WO2013024868A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2013024868A1
WO2013024868A1 PCT/JP2012/070748 JP2012070748W WO2013024868A1 WO 2013024868 A1 WO2013024868 A1 WO 2013024868A1 JP 2012070748 W JP2012070748 W JP 2012070748W WO 2013024868 A1 WO2013024868 A1 WO 2013024868A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
engine
hydraulic
value
travel
Prior art date
Application number
PCT/JP2012/070748
Other languages
English (en)
French (fr)
Inventor
秀一 森木
金子 悟
伊君 高志
徳孝 伊藤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201280039589.5A priority Critical patent/CN103732466B/zh
Priority to US14/237,014 priority patent/US9249557B2/en
Priority to EP12824024.9A priority patent/EP2746124B1/en
Publication of WO2013024868A1 publication Critical patent/WO2013024868A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • B60W30/1888Control of power take off [PTO]
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0841Articulated frame, i.e. having at least one pivot point between two travelling gear units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0666Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/09Other types of propulsion units, e.g. fluid motors, or type not specified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a work vehicle, and more particularly to power distribution during combined operation.
  • an engine In a conventional work vehicle, an engine, a hydraulic pump mechanically connected to the output shaft of the engine, a hydraulic actuator operated by hydraulic oil supplied from the hydraulic pump, and a mechanically connected to the output shaft of the engine
  • a wheel loader hereinafter referred to as a torque converter vehicle
  • the engine power is transmitted to the tires via an automatic transmission, a propeller shaft, a differential gear, and a drive shaft to travel.
  • the front mechanism is operated by expansion and contraction of the hydraulic actuator, and excavation, loading, and transportation of soil and the like are performed with the bucket.
  • the consumption power of the hydraulic pump increases during running, and the engine speed decreases when the engine power is insufficient.
  • the power (load power applied by the torque converter to the engine) is automatically reduced. Therefore, the engine power (supply power) and the total power (consumption power) of the hydraulic pump and the torque converter are balanced at an engine operating point.
  • the torque consumption of the torque converter decreases at this time, so the driving power also decreases.However, in the transient state where the engine speed changes, the rotational energy of the engine output shaft acts as a buffer, and the driving power suddenly decreases. Avoided.
  • an engine a hydraulic pump mechanically connected to the output shaft of the engine, a hydraulic actuator operated by hydraulic oil supplied from the hydraulic pump, and a power generation mechanically connected to the output shaft of the engine
  • a hybrid construction machine including an electric motor, an electric motor that operates with electric power supplied from a generator motor, and a power storage device that receives electric power from the electric motor and the electric motor.
  • Such a hybrid construction machine is configured as a 2-input 2-output system in which power supplied from the engine and the power storage device is consumed by a hydraulic pump and an electric motor. Therefore, the power control means for controlling the distribution of the power supplied from the engine and the power storage device and the distribution of the power consumption between the hydraulic pump and the electric motor is an important factor that determines the fuel consumption performance and the operation performance.
  • the power consumption of each of the hydraulic pump and the motor (hereinafter referred to as power consumption) is detected, and the sum of the detected power consumption is A hybrid construction machine is described that controls the power of a hydraulic pump and an electric motor so as not to exceed the total supply power that can be supplied from the power storage device (hereinafter, referred to as total supply power).
  • Japanese Patent Laid-Open No. 2009-216058 discloses that an engine output power increase rate (hereinafter referred to as an increase speed) is set to a predetermined value for the purpose of properly maintaining engine operating conditions. Control means for controlling the engine output power upper limit value determined from the speed so that the required power of the hydraulic pump does not exceed (specifically, the excess power is supplemented by the output power of the generator motor) is described. Yes.
  • JP 2007-247230 A Japanese Unexamined Patent Publication No. 2009-216058
  • the hybrid construction machine described in Japanese Patent Application Laid-Open No. 2007-247230 does not necessarily sufficiently consider the changing speed of the supplied power and the consumed power, and either the hydraulic pump or the electric motor operates first.
  • the power of the first operating power may decrease rapidly. If this is applied to the wheel loader, when the hydraulic actuator is operated during traveling, there is a possibility that a sudden decrease in traveling power, which is not possible with the conventional hall loader, may occur, which deteriorates the ride comfort. There was a possibility.
  • An object of the present invention is to provide a work vehicle that can suppress deterioration in riding comfort due to power distribution to a hydraulic pump and an electric motor.
  • the present invention provides an engine, a hydraulic pump mechanically connected to the engine, a generator motor mechanically connected to the engine, and an electrical connection to the generator motor.
  • a working vehicle comprising: a traveling motor; a power storage device electrically connected to the generator motor; and the traveling motor; a control unit configured to control power of the hydraulic pump and the traveling motor; The hydraulic power required by the hydraulic pump and the travel required power required by the traveling motor are calculated, and the engine power that can be output by the engine and the power storage are calculated as the sum of the hydraulic required power and the travel required power.
  • the apparatus is larger than the total discharge power that can be discharged, the actual power of the hydraulic pump is changed from the requested value toward the hydraulic required power. While increasing a predetermined limit, while applying the predetermined limit to the power of the hydraulic pump, the actual power of the traveling motor is decreased from the requested value by a value equal to or less than the predetermined limit.
  • the block diagram of the work vehicle concerning embodiment of this invention. 1 is a side view of a work vehicle according to an embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a work vehicle according to an embodiment of the present invention.
  • the work vehicle shown in this figure includes a main controller (main control device) 100, an engine 1, an engine controller (engine control device) 2 that controls the engine 1, a capacitor 3 as a power storage device, and charging and discharging of the capacitor 3.
  • Converter 4 for controlling the motor, generator motor 5 mechanically connected to engine 1 and electrically connected to capacitor 3, generator inverter 6 for driving generator motor 5, generator motor 5 and capacitor 3
  • travel inverters 7 and 7b that are powered by the electric power supplied from the generator motor 5 and the capacitor 3 and travel inverters 8 and 8b that drive and control the travel motors 7 and 7b, respectively.
  • the work vehicle includes a main pump (hydraulic pump) 9 mechanically connected to the engine 1 and the generator motor 5, an oil tank 10 that supplies hydraulic oil to the main pump 9, and a main pump.
  • a control valve 11 that distributes the hydraulic oil discharged by the control valve 9, a steer cylinder (hydraulic cylinder) 12, a lift cylinder (hydraulic cylinder) 13, and a bucket cylinder (hydraulic cylinder) 14 that expand and contract by the hydraulic oil distributed by the control valve 11. I have.
  • the converter 4, the power generation inverter 6, and the traveling inverters 8 and 8b are connected to the same power line and can supply power to each other.
  • the converter 4 monitors the DC voltage of a smoothing capacitor (not shown) attached to the power line, and charges and discharges the capacitor 3 so as to keep the DC voltage of the smoothing capacitor constant.
  • the main pump 9 is a variable displacement hydraulic pump, and by adjusting the tilt angle by a tilt angle control valve (not shown), the capacity can be changed and the discharge flow rate with respect to the rotation speed can be controlled.
  • the traveling inverter 8 power-drives the traveling motor 7, and the powering torque generated by the traveling motor 7 is transmitted through the propeller shafts 15f, 15r, the differential gears 16f, 16r, and the drive shafts 17a, 17b, 17c, 17d. Are transmitted to the tires 18a, 18b, 18c, and 18d to accelerate the vehicle.
  • the traveling inverter 8 drives the traveling motor 7 as a generator, and the regenerative torque generated by the traveling motor 7 is transmitted to the tires 18a, 18b, 18c, 18d in the same manner as the power running torque, and the vehicle is decelerated. Let The regenerative power generated by the traveling motor 7 is normally charged into the capacitor 3.
  • the work vehicle according to the present embodiment includes a hydraulic brake control valve and a hydraulic brake (not shown), and the vehicle can be decelerated by the hydraulic brake as necessary.
  • FIG. 2 shows a side view of the work vehicle according to the embodiment of the present invention.
  • An operator can board the cab 19 and operate an accelerator pedal, a brake pedal, and a forward / reverse switch (not shown) to drive the tires 18a, 18b, 18c, and 18d to run the vehicle.
  • the operator can turn the vehicle by operating a steering wheel (not shown) to expand and contract the steering cylinder 12 to adjust the refraction angle of the vehicle.
  • a lift lever, bucket lever, etc. (not shown)
  • the lift cylinder 13 and the bucket cylinder 14 can be expanded and contracted to control the height and inclination of the bucket 20, and excavation and cargo handling operations can be performed.
  • the configuration of the main controller (main control device) 100 is shown in FIG.
