WO2013024525A1 - 温度分布測定装置及び温度分布測定方法 - Google Patents

温度分布測定装置及び温度分布測定方法 Download PDF

Info

Publication number
WO2013024525A1
WO2013024525A1 PCT/JP2011/068503 JP2011068503W WO2013024525A1 WO 2013024525 A1 WO2013024525 A1 WO 2013024525A1 JP 2011068503 W JP2011068503 W JP 2011068503W WO 2013024525 A1 WO2013024525 A1 WO 2013024525A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature distribution
optical fiber
transfer function
distribution measuring
laser light
Prior art date
Application number
PCT/JP2011/068503
Other languages
English (en)
French (fr)
Inventor
丈夫 笠嶋
宇野 和史
石鍋 稔
恭子 只木
武井 文雄
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013528877A priority Critical patent/JP5673830B2/ja
Priority to EP11870967.4A priority patent/EP2746741B1/en
Priority to PCT/JP2011/068503 priority patent/WO2013024525A1/ja
Priority to CN201180072850.7A priority patent/CN103733037B/zh
Publication of WO2013024525A1 publication Critical patent/WO2013024525A1/ja
Priority to US14/171,880 priority patent/US9797782B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering

Definitions

  • the present invention relates to a temperature distribution measuring apparatus and a temperature distribution measuring method using an optical fiber.
  • the amount of heat generated from the computer varies greatly depending on the operating state of the computer.
  • an air conditioner that has a cooling capacity corresponding to the maximum amount of heat generated from the computer, for example, and always operate the air conditioner at the maximum capacity. It is done.
  • An object of the present invention is to provide a temperature distribution measuring device and a temperature distribution measuring method capable of easily setting an appropriate transfer function according to a change in the total length of an optical fiber.
  • a laser light source optically connected to an optical fiber, a photodetector for detecting light backscattered in the optical fiber, and a temporary obtained from the output of the photodetector.
  • a temperature distribution measuring unit that performs a correction calculation using a transfer function on the measured temperature distribution to obtain a true measured temperature distribution, and the temperature distribution measuring unit is provided for each entire length of the optical fiber and in the length direction.
  • laser light is output from a laser light source to an optical fiber, light scattered back in the optical fiber is detected, and a temporary measurement temperature distribution in the length direction of the optical fiber is detected.
  • the temperature distribution measuring method of the temperature distribution measuring apparatus that obtains the true measured temperature distribution by performing a correction calculation using a transfer function on the temporary measured temperature distribution, wherein the temperature measuring apparatus includes the light Stores transfer function data set for each length of the fiber and for each position in the length direction, and uses the transfer function data when the length of the optical fiber optically connected to the laser light source is changed.
  • a temperature distribution measuring method for changing a transfer function used for the correction calculation is provided.
  • FIG. 1 is a schematic diagram illustrating a configuration of a temperature distribution measuring apparatus according to the embodiment.
  • FIG. 2 is a diagram illustrating a spectrum of backscattered light.
  • FIG. 3 is a diagram illustrating an example of a time-series distribution of the intensity of Raman scattered light. 4 calculates the I 1 / I 2 ratio for each time based on the time-series distribution of the intensity of Raman scattered light in FIG. 3, and the horizontal axis (time) in FIG. It is a figure which shows the result of having converted signal intensity
  • FIG. 5 is a diagram (part 1) for explaining the minimum heating length.
  • FIG. 6 is a diagram (part 2) for explaining the minimum heating length.
  • FIG. 7 is a diagram illustrating an example of a transfer function.
  • FIG. 1 is a schematic diagram illustrating a configuration of a temperature distribution measuring apparatus according to the embodiment.
  • FIG. 2 is a diagram illustrating a spectrum of backscattered light.
  • FIG. 3 is
  • FIG. 8 is a schematic diagram showing a computer room in a data center.
  • FIG. 9 is a diagram illustrating an example of laying optical fibers.
  • FIG. 10 is a diagram illustrating an example of an actual temperature distribution, a measured temperature distribution, and a corrected temperature distribution.
  • FIG. 11 is a diagram (part 1) illustrating a transfer function for each position of an optical fiber having a total length of 7115 m.
  • FIG. 12 is a diagram (part 2) illustrating a transfer function at each position of an optical fiber having a total length of 7115 m.
  • FIG. 13 is a diagram (part 1) illustrating a transfer function for each position of an optical fiber having a total length of 2347 m.
  • FIG. 14 is a diagram (part 2) illustrating a transfer function at each position of an optical fiber having a total length of 2347 m.
  • FIG. 15 is a diagram illustrating a measured temperature distribution and a temperature distribution corrected using a transfer function.
  • FIG. 16 is a diagram illustrating an example of transfer function data (database) for each total length of the optical fiber and for each position in the length direction.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-265077
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-160081
  • the transfer function varies depending on the distance from the light source (the distance along the length direction of the optical fiber) and the total length of the optical fiber.
  • server racks are added or removed according to demand, and accordingly, the optical fiber installation route is changed or the total length of the optical fiber is changed. Therefore, it is important to newly set a transfer function with the construction.
  • FIG. 1 is a schematic diagram illustrating a configuration of a temperature distribution measuring apparatus according to the embodiment.
  • FIG. 2 is a figure which shows the spectrum of backscattered light.
  • the temperature distribution measuring device 20 includes a laser light source 21, lenses 22 a and 22 b, a beam splitter 23, a wavelength separation unit 25, a photodetector 26, and a temperature distribution measurement unit. 27 and connected to the optical fiber 24 for use.
  • Laser light with a predetermined pulse width is output from the laser light source 21 at a constant cycle. This laser light enters the optical fiber 24 from the light source side end of the optical fiber 24 through the lens 22a, the beam splitter 23, and the lens 22b.
  • 24 a indicates the cladding of the optical fiber
  • 24 b indicates the core of the optical fiber 24.
  • the backscattered light includes Rayleigh scattered light, Brillouin scattered light, and Raman scattered light.
  • Rayleigh scattered light is light having the same wavelength as incident light
  • Brillouin scattered light and Raman scattered light are light having wavelengths shifted from the incident wavelength.
  • Raman scattered light includes Stokes light shifted to a longer wavelength side than incident light and anti-Stokes light shifted to a shorter wavelength side than incident light.
  • the shift amount of Stokes light and anti-Stokes light depends on the wavelength of the laser light, the material constituting the optical fiber 24, and the like, but is usually about 50 nm.
  • the intensity of Stokes light and anti-Stokes light changes with temperature, the amount of change of Stokes light with temperature is small, and the amount of change of anti-Stokes light with temperature is large. That is, it can be said that the Stokes light has a small temperature dependency, and the anti-Stokes light has a large temperature dependency.
