WO2013023336A1 - 一种映射关系建立方法、信道质量信息的反馈方法和装置 - Google Patents

一种映射关系建立方法、信道质量信息的反馈方法和装置 Download PDF

Info

Publication number
WO2013023336A1
WO2013023336A1 PCT/CN2011/078324 CN2011078324W WO2013023336A1 WO 2013023336 A1 WO2013023336 A1 WO 2013023336A1 CN 2011078324 W CN2011078324 W CN 2011078324W WO 2013023336 A1 WO2013023336 A1 WO 2013023336A1
Authority
WO
WIPO (PCT)
Prior art keywords
cqi
comp transmission
offset
terminal device
mapping relationship
Prior art date
Application number
PCT/CN2011/078324
Other languages
English (en)
French (fr)
Inventor
王轶
张元涛
周华
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014524245A priority Critical patent/JP5850153B2/ja
Priority to KR1020147003881A priority patent/KR20140036322A/ko
Priority to EP11870937.7A priority patent/EP2744136A4/en
Priority to CN2011800694591A priority patent/CN103460630A/zh
Priority to PCT/CN2011/078324 priority patent/WO2013023336A1/zh
Publication of WO2013023336A1 publication Critical patent/WO2013023336A1/zh
Priority to US14/162,485 priority patent/US20140133345A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Definitions