  • the main controller 100 includes a power storage management unit 110, a hydraulic pressure request calculation unit 120, a travel request calculation unit 130, a power management unit 140, an engine control unit 150, a generator motor control unit 160, a tilt angle control unit 170, a travel motor / brake control.
  • the unit 180 is configured.
  • the power storage management unit 110 receives the stored voltage of the capacitor 3 from the converter 4 and calculates the charge / discharge required power P wr_Cap_Req so that the stored voltage matches the target voltage using known PI control. However, the target voltage is set below the withstand voltage of the capacitor. In addition, the power storage management unit 110 calculates the upper limit value (discharge power upper limit) of the discharge power that the capacitor 3 can discharge using the stored voltage and the discharge power upper limit map.
  • FIG. V cmin An example of the discharge power upper limit map is shown in FIG. V cmin, V cmax minimum voltage representative of the hard use range, each capacitor 3 deteriorates, the highest voltage during normal operation so that the stored voltage is not less than the minimum voltage V cmin, discharge power upper limit in the vicinity of the minimum voltage V cmin
  • the discharge power upper limit map is set so as to be 0 or less.
  • I cmax is a line based on the maximum current limit of the converter 4, and the discharge power upper limit map is set so that the discharge power upper limit becomes smaller as the stored voltage is lower so that the discharge current does not exceed the maximum current limit.
  • the discharge signal (pump pressure) of the pump 9 acquired by the pressure sensor (pressure acquisition means) 31 attached between the hydraulic pump 9 and the control valve 11 is obtained from the lift lever and the bucket lever. Signal), and the pump required flow rate and hydraulic pressure required power are calculated.
  • the operation of the steering wheel and the operation of the steering cylinder 12 are not included in the calculation.
  • the hydraulic pressure request calculation unit 120 first calculates the pump request flow rate from the lever signal using the pump request flow rate map.
  • An example of the pump request flow map is shown in FIG. As shown in this figure, the pump request flow map is set so that the pump request flow is substantially proportional to the lever signal.
  • the hydraulic pressure required power P wr_Pmp_Req is calculated from the pump required flow rate q Pmp_Req and the pump pressure P rs_Pmp from the pressure sensor 31 using the following equation.
  • the efficiency of the hydraulic pump 9 is not included in the calculation formula, and the following calculation formulas are similarly described with the efficiency omitted.
  • the forward / backward switch signal from the forward / reverse switch, the accelerator signal from the accelerator pedal, the brake signal from the brake pedal, and the rotational speed of the traveling motor 7 from the inverter (rotational speed acquisition means) 8 are converted into the motor rotational speed. And the travel request torque and the travel request power are calculated.
  • the accelerator request torque is calculated using an accelerator request torque map set in advance from the accelerator signal and the motor rotation speed. An example of the accelerator required torque map is shown in FIG. Based on the maximum torque curve of the traveling motor 7, the accelerator required torque map is set so that the accelerator required torque is proportional to the accelerator signal and inversely proportional to the absolute value of the motor rotation speed.
  • the required travel torque T rq_Drv_Req is calculated from the accelerator required torque T rq_Acc , the forward / reverse switch signal V FNR , the motor rotation speed N Mtr , and the brake signal V Brk using the following equation.
  • V FNR indicates 1 when the forward / reverse switch is in the forward direction, -1 when the reverse switch is in the forward direction, and 0 when it is neutral.
  • K Brk is a proportional constant, and is set in advance so as to obtain a deceleration with no excess or deficiency by operating the brake pedal.
  • the required travel power P wr_Drv_Req is calculated from the required travel torque T rq_Req and the motor rotation speed N Mtr using the following equation.
  • the power management unit 140 generates the charge / discharge request power and the discharge power upper limit from the power storage management unit 110, the hydraulic request power from the hydraulic request calculation unit 120, the travel request power from the travel request calculation unit 130, and the generator motor control unit 160 to generate power.
  • the power estimation value is received, and a hydraulic power command, a traveling power command, a generated power command, and an engine power command are calculated. Details of the calculation performed by the power management unit 140 will be described later.
  • the engine control unit 150 calculates an operating point at which the engine efficiency is highest using an engine fuel efficiency map based on the engine power command, and calculates the engine speed at the operating point as the engine speed command.
  • the generator motor control unit 160 calculates a generator motor torque command T rq_Gen_t from the engine speed N Eng , the generated power command P wr_Gen_Ref , and the engine speed command N Eng_t using the following equation, and transmits it to the generator inverter.
  • K Eng is a proportional gain with respect to the deviation of the engine speed.
  • the sign of the power generation power command P wr_Gen_Ref indicates positive power generation of the generator motor 5 and negative power running of the generator motor 5.
  • a power generation estimated value is calculated from the engine speed N Eng and the generator motor torque command T rq_Gen_t using the following equation.
  • the tilt angle control unit 170 calculates the tilt angle control signal V Dp_t using the engine speed N Eng , the hydraulic power command P wr_Pmp_Ref , and the pump pressure P rs_Pmp, and uses the tilt angle control signal V Dp_t to generate the hydraulic pressure.
  • the tilt angle control valve of the pump 9 is driven.
  • K Dp in the following equation is a proportionality constant
  • the pump pressure P rs_Pmp is a value input from the pressure sensor 31.
  • the tilt angle control signal V Dp_t decreases as the pump pressure Prs_Pmp increases when the engine speed N Eng and the hydraulic power command P wr_Pmp_Ref are constant.
  • the capacity of the hydraulic pump 9 is controlled to be smaller as the pump pressure Prs_Pmp is higher.
  • the traveling motor / brake control unit 180 calculates a traveling motor torque command T rq_Mtr_t and transmits it to the traveling inverter 8.
  • the travel motor torque command T rq_Mtr_t is calculated from the travel power command P wr_Drv_Ref , the travel request power P wr_Drv_Req , and the travel request torque Trq_Drv_Req using the following equation.
  • R D is the reduction ratio of the differential gear 16.
  • a brake control signal V Brk_t is calculated from the motor rotation speed N Mtr , the travel request torque T rq_Drv_Req , and the travel torque command T rq_Mtr_t using the following equation, and a hydraulic brake control valve (not shown) is driven.
  • K Brk in the following equation is a proportionality constant.
  • the configuration of the power management unit 140 is shown in FIG.
  • the power management unit 140 includes an engine maximum power calculation unit 141, a hydraulic power command calculation unit 142, a travel power command calculation unit 143, a power generation power command calculation unit 144, and an engine power command calculation unit 145.
  • the engine maximum power calculation unit 141 is a part that calculates the maximum power (engine maximum power) that the engine 1 can output.
  • the engine maximum power estimated value P wr_Eng_Max calculated by applying a known low-pass filter to the engine power command P wr_Eng_Ref is used as the engine maximum power.
  • the engine power command P wr_Eng_Ref used in the calculation uses a value calculated by the engine power command calculation unit 145 one control cycle before.
  • the time constant of the low-pass filter is set according to the response characteristic of the engine.
  • the engine maximum power estimated value P wr_Eng_Max may be calculated from the engine power command P wr_Eng_Ref and the engine maximum power estimated value P wr_Eng_Max before one control cycle by using the following equation.
  • the engine maximum power estimated value P wr_Eng_Max on the right side is also a value before one control cycle.
  • DP wr_Eng_Up indicates a maximum value (engine power increase maximum value) at which the engine power increases during one control cycle.
  • hydraulic power command calculator 142 calculates the hydraulic power command P Wr_Pmp_Ref from the travel power command P wr_Drv_Ref. Details of the calculation performed by the hydraulic power command calculation unit 142 will be described later.
  • traveling power command calculator 143 the engine maximum power estimates P Wr_Eng_Max, discharge power limit P Wr_Cap_Max, from the hydraulic power command P Wr_Pmp_Ref, computes the running power limit P Wr_Drv_Max using the following equation.
  • the traveling power upper limit P wr_Drv_Max may be calculated from the generated power estimated value P wr_Gen and the discharge power upper limit P wr_Cap_Max using the following equation.
  • the smaller one of the travel request power P wr_Drv_Req and the travel power upper limit P wr_Drv_Max is the travel power command P wr_Drv_Ref .
  • the calculated travel power command P wr_Drv_Ref is output to the travel motor / brake control unit 180.
  • the drive power demand P Wr_Drv_Req from the charge-discharge power demand P Wr_Cap_Req, computes the generated power command P Wr_Gen_Ref using the following equation.
  • the charge / discharge required power P wr_Cap_Req represents a discharge positive and a negative charge.
  • the power generation power command P Wr_Gen_Ref from the hydraulic power demand P Wr_Pmp_Req, calculates the engine power command P Wr_Eng_Ref using the following equation.
  • step 1421 running power running determination is performed.
  • step 1421 if the required travel power P wr_Drv_Req (see the above equation (3)) is a positive value, it is determined that the running power is running, and the process proceeds to step 1422. Then go to step 1424.
  • a traveling power lower limit P wr_Drv_Min that is a lower limit value of the actual power (traveling power) of the traveling motor 7 is calculated.
  • the travel power lower limit P wr_Drv_Min is calculated from the travel request power P wr_Drv_Req and the travel power command P wr_Drv_Ref using the following equation. That is, in the present embodiment, the value obtained by subtracting the travel power change amount limit value dP wr_Drv_Dwn from the travel power command P wr_Drv_Ref before one control cycle is compared with the travel request power P wr_Drv_Req, and the smaller value is compared with the travel power.
  • the travel power command P wr_Drv_Ref is a value calculated by the travel power command calculation unit 143 one control cycle before
  • dP wr_Drv_Dwn is a value (travel power change amount) by which the travel power command decreases during one control cycle.
  • Limit value is a value obtained by multiplying a limit value (travel power change speed limit value (Vm)) set to a decrease speed of travel power by a unit control cycle (ie, travel power change amount limit value).
  • the travel power lower limit P wr_Drv_Min in the present embodiment is reduced by the travel power change amount limit value dP wr_Drv_Dwn from the travel power command one control cycle before except when the travel request power is greatly decreased. That is, the traveling power lower limit P wr_Drv_Min decreases by the traveling power change amount limit value dP wr_Drv_Dwn every control cycle.
  • the process proceeds to step 1423.
  • step 1423 the generated power lower limit P wr_Gen_Min is calculated.
  • the power generation power lower limit P wr_Gen_Min is calculated from the traveling power lower limit P wr_Drv_Min and the discharge power upper limit P wr_Cap_Max using the following equation.
  • the process proceeds to step 1424.
  • a hydraulic power upper limit P wr_Pmp_Max which is an upper limit value of the actual power (hydraulic power) of the hydraulic pump 9 is calculated.
  • the hydraulic power upper limit P wr_Pmp_Max is calculated from the engine maximum power estimated value P wr_Eng_Max and the generated power lower limit P wr_Gen_Min using the following equation. That is, the hydraulic power upper limit P wr_Pmp_Max is obtained by subtracting the generated power lower limit P wr_Gen_Min from the engine maximum power estimated value P wr_Eng_Max .
  • step 1424 since the generated power limit P Wr_Gen_Min is not calculated, calculates the generated power limit P Wr_Gen_Min 0 .
  • the hydraulic power command P wr_Pmp_Ref is calculated.
  • the hydraulic power command P wr_Pmp_Ref is calculated from the following equation using the hydraulic required power P wr_Pmp_Req and the hydraulic power upper limit P wr_Pmp_Max . That is, the smaller of the hydraulic power demand P Wr_Pmp_Req and hydraulic power limit P Wr_Pmp_Max is selected as a hydraulic power command P wr_Pmp_Ref.
  • the above formulas (16) to (18) are summarized as the following formula, and the sum of the engine maximum power estimated value Pwr_Eng_Max and the discharge power upper limit Pwr_Cap_Max It can be seen that the hydraulic power upper limit P wr_Pmp_Max is calculated by subtracting the travel power command P wr_Drv_Ref one control cycle before from the value and adding the travel power change amount limit value dP wr_Drv_Dwn .
  • the hydraulic power command P wr_Pmp_Ref (that is, the hydraulic power upper limit P wr_Pmp_Max (see equation (19))) at this time increases by the travel power change amount limit value dP wr_Drv_Dwn every control cycle.
  • the travel power command P wr_Drv_Ref (that is, the travel power upper limit P wr_Drv_Max (see formula (13))) is calculated from the above formula (11) based on the sum of the engine maximum power estimated value P wr_Eng_Max and the discharge power upper limit P wr_Cap_Max. Since a value obtained by subtracting the power command P wr_Pmp_Ref is assigned, the value is reduced by the traveling power change amount limit value dP wr_Drv_Dwn every control cycle.
  • the running power change amount limit value dP wr_Drv_Dwn By adjusting the pressure and gradually decreasing the traveling power while gradually increasing the hydraulic power, it is possible to prevent the operator from feeling uncomfortable.
  • the travel power change amount limit value coincides with the travel power change amount when the same operation is performed on the torque converter vehicle (conventional vehicle).
  • FIG. 9A is an example (comparative example) in which the change speed (decrease speed) of travel power is not considered (the present invention is not applied), and FIG. It is an example of the case of applying.
  • the travel required power, the discharge power upper limit, and the maximum value (Ve) of the engine power increase speed are constant.
  • the actual traveling power gradually decreases from the requested value.
  • the magnitude of the traveling power gradient at this time coincides with the traveling power change speed limit value Vm. Therefore, according to the present embodiment, it is possible to avoid a drastic decrease in traveling power due to lever operation during traveling, and thus it is possible to suppress deterioration in ride comfort of the operator in such a case.
  • the discharge power upper limit P wr_Cap_Max is added to the hydraulic power command P wr_Pmp_Ref (hydraulic power upper limit P wr_Pmp_Max ) as shown in Expression (20), and the hydraulic power is increased by the discharge power upper limit. Since it increases quickly, the response of hydraulic power can be made as fast as possible.
  • the hydraulic power demand rapidly decreases, which may adversely affect the ride operator rapidly increasing the running power, as shown in Figure 9A.
  • the upper limit value is set when the traveling power is increased as in the case where the traveling power is already decreased. Therefore, as shown in FIG. 9B, the time T 3 thereafter can be gradually increased traveling power until the drive power demand. It goes without saying that the speed of increase in travel power may be limited by applying a limit value to the decrease speed of hydraulic power.
  • the traveling power is increased at the speed of the total value of the engine power increase speed maximum value (Ve) and the travel power change speed limit value (Vm) has been described.
  • the hydraulic power may be increased.
  • the traveling power is decreased at the speed of the traveling power change speed limit value (Vm) has been described above, but the traveling power may be decreased at a speed equal to or less than the limit value.
  • the hydraulic power command is increased by a set value (travel power change amount limit value dP wr_Drv_Dwn ) for each control cycle, and only the set value is set.
  • dP wr_Drv_Dwn set value
  • other predetermined restrictions may be applied when the hydraulic power command is increased and when the travel power command is decreased.
  • Other ways of applying this type of restriction include defining the magnitude of the travel power change limit value according to the elapsed time from the start of the increase in hydraulic power, or the deviation between the required hydraulic power and the actual power. Some of them define the magnitude of the travel power variation limit value accordingly.
  • the same set value (travel power change amount limit value dP wr_Drv_Dwn ) is used to increase the hydraulic power command and decrease the travel power command.
  • "" Is equal to "the magnitude of the decrease in travel power command”.
  • the “magnification of decrease in travel power” is smaller than the “magnification of increase in hydraulic power command”, the balance of power balance is maintained, so that the ride quality deteriorates as in this embodiment.
  • the suppression effect can be demonstrated. That is, the magnitude of the decrease in the travel power command may be equal to or less than the magnitude of the increase in the hydraulic power command.
  • the present invention is not limited to this, and a battery or the like may be applied as the power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 油圧要求パワーと走行要求パワーの合計値が、エンジン(1)が出力可能なエンジンパワーと蓄電装置(3)が放電可能な放電パワーの合計よりも大きいとき、油圧ポンプ(9)の実際のパワーを要求時の値から油圧要求パワーに向かって所定の制限をかけながら増加させるとともに、油圧ポンプのパワーに当該所定の制限をかける間、当該所定の制限の大きさ以下の値だけ走行電動機の実際のパワーを要求時の値から減少させる。これにより油圧ポンプと走行電動機へのパワー配分に起因する乗り心地悪化が防止される。

Description

作業車両
 本発明は、作業車両に関し、特に複合動作時のパワー配分に関する。
 従来の作業車両には、エンジンと、エンジンの出力軸に機械的に連結された油圧ポンプと、油圧ポンプから供給される作動油によって動作する油圧アクチュエータと、エンジンの出力軸に機械的に連結されたトルクコンバータ(以下、トルコンと称することがある)式の自動変速機を備えたホイールローダ(以下、トルコン車と記載する)がある。トルコン車では、エンジンパワーを、自動変速機、プロペラシャフト、ディファレンシャルギア、ドライブシャフトを介してタイヤに伝えて走行を行う。また、油圧アクチュエータの伸縮によってフロント機構を動作させ、バケットで土砂などの掘削、積込みおよび運搬を行う。
 トルコン車においては、走行中に油圧ポンプの消費パワー(油圧ポンプがエンジンにかける負荷のパワー)が増加し、エンジンパワーが不足する場合、エンジン回転数が減少するため、トルコンの特性によりトルコンの消費パワー(トルコンがエンジンにかける負荷のパワー)が自動的に減少する。そのため、エンジンのパワー(供給パワー)と、油圧ポンプとトルコンの合計パワー(消費パワー)があるエンジン動作点においてバランスする。また、このときトルコンの消費パワーが減少するので、走行パワーも減少するが、エンジン回転数が変化する過渡状態において、エンジンの出力軸の回転エネルギーがバッファとして作用し、走行パワーの急激な減少が回避される。
 一方、近年では、エンジンと、エンジンの出力軸に機械的に連結された油圧ポンプと、油圧ポンプから供給される作動油によって動作する油圧アクチュエータと、エンジンの出力軸に機械的に連結された発電電動機と、発電電動機から供給される電力によって動作する電動機と、発電電動機および電動機と電力の供受を行う蓄電装置を備えるハイブリッド建設機械が提案されている。このようなハイブリッド建設機械は、エンジンおよび蓄電装置から供給されるパワーを、油圧ポンプおよび電動機で消費する2入力2出力のシステムとして構成されている。そのため、エンジンと蓄電装置とからの供給パワーの配分と、油圧ポンプと電動機との消費パワーの配分を制御するパワー制御手段が、燃費性能および操作性能を決める重要な要素となる。
 特開2007-247230号公報には、パワー不足の防止を目的として、油圧ポンプおよび電動機それぞれの消費動力(以下、消費パワーと記載する)を検出し、検出された消費パワーの和が、エンジンと蓄電装置とから供給可能な総供給動力(以下、合計供給パワーと記載する)を超えないように、油圧ポンプおよび電動機のパワーを制御するハイブリッド建設機械が記載されている。
 また、特開2009-216058号公報には、エンジンの運転条件を適正に維持することを目的として、エンジンの出力パワーの増加率(以下、増加速度と記載する)を所定値に設定し、増加速度から求められるエンジンの出力パワー上限値を、油圧ポンプの要求パワーが超えないように制御する(具体的には、超えた分のパワーを発電電動機の出力パワーで補う)制御手段が記載されている。
特開2007-247230号公報 特開2009-216058号公報
 しかしながら、特開2007-247230号公報に記載されているハイブリッド建設機械では、供給パワーおよび消費パワーの変化速度を必ずしも十分に考慮しておらず、油圧ポンプと電動機のいずれか一方が先に動作している時に、もう一方の消費パワーが増加して合計供給パワーが不足する場合に、先に動作していた一方のパワーが急激に減少する可能性があった。これをホイールローダに当てはめて考えると、走行中に油圧アクチュエータを動作させた場合に、従来のホールローダにはない急激な走行パワーの減少が発生する可能性があり、これにより乗り心地が悪化する可能性があった。
 また、特開2009-216058号公報に記載されている制御手段を備えたハイブリッド建設機械では、発電電動機を主にエンジンアシスト用の電動機として用いるシーンについて記述しており、油圧ポンプと電動機との複合動作のシーンについて必ずしも十分な記述はなかった。
 本発明の目的は、油圧ポンプと電動機とへのパワー配分に起因する乗り心地悪化を抑制できる作業車両を提供することである。
 本発明は、上記目的を達成するために、エンジンと、当該エンジンに機械的に接続された油圧ポンプと、前記エンジンに機械的に接続された発電電動機と、当該発電電動機に電気的に接続された走行電動機と、前記発電電動機及び前記走行電動機に電気的に接続された蓄電装置と、前記油圧ポンプ及び前記走行電動機のパワーを制御する制御手段を備えた作業車両であって、前記制御手段は、前記油圧ポンプが要求する油圧要求パワー、及び前記走行電動機が要求する走行要求パワーを演算し、当該油圧要求パワーと当該走行要求パワーの合計値が、前記エンジンが出力可能なエンジンパワーと前記蓄電装置が放電可能な放電パワーの合計よりも大きいとき、前記油圧ポンプの実際のパワーを要求時の値から前記油圧要求パワーに向かって所定の制限をかけながら増加させるとともに、前記油圧ポンプのパワーに当該所定の制限をかける間、当該所定の制限の大きさ以下の値だけ前記走行電動機の実際のパワーを要求時の値から減少させるものとする。
 本発明によれば、油圧ポンプと走行電動機とへのパワー配分に起因する乗り心地悪化を防止できる。
本発明の実施の形態にかかる作業車両の構成図。 本発明の実施の形態にかかる作業車両の側面図。 本発明の実施の形態にかかるメインコントローラ100の構成図。 本発明の実施の形態にかかる放電パワー上限マップの一例。 本発明の実施の形態にかかるポンプ要求流量マップの一例。 本発明の実施の形態にかかるアクセル要求トルクマップの一例。 本発明の実施の形態にかかるパワー管理部140の構成図。 本発明の実施の形態にかかる油圧パワー指令演算部142で行う演算のフローチャート。 本発明の実施の形態の比較例にかかる作業車両の動作を説明するための図。 本発明の実施の形態にかかる作業車両の動作を説明するための図。
 以下、本発明の実施の形態について図面を用いて説明する。図1は、本発明の実施の形態にかかる作業車両の構成図である。
 この図に示す作業車両は、メインコントローラ(主制御装置)100と、エンジン1と、エンジン1を制御するエンジンコントローラ(エンジン制御装置)2と、蓄電装置としてのキャパシタ3と、キャパシタ3の充放電を制御するコンバータ4と、エンジン1に機械的に接続されるとともにキャパシタ3に電気的に接続された発電電動機5と、発電電動機5を駆動するための発電インバータ6と、発電電動機5およびキャパシタ3に電気的に接続され、発電電動機5およびキャパシタ3から供給される電力によって力行する走行電動機7、7bと、走行電動機7、7bをそれぞれ駆動制御する走行インバータ8、8bを備えている。
 また、本実施の形態にかかる作業車両は、エンジン1および発電電動機5に機械的に接続されたメインポンプ(油圧ポンプ)9と、メインポンプ9へ作動油を供給するオイルタンク10と、メインポンプ9が吐出した作動油を分配するコントロールバルブ11と、コントロールバルブ11が分配した作動油により伸縮するステアシリンダ(油圧シリンダ)12、リフトシリンダ(油圧シリンダ)13、およびバケットシリンダ(油圧シリンダ)14を備えている。
 ここで、コンバータ4、発電インバータ6、及び走行インバータ8、8bは同一の電力線に接続されており、相互に電力を供給可能である。また、コンバータ4は電力線に取り付けられた図示しない平滑コンデンサのDC電圧を監視しており、平滑コンデンサのDC電圧を一定に保つようにキャパシタ3を充放電する。
 メインポンプ9は可変容量型の油圧ポンプであり、図示しない傾転角制御弁によって傾転角を調整することで、容量を変えることができ、回転数に対する吐出流量を制御できる。
 また、ここでは、電動機7、7bおよび走行インバータ8、8bをそれぞれ2つずつ備える構成としているが、本発明はこれに限らず、電動機、走行インバータをそれぞれ1つずつ、または、4つずつ備える構成であってもよく、個数に関して限定しない。以下、説明の簡略化のため、電動機7および走行インバータ8を1つずつ備える構成について説明を行う。
 走行加速時において、走行インバータ8は走行電動機7を力行駆動し、走行電動機7が発生した力行トルクは、プロペラシャフト15f、15r、ディファレンシャルギア16f、16r、ドライブシャフト17a、17b、17c、17dを介してタイヤ18a、18b、18c、18dへと伝えられ、車両を加速させる。走行制動時において、走行インバータ8は走行電動機7を発電機として駆動し、走行電動機7が発生した回生トルクは、力行トルクと同様にタイヤ18a、18b、18c、18dへと伝えられ、車両を減速させる。走行電動機7で発生した回生電力は、通常、キャパシタ3へと充電される。また、本実施の形態にかかる作業車両は図示しない油圧ブレーキ制御弁および油圧ブレーキを備え、必要に応じて油圧ブレーキによって車両を減速させることもできる。
 本発明の実施の形態にかかる作業車両の側面図を図2に示す。オペレータは運転室19に搭乗し、図示しないアクセルペダル、ブレーキペダル、前後進スイッチを操作することで、タイヤ18a、18b、18c、18dを駆動して車両を走行させることができる。また、オペレータは、図示しないステアリングホイールを操作することで、ステアシリンダ12を伸縮させて車両の屈折角を調節し、車両を旋回させることができる。また、図示しないリフトレバー、バケットレバーなどを操作することで、リフトシリンダ13、バケットシリンダ14を伸縮させて、バケット20の高さと傾きを制御し、掘削および荷役作業を行うことができる。
 メインコントローラ(主制御装置)100の構成を図3に示す。メインコントローラ100は、蓄電管理部110、油圧要求演算部120、走行要求演算部130、パワー管理部140、エンジン制御部150、発電電動機制御部160、傾転角制御部170、走行電動機・ブレーキ制御部180で構成されている。
 蓄電管理部110では、コンバータ4からキャパシタ3の蓄電電圧を受信し、公知のPI制御を用いて、蓄電電圧が目標電圧に一致するように充放電要求パワーPwr_Cap_Reqを演算する。ただし、目標電圧はキャパシタの耐電圧以下に設定する。また、蓄電管理部110は、蓄電電圧と放電パワー上限マップを用いて、キャパシタ3が放電可能な放電パワーの上限値(放電パワー上限)を演算する。
 放電パワー上限マップの一例を図4に示す。Vcmin、Vcmaxはそれぞれキャパシタ3が劣化しにくい使用範囲を表す最低電圧、最高電圧で、通常運転時には蓄電電圧が最低電圧Vcminを下回らないように、放電パワー上限が最低電圧Vcmin付近で0以下となるように放電パワー上限マップを設定する。一方、Icmaxはコンバータ4の最大電流制限に基づいた線で、放電電流が最大電流制限を超えないように蓄電電圧が低いほど放電パワー上限が小さくなるように放電パワー上限マップを設定する。
 油圧要求演算部120では、リフトレバーおよびバケットレバーからレバー信号を、油圧ポンプ9とコントロールバルブ11の間に取り付けられた圧力センサ(圧力取得手段)31で取得されたポンプ9の吐出圧力(ポンプ圧力信号)を受信し、ポンプ要求流量および油圧要求パワーを演算する。なお、ここでは説明の簡略化のため、ステアリングホイールの操作およびステアシリンダ12の動作を演算に含めないものとして説明する。
 油圧要求演算部120では、まずレバー信号からポンプ要求流量マップを用いてポンプ要求流量を演算する。ポンプ要求流量マップの一例を図5に示す。この図に示すように、レバー信号にポンプ要求流量が略比例するようにポンプ要求流量マップを設定する。次に、ポンプ要求流量qPmp_Reqと、圧力センサ31からのポンプ圧Prs_Pmpとから次式を用いて油圧要求パワーPwr_Pmp_Reqを演算する。ただし、ここでは説明の簡略化のため、油圧ポンプ9の効率は計算式に含めておらず、以下の各計算式も同様に効率を省略して説明する。
Figure JPOXMLDOC01-appb-M000001
 走行要求演算部130では、前後進スイッチから前後進スイッチ信号を、アクセルペダルからアクセル信号を、ブレーキペダルからブレーキ信号を、インバータ(回転数取得手段)8から走行電動機7の回転数を電動機回転数として受信し、走行要求トルク、走行要求パワーを演算する。まず、アクセル信号、電動機回転数から予め設定したアクセル要求トルクマップを用いてアクセル要求トルクを演算する。アクセル要求トルクマップの一例を図6に示す。走行電動機7の最大トルクカーブを基に、アクセル要求トルクが、アクセル信号に比例し、電動機回転数の絶対値に反比例するようにアクセル要求トルクマップを設定する。次にアクセル要求トルクTrq_Acc、前後進スイッチ信号VFNR、電動機回転数NMtr、ブレーキ信号VBrkから、次式を用いて走行要求トルクTrq_Drv_Reqを演算する。
Figure JPOXMLDOC01-appb-M000002
 ただし、上記(2)式において、signは符号関数で、引数が正の場合は1を、負の場合は-1を、0の場合は0を返す。また、前後進スイッチ信号VFNRは、前後進スイッチが前進方向の場合は1、後進方向の場合は-1、中立の場合は0を示す。また、KBrkは比例定数であり、ブレーキペダルの操作によって過不足のない減速が得られるように予め設定する。
 そして、走行要求トルクTrq_Req、電動機回転数NMtrから、次式を用いて走行要求パワーPwr_Drv_Reqを演算する。
Figure JPOXMLDOC01-appb-M000003
 パワー管理部140では、蓄電管理部110から充放電要求パワー、放電パワー上限を、油圧要求演算部120から油圧要求パワーを、走行要求演算部130から走行要求パワーを、発電電動機制御部160から発電パワー推定値を受信し、油圧パワー指令、走行パワー指令、発電パワー指令、エンジンパワー指令を演算する。パワー管理部140で行う演算の詳細は後述する。
 エンジン制御部150ではエンジンパワー指令を基に、エンジン等燃費マップを用いて最もエンジン効率が高くなる動作点を演算し、その動作点でのエンジン回転数をエンジン回転数指令として演算する。
 発電電動機制御部160では、エンジン回転数NEng、発電パワー指令Pwr_Gen_Ref、エンジン回転数指令NEng_tから、次式を用いて発電電動機トルク指令Trq_Gen_tを演算し、発電インバータへ送信する。
Figure JPOXMLDOC01-appb-M000004
 ただし、上記(4)式において、KEngはエンジン回転数の偏差に対する比例ゲインである。また、発電パワー指令Pwr_Gen_Refの符号は、正が発電電動機5の発電、負が発電電動機5の力行を示す。
 次にエンジン回転数NEng、発電電動機トルク指令Trq_Gen_tから、次式を用いて発電パワー推定値を演算する。
Figure JPOXMLDOC01-appb-M000005
 傾転角制御部170では、エンジン回転数NEng、油圧パワー指令Pwr_Pmp_Ref、ポンプ圧力Prs_Pmp用いて傾転角制御信号VDp_tを演算し、当該傾転角制御信号VDp_tを利用して油圧ポンプ9の傾転角制御弁を駆動する。ただし、次式におけるKDpは比例定数であり、ポンプ圧力Prs_Pmpは圧力センサ31から入力される値である。
 次式が示すように、傾転角制御信号VDp_tは、エンジン回転数NEng及び油圧パワー指令Pwr_Pmp_Refが一定のとき、ポンプ圧力Prs_Pmpが高いほど小さくなる。これにより油圧ポンプ9の容量はポンプ圧力Prs_Pmpが高いほど小さく制御される。
Figure JPOXMLDOC01-appb-M000006
 走行電動機・ブレーキ制御部180では、走行電動機トルク指令Trq_Mtr_tを演算し、走行インバータ8へ送信する。本実施の形態では、走行パワー指令Pwr_Drv_Ref、走行要求パワーPwr_Drv_Req、走行要求トルクTrq_Drv_Reqから、次式を用いて走行電動機トルク指令Trq_Mtr_tを演算する。ただし、次式において、RDはディファレンシャルギア16の減速比である。また、走行要求パワーPwr_Drv_Req=0のときは走行電動機トルク指令Trq_Mtr_t=0とする。
Figure JPOXMLDOC01-appb-M000007
 上記(7)式の走行要求トルクTrq_Reqに(3)式を代入すると次式となるため、走行パワー指令Pwr_Drv_Refが一定のとき、走行電動機トルク指令Trq_Mtr_tは電動機回転数NMtrが高いほど小さくなる。これにより走行電動機5のトルクは電動機回転数NMtrが高いほど小さく制御される。
Figure JPOXMLDOC01-appb-M000008
 次に、電動機回転数NMtr、走行要求トルクTrq_Drv_Req、走行トルク指令Trq_Mtr_tから、次式を用いてブレーキ制御信号VBrk_tを演算し、油圧ブレーキ制御弁(図示せず)を駆動する。ただし、次式におけるKBrkは比例定数である。
Figure JPOXMLDOC01-appb-M000009
 パワー管理部140の構成を図7に示す。パワー管理部140はエンジン最大パワー演算部141、油圧パワー指令演算部142、走行パワー指令演算部143、発電パワー指令演算部144、エンジンパワー指令演算部145で構成されている。
 エンジン最大パワー演算部141は、エンジン1が出力可能な最大パワー(エンジン最大パワー)を演算する部分である。本実施の形態では、エンジンパワー指令Pwr_Eng_Refに公知のローパスフィルタをかけて演算されるエンジン最大パワー推定値Pwr_Eng_Maxをエンジン最大パワーとしている。なお、当該演算で利用されるエンジンパワー指令Pwr_Eng_Refは、1制御周期前にエンジンパワー指令演算部145で演算された値を用いる。ローパスフィルタの時定数は、エンジンの応答特性に応じて設定する。ここでは1制御周期前のエンジンパワー指令Pwr_Eng_Refを用いてエンジン最大パワー推定値Pwr_Eng_Maxを演算したが、エンジン回転数NEngとエンジンの燃料噴射量からエンジン最大パワー推定値Pwr_Eng_Maxを演算してもよいし、1制御周期前のエンジンパワー指令Pwr_Eng_Refおよびエンジン最大パワー推定値Pwr_Eng_Maxから、次式を用いてエンジン最大パワー推定値Pwr_Eng_Maxを演算してもよい。
Figure JPOXMLDOC01-appb-M000010
 上記(10)式では、右辺のエンジン最大パワー推定値Pwr_Eng_Maxも1制御周期前の値である。また、dPwr_Eng_Upは1制御周期の間にエンジンパワーが増加する最大値(エンジンパワー増加量最大値)を示す。このエンジンパワー増加量最大値は、エンジン1のパワーの増加速度の最大値(エンジンパワー増加速度最大値(Ve))に単位制御周期を乗じて得られる値(すなわち、エンジンパワー増加量最大値=エンジンパワー増加速度最大値×単位制御周期)であり、エンジンの応答特性に応じて設定される。
 油圧パワー指令演算部142では、エンジン最大パワー推定値Pwr_Eng_Max、放電パワー上限Pwr_Cap_Max、走行要求パワーPwr_Drv_Req、油圧要求パワーPwr_Pmp_Req、走行パワー指令Pwr_Drv_Refから油圧パワー指令Pwr_Pmp_Refを演算する。油圧パワー指令演算部142で行う演算の詳細は後述する。
 走行パワー指令演算部143では、エンジン最大パワー推定値Pwr_Eng_Max、放電パワー上限Pwr_Cap_Max、油圧パワー指令Pwr_Pmp_Refから、次式を用いて走行パワー上限Pwr_Drv_Maxを演算する。
Figure JPOXMLDOC01-appb-M000011
 または、発電パワー推定値Pwr_Gen、放電パワー上限Pwr_Cap_Maxから、次式を用いて走行パワー上限Pwr_Drv_Maxを演算してもよい。
Figure JPOXMLDOC01-appb-M000012
 ここで、エンジン1の出力パワー(エンジン最大パワー推定値Pwr_Eng_Max)から油圧ポンプ9の消費パワー(油圧パワー指令Pwr_Pmp_Ref)を差し引いたパワーが発電パワー(発電パワー推定値Pwr_Gen)として使われるため、上記の2式は等価であり、エンジン1の出力パワーは発電電動機5(走行電動機7)での消費よりも油圧ポンプ9での消費が優先される。次に走行要求パワーPwr_Drv_Req、走行パワー上限Pwr_Drv_Maxから、次式を用いて走行パワー指令Pwr_Drv_Refを演算する。すなわち、走行要求パワーPwr_Drv_Req及び走行パワー上限Pwr_Drv_Maxのうち小さい方が走行パワー指令Pwr_Drv_Refとなる。算出された走行パワー指令Pwr_Drv_Refは走行電動機・ブレーキ制御部180に出力される。
Figure JPOXMLDOC01-appb-M000013
 発電パワー指令演算部144では、走行要求パワーPwr_Drv_Req、充放電要求パワーPwr_Cap_Reqから、次式を用いて発電パワー指令Pwr_Gen_Refを演算する。ただし、次式において、充放電要求パワーPwr_Cap_Reqは正が放電、負が充電を表す。
Figure JPOXMLDOC01-appb-M000014
 エンジンパワー指令演算部145では、発電パワー指令Pwr_Gen_Ref、油圧要求パワーPwr_Pmp_Reqから、次式を用いてエンジンパワー指令Pwr_Eng_Refを演算する。
Figure JPOXMLDOC01-appb-M000015
 油圧パワー指令演算部142で行う演算の詳細を、図8に示すフローチャートを使って説明する。
 ステップ1421では走行力行判定を行う。ステップ1421において、走行要求パワーPwr_Drv_Req(上記(3)式参照)が、正の値であれば走行力行中であると判定しステップ1422へ進み、負の値であれば走行力行中でないと判定しステップ1424へ進む。
 ステップ1422では、走行電動機7の実際のパワー(走行パワー)の下限値である走行パワー下限Pwr_Drv_Minを演算する。本実施の形態では、走行要求パワーPwr_Drv_Req、走行パワー指令Pwr_Drv_Refから、次式を用いて走行パワー下限Pwr_Drv_Minを演算している。すなわち、本実施の形態では、1制御周期前の走行パワー指令Pwr_Drv_Refから走行パワー変化量制限値dPwr_Drv_Dwnを差し引いた値と、走行要求パワーPwr_Drv_Reqとを比較し、小さい方の値を走行パワー下限Pwr_Drv_Minとしている。ただし、走行パワー指令Pwr_Drv_Refは、1制御周期前に走行パワー指令演算部143で演算された値であり、dPwr_Drv_Dwnは、1制御周期の間に走行パワー指令が減少する値(走行パワー変化量制限値)を示す。この走行パワー変化量制限値は、走行パワーの減少速度に設定された制限値(走行パワー変化速度制限値(Vm))に単位制御周期を乗じて得られる値(すなわち、走行パワー変化量制限値=走行パワー変化速度制限値×単位制御周期時間)であり、走行中のレバー操作に起因した車両減速時にオペレータが違和感を憶えないような値に設定されている。
Figure JPOXMLDOC01-appb-M000016
 したがって、本実施の形態における走行パワー下限Pwr_Drv_Minは、走行要求パワーが大きく減少した場合を除いて、1制御周期前の走行パワー指令よりも走行パワー変化量制限値dPwr_Drv_Dwn分だけ減少する。すなわち、走行パワー下限Pwr_Drv_Minは、1制御周期ごとに走行パワー変化量制限値dPwr_Drv_Dwnだけ減少する。走行パワー下限Pwr_Drv_Minの算出が完了したらステップ1423に進む。
 ステップ1423では発電パワー下限Pwr_Gen_Minを演算する。本実施の形態では、走行パワー下限Pwr_Drv_Min、放電パワー上限Pwr_Cap_Maxから、次式を用いて発電パワー下限Pwr_Gen_Minを演算している。発電パワー下限Pwr_Gen_Minの算出が完了したらステップ1424に進む。
Figure JPOXMLDOC01-appb-M000017
 ステップ1424では、油圧ポンプ9の実際のパワー(油圧パワー)の上限値である油圧パワー上限Pwr_Pmp_Maxを演算する。本実施の形態では、エンジン最大パワー推定値Pwr_Eng_Max、発電パワー下限Pwr_Gen_Minから、次式を用いて油圧パワー上限Pwr_Pmp_Maxを演算している。すなわち、エンジン最大パワー推定値Pwr_Eng_Maxから発電パワー下限Pwr_Gen_Minを減じたものを油圧パワー上限Pwr_Pmp_Maxとしている。油圧パワー上限Pwr_Pmp_Maxの算出が完了したらステップ1425に進む。
Figure JPOXMLDOC01-appb-M000018
 ただし、上記(18)式において、走行力行中でない場合(すなわち、ステップ1421から直接ステップ1424に進んだ場合)は、発電パワー下限Pwr_Gen_Minは算出されないので、発電パワー下限Pwr_Gen_Minを0として演算する。
 ステップ1425では油圧パワー指令Pwr_Pmp_Refを演算する。本実施の形態では、油圧要求パワーPwr_Pmp_Req、油圧パワー上限Pwr_Pmp_Maxを用いて、次式から油圧パワー指令Pwr_Pmp_Refを演算している。すなわち、油圧要求パワーPwr_Pmp_Req及び油圧パワー上限Pwr_Pmp_Maxのうち小さい方が油圧パワー指令Pwr_Pmp_Refとして選択される。
Figure JPOXMLDOC01-appb-M000019
 ここで、走行要求パワーが十分大きい値であると仮定して上記(16)式から(18)式を次式のようにまとめると、エンジン最大パワー推定値Pwr_Eng_Maxと放電パワー上限Pwr_Cap_Maxの合計値から、1制御周期前の走行パワー指令Pwr_Drv_Refを引いて、さらに走行パワー変化量制限値dPwr_Drv_Dwnを足し合わせることで、油圧パワー上限Pwr_Pmp_Maxを演算していることが分かる。
Figure JPOXMLDOC01-appb-M000020
 すなわち、このときの油圧パワー指令Pwr_Pmp_Ref(すなわち油圧パワー上限Pwr_Pmp_Max((19)式参照))は、1制御周期ごとに走行パワー変化量制限値dPwr_Drv_Dwnの分だけ増加する。一方、走行パワー指令Pwr_Drv_Ref(すなわち走行パワー上限Pwr_Drv_Max((13)式参照))には、上記(11)式から、エンジン最大パワー推定値Pwr_Eng_Maxと放電パワー上限Pwr_Cap_Maxの合計値から油圧パワー指令Pwr_Pmp_Refを減じた値が割り当てられることになるので、1制御周期ごとに走行パワー変化量制限値dPwr_Drv_Dwnの分だけ減少することになる。
 以上のことから、本実施の形態によれば、走行力行中にレバー操作(油圧シリンダ13,14を駆動することによる作業)が行われた場合であっても、走行パワー変化量制限値dPwr_Drv_Dwnを調節して、油圧パワーを徐々に増加させつつ走行パワーを徐々に減少させることで、オペレータに違和感を与えないようにすることができる。なお、このとき、走行パワー変化量制限値はトルコン車(従来車)で同様の操作が行われた場合の走行パワーの変化量と一致させることが望ましい。このように油圧パワーと走行パワーを制御することで、オペレータが意図しない走行パワーの急激な減少を回避できる。また、キャパシタ3の蓄電電圧が高い場合は、放電パワー上限が大きくなるため、可能な限り早く油圧パワーを立ち上げることができる。
 次に本実施の形態に係る作業車両の動作を図9A及び図9Bを使って説明する。図9(a)は走行パワーの変化速度(減少速度)を考慮しない(本発明を適用しない)場合の例(比較例)であり、図9Bは走行パワーの変化速度を考慮した(本発明を適用した)場合の例である。なお、説明を簡略化するため、走行要求パワー、放電パワー上限、エンジンパワー増加速度の最大値(Ve)を一定として説明する。
 まず、図9Aの場合について説明する。走行力行中の時刻T1において、オペレータのレバー操作により油圧要求パワー(油圧パワー)がステップ状に急激に増加して、エンジンパワー指令が増加し、油圧要求パワーと走行要求パワーの合計値がエンジン最大パワー推定値と放電パワー上限の合計値よりも大きくなったものとする。この場合、エンジンパワーは徐々にしか増加しないため、キャパシタ放電(放電パワー)によるアシスト(図9Aの「キャパシタパワー」に相当)があるものの、エンジンパワー及び放電パワーは優先的に油圧パワーに利用されるため、走行パワーが急激に減少してしまう。T1以後は、エンジンパワーの増加に応じて走行パワーも徐々に回復する。時刻T2でエンジンパワーが最大パワー(エンジンパワー指令値)に達したところで走行パワーが一定となる。時刻T3でオペレータによるレバー操作が終了して油圧要求パワーが減少して油圧パワーが減少すると、走行パワーが急激に増加して走行要求パワーに一致する。
 次に図9Bの場合について説明する。オペレータのレバー操作により時刻T1において油圧要求パワーがステップ状に増加すると、これに応じて図9Aの場合と同様にエンジンパワー指令が増加する。しかし、本実施の形態では、油圧パワーの増加に対して、増加開始時からの経過時間の増加に応じて大きさが小さくなる制限がかけられているため、実際の油圧パワーは要求時の値から時間経過とともに油圧要求パワーに向かって徐々に増加する。具体的には、時刻T1からT1'にかけての油圧パワーの傾きの大きさは、エンジンパワーの増加速度の最大値Veと走行パワー変化速度制限値Vmの合計値と一致しており、その間、油圧パワーは徐々に増加する。一方、時刻T1からT1'において油圧パワーに制限がかけられている間、実際の走行パワーは要求時の値から徐々に減少する。このときの走行パワーの傾きの大きさは、走行パワー変化速度制限値Vmに一致する。したがって、本実施の形態によれば、走行中のレバー操作に伴う走行パワーの急激な減少を回避できるので、このような場合におけるオペレータの乗り心地悪化を抑制することができる。
 その後、油圧パワーが増加して時刻T1’で油圧要求パワーに一致すると、時刻T1から減少していた走行パワーが徐々に回復し始める。時刻T2でエンジンパワーが最大パワーに達すると走行パワーが一定となる。時刻T3で油圧要求パワーが減少して油圧パワーが減少すると、走行パワーが増加して走行要求パワーに一致する。
 また、本実施の形態では、式(20)に示したように油圧パワー指令Pwr_Pmp_Ref(油圧パワー上限Pwr_Pmp_Max)に放電パワー上限Pwr_Cap_Maxが加算されており、当該放電パワー上限分だけ油圧パワーが早く増加するため、油圧パワーの応答を可能な限り早くすることができる。
 なお、油圧要求パワーが急減する時刻T3では、図9Aに示したように走行パワーが急増してオペレータの乗り心地に悪影響を与えるおそれがある。そのため、本実施の形態では、既に述べた走行パワーの減少時と同様に、走行パワーの増加時にも上限値を設定している。そのため、図9Bに示すように、時刻T3以後は走行要求パワーに達するまで走行パワーを徐々に増加させることができる。なお、油圧パワーの減少速度に制限値をかけることで、走行パワーの増加速度に制限をかけても良いことはいうまでもない。
 上記の実施の形態では、エンジンパワー増加速度最大値(Ve)と走行パワー変化速度制限値(Vm)の合計値の速度で油圧パワーを増加する場合について説明したが、当該合計値以下の速度で油圧パワーを増加しても良い。また同様に、上記では走行パワー変化速度制限値(Vm)の速度で走行パワーを減少する場合について説明したが、当該制限値以下の速度で走行パワーを減少させても良い。
 また、本実施の形態では、制御を簡素にする観点から、1制御周期ごとに設定値(走行パワー変化量制限値dPwr_Drv_Dwn)の分だけ油圧パワー指令を増加するとともに、当該設定値の分だけ走行パワー指令を減少する制御を利用したが、油圧パワー指令の増加及び走行パワー指令の減少に際して、他の所定の制限をかけても良い。この種の他の制限のかけ方としては、油圧パワーの増加開始時からの経過時間に応じて走行パワー変化量制限値の大きさを定義するものや、油圧要求パワーと実際のパワーの偏差に応じて走行パワー変化量制限値の大きさを定義するものがある。
 さらに、本実施の形態では、油圧パワー指令の増加と走行パワー指令の減少に同一の設定値(走行パワー変化量制限値dPwr_Drv_Dwn)を利用しているため、「油圧パワー指令の増加分の大きさ」は「走行パワー指令の減少分の大きさ」に等しい。しかし、「油圧パワー指令の増加分の大きさ」よりも「走行パワーの減少分の大きさ」が小さければ、パワー収支のバランスが保持されるので、本実施の形態と同様に乗り心地の悪化抑制効果を発揮できる。すなわち、走行パワー指令の減少分の大きさは、油圧パワー指令の増加分の大きさ以下であれば良い。
 また、上記の実施の形態では、蓄電装置としてキャパシタ3を適用した例を示したが、本発明はこれに限るものではなく、蓄電装置としてバッテリなどを適用してもよい。
 1…エンジン、2…エンジンコントローラ、3…キャパシタ(蓄電装置)、4…コンバータ、5…発電電動機、6…発電インバータ、7…走行電動機、8…走行インバータ、9…メインポンプ(油圧ポンプ)、100…メインコントローラ(制御装置)

Claims (5)

  1.  エンジンと、当該エンジンに機械的に接続された油圧ポンプと、前記エンジンに機械的に接続された発電電動機と、当該発電電動機に電気的に接続された走行電動機と、前記発電電動機及び前記走行電動機に電気的に接続された蓄電装置と、前記油圧ポンプ及び前記走行電動機のパワーを制御する制御手段とを備えた作業車両であって、
     前記制御手段は、
     前記油圧ポンプが要求する油圧要求パワー、及び前記走行電動機が要求する走行要求パワーを演算し、
     当該油圧要求パワーと当該走行要求パワーの合計値が、前記エンジンが出力可能なエンジンパワーと前記蓄電装置が放電可能な放電パワーの合計よりも大きいとき、
     前記油圧ポンプの実際のパワーを要求時の値から前記油圧要求パワーに向かって所定の制限をかけながら増加させるとともに、前記油圧ポンプのパワーに当該所定の制限をかける間、当該所定の制限の大きさ以下の値だけ前記走行電動機の実際のパワーを要求時の値から減少させることを特徴とする作業車両。
  2.  請求項1に記載の作業車両において、
     前記制御手段は、
     前記油圧要求パワーと前記走行要求パワーの合計値が、前記エンジンパワーと前記放電パワーの合計よりも大きいとき、
     前記エンジンのパワーの増加速度の最大値(Ve)と前記走行電動機のパワーの減少速度に設定された制限値(Vm)との合計値(Ve+Vm)以下の速度で前記油圧ポンプの実際のパワーを要求時の値から前記油圧要求パワーに向かって増加させるとともに、
     前記制限値(Vm)以下の速度で前記走行電動機の実際のパワーを要求時の値から減少させることを特徴とする作業車両。
  3.  請求項1又は2に記載の作業車両において、
     前記所定の制限の大きさは、前記油圧ポンプのパワー増加開始時からの経過時間の増加に応じて減少することを特徴とする作業車両。
  4.  請求項2に記載の作業車両において、
     前記エンジンパワーは、前記エンジンが出力可能なエンジン最大パワーであり、
     前記放電パワーは、前記蓄電装置が放電可能な放電パワー上限であり、
     前記エンジン最大パワー及び前記放電パワー上限は、前記制御手段によって算出されることを特徴とする作業車両。
  5.  請求項4に記載の作業車両において、
     前記走行電動機の回転数を取得するための回転数取得手段と、
     前記油圧ポンプの吐出圧を取得するための圧力取得手段とをさらに備え、
     前記油圧ポンプは可変容量型ポンプであり、
     前記制御手段は、
     前記油圧要求パワーと前記走行要求パワーの合計値が、前記エンジン最大パワーと前記放電パワー上限の合計よりも大きいとき、
     前記エンジン最大パワーと前記放電パワー上限の合計値から、1制御周期前に演算された前記走行電動機のパワー指令を差し引き、さらに、前記制限値を足し合わせることで前記油圧ポンプの油圧パワー上限を算出し、前記油圧ポンプの実際のパワーが当該油圧パワー上限以下に保持されるように、前記吐出圧が高いほど前記油圧ポンプの容量を小さく制御するとともに、
     前記エンジン最大パワーと前記放電パワー上限の合計値から前記油圧ポンプの実際のパワーを差し引いて前記走行電動機の走行パワー上限を算出し、前記走行電動機の実際のパワーが当該走行パワー上限以下に保持されるように、前記回転数が高いほど前記走行電動機のトルクを小さく制御することを特徴とする作業車両。
PCT/JP2012/070748 2011-08-16 2012-08-15 作業車両 WO2013024868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280039589.5A CN103732466B (zh) 2011-08-16 2012-08-15 作业车辆
US14/237,014 US9249557B2 (en) 2011-08-16 2012-08-15 Work vehicle
EP12824024.9A EP2746124B1 (en) 2011-08-16 2012-08-15 Work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-178152 2011-08-16
JP2011178152A JP5611147B2 (ja) 2011-08-16 2011-08-16 作業車両

Publications (1)

Publication Number Publication Date
WO2013024868A1 true WO2013024868A1 (ja) 2013-02-21

Family

ID=47715185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070748 WO2013024868A1 (ja) 2011-08-16 2012-08-15 作業車両

Country Status (5)

Country Link
US (1) US9249557B2 (ja)
EP (1) EP2746124B1 (ja)
JP (1) JP5611147B2 (ja)
CN (1) CN103732466B (ja)
WO (1) WO2013024868A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727630B1 (ja) 2013-05-31 2015-06-03 株式会社小松製作所 作業機械のエンジン制御装置およびそのエンジン制御方法
JP6042303B2 (ja) * 2013-10-09 2016-12-14 日立建機株式会社 作業車両
JP6122765B2 (ja) * 2013-11-01 2017-04-26 日立建機株式会社 作業機械
JP6324072B2 (ja) * 2014-01-07 2018-05-16 株式会社Kcm ハイブリッド式ホイールローダ
KR102192740B1 (ko) * 2014-04-24 2020-12-17 두산인프라코어 주식회사 건설기계의 엔진 및 유압펌프 통합 제어 장치 및 방법
JP6433687B2 (ja) * 2014-06-03 2018-12-05 株式会社Kcm ハイブリッド式ホイールローダ
WO2016151965A1 (ja) * 2015-03-25 2016-09-29 日立建機株式会社 ハイブリッド式作業車両
EP3294581B1 (en) * 2015-05-13 2021-07-07 Volvo Construction Equipment AB A working machine arranged with means to drive and control a hydraulic pump
JP6626371B2 (ja) * 2016-02-29 2019-12-25 日立建機株式会社 ハイブリッド作業機械
JP6944426B2 (ja) * 2018-09-05 2021-10-06 株式会社日立建機ティエラ 電動式建設機械
CN114148178B (zh) * 2020-09-08 2023-07-11 株洲变流技术国家工程研究中心有限公司 一种电传动系统的控制方法及系统
CN112412635A (zh) * 2020-11-16 2021-02-26 中船动力研究院有限公司 一种船用发动机推进系统及其控制方法
CN113570752B (zh) * 2021-09-23 2022-04-08 江铃汽车股份有限公司 发动机油耗需求的计算方法、系统、存储介质及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247230A (ja) 2006-03-15 2007-09-27 Kobelco Contstruction Machinery Ltd ハイブリッド建設機械
JP2007290607A (ja) * 2006-04-26 2007-11-08 Kobelco Contstruction Machinery Ltd ハイブリッド式作業機械の動力源装置
JP2009216058A (ja) 2008-03-12 2009-09-24 Sumitomo Heavy Ind Ltd 建設機械の制御方法
JP2009241830A (ja) * 2008-03-31 2009-10-22 Komatsu Ltd 走行作業車両
JP2011245906A (ja) * 2010-05-24 2011-12-08 Iseki & Co Ltd トラクタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914520B2 (ja) * 2003-06-18 2007-05-16 日立建機株式会社 ハイブリッド式作業車両
JP2008121659A (ja) * 2006-10-20 2008-05-29 Kobelco Contstruction Machinery Ltd ハイブリッド作業機械
JP5550064B2 (ja) * 2009-07-01 2014-07-16 住友重機械工業株式会社 ハイブリッド型作業機械
EP2530207A4 (en) * 2010-01-29 2017-09-13 Sumitomo Heavy Industries, LTD. Hybrid construction machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247230A (ja) 2006-03-15 2007-09-27 Kobelco Contstruction Machinery Ltd ハイブリッド建設機械
JP2007290607A (ja) * 2006-04-26 2007-11-08 Kobelco Contstruction Machinery Ltd ハイブリッド式作業機械の動力源装置
JP2009216058A (ja) 2008-03-12 2009-09-24 Sumitomo Heavy Ind Ltd 建設機械の制御方法
JP2009241830A (ja) * 2008-03-31 2009-10-22 Komatsu Ltd 走行作業車両
JP2011245906A (ja) * 2010-05-24 2011-12-08 Iseki & Co Ltd トラクタ

Also Published As

Publication number Publication date
CN103732466B (zh) 2016-08-31
JP5611147B2 (ja) 2014-10-22
JP2013039875A (ja) 2013-02-28
EP2746124B1 (en) 2018-08-08
EP2746124A4 (en) 2015-07-15
US20140188320A1 (en) 2014-07-03
CN103732466A (zh) 2014-04-16
US9249557B2 (en) 2016-02-02
EP2746124A1 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5611147B2 (ja) 作業車両
JP5688418B2 (ja) 作業車両の制御装置および作業車両
JP5855487B2 (ja) 電動駆動式作業車両
JP5356543B2 (ja) 作業用車両の駆動制御装置
KR101834598B1 (ko) 하이브리드식 건설 기계
US9885168B2 (en) Work vehicle and control method for same
US20060048988A1 (en) Device and method for determination of the drive-power distribution in a hybrid driveline of a vehicle
JP6276021B2 (ja) ハイブリッド式作業車両
CN108137035B (zh) 混合动力工程机械
CN109130882B (zh) 货运汽车及搭载于货运汽车的行驶用驱动马达的控制方法
JP6313965B2 (ja) 作業車両及びその制御方法
JPWO2015056492A1 (ja) 作業車両及び作業車両の制御方法
WO2014141955A1 (ja) ハイブリッド式作業車両
JP6051364B2 (ja) 作業車両
JP6002105B2 (ja) ハイブリッド式作業車両
JP6148617B2 (ja) ハイブリッド式作業車両
JP5604884B2 (ja) 作業車両
JP3950450B2 (ja) ハイブリッドシステムにおける機関制御方法
JP6223291B2 (ja) ハイブリッド式作業車両
JP6243808B2 (ja) ハイブリッド式作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012824024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237014

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE