。なお、図11では、1つの振動素子群L(サブ振動素子群T~T)、3つの信号線SL´´~SL´´のみを示す。
 信号線SL´´は、一端がサブ振動素子群Tと接続され、他端が本体部2内に設けられた接続部C´´(後述)を介して送受信部3(送信部31、受信部32)と接続可能となっている。
<本体部の構成>
 本実施形態において、本体部2内には、接続部C´´が設けられている。接続部C´´は、送信部31からの駆動信号に基づいて、複数のサブ振動素子群Tのうち、所定のサブ振動素子群を選択的に駆動させる場合に送信部31と接続される。また、接続部C´´は、サブ振動素子群T(振動素子t)で取得したエコー信号を受信する場合に受信部32と接続される。具体的には、接続部C´´は、信号線SL´´と等しい数のスイッチc´´を含んで構成されている。本実施形態では、信号線SL´´~SL´´それぞれに対応するスイッチc´´~c´´の3つが設けられている。スイッチc´´は、信号線SL´´と送信部31及び受信部32との接続を切り替えるために設けられている。本実施形態における接続部C´´が「選択手段」の一例である。
 本実施形態において、制御部9は、タイミング制御部93を含んで構成されている。
 タイミング制御部93は、信号線SL´´と送信部31及び受信部32との接続を切り替えるタイミングを制御する。たとえば、タイミング制御部93は、ディレイ信号に基づいて信号線SL´´と送信部31(第1パルサ31a)とを接続するようスイッチ制御部91にディレイ情報を送信する。また、送信部31から駆動信号が送信されたことを検知すると、タイミング制御部93は、信号線SL´´と受信部32(第1ゲイン部32a)とを接続するようスイッチ制御部91にディレイ情報を送信する。スイッチ制御部91は、タイミング制御部93からのディレイ情報に基づき、接続部C´´(スイッチc´´)の動作の制御を行う。
<動作>
 次に、図12を参照して本実施形態に係る超音波診断装置100の動作について説明する。なお、基準方向Pは、予め定められているものとする。
 超音波ビームのスキャンモードに基づいて、制御部9は、超音波を送信する方向Sを決定する(S30)。
 算出部92は、基準方向Pに対してS30で決定された超音波を送信する方向Sがどれだけずれているか(角度θ)を算出する(S31)。
 制御部9は、S31での算出結果に基づいてテーブルデータ等から駆動させる振動素子tを決定する(S32)。ここでは、振動素子tが決定されたものとする。
 制御部9は、タイミング制御部93、送信部31及び受信部32に対しS32による決定結果に基づくディレイ信号を送信する。タイミング制御部93は、ディレイ信号に基づいて振動素子tが接続される信号線SL´´と送信部31内の第1パルサ31aとを接続するようスイッチ制御部91にディレイ情報を送信する。スイッチ制御部91は、ディレイ情報に基づいてスイッチc´´を駆動させ、信号線SL´´と第1パルサ31aとを接続させる(S33)。
 送信部31は、ディレイ信号に基づいて第1パルサ31aを駆動させ、駆動信号を振動素子tに送信する。駆動信号に基づいて振動素子tは被検体に対して超音波を送信する(S34)。
 その後、第1パルサ31aから駆動信号が送信されたことを検知すると、タイミング制御部93は、信号線SL´´と第1ゲイン部32aとを接続するようスイッチ制御部91に接続信号を送信する。スイッチ制御部91は、接続信号に基づいてスイッチc´´を切り替え、信号線SL´´と第1ゲイン部32aとを接続させる(S35)。
 送受信部3の受信部32は、ディレイ信号に基づいて第1ゲイン部32aを駆動させ、エコー信号に対して所定のゲインをかけて受信する(S36)。
 S36でゲインがかけられたエコー信号は信号処理部4等(図11では記載を省略している)に送られ、所定の処理がなされた後(S37)、合成部6で画像データを得る(S38)。表示部81は、S38で得られた画像データに基づく画像を表示させる。
<作用・効果>
 本実施形態の作用及び効果について説明する。
 本実施形態に係る超音波診断装置100は、超音波プローブ1と、送信手段(送信部31)と、受信手段(受信部32)と、選択手段(接続部C´´)と、タイミング制御手段(タイミング制御部93)と、選択制御手段(スイッチ制御部91)とを有する。超音波プローブ1は、複数の振動素子群L(たとえばL~L96)が配列された振動素子ユニットを有する。複数の振動素子群L(たとえばL~L96)のそれぞれは、第1から第nのサブ振動素子群T(T~T)を有し、第1から第nのサブ振動素子群T(T~T)に含まれる振動素子tの放射面は、サブ振動素子群T毎に異なる方向に向けて配置されている。送信手段(送信部31)は、第1から第nのサブ振動素子群Tに含まれる振動素子tに対して駆動信号を送ることにより超音波の送信を行わせる。