  • the present invention relates to transmission techniques in a wireless communication system, and more particularly to a mapping relationship establishing method, a channel quality information feedback method and apparatus. Background technique
  • Coordinated multiple point (CoMP) transmission has attracted wide attention to enhance the throughput of the edge users of the cell.
  • Different transmission points of the same cell can be cooperatively transmitted, as shown in Figure 1(a); different transmission points of different cells can also be cooperatively transmitted, as shown in Figure 1(b).
  • the base station In order to select the optimal coordinated transmission point, the base station needs to obtain the downlink channel information of each transmission point to the user, so as to select an optimal one or more transmission points according to certain optimization criteria.
  • the downlink channel information generally includes channel quality information (CQI), a precoding matrix index (PMI), and a rank (Rank).
  • CQI channel quality information
  • PMI precoding matrix index
  • Rank rank
  • the base station In order to ensure backward compatible and more flexible scheduling, the base station needs to have the ability to roll back to the traditional cellular single-point transmission, so that the user not only reports the downlink channel information of the multi-point coordinated transmission when feeding back the downlink channel information.
  • the downlink channel information at the time of traditional single point transmission needs to be reported.
  • CoMP technology can be divided into two categories: Joint Processing (JP) and Multi-point Cooperative Scheduling/CSforming (C/CB).
  • JP Joint Processing
  • C/CB Multi-point Cooperative Scheduling/CSforming
  • the feedback information of users is different, but they need to feed back the CQI sent by traditional single-point (Non-CoMP, non-CoMP) and CQI sent by multi-point cooperation (CoMP).
  • the received signal can be represented by the formula (1):
  • W is a precoding matrix used by the cooperative transmission point b in JP transmission
  • H) is a channel for coordinating transmission point b to the user, and is data for transmission
  • n A is noise.
  • the user needs to separately feed back the precoding matrix W) of each transmitting point, and feed back the precoding matrix based on the reporting, and the quantized signal to noise ratio corresponding to the formula (1), that is, CQI.
  • the user also needs to feed back the CQI when only a single point is transmitted, that is, the quantized signal to noise ratio corresponding to the formula (2).
  • the values 0, 1, 2, 3, -4, -3, -2, and -1 of the offset column in Table 2 are preset offsets for comparison with the calculated offset.
  • the reference value is looked up in Table 2 based on the calculated offset amount, and the value of the corresponding differential CQI can be obtained by comparing with the offset reference value in Table 2. For example, according to Table 2, if the calculated offset is 4, the corresponding differential CQI is 3; if the calculated offset is 2, the corresponding differential CQI is 2; if the calculated offset is -5, the corresponding differential CQI is 4, and so on.
  • the CQI of the CQI is also required to be fed back to the CQI of the CoMP transmission, so that the feedback overhead is significantly increased, so that the efficiency of the PUCCH (Physical Uplink Control Channel) or the Physical Uplink Shared Channel (PUSCH) is degraded.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • An object of the embodiments of the present invention is to provide a method for establishing a mapping relationship between a differential CQI and an offset, and a method and apparatus for feeding back channel quality information of a coordinated multi-point system, so as to improve user throughput based on CoMP transmission.
  • a reasonable CQI feedback method is designed to reduce the CQI feedback overhead.
  • a method for establishing a mapping relationship between a differential CQI and an offset includes:
  • the terminal device determines a mapping relationship between the bit number indicating the differential CQI and each bit value indicating the differential CQI and the offset reference value according to the CoMP transmission manner, so as to perform the feedback of the differential CQI by using the mapping relationship;
  • the plurality of offset reference values corresponding to the bit values from small to large are a plurality of increasing integers.
  • a terminal device where the terminal device includes:
  • mapping unit that determines a mapping relationship between the bit number indicating the differential CQI and each of the bit values representing the differential CQI and the offset reference value according to the CoMP transmission manner, so as to perform the feedback of the differential CQI by using the mapping relationship;
  • the plurality of offset reference values corresponding to the bit values from small to large are a plurality of increasing integers.
  • a method for feeding back channel quality information is provided, where the method is applied to a terminal device configured to be a CoMP feedback mode, and the method includes: a first calculating step of calculating CQI information based on non-CoMP transmission and CQI information based on CoMP transmission according to the downlink pilot reference signal;
  • the differential CQI information based on the CoMP transmission, wherein the pre-established differential CQI and the offset In the mapping relationship, the plurality of offset reference values corresponding to the order of the differential CQI from small to large are a plurality of increasing integers;
  • the feedback step feeds back the non-CoMP transmission based CQI information and the CoMP transmission based differential CQI information to the base station.
  • a terminal device configured to be a CoMP feedback mode
  • the terminal device includes:
  • a first calculating unit which calculates CQI information based on non-CoMP transmission and CQI information based on CoMP transmission according to the downlink pilot reference signal;
  • a second calculating unit configured to calculate a CQI offset based on the CoMP transmission according to the CQI information based on the non-CoMP transmission calculated by the first calculating unit and the CQI information based on the CoMP transmission;
  • a determining unit determining a differential CQI information based on CoMP transmission according to a CoMP transmission-based CQI offset calculated by the second calculating unit and a pre-established differential CQI and offset mapping relationship; wherein, the pre-established In the differential CQI and offset mapping relationship, the plurality of offset reference values corresponding to the order of the differential CQI from small to large are a plurality of increasing integers;
  • a feedback unit that feeds back the CQI information based on the non-CoMP transmission calculated by the first calculating unit and the differential CQI information determined based on the CoMP transmission determined by the determining unit to the base station.
  • a computer readable program wherein when the program is executed in a terminal device, the program causes the computer to perform the aforementioned differential CQI and offset in the terminal device The mapping relationship is established.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the aforementioned mapping relationship between a differential CQI and an offset in a terminal device method.
  • a computer readable program wherein When the program is executed in the terminal device, the program causes the computer to perform the aforementioned feedback method of the channel quality information in the terminal device.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the aforementioned feedback method of channel quality information in a terminal device.
  • the beneficial effects of the embodiments of the present invention are: designing a reasonable CQI feedback method by different CoMP transmission technologies, reducing the feedback overhead of the CQI, and improving the user throughput based on the CoMP transmission.
  • Figure 1 (a) is a schematic diagram of multi-point cooperation in the same cell in a coordinated multi-point transmission scenario
  • FIG. 1(b) is a schematic diagram of multi-point cooperation of different cells in a coordinated multi-point transmission scenario
  • FIG. 2 is a flowchart of a method for establishing a mapping relationship between a differential CQI and an offset according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a composition of a terminal device according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for feeding back channel quality information according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another terminal device according to an embodiment of the present invention. detailed description
  • the "base station” refers to a transmission point of coordinated multi-point transmission, and for example, it may be an eNB (evolved Node B) in a general sense, or may be an RRH (Remote Radio). Head, remote radio head), this embodiment is not limited thereto.
  • eNB evolved Node B
  • RRH Remote Radio Head
  • FIG. 2 is a flow chart of a method for establishing a mapping relationship between a differential CQI and an offset according to an embodiment of the present invention. Referring to FIG. 2, the method includes:
  • Step 201 The terminal device determines a mapping relationship between the bit number indicating the differential CQI and each bit value indicating the differential CQI and the offset reference value according to the CoMP transmission manner, so as to perform the feedback of the differential CQI by using the mapping relationship.
  • the plurality of offset reference values corresponding to the bit values from small to large are a plurality of increasing integers.
  • the terminal device can use the relationship to perform the feedback of the differential CQI. For example, when the terminal device needs to feed back the differential CQI, the offset obtained by the terminal device can be compared with the offset reference value in the mapping relationship established in this embodiment to determine the corresponding differential CQI and fed back.
  • the mapping of the differential CQI to the offset may be stored in the form of a table, and the number of bits used to represent the differential CQI may be 3 bits or 2 bits or the like.
  • Table 3 is a table showing the mapping relationship between the 3-bit difference CQI and the offset
  • Table 4 is a table showing the mapping relationship between the 2-bit difference CQI and the offset.
  • 0 (000) ⁇ 7 ( 111 ) or 0 (00) ⁇ 3 ( 11 ) is the bit value representing the differential CQI
  • M ⁇ Ms or M M4 is the bit corresponding to the differential CQI.
  • the offset reference value of the value preferably, the minimum value (for example, "0") of the bit values representing the differential CQI corresponds to a minimum value equal to or less than the plurality of offset reference values ( For example, "M '); the maximum value (for example, "7" or "3") of the bit values representing the differential CQI corresponds to a maximum value greater than or equal to the plurality of offset reference values (for example, "M 8 " or " M 4 ").
  • this embodiment is not limited thereto.
  • M ⁇ Ms or M ⁇ MA it may also indicate that the minimum and maximum values of the bit values of the differential CQI correspond to the corresponding offsets, respectively.
  • the reference value but indicates that some intermediate bit value of the differential CQI corresponds to less than or equal to or greater than the corresponding offset reference value.
  • 0 (000) corresponds to 7 ( 111 ) corresponds to M 8
  • 3 (011) corresponds to less than or equal to M 4
  • corresponds to greater than or equal to M 4 that is, 7 ⁇ ⁇ 8 , 3 ⁇ ⁇ 1 4 or ⁇
  • the terminal device may adopt the differential CQI and offset mapping relationship with different bit numbers.
  • the terminal device when the base station adopts the CoMP transmission mode of the JP, the terminal device adopts a 3-bit differential CQI and an offset mapping relationship; when the base station adopts the CS/CB CoMP transmission mode, the terminal device adopts a 2-bit differential CQI and an offset. Quantity mapping relationship.
  • the terminal device may adopt an offset reference value with different values.
  • the base station adopts the CoMP transmission mode of the JP and the CoMP transmission mode of the CS/CB
  • the terminal equipment adopts a 3-bit differential CQI and an offset mapping relationship, and the terminal device can be at the base station.
  • M ⁇ Ms is used as the multiple offset reference value in the 3-bit differential CQI and offset mapping relationship
  • M is adopted.
  • Ms' is used as a plurality of offset reference values in its 3-bit differential CQI and offset mapping relationship.
  • the minimum value of the offset reference value in the differential CQI and offset mapping relationship adopted by the terminal device is 0 or 1. Or 2; when the base station adopts the CoMP transmission mode of the CS/CB, the minimum value of the offset reference value in the differential CQI and offset mapping relationship adopted by the terminal device is -1 or 0.
  • Table 5 is an example of a mapping relationship between a 3-bit differential CQI and an offset established by the terminal device by the method of the present embodiment when the base station adopts the CoMP transmission mode of the JP.
  • Table 6 and Table 7 are two examples of the mapping relationship between the 3-bit differential CQI and the offset established by the terminal device by the method of this embodiment when the base station adopts the CoMP transmission mode of the CS/CB.
  • Table 8 and Table 9 are two examples of the mapping relationship between the 2-bit differential CQI and the offset established by the terminal device by the method of this embodiment when the base station adopts the CoMP transmission mode of the CS/CB.
  • the terminal device can establish a mapping relationship between different differential CQIs and offsets according to the CoMP transmission mode, and use the mapping relationship to perform differential CQI feedback when the differential CQI needs to be fed back, thereby reducing
  • the feedback overhead of CQI improves the user throughput based on CoMP transmission.
  • An embodiment of the present invention further provides a terminal device, as described in Embodiment 2 below.
  • the method for solving the problem is similar to the method for establishing the mapping between the differential CQI and the offset of the terminal device in the foregoing embodiment 1. Therefore, the implementation of the terminal device can refer to the implementation of the method, and the repeated description is not repeated.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device includes:
  • the establishing unit 31 determines a mapping relationship between the bit number indicating the differential CQI and each bit value indicating the differential CQI and the offset reference value according to the CoMP transmission manner, so that the terminal device performs the differential CQI by using the mapping relationship. Feedback; wherein, the plurality of offset reference values corresponding to the bit values from small to large are a plurality of increasing integers.
  • the minimum value of the bit values corresponds to a minimum value equal to or smaller than the plurality of offset reference values;
  • the maximum value of the bit values corresponds to a maximum value greater than or equal to the plurality of offset reference values.
  • this embodiment is not limited thereto, and the intermediate value in the bit value may also be equal to or less than or equal to the corresponding offset reference value.
  • the establishing unit In the mapping relationship between the differential CQI and the offset established by 31, the number of bits is different; or the mapping relationship between the differential CQI and the offset established by the establishing unit 31, the multiple offset reference values The values are different.
  • the mapping between the differential CQI and the offset established by the establishing unit 31 is the minimum value of the offset reference value. 0 or 1 or 2; when the CoMP transmission mode adopted by the base station is the CS/CB transmission mode, the mapping relationship between the differential CQI and the offset established by the establishing unit 31 is in the offset reference value The minimum value is -1 or 0.
  • the mapping between the differential CQI and the offset established by the establishing unit 31 is the maximum value of the offset reference value. And a value greater than a maximum value of the offset reference value in a mapping relationship between the differential CQI and the offset established by the establishing unit 31 when the CoMP transmission mode used by the base station is the CS/CB transmission mode.
  • the terminal device can establish a mapping relationship between different differential CQIs and offsets according to the CoMP transmission mode, and use the mapping relationship to perform differential CQI feedback when the differential CQI needs to be fed back.
  • the feedback overhead of CQI is reduced, and the user throughput based on CoMP transmission is improved.
  • FIG. 4 is a flowchart of a method for feeding back channel quality information according to an embodiment of the present invention.
  • the method is applied to a terminal device configured as a CoMP feedback mode.