  • the wavelength separation unit 25 includes beam splitters 31a, 31b, and 31c, optical filters 33a, 33b, and 33c, and condenser lenses 34a, 34b, and 34c.
  • the beam splitters 31a, 31b, and 31c transmit or reflect light according to the wavelength.
  • the optical filters 33a, 33b, and 33c transmit only light of a specific wavelength, and the condensing lenses 34a, 34b, and 34c respectively transmit the light transmitted through the optical filters 33a, 33b, and 33c to the light receiving units 26a and 26b of the photodetector 26. , 26c.
  • the light incident on the wavelength separator 25 is separated into Rayleigh scattered light, Stokes light, and anti-Stokes light by the beam splitters 31a, 31b, 31c and the optical filters 33a, 33b, 33c, and the light receivers 26a, 26b of the photodetector 26. , 26c.
  • the light detector 26 outputs a signal corresponding to the intensity of Rayleigh scattered light, Stokes light, and anti-Stokes light.
  • the temperature distribution measuring unit 27 includes a computer.
  • the temperature distribution measuring unit 27 acquires the temperature distribution in the length direction of the optical fiber 24 based on the signal output from the photodetector 26.
  • the temperature distribution measuring unit 27 stores a database of transfer functions for the entire length of the optical fiber 24 and each region (region divided in the length direction of the optical fiber 24), as will be described later. When the laying state is changed, transfer function correction calculation is performed.
  • FIG. 3 is a diagram showing an example of a time-series distribution of the intensity of Raman scattered light, with time on the horizontal axis and signal intensity output from the light receiving units 26a, 26b, and 26c of the photodetector 26 on the vertical axis. It is. Stokes light and anti-Stokes light are detected by the photodetector 26 for a certain period immediately after the laser pulse is incident on the optical fiber 24. When the temperature is uniform over the entire length of the optical fiber 24, the signal intensity decreases with the passage of time when the laser pulse is incident on the optical fiber 24 as a reference. In this case, the time on the horizontal axis indicates the distance from the light source side end of the optical fiber 24 to the position where the backscattering occurs, and the decrease in signal intensity with time indicates the attenuation of light by the optical fiber 24. .
  • the signal intensity of Stokes light and anti-Stokes light is not attenuated uniformly. As shown in FIG. 3, peaks and valleys appear on the curve indicating the change in signal intensity with time. In FIG. 3, the intensity of anti-Stokes light at a certain time t is I 1 and the intensity of Stokes light is I 2 .
  • the temperature distribution in the length direction of the optical fiber 24 can be measured by calculating the intensity ratio (I 1 / I 2 ) between the anti-Stokes light and the Stokes light.
  • the intensity of Raman scattered light (Stokes light and anti-Stokes light) at the position where backscattering varies with temperature, but the intensity of Rayleigh scattered light is considered to be independent of temperature. Therefore, it is preferable to specify the position where the backscattering occurs from the intensity of the Rayleigh scattered light and correct the intensity of the Stokes light and the anti-Stokes light detected by the photodetector 26 according to the position.
  • the pulse width t 0 of the laser light output from the laser light source 21 is 10 nsec
  • the speed c of light in vacuum is 3 ⁇ 10 8 m / sec
  • the refractive index n of the core 24b of the optical fiber 24 is 1.5.
  • the pulse width W of the laser light in the optical fiber 24 is about 2 m as shown in the following equation (1).
  • the backscattered light of the laser beam corresponding to this pulse width is taken into the photodetector 26 as one signal, and the photodetector 26 detects the temperature from the integrated value of the signal corresponding to this pulse width. Therefore, accurate temperature measurement cannot be performed unless heat is uniformly applied to the length corresponding to the pulse width W of the optical fiber.
  • the minimum heating length necessary for accurate temperature measurement is referred to as Lmin.
  • the measured temperature distribution is as shown in FIG. Draw a Gaussian (normal distribution) curve.
  • the temperature distribution as shown in FIG. 5A is referred to as a step-type temperature distribution.
  • the horizontal axis represents the position in the length direction of the optical fiber
  • the vertical axis represents the temperature
  • the optical fiber is placed in an environment where the temperature is 25 ° C.
  • the temperature of the light source is It is a figure which shows measured temperature distribution at the time of applying heat so that it may become step type temperature distribution.
  • the length of the heating part is 40 cm, 1 m, 1.6 m, and 2.2 m, respectively.
  • the length of the heating part is shorter than 2 m (minimum heating length Lmin)
  • the peak of the measured temperature distribution is observed lower than the actual temperature
  • the length of the heating part is 2 m or more. Shows that the peak of the measured temperature distribution and the actual temperature almost coincide.
  • FIG. 7 is a diagram showing a transfer function (transfer function of the temperature measurement system) in the temperature distribution of FIG. 6 with the horizontal axis representing the distance from the heating center and the vertical axis representing the relative intensity.
  • the transfer function shown in FIG. 7 is obtained.
  • the measured temperature distribution is corrected (deconvolution) using an inverse function of the transfer function (inverse correction function)
  • inverse correction function a temperature distribution approximate to the actual temperature distribution (measured temperature distribution after correction) is obtained.
  • the transfer function is substantially equal to the impulse response characteristic of the temperature measurement system (temperature distribution measuring device + optical fiber).
  • the transfer function of the temperature measurement system changes according to the distance because the optical fiber 24 has a group delay characteristic. Therefore, the transfer function cannot be uniquely defined over the entire length of the optical fiber 24. However, if the distance is short, the transfer function can be defined assuming that the loss and delay of the optical signal are uniform. Therefore, it is important to set in advance a transfer function to be used for the correction calculation for each predetermined region in the length direction of the optical fiber 24 (for example, every 1000 m).
  • the temperature measurement point (hereinafter simply referred to as “measurement point”) can be determined in consideration of the sampling frequency of the measurement device, regardless of the minimum heating length. Considering a practical measurement time such as the time required for averaging in the measurement apparatus, the interval between the measurement points can be about 10 cm to 50 cm.
  • FIG. 8 is a schematic diagram showing a computer room in a data center. As shown in FIG. 8, the room of the computer room is divided into a device installation area 10a and a free access floor 10b. A plurality of racks (server racks) 11 are arranged in the device installation area 10a, and each rack 11 stores a plurality of computers (blade servers, etc.). The equipment installation area 10a is provided with a management space necessary for management of a passage and a computer for the administrator to pass.