受信手段(受信部32)は、送信された超音波に基づくエコー信号を受信する。選択手段(接続部C´´)は、駆動信号に基づいて、第1から第nのサブ振動素子群T(T~T)のうち、所定のサブ振動素子群Tを選択的に駆動させる場合に送信手段(送信部31)と接続され、エコー信号を受信する場合に受信手段(受信部32)と接続される。タイミング制御手段(タイミング制御部93)は、選択手段(接続部C´´)と送信手段(送信部31)及び受信手段(受信部32)との接続を切り替えるタイミングを制御する。選択制御手段(スイッチ制御部91)は、タイミング制御手段(タイミング制御部93)からの信号に基づき、選択手段(接続部C´´)の動作を制御する。
 このように構成することで、複数の振動素子群L毎に超音波を送受信したい方向のみの振動素子を駆動させることができるため、グレーティングローブが形成され難い。従って、超音波診断画像中に生じる虚像の発生度合いを低減することができる。
[実施例]
 次に、図13Aから図16Bを参照して、上述した実施形態の具体的な実施例及び比較例について説明する。
<比較例>
 比較例は、基部β上に振動素子αが配置された構成である。図13Aは、振動素子αから送信される超音波の指向性を示す図である。なお、図13Aは、振動素子αをX-Z方向から見た場合の指向性を示している。
 図13Bは、図13Aの構成において、超音波が送信される角度と超音波の圧力(音圧)の関係を示すグラフである。なお、グラフの縦軸は、超音波の圧力(音圧)を示す。グラフの横軸は、超音波を送信する角度を示す。ここでは、横軸の中心(Z方向)を角度0°とし、+X方向を角度が+、-X方向を角度が-であるとしている。
 図13Aに示す通り、一つの振動素子で、広範囲に超音波を発生させるためには振動素子αの指向性を広く確保する必要がある。よって、図13Bに示すように、超音波を送信する角度が大きくなっても(小さくなっても)ある程度の高い圧力(音圧)で超音波が送信されることとなる。
 しかしながら、このような場合、超音波を発生させたい方向とは異なる方向にグレーティングローブが形成される場合がある。このグレーティングローブにより、超音波診断画像上に虚像が形成されるという問題が生じる。
<実施例>
 図14A、図15A及び図16Aは、基部12に設けられた振動素子t(t~t)から送信される超音波の指向性を示す図である。ここでは、振動素子tをX-Z方向から見た場合の指向性を示している。なお、図14A、図15A及び図16Aでは、駆動させる振動素子tのみを記載している。
 図14B、図15B及び図16Bは、図14A、図15A及び図16Aの構成において、超音波が送信される角度と超音波の圧力(音圧)の関係を示すグラフである。なお、グラフの縦軸は、超音波の圧力(音圧)を示す。グラフの横軸は、超音波を送信する角度を示す。ここでは、横軸の中心(Z方向)を角度0°とし、+X方向を角度が+、-X方向を角度が-であるとしている。
 図14A及び図14Bに示す通り、振動素子tを駆動させた場合、振動素子tの放射面が向く方向(角度0°方向)に送信される超音波の圧力(音圧)が高くなる。なお、比較例と比べ、振動素子tのサイズが小さいため、振動素子tの作る音圧の指向性は広くなる。しかし、振動素子tを駆動して形成するビーム方向は、ほぼZ方向(基準方向P)の近傍であるため、グレーティングは形成され難い。
 図15Aのように、振動素子t及び振動素子tを駆動させた場合にも、振動素子t及び振動素子tの放射面が向く方向に送信される超音波の圧力(音圧)が他の方向に比べ高くなることが分かる(図15B参照)。図16Aのように振動素子tのみを駆動させた場合にも同様に、振動素子tの放射面が向く方向に送信される超音波の圧力(音圧)が他の方向に比べ高くなっていることが分かる(図16B参照)。よって、超音波を発生させたい方向とは異なる方向にグレーティングローブが形成され難い。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1 超音波プローブ
 2 本体部
 3 送受信部
 4 信号処理部
 5 画像生成部
 6 合成部
 7 表示制御部
 8 ユーザインターフェース(UI)
 9 制御部
 10 振動素子ユニット
 11 台座
 12 基部
 13 面
 14 溝部
 31 送信部
 31a 第1パルサ
 31b 第2パルサ
 31c 第3パルサ
 32 受信部
 32a 第1ゲイン部
 32b 第2ゲイン部
 32c 第3ゲイン部
 81 表示部
 82 操作部
 91 スイッチ制御部
 92 算出部
 100 超音波診断装置
 C 接続部
 L 振動素子群
 T サブ振動素子群
 c スイッチ
 t 振動素子

Claims (19)

  1.  複数の振動素子群が配列された振動素子ユニットを有する超音波プローブであって、
     前記複数の振動素子群のそれぞれは、第1から第nのサブ振動素子群を有し、
     前記第1から第nのサブ振動素子群に含まれる振動素子の放射面は、前記サブ振動素子群毎に異なる方向に向けて配置されており、
     外部からの駆動信号に基づいて、前記第1から第nのサブ振動素子群のうち、所定の前記サブ振動素子群を選択的に駆動させるための選択手段を有することを特徴とする超音波プローブ。
  2.  前記複数の振動素子群と等しい数だけ設けられ、一端が装置本体と接続される複数の信号線と、
     一端が前記信号線の他端と接続可能に設けられ、他端が前記第1から第nのサブ振動素子群それぞれと接続された第1から第nのサブ信号線とを有し、
     前記選択手段は、
     前記信号線に対する前記第1から第nのサブ信号線の接続と非接続とを切り替える第1切替手段を前記第1から第nのサブ信号線と等しい数だけ有し、
     前記第1切替手段それぞれの切り替えにより、外部からの駆動信号に基づいて駆動させる前記サブ振動素子群を選択することを特徴とする請求項1記載の超音波プローブ。
  3.  前記振動素子はMUT素子であり、
     前記選択手段は、
     バイアス電源からのバイアス電圧を前記第1から第nのサブ振動素子群に対して選択的に印加させるための第2切替手段を前記第1から第nのサブ振動素子群と等しい数だけ有し、
     前記第2切替手段それぞれの切り替えにより、外部からの駆動信号に基づいて駆動させる前記サブ振動素子群を選択することを特徴とする請求項1記載の超音波プローブ。
  4.  前記複数の振動素子群のそれぞれは、
     前記第1から第nのサブ振動素子群が配置される凸状又は凹状の基部を有していることを特徴とする請求項1記載の超音波プローブ。
  5.  前記基部は、前記振動素子ユニット上で列状又はマトリクス状に配置されていることを特徴とする請求項4記載の超音波プローブ。
  6.  前記振動素子ユニットにおいて、
     複数の前記基部の間には溝部が形成されていることを特徴とする請求項4記載の超音波プローブ。
  7.  前記振動素子ユニットにおいて、
     複数の前記基部の間には溝部が形成されていることを特徴とする請求項5記載の超音波プローブ。
  8.  前記複数の振動素子群のそれぞれは、
     前記第1から第nのサブ振動素子群が配置される凸状又は凹状の基部を有していることを特徴とする請求項2記載の超音波プローブ。
  9.  前記基部は、前記振動素子ユニット上で列状又はマトリクス状に配置されていることを特徴とする請求項8記載の超音波プローブ。
  10.  前記振動素子ユニットにおいて、
     複数の前記基部の間には溝部が形成されていることを特徴とする請求項8記載の超音波プローブ。
  11.  前記振動素子ユニットにおいて、
     複数の前記基部の間には溝部が形成されていることを特徴とする請求項9記載の超音波プローブ。
  12.  前記複数の振動素子群のそれぞれは、
     前記第1から第nのサブ振動素子群が配置される凸状又は凹状の基部を有していることを特徴とする請求項3記載の超音波プローブ。
  13.  前記基部は、前記振動素子ユニット上で列状又はマトリクス状に配置されていることを特徴とする請求項12記載の超音波プローブ。
  14.  前記振動素子ユニットにおいて、
     複数の前記基部の間には溝部が形成されていることを特徴とする請求項12記載の超音波プローブ。
  15.  前記振動素子ユニットにおいて、
     複数の前記基部の間には溝部が形成されていることを特徴とする請求項13記載の超音波プローブ。