  • the method includes:
  • a first calculating step 401 calculating CQI information based on non-CoMP transmission and CQI information based on CoMP transmission according to the downlink pilot reference signal;
  • the downlink pilot reference signal may be a CRS (Cell-specific Reference Signal) and/or a CSI-RS (Channel State Information-Reference Signal), or may be other
  • the downlink pilot reference signal is not limited by this embodiment.
  • the CQI information of each transport block based on the non-CoMP transmission and the CQI information of each transport block based on the CoMP transmission are respectively the quantized signal to noise ratios corresponding to the formulas of the respective received signals, which can be calculated by existing means. Obtained, no longer repeat here.
  • a second calculating step 402 calculating a CQI offset based on the CoMP transmission according to the CQI information based on the non-CoMP transmission and the CQI information based on the CoMP transmission;
  • Determining step 403 determining differential CQI information based on CoMP transmission according to the CMPI offset based on the CoMP transmission and the pre-established differential CQI and offset mapping relationship, where the pre-established In the differential CQI and offset mapping relationship, the plurality of offset reference values corresponding to the order of the differential CQI from small to large are a plurality of increasing integers;
  • the calculated CQI offset based on CoMP transmission is compared with a pre-established differential CQI and offset mapping relationship to determine differential CQI information based on CoMP transmission.
  • Feedback step 404 feed back the non-CoMP transmission based CQI information and the CoMP transmission based differential CQI information to a base station.
  • different differential CQI and offset mapping relationships are pre-established corresponding to different CoMP transmission modes, and the mapping relationship indicates the correspondence between the differential CQI and the offset reference value, and the CQI is determined by calculation.
  • the corresponding differential CQI can be determined by comparing the CQI offset with the offset reference value in the pre-established mapping relationship.
  • Embodiment 1 For the establishment of the mapping relationship, reference may be made to Embodiment 1, and the content of Embodiment 1 is incorporated herein, and details are not described herein again.
  • the CoMP transmission-based CQI offset is less than or equal to a minimum of the plurality of offset reference values, determining a CoMP transmission based differential CQI as the pre-established differential CQI and a minimum value of the differential CQI in the offset mapping relationship; if the CQI offset based on the CoMP transmission is greater than or equal to a maximum value among the plurality of offset reference values, determining a differential CQI based on the CoMP transmission The maximum value of the differential CQI in the pre-established differential CQI and offset mapping relationship.
  • the number of bits indicating the differential CQI may be 3 bits or 2 bits.
  • the mapping relationship between the differential CQI and the offset can be expressed in the form of a table. As mentioned above, Table 3 is a 3-bit differential CQI and offset map, and Table 4 is a 2-bit differential CQI and offset map.
  • M 2 , ..., M 8 are offset reference values, the offset reference values M 2 , ..., M 8 are integers, and
  • M 2 , ..., M 4 are offset reference values, the offset reference values, M 2 , ..., M 4 are integers, and MM ⁇ - M ⁇
  • a minimum value of the plurality of offset reference values, that is, M1 may be 0 or 1 or 2.
  • Table 5 is a preferred example of a 3-bit differential CQI and an offset mapping table (i.e., a mapping relationship) established in advance in the embodiment of the present invention when the base station adopts the CoMP transmission mode of the multipoint joint processing (JP).
  • the base station when the base station adopts a multi-point cooperative scheduling and beamforming (CS/CB) CoMP transmission mode,
  • the minimum of the plurality of offset reference values, that is, M1 may be -1 or 0.
  • Table 6 and Table 7 show a preferred example of the 3-bit differential CQI and offset mapping table pre-established in the embodiment of the present invention when the base station adopts the CoMP transmission mode of the multi-point cooperative scheduling and the beamforming (CS/CB).
  • Table 8 and Table 9 show a preferred example of the 2-bit differential CQI and offset mapping table pre-established in the embodiment of the present invention when the base station adopts the CoMP transmission mode of the coordinated multi-point coordination and the beamforming (CS/CB).
  • different differential CQI and offset mapping relationships may be established in advance in this embodiment, corresponding to different CoMP transmission modes.
  • a mapping relationship in which the number of bits is the same but the offset reference value is different may be established in advance, or a mapping relationship in which the number of bits is different may be established in advance.
  • the mapping value in which the number of bits is the same but the offset reference value is different in advance, the maximum value among the plurality of offset reference values in the mapping relationship is different.
  • the maximum value of the multiple offset reference values is greater than or equal to when the base station adopts the multi-point CS/CB CoMP transmission mode, the multiple The maximum value in the offset reference value.
  • M 8 (JP) ⁇ M 8 ( CS/CB) when a 3-bit differential CQI and an offset mapping relationship are selected.
  • mappings with different bit numbers for example, when the base station adopts the multi-point JP CoMP transmission mode, a 3-bit differential CQI and offset mapping relationship may be established in advance; when the base station adopts multi-point CS/CB CoMP transmission. In the mode, a 2-bit differential CQI and offset mapping relationship can be established in advance.
  • mappings may be established in advance for different CoMP transmission modes.
  • the base station adopts a multi-point CS/CB CoMP transmission mode
  • the differential CQI and offset mapping shown in Table 9 can be established in advance by the method of Embodiment 1. relationship.
  • the number of transmission blocks that need to feed back CQI information is different according to the value of the rank fed back by the terminal device.
  • the step 404 only needs to feed back the CMPI information of the CoMP transmission and the CQI information based on the non-CoMP transmission of one transport block, and the step 401 only needs to calculate the CoMP transmission based on one transport block.
  • the CQI information and the CQI information based on the non-CoMP transmission, the CQI offset based on the CoMP transmission calculated in step 402 is the difference between the CQI index based on the CoMP transmission and the CQI index based on the non-CoMP transmission.
  • step 404 needs to feed back the basis of the two transport blocks.
  • the differential CQI information transmitted by the CoMP and the CQI information based on the non-CoMP transmission the step 401 needs to calculate the CQI information based on the CoMP transmission of the two transport blocks and the CQI information based on the non-CoMP transmission, and the step 402 needs to calculate two transport blocks.
  • step 404 needs to feed back the non-CoMP transmission based CQI information and the CoMP transmission based differential CQI information of the two transport blocks.
  • the CoMP transmission based CQI offset for each transport block is the difference between the CoMP transmission based CQI index of the transport block and the non-CoMP transmission based CQI index of the transport block.
  • the CoMP transmission based CQI offset of the first transport block is the difference between the CoMP transmission based CQI index of the first transport block and the non-CoMP transmission based CQI index of the first transport block.
  • the CoMP transmission based CQI offset of the second transport block is the difference between the CoMP transmission based CQI index of the first transport block and the CoMP transmission based CQI index of the second transport block.
  • the method for the user to feed back the channel quality information in the multi-point cooperative (CoMP) transmission scenario the terminal device estimates the channel quality information of the single-point (non-CoMP) transmission and the multi-point cooperation according to the downlink pilot reference signal.
  • CoMP The channel quality information transmitted, and the quantized channel quality information is fed back to the base station according to a pre-established mapping relationship.
  • the base station can dynamically send a single point transmission or multi-point cooperation to serve the user according to the channel quality information fed back by the terminal device.
  • the method improves the performance improvement and designs a reasonable CQI feedback method, which reduces the feedback overhead of CQI and improves the user throughput based on CoMP transmission.
  • An embodiment of the present invention further provides a terminal device, as described in Embodiment 4 below.
  • the method for solving the problem is similar to the method for feeding back the channel quality information of the terminal device according to the foregoing embodiment 3. Therefore, the implementation of the terminal device can refer to the implementation of the method, and the repeated description is omitted.
  • FIG. 5 is a schematic diagram of a configuration of a terminal device according to an embodiment of the present invention.
  • the terminal device is a terminal device configured to be in a CoMP feedback mode.
  • the terminal device includes: a first computing unit 51, and a second computing Unit 52, determining unit 53 and feedback unit 54, wherein:
  • the first calculating unit 51 calculates CQI information based on non-CoMP transmission and CQI information based on CoMP transmission based on the downlink pilot reference signal.
  • the second calculating unit 52 calculates the CQI offset based on the CoMP transmission according to the CQI information based on the non-CoMP transmission calculated by the first calculating unit 51 and the CQI information based on the CoMP transmission.
  • the CMPI offset based on CoMP transmission calculated by the determining unit 53 according to the second calculating unit 52 and the advance Establishing a differential CQI and offset mapping relationship to determine differential CQI information based on CoMP transmission, wherein, in the pre-established differential CQI and offset mapping relationship, multiple offsets corresponding to the order of differential CQI from small to large
  • the quantity reference is a number of incremental integers.
  • the feedback unit 54 feeds back the non-CoMP transmission-based CQI information calculated by the first calculation unit 51 and the CoMP transmission-based differential CQI information determined by the determination unit 33 to the base station.
  • the determining unit 53 comprises: a comparing module 531 and a determining module 532, wherein: the comparing module 531 calculates the CoMP transmission based CQI offset calculated by the second calculating unit 52 and the pre-established differential CQI and offset The offset reference values in the mapping relationship are compared to determine a differential CQI corresponding to the CQI offset based on the CoMP transmission.
  • the comparison result of the determining module 532 in the comparison module 531 is that the CoMP transmission based CQI offset is less than or equal to a minimum value of the plurality of offset reference values, determining CoMP transmission based
  • the differential CQI is a minimum value of the differential CQI in the pre-established differential CQI and offset mapping relationship;
  • the comparison result in the comparison module 531 is that the CQI offset based on the CoMP transmission is greater than or equal to the multiple offsets
  • the differential CQI based on the CoMP transmission is determined as the maximum value of the differential CQI in the pre-established differential CQI and offset mapping relationship.
  • the intermediate value in the bit value representing the differential CQI in the mapping relationship is greater than or equal to or less than or equal to the corresponding offset reference value, the comparison needs to be compared according to the corresponding value.
  • the number of bits representing the differential CQI in the differential CQI and the offset mapping relationship is 3 bits. In another embodiment, the number of bits representing the difference CQI in the differential CQI and the offset mapping relationship is 2 bits.
  • the value of the offset reference value in the differential CQI and the offset mapping relationship that is pre-established by the terminal device is different from that of the different CoMP transmission modes, or is pre-established by the terminal device.
  • the number of bits representing the differential CQI in the difference CQI and the offset mapping relationship is different.
  • the pre-established differential CQI and offset mapping relationship of the terminal device is the smallest of the multiple offset reference values.
  • the value is 0 or 1 or 2; in another embodiment, when the base station adopts a multi-point CS/CB CoMP transmission mode, the pre-established differential CQI and offset mapping relationship of the terminal device is The minimum of the plurality of offset reference values is -1 or 0.
  • the terminal device when the base station adopts a multi-point JP CoMP transmission mode, the terminal device In the pre-established differential CQI and offset mapping relationship, the maximum value of the plurality of offset reference values is greater than or equal to the pre-determination of the terminal device when the base station adopts the multi-point CS/CB CoMP transmission mode. The maximum of the multiple offset reference values in the established differential CQI and offset mapping relationship.
  • the CQI offset based on the CoMP transmission calculated by the second calculating unit 52 is the difference between the CQI index based on the CoMP transmission and the CQI index based on the non-CoMP transmission.
  • the first calculating unit 51 calculates the CQI information based on the non-CoMP transmission and the CQI information based on the CoMP transmission of the two transport blocks; the second calculating unit 52 calculates two CoMP transmission based CQI offset of each transport block, wherein the CoMP transmission based CQI offset of each transport block is a CoMP transmission based CQI index of the transport block and a non-CoMP transmission based CQI of the transport block The difference between the indexes; the feedback unit 54 feeds back the non-CoMP transmission based CQI information and the CoMP transmission based differential CQI information of the two transport blocks.
  • the first calculating unit 51 calculates the CQI information based on the non-CoMP transmission and the CQI information based on the CoMP transmission of the two transport blocks; the second calculating unit 52 calculates CoMP transmission based CQI offset of two transport blocks, wherein the CoMP transmission based CQI offset of the first transport block is the CoMP transmission based CQI index of the first transport block and the first transport block Based on the difference of CQI indexes of non-CoMP transmission, the CoQ transmission-based CQI offset of the second transport block is the CoMP transmission-based CQI index of the first transport block and the CoMP transmission-based CQI index of the second transport block.
  • the difference is; the feedback unit 54 feeds back the differential CQI information of the two transport blocks based on the CoMP transmission and the CQI information of the two transport blocks based on the non-CoMP transmission.
  • the terminal device designs a reasonable CQI feedback method according to different performance improvement performances of different CoMP transmission technologies, reduces the feedback overhead of the CQI, and improves the user throughput based on the CoMP transmission.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a terminal device, the program causes the computer to perform the differential CQI and the offset according to Embodiment 1 in the terminal device. Mapping relationship establishment method.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to perform the mapping method of the differential CQI and the offset mapping relationship described in Embodiment 1 in the terminal device. .
  • An embodiment of the present invention further provides a computer readable program, wherein the program is executed in a terminal device The program causes the computer to perform the feedback method of the channel quality information described in Embodiment 3 in the terminal device.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to perform the feedback method of the channel quality information described in Embodiment 3 in the terminal device.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种映射关系建立方法、信道质量信息的反馈方法和装置。所述方法应用于配置为CoMP反馈模式的终端设备,所述映射关系建立方法包括:终端设备根据基站所采用的CoMP发送方式确定用于表示差分CQI的比特数以及表示差分CQI的每一个比特值与偏移量基准值的映射关系,以便利用所述映射关系进行差分CQI的反馈;其中,在所述映射关系中,按照所述比特值从小到大的顺序所对应的多个偏移量基准值为多个递增的整数。该方法和装置通过不同CoMP传输技术对性能改善的不同,设计合理的CQI反馈,减小了CQI的反馈开销,提高了基于CoMP传输的用户吞吐量。

