WO2013027269A1 - ネットワークシステム - Google Patents

ネットワークシステム Download PDF

Info

Publication number
WO2013027269A1
WO2013027269A1 PCT/JP2011/068980 JP2011068980W WO2013027269A1 WO 2013027269 A1 WO2013027269 A1 WO 2013027269A1 JP 2011068980 W JP2011068980 W JP 2011068980W WO 2013027269 A1 WO2013027269 A1 WO 2013027269A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
communication
port
backbone network
backbone
Prior art date
Application number
PCT/JP2011/068980
Other languages
English (en)
French (fr)
Inventor
重枝 哲也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/068980 priority Critical patent/WO2013027269A1/ja
Publication of WO2013027269A1 publication Critical patent/WO2013027269A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities

Definitions

  • the present invention relates to a redundant network system.
  • redundancy In order to increase network availability, network redundancy is generally performed.
  • the redundancy means securing extra network devices and network lines and waiting them as a backup system.
  • an operating network device or network line goes down, it is possible to continue operation without taking down the network by switching to a standby backup system. Redundant network systems are widely used.
  • Non-Patent Document 1 When network is made redundant in this way, availability can be improved, but redundancy needs to be performed appropriately. In other words, when a loop is formed in the network due to redundancy, when a broadcast frame is transmitted, the broadcast frame continues to rotate around this loop, eventually using up the communication band and bringing down the network system. Such a phenomenon is called a broadcast storm. Conventionally, for example, a spanning tree protocol has been used in order to prevent such a phenomenon and to operate a redundant network correctly (see, for example, Non-Patent Document 1).
  • Spanning tree is a function that is given to a switch that constitutes a network in order to prevent a broadcast frame from continuing around a loop, and this function is realized by a spanning tree protocol.
  • spanning tree When spanning tree is enabled, even if there is a loop in the network configured by the switch, a port that actually does not accept communication (blocking port) is automatically set.
  • a tree structure with vertices is formed.
  • the sub-network can be made redundant by connecting to the backbone network at two locations.
  • a spanning tree protocol can be used as described above.
  • both the backbone network and the subnetwork need to support the spanning tree protocol. Therefore, when the established backbone network does not support the spanning tree protocol, it is necessary to reconfigure the system so that not only the subnetwork but also the backbone network supports the spanning tree protocol when connecting the subnetwork. .
  • the present invention has been made in view of the above, and in a case where a network is configured by connecting a device network, which is a sub-network, to a backbone network at two locations, a simple mechanism without using a spanning tree protocol
  • An object of the present invention is to provide a network system capable of avoiding the formation of a loop communication path and increasing the redundancy of the network.
  • a network system includes a backbone network configured by combining a plurality of switch devices and a plurality of devices connected in a daisy chain.
  • Each device is provided with a switch unit and a control processing unit capable of communicating by controlling the switch unit, and is arranged at one end of the daisy chain connection. Is connected to the backbone network, and the other end device arranged at the other end of the daisy chain connection is connected to the backbone network and connected to the backbone network at two locations.
  • the device at the other end can communicate with the backbone network via the device at the one end, the backbone network Blocking communication by the workpiece and directly connected ports, when communicating detected defects with the backbone network via a device of the one end, characterized in that to start the communication via the port.
  • a network when a network is configured by connecting a device network to a backbone network at two locations, without using a spanning tree protocol, avoiding the formation of a loop communication path with a simple mechanism, There is an effect that the redundancy of the network can be increased.
  • FIG. 1 is a diagram illustrating an example of a configuration of a network system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of an internal configuration of the device according to the first embodiment.
  • FIG. 3 is a diagram for explaining the function of the device 11-4.
  • FIG. 4 is a diagram illustrating an example of a configuration of a network system according to the second embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a network system according to the present embodiment.
  • the network system according to the present embodiment includes a backbone network 21 and a device network 22 that is a sub-network connected to the backbone network 21 at two locations.
  • the backbone network 21 is configured by combining the switch devices 2-1 and 2-2 and includes the management device 1.
  • the device network 22 includes devices 11-1 to 11-4.
  • the switch devices 2-1 and 2-2 are, for example, Ethernet (registered trademark) switches.
  • the switch devices 2-1 and 2-2 have, for example, five ports for network connection.
  • the switch devices 2-1 and 2-2 are connected to each other.
  • the number of switch devices constituting the backbone network 21 is, for example, two, but can be generally plural.
  • the management device 1 is connected to, for example, the switch device 2-1.
  • the management apparatus 1 periodically communicates with these devices using the backbone network 21 and the device network 22 in order to monitor the status of the devices 11-1 to 11-4.
  • the management apparatus 1 transmits signals to the devices 11-1 to 11-4, for example, at a fixed period, and the devices 11-1 to 11-4 return signals in response thereto.
  • the devices 11-1 to 11-4 are connected in a daisy chain in this order. That is, the device 11-1 is connected to the device 11-2, the device 11-2 is connected to the device 11-3, and the device 11-3 is connected to the device 11-4.
  • the device 11-1 (one end device) located at one end of the daisy chain connection of the device network 22 is connected to the switch device 2-2, and is located at the other end of the daisy chain connection of the device network 22.
  • the device 11-4 (the other end device) to be connected is connected to the switch device 2-1.
  • the device network 22 is connected to the backbone network 21, and the connection locations are the connection location between the switch device 2-2 and the device 11-1, the switch device 2-1 and the device. 11-4 and two connection points. Therefore, in this network system, a loop is physically formed by the switch devices 2-1 and 2-2 and the devices 11-1 to 11-4.
  • FIG. 2 is a diagram illustrating an example of the internal configuration of the device according to the present embodiment.
  • the device 11 represents any one of the devices 11-1 to 11-4 in FIG. 1, and these devices are collectively represented.
  • the device 11 includes a CPU 101 (control processing unit) and a switch unit 102 connected to the CPU 101.
  • the switch unit 102 includes, for example, a switch block 103 that functions as an Ethernet (registered trademark) switch body, and network interface (I / F) units 104 and 105 that are connected to the switch block 103 and serve as interfaces with external network cables. And a CPU interface (I / F) unit 106 which is connected to the switch block 103 and serves as an interface with the CPU 101.
  • a switch block 103 that functions as an Ethernet (registered trademark) switch body
  • network interface (I / F) units 104 and 105 that are connected to the switch block 103 and serve as interfaces with external network cables.
  • a CPU interface (I / F) unit 106 which is connected to the switch block 103 and serves as an interface with the CPU 101.
  • the switch unit 102 includes ports P1 to P3.
  • the port P1 is connected to the switch block 103 via the network interface (I / F) unit 104 and is connected to an external network cable.
  • the port P2 is connected to the switch block 103 via the network interface (I / F) unit 105 and is connected to an external network cable.
  • the port P3 is connected to the switch block 103 via the CPU interface (I / F) unit 106 and is also connected to the CPU 101.