  • the free access floor 10b is provided under the floor of the equipment installation area 10a. On the free access floor 10b, a power cable, a communication cable, and the like connected to each rack 11 are arranged.
  • the temperature of the free access floor 10b is kept constant by the cold air supplied from the air conditioner 19.
  • a ventilation opening (grill) 12 is provided on the floor of the equipment installation area 10 a, and cool air is sent from the free access floor 10 b to the front side (intake surface side) of the rack 11 through the ventilation opening 12. Cool down the calculator.
  • FIG. 9 is a diagram illustrating an example in which the optical fiber 24 is laid.
  • each rack 11 is provided with a first winding part 24x and a second winding part 24y in which the optical fiber 24 is wound with a minimum heating length Lmin or longer, and the first winding part 24y is provided.
  • the winding part 24x and the second winding part 24y are arranged on the free access floor 10b.
  • the optical fiber 24 between the 1st winding part 24x and the 2nd winding part 24y is laid so that the inside of the rack 11 may reciprocate from the bottom to the top.
  • the temperature distribution measuring device 20 is affected by the temperature in the rack 11.
  • the actual temperature of the free access floor 11 can be measured. Further, the temperature in the rack 11 does not become lower than the temperature of the free access floor 10b.
  • the temperature distribution in the rack 11 can be accurately obtained by correcting the measurement temperature at each measurement point in the rack 11 with the measurement temperature of the free access floor 10b as a reference (patent) References 1 and 2).
  • FIG. 10 shows the actual temperature distribution, the temporary measured temperature distribution, and the true measured temperature distribution.
  • the actual temperature distribution is the actual temperature at each measurement point
  • the temporary measured temperature distribution is a temperature distribution (temperature distribution before correction) obtained from the ratio of Stokes light and anti-Stokes light.
  • the true measured temperature distribution is a temperature distribution after a correction calculation is performed on the temporary measured temperature distribution using a transfer function.
  • the true measured temperature distribution almost coincides with the actual temperature distribution.
  • the temperature on the vertical axis is the difference from the reference temperature (the temperature of the free access floor 10b).
  • a transfer function is used to correct the provisional measurement temperature distribution to obtain a true measurement temperature distribution.
  • the transfer function varies depending on the total length of the optical fiber and the position in the length direction.
  • FIGS. 13A, 13B, and 14 are diagrams illustrating transfer functions at respective positions (105.75 m, 1086.25 m, and 2241.75 m) of an optical fiber having a total length of 2347 m. From FIG. 11 to FIG. 14, it can be seen that the transfer function varies depending on the total length of the optical fiber and the position in the length direction.
  • FIG. 15 is a diagram showing a temporary measured temperature distribution and a temperature distribution corrected by using a transfer function, with the horizontal axis representing the position in the length direction of the optical fiber and the vertical axis representing temperature.
  • an alternate long and short dash line shows an example of correction using an appropriate transfer function
  • a broken line shows an example of correction using an inappropriate transfer function.
  • the total length of the optical fiber is 7115 m
  • the transfer function shown in FIG. 11A is used as an appropriate transfer function.
  • the transfer function shown in FIG. 12B was used as an inappropriate transfer function.
  • the peak position of the temperature distribution corrected using an inappropriate transfer function is shifted by about 50 cm at the maximum from the temperature distribution corrected using an appropriate transfer function.
  • a transfer function is obtained in advance corresponding to the total length of the optical fiber and the position in the length direction, and stored in the temperature distribution measuring unit 27 as a database.
  • a plurality of optical fibers having different overall lengths are prepared, and a transfer function is experimentally obtained for each optical fiber every 1000 m.
  • the transfer function can be obtained from the measured temperature distribution obtained by heating the optical fiber so as to have a step-type temperature distribution as described above.
  • FIG. 16 is a diagram showing an example of a database of transfer functions obtained in this way.
  • H 4000,3000 (p) is a transfer function at a position of 3000 m of an optical fiber having a total length L of 4000 m (a position away from the light source side end of the optical fiber by 3000 m in the length direction). Further, (p) indicates elements (points in FIGS. 11 to 14) constituting the transfer function. If it is difficult to experimentally determine the transfer function at the end of the optical fiber, a transfer function at a position away from the end by a predetermined distance ( ⁇ ) may be obtained.
  • the values L + and L ⁇ and X + and X ⁇ in the database closest to L are determined. For example, when the total length L of the changed optical fiber is 3700 m and the position X in the length direction of the optical fiber is 2600 m, L + is 4000 m, L ⁇ is 3000 m, X + is 3000 m, and X ⁇ is 2000 m.
  • the length of the optical fiber having the total length L + is calculated using the following equation (2).
  • the transfer function H ′ L +, X (p) at the position X in the direction is calculated.
  • an operator inputs data such as the total length of the optical fiber 24 and the position to be changed (position in the longitudinal direction of the optical fiber) to the temperature distribution measuring device 20 via the input device.
  • the temperature distribution measuring unit 27 of the temperature distribution measuring device 20 calculates a transfer function of a predetermined region (for example, every 1000 m) from the input data, and corrects the measured temperature distribution of the predetermined region by the transfer function. Set as the transfer function used for.
  • the temperature distribution measuring device 20 can know the total length of the optical fiber based on, for example, the time until the laser light reaches the end of the optical fiber and the time until no backscattered light is detected. Therefore, when the calculation of the transfer function is instructed by the operator, the temperature distribution measuring device 20 automatically acquires the total length of the optical fiber, calculates the transfer function in a predetermined region (for example, every 1000 m), You may make it set the transfer function used for correction
  • an appropriate transfer function can be easily set when the total length of the optical fiber or the measurement point changes due to the addition or removal of the rack. Thereby, temperature distribution measurement with high accuracy can be continuously performed.
  • the temperature distribution measurement in the computer room of the data center has been described.
  • the disclosed technology can also be applied to the temperature distribution measurement in facilities such as office buildings and factories.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】光ファイバの全長の変化に応じて適切な伝達関数を容易に設定できる温度分布測定装置及び温度分布測定方法を提供する。 【解決手段】温度分布測定装置20は、光ファイバ24に光学的に接続されるレーザ光源21と、光ファイバ24内で後方散乱した光を検出する光検出器26と、光検出器26の出力から得られる仮の測定温度分布に対し伝達関数を用いた補正計算を行って真の測定温度分布とする温度分布測定部27とを有する。また、温度分布測定部27は、光ファイバ24の全長毎及び長さ方向の位置毎に設定された伝達関数のデータを記憶している。そして、温度分布測定部27は、光ファイバ24の長さが変更されると、伝達関数のデータを用いて補正計算に使用する伝達関数を変更する。

Description

温度分布測定装置及び温度分布測定方法
 本発明は、光ファイバを用いた温度分布測定装置及び温度分布測定方法に関する。
 近年、高度情報化社会の到来にともなって計算機で多量のデータが扱われるようになり、データセンター等の施設において多数の計算機を同一室内に設置して一括管理することが多くなっている。このような状況下では、計算機から多量の熱が発生して誤動作や故障の原因となるため、計算機を冷却する手段が必要となる。そのため、通常データセンターでは、計算機内で発生した熱をファン(送風機)により計算機の外に排出するとともに、空調機(エアコン)を使用して室内の温度を調整している。
 ところで、計算機の稼働状態によって計算機から発生する熱量は大幅に変動する。熱による計算機の誤動作や故障を確実に防止するために、例えば計算機から発生する熱の最大量に応じた冷却能力を有する空調機を使用し、その空調機を常に最大能力で稼働させることが考えられる。しかし、冷却能力が大きい空調機をその最大能力で常時稼働させることは、ランニングコストが高くなるというだけでなく、省エネルギー及びCO2削減の観点からも好ましくない。従って、各ラックから発生する熱量に応じて空調設備を効率的に制御することが望まれる。
 空調設備を効率的に制御するためには、データセンター内に設置された各ラックの温度をリアルタイムで測定することが必要になる。従来から、データセンターのように複数の熱源を有するエリアの温度分布を測定する際に、温度センサとして光ファイバを用いることが提案されている。
特開2009-265077号公報 特開2010-160081号公報
 光ファイバの全長の変化に応じて適切な伝達関数を容易に設定できる温度分布測定装置及び温度分布測定方法を提供することを目的とする。
 開示の技術の一観点によれば、光ファイバに光学的に接続されるレーザ光源と、前記光ファイバ内で後方散乱した光を検出する光検出器と、前記光検出器の出力から得られる仮の測定温度分布に対し伝達関数を用いた補正計算を行って真の測定温度分布とする温度分布測定部とを有し、前記温度分布測定部は、前記光ファイバの全長毎及び長さ方向の位置毎に設定された伝達関数のデータを記憶している温度分布測定装置が提供される。
 開示の技術の他の一観点によれば、レーザ光源から光ファイバにレーザ光を出力し、前記光ファイバ内で後方散乱した光を検出して前記光ファイバの長さ方向の仮の測定温度分布を取得し、前記仮の測定温度分布に対し伝達関数を用いた補正計算を行って真の測定温度分布とする温度分布測定装置の温度分布測定方法であって、前記温度測定装置は、前記光ファイバの全長毎及び長さ方向の位置毎に設定された伝達関数のデータを記憶し、前記レーザ光源に光学的に接続された光ファイバの長さが変更されると前記伝達関数のデータを用いて前記補正計算に使用する伝達関数を変更する温度分布測定方法が提供される。
 上記一観点によれば、光ファイバの全長の変化に応じて適切な伝達関数を容易に設定できる。これにより、温度分布を高精度に測定することができる。
図1は、実施形態に係る温度分布測定装置の構成を示す模式図である。 図2は、後方散乱光のスペクトルを示す図である。 図3は、ラマン散乱光の強度の時系列分布の一例を示す図である。 図4は、図3のラマン散乱光の強度の時系列分布を基にI1/I2比を時間毎に計算し、且つ図3の横軸(時間)を距離に換算し、縦軸(信号強度)を温度に換算した結果を示す図である。 図5は、最小加熱長を説明する図(その1)である。 図6は、最小加熱長を説明する図(その2)である。 図7は、伝達関数の一例を示す図である。 図8は、データセンターの計算機ルームを示す模式図である。 図9は、光ファイバの敷設例を示す図である。 図10は、実温度分布、測定温度分布及び補正後の温度分布の例を示す図である。 図11は、全長が7115mの光ファイバの各位置毎の伝達関数を例示した図(その1)である。 図12は、全長が7115mの光ファイバの各位置毎の伝達関数を例示した図(その2)である。 図13は、全長が2347mの光ファイバの各位置毎の伝達関数を例示した図(その1)である。 図14は、全長が2347mの光ファイバの各位置毎の伝達関数を例示した図(その2)である。 図15は、測定温度分布と、伝達関数を用いて補正した温度分布とを示す図である。 図16は、光ファイバの全長毎及び長さ方向の位置毎の伝達関数のデータ(データベース)の一例を示す図である。
 以下、実施形態について説明する前に、実施形態の理解を容易にするための予備的事項について説明する。
 光ファイバを温度センサとして使用する場合、位置分解能が低いため、温度測定箇所(測定ポイント)が密に存在する場所では温度分布を精度よく且つ効率的に測定することは困難である。そこで、本願発明者らは、特許文献1(特開2009-265077号公報)及び特許文献2(特開2010-160081号公報)等において、温度分布測定装置により取得した光ファイバの長さ方向の温度分布を、伝達関数を用いて補正することを提案した。これにより、密に配置された測定ポイントの温度を精度よく且つ効率的に測定することが可能になる。
 ところで、伝達関数は、光源からの距離(光ファイバの長さ方向に沿った距離)や光ファイバの全長により変化する。一方、データセンターでは、需要に応じてサーバラックの増設や撤去が行われ、それにともなって光ファイバの敷設経路が変更されたり、光ファイバの全長が変化したりする。従って、それらの工事にともなって、新たに伝達関数を設定することが重要になる。
 以下の実施形態では、光ファイバの全長の変化に応じて適切な伝達関数を容易に設定できる温度分布測定装置及び温度分布測定方法について説明する。
 (実施形態)
 図1は、実施形態に係る温度分布測定装置の構成を示す模式図である。また、図2は後方散乱光のスペクトルを示す図である。
 図1のように、本実施形態に係る温度分布測定装置20は、レーザ光源21と、レンズ22a,22bと、ビームスプリッタ23と、波長分離部25と、光検出器26と、温度分布測定部27とを有し、光ファイバ24に接続して使用する。
 レーザ光源21からは、所定のパルス幅のレーザ光が一定の周期で出力される。このレーザ光は、レンズ22a、ビームスプリッタ23及びレンズ22bを通って光ファイバ24の光源側端部から光ファイバ24内に進入する。なお、図1において、24aは光ファイバ24のクラッドを示し、24bは光ファイバ24のコアを示している。
 光ファイバ24内に進入した光の一部は、光ファイバ24を構成する分子により後方散乱される。後方散乱光には、図2のように、レイリー(Rayleigh)散乱光と、ブリルアン(Brillouin)散乱光と、ラマン(Raman)散乱光とが含まれる。レイリー散乱光は入射光と同一波長の光であり、ブリルアン散乱光及びラマン散乱光は入射波長からシフトした波長の光である。
 ラマン散乱光には、入射光よりも長波長側にシフトしたストークス光と、入射光よりも短波長側にシフトした反ストークス光とがある。ストークス光及び反ストークス光のシフト量はレーザ光の波長や光ファイバ24を構成する物質等に依存するが、通常50nm程度である。また、ストークス光及び反ストークス光の強度はいずれも温度により変化するが、ストークス光は温度による変化量が小さく、反ストークス光は温度による変化量が大きい。すなわち、ストークス光は温度依存性が小さく、反ストークス光は温度依存性が大きいということができる。
 これらの後方散乱光は、図1のように、光ファイバ24を戻って光源側端部から出射する。そして、レンズ22bを透過し、ビームスプリッタ23により反射されて、波長分離部25に進入する。
 波長分離部25は、ビームスプリッタ31a,31b,31cと、光学フィルタ33a,33b,33cと、集光レンズ34a,34b,34cとを有する。ビームスプリッタ31a,31b,31cは、波長に応じて光を透過又は反射する。光学フィルタ33a,33b,33cは特定の波長の光のみを透過し、集光レンズ34a,34b,34cは光学フィルタ33a,33b,33cを透過した光をそれぞれ光検出器26の受光部26a,26b,26cに集光する。
 波長分離部25に入射した光は、ビームスプリッタ31a,31b,31c及び光学フィルタ33a,33b,33cによりレイリー散乱光、ストークス光及び反ストークス光に分離され、光検出器26の受光部26a,26b,26cに入力される。その結果、光検出器26からは、レイリー散乱光、ストークス光及び反ストークス光の強度に応じた信号が出力される。
 温度分布測定部27は、コンピュータを含んで構成される。この温度分布測定部27は、光検出器26から出力される信号に基づいて、光ファイバ24の長さ方向の温度分布を取得する。また、温度分布測定部27は、後述するように光ファイバ24の全長と各領域(光ファイバ24の長さ方向に分割された領域)毎の伝達関数のデータベースを記憶しており、光ファイバ24の敷設状態が変更されたときに、伝達関数の補正計算を行う。
 図3は、横軸に時間をとり、縦軸に光検出器26の受光部26a,26b,26cから出力される信号強度をとって、ラマン散乱光の強度の時系列分布の一例を示す図である。光ファイバ24にレーザパルスを入射した直後から一定の間、光検出器26にはストークス光及び反ストークス光が検出される。光ファイバ24の全長にわたって温度が均一の場合、レーザパルスが光ファイバ24に入射した時点を基準とすると、信号強度は時間の経過とともに減少する。この場合、横軸の時間は光ファイバ24の光源側端部から後方散乱が発生した位置までの距離を示しており、信号強度の経時的な減少は光ファイバ24による光の減衰を示している。
 光ファイバ24の長さ方向にわたって温度が均一でない場合、例えば長さ方向に沿って高温部及び低温部が存在する場合は、ストークス光及び反ストークス光の信号強度は一様に減衰するのではなく、図3のように信号強度の経時変化を示す曲線に山及び谷が現れる。図3において、ある時間tにおける反ストークス光の強度をI1、ストークス光の強度をI2とする。
 図4は、図3のラマン散乱光の強度の時系列分布を基にI1/I2比を時間毎に計算し、且つ図3の横軸(時間)を距離に換算し、縦軸(信号強度)を温度に換算した結果を示す図である。この図4のように、反ストークス光とストークス光との強度比(I1/I2)を計算することにより、光ファイバ24の長さ方向における温度分布を測定することができる。
 なお、後方散乱が発生した位置におけるラマン散乱光(ストークス光及び反ストークス光)の強度は温度により変化するが、レイリー散乱光の強度は温度に依存しないと考えられる。従って、レイリー散乱光の強度から後方散乱が発生した位置を特定し、その位置に応じて光検出器26で検出したストークス光及び反ストークス光の強度を補正することが好ましい。
 以下、図5,図6を参照して最小加熱長について説明する。
 レーザ光源21から出力されるレーザ光のパルス幅t0を10nsec、真空中の光の速度cを3×108m/sec、光ファイバ24のコア24bの屈折率nを1.5とする。この場合、光ファイバ24内におけるレーザ光のパルス幅Wは、下記(1)式のように約2mとなる。
Figure JPOXMLDOC01-appb-M000001
 このパルス幅分のレーザ光の後方散乱光は光検出器26に1つの信号として取り込まれ、光検出器26はこのパルス幅分の信号の積算値から温度を検出する。そのため、光ファイバのうちパルス幅Wに相当する長さに均一に熱を加えないと正確な温度計測ができない。以下、正確な温度計測に必要な最小加熱長をLminという。
 図5(a)に示す実温度分布で光ファイバ24を加熱した場合、すなわち光ファイバ24のうち長さLの部分のみを均一に加熱した場合、計測温度分布は図5(b)のようにガウシアン(正規分布)的な曲線を描く。以下、図5(a)のような温度分布を、ステップ型温度分布という。
 図6は、横軸に光ファイバの長さ方向の位置をとり、縦軸に温度をとって、温度が25℃の環境に光ファイバを配置し、光源から5mの位置を中心に80℃の熱をステップ型温度分布となるように印加した場合の計測温度分布を示す図である。ここで、加熱部の長さはそれぞれ40cm、1m、1.6m、2.2mとしている。この図6からわかるように、加熱部の長さが2m(最小加熱長Lmin)よりも短い場合は計測温度分布のピークは実温度よりも低く観測され、加熱部の長さが2m以上の場合は計測温度分布のピークと実温度とがほぼ一致する。
 図7は、横軸に加熱中心からの距離をとり、縦軸に相対強度をとって、図6の温度分布における伝達関数(温度計測系の伝達関数)を示す図である。図7の伝達関数を図6のステップ型温度分布に対し畳み込み(コンボリューション)することで、図6の計測温度分布となる。逆に、計測温度分布に対し伝達関数の逆関数(逆補正関数)を用いて補正(デコンボリューション)を行うと、実温度分布に近似の温度分布(補正後の計測温度分布)が得られる。なお、伝達関数は、温度計測系(温度分布測定装置+光ファイバ)のインパルス応答特性にほぼ等しいものとなる。
 温度計測系の伝達関数は、光ファイバ24が群遅延特性を有しているため、距離に応じて変化する。そのため、光ファイバ24の全長にわたって伝達関数を一義的に定義することはできない。しかし、短い距離範囲であれば、光信号の損失や遅延は一様であるとみなして伝達関数を定義することができる。従って、予め光ファイバ24の長さ方向の一定の領域毎(例えば1000m毎)に、補正計算に使用する伝達関数を設定しておくことが重要である。
 一方、温度測定ポイント(以下、単に「測定ポイント」という)は最小加熱長と関係なく、測定装置のサンプリング周波数等を考慮して決定することができる。測定装置において平均化に要する時間等の実用的な計測時間を考慮すると、測定ポイントの間隔は10cm~50cm程度にすることが可能である。
 図8は、データセンターの計算機ルームを示す模式図である。この図8のように、計算機ルームの室内は、機器設置エリア10aと、フリーアクセスフロア10bとに分離されている。機器設置エリア10aには複数のラック(サーバラック)11が配置されており、各ラック11にはそれぞれ複数の計算機(ブレードサーバ等)が収納されている。また、機器設置エリア10aには、管理者が通行するための通路や計算機の管理に必要な管理スペースが設けられている。
 フリーアクセスフロア10bは、機器設置エリア10aの床下に設けられている。このフリーアクセスフロア10bには、各ラック11に接続される電力ケーブルや通信ケーブル等が配置されている。
 フリーアクセスフロア10bの温度は、空調機19から供給される冷風により一定に維持される。機器設置エリア10aの床には通風口(グリル)12が設けられており、この通風口12を介してフリーアクセスフロア10bからラック11の前面側(吸気面側)に冷風を送り、ラック11内の計算機を冷却する。