Description

一种映射关系建立方法、 信道质量信息的反馈方法和装置 技术领域
本发明涉及无线通信系统中的传输技术, 更具体地说,涉及一种映射关系建立方 法、 信道质量信息的反馈方法和装置。 背景技术
在增强型长期演进 ( LTE- Advanced, Long Term Evolution- Advanced) 系统中, 为增强小区的边缘用户的吞吐量, 多点协作 (Coordinated multiple point, CoMP) 发 送引起了广泛的关注。 同一小区的不同发送点可进行协作发送, 如图 1(a)所示; 不同 小区的不同发送点也可进行协作发送, 如图 1(b)所示。
为选择最优的协作发送点,基站端需获得各个发送点到用户的下行信道信息, 从 而根据一定的优化准则,挑选出最优的一个或者多个发送点。该下行信道信息通常包 括信道质量信息(Channel quality information, CQI) ,预编码矩阵索引(Precoding matrix index, PMI) 以及秩 (Rank)。 为保证后向兼容且更灵活的调度, 基站端需具备回退 到传统蜂窝的单点发送的能力, 从而要求用户在反馈下行信道信息时, 不仅报告多点 协作发送下的下行信道信息, 也需报告传统单点发送时的下行信道信息。
CoMP技术可分为多点联合处理 (Joint Processing, JP) 及多点协作调度 /或波束 赋形 (CS/CB , Coordinated scheduling/ beamforming ) 两大类。 根据不同的 CoMP技 术, 用户的反馈信息不尽相同, 但均需要反馈传统单点 (Non-CoMP, 非 CoMP) 发 送下的 CQI及多点协作 (CoMP) 发送下的 CQI。
其中, 对于 JP发送, 接收信号可由公式 (1 ) 表示:
Figure imgf000003_0001
其中, W )是在 JP发送中协作发送点 b使用的预编码矩阵, H )为协作发送点 b到用户的信道, 为发送数据, nA为噪声。用户需分别反馈各个发送点的预编码矩 阵 W ), 并反馈基于上报的预编码矩阵, 以及由公式 (1 ) 所对应的量化信噪比, 即 CQI。 同时, 用户也需反馈仅单点发送时的 CQI, 即由公式 (2) 所对应的量化信噪 比。
yk = H ^xk + nk ( 2) 根据 LTE/LTE-Advanced标准定义, 用户非周期性反馈传统单点发送时的 CQI, 对于第 1个传输块 (TB, Transport Block) 和 /或第 2个 TB, 均用 4比特量化表示, 如表 1所示; 用户周期性反馈传统单点发送时的 CQI, 对于第 1个 TB, 用 4比特量 化表示, 如表 1所示, 对于第 2个 TB, 用 3比特量化表示, 其中, 与第 1个 TB相 比的差分 CQI ,即第 2个 TB的偏移量 =第 1个 TB的 CQI 索引-第 2个 TB的 CQI 索弓 I, 如表 2所示。 其中, 表 2中偏移量一栏的数值 0、 1、 2、 3、 -4、 -3、 -2以及 -1 为预设的用于与计算出的偏移量进行比较的偏移量基准值,根据计算出的偏移量, 查 找表 2, 通过与该表 2中的偏移量基准值进行比较, 可以得到对应的差分 CQI的值。 例如, 根据表 2, 如果计算出的偏移量为 4, 则对应的差分 CQI为 3; 如果计算出的 偏移量为 2, 则对应的差分 CQI为 2; 如果计算出的偏移量为 -5, 则对应的差分 CQI 为 4, 以此类推^
Figure imgf000004_0001
Figure imgf000004_0002
表 2
发明人在实现本发明的过程中发现, 由于 CoMP传输下,不仅需反馈单点发送时 的 CQI, 还需反馈 CoMP传输下的 CQI, 从而导致反馈开销明显增大, 使得上行控制 信道 (PUCCH, Physical Uplink Control Channel)/或上行共享数据信道 (PUSCH, Physical Uplink Shared Channel) 的效率下降。 为更高效的利用 PUCCH/PUSCH发送 用户反馈信息, 针对多点协作传输的特性, 设计 CoMP传输下的 CQI反馈, 是亟待 解决的问题。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例的目的在于提供一种差分 CQI与偏移量的映射关系建立方法, 以 及用于多点协作系统的信道质量信息的反馈方法与装置,以在基于 CoMP传输提高用 户吞吐量的同时, 针对不同 CoMP传输技术对性能改善的不同, 设计合理的 CQI反 馈方法, 以减小 CQI反馈开销。
根据本发明实施例的一个方面, 提供了一种差分 CQI与偏移量的映射关系建立 方法, 其中, 所述方法包括:
终端设备根据 CoMP 发送方式确定用于表示差分 CQI 的比特数以及表示差分 CQI 的每一个比特值与偏移量基准值的映射关系, 以便利用所述映射关系进行差分 CQI的反馈;
其中,按照所述比特值从小到大的顺序所对应的多个偏移量基准值为多个递增的 整数。
根据本发明实施例的另一个方面, 提供了一种终端设备, 其中, 所述终端设备包 括:
建立单元, 其根据 CoMP发送方式确定用于表示差分 CQI的比特数以及表示差 分 CQI 的每一个比特值与偏移量基准值的映射关系, 以便利用所述映射关系进行差 分 CQI 的反馈; 其中, 按照所述比特值从小到大的顺序所对应的多个偏移量基准值 为多个递增的整数。
根据本发明实施例的再一个方面, 提供了一种信道质量信息的反馈方法, 其中, 所述方法应用于配置为 CoMP反馈模式的终端设备, 所述方法包括: 第一计算步骤,根据下行导频参考信号计算基于非 CoMP传输的 CQI信息和基于 CoMP传输的 CQI信息;
第二计算步骤, 根据所述基于非 CoMP传输的 CQI信息和所述基于 CoMP传输 的 CQI信息, 计算基于 CoMP传输的 CQI偏移量;
确定步骤, 根据所述基于 CoMP传输的 CQI偏移量与预先建立的差分 CQI与偏 移量映射关系, 确定基于 CoMP传输的差分 CQI信息, 其中, 在所述预先建立的差 分 CQI与偏移量映射关系中, 对应差分 CQI从小到大的顺序的多个偏移量基准值为 多个递增的整数;
反馈步骤将所述基于非 CoMP传输的 CQI信息和所述基于 CoMP传输的差分 CQI 信息反馈到基站。
根据本发明实施例的又一个方面,提供了一种被配置为 CoMP反馈模式的终端设 备, 所述终端设备包括:
第一计算单元,其根据下行导频参考信号计算基于非 CoMP传输的 CQI信息和基 于 CoMP传输的 CQI信息;
第二计算单元,其根据所述第一计算单元计算的基于非 CoMP传输的 CQI信息和 基于 CoMP传输的 CQI信息, 计算基于 CoMP传输的 CQI偏移量;
确定单元,根据所述第二计算单元计算的基于 CoMP传输的 CQI偏移量与预先建 立的差分 CQI与偏移量映射关系, 确定基于 CoMP传输的差分 CQI信息; 其中, 在 所述预先建立的差分 CQI与偏移量映射关系中, 对应差分 CQI从小到大的顺序的多 个偏移量基准值为多个递增的整数;
反馈单元,其将所述第一计算单元计算的基于非 CoMP传输的 CQI信息和所述确 定单元确定的基于 CoMP传输的差分 CQI信息反馈到基站。
根据本发明实施例的再一个方面, 提供了一种计算机可读程序, 其中, 当在终端 设备中执行该程序时, 该程序使得计算机在所述终端设备中执行前述的差分 CQI与 偏移量的映射关系建立方法。
根据本发明实施例的再一个方面, 提供了一种存储有计算机可读程序的存储介 质, 其中, 该计算机可读程序使得计算机在终端设备中执行前述的差分 CQI与偏移 量的映射关系建立方法。
根据本发明实施例的又一个方面, 还提供了一种计算机可读程序, 其中, 当在终 端设备中执行该程序时,该程序使得计算机在所述终端设备中执行前述的信道质量信 息的反馈方法。
根据本发明实施例的再一个方面,还提供了一种存储有计算机可读程序的存储介 质,其中, 该计算机可读程序使得计算机在终端设备中执行前述的信道质量信息的反 馈方法。
本发明实施例的有益效果在于:通过不同 CoMP传输技术对性能改善的不同,设 计合理的 CQI反馈方法, 减小了 CQI的反馈开销, 提高了基于 CoMP传输的用户吞 吐量。
参照后文的说明和附图,详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或縮小。在本发明的一个附图或一种实施方式中描述的元素和 特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在 附图中,类似的标号表示几个附图中对应的部件, 并可用于指示多于一种实施方式中 使用的对应部件。 在附图中:
图 1(a)是多点协作传输场景中同小区多点协作示意图;
图 1(b)是多点协作传输场景中不同小区多点协作示意图;
图 2是本发明实施例提供的差分 CQI与偏移量的映射关系建立方法的流程图; 图 3是本发明实施例提供的一种终端设备的组成示意图;
图 4是本发明实施例提供的一种信道质量信息的反馈方法的流程图; 图 5是本发明实施例提供的另外一种终端设备的组成示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明实施例的前述以及其它特征将变得明显。 这些实施方式只是示例性的, 不是对本发明的限制。为了使本领域的技术人员能够容 易地理解本发明的原理和实施方式, 本发明的实施方式以 LTE-Advanced系统的多点 协作 CoMP传输(包括 JP发送和 CS/CB发送)为例进行说明, 但可以理解, 本发明 实施例并不限于上述系统和上述发送方式,对于涉及多点协作传输的其他系统和其他 发送方式均适用。 另外, 在以下的说明中, 所涉及的 "基站"是指多点协作传输的发 送点, 例如其可以是一般意义上的 eNB (evolved Node B, 演进型基站), 也可以是 RRH (Remote Radio Head, 远端无线头), 本实施例并不以此作为限制。
实施例 1
图 2是本发明实施例提供的一种差分 CQI与偏移量的映射关系建立方法的流程 图, 请参照图 2, 该方法包括:
步骤 201 :终端设备根据 CoMP发送方式确定用于表示差分 CQI的比特数以及表 示差分 CQI 的每一个比特值与偏移量基准值的映射关系, 以便利用所述映射关系进 行差分 CQI的反馈。
其中,在所述映射关系中, 按照所述比特值从小到大的顺序所对应的多个偏移量 基准值为多个递增的整数。
通过本实施例的方法建立起差分 CQI与偏移量的映射关系后, 终端设备即可利 用该关系进行差分 CQI的反馈。 例如, 终端设备在需要反馈差分 CQI时, 可以将其 计算获得的偏移量与本实施例建立起来的该映射关系中的偏移量基准值进行比较,以 确定对应的差分 CQI, 并反馈。
在一个实施例中, 该差分 CQI与偏移量的映射关系可以通过表格的形式存储, 而用于表示差分 CQI的比特数可以是 3比特或者 2比特或者其他。 表 3为表示 3比 特差分 CQI与偏移量的映射关系的表格, 表 4为表示 2比特差分 CQI与偏移量的映 射关系的表格。
差分 CQI值 偏移量基准值
0
1 M2
2 M3 3 M4
4 M5
5 M6
6 M7
7 >M8
Figure imgf000009_0001
表 4
如表 3和表 4所示, 0 (000) ~7 ( 111 ) 或者 0 (00) ~3 ( 11 ) 为表示差分 CQI 的比特值, M^Ms或者 M M4为对应差分 CQI 的每一个比特值的偏移量基准值, 在本实施例中, 优选的, 表示差分 CQI 的比特值中的最小值 (例如 "0") 对应 小于等于所述多个偏移量基准值中的最小值 (例如 "M '); 表示差分 CQI的比特值 中的最大值 (例如 "7"或者 "3") 对应大于等于所述多个偏移量基准值中的最大值 (例如 "M8 "或者 "M4")。 但本实施例并不以此作为限制, 根据 M^Ms或者 M^MA 的取值的不同, 也可能表示差分 CQI 的比特值中的最小值和最大值分别对应相应偏 移量基准值, 但表示差分 CQI 的某个中间比特值对应小于等于或大于等于相应的偏 移量基准值。 以表 3为例, 也可能 0 (000) 对应 7 ( 111 )对应 M8, 但 3 (011 ) 对应小于等于 M4, 或者对应大于等于 M4, 也即 7→ Μ8, 3→ ^14或 Μ
在本实施例中, 优选的, 当基站采用不同的 CoMP发送方式时, 终端设备可以采 用比特数不同的该差分 CQI与偏移量映射关系。 例如, 当基站采用 JP的 CoMP发送 方式时, 终端设备采用 3比特的差分 CQI与偏移量映射关系; 当基站采用 CS/CB的 CoMP发送方式时, 终端设备采用 2比特的差分 CQI与偏移量映射关系。
在本实施例中, 优选的, 当基站采用不同的 CoMP发送方式时, 如果终端设备采 用相同比特数的差分 CQI与偏移量映射关系, 则终端设备可以采用取值不同的偏移 量基准值。例如, 当基站采用 JP的 CoMP发送方式和采用 CS/CB的 CoMP发送方式 时, 终端设备都采用 3比特的差分 CQI与偏移量映射关系, 则终端设备可以在基站 采用 JP的 CoMP发送方式时, 采用 M^Ms作为其 3比特的差分 CQI与偏移量映射 关系中的多个偏移量基准值, 而在基站采用 CS/CB 的 CoMP 发送方式时, 采用 M Ms'作为其 3比特的差分 CQI与偏移量映射关系中的多个偏移量基准值。较佳的, 在本实施例中, 优选的, 当基站采用 JP的 CoMP发送方式时, 终端设备所采用 的差分 CQI与偏移量映射关系中的偏移量基准值的最小值为 0或者 1或者 2;当基站 采用 CS/CB的 CoMP发送方式时, 终端设备所采用的差分 CQI与偏移量映射关系中 的偏移量基准值的最小值为 -1或者 0。
表 5为基站采用 JP的 CoMP发送方式时, 终端设备通过本实施例的方法所建立 起来的 3比特的差分 CQI与偏移量的映射关系的一个举例。 表 6和表 7为基站采用 CS/CB的 CoMP发送方式时, 终端设备通过本实施例的方法所建立起来的 3比特的 差分 CQI与偏移量的映射关系的两个举例。 表 8和表 9为基站采用 CS/CB的 CoMP 发送方式时, 终端设备通过本实施例的方法所建立起来的 2比特的差分 CQI与偏移 量的映射关系的两个举例。
差分 CQI值 偏移量基准值
0 ≤2
1 3
2 4
3 5
4 6
5 7
6 8
7 >9
表 5
差分 CQI值 偏移量基准值
0 ≤-1
1 0
2 1
3 2
4 3
5 4
6 5
7 >6
表 6
差分 CQI值 偏移量基准值
0 ≤0
1 1
2 2
3 3 4 4
5 5
6 6
7 >7
表 7
差分 CQI值 偏移量基准值
0 ≤-1
1 0
2 1
3 >2
表 8
差分 CQI值 偏移量基准值
0 ≤0
1 1
2 2
3 >3
表 9
通过本实施例的方法,终端设备可以根据 CoMP发送方式,建立不同的差分 CQI 与偏移量的映射关系, 并在需要反馈差分 CQI时, 利用该映射关系进行差分 CQI的 反馈, 由此减小了 CQI的反馈开销, 提高了基于 CoMP传输的用户吞吐量。
本发明实施例还提供了一种终端设备, 如下面的实施例 2所述。 由于该终端设备 解决问题的原理与上述实施例 1的基于终端设备的差分 CQI与偏移量的映射关系建 立方法相似, 因此该终端设备的实施可以参见方法的实施, 重复之处不再赘述。
实施例 2
图 3为本发明实施例提供的一种终端设备的组成示意图, 请参照图 3, 该终端设 备包括:
建立单元 31, 其根据 CoMP发送方式确定用于表示差分 CQI的比特数以及表示 差分 CQI 的每一个比特值与偏移量基准值的映射关系, 以使终端设备利用所述映射 关系进行差分 CQI 的反馈; 其中, 按照所述比特值从小到大的顺序所对应的多个偏 移量基准值为多个递增的整数。
在一个实施例中, 在建立单元 31建立的差分 CQI与偏移量的映射关系中, 所述 比特值中的最小值对应小于等于所述多个偏移量基准值中的最小值;所述比特值中的 最大值对应大于等于所述多个偏移量基准值中的最大值。但本实施例并不以此作为限 制, 所述比特值中的中间值也可能大于等于或者小于等于相应的偏移量基准值。
在另外一个实施例中, 当基站所采用的 CoMP发送方式不同时, 所述建立单元 31所建立的差分 CQI与偏移量的映射关系中, 所述比特数不同; 或者所述建立单元 31所建立的差分 CQI与偏移量的映射关系中, 所述多个偏移量基准值的取值不同。
在另外一个实施例中, 当基站采用的 CoMP发送方式为 JP发送方式时, 所述建 立单元 31所建立的差分 CQI与偏移量的映射关系中, 所述偏移量基准值中的最小值 为 0或者 1或者 2; 当基站采用的 CoMP发送方式为 CS/CB发送方式时, 所述建立 单元 31所建立的差分 CQI与偏移量的映射关系中, 所述偏移量基准值中的最小值为 -1或者 0。
在另外一个实施例中, 当基站采用的 CoMP发送方式为 JP发送方式时, 所述建 立单元 31所建立的差分 CQI与偏移量的映射关系中,所述偏移量基准值中的最大值, 大于当基站采用的 CoMP发送方式为 CS/CB发送方式时,所述建立单元 31所建立的 差分 CQI与偏移量的映射关系中, 所述偏移量基准值中的最大值。
通过本实施例的终端设备,终端设备可以根据 CoMP发送方式,建立不同的差分 CQI与偏移量的映射关系,并在需要反馈差分 CQI时,利用该映射关系进行差分 CQI 的反馈, 由此减小了 CQI的反馈开销, 提高了基于 CoMP传输的用户吞吐量。
实施例 3
图 4是本发明实施例提供的一种信道质量信息的反馈方法的流程图,该方法应用 于配置为 CoMP反馈模式的终端设备, 请参照图 4, 该方法包括:
第一计算步骤 401 :根据下行导频参考信号计算基于非 CoMP传输的 CQI信息和 基于 CoMP传输的 CQI信息;
其中, 这里的下行导频参考信号可以是 CRS (Cell-specific Reference Signal, 小 区专用参考信号) 禾口 /或 CSI-RS (Channel State Information-Reference Signal, 信道状 态信息参考信号), 也可以是其他下行导频参考信号, 本实施例并不以此作为限制。
其中, 基于非 CoMP传输的每一个传输块的 CQI信息和基于 CoMP传输的每一 个传输块的 CQI信息分别是各自的接收信号的公式所对应的量化信噪比, 具体可以 通过现有的手段计算获得, 在此不再赘述。
第二计算步骤 402: 根据所述基于非 CoMP传输的 CQI信息和基于 CoMP传输 的 CQI信息, 计算基于 CoMP传输的 CQI偏移量;
确定步骤 403: 根据所述基于 CoMP传输的 CQI偏移量与预先建立的差分 CQI 与偏移量映射关系, 确定基于 CoMP传输的差分 CQI信息, 其中, 在所述预先建立 的差分 CQI与偏移量映射关系中, 对应差分 CQI从小到大的顺序的多个偏移量基准 值为多个递增的整数;
其中, 将计算出的基于 CoMP传输的 CQI偏移量与预先建立的差分 CQI与偏移 量映射关系进行比较, 以确定基于 CoMP传输的差分 CQI信息。
反馈步骤 404: 将所述基于非 CoMP传输的 CQI信息和所述基于 CoMP传输的 差分 CQI信息反馈到基站。
在本实施例中, 对应不同的 CoMP发送方式, 预先建立了不同的差分 CQI与偏 移量映射关系, 该映射关系表明了差分 CQI与偏移量基准值的对应关系, 当通过计 算确定了 CQI偏移量时, 可以通过将该 CQI偏移量与该预先建立的映射关系中偏移 量基准值进行比较, 来确定其对应的差分 CQI。
其中,对于该映射关系的建立,可以参照实施例 1, 实施例 1的内容被合并于此, 这里不再赘述。
在一个实施例中, 如果所述基于 CoMP传输的 CQI偏移量小于等于所述多个偏 移量基准值中的最小值, 则确定基于 CoMP传输的差分 CQI为所述预先建立的差分 CQI与偏移量映射关系中的差分 CQI的最小值; 如果所述基于 CoMP传输的 CQI偏 移量大于等于所述多个偏移量基准值中的最大值,则确定基于 CoMP传输的差分 CQI 为所述预先建立的差分 CQI与偏移量映射关系中的差分 CQI的最大值。
在本实施例中, 该差分 CQI与所述偏移量量映射关系中, 表示差分 CQI的比特 数可以为 3比特或者为 2比特。 该差分 CQI与偏移量的映射关系可以通过表格的方 式表示。如前所述,表 3为 3比特差分 CQI与偏移量映射表,表 4为 2比特差分 CQI 与偏移量映射表。
在表 3中, M2, …, M8为偏移量基准值, 该偏移量基准值 M2, …, M8为整数, 且
Figure imgf000013_0001
在表 4中, M2, …, M4为偏移量基准值, 该偏 移量基准值 , M2, …, M4为整数, 且 M M^— M^
优选的, 当基站采用多点联合处理(JP)的 CoMP发送方式时, 该多个偏移量基 准值中的最小值, 也即 Ml可以为 0或者为 1或者为 2。 表 5为基站采用多点联合处 理 (JP) 的 CoMP发送方式时, 本发明实施例所预先建立的 3比特差分 CQI与偏移 量映射表 (也即映射关系) 的优选示例。
优选的, 当基站采用多点协作调度及波束赋形 (CS/CB) 的 CoMP发送方式时, 该多个偏移量基准值中的最小值, 也即 Ml可以为 -1或者为 0。 表 6和表 7为基站采 用多点协作调度及波束赋形(CS/CB )的 CoMP发送方式时, 本发明实施例所预先建 立的 3比特差分 CQI与偏移量映射表的优选示例。 表 8和表 9为基站采用多点协作 调度及波束赋形(CS/CB )的 CoMP发送方式时, 本发明实施例所预先建立的 2比特 差分 CQI与偏移量映射表的优选示例。
在本实施例中,对应不同的 CoMP发送方式,本实施例可以预先建立不同的差分 CQI与偏移量映射关系。例如, 可以预先建立比特数相同但偏移量基准值不同的映射 关系, 也可以预先建立比特数不同的映射关系。
对于预先建立比特数相同但偏移量基准值不同的映射关系,映射关系中的多个偏 移量基准值中的最大值不同。 较佳的, 当基站采用多点 JP的 CoMP发送方式时, 所 述多个偏移量基准值中的最大值, 大于等于当基站采用多点 CS/CB的 CoMP发送方 式时, 所述多个偏移量基准值中的最大值。 例如, 当所述基站采用多点 JP的 CoMP 发送方式和采用多点 CS/CB的 CoMP发送方式时, 均选择 3比特的差分 CQI与偏移 量映射关系时, 则 M8 (JP) ^M8 ( CS/CB
对于预先建立比特数不同的映射关系, 例如, 当基站采用多点 JP的 CoMP发送 方式时,可以预先建立 3比特的差分 CQI与偏移量映射关系;当基站采用多点 CS/CB 的 CoMP发送方式时, 可以预先建立 2比特的差分 CQI与偏移量映射关系。
在本实施例中, 对于相同的 CoMP发送方式, 不同的 rank (秩), 可以预先建立 不同的映射关系, 例如当基站采用多点 CS/CB的 CoMP发送方式时, 当 rank=l时, 可以通过实施例 1的方法预先建立如表 8所示的差分 CQI与偏移量映射关系,当 rank ^2时, 可以通过实施例 1的方法预先建立表 9所示的差分 CQI与偏移量映射关系。
在本实施例中, 根据终端设备反馈的秩的数值不同, 需要反馈 CQI信息的传输 块的个数不同。
当终端设备反馈的秩为 1时,步骤 404仅需要反馈一个传输块的基于 CoMP传输 的 CQI信息和基于非 CoMP传输的 CQI信息, 贝 lj, 步骤 401仅需要计算一个传输块 的基于 CoMP传输的 CQI信息和基于非 CoMP传输的 CQI信息, 步骤 402计算的基 于 CoMP传输的 CQI偏移量为基于 CoMP传输的 CQI索引与基于非 CoMP传输的 CQI索引之差。
当终端设备反馈的秩为大于等于 2 时, 步骤 404 需要反馈两个传输块的基于 CoMP传输的差分 CQI信息和基于非 CoMP传输的 CQI信息, 贝 lj, 步骤 401需要计 算两个传输块的基于 CoMP传输的 CQI信息和基于非 CoMP传输的 CQI信息, 步骤 402需要计算两个传输块的基于 CoMP传输的 CQI偏移量,步骤 404需要反馈两个传 输块的基于非 CoMP传输的 CQI信息和基于 CoMP传输的差分 CQI信息。 在一个实 施例中, 每一个传输块的基于 CoMP传输的 CQI偏移量为该传输块的基于 CoMP传 输的 CQI索引与该传输块的基于非 CoMP传输的 CQI索引之差。 在另外一个实施例 中, 第一个传输块的基于 CoMP传输的 CQI偏移量为第一个传输块的基于 CoMP传 输的 CQI索引与第一个传输块的基于非 CoMP传输的 CQI索引之差; 第二个传输块 的基于 CoMP传输的 CQI偏移量为第一个传输块的基于 CoMP传输的 CQI索引与第 二个传输块的基于 CoMP传输的 CQI索引之差。
通过本发明实施例用于在多点协作 (CoMP) 传输场景下, 用户反馈信道质量信 息的方法, 终端设备根据下行导频参考信号估计单点 (非 CoMP)传输的信道质量信 息及多点协作 (CoMP) 传输的信道质量信息, 并根据预先建立的映射关系, 向基站 反馈量化的信道质量信息。基站可根据终端设备反馈的信道质量信息, 动态的调度单 点发送或多点协作发送为用户服务。该方法根据不同 CoMP传输技术对性能改善的不 同, 设计合理的 CQI反馈方法, 减小了 CQI的反馈开销, 提高了基于 CoMP传输的 用户吞吐量。
本发明实施例还提供了一种终端设备, 如下面的实施例 4所述。 由于该终端设备 解决问题的原理与上述实施例 3的基于终端设备的信道质量信息的反馈方法相似,因 此该终端设备的实施可以参见方法的实施, 重复之处不再赘述。
实施例 4
图 5为本发明实施例提供的一种终端设备的组成示意图,该终端设备为被配置为 CoMP反馈模式的终端设备, 请参照图 5, 该终端设备包括: 第一计算单元 51、 第二 计算单元 52、 确定单元 53以及反馈单元 54, 其中:
第一计算单元 51根据下行导频参考信号计算基于非 CoMP传输的 CQI信息和基 于 CoMP传输的 CQI信息。
第二计算单元 52根据第一计算单元 51计算的基于非 CoMP传输的 CQI信息和 基于 CoMP传输的 CQI信息, 计算基于 CoMP传输的 CQI偏移量.
确定单元 53根据第二计算单元 52计算的基于 CoMP传输的 CQI偏移量与预先 建立的差分 CQI与偏移量映射关系, 确定基于 CoMP传输的差分 CQI信息, 其中, 在该预先建立的差分 CQI与偏移量映射关系中, 对应差分 CQI从小到大的顺序的多 个偏移量基准值为多个递增的整数。
反馈单元 54将第一计算单元 51计算的基于非 CoMP传输的 CQI信息和确定单 元 33确定的基于 CoMP传输的差分 CQI信息反馈到基站。
在一个实施例中, 确定单元 53包括: 比较模块 531和确定模块 532, 其中: 比较模块 531将第二计算单元 52计算的基于 CoMP传输的 CQI偏移量与预先建 立的差分 CQI与偏移量映射关系中的偏移量基准值进行比较,以确定所述基于 CoMP 传输的 CQI偏移量对应的差分 CQI。
在一个实施例中, 确定模块 532在比较模块 531的比较结果为, 所述基于 CoMP 传输的 CQI偏移量小于等于所述多个偏移量基准值中的最小值时, 确定基于 CoMP 传输的差分 CQI为所述预先建立的差分 CQI与偏移量映射关系中的差分 CQI的最小 值; 在比较模块 531的比较结果为, 基于 CoMP传输的 CQI偏移量大于等于所述多 个偏移量基准值中的最大值时, 确定基于 CoMP传输的差分 CQI为所述预先建立的 差分 CQI与偏移量映射关系中的差分 CQI的最大值。 上述只是举例说明, 本实施例 并不以此作为限制。 当所述映射关系中表示差分 CQI 的比特值中的中间值大于等于 或者小于等于相应的偏移量基准值时, 比较时需要根据相应的数值进行比较。
在一个实施例中, 所述差分 CQI与所述偏移量映射关系中表示差分 CQI的比特 数为 3 比特。 在另外一个实施例中, 所述差分 CQI与所述偏移量映射关系中表示差 分 CQI的比特数为 2比特。
在一个实施例中,对应不同的 CoMP发送方式,所述终端设备所预先建立的差分 CQI与偏移量映射关系中的偏移量基准值的取值不同,或者所述终端设备所预先建立 的差分 CQI与偏移量映射关系中的表示差分 CQI的比特数不同。
在一个实施例中, 当所述基站采用多点 JP的 CoMP发送方式时, 所述终端设备 的预先建立的差分 CQI与偏移量映射关系中,所述多个偏移量基准值中的最小值为 0 或者 1或者 2; 在另外一个实施例中, 当所述基站采用多点 CS/CB的 CoMP发送方 式时, 所述终端设备的预先建立的差分 CQI与偏移量映射关系中, 所述多个偏移量 基准值中的最小值为 -1或者 0。
在一个实施例中, 当所述基站采用多点 JP的 CoMP发送方式时, 所述终端设备 的预先建立的差分 CQI与偏移量映射关系中, 多个偏移量基准值中的最大值, 大于 等于当所述基站采用多点 CS/CB的 CoMP发送方式时, 所述终端设备的预先建立的 差分 CQI与偏移量映射关系中, 多个偏移量基准值中的最大值。
在一个实施例中, 当终端设备反馈的秩为 1 时, 第二计算单元 52计算的基于 CoMP传输的 CQI偏移量为基于 CoMP传输的 CQI索引与基于非 CoMP传输的 CQI 索引之差。
在一个实施例中, 当终端设备反馈的秩大于等于 2时, 第一计算单元 51计算两 个传输块的基于非 CoMP传输的 CQI信息和基于 CoMP传输的 CQI信息; 第二计算 单元 52计算两个传输块的基于 CoMP传输的 CQI偏移量, 其中, 每一个传输块的基 于 CoMP传输的 CQI偏移量为该传输块的基于 CoMP传输的 CQI索引与该传输块的 基于非 CoMP传输的 CQI索引之差;反馈单元 54反馈两个传输块的基于非 CoMP传 输的 CQI信息和基于 CoMP传输的差分 CQI信息。
在另外一个实施例中, 当终端设备反馈的秩大于等于 2时, 第一计算单元 51计 算两个传输块的基于非 CoMP传输的 CQI信息和基于 CoMP传输的 CQI信息; 第二 计算单元 52计算两个传输块的基于 CoMP传输的 CQI偏移量, 其中, 第一个传输块 的基于 CoMP传输的 CQI偏移量为第一个传输块的基于 CoMP传输的 CQI索引与第 一个传输块的基于非 CoMP传输的 CQI索引之差, 第二个传输块的基于 CoMP传输 的 CQI偏移量为第一个传输块的基于 CoMP传输的 CQI索引与第二个传输块的基于 CoMP传输的 CQI索引之差; 反馈单元 54反馈基于 CoMP传输的两个传输块的差分 CQI信息以及基于非 CoMP传输的两个传输块的 CQI信息。
本发明实施例的终端设备根据不同 CoMP传输技术对性能改善的不同,设计合理 的 CQI反馈方法, 减小了 CQI的反馈开销, 提高了基于 CoMP传输的用户吞吐量。
本发明实施例还提供了一种计算机可读程序,其中, 当在终端设备中执行该程序 时, 该程序使得计算机在所述终端设备中执行实施例 1所述的差分 CQI与偏移量的 映射关系建立方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中, 该计算机 可读程序使得计算机在终端设备中执行实施例 1所述的差分 CQI与偏移量的映射关 系建立方法。
本发明实施例还提供了一种计算机可读程序, 其中当在终端设备中执行该程序 时,该程序使得计算机在所述终端设备中执行实施例 3所述的信道质量信息的反馈方 法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中该计算机可 读程序使得计算机在终端设备中执行实施例 3所述的信道质量信息的反馈方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚, 这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种差分信道质量信息 CQI与偏移量的映射关系建立方法, 其中, 所述方法 包括:
终端设备根据协作多点 CoMP发送方式确定用于表示差分 CQI的比特数以及表示 差分 CQI 的每一个比特值与偏移量基准值的映射关系, 以便利用所述映射关系进行 差分 CQI的反馈;
其中, 在所述映射关系中, 按照所述比特值从小到大的顺序所对应的多个偏移量 基准值为多个递增的整数。
2、 根据权利要求 1所述的方法, 其中, 对于不同的 CoMP发送方式, 所述比特 数不同, 或者所述多个偏移量基准值的取值不同。
3、 根据权利要求 2所述的方法, 其中, 当所述 CoMP发送方式为多点联合处理 JP发送方式时,所述偏移量基准值中的最小值为 0或者 1或者 2; 当所述 CoMP发送 方式为多点协作调度或波束赋形 CS/CB发送方式时, 所述偏移量基准值中的最小值 为 -1或者 0。
4、 根据权利要求 2所述的方法, 其中, 当所述 CoMP发送方式为多点 JP发送方 式时, 所述偏移量基准值中的最大值, 大于当所述 CoMP发送方式为多点 CS/CB发 送方式时, 所述偏移量基准值中的最大值。
5、 一种终端设备, 其中, 所述终端设备包括:
建立单元,其根据 CoMP发送方式确定用于表示差分 CQI的比特数以及表示差分
CQI 的每一个比特值与偏移量基准值的映射关系, 以便利用所述映射关系进行差分 CQI的反馈; 其中, 按照所述比特值从小到大的顺序所对应的多个偏移量基准值为多 个递增的整数。
6、 根据权利要求 5所述的终端设备, 其中, 对于不同的 CoMP发送方式, 所述 比特数不同, 或者所述多个偏移量基准值的取值不同。
7、 根据权利要求 6所述的终端设备, 其中, 当所述 CoMP发送方式为 JP发送方 式时, 所述偏移量基准值中的最小值为 0或者 1或者 2; 当所述 CoMP发送方式为 CS/CB发送方式时, 所述偏移量基准值中的最小值为 -1或者 0。
8、 根据权利要求 6所述的终端设备, 其中, 当所述 CoMP发送方式为 JP发送方 式时, 所述偏移量基准值中的最大值, 大于当所述 CoMP发送方式为 CS/CB发送方 式时, 所述偏移量基准值中的最大值。
9、一种信道质量信息的反馈方法, 其中, 所述方法应用于配置为多点协作 CoMP 反馈模式的终端设备, 所述方法包括:
第一计算步骤, 根据下行导频参考信号计算基于非 CoMP 传输的信道质量信息
CQI和基于 CoMP传输的 CQI信息;
第二计算步骤,根据所述基于非 CoMP传输的 CQI信息和基于 CoMP传输的 CQI 信息, 计算基于 CoMP传输的 CQI偏移量;
确定步骤, 根据所述基于 CoMP传输的 CQI偏移量与预先建立的差分 CQI与偏 移量映射关系, 确定基于 CoMP传输的差分 CQI信息, 其中, 在所述预先建立的差 分 CQI与偏移量映射关系中, 对应差分 CQI从小到大的顺序的多个偏移量基准值为 多个递增的整数;
反馈步骤, 将所述基于非 CoMP传输的 CQI信息和所述基于 CoMP传输的差分 CQI信息反馈到基站。
10、 根据权利要求 9所述的方法, 其中, 所述确定步骤包括:
将所述基于 CoMP传输的 CQI偏移量与所述预先建立的差分 CQI与偏移量映射 关系中的偏移量基准值进行比较, 以确定对应所述基于 CoMP传输的 CQI偏移量的 差分 CQI。
11、 根据权利要求 9所述的方法, 其中, 在所述预先建立的差分 CQI与所述偏移 量映射关系中, 表示所述差分 CQI的比特数为 3比特或者为 2比特。
12、 根据权利要求 9所述的方法, 其中, 对应不同的 CoMP发送方式, 所述预先 建立的差分 CQI与偏移量映射关系中的多个偏移量基准值的取值不同, 或者所述预 先建立的差分 CQI与偏移量映射关系中表示所述差分 CQI的比特数不同。
13、根据权利要求 9所述的方法,其中,当所述基站采用多点联合处理 JP的 CoMP 发送方式时,所述多个偏移量基准值中的最大值, 大于等于当所述基站采用多点协作 调度或波束赋形 CS/CB的 CoMP发送方式时, 所述多个偏移量基准值中的最大值。
14、 根据权利要求 9所述的方法, 其中,
当所述基站采用多点联合处理 JP的 CoMP发送方式时, 所述多个偏移量基准值 中的最小值为 0或者 1或者 2; 当所述基站采用多点协作调度或波束赋形 CS/CB的 CoMP发送方式时, 所述多 个偏移量基准值中的最小值为 -1或者 0。
15、 根据权利要求 9所述的方法, 其中, 当终端设备反馈的秩为 1时, 在所述第 二计算步骤中, 基于 CoMP传输的 CQI偏移量为基于 CoMP传输的 CQI索引与基于 非 CoMP传输的 CQI索引之差。
16、 根据权利要求 9所述的方法, 其中, 当终端设备反馈的秩大于等于 2时, 在所述第一计算步骤中,计算两个传输块的基于非 CoMP传输的 CQI信息和基于
CoMP传输的 CQI信息;
在所述第二计算步骤中,计算两个传输块的基于 CoMP传输的 CQI偏移量,其中, 每一个传输块的基于 CoMP传输的 CQI偏移量为所述传输块的基于 CoMP传输的 CQI 索引与所述传输块的基于非 CoMP传输的 CQI索引之差;
在所述反馈步骤中, 所述终端设备反馈两个传输块的基于非 CoMP传输的 CQI 信息和基于 CoMP传输的差分 CQI信息。
17、 根据权利要求 9所述的方法, 其中, 当终端设备反馈的秩大于等于 2时, 在所述第一计算步骤中,计算两个传输块的基于非 CoMP传输的 CQI信息和基于
CoMP传输的 CQI信息;
在所述第二计算步骤中,计算两个传输块的基于 CoMP传输的 CQI偏移量,其中, 第一个传输块的基于 CoMP传输的 CQI偏移量为第一个传输块的基于 CoMP传输的 CQI索引与第一个传输块的基于非 CoMP传输的 CQI索引之差, 第二个传输块的基 于 CoMP传输的 CQI偏移量为第一个传输块的基于 CoMP传输的 CQI索引与第二个 传输块的基于 CoMP传输的 CQI索引之差;
在所述反馈步骤中,所述终端设备反馈基于 CoMP传输的两个传输块的差分 CQI 信息和基于非 CoMP传输的两个传输块的 CQI信息。
18、 一种被配置为 CoMP反馈模式的终端设备, 所述终端设备包括:
第一计算单元,其根据下行导频参考信号计算基于非 CoMP传输的 CQI信息和基 于 CoMP传输的 CQI信息;
第二计算单元,其根据所述第一计算单元计算的基于非 CoMP传输的 CQI信息和 基于 CoMP传输的 CQI信息, 计算基于 CoMP传输的 CQI偏移量;
确定单元,根据所述第二计算单元计算的基于 CoMP传输的 CQI偏移量与预先建 立的差分 CQI与偏移量映射关系, 确定基于 CoMP传输的差分 CQI信息; 其中, 在 所述预先建立的差分 CQI与偏移量映射关系中, 对应差分 CQI从小到大的顺序的多 个偏移量基准值为多个递增的整数;
反馈单元,其将所述第一计算单元计算的基于非 CoMP传输的 CQI信息和所述确 定单元确定的基于 CoMP传输的差分 CQI信息反馈到基站。
19、 根据权利要求 18所述的终端设备, 其中, 所述确定单元包括:
比较模块,其将所述第二计算单元计算的基于 CoMP传输的 CQI偏移量与预先建 立的差分 CQI与偏移量映射关系中的偏移量基准值进行比较, 以确定对应所述基于 CoMP传输的 CQI偏移量的差分 CQI。
20、 根据权利要求 18所述的终端设备, 其中, 在所述终端设备的预先建立的差 分 CQI与偏移量映射关系中, 表示所述差分 CQI的比特数为 3比特或者为 2比特。
21、 根据权利要求 18所述的终端设备, 其中, 所述终端设备根据不同的 CoMP 发送方式, 采用多个偏移量基准值不同的预先建立的差分 CQI与偏移量映射关系, 或者采用比特数不同的预先建立的差分 CQI与偏移量映射关系。
22、 根据权利要求 18所述的终端设备, 其中, 当所述基站采用多点 JP的 CoMP 发送方式时, 所述终端设备的预先建立的差分 CQI与偏移量映射关系中, 多个偏移 量基准值中的最大值, 大于等于当所述基站采用多点 CS/CB的 CoMP发送方式时, 所述终端设备的预先建立的差分 CQI与偏移量映射关系中, 多个偏移量基准值中的 最大值。
23、 根据权利要求 18所述的终端设备, 其中,
当所述基站采用多点联合处理的 CoMP发送方式时,所述终端设备的预先建立的 差分 CQI与偏移量映射关系中,所述多个偏移量基准值中的最小值为 0或者 1或者 2; 当所述基站采用多点协作调度或波束赋形的 CoMP发送方式时,所述终端设备的 预先建立的差分 CQI 与偏移量映射关系中, 所述多个偏移量基准值中的最小值为 -1 或者 0。
24、 根据权利要求 18所述的终端设备, 其中, 当终端设备反馈的秩为 1时, 所 述第二计算单元计算的基于 CoMP传输的 CQI偏移量为基于 CoMP传输的 CQI索引 与基于非 CoMP传输的 CQI索引之差。
25、 根据权利要求 18所述的终端设备, 其中, 当终端设备反馈的秩大于等于 2 时,所述第一计算单元计算两个传输块的基于非 CoMP传输的 CQI信息和基于 CoMP 传输的 CQI信息; 所述第二计算单元计算两个传输块的基于 CoMP传输的 CQI偏移 量,其中,每一个传输块的基于 CoMP传输的 CQI偏移量为所述传输块的基于 CoMP 传输的 CQI索引与所述传输块的基于非 CoMP传输的 CQI索引之差; 所述反馈单元 反馈两个传输块的基于非 CoMP传输的 CQI信息和基于 CoMP传输的差分 CQI信息。
26、 根据权利要求 18所述的终端设备, 其中, 当终端设备反馈的秩大于等于 2 时,所述第一计算单元计算两个传输块的基于非 CoMP传输的 CQI信息和基于 CoMP 传输的 CQI信息; 所述第二计算单元计算两个传输块的基于 CoMP传输的 CQI偏移 量,其中,第一个传输块的基于 CoMP传输的 CQI偏移量为第一个传输块的基于 CoMP 传输的 CQI索引与第一个传输块的基于非 CoMP传输的 CQI索引之差, 第二个传输 块的基于 CoMP传输的 CQI偏移量为第一个传输块的基于 CoMP传输的 CQI索引与 第二个传输块的基于 CoMP传输的 CQI索引之差; 所述反馈单元反馈基于 CoMP传 输的两个传输块的差分 CQI信息和基于非 CoMP传输的两个传输块的 CQI信息。
27、 一种计算机可读程序, 其中, 当在终端设备中执行该程序时, 该程序使得计 算机在所述终端设备中执行权利要求 1-4任一项所述的差分 CQI与偏移量的映射关系 建立方法。
28、一种存储有计算机可读程序的存储介质, 其中, 该计算机可读程序使得计算 机在终端设备中执行权利要求 1-4任一项所述的差分 CQI与偏移量的映射关系建立方 法。
29、 一种计算机可读程序, 其中, 当在终端设备中执行该程序时, 该程序使得计 算机在所述终端设备中执行权利要求 9-17任一项所述的信道质量信息的反馈方法。
30、一种存储有计算机可读程序的存储介质, 其中, 该计算机可读程序使得计算 机在终端设备中执行权利要求 9-17任一项所述的信道质量信息的反馈方法。
PCT/CN2011/078324 2011-08-12 2011-08-12 一种映射关系建立方法、信道质量信息的反馈方法和装置 WO2013023336A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014524245A JP5850153B2 (ja) 2011-08-12 2011-08-12 マッピング関係の確立方法、チャネル品質情報のフィードバック方法、及び装置
KR1020147003881A KR20140036322A (ko) 2011-08-12 2011-08-12 매핑 관계 설정 방법, 채널 품질 정보 피드백 방법 및 장치
EP11870937.7A EP2744136A4 (en) 2011-08-12 2011-08-12 METHOD FOR DEFINING ASSIGNMENT RELATIONS, METHOD AND DEVICE FOR CHANNEL QUALITY INFORMATION FEEDBACK
CN2011800694591A CN103460630A (zh) 2011-08-12 2011-08-12 一种映射关系建立方法、信道质量信息的反馈方法和装置
PCT/CN2011/078324 WO2013023336A1 (zh) 2011-08-12 2011-08-12 一种映射关系建立方法、信道质量信息的反馈方法和装置
US14/162,485 US20140133345A1 (en) 2011-08-12 2014-01-23 Method and apparatus for establishing mapping relationship and method and apparatus for feeding back channel quality information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078324 WO2013023336A1 (zh) 2011-08-12 2011-08-12 一种映射关系建立方法、信道质量信息的反馈方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/162,485 Continuation US20140133345A1 (en) 2011-08-12 2014-01-23 Method and apparatus for establishing mapping relationship and method and apparatus for feeding back channel quality information

Publications (1)

Publication Number Publication Date
WO2013023336A1 true WO2013023336A1 (zh) 2013-02-21

Family

ID=47714674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078324 WO2013023336A1 (zh) 2011-08-12 2011-08-12 一种映射关系建立方法、信道质量信息的反馈方法和装置

Country Status (6)

Country Link
US (1) US20140133345A1 (zh)
EP (1) EP2744136A4 (zh)
JP (1) JP5850153B2 (zh)
KR (1) KR20140036322A (zh)
CN (1) CN103460630A (zh)
WO (1) WO2013023336A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2499674B (en) * 2012-02-27 2014-03-26 Broadcom Corp Method and apparatus for coordinated multi-point operations
US9668275B2 (en) * 2014-02-21 2017-05-30 Lg Electronics Inc. Method and apparatus for reporting channel state by reflecting interference cancellation performance
CN106716865B (zh) * 2014-09-19 2020-04-21 华为技术有限公司 下行链路开环多用户协同多点传输的系统和方法
US10772074B2 (en) * 2018-02-16 2020-09-08 At&T Intellectual Property I, L.P. Facilitation of reporting sub-band channel quality indicators for 5G or other next generation network
WO2024069752A1 (ja) * 2022-09-27 2024-04-04 株式会社Nttドコモ 端末、無線通信方法及び基地局
PL443991A1 (pl) * 2023-03-07 2024-09-09 Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie System do elektrostymulacji komórek w warunkach in vitro

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841386A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 一种信道质量指示的反馈方法及系统
CN101868925A (zh) * 2007-11-20 2010-10-20 三星电子株式会社 无线通信系统中报告信道质量指示的设备和方法
WO2010129593A1 (en) * 2009-05-04 2010-11-11 Qualcomm Incorporated Method and apparatus for facilitating multicarrier differential channel quality indicator (cqi) feedback

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699602B2 (en) * 2007-12-13 2014-04-15 Texas Instruments Incorporated Channel quality report processes, circuits and systems
WO2009076487A1 (en) * 2007-12-13 2009-06-18 Texas Instruments Incorporated Channel quality report processes, circuits and systems
US8917707B2 (en) * 2009-04-24 2014-12-23 Samsung Electronics Co., Ltd. Techniques for channel state information feedback in wireless communication system
KR101521001B1 (ko) * 2010-01-08 2015-05-15 인터디지탈 패튼 홀딩스, 인크 다중 반송파의 채널 상태 정보 전송 방법
KR101715866B1 (ko) * 2010-08-26 2017-03-13 삼성전자주식회사 멀티셀 통신 시스템에서 협력 랭크에 기초하여 적응적으로 스케줄링을 수행하는 방법 및 장치
WO2012131612A1 (en) * 2011-03-31 2012-10-04 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
WO2012144841A2 (en) * 2011-04-21 2012-10-26 Lg Electronics Inc. Channel state information feedback method and apparatus in a multi-node system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868925A (zh) * 2007-11-20 2010-10-20 三星电子株式会社 无线通信系统中报告信道质量指示的设备和方法
CN101841386A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 一种信道质量指示的反馈方法及系统
WO2010129593A1 (en) * 2009-05-04 2010-11-11 Qualcomm Incorporated Method and apparatus for facilitating multicarrier differential channel quality indicator (cqi) feedback

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2744136A4 *

Also Published As

Publication number Publication date
EP2744136A4 (en) 2015-03-25
EP2744136A1 (en) 2014-06-18
JP5850153B2 (ja) 2016-02-03
KR20140036322A (ko) 2014-03-25
CN103460630A (zh) 2013-12-18
US20140133345A1 (en) 2014-05-15
JP2014523218A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
KR101867392B1 (ko) 채널 상태 정보의 피드백 방법 및 단말
CN102859919B (zh) 用于mu-mimo的低开销pmi和cqi反馈和配对方法及设备
EP3288313B1 (en) Method for determining quantity of channel quality indicators, cqis
WO2019047979A1 (zh) 一种通信方法及设备
WO2014019445A1 (zh) 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
WO2013023336A1 (zh) 一种映射关系建立方法、信道质量信息的反馈方法和装置
WO2015074262A1 (zh) 一种信道状态信息的反馈方法及装置
WO2011085679A1 (zh) 一种额外的预编码矩阵索引的指示方法和系统
WO2014063647A1 (zh) 一种确定信道状态信息的方法及终端
WO2014110931A1 (zh) 调制处理方法及装置
CN103188796B (zh) 聚合cqi发送方法及装置
WO2014048189A1 (zh) 信道状态信息反馈信令的配置方法、基站和终端
WO2011020439A1 (zh) 传输方案和/或反馈模式的配置方法和设备
WO2014067341A1 (zh) 信道状态信息的处理方法、基站和终端
WO2014019335A1 (zh) 上行控制信息uci的传输方法和设备
WO2011098015A1 (zh) 基于码书的信道信息反馈方法、设备和系统
WO2012149892A1 (zh) 信道状态信息上报方法及装置
WO2014015811A1 (zh) 信道状态信息的发送方法及装置
WO2015039312A1 (zh) 信道状态信息的反馈方法及装置
WO2012155499A1 (zh) 一种信道状态信息的发送方法和用户设备
WO2013044461A1 (zh) 信道状态信息的测量方法、用户设备及基站
WO2011038677A1 (zh) 一种空间复用模式中退秩的方法、基站及通信系统
WO2011082641A1 (zh) 一种传输信道质量信息的系统、终端及方法
WO2013091535A1 (zh) 信道状态信息的反馈方法及装置
WO2012167687A1 (zh) Comp终端的协作调度的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011870937

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014524245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147003881

Country of ref document: KR

Kind code of ref document: A