  • the switch block 103 operates as a switch between the network interface (I / F) units 104 and 105 and the CPU interface (I / F) unit 106.
  • the switch block 103 is configured by an IC package, for example.
  • the network interface (I / F) units 104 and 105 perform conversion from a cable signal to an electric signal and vice versa.
  • Network interface (I / F) units 104 and 105 are physical layer interfaces.
  • the CPU 101 is connected to the switch block 103 via the CPU interface (I / F) unit 106, and can communicate with the outside by controlling the switch block 103.
  • FIG. 2 only the configuration used for communication among the internal configurations of the device 11 is shown. Therefore, device-specific configurations other than the communication function are omitted. For example, when the device 11 is a display, it goes without saying that a display unit or the like exists.
  • the device 11-1 is connected to the switch device 2-2 of the backbone network 21 by a network cable via the port P1, and information regarding this connection is given to the device 11-1 in advance. That is, the fact that the device 11-1 is arranged at one end of the device network 22 and that it is directly connected to the backbone network 21 is given in advance to the device 11-1 as setting information.
  • the CPU 101 of the device 11-1 can recognize that the device 11-1 is directly connected to the backbone network 21 based on the setting information.
  • the device 11-4 is connected to the switch device 2-1 of the backbone network 21 by a network cable via the port P2, and information regarding this connection is assumed to be given to the device 11-4 in advance. That is, the fact that the device 11-4 is disposed at the other end of the device network 22 and that it is directly connected to the backbone network 21 is given in advance to the device 11-4 as setting information.
  • the CPU 101 of the device 11-4 can recognize that the device 11-4 is directly connected to the backbone network 21 based on the setting information.
  • the device 11-4 is connected to the backbone network 21 via the port P2
  • the device 11-1 is connected to the backbone network 21 via the port P1
  • the device network 22 is connected to the backbone network at two locations. Connected to the network 21, a loop is formed by the switches 2-1 and 2-2, the devices 11-1 to 11-4 and the network cable connecting them. Therefore, in order to avoid the occurrence of a broadcast storm and establish normal communication, it is necessary to configure the communication path not to be a loop.
  • the device 11-4 when the device 11-4 can communicate with the backbone network 21 via the device 11-1, the device 11-4 blocks communication via the port P2 directly connected to the backbone network 21, while the device 11 When communication failure with the backbone network 21 via -1 is detected, communication via the port P2 is set to start. Specifically, when the device 11-4 can periodically receive a signal from the management apparatus 1 via the device 11-1, the device 11-4 cuts off the communication via the port P2, and the port P1 Only communication via is allowed. That is, although the device network 22 is physically connected to the backbone network 21 at two locations, the device 11-4 has a normal network and communication failure with the backbone network 21 via the device 11-1. Unless detected, the direct communication path to the backbone network 21 via the port P2 is blocked, and communication with the backbone network 21 is performed via the device 11-1. Thereby, formation of a loop communication path can be avoided.
  • a setting function of a port VLAN (virtual VAN) is provided in the device 11-4.
  • the port VLAN function is set in the switch block 103 of the device 11-4.
  • the same VLAN number is set for the ports P1 and P3, and a VLAN number different from the ports P1 and P3 is set for the port P2.
  • the ports P1 and P3 are set to a different group from the port P2.
  • the port VLAN is a known technique that groups the ports of the switch and treats each group as an independent VLAN, and makes it possible to virtually divide the broadcast domain.
  • a method other than the setting of the port VLAN may be used.
  • the network interface (I / F) unit 104 By setting the ports P1 and P3 to belong to the same group and the port P2 to belong to a different group, the network interface (I / F) unit 104 connected to the port P1 and the CPU connected to the port P3 A communication path is established with the interface (I / F) unit 106, but a communication path is not established for the single port P2 grouped independently. For this reason, communication between the network interface (I / F) unit 104 and the network interface (I / F) unit 105, that is, communication between the port P1 and the port P2 is blocked.
  • the CPU 101 can communicate with the backbone network 21 via the port P1, but communicates with the backbone network 21 via the port P2.
  • the fact that this is not possible is schematically indicated by an arrow R1.
  • the port VLAN is normally set in the switch block 103, between the network interface (I / F) unit 104 and the network interface (I / F) unit 105 of the device 11-4.
  • Communication is cut off and communication via the port P2 of the device 11-4 is cut off, so that a loop-like communication path is connected to the network regardless of the connection between the backbone network 21 and the device network 22. Is not formed. That is, a physical loop is formed by the connection between the backbone network 21 and the device network 22, but the communication path between the backbone network 21 and the device network 22 is the switch device 2-2 and the device 11-1. It is via a network cable that connects to and is actually connected at this one location.
  • the device 11-4 connects the network device (device 11-) that connects the management device 1 and the device 11-4. 1 to 11-3, switch devices 2-1, 2-2, etc.) or a network line (such as a network cable connecting between network devices) is determined to have failed, and the backbone network 21 via the device 11-1 Detects communication failure with. For example, when the device 11-2 fails, the periodic communication between the management apparatus 1 and the device 11-4 is interrupted.
  • the device 11-4 When the device 11-4 detects a communication failure with the backbone network 21 via the device 11-1, the device 11-4 cancels the function of the port VLAN set in the switch block 103. As a result, in the device 11-4, communication is possible among the network interface (I / F) unit 104, the network interface (I / F) unit 105, and the CPU interface (I / F) unit 106. That is, the device 11-4 can perform communication via the two ports P1 and P2 in the same manner as the other devices 11-1 to 11-3. For example, when the device 11-2 fails, the device 11-4 is connected to the switch device 2-1 via the network interface (I / F) unit 105 and the port P2, so that the management device 1 Communication can be restored.
  • the operation of this embodiment will be described with reference to FIGS.
  • the power is turned on to start the network system.
  • the management apparatus 1 periodically communicates with the devices 11-1 to 11-4, for example.
  • the device 11-4 is disposed at one end of the device network 22, is directly connected to the backbone network 21, and communication with the backbone network 21 via the device 11-1 is poor. Since the communication via the port P2 is set to be blocked in the case where it is not detected, the device 11-4 is set in a state where the communication via the port P2 is blocked after the activation. Specifically, the function of the port VLAN is set in the switch block 103 as described above under the control of the CPU 101 of the device 11-4.
  • the device 11-4 periodically communicates with the management device 1. can do. Accordingly, when the device 11-4 can communicate with the management apparatus 1 within a certain time after activation, the device 11-4 maintains a state in which communication via the port P2 is interrupted. In this case, no loop is formed in the communication path of the network, and all the devices 11-1 to 11-4 are connected to the backbone network 21 via the switch device 2-2.
  • the management apparatus starts from a certain point thereafter.
  • the device 11-4 connects the management device 1 and the device 11-4 (network devices 11-1 to 11-3, switch devices 2-1, 2- 2) or a network line (such as a network cable connecting the network devices) is determined to have failed, and the function of the port VLAN set in the switch block 103 is canceled.
  • the network interface (I / F) unit 104, the network interface (I / F) unit 105, and the CPU interface (I / F) unit 106 can communicate with each other, and the device 11- 4 can perform communication via two ports P1 and P2.
  • the device 11-4 when a failure occurs in the network cable between the devices 11-2 and 11-3, the device 11-4 is connected to the backbone network 21 by connecting to the switch device 2-1 via the port P2. Connection can be recovered. In addition, the device 11-3 can recover the connection with the backbone network 21 via the device 11-4.
  • the devices 11-1 and 11-2 can be connected to the backbone network 21 via the switch device 2-2. In this case, since communication between the device 11-2 and the device 11-3 is disconnected, a loop communication path is not formed in the network.
  • the communication path through which the device 11-4 connects to the backbone network 21 via the switch device 2-1 is validated. In this way, the interrupted communication is recovered, and the redundancy of the device network 22 is ensured.
  • the communication via the port P2 of the device 11-4 is cut off. Instead of performing this in the device 11-4, the communication is performed in the device 11-1. May be. In this case, the communication via the port P1 of the device 11-1 may be blocked. That is, for a device located at one end of the daisy chain of the device network 22, if the network is normal, the direct connection with the backbone network 21 is cut off, and if an abnormality occurs in the network, the backbone network 21 to enable a direct connection with 21.
  • the device 11-4 detects a communication failure with the backbone network 21 via the device 11-1 depending on whether communication with the management device 1 is possible, but with the devices in the backbone network 21 other than the management device 1 A communication failure may be detected depending on whether communication is possible.
  • a network when a network is configured by connecting the device network 22 to the backbone network 21 at two locations, it is possible to avoid the formation of a loop communication path with a simple mechanism and to reduce network redundancy. Can be increased.
  • a redundant network can be constructed without using the spanning tree protocol.
  • the backbone network 21 since the device network 22 is provided with a means for avoiding the formation of a loop communication path in the network, the backbone network 21 has already been constructed, and the backbone network 21 includes Even when the device network 22 is connected later and the devices 11-1 to 11-4 are mounted, the loop is formed without depending on the configuration of the backbone network 21 and without changing the system configuration of the backbone network 21. Can be avoided. Therefore, even when the device network 22 is additionally added, the network system can be easily constructed.
  • FIG. FIG. 4 is a diagram showing an example of the configuration of the network system according to the present embodiment.
  • the network system according to the present embodiment is constructed in a train.
  • the train is composed of, for example, a combination of a plurality of vehicles, and for example, shows a first car (first car or rear car) and second car.
  • first car first car or rear car
  • second car second car
  • the backbone network 201 is a network provided between vehicles in a train.
  • the backbone network 201 includes switch devices 2-1 to 2-4 and a management device 1.
  • the switch devices 2-1 to 2-4 are connected in a daisy chain, for example, in this order. That is, the switch device 2-1 is connected to the switch device 2-2, the switch device 2-2 is connected to the switch device 2-3, and the switch device 2-3 is connected to the switch device 2-4.
  • the management device 1 and the switch devices 2-1 and 2-2 are mounted on the first car, for example.
  • the management device 1 is connected to, for example, the switch device 2-1.
  • the switch devices 2-3 and 2-4 are mounted on, for example, the second car.
  • Each of the switch devices 2-1 to 2-4 is, for example, an Ethernet (registered trademark) switch as in the first embodiment. Note that the number of switch devices mounted on each vehicle is not limited to two in the illustrated example.
  • the management device 1 has the same function as in the first embodiment.
  • the management device 1 is specifically a train information management device.
  • the train information management device is a device that collects and manages train information, and can monitor the operation state of the on-vehicle equipment and control the operation of each equipment individually.
  • the train information management device periodically transmits a status data request signal to the vehicle-mounted device, and when each device receives this status data request signal, the response signal including the status data of the device is sent to the management device 1. Reply.
  • the train information management device periodically communicates with the on-vehicle equipment.
  • the management apparatus 1 may be provided in vehicles other than the first car, and the management apparatus 1 may be provided in each vehicle.
  • the device network 202 is a sub-network of devices provided in the first car, and is connected to the backbone network 201 at two locations.
  • the device network 202 includes, for example, four devices 11-1 to 11-4 connected in a daisy chain. Specifically, the device 11-1 is connected to the device 11-2, the device 11-2 is connected to the device 11-3, and the device 11-3 is connected to the device 11-4.
  • Each of the devices 11-1 to 11-4 has the same internal configuration as the device 11 described in the first embodiment (see FIG. 2).
  • the device 11-1 located at one end of the daisy chain of the device network 202 is connected to the switch device 2-2, and the device 11-4 located at the other end of the daisy chain of the device network 202 is connected to the switch device 2-1.
  • the device 11-4 has the same function as the device 11-4 of the first embodiment. That is, the device 11-4 normally cuts off the direct communication path to the backbone network 201. However, when a failure occurs in the network and communication with the management apparatus 1 becomes impossible, the device 11-4 directly connects to the backbone network 201. Enable the communication path. As described in the first embodiment, the communication path can be blocked and enabled by setting or canceling, for example, the port VLAN in the device 11-4. As described above, the connection mode between the device network 202 and the backbone network 201 is the same as that in FIG.
  • the equipment network 203 is a sub-network of equipment provided in the second car, and is connected to the backbone network 201 at two locations.
  • the device network 203 includes, for example, five devices 11-5 to 11-9 connected in a daisy chain. Specifically, the device 11-5 is connected to the device 11-6, the device 11-6 is connected to the device 11-7, the device 11-7 is connected to the device 11-8, and the device 11-8 is connected to the device 11-8. 11-9.
  • the devices 11-5 to 11-9 each have the same internal configuration as the device 11 described in the first embodiment (see FIG. 2).
  • the device 11-5 located at one end of the daisy chain of the device network 203 is connected to the switch device 2-4, and the device 11-9 located at the other end of the daisy chain of the device network 203 is connected to the switch device 2-3. It is connected.
  • the device 11-9 has the same function as the device 11-4 of the first embodiment. That is, the device 11-9 normally cuts off the direct communication path to the backbone network 201. However, when a failure occurs in the network and communication with the management apparatus 1 becomes impossible, the device 11-9 directly connects to the backbone network 201. Enable the communication path. As described in the first embodiment, the communication path can be blocked and enabled by, for example, setting or releasing the port VLAN in the device 11-9. As described above, the connection mode between the device network 203 and the backbone network 201 is the same as that in FIG.
  • the device networks 202 and 203 when the device networks 202 and 203 are connected to the backbone network 201 at two locations to form a network, a loop-like communication path with a simple mechanism as in the first embodiment. And the redundancy of the network can be increased.
  • the devices 11-1 to 11-9 can be, for example, displays.
  • the redundancy of the device networks 202 and 203 is ensured, and the redundancy of in-vehicle display by the devices 11-1 to 11-9 is ensured.
  • the present invention is useful as a network system having a redundant configuration.

Abstract

 基幹ネットワーク21と機器ネットワーク22とを二箇所で接続したネットワークシステムにおいて、機器ネットワーク22はデイジーチェーン状に接続された複数個の機器11-1~11-4から構成され、機器11-1,11-4がそれぞれ基幹ネットワーク21に接続されており、機器11-4は、機器11-1を経由して管理装置1と通信できる場合は、スイッチ装置2-1と直接接続されたポートによる通信を遮断し、機器11-1を経由した基幹ネットワーク21との通信不良を検知した場合には、当該ポートを介した通信を開始する。

Description

ネットワークシステム
 本発明は、冗長構成のネットワークシステムに関するものである。
 ネットワークの可用性を高めるために、一般的に、ネットワークの冗長化が行われている。ここで冗長化とは、ネットワーク機器とネットワーク回線を余分に確保し、それらをバックアップ系として待機させるものである。運用中のネットワーク機器又はネットワーク回線がダウンした場合、待機しているバックアップ系に切り替えることにより、ネットワークをダウンさせずに、引き続き運用することができる。冗長化されたネットワークシステムは広く運用されている。
 このようにネットワークを冗長化した場合、可用性を高めることができるが、冗長化は適切に行う必要がある。すなわち、冗長化によりネットワークにループが形成されると、ブロードキャストフレームを送信した場合、ブロードキャストフレームはこのループを繰り返し回り続け、やがて通信帯域を使い切ってしまい、ネットワークシステムをダウンさせてしまう。このような現象はブロードキャストストームと呼ばれている。こうした現象を防ぎ、冗長化したネットワークを正しく動作させるために、従来、例えばスパニングツリープロトコルが使用されている(例えば、非特許文献1を参照。)。
 スパニングツリーは、ブロードキャストフレームがループを回り続けることを防ぐためにネットワークを構成するスイッチに付与される機能であり、この機能はスパニングツリープロトコルによって実現される。スパニングツリーが有効になっていると、スイッチで構成したネットワークにループが存在しても、実際には通信を受け付けないポート(ブロッキングポート)が自動的に設定され、最終的に1台のスイッチを頂点とするツリー構造が形成される。
「最新ルーティング&スイッチングハンドブック」、 Gene著、秀和システム刊(第4章「スパニングツリープロトコル」)
 基幹ネットワークに接続されるサブネットワークを考える。基幹ネットワークとの接続が重要な場合、サブネットワークは基幹ネットワークと二箇所で接続することで冗長構成にすることができる。
 しかし、この二箇所での接続の結果、基幹ネットワークとサブネットワークとによりループが形成されるため、ブロードキャストストームが生ずることとなる。ブロードキャストストームを回避するためには、ループ状の通信経路が形成されないようにする必要がある。
 このようなループ構造を解消するためには、上記のように、例えばスパニングツリープロトコルを使用することができるが、この場合は、基幹ネットワークとサブネットワークが共にスパニングツリープロトコルに対応する必要がある。したがって、既に構築された基幹ネットワークがスパニングツリープロトコルに対応していない場合は、サブネットワークの接続に際して、サブネットワークのみならず、基幹ネットワークもスパニングツリープロトコルに対応するようシステムを再構成する必要がある。
 また、実際にスパニングツリープロトコルを使用した場合には、ネットワークの接続構造を解析する処理などに時間を要し、スパニングツリーの収束に時間がかかるといった問題点があった。
 本発明は、上記に鑑みてなされたものであって、サブネットワークである機器ネットワークを基幹ネットワークに二箇所で接続してネットワークを構成した場合において、スパニングツリープロトコルを使用することなく、簡素な仕組みでループ状の通信経路の形成を回避するとともに、ネットワークの冗長性を高めることが可能なネットワークシステムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るネットワークシステムは、複数個のスイッチ装置を組み合わせて構成された基幹ネットワークと、デイジーチェーン状に接続された複数個の機器から構成され、各機器には内部にそれぞれスイッチ部とこのスイッチ部を制御して通信を行うことが可能な制御処理部とが設けられ、前記デイジーチェーン状の接続の一端に配置された一方端の機器が前記基幹ネットワークに接続されるとともに前記デイジーチェーン状の接続の他端に配置された他方端の機器が前記基幹ネットワークに接続されて前記基幹ネットワークに二箇所で接続された機器ネットワークと、を備え、前記他方端の機器は、前記一方端の機器を経由して前記基幹ネットワークと通信できる場合は、前記基幹ネットワークと直接接続されたポートによる通信を遮断し、前記一方端の機器を経由した前記基幹ネットワークとの通信不良を検知した場合には、当該ポートを介した通信を開始することを特徴とする。
 本発明によれば、機器ネットワークを基幹ネットワークに二箇所で接続してネットワークを構成した場合において、スパニングツリープロトコルを使用することなく、簡素な仕組みでループ状の通信経路の形成を回避するとともに、ネットワークの冗長性を高めることができる、という効果を奏する。
図1は、実施の形態1に係るネットワークシステムの構成の一例を示す図である。 図2は、実施の形態1における機器の内部構成の一例を示す図である。 図3は、機器11-4の機能を説明するための図である。 図4は、実施の形態2に係るネットワークシステムの構成の一例を示す図である。
 以下に、本発明に係るネットワークシステムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態に係るネットワークシステムの構成の一例を示す図である。図1に示すように、本実施の形態のネットワークシステムは、基幹ネットワーク21と、この基幹ネットワーク21に二箇所で接続されたサブネットワークである機器ネットワーク22とにより構成されている。基幹ネットワーク21は、スイッチ装置2-1,2-2を組み合わせて構成され、管理装置1を備えて構成されている。機器ネットワーク22は、機器11-1~11-4を備えて構成されている。
 スイッチ装置2-1,2-2は、それぞれ例えばイーサネット(登録商標)スイッチである。スイッチ装置2-1,2-2は、ネットワーク接続用に例えば5つのポートを備えている。スイッチ装置2-1,2-2は互いに接続されている。なお、図示例では、基幹ネットワーク21を構成するスイッチ装置の個数を例えば2個としているが、一般に複数個とすることができる。
 管理装置1は、例えばスイッチ装置2-1と接続されている。管理装置1は、機器11-1~11-4の状態を監視するために、基幹ネットワーク21及び機器ネットワーク22を利用してこれらの機器と定期的に通信を行っている。すなわち、管理装置1は、例えば一定周期で機器11-1~11-4に信号を送信し、機器11-1~11-4はこれに応答して信号を返信する。
 機器11-1~11-4は、この順でデイジーチェーン状に接続されている。すなわち、機器11-1は機器11-2と接続され、機器11-2は機器11-3と接続され、機器11-3は機器11-4と接続されている。また、機器ネットワーク22のデイジーチェーン状の接続の一端に位置する機器11-1(一方端の機器)はスイッチ装置2-2と接続され、機器ネットワーク22のデイジーチェーン状の接続の他端に位置する機器11-4(他方端の機器)はスイッチ装置2-1と接続されている。
 このように、本実施の形態のネットワークシステムでは、基幹ネットワーク21に機器ネットワーク22が接続され、接続箇所は、スイッチ装置2-2と機器11-1との接続箇所とスイッチ装置2-1と機器11-4との接続箇所の二箇所である。そのため、このネットワークシステムにおいては、スイッチ装置2-1,2-2及び機器11-1~11-4によりに物理的にはループが形成されることとなる。
 図2は、本実施の形態における機器の内部構成の一例を示す図である。図2において、機器11は、図1の機器11-1~11-4のいずれかを表しており、これらの機器を総括的に表している。機器11は、CPU101(制御処理部)と、このCPU101に接続されたスイッチ部102とを含んで構成されている。
 スイッチ部102は、例えばイーサネット(登録商標)スイッチ本体としての機能を有するスイッチブロック103と、スイッチブロック103とそれぞれ接続され外部のネットワークケーブルとのインターフェースとなるネットワークインターフェース(I/F)部104,105と、スイッチブロック103と接続されてCPU101とのインターフェースとなるCPUインターフェース(I/F)部106とを備えている。
 また、スイッチ部102は、ポートP1~P3を備えている。ポートP1は、ネットワークインターフェース(I/F)部104を介してスイッチブロック103に接続されるとともに、外部のネットワークケーブルに接続される。ポートP2は、ネットワークインターフェース(I/F)部105を介してスイッチブロック103に接続されるとともに、外部のネットワークケーブルに接続される。ポートP3は、CPUインターフェース(I/F)部106を介してスイッチブロック103に接続されるとともに、CPU101に接続される。
 スイッチブロック103は、ネットワークインターフェース(I/F)部104,105、及びCPUインターフェース(I/F)部106間のスイッチとして動作する。スイッチブロック103は、例えばICパッケージにより構成される。ネットワークインターフェース(I/F)部104,105は、ケーブル信号から電気信号への変換及びその逆の変換を行う。ネットワークインターフェース(I/F)部104,105は物理層のインターフェースである。CPU101は、CPUインターフェース(I/F)部106を介してスイッチブロック103と接続され、このスイッチブロック103を制御することにより外部と通信をすることができる。なお、図2では、機器11の内部構成のうち通信に使用される構成のみを示している。そのため、通信機能以外の機器固有の構成は省略している。例えば、機器11が表示器である場合には、表示部などが存在することはいうまでもない。
 次に、機器11-1,11-4の詳細について説明する。機器11-1は、ポートP1を介してネットワークケーブルにより基幹ネットワーク21のスイッチ装置2-2と接続されているが、この接続に関する情報は機器11-1に予め付与されているものとする。すなわち、機器11-1が機器ネットワーク22の一端に配置されていること及び基幹ネットワーク21に直接接続されていることは、設定情報として予め機器11-1に付与されている。機器11-1のCPU101は、当該設定情報に基づき、機器11-1が基幹ネットワーク21に直接接続されていることを認識することができる。
 機器11-4は、ポートP2を介してネットワークケーブルにより基幹ネットワーク21のスイッチ装置2-1と接続されているが、この接続に関する情報は機器11-4に予め付与されているものとする。すなわち、機器11-4が機器ネットワーク22の他端に配置されていること及び基幹ネットワーク21に直接接続されていることは、設定情報として予め機器11-4に付与されている。機器11-4のCPU101は、当該設定情報に基づき、機器11-4が基幹ネットワーク21に直接接続されていることを認識することができる。
 上記のように、機器11-4はポートP2を介して基幹ネットワーク21と接続され、機器11-1はポートP1を介して基幹ネットワーク21と接続されているので、機器ネットワーク22は二箇所で基幹ネットワーク21に接続され、スイッチ2-1,2-2,機器11-1~11-4及びこれらを接続するネットワークケーブルによりループが形成されている。したがって、ブロードキャストストームの発生を回避し正常な通信を確立するためには、通信経路がループにならないように構成する必要がある。
 そこで、本実施の形態では、機器11-4は、機器11-1を経由して基幹ネットワーク21と通信できる場合は、基幹ネットワーク21と直接接続されたポートP2による通信を遮断する一方、機器11-1を経由した基幹ネットワーク21との通信不良を検知した場合には、ポートP2を介した通信を開始するように設定する。具体的には、機器11-4が機器11-1を介して管理装置1から定期的に信号を受信できる場合には、機器11-4では、ポートP2を介した通信を遮断し、ポートP1を介した通信のみを許容する。つまり、機器ネットワーク22は物理的には二箇所で基幹ネットワーク21に接続されているものの、機器11-4は、ネットワークが正常であり、機器11-1を経由した基幹ネットワーク21との通信不良を検知しない限りは、ポートP2を介して基幹ネットワーク21へ至る直接の通信経路を遮断し、基幹ネットワーク21との通信は機器11-1を経由して行う。これにより、ループ状の通信経路の形成を回避することができる。
 また、本実施の形態では、ループの形成を回避するために機器11-4に例えばポートVLAN(仮想VAN)の設定機能を設ける。具体的には、ネットワークが正常である場合は、機器11-4のスイッチブロック103にてポートVLAN機能を設定する。そして、ポートP1,P3に対して同一のVLAN番号を設定し、ポートP2に対してはポートP1,P3と異なるVLAN番号を設定する。このように、ポートP1,P3をポートP2と異なるグループに設定する。ここで、ポートVLANはスイッチのポートをグループ化しそれぞれのグループを独立したVLANとして扱うものであり、ブロードキャストドメインを仮想的に分割することを可能にする公知の技術である。なお、機器11-4のポートP2を介した通信を遮断するために、ポートVLANの設定以外の他の方法を用いてもよい。
 ポートP1,P3が同一のグループに属し、ポートP2はこれと異なるグループに属するように設定することにより、ポートP1に接続されたネットワークインターフェース(I/F)部104とポートP3に接続されたCPUインターフェース(I/F)部106との間には通信経路が確立されるが、独立してグループ化された単一のポートP2については通信経路が確立されない。このため、ネットワークインターフェース(I/F)部104とネットワークインターフェース(I/F)部105間の通信、すなわち、ポートP1とポートP2間の通信は遮断される。
 なお、図3では、ポートVLANが上記のように設定された結果、CPU101は、ポートP1を経由して基幹ネットワーク21と通信することができるが、ポートP2を経由して基幹ネットワーク21と通信することができないことを矢印R1で模式的に示している。
 このように、機器11-4では、通常、スイッチブロック103にポートVLANを設定しているので、機器11-4のネットワークインターフェース(I/F)部104とネットワークインターフェース(I/F)部105間の通信は遮断され、機器11-4のポートP2を介した通信は遮断されているので、基幹ネットワーク21と機器ネットワーク22との2点での接続にもかかわらず、ネットワークにループ状の通信経路は形成されない。つまり、基幹ネットワーク21と機器ネットワーク22との接続により、物理的にはループが形成されているが、基幹ネットワーク21と機器ネットワーク22との間の通信経路はスイッチ装置2-2と機器11-1とを結ぶネットワークケーブルを経由することになり、実質この一箇所で接続された状態である。
 上記の構成により、ネットワークが正常な場合、管理装置1と機器11-4との間の定期的な通信が可能である。他方、管理装置1と機器11-4との間で定期的な通信を行うことができなくなった場合、機器11-4は、管理装置1と機器11-4とを結ぶネットワーク装置(機器11-1~11-3、スイッチ装置2-1,2-2等)もしくはネットワーク回線(ネットワーク装置間を接続するネットワークケーブル等)に障害が発生したと判断し、機器11-1を経由した基幹ネットワーク21との通信不良を検知する。例えば、機器11-2が故障した場合、管理装置1と機器11-4との間の定期的な通信は中断される。
 機器11-4は、機器11-1を経由した基幹ネットワーク21との通信不良を検知した場合、スイッチブロック103に設定していたポートVLANの機能を解除する。この結果、機器11-4では、ネットワークインターフェース(I/F)部104、ネットワークインターフェース(I/F)部105、及びCPUインターフェース(I/F)部106間で通信が可能になる。すなわち、機器11-4は、他の機器11-1~11-3と同様に、二つのポートP1,P2を介した通信を行うことができる。例えば、機器11-2が故障した場合は、機器11-4は、ネットワークインターフェース(I/F)部105及びポートP2を介して、スイッチ装置2-1に接続することにより、管理装置1との通信を回復することができる。
 次に、本実施の形態の動作について図1~図3を参照して説明する。まず、図1のように機器ネットワーク22が基幹ネットワーク21に接続された状態で、電源を投入してネットワークシステムを起動する。起動後、管理装置1は例えば定期的に機器11-1~11-4と通信を行う。
 機器11-4には、機器11-4が機器ネットワーク22の一端に配置されていること、基幹ネットワーク21に直接接続されていること、及び機器11-1を経由した基幹ネットワーク21との通信不良を検知しない場合にはポートP2を介した通信を遮断することが予め設定されているので、機器11-4は、起動後は、ポートP2を介した通信を遮断した状態に設定する。具体的には、機器11-4のCPU101の制御により、スイッチブロック103に上記のようにポートVLANの機能が設定される。
 また、管理装置1からスイッチ装置2-1,2-2、機器11-1~11-3を経由した通信経路に異常がない場合は、機器11-4は定期的に管理装置1と通信をすることができる。したがって、機器11-4は、起動後一定時間内に、管理装置1と通信をすることができたときは、ポートP2を介した通信の遮断状態を維持する。この場合は、ネットワークの通信経路にループは形成されず、機器11-1~11-4は、いずれもスイッチ装置2-2を経由して基幹ネットワーク21に接続する。
 他方、機器11-4が、起動後一定時間内に、管理装置1と通信することができなかった場合、あるいは、起動後定期的な通信を開始することができたがその後ある時点から管理装置1と通信することができなくなった場合には、機器11-4は、管理装置1と機器11-4とを結ぶネットワーク装置(機器11-1~11-3、スイッチ装置2-1,2-2等)もしくはネットワーク回線(ネットワーク装置間を接続するネットワークケーブル等)に障害が発生したと判断し、スイッチブロック103に設定していたポートVLANの機能を解除する。この結果、機器11-4では、ネットワークインターフェース(I/F)部104、ネットワークインターフェース(I/F)部105、及びCPUインターフェース(I/F)部106間で通信が可能になり、機器11-4は、二つのポートP1,P2を介した通信を行うことができる。
 例えば、機器11-2と機器11-3間のネットワークケーブルで故障が発生した場合は、機器11-4は、ポートP2を介して、スイッチ装置2-1に接続することにより、基幹ネットワーク21との接続を回復することができる。また、機器11-3は、機器11-4を経由して、基幹ネットワーク21との接続を回復することができる。機器11-1,11-2については、スイッチ装置2-2を介して基幹ネットワーク21に接続することができる。この場合、機器11-2と機器11-3との間の通信は切断されているので、ネットワークにループ状の通信経路は形成されない。
 他の箇所で故障が発生した場合も同様であり、ネットワークに故障が発生した場合は、機器11-4がスイッチ装置2-1を経由して基幹ネットワーク21に接続する通信経路を有効にする。このようにして、中断された通信が回復され、機器ネットワーク22の冗長性が確保される。
 なお、本実施の形態では、ネットワークが正常な場合、機器11-4のポートP2を介した通信を遮断するようにしたが、機器11-4でこれを行う代わりに、機器11-1で行ってもよい。この場合、機器11-1のポートP1を介した通信を遮断するようにすればよい。つまり、機器ネットワーク22のデイジーチェーンのいずれか一端に位置する機器について、ネットワークが正常な場合は、基幹ネットワーク21との直接の接続を遮断するようにし、ネットワークに異常が発生した場合は、基幹ネットワーク21との直接の接続を有効化するように構成する。
 また、機器11-4は、管理装置1との通信の可否により、機器11-1を経由した基幹ネットワーク21との通信不良を検知したが、管理装置1以外の基幹ネットワーク21内の装置との通信の可否により通信不良を検知してもよい。
 本実施の形態によれば、機器ネットワーク22を基幹ネットワーク21に二箇所で接続してネットワークを構成した場合において、簡素な仕組みでループ状の通信経路の形成を回避するとともに、ネットワークの冗長性を高めることができる。
 また、本実施の形態によれば、スパニングツリープロトコルを使用することなく、冗長化されたネットワークを構築することができる。
 また、本実施の形態では、ネットワークにループ状の通信経路が形成されることを回避するための手段を機器ネットワーク22に設けるようにしたので、既に基幹ネットワーク21が構築され、この基幹ネットワーク21に後から機器ネットワーク22を接続して機器11-1~11-4を実装する場合でも、基幹ネットワーク21の構成に依存することなく、かつ基幹ネットワーク21のシステム構成を変更することなく、ループの形成を回避することができる。よって、機器ネットワーク22を追加的に付加する場合でもネットワークシステムの構築が容易となる。
実施の形態2.
 図4は、本実施の形態に係るネットワークシステムの構成の一例を示す図である。図4に示すように、本実施の形態に係るネットワークシステムは列車内に構築されている。列車は、例えば複数の車両を連結した編成からなり、例えば1号車(先頭車両又は後尾車両)と2号車を示している。なお、列車が1両編成の場合及び3両以上の編成からなる場合も同様である。
 基幹ネットワーク201は、列車内で車両間にわたって設けられたネットワークである。基幹ネットワーク201は、スイッチ装置2-1~2-4及び管理装置1を備えて構成されている。スイッチ装置2-1~2-4は、例えばこの順でデイジーチェーン状に接続されている。すなわち、スイッチ装置2-1はスイッチ装置2-2と接続され、スイッチ装置2-2はスイッチ装置2-3と接続され、スイッチ装置2-3はスイッチ装置2-4と接続されている。管理装置1、スイッチ装置2-1,2-2は例えば1号車に搭載されている。管理装置1は例えばスイッチ装置2-1と接続されている。スイッチ装置2-3,2-4は例えば2号車に搭載されている。スイッチ装置2-1~2-4は、実施の形態1と同様に、それぞれ例えばイーサネット(登録商標)スイッチである。なお、各車両に搭載されるスイッチ装置の個数は図示例の2台に限定されない。
 管理装置1は、実施の形態1と同様の機能を有する。本実施の形態では、管理装置1は具体的には列車情報管理装置である。列車情報管理装置は、列車情報を収集し管理する装置であって、車両搭載機器の動作状態を監視するとともに各機器の動作を個別に制御することができる。列車情報管理装置は、車両搭載機器に対して定期的に状態データ要求信号を送信し、各機器はこの状態データ要求信号を受信すると管理装置1に対してその機器の状態データを含んだ応答信号を返信する。このようにして、列車情報管理装置は定期的に車両搭載機器と通信をする。なお、管理装置1を1号車以外の車両に設けてもよいし、管理装置1を各車両に設けてもよい。
 機器ネットワーク202は、1号車に設けられた機器のサブネットワークであり、基幹ネットワーク201と二箇所で接続されている。機器ネットワーク202は、デイジーチェーン状に接続された例えば4つの機器11-1~11-4からなる。具体的には、機器11-1は機器11-2と接続され、機器11-2は機器11-3と接続され、機器11-3は機器11-4と接続されている。なお、機器11-1~11-4は、それぞれ実施の形態1で説明した機器11と同様の内部構成を有する(図2参照)。また、機器ネットワーク202のデイジーチェーンの一端に位置する機器11-1はスイッチ装置2-2と接続され、機器ネットワーク202のデイジーチェーンの他端に位置する機器11-4はスイッチ装置2-1と接続されている。そして、機器11-4は、実施の形態1の機器11-4と同じ機能を有する。すなわち、機器11-4は、通常は基幹ネットワーク201への直接の通信経路を遮断しているが、ネットワークに故障が発生し管理装置1と通信できなくなったときは、基幹ネットワーク201への直接の通信経路を有効化する。通信経路の遮断及び有効化には、機器11-4に例えばポートVLANを設定し又は解除することで実施できることも実施の形態1で説明したとおりである。このように、機器ネットワーク202と基幹ネットワーク201との接続態様は、実施の形態1の図1と同様である。
 機器ネットワーク203は、2号車に設けられた機器のサブネットワークであり、基幹ネットワーク201と二箇所で接続されている。機器ネットワーク203は、デイジーチェーン状に接続された例えば5つの機器11-5~11-9からなる。具体的には、機器11-5は機器11-6と接続され、機器11-6は機器11-7と接続され、機器11-7は機器11-8と接続され、機器11-8は機器11-9と接続されている。なお、機器11-5~11-9は、それぞれ実施の形態1で説明した機器11と同様の内部構成を有する(図2参照)。また、機器ネットワーク203のデイジーチェーンの一端に位置する機器11-5はスイッチ装置2-4と接続され、機器ネットワーク203のデイジーチェーンの他端に位置する機器11-9はスイッチ装置2-3と接続されている。そして、機器11-9は、実施の形態1の機器11-4と同じ機能を有する。すなわち、機器11-9は、通常は基幹ネットワーク201への直接の通信経路を遮断しているが、ネットワークに故障が発生し管理装置1と通信できなくなったときは、基幹ネットワーク201への直接の通信経路を有効化する。通信経路の遮断及び有効化には、機器11-9に例えばポートVLANを設定し又は解除することで実施できることも実施の形態1で説明したとおりである。このように、機器ネットワーク203と基幹ネットワーク201との接続態様も、実施の形態1の図1と同様である。
 以上より、本実施の形態では、機器ネットワーク202,203をそれぞれ基幹ネットワーク201に二箇所で接続してネットワークを構成した場合において、実施の形態1と同様に、簡素な仕組みでループ状の通信経路の形成を回避するとともに、ネットワークの冗長性を高めることができる。
 なお、機器11-1~11-9は、例えば表示器とすることができる。この場合、機器ネットワーク202,203の冗長性が確保され、機器11-1~11-9による車内表示の冗長性が確保される。
 なお、本実施の形態では、機器ネットワークを各車両に設ける構成としたが、機器ネットワークが複数の車両にわたって設けられている構成でもよい。本実施の形態のその他の構成、動作及び効果は、実施の形態1と同様である。
 本発明は、冗長構成のネットワークシステムとして有用である。
 1 管理装置
 2-1~2-4 スイッチ装置
 11-1~11-9 機器
 21,201 基幹ネットワーク
 22,202,203 機器ネットワーク
 101 CPU
 102 スイッチ部
 103 スイッチブロック
 104,105 ネットワークインターフェース(I/F)部
 106 CPUインターフェース(I/F)部
 P1~P3 ポート

Claims (8)

  1.  複数個のスイッチ装置を組み合わせて構成された基幹ネットワークと、
     デイジーチェーン状に接続された複数個の機器から構成され、各機器には内部にそれぞれスイッチ部とこのスイッチ部を制御して通信を行うことが可能な制御処理部とが設けられ、前記デイジーチェーン状の接続の一端に配置された一方端の機器が前記基幹ネットワークに接続されるとともに前記デイジーチェーン状の接続の他端に配置された他方端の機器が前記基幹ネットワークに接続されて前記基幹ネットワークに二箇所で接続された機器ネットワークと、
     を備え、
     前記他方端の機器は、前記一方端の機器を経由して前記基幹ネットワークと通信できる場合は、前記基幹ネットワークと直接接続されたポートによる通信を遮断し、前記一方端の機器を経由した前記基幹ネットワークとの通信不良を検知した場合には、当該ポートを介した通信を開始することを特徴とするネットワークシステム。
  2.  前記基幹ネットワークには、前記複数個の機器の状態を監視するために各機器と定期的に通信をする管理装置が含まれており、
     前記他方端の機器は、前記一方端の機器を経由して前記管理装置と通信できる場合は、前記基幹ネットワークと直接接続されたポートによる通信を遮断し、前記一方端の機器を経由した前記管理装置との通信不良を検知した場合には、当該ポートを介した通信を開始することを特徴とする請求項1に記載のネットワークシステム。
  3.  前記他方端の機器は、起動時には、前記基幹ネットワークと直接接続されたポートによる通信を遮断した状態にあり、前記一方端の機器を経由した前記管理装置との通信不良を検知したときに、当該ポートを介した通信を開始することを特徴とする請求項2に記載のネットワークシステム。
  4.  前記他方端の機器では、前記制御処理部が前記スイッチ部にポートVLANの機能を設定することにより前記基幹ネットワークに直接接続されたポートを介した通信を遮断し、前記ポートVLANの機能を解除することにより当該ポートを介した通信を開始することを特徴とする請求項2に記載のネットワークシステム。
  5.  前記基幹ネットワーク及び前記機器ネットワークは列車内に設けられていることを特徴とする請求項3に記載のネットワークシステム。
  6.  前記基幹ネットワークは、列車の車両間にわたって設けられており、
     前記機器ネットワークは、各車両にそれぞれ設けられていること
    を特徴とする請求項5に記載のネットワークシステム。
  7.  前記管理装置は、列車情報管理装置であることを特徴とする請求項6に記載のネットワークシステム。
  8.  前記機器は、表示器であることを特徴とする請求項7に記載のネットワークシステム。
PCT/JP2011/068980 2011-08-23 2011-08-23 ネットワークシステム WO2013027269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068980 WO2013027269A1 (ja) 2011-08-23 2011-08-23 ネットワークシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068980 WO2013027269A1 (ja) 2011-08-23 2011-08-23 ネットワークシステム

Publications (1)

Publication Number Publication Date
WO2013027269A1 true WO2013027269A1 (ja) 2013-02-28

Family

ID=47746051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068980 WO2013027269A1 (ja) 2011-08-23 2011-08-23 ネットワークシステム

Country Status (1)

Country Link
WO (1) WO2013027269A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133687A (ja) * 2013-11-22 2015-07-23 三星電子株式会社Samsung Electronics Co.,Ltd. 機器制御システム及び冷蔵庫
JP2016178634A (ja) * 2015-03-20 2016-10-06 株式会社デンソー 中継装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08265319A (ja) * 1995-03-20 1996-10-11 Nec Telecom Syst Ltd 二重化監視制御システム
JP2002190808A (ja) * 2000-12-21 2002-07-05 Tokyo Electric Power Co Inc:The ループ状ケーブルを用いた無線lanシステム
JP2005333505A (ja) * 2004-05-21 2005-12-02 Mitsubishi Electric Corp 二重ループ型ネットワークシステム
JP2010206757A (ja) * 2009-03-06 2010-09-16 Yamatake Corp ノードおよびネットワーク制御方法
JP4790088B2 (ja) * 2009-01-28 2011-10-12 三菱電機株式会社 Ipアドレス配信装置およびipアドレス配信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08265319A (ja) * 1995-03-20 1996-10-11 Nec Telecom Syst Ltd 二重化監視制御システム
JP2002190808A (ja) * 2000-12-21 2002-07-05 Tokyo Electric Power Co Inc:The ループ状ケーブルを用いた無線lanシステム
JP2005333505A (ja) * 2004-05-21 2005-12-02 Mitsubishi Electric Corp 二重ループ型ネットワークシステム
JP4790088B2 (ja) * 2009-01-28 2011-10-12 三菱電機株式会社 Ipアドレス配信装置およびipアドレス配信方法
JP2010206757A (ja) * 2009-03-06 2010-09-16 Yamatake Corp ノードおよびネットワーク制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133687A (ja) * 2013-11-22 2015-07-23 三星電子株式会社Samsung Electronics Co.,Ltd. 機器制御システム及び冷蔵庫
JP2016178634A (ja) * 2015-03-20 2016-10-06 株式会社デンソー 中継装置

Similar Documents

Publication Publication Date Title
US9917725B2 (en) Automotive neural network
JP4877482B2 (ja) PCIExpressリンク、マルチホストコンピュータシステム、およびPCIExpressリンクの再構成方法
CN102123081B (zh) 用于通信网络的网络节点
US10700889B2 (en) Ring network for a vehicle
JP5106706B1 (ja) ネットワークシステム
WO2018233644A1 (zh) 基于CANopen协议传输数据的网关轮换方法、系统及其装置
WO2013027269A1 (ja) ネットワークシステム
CN110768880A (zh) 以太网网络节点、故障处理方法、计算机设备及存储介质
JP5866056B2 (ja) ネットワークシステム
JP2006197114A (ja) 情報伝送システム、鉄道車両用情報伝送システム及び車両用情報伝送端末装置
JP4339067B2 (ja) 鉄道車両用通信装置
JP6138282B2 (ja) 通信装置、列車ネットワークシステムおよびネットワーク設定方法
JP2008227558A (ja) ネットワークアダプタ、通信端末、通信経路分配方法およびそのプログラム
JPWO2013027269A1 (ja) ネットワークシステム
JP4511455B2 (ja) ファイバーチャネルスイッチおよびそれを用いたコンピュータシステム
TWI423638B (zh) 通訊系統、測試裝置、通訊裝置、通訊方法以及測試方法
JP2009065412A (ja) 車載用通信システム
JP2017103588A (ja) 鉄道車両用情報伝送装置
JP4034619B2 (ja) 鉄道車両用伝送システム
JP7257922B2 (ja) 車両情報制御システム
JP7150334B2 (ja) 集合型シャーシシステム及び通信システム
JP5138492B2 (ja) 情報処理装置および情報処理方法
JP2012235477A (ja) ネットワーク管理装置、ネットワーク管理システム及び通信機器
JP2009089227A (ja) 通信システムおよび通信装置
JP2005102336A (ja) 車両用多重伝送装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012501497

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871205

Country of ref document: EP

Kind code of ref document: A1