  16.  複数の振動素子群が配列された振動素子ユニットを有し、前記複数の振動素子群のそれぞれは、第1から第nのサブ振動素子群を有し、前記第1から第nのサブ振動素子群に含まれる振動素子の放射面は、前記サブ振動素子群毎に異なる方向に向けて配置されており、駆動信号に基づいて、前記第1から第nのサブ振動素子群のうち、所定の前記サブ振動素子群を選択的に駆動させるための選択手段を有する超音波プローブと、
     前記第1から第nのサブ振動素子群に含まれる振動素子に対して前記駆動信号を送ることにより超音波の送受信を行わせる送受信手段と、
     前記選択手段の動作を制御する選択制御手段と、
     を有することを特徴とする超音波診断装置。
  17.  前記超音波プローブは、
     前記複数の振動素子群と等しい数だけ設けられ、一端が装置本体と接続される複数の信号線と、
     一端が前記信号線の他端と接続可能に設けられ、他端が前記第1から第nのサブ振動素子群それぞれと接続された第1から第nのサブ信号線とを有し、
     前記選択手段は、
     前記信号線に対する前記第1から第nのサブ信号線の接続と非接続とを切り替える第1切替手段を前記第1から第nのサブ信号線と等しい数だけ有し、
     前記選択制御手段は、前記第1切替手段それぞれを切り替えることにより、前記送受信手段からの駆動信号に基づいて駆動させる前記サブ振動素子群を選択することを特徴とする請求項16記載の超音波診断装置。
  18.  前記振動素子はMUT素子であり、
     前記選択手段は、
     バイアス電源からのバイアス電圧を前記第1から第nのサブ振動素子群に対して選択的に印加させるための第2切替手段を前記第1から第nのサブ振動素子群と等しい数だけ有し、
     前記選択制御手段は、前記第2切替手段それぞれを切り替えることにより、前記送受信手段からの駆動信号に基づいて駆動させる前記サブ振動素子群を選択することを特徴とする請求項16記載の超音波診断装置。
  19.  複数の振動素子群が配列された振動素子ユニットを有し、前記複数の振動素子群のそれぞれは、第1から第nのサブ振動素子群を有し、前記第1から第nのサブ振動素子群に含まれる振動素子の放射面は、前記サブ振動素子群毎に異なる方向に向けて配置されている超音波プローブと、
     前記第1から第nのサブ振動素子群に含まれる振動素子に対して駆動信号を送ることにより超音波の送信を行わせる送信手段と、
     送信された前記超音波に基づくエコー信号を受信する受信手段と、
     前記駆動信号に基づいて、前記第1から第nのサブ振動素子群のうち、所定の前記サブ振動素子群を選択的に駆動させる場合に前記送信手段と接続され、前記エコー信号を受信する場合に前記受信手段と接続される選択手段と、
     前記選択手段において前記送信手段と前記受信手段との接続を切り替えるタイミングを制御するタイミング制御手段と、
     前記タイミング制御手段からの信号に基づき、前記選択手段の動作を制御する選択制御手段と、
     を有することを特徴とする超音波診断装置。
PCT/JP2012/071163 2011-08-25 2012-08-22 超音波プローブ及び超音波診断装置 WO2013027756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/979,865 US20130303917A1 (en) 2011-08-25 2012-08-22 Ultrasound probe and ultrasound diagnosis apparatus
CN2012800107050A CN103415256A (zh) 2011-08-25 2012-08-22 超声波探测器以及超声波诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-183216 2011-08-25
JP2011183216A JP2013042974A (ja) 2011-08-25 2011-08-25 超音波プローブ及び超音波診断装置

Publications (1)

Publication Number Publication Date
WO2013027756A1 true WO2013027756A1 (ja) 2013-02-28

Family

ID=47746494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071163 WO2013027756A1 (ja) 2011-08-25 2012-08-22 超音波プローブ及び超音波診断装置

Country Status (4)

Country Link
US (1) US20130303917A1 (ja)
JP (1) JP2013042974A (ja)
CN (1) CN103415256A (ja)
WO (1) WO2013027756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188446A1 (en) * 2012-01-24 2013-07-25 Toshiba Medical Systems Corporation Ultrasound probe and ultrasound diagnosis apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096422B2 (en) * 2013-02-15 2015-08-04 Fujifilm Dimatix, Inc. Piezoelectric array employing integrated MEMS switches
JP6223783B2 (ja) 2013-11-07 2017-11-01 三菱日立パワーシステムズ株式会社 超音波探傷センサおよび超音波探傷方法
JP6291814B2 (ja) * 2013-11-29 2018-03-14 セイコーエプソン株式会社 超音波トランスデューサーデバイス、超音波測定装置及び超音波画像装置
EP3060127B1 (en) * 2014-01-28 2017-03-15 Koninklijke Philips N.V. Device and method for monitoring bladder volume of a subject
JP6365121B2 (ja) * 2014-08-28 2018-08-01 コニカミノルタ株式会社 超音波探触子及び超音波診断装置
CA2970514C (en) 2014-12-19 2023-09-12 Universite Pierre Et Marie Curie (Paris 6) Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device
JP6542047B2 (ja) * 2015-07-03 2019-07-10 キヤノンメディカルシステムズ株式会社 超音波診断装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168939A (ja) * 1988-12-23 1990-06-29 Toshiba Corp 超音波診断装置
JP2009207882A (ja) * 2008-02-08 2009-09-17 Toshiba Corp 超音波プローブ及び超音波診断装置
JP2011025055A (ja) * 2010-08-23 2011-02-10 Olympus Corp 静電容量型超音波振動子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771556B2 (ja) * 1986-11-13 1995-08-02 株式会社東芝 超音波診断装置
JP4787569B2 (ja) * 2004-09-29 2011-10-05 日立アロカメディカル株式会社 超音波診断装置
WO2006121034A1 (ja) * 2005-05-09 2006-11-16 Hitachi Medical Corporation 超音波診断装置
US20070088214A1 (en) * 2005-10-14 2007-04-19 Cardiac Pacemakers Inc. Implantable physiologic monitoring system
US20100262013A1 (en) * 2009-04-14 2010-10-14 Smith David M Universal Multiple Aperture Medical Ultrasound Probe
JP2008079909A (ja) * 2006-09-28 2008-04-10 Fujifilm Corp 超音波用探触子及び超音波撮像装置
JP2009082584A (ja) * 2007-10-02 2009-04-23 Aloka Co Ltd 超音波診断装置
JP5454890B2 (ja) * 2009-11-24 2014-03-26 株式会社東芝 超音波プローブ及び超音波プローブの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168939A (ja) * 1988-12-23 1990-06-29 Toshiba Corp 超音波診断装置
JP2009207882A (ja) * 2008-02-08 2009-09-17 Toshiba Corp 超音波プローブ及び超音波診断装置
JP2011025055A (ja) * 2010-08-23 2011-02-10 Olympus Corp 静電容量型超音波振動子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188446A1 (en) * 2012-01-24 2013-07-25 Toshiba Medical Systems Corporation Ultrasound probe and ultrasound diagnosis apparatus
US8971151B2 (en) * 2012-01-24 2015-03-03 Kabushiki Kaisha Toshiba Ultrasound probe and ultrasound diagnosis apparatus

Also Published As

Publication number Publication date
CN103415256A (zh) 2013-11-27
US20130303917A1 (en) 2013-11-14
JP2013042974A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
WO2013027756A1 (ja) 超音波プローブ及び超音波診断装置
EP2884301B1 (en) Ultrasonic diagnostic apparatus and control method thereof
US20160100822A1 (en) Beamforming apparatus and ultrasound diagnostic apparatus having the same
JP5373308B2 (ja) 超音波撮像装置及び超音波撮像方法
JP4795878B2 (ja) 超音波診断装置及び超音波プローブを用いた超音波診断装置並びに超音波診断システム
JP2012005600A (ja) 超音波診断装置
JP2012217611A (ja) 超音波診断装置および超音波画像生成方法
WO2013145466A1 (ja) 超音波プローブおよびそれを備える超音波診断装置
US9223011B2 (en) Ultrasonic signal processing device and ultrasonic signal processing method
JP2014023670A (ja) 超音波診断装置及びその制御プログラム
JP2012065694A (ja) 超音波診断装置
JP2012170467A (ja) 超音波プローブおよび超音波診断装置
JP5281107B2 (ja) 超音波診断装置および超音波画像生成方法
US20180271492A1 (en) Ultrasonic apparatus and beamforming method for the same
JP2012161569A (ja) 超音波診断装置および超音波画像生成方法
JP5836197B2 (ja) 超音波診断装置およびデータ処理方法
JP2008183288A (ja) 超音波診断装置
JP5331839B2 (ja) 超音波プローブおよび超音波診断装置
WO2022230601A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2006270725A (ja) 超音波プローブ及び超音波診断装置
JP5921133B2 (ja) 超音波診断装置
JP2012249929A (ja) 超音波画像生成方法
JP5289482B2 (ja) 超音波プローブおよび超音波診断装置
JP2014188086A (ja) 超音波診断装置および超音波画像生成方法
JP2012161560A (ja) 超音波診断装置および超音波画像生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13979865

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825225

Country of ref document: EP

Kind code of ref document: A1