 図9は、光ファイバ24の敷設例を示す図である。この例では、各ラック11毎に、光ファイバ24を最小加熱長Lmin又はそれ以上の長さで巻回した第1の巻回部24x及び第2の巻回部24yを設け、それらの第1の巻回部24x及び第2の巻回部24yをフリーアクセスフロア10bに配置している。そして、第1の巻回部24xと第2の巻回部24yとの間の光ファイバ24を、ラック11内を下から上に往復するように敷設している。
 このように各ラック11間のフリーアクセスフロア10bに最小加熱長Lminの2倍以上の長さの光ファイバ24を配置した場合、温度分布測定装置20は、ラック11内の温度の影響を受けることなく、フリーアクセスフロア11の実温度を測定することができる。また、ラック11内の温度はフリーアクセスフロア10bの温度よりも低くなることはない。
 このような条件下では、フリーアクセスフロア10bの測定温度を基準とし、ラック11内の各測定ポイントの測定温度を補正することで、ラック11内の温度分布を精度よく取得することができる(特許文献1,2参照)。
 図10に、実温度分布、仮の測定温度分布及び真の測定温度分布を示す。ここで、実温度分布は各測定ポイントにおける実温度であり、仮の測定温度分布はストークス光及び反ストークス光の比から得られる温度分布(補正前の温度分布)である。また、真の測定温度分布は、伝達関数を用いて仮の測定温度分布に対し補正計算を行った後の温度分布である。
 この図10から、真の測定温度分布は、実温度分布とほぼ一致していることがわかる。なお、図10において、縦軸の温度は基準温度(フリーアクセスフロア10bの温度)との差である。
 ところで、仮の測定温度分布を補正して真の測定温度分布を得るために伝達関数を使用するが、前述したように伝達関数は光ファイバの全長や長さ方向の位置により変化する。
 図11(a),(b)及び図12(a),(b)は、全長が7115mの光ファイバの各位置(106.75m、4100.25m、4873.75m、6028.25m)における伝達関数を例示した図である。また、図13(a),(b)及び図14は、全長が2347mの光ファイバの各位置(105.75m、1086.25m、2241.75m)における伝達関数を例示した図である。これらの図11~図14から、光ファイバの全長や長さ方向の位置により、伝達関数が変化することがわかる。
 図15は、横軸に光ファイバの長さ方向の位置をとり、縦軸に温度をとって、仮の測定温度分布と、伝達関数を用いて補正した温度分布とを示す図である。図中一点鎖線は適切な伝達関数を用いて補正した例を示し、破線は不適切な伝達関数を用いて補正した例を示している。ここで、光ファイバの全長は7115mであり、適切な伝達関数として図11(a)に示す伝達関数を使用した。また、不適切な伝達関数として、図12(b)に示す伝達関数を使用した。
 この図15から、不適切な伝達関数を用いると温度分布を精度よく測定できないことがわかる。この例では、不適切な伝達関数を用いて補正した温度分布は、適切な伝達関数を用いて補正した温度分布に対し、ピーク位置が最大50cm程度ずれている。
 そこで、本実施形態では、予め光ファイバの全長と長さ方向の位置とに対応させて伝達関数を求め、データベースとして温度分布測定部27に記憶しておく。例えば全長が相互に異なる複数の光ファイバを用意し、各光ファイバに対して1000m毎に伝達関数を実験的に求めておく。伝達関数は、前述したようにステップ型温度分布となるように光ファイバを加熱し、そのときに得られる測定温度分布から求めることができる。
 図16は、そのようにして得た伝達関数のデータベースの一例を示す図である。この図16において、例えばH4000,3000(p)は、全長Lが4000mの光ファイバの3000mの位置(光ファイバの光源側端部から長さ方向に3000m離れた位置)における伝達関数である。また、(p)は、伝達関数を構成する要素(図11~図14中の点)を示している。なお、光ファイバの端部の伝達関数を実験的に求めることが困難な場合、端部から所定の距離(α)だけ離れた位置の伝達関数を求めればよい。
 ここで、全長がLの光ファイバの位置Xにおける伝達関数を線形近似により求める場合について説明する。
 まず、図16(データベース)から、Lに最も近いデータベース中の値L+及びL-、並びにX+及びX-を決定する。例えば、変更後の光ファイバの全長Lが3700m、光ファイバの長さ方向の位置Xが2600mの場合、L+は4000m、L-は3000m、X+は3000m、X-は2000mとなる。
 次に、図16(データベース)中の伝達関数HL+,X+(p)と伝達関数HL+,X-(p)から、下記(2)式を用いて全長がL+の光ファイバの長さ方向の位置Xにおける伝達関数H’L+,X(p)を算出する。
Figure JPOXMLDOC01-appb-M000002
 これと同様に、図16(データベース)中の伝達関数HL-,X+(p)と伝達関数HL-,X-(p)とから、下記(3)式を用いて全長がL-の光ファイバの長さ方向の位置Xにおける伝達関数H’L-,X(p)を算出する。
Figure JPOXMLDOC01-appb-M000003
 次いで、(2)式及び(3)式により求めたH’L+,X(p)とH’L-X(p)とから、下記(4)式により全長がLの光ファイバの長さ方向の位置Xにおける伝達関数H’L,X(p)を算出する。
Figure JPOXMLDOC01-appb-M000004
 このようにして、任意の全長の光ファイバの任意の位置における伝達関数H’L,X(p)を算出することができる。
 上述の伝達関数の計算は、ラック11の増設や撤去にともなう光ファイバ24の敷設変更工事が完了した後に、作業者の指示により行う。
 例えば、作業者が、光ファイバ24の全長や変更すべき位置(光ファイバの長手方向の位置)等のデータを入力装置を介して温度分布測定装置20に入力する。これにより、温度分布測定装置20の温度分布測定部27は、その入力されたデータから所定の領域(例えば1000m毎)の伝達関数を計算し、その伝達関数を所定の領域の測定温度分布の補正に使用する伝達関数として設定する。
 また、温度分布測定装置20は、例えばレーザ光が光ファイバの端部に到達するまでの時間や後方散乱光が検出されなくなるまでの時間により光ファイバの全長を知ることができる。従って、作業者により伝達関数の計算が指示されると、温度分布測定装置20が自動的に光ファイバの全長を取得し、所定の領域(例えば1000m毎)の伝達関数を計算して、所定の領域の温度分布の補正に使用する伝達関数を設定するようにしてもよい。
 上述したように、本実施形態によれば、ラックの増設や撤去等にともなって光ファイバの全長や測定ポイントが変化した場合に、適切な伝達関数を容易に設定することができる。これにより、精度が高い温度分布測定を継続して行うことができる。
 なお、本実施形態ではデータセンターの計算機ルームの温度分布測定について説明したが、開示の技術はオフィスビルや工場等の施設の温度分布測定に適用することもできる。
                                                                                

Claims (11)

  1.  光ファイバに光学的に接続されるレーザ光源と、
     前記光ファイバ内で後方散乱した光を検出する光検出器と、
     前記光検出器の出力から得られる仮の測定温度分布に対し伝達関数を用いた補正計算を行って真の測定温度分布とする温度分布測定部とを有し、
     前記温度分布測定部は、前記光ファイバの全長毎及び長さ方向の位置毎に設定された伝達関数のデータを記憶していることを特徴とする温度分布測定装置。
  2.  前記温度分布測定部は、前記レーザ光源に接続される前記光ファイバの全長が変更されると、前記伝達関数のデータを用いて前記補正計算に使用する伝達関数を変更することを特徴とする請求項1に記載の温度分布測定装置。
  3.  前記補正計算に使用する伝達関数は、線形近似により算出することを特徴とする請求項2に記載の温度分布測定装置。
  4.  前記温度分布測定部は、前記仮の測定温度分布に対し前記伝達関数の逆関数を用いて前記真の測定温度分布を算出することを特徴とする請求項1乃至3のいずれか1項に記載の温度分布測定装置。
  5.  レーザ光源から光ファイバにレーザ光を出力し、前記光ファイバ内で後方散乱した光を検出して前記光ファイバの長さ方向の仮の測定温度分布を取得し、前記仮の測定温度分布に対し伝達関数を用いた補正計算を行って真の測定温度分布とする温度分布測定装置の温度分布測定方法であって、
     前記温度測定装置は、前記光ファイバの全長毎及び長さ方向の位置毎に設定された伝達関数のデータを記憶し、前記レーザ光源に光学的に接続された光ファイバの長さが変更されると前記伝達関数のデータを用いて前記補正計算に使用する伝達関数を変更することを特徴とする温度分布測定方法。
  6.  前記補正計算に使用する伝達関数は、線形近似により算出することを特徴とする請求項5に記載の温度分布測定方法。
  7.  前記レーザ光源に光学的に接続された光ファイバは、温度が一定に維持される場所に一定長さ以上巻回した巻回部を有することを特徴とする請求項5又は6に記載の温度分布測定方法。
  8.  前記レーザ光源に光学的に接続された光ファイバは、計算機が収納されたラック内に敷設されることを特徴とする請求項5乃至7のいずれか1項に記載の温度分布測定方法。
  9.  前記温度分布測定装置は、入力された光ファイバの全長及び長さ方向の位置に応じて前記補正計算に使用する伝達関数を変更することを特徴とする請求項5乃至8のいずれか1項に記載の温度分布測定方法。
  10.  前記温度分布測定装置は、前記レーザ光源から出射されたレーザ光が前記光ファイバの端部に到達するまでの時間又は前記後方散乱光が検出されなくなるまでの時間から前記光ファイバの全長を取得して前記補正計算に使用する伝達関数を変更することを特徴とする請求項5乃至8のいずれか1項に記載の温度分布測定方法。
  11.  前記温度分布測定装置は、前記仮の測定温度分布に対し前記伝達関数の逆関数を用いて前記真の測定温度分布を算出することを特徴とする請求項5乃至10のいずれか1項に記載の温度分布測定方法。
                                                                                    
PCT/JP2011/068503 2011-08-15 2011-08-15 温度分布測定装置及び温度分布測定方法 WO2013024525A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013528877A JP5673830B2 (ja) 2011-08-15 2011-08-15 温度分布測定装置及び温度分布測定方法
EP11870967.4A EP2746741B1 (en) 2011-08-15 2011-08-15 Temperature distribution measurement device and method
PCT/JP2011/068503 WO2013024525A1 (ja) 2011-08-15 2011-08-15 温度分布測定装置及び温度分布測定方法
CN201180072850.7A CN103733037B (zh) 2011-08-15 2011-08-15 温度分布测定装置以及温度分布测定方法
US14/171,880 US9797782B2 (en) 2011-08-15 2014-02-04 Temperature distribution measurement apparatus and temperature distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068503 WO2013024525A1 (ja) 2011-08-15 2011-08-15 温度分布測定装置及び温度分布測定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/171,880 Continuation US9797782B2 (en) 2011-08-15 2014-02-04 Temperature distribution measurement apparatus and temperature distribution measurement method

Publications (1)

Publication Number Publication Date
WO2013024525A1 true WO2013024525A1 (ja) 2013-02-21

Family

ID=47714868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068503 WO2013024525A1 (ja) 2011-08-15 2011-08-15 温度分布測定装置及び温度分布測定方法

Country Status (5)

Country Link
US (1) US9797782B2 (ja)
EP (1) EP2746741B1 (ja)
JP (1) JP5673830B2 (ja)
CN (1) CN103733037B (ja)
WO (1) WO2013024525A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152540B2 (ja) * 2010-06-22 2013-02-27 横河電機株式会社 光ファイバ温度分布測定装置
GB2523319B (en) * 2014-02-19 2017-08-16 Ap Sensing Gmbh Distributed optical sensing with two-step evaluation
CN105698698B (zh) * 2014-11-26 2020-01-21 北京智朗芯光科技有限公司 一种单透镜型检测晶片基底二维形貌和温度的装置
DE102014019365B4 (de) * 2014-12-22 2021-02-18 Abb Schweiz Ag Vorrichtung zur Messung der Temperatur eines Mediums durch eine Wandung
CN104864978A (zh) * 2015-04-27 2015-08-26 北京德利迅达科技有限公司 数据中心机房的光纤测温系统
CN113155309B (zh) * 2021-03-09 2023-06-06 电子科技大学 一种分布式光纤拉曼测温系统中光纤色散的补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135743A (ja) * 1989-10-20 1991-06-10 Toshiba Corp 分布型光ファイバセンサ
JPH0450624A (ja) * 1990-06-12 1992-02-19 Asahi Glass Co Ltd 信号処理方法及び分布型光ファイバーセンサー
JP2009265077A (ja) 2008-04-02 2009-11-12 Fujitsu Ltd 温度計測システム及び温度計測方法
JP2010107279A (ja) * 2008-10-29 2010-05-13 Fujitsu Ltd 温度測定方法
JP2010160081A (ja) 2009-01-09 2010-07-22 Fujitsu Ltd 温度測定システム
WO2010125712A1 (ja) * 2009-05-01 2010-11-04 富士通株式会社 温度測定システム及び温度測定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769223B2 (ja) * 1989-06-08 1995-07-26 旭硝子株式会社 温度測定方法および分布型光ファイバー温度センサー
JPH07115895B2 (ja) * 1990-07-19 1995-12-13 株式会社ネオテック 生コンクリート等の洗い残渣再利用法及びその装置
JP3110119B2 (ja) * 1991-12-24 2000-11-20 旭硝子株式会社 分布型光ファイバーセンサー
KR0133488B1 (en) * 1993-01-06 1998-04-23 Toshiba Kk Temperature distribution detector using optical fiber
JPH08247858A (ja) * 1995-03-07 1996-09-27 Toshiba Corp 光温度分布センサ及び温度分布測定方法
JP3760649B2 (ja) * 1998-12-11 2006-03-29 富士電機システムズ株式会社 物理量測定システム
GB2408571B (en) * 2003-11-26 2006-07-19 Sensor Highway Ltd Apparatus and methods for distributed temperature sensing
US8757870B2 (en) * 2007-03-22 2014-06-24 Baker Hughes Incorporated Location dependent calibration for distributed temperature sensor measurements
CA2692804C (en) * 2007-07-18 2017-01-24 Sensortran, Inc. Dual source auto-correction in distributed temperature systems
CN101226051B (zh) * 2008-01-30 2010-07-14 哈尔滨师范大学 温度自动补偿光纤光栅动态应变测量方法及其系统
US8705023B2 (en) * 2010-03-22 2014-04-22 Lg Innotek Co., Ltd. Testing apparatus and method for testing light emitting diode lamp
JP5664658B2 (ja) * 2010-10-29 2015-02-04 富士通株式会社 温度測定システム及び温度測定方法
JP5825352B2 (ja) * 2011-08-31 2015-12-02 富士通株式会社 温度分布測定システム、温度分布測定装置及び温度分布測定方法
EP2913645B1 (en) * 2012-10-23 2017-03-22 Fujitsu Limited Abnormality detecting system and abnormality detecting method
US9645018B2 (en) * 2013-02-19 2017-05-09 Chung Lee Method and apparatus for auto-correcting the distributed temperature sensing system
JP5742861B2 (ja) * 2013-02-28 2015-07-01 横河電機株式会社 光ファイバ温度分布測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135743A (ja) * 1989-10-20 1991-06-10 Toshiba Corp 分布型光ファイバセンサ
JPH0450624A (ja) * 1990-06-12 1992-02-19 Asahi Glass Co Ltd 信号処理方法及び分布型光ファイバーセンサー
JP2009265077A (ja) 2008-04-02 2009-11-12 Fujitsu Ltd 温度計測システム及び温度計測方法
JP2010107279A (ja) * 2008-10-29 2010-05-13 Fujitsu Ltd 温度測定方法
JP2010160081A (ja) 2009-01-09 2010-07-22 Fujitsu Ltd 温度測定システム
WO2010125712A1 (ja) * 2009-05-01 2010-11-04 富士通株式会社 温度測定システム及び温度測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746741A4 *

Also Published As

Publication number Publication date
EP2746741A1 (en) 2014-06-25
US20140146850A1 (en) 2014-05-29
EP2746741B1 (en) 2016-11-16
JP5673830B2 (ja) 2015-02-18
CN103733037A (zh) 2014-04-16
JPWO2013024525A1 (ja) 2015-03-05
US9797782B2 (en) 2017-10-24
CN103733037B (zh) 2015-09-30
EP2746741A4 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5673830B2 (ja) 温度分布測定装置及び温度分布測定方法
JP5825352B2 (ja) 温度分布測定システム、温度分布測定装置及び温度分布測定方法
JP5218648B2 (ja) 温度測定システム及び温度測定方法
JP5664658B2 (ja) 温度測定システム及び温度測定方法
JP5435122B2 (ja) 環境測定システム及び環境測定方法
JP5613974B2 (ja) 温度測定方法
JP5228798B2 (ja) 温度計測システム及び温度計測方法
JP5136429B2 (ja) 温度測定システム
JP5353262B2 (ja) 温度計測方法、温度制御システム、風量測定装置及び発熱量測定装置
CN104864978A (zh) 数据中心机房的光纤测温系统
JP6791374B2 (ja) 温度測定装置、温度測定方法および温度測定プログラム
JP2016121958A (ja) 漏水検知システム、漏水検知装置及び漏水検知方法
JP5673226B2 (ja) 空調改善システム
JP6003296B2 (ja) 湿度検出装置及び空調システム
CN111103067A (zh) 基于单模光纤的电缆沟温度监测方法和系统
CN117856882A (zh) 光纤检测方法、电子设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528877

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011870967

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011870967

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE