WO2014110931A1 - 调制处理方法及装置 - Google Patents

调制处理方法及装置 Download PDF

Info

Publication number
WO2014110931A1
WO2014110931A1 PCT/CN2013/086202 CN2013086202W WO2014110931A1 WO 2014110931 A1 WO2014110931 A1 WO 2014110931A1 CN 2013086202 W CN2013086202 W CN 2013086202W WO 2014110931 A1 WO2014110931 A1 WO 2014110931A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
mode
combination
tbs index
tbs
Prior art date
Application number
PCT/CN2013/086202
Other languages
English (en)
French (fr)
Inventor
徐俊
戴博
陈泽为
李儒岳
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to ES13872027.1T priority Critical patent/ES2694104T3/es
Priority to KR1020157019700A priority patent/KR101746317B1/ko
Priority to BR112015017291-1A priority patent/BR112015017291B1/pt
Priority to EP18183040.7A priority patent/EP3419237B1/en
Priority to US14/761,899 priority patent/US9794022B2/en
Priority to JP2015552982A priority patent/JP6067137B2/ja
Priority to EP13872027.1A priority patent/EP2933969B1/en
Priority to RU2015132033A priority patent/RU2615763C2/ru
Priority to AU2013373901A priority patent/AU2013373901B2/en
Publication of WO2014110931A1 publication Critical patent/WO2014110931A1/zh
Priority to US15/694,311 priority patent/US10218456B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present invention relates to the field of mobile wireless communications, and in particular to a modulation processing method and a terminal and a base station in a wireless communication system.
  • adaptive code modulation technology belongs to the most typical link adaptation technology.
  • the control signaling that needs to be transmitted on the uplink has an Acknowledgement/Negative Acknowledgement (ACK/NACK: Acknowledgement/Negative Acknowledgement) and reflects the downlink physical channel status information (CSI: Channel State Information).
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • CSI Channel State Information
  • CQI Channel quality indication
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • CQI is an indicator used to measure the quality of downlink channels.
  • CQI is represented by an integer value of 0 to 15, which represents different CQI levels, and different CQIs correspond to each.
  • MCS Modulation and Coding Scheme
  • QAM Quadrature Amplitude Modulation
  • QPSK Quadrature Phase Shift Keying
  • the selected CQI level should be such that the PDSCH (Physical Downlink Shared Channel) corresponding to the CQI has a block error rate of no more than 0.1 under the corresponding MCS.
  • the UE Based on an unrestricted detection interval in the frequency domain and the time domain, the UE will obtain the highest CQI value corresponding to each of the maximum CQI values reported in the uplink subframe n, and the CQI has a sequence number ranging from 1 to 15 and satisfies The following conditions, if the CQI sequence number 1 does not satisfy the condition, the CQI sequence number is 0: The error rate of a single PDSCH transport block when received is not more than 0.1, and the PDSCH transport block contains joint information: modulation mode and transport block size, which corresponds to A CQI sequence number and a group of downlink physical resource blocks occupied, that is, CQI reference resources.
  • the highest CQI value is the maximum CQI value when the BLER (Block Error Ratio) is not greater than 0.1, which is beneficial to control resource allocation.
  • the smaller the CQI value the more resources it consumes and the better the BLER performance.
  • these joint information of the PDSCH transmission in the CQI reference resource can be signaled, and: the joint information of the modulation scheme and the effective channel coding rate generated by the CQI reference resource are most likely to be characterized by the CQI sequence number. Proximity effective channel coding rate. When there is more than one joint information, which can produce the same effective channel coding rate characterized by the CQI sequence number, then the joint information with the smallest transport block size is used.
  • Each CQI sequence number corresponds to a modulation mode and a transport block size, and the correspondence between the transport block size and the NPRB can be expressed in a table.
  • the encoding rate can be calculated based on the transport block size and the size of the NPRB.
  • the ACK/NACK response message is transmitted on the physical uplink control channel (PUCCH: Physical Uplink Control) in the format 1/1 a/lb (PUCCH format 1/1 al/b), if the terminal (UE: User Equipment)
  • PUCCH Physical Uplink Control
  • UE User Equipment
  • the feedback of the CQI/PMI and RI may be periodic feedback or non-periodic feedback.
  • the specific feedback is as follows. 2: Table 2: Uplink physical channel corresponding to periodic feedback and aperiodic feedback
  • the cyclic feedback CQI/PMI, RI if the UE does not need to send uplink data, the cyclic feedback CQI/PMI, RI is in the format 2/2a/2b (PUCCH format2/2a/2b) on the PUCCH. Transmission, if the UE needs to send uplink data, then CQI/PMI, RI is transmitted on PUSCH; for non-periodic feedback CQI/PMI, RI is only transmitted on PUSCH.
  • the following three types of downlink physical control channels are defined in the Release 8 standard of the Long-Term Evolution (LTE): Physical Control Format Indicator Channel (PCFICH for short), physical Hybrid Automatic Retransmission Request Indicator Channel (PHICH) and Physical Downlink Control Channel (Physical Downlink) Control Channel, referred to as PDCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH physical Hybrid Automatic Retransmission Request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the PDCCH is used to carry Downlink Control Information (DCI), and includes: uplink and downlink scheduling information, and uplink power control information.
  • DCI Downlink Control Information
  • the DCI format (DCI format) is divided into the following types: DCI format 0, DCI format 1, DCI format 1A, DCI format IB, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 2B, DCI Format 2C, DCI format 2D, DCI format 3 and DCI format 3 A, etc.;
  • downlink control information needs to be defined in the downlink control signaling, such as a coded modulation mode, a resource allocation location, and HARQ information.
  • the downlink scheduling of the base station determines a coding modulation mode.
  • a modulation and transmission block size table is defined in the protocol, and each row of the table corresponds to one MCS index.
  • a modulation and transmission block size table defines a type.
  • the specific table can refer to the 36.213 standard of LTE.
  • An MCS index essentially corresponds to a spectrum efficiency.
  • the selection of the MCS index needs to refer to the value of the CQI.
  • the base station needs to consider the spectral efficiency of the two.
  • the base station determines the MCS index, and also needs to determine resource allocation information.
  • the resource allocation gives the number of physical resource blocks NPRB that the downlink transmission needs to occupy.
  • the LTE standard also provides a TBS table, where the table is given a MCS index and physical resources.
  • Block number NPRB strip In the R10 version, the UE is semi-statically set by higher layer signaling to be based on one of the following transmission modes, according to user equipment specific (UE-Specific) search.
  • Transmission mode 1 Single antenna port; Port 0 (Single-antenna port; port 0) Transmission mode 2: Transmit diversity
  • Transmission mode 3 Open-loop spatial multiplexing
  • Transmission Mode 5 Multi-user Multiple Input Multiple Output (Multi-user MIMO)
  • Transmission mode 7 Single antenna port; Port 5 (Single-antenna port; port 5)
  • Transmission mode 8 Dual stream transmission, ie dual stream beamforming
  • Transmission mode 9 Up to 8 layers of transmission. (up to 8 layer transmission) Transmission mode 10: Up to 8 layers of transmission supporting COMP function.
  • LTE Long Term Evolution
  • the embodiments of the present invention provide a modulation processing method, a terminal, and a base station, so as to solve the problem that the existing communication standard cannot meet the requirement.
  • an embodiment of the present invention provides a code modulation processing method, where the method includes:
  • the base station sends high-level configuration signaling to the terminal, where the high-level configuration signaling is used to indicate whether a high-order quadrature amplitude modulation (QAM) modulation mode is supported, and the high-order QAM modulation mode is a modulation mode greater than 64QAM.
  • QAM quadrature amplitude modulation
  • the method further includes:
  • the base station receives channel state information of the terminal, where the channel state information includes at least channel quality indication (CQI) information, and when the high layer configuration signaling indicates that the high order QAM modulation mode is not supported, the CQI information is based on The first CQI table supporting the high-order QAM modulation mode is obtained. When the high-level configuration signaling indicates that the high-order QAM modulation mode is supported, the CQI information is obtained based on a second CQI table that supports the high-order QAM modulation mode.
  • CQI channel quality indication
  • the method further includes:
  • the base station sends downlink control signaling to the terminal, where the downlink control signaling includes at least a modulation and coding mode domain (/ MCS ), and when the high-layer configuration signaling indicates that the high-order QAM modulation mode is not supported, the modulation is performed.
  • the coding mode field (/ ⁇ ) is determined based on a first modulation and transport block size (TBS) index table that does not support high-order QAM; when high-level configuration signaling indicates that high-order QAM modulation is supported,
  • TBS transport block size
  • an embodiment of the present invention further provides a code modulation processing method, where the method includes:
  • the terminal receives high-level configuration signaling sent by the base station, where the high-level configuration signaling is used to indicate whether to support a high-order quadrature-amplitude modulation (QAM) modulation mode, where the high-order QAM modulation mode is a modulation mode greater than 64QAM.
  • QAM quadrature-amplitude modulation
  • the embodiment of the present invention further provides a base station, where the base station includes: a configuration information sending unit, configured to send high-level configuration signaling to the terminal, where the high-level configuration signaling is used to indicate whether to support high-order A quadrature amplitude modulation (QAM) modulation scheme, the high-order QAM modulation scheme being a modulation scheme greater than 64QAM.
  • a configuration information sending unit configured to send high-level configuration signaling to the terminal, where the high-level configuration signaling is used to indicate whether to support high-order A quadrature amplitude modulation (QAM) modulation scheme, the high-order QAM modulation scheme being a modulation scheme greater than 64QAM.
  • QAM quadrature amplitude modulation
  • the embodiment of the present invention further provides a terminal, where the terminal includes: a configuration information receiving unit, configured to receive high layer configuration signaling sent by a base station, where the high layer configuration signaling is used to indicate whether to support high A quadrature amplitude modulation (QAM) modulation method, wherein the high-order QAM modulation mode is a modulation mode greater than 64QAM.
  • a configuration information receiving unit configured to receive high layer configuration signaling sent by a base station, where the high layer configuration signaling is used to indicate whether to support high A quadrature amplitude modulation (QAM) modulation method, wherein the high-order QAM modulation mode is a modulation mode greater than 64QAM.
  • QAM quadrature amplitude modulation
  • the transmission and feedback of the MQAM are well supported, and the MQAM is well supported under the condition that the existing system is compatible, the signaling overhead is not increased, the transmission and the feedback are guaranteed, and the system is improved.
  • Frequency efficiency and data peak rate, and support for 256QAM or 256QAM through semi-static switching, guarantees the use of 256QAM in a reasonable environment, such as 256QAM in a small cell environment.
  • FIG. 1 is a schematic diagram of a modulation processing method applied to a base station according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a modulation processing method applied to a terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present invention. Preferred embodiment of the invention Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
  • This embodiment provides a modulation processing method, which is applied to a base station, and includes:
  • the base station (eNodeB) sends high layer configuration signaling to the terminal (UE), where the high layer configuration signaling is used to indicate whether to support a high order quadrature amplitude modulation (QAM) modulation mode, and the high order QAM modulation mode is a modulation greater than 64QAM. the way.
  • QAM quadrature amplitude modulation
  • high-order QAM is also referred to as M QAM, where M is a positive integer greater than 64 and is a power of 2.
  • M 256
  • M QAM 256QAM
  • the high-level configuration signaling may be a new high-level configuration signaling or an existing high-level configuration signaling, such as an existing high-level configuration signaling used to indicate a transmission mode.
  • the predefined one or more transmission modes support the sending of the high-level configuration signaling, and the other modes do not support the sending of the high-level configuration signaling, where the base station only supports transmission in the transmission mode.
  • the high layer configuration signaling is sent when the high layer configures signaling.
  • the sender and receiver of the high-level configuration signaling that is, the base station and the terminal, predefine the content of the explicit indication (such as the transmission mode) and the content of the implicit indication (refer to whether the high-order QAM is supported). Correspondence between modulation methods).
  • the high-level configuration signaling used to indicate the transmission mode is used to implement an implicit indication whether the high-order QAM modulation mode is supported.
  • the base station and the terminal pre-define one or more modes to support the MQAM, and the other transmission modes do not support the MQAM.
  • the foregoing transmission mode supporting MQAM may be a transmission mode 9, a transmission mode 10, a newly defined transmission mode, or all transmission modes, or only one or more proprietary transmission modes are newly defined;
  • M may also be 128, 256 or 1024.
  • the method in this embodiment ensures that the semi-static handover supports the use of 256QAM or does not support 256QAM, which ensures that 256QAM is used in a reasonable environment, for example, 256QAM is used in a small cell environment.
  • the present invention provides a coding and modulation processing method, and an application base station, including:
  • the base station sends high layer configuration signaling to the terminal (UE), where the high layer configuration signaling is used to indicate whether to support a high order quadrature amplitude modulation (QAM) modulation mode, the high order QAM (also referred to as M QAM)
  • the modulation method is a modulation method larger than 64 QAM.
  • the base station receives the channel state information of the terminal, where the channel state information includes at least channel quality indication (CQI) information, when the high layer configuration signaling is performed.
  • CQI channel quality indication
  • the CQI information is obtained based on the first CQI table that does not support the high-order QAM modulation mode.
  • the CQI information is based on Obtained based on a second CQI table supporting high-order QAM modulation.
  • the first CQI table is a 4-bit CQI table of Release 8 of LTE; the second CQI table has the following manner:
  • the second CQI table has 16 values, that is, the CQI is represented by 4 bits, and a combination of L1 modulation modes and code rates in addition to a combination of L2 modulation modes and code rates in the first CQI table is described.
  • Mode A1 a combination of L1 modulation modes and code rates in addition to the first L2 modulation modes and code rate combinations in the first CQI table are sequentially used as the first L1 modulation modes in the second CQI table. And a combination of code rates, the combination of the L2 modulation modes and the code rate in the second CQI table is a combination of QAM and code rate greater than 64;
  • the "2 (original 4)" in the 4th line of the CQI indicator column in the above table indicates the modulation mode and code rate combination corresponding to the CQI index of 2 and the original CQI table (that is, the first CQI table referred to herein). When the CQI index is 4, the corresponding modulation mode and code rate combination are the same.
  • the “15 (new)” in the last line indicates that the modulation mode and code rate combination corresponding to the CQI index is 15 relative to the original CQI table.
  • the second CQI form below is interpreted in a similar manner and will not be described below.
  • Method A12 L1 combinations in the first CQI table except the first L2 combinations of even modulation and code rate or odd modulation and code rate are sequentially used as the first L1 combinations in the second CQI table, and the second CQI table
  • the last L2 modulation mode and the code rate combination is a QAM and a code rate combination greater than 64; wherein, in the first CQI table, the odd modulation mode and the code rate combination refer to the first, third, fifth, seventh, and ninth. 11, 13, 15 modulation mode and code rate combination set, the even modulation mode and code rate combination refers to the second, fourth, sixth, eighth, ten, twelve, 14 modulation mode and code rate combination set.
  • mode A2 in the second CQI table, the CQI has 16 or 32 values, and any combination of the modulation mode and the code rate in the second CQI table is the same as all modulation modes in the first CQI table. Or the combination of the code rate is different; or, the combination of the first modulation mode and the code rate in the second CQI table is the same as the combination of the kth modulation mode and the code rate of the first CQI table, the second CQI table
  • the combination of other modulation modes and code rates is different from the combination of all modulation modes and code rates in the first CQI table, where k is a positive integer between 1 and 5; wherein, the second CQI table, the first one The modulation mode and the code rate combination refer to the second line in the second CQI table, and the corresponding CQI index is 1.
  • Table 5 CQI cable bow 1 modulation mode code rate x 1024 spectrum efficiency
  • mode A3 the CQI in the second CQI table has 32 values, and the first 13 or 14 or 15 combinations of the combination of the odd modulation mode and the code rate in the second CQI table are the first CQI table. A combination of medium modulation mode and code rate.
  • the following is a second CQI table designed by the method A3, wherein the first 14 combinations of the combination of the odd modulation mode and the code rate in the second CQI table are the combination of the modulation mode and the code rate in the first CQI table, such as a table. 6 shows:
  • the third embodiment of the code modulation processing method of the present invention is applied to a base station, and includes:
  • the base station (eNodeB) transmits high layer configuration signaling to the terminal (UE), and the high layer configuration signaling may indicate whether the supported modulation mode includes high order QAM or high order QAM.
  • M is a positive integer greater than 64 and is a power of 2.
  • the base station sends downlink control signaling to the terminal (UE), where the downlink control signaling includes at least a modulation and coding mode domain (/ MCS).
  • the modulation and coding mode field indicates that the high-order QAM modulation mode is not supported
  • the modulation and coding mode field is determined based on a first modulation and transport block size (TBS) index table that does not support high-order QAM
  • TBS transport block size
  • High-level configuration signaling indicates that when high-order QAM modulation is supported, combined with predefined
  • the information determines whether the modulation and coding mode field (/ MCS ) is determined based on the second modulation and TBS index table supporting higher order QAM.
  • the predefined information is at least one of the following: a search space, a downlink control information format, and a CRC scrambling mode corresponding to the downlink control information.
  • the predefined information is a search space
  • TBS modulation and transport block size
  • the predefined information is a CRC scrambling mode corresponding to the search space and the downlink control information, and is predefined: the high-level configuration signaling indication supports the high-order QAM modulation mode, and is in the public search space or on the UE-specific search space.
  • the modulation and coding mode field (/ ⁇ ) is determined based on a first modulation and transport block size (TBS) index table that does not support high-order QAM, and the high-level configuration signaling indicates support for high-order QAM.
  • TSS modulation and transport block size
  • the modulation and coding mode field (/ MCS ) is based on the second modulation and transport block size supporting high-order QAM ( TBS) Index table is determined.
  • the predefined information may also be a downlink control information format, and predefined: the high-level configuration signaling indication supports a high-order QAM modulation mode, and the downlink control information format is a predefined format that supports a high-order QAM modulation mode. And the modulation and coding mode field (/ Mes ) is determined based on a second modulation and transport block size (TBS) index table supporting high-order QAM, and the high-level configuration signaling indicates that high-order QAM modulation mode or downlink control is not supported.
  • TBS modulation and transport block size
  • the information format is a predefined format that does not support the high-order QAM modulation mode, and the modulation and coding mode field (/ ⁇ ) is determined based on a first modulation and transport block size (TBS) index table that does not support higher-order QAM.
  • TBS transport block size
  • Pre-defined transmission mode supporting high-order quadrature amplitude modulation supports high-order quadrature amplitude modulation for all downlink control information formats
  • pre-defined transmission mode supporting high-order quadrature amplitude modulation corresponds to all downlink control information formats. Only one downlink control information format supports high-order quadrature amplitude modulation.
  • control information format supporting MQAM may include at least one of the following: DCI Format 2C, DCI Format 2D, DCI Format 4, DCI Format 0, DCI Format 1A, DCI Format X (new defined control information format);
  • the base station sends downlink data based on downlink control signaling.
  • the first modulation and TBS index table is a 5-bit modulation and TBS index table of Release 8 of LTE; and the second modulation and TBS index table is used in one of the following manners:
  • the second modulation and TBS index table has 32 values, that is, the MCS index is represented by 5 bits, and L1 in the first modulation and TBS index table except for the combination of the L2 modulation modes and the TBS index.
  • L1 combinations other than the first L2 modulation and TBS index combinations in the first modulation and TBS index table are sequentially used as the first L1 combinations, the second modulation and the TBS index in the second modulation and TBS index table.
  • the second modulation and TBS index table can be designed as shown in Table 7 below:
  • Mode B12 L1 combinations other than the even-number modulation mode and the TBS index combination or the first L2 combination of the odd-number modulation mode and the TBS index combination in the first modulation and TBS index table are sequentially used as the first L1 in the second modulation and TBS index table.
  • the second modulation and TBS index table can be designed as shown in Table 8 below:
  • L1 modulation mode and TBS index combination in the first modulation and TBS index table except for one of the first L2-2, the 10th and the 11th, and the 17th and 18th, respectively, as the The first L1 combination in the second modulation and TBS index table, the first L1 in the second modulation and TBS index table
  • the second modulation and TBS index table can be designed as shown in Table 9 below:
  • 31 (new) 8 mode B14 one of the first L2-2, the 10th and the 11th, and the 17th and 18th, except the even modulation mode and the TBS index in the first modulation and TBS index table.
  • the L1 modulation modes and the TBS index combination are sequentially used as the first L1 combinations in the second modulation and TBS index table, and the first L1 subsequent L2-1 combinations in the second modulation and TBS index table are QAM greater than 64.
  • the second modulation and TBS index table can be designed as shown in Table 10 below:
  • mode B2 the second modulation and TBS index table has 32 or 64 values, and the combination of any one of the second modulation and TBS index tables and the TBS index is combined with the first modulation and TBS index table. All the modulation modes and the TBS index combinations are different; or, the combination of the first modulation mode and the TBS index in the second modulation and TBS index table is the same as the kth combination in the first modulation and TBS index table, and the The TBS indices of the last four combinations in the second modulation and TBS index tables are default, others are different, and k is a positive integer between 1 and 5.
  • the combination of the first modulation mode and the TBS index in the second modulation and TBS index table refers to the first row in the second modulation and TBS index table, and the corresponding MCS index is 0.
  • the combination of any one of the second modulation and TBS index tables and the TBS index is the same as in the first modulation and TBS index table.
  • the modulation scheme is different from the TBS index combination, and the second modulation and TBS index table can be designed as shown in Table 11 below:
  • mode B3 the second modulation and TBS index table has 64 values, and the combination of the first/odd or even modulation mode and the TBS index in the second modulation and TBS index table are both the first modulation and the TBS.
  • the combination of the first/even even modulation mode and the TBS index in the second modulation and TBS index table is a combination of the modulation mode and the TBS index in the first modulation and TBS index table.
  • the second modulation and TBS index table can be designed as shown in Table 12 below: Table 12
  • the present invention is applied to a modulation processing method of a base station, as shown in FIG. 1, including the following steps:
  • Step 101 The base station (eNodeB) sends high-level configuration signaling to the terminal (UE), where the high-level configuration signaling is used to indicate whether to support a high-order quadrature-amplitude modulation (QAM) modulation mode, where the high-order QAM modulation mode is greater than 64QAM modulation method.
  • QAM quadrature-amplitude modulation
  • Step 102 The base station receives channel state information of the terminal, where the channel state information includes at least channel quality indication (CQI) information, where the high-level configuration signaling indicates that the high-order QAM modulation mode is not supported, the CQI The information is based on the first CQI that does not support high-order QAM modulation. The table is obtained. When the high-level configuration signaling indicates that the high-order QAM modulation mode is supported, the CQI information is obtained based on a second CQI table supporting a high-order QAM modulation mode.
  • CQI channel quality indication
  • Step 103 The base station sends downlink control signaling to the terminal, where the downlink control signaling includes at least a modulation and coding mode domain (/ MCS ), and when the high-layer configuration signaling indicates that the high-order QAM modulation mode is not supported,
  • the modulation and coding mode field (/ Mes ) is determined based on a first modulation and transport block size (TBS) index table that does not support high-order QAM; when the high-layer configuration signaling indicates support for a high-order QAM modulation mode, the modulation And the coding mode field is determined based on the second modulation and TBS index table supporting high order QAM.
  • TBS transport block size
  • the base station (eNodeB) then transmits downlink data to the terminal (UE) based on the aforementioned downlink control signaling.
  • the present invention also provides a code modulation processing method, which is based on a terminal, that is, a method of the present invention is described from the perspective of a terminal, and the method includes:
  • the terminal receives high-level configuration signaling sent by the base station, where the high-level configuration signaling is used to indicate whether to support a high-order quadrature-amplitude modulation (QAM) modulation mode, where the high-order QAM modulation mode is a modulation mode greater than 64QAM.
  • QAM quadrature-amplitude modulation
  • the high-level configuration signaling is added.
  • the predefined one or more transmission modes support sending the high-level configuration signaling, and the other modes do not support sending the high-level configuration signaling, where the base station only supports the sending of the high-level configuration signaling when the transmission mode is supported. Sending the high layer configuration signaling.
  • one or more transmission modes are predefined to support high-order quadrature amplitude modulation, and other modes do not support high-order quadrature amplitude modulation, and the high-level configuration signaling is transmission mode indication signaling.
  • the method further includes:
  • the terminal sends channel state information to the base station, where the channel state information includes at least channel quality indication (CQI) information, when the high-layer configuration signaling indicates When the high-order QAM modulation mode is not supported, the CQI information is obtained based on the first CQI table that does not support the high-order QAM modulation mode.
  • CQI channel quality indication
  • the CQI information is supported.
  • the second CQI table of the high-order QAM modulation method is obtained.
  • the corresponding code rate r is a real number between 0.92 and 0.96.
  • the first CQI table is a 4-bit CQI table of Release 8 of LTE; and the second CQI table is configured as follows:
  • mode A2 in the second CQI table, the CQI has 16 or 32 values, and any combination of the modulation mode and the code rate in the second CQI table is the same as all modulation modes in the first CQI table. Or the combination of the code rate is different; or, the combination of the first modulation mode and the code rate in the second CQI table is the same as the combination of the kth modulation mode and the code rate of the first CQI table, the second CQI table
  • the combination of other modulation modes and code rates is different from the combination of all modulation modes and code rates in the first CQI table, where k is a positive integer between 1 and 5; wherein, the second CQI table, the first one The modulation mode and the code rate combination refer to the second row in the second CQI table, and the corresponding CQI index is 1.
  • mode A3 the CQI in the second CQI table has 32 values, and the first 13 or 14 or 15 combinations of the combination of the odd modulation mode and the code rate in the second CQI table are the first CQI table.
  • the odd modulation mode and the code rate combination refer to a modulation mode and a code rate combination set of the first, third, fifth, seventh, ninth, eleventh, and thirteenth, and nineteenth.
  • the mode A1 is the mode Al l or the mode A12, where:
  • Mode A1 a combination of L1 modulation modes and code rates in addition to the first L2 modulation modes and code rate combinations in the first CQI table are sequentially used as the first L1 modulation modes and code rates in the second CQI table.
  • Combining, the combination of the L2 modulation modes and the code rate in the second CQI table is a combination of QAM and code rate greater than 64;
  • Method A12 In addition to even modulation and code rate combination or odd modulation and code rate in the first CQI table
  • the L1 combinations other than the first L2 combinations are sequentially used as the first L1 combinations in the second CQI table, and the last L2 modulation modes and code rate combinations in the second CQI table are QAM and code rate combinations greater than 64;
  • the even modulation mode and the code rate combination refer to a modulation mode and a code rate combination set of the second, fourth, sixth, eighth, tenth, and twelveteenth.
  • the terminal receives the downlink control signaling sent by the base station, where the downlink control signaling includes at least a modulation and coding mode domain (/ MCS ).
  • the modulation and coding mode field (/) is determined based on a first modulation and transport block size (TBS) index table that does not support high-order QAM;
  • TBS transport block size
  • the modulation and coding mode field is determined based on the second modulation and TBS index table supporting high-order QAM.
  • the first modulation and TBS index table is a version 8 5-bit modulation and TBS index table of LTE;
  • the second modulation and TBS index table is configured in one of the following manners: mode B1:
  • mode B2 the second modulation and TBS index table has 32 or 64 values, and the combination of any one of the second modulation and TBS index tables and the TBS index is combined with the first modulation and TBS index table. All the modulation modes and the TBS index combinations are different; or, the combination of the first modulation mode and the TBS index in the second modulation and TBS index table is the same as the kth combination in the first modulation and TBS index table, and the The TBS indices of the last four combinations in the second modulation and TBS index table are default, others are different, k is a positive integer between 1 and 5; wherein the second modulation and the first modulation in the TBS index table The combination of the mode and the TBS index refers to the first row in the second modulation and TBS index table, and the corresponding MCS index is 0.
  • mode B3 the second modulation and TBS index table has 64 values, and the combination of the first/odd or even modulation mode and the TBS index in the second modulation and TBS index table are both the first modulation and the TBS.
  • the mode B1 is a mode Bl1, a mode B12, a mode B13, or a mode B14, where:
  • L1 combinations other than the first L2 modulation and TBS index combinations in the first modulation and TBS index table are sequentially used as the first L1 combinations, the second modulation and the TBS index in the second modulation and TBS index table.
  • Mode B12 L1 combinations other than the even-number modulation mode and the TBS index combination or the first L2 combination of the odd-number modulation mode and the TBS index combination in the first modulation and TBS index table are sequentially used as the first L1 in the second modulation and TBS index table.
  • Mode B13 L1 modulation modes and TBS index combinations in the first modulation and TBS index table except one of the first L2-2, the 10th and the 11th, and the 17th and 18th are sequentially
  • the first L1 combinations in the second modulation and TBS index table, the first L1 subsequent L2-1 combinations in the second modulation and TBS index table are combinations of QAM and TBS indexes greater than 64, and the second modulation and TBS index table
  • Mode B14 in the first modulation and TBS index table, except for the even modulation mode and the TBS index or the odd modulation mode and the first L2-2, the 10th and 11th, and the 17th and 18th of the TBS index.
  • An L1 modulation scheme and a TBS index combination are sequentially used as the first L1 combinations in the second modulation and TBS index table, and the first L1 subsequent L2-1 combinations in the second modulation and TBS index table are greater than 64.
  • the code modulation processing method applied to the terminal includes: Step 201: The terminal receives high-level configuration signaling sent by the base station, where the high-level configuration signaling is used to indicate whether to support the high-order orthogonal amplitude. a modulation (QAM) modulation mode, where the high-order QAM modulation mode is a modulation mode greater than 64QAM;
  • QAM modulation
  • Step 202 The terminal sends channel state information to the base station, where the channel state information includes at least channel quality indication (CQI) information.
  • CQI channel quality indication
  • the CQI channel quality indication
  • the high layer configuration signaling indicates that the high order QAM modulation mode is not supported
  • the CQI The information is obtained based on the first CQI table that does not support the high-order QAM modulation mode.
  • the high-level configuration signaling indicates that the high-order QAM modulation mode is supported
  • the CQI information is obtained based on the second CQI table supporting the high-order QAM modulation mode.
  • Step 203 The terminal receives downlink control signaling sent by the base station, where the downlink control signaling includes at least a modulation and coding mode domain (/ MCS ).
  • the modulation and coding mode field (/ Mes ) is determined based on a first modulation and transport block size (TBS) index table that does not support high-order QAM; when the high-level configuration signaling indicates that the high-order QAM modulation mode is supported, then the The modulation and coding mode field is based on a second modulation and TBS index table determination that supports higher order QAM.
  • TBS transport block size
  • the present invention further provides an embodiment of a base station, where the base station includes: a configuration signaling sending unit, configured to send high-level configuration signaling to the terminal, where the high-level configuration signaling is used to indicate whether to support A high-order quadrature amplitude modulation (QAM) modulation method, which is a modulation method greater than 64QAM.
  • a configuration signaling sending unit configured to send high-level configuration signaling to the terminal, where the high-level configuration signaling is used to indicate whether to support A high-order quadrature amplitude modulation (QAM) modulation method, which is a modulation method greater than 64QAM.
  • QAM quadrature amplitude modulation
  • the base station further includes a channel state information receiving unit, configured to receive channel state information of the terminal, where the channel state information includes at least channel quality indication (CQI) information, when the high layer configuration signaling indicates When the high-order QAM modulation mode is supported, the CQI information is obtained based on the first CQI table that does not support the high-order QAM modulation mode.
  • CQI channel quality indication
  • the CQI information is supported.
  • the second CQI table of the high-order QAM modulation method is obtained. The specific implementation of the first and second CQI tables is as described above.
  • the base station further includes a downlink control signaling sending unit, configured to send downlink control signaling to the terminal, where the downlink control signaling includes at least a modulation and coding mode domain (/ MCS ), when a high-level configuration signal
  • the modulation and coding mode field is determined based on the first modulation and transport block size (TBS) index table that does not support high-order QAM; when the high-level configuration signaling indicates that the high-order is supported In the QAM modulation mode, the modulation and coding mode field is determined based on a second modulation and TBS index table supporting high order QAM.
  • TBS transport block size
  • the base station device in the embodiment of the present invention supports the transmission and feedback of the MQAM well, and supports the MQAM in a compatible manner with the existing system without increasing the signaling overhead, ensuring the transmission and feedback, and improving the system.
  • the present invention further provides a terminal embodiment.
  • the terminal includes:
  • a configuration information receiving unit configured to receive high layer configuration signaling sent by the base station, where the high layer configuration signaling is used to indicate whether to support a high order quadrature amplitude modulation (QAM) modulation mode, where the high order QAM modulation mode is greater than 64QAM Modulation method.
  • QAM quadrature amplitude modulation
  • a channel state information reporting unit configured to send channel state information to the base station, where the channel state information includes at least channel quality indication (CQI) information, when the high layer configuration signaling indicates that the high order QAM modulation mode is not supported, The CQI information is obtained based on a first CQI table that does not support a high-order QAM modulation mode. When the high-level configuration signaling indicates that the high-order QAM modulation mode is not supported, the CQI information is based on a second mode that supports a high-order QAM modulation mode. The CQI form is available.
  • CQI channel quality indication
  • a control information receiving and detecting unit configured to receive and detect downlink control signaling sent by the base station, where the downlink control signaling includes at least a modulation and coding mode domain (/ MCS ), and the high-level configuration signaling indication does not support high
  • the modulation and coding mode field (/ MCS ) is determined based on a first modulation and transport block size (TBS) index table that does not support high-order QAM; when high-level configuration signaling indicates support for high-order QAM modulation In the mode, the modulation and coding mode field is determined based on the second modulation and TBS index table supporting high order QAM.
  • the terminal device in the embodiment of the present invention supports the transmission and feedback of the MQAM well, and the MQAM is well supported under the condition that the existing system is compatible, the signaling overhead is not increased, the transmission and the feedback are guaranteed, and the system is improved.
  • the modulation processing method, the base station, and the terminal in the embodiment of the present invention ensure high-order QAM modulation on the basis of being compatible with the existing wireless transmission network by indicating whether high-level configuration signaling of the high-order QAM is supported, and ensuring consistency of feedback and transmission. , thereby improving the data peak rate and spectral efficiency, on the other hand, whether to use high-order QAM switching support, supporting high-order QAM transmission under high-order QAM conditions (such as small cells, low interference), is not suitable for high High-order QAM transmission is not supported under the order QAM condition (such as macro station).
  • the embodiment of the present invention supports high-order QAM modulation based on the existing wireless transmission network by indicating whether high-level configuration signaling of high-order QAM is supported, and improves data peak rate and spectrum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种调制处理方法、终端和基站,基站向终端发送高层配置信令,所述高层配置信令用于指示是否支持高阶正交幅度调制(QAM)调制方式,所述高阶 QAM调制方式为大于64QAM的调制方式。通过指示是否支持高阶 QAM 的高层配置信令,在兼容现有无线传输网络基础上支持高阶 QAM调制,提高了数据峰值速率和频谱效率。

Description

调制处理方法及装置 技术领域
本发明涉及移动无线通信领域, 尤其涉及无线通信系统中一种调制处理 方法及终端和基站。
背景技术
在移动通信系统中, 由于无线衰落信道时变的特点, 使得通信过程存在 大量的不确定性, 一方面为了提高系统吞吐量, 釆用传输速率较高的高阶调 制和少冗余纠错码进行通信, 这样在无线衰落信道信噪比比较理想时系统吞 吐量确实得到了很大的提高, 但当信道处于深衰落时则无法保障通信可靠稳 定地进行, 另一方面, 为了保障通信的可靠性, 釆用传输速率较低的低阶调 制和大冗余纠错码进行通信, 即在无线信道处于深衰落时保障通信可靠稳定 的进行, 然而当信道信噪比较高时, 由于传输速率较低, 制约了系统吞吐量 的提高, 从而造成了资源的浪费, 在移动通信技术的发展早期, 人们对抗无 线衰落信道的时变特性, 只能釆用加大发射机的发射功率, 使用低阶大冗余 的调制编码方法来保障系统在信道深衰落时的通信质量, 还无暇考虑如何提 高系统的吞吐量, 随着技术水平的进步, 出现了可根据信道状态自适应地调 节其发射功率, 调制编码方式以及数据的帧长来克服信道的时变特性从而获 得最佳通信效果的技术, 被称为自适应编码调制技术, 属于最典型的链路自 适应技术。
在长期演进系统(LTE: Long Term Evolution ) 中, 上行需要传输的控制 信令有正确 /错误应答消息 ( ACK/NACK: Acknowledgement/Negative Acknowledgement ) , 以及反映下行物理信道状态信息 ( CSI: Channel State Information )的三种形式: 信道质量指示( CQI: Channel quality indication ) 、 预编码矩阵指示 (PMI: Pre-coding Matrix Indicator ) 、 秩指示 (RI: Rank Indicator ) 。
CQI是用来衡量下行信道质量好坏的一个指标。 在 36-213 协议中 CQI 用 0 ~ 15的整数值来表示, 分别代表了不同的 CQI等级, 不同 CQI对应着各 自的 MCS(Modulation and Coding Scheme, 调制编码方案), 见表 1。 CQI等 级的选择应遵循如下准则:
表 1
Figure imgf000004_0001
上表 1中 QAM ( Quadrature Amplitude Modulation )表示正交幅度调制, QPSK(Quadrature Phase Shift Keying) 表示正交相移键控, 是一种数字调 制方式。
所选择的 CQI等级, 应使得该 CQI所对应的 PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道)传输块在相应的 MCS下的误块率不超 过 0.1。
基于在频域和时域中的一个非限制检测间隔, UE将获得最高的 CQI值, 对应于每个在上行子帧 n中上报的最大 CQI值, CQI的序号范围为 1-15, 并 满足如下条件, 如果 CQI序号 1不满足该条件, CQI序号为 0: 单一的一 个 PDSCH传输块在被接收时错误率不超过 0.1 , PDSCH传输块包含联合信息: 调制方式和传输块大小, 其对应于一个 CQI序号以及占用的一组下行物理资 源块,即 CQI参考资源。其中,该最高 CQI值是指,在保证 BLER( Block Error Ratio, 误块率) 不大于 0.1时的最大 CQI值, 有利于控制资源分配。 一般来 说, CQI值越小, 占用的资源越多, BLER性能越好。
对应于一个 CQI序号的具有传输块大小和调制方式联合信息, 如果: 根 据相关传输块大小, CQI参考资源中 PDSCH传输的这些联合信息能用信令通 知, 另外: 和调制方案的联合信息, 其所产生的有效信道编码速率, 是由 CQI序号所能 表征的最可能接近的有效信道编码速率。 当存在不止一个的该联合信息, 它 们都可以产生同样接近的由 CQI序号表征的有效信道编码速率时, 则釆用具 有最小传输块大小的联合信息。
每个 CQI序号对应了一种调制方式和传输块大小, 传输块大小和 NPRB 的对应关系可以用表格表示。 根据传输块大小和 NPRB的大小可计算编码速 率。
LTE 系统中, ACK/NACK应答消息在物理上行控制信道(PUCCH: Physical Uplink Control )上以格式 1/1 a/lb ( PUCCH format 1/1 al/b )传输, 如 果终端 (UE: User Equipment ) 需要发送上行数据时, 则在物理上行共享信 道(PUSCH: Physical Uplink Shared Channel )上传输, CQI/PMI, RI的反馈 可以是周期性的反馈, 也可以是非周期性的反馈, 具体的反馈如表 2所示: 表 2周期性反馈和非周期性反馈对应的上行物理信道
Figure imgf000005_0001
其中, 对于周期性反馈的 CQI/PMI, RI而言, 如果 UE不需要发送上行 数据, 则周期反馈的 CQI/PMI, RI在 PUCCH上以格式 2/2a/2b ( PUCCH format2/2a/2b )传输,如果 UE需要发送上行数据时,则 CQI/PMI, RI在 PUSCH 上传输; 对于非周期性反馈的 CQI/PMI, RI而言, 只在 PUSCH上传输。
长期演进(Long-Term Evolution, 简称为 LTE ) 的版本 8 ( Release 8 )标 准中定义了如下三种下行物理控制信道: 物理下行控制格式指示信道 ( Physical Control Format Indicator Channel, 简称为 PCFICH ) 、 物理混合自 动重传请求指示信道 ( Physical Hybrid Automatic Retransmission Request Indicator Channel, 简称为 PHICH )和物理下行控制信道 ( Physical Downlink Control Channel, 简称为 PDCCH ) 。 其中 PDCCH用于承载下行控制信息 ( Downlink Control Information, 简称为 DCI ) , 包括: 上、 下行调度信息, 以及上行功率控制信息。 DCI的格式(DCI format )分为以下几种: DCI format 0、 DCI format 1、 DCI format 1A、 DCI format IB、 DCI format 1C、 DCI format 1D、 DCI format 2、 DCI format 2A、 DCI format 2B、 DCI format 2C、 DCI format 2D、 DCI format 3和 DCI format 3 A等;
LTE 中需要在下行控制信令定义编码调制方式、 资源分配位置、 HARQ 信息等等下行控制信息。 其中, 基站的下行调度确定了编码调制方式, 具体 地, 协议中定义了调制和传输块大小表格, 表格每一行对应一个 MCS索引, 对于每个 MCS索引,调制和传输块大小表格定义了一种调制方式和码率的组 合, 具体的表格可以参考 LTE的 36.213标准, 一个 MCS索引本质上对应了 一个频谱效率, MCS索引的选择需要参考 CQI的取值,在实现时候基站需要 考虑两者频谱效率一般。 基站确定了 MCS索引, 还需要确定资源分配信息, 资源分配给出了下行传输需要占用的物理资源块个数 NPRB, LTE标准还提 供了一个 TBS表格, 所述表格在给定 MCS索引和物理资源块个数 NPRB条 在 R10版本中, UE通过高层信令半静态( semi-statically )的被设置为基 于以下的一种传输模式( transmission mode ) ,按照用户设备专有( UE-Specific ) 的搜索空间的 PDCCH的指示来接收 PDSCH数据传输:
传输模式 1: 单天线端口; 端口 0 ( Single-antenna port; port 0 ) 传输模式 2: 发射分集( Transmit diversity )
传输模式 3: 开环空间复用 ( Open-loop spatial multiplexing )
传输模式 4: 闭环空间复用 ( Closed-loop spatial multiplexing )
传输模式 5: 多用户多输入多输出 ( Multi-user MIMO )
传输模式 6: 闭环 Rank=l预编码( Closed-loop Rank=l precoding ) 传输模式 7: 单天线端口; 端口 5 ( Single-antenna port; port 5 ) 传输模式 8: 双流传输, 即双流波束赋形
传输模式 9: 最多 8层的传输。 (up to 8 layer transmission) 传输模式 10: 支持 COMP功能的最多 8层的传输。
长期演进( Long Term Evolution, 简称 LTE ) 系统在经历了 R8/9/10几个 版本后, 又陆续准确研究 R11技术。 目前部分 R8产品开始逐步商用, R9和 R10有待进一步产品规划。
现有标准中上行和下行最高支持 64QAM的调制编码方式, 伴随着异构 网的发展, 小小区 (small cell )需要更高的数据传输速率和更高的系统频谱 效率, 但现有标准无法满足这种需求。 发明内容
本发明实施例提供一种调制处理方法、 终端和基站, 以解决现有通信标 准无法满足需求的问题。
为解决上述技术问题, 本发明实施例提供了一种编码调制处理方法, 该 方法包括:
基站向终端发送高层配置信令, 所述高层配置信令用于指示是否支持高 阶正交幅度调制(QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM 的调制方式。
较佳地, 所述基站发送所述高层配置信令后, 该方法还包括:
所述基站接收所述终端的信道状态信息, 所述信道状态信息至少包括信 道质量指示(CQI )信息, 当所述高层配置信令指示不支持高阶 QAM调制方 式时, 所述 CQI信息基于不支持高阶 QAM调制方式的第一 CQI表格得到, 当所述高层配置信令指示支持高阶 QAM调制方式时, 所述 CQI信息基于基 于支持高阶 QAM调制方式的第二 CQI表格得到。
较佳地, 所述基站发送所述高层配置信令后, 该方法还包括:
所述基站向所述终端发送下行控制信令, 所述下行控制信令至少包括调 制和编码方式域 (/MCS), 当高层配置信令指示不支持高阶 QAM调制方式时, 则所述调制和编码方式域 (/^)基于不支持高阶 QAM的第一调制和传输块大 小 ( TBS ) 索引表格确定; 当高层配置信令指示支持高阶 QAM调制方式时, 结合预定义的信息确定是否基于支持高阶 QAM的第二调制和 TBS索引表格 确定调制和编码方式域 ( /MCS )。
为解决上述技术问题, 本发明实施例还提供了一种编码调制处理方法, 该方法包括:
终端接收基站发送的高层配置信令, 所述高层配置信令用于指示是否支 持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM的调制方式。
为解决上述技术问题, 本发明实施例还提供了一种基站, 该基站包括: 配置信息发送单元, 其设置为向终端发送高层配置信令, 所述高层配置 信令用于指示是否支持高阶正交幅度调制(QAM )调制方式,所述高阶 QAM 调制方式为大于 64QAM的调制方式。
为解决上述技术问题, 本发明实施例还提供了一种终端, 该终端包括: 配置信息接收单元, 其设置为接收基站发送的高层配置信令, 所述高层 配置信令用于指示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM的调制方式。
釆用本发明实施例方案, 很好地支持了 MQAM 的传输和反馈, 在兼容 现有系统的、 不增加信令开销、 保证传输和反馈一致条件下很好地支持了 MQAM, 提高了系统的频率效率和数据峰值速率, 而且通过半静态切换支持 使用 256QAM或者不支持 256QAM, 保证了在合理的环境下使用 256QAM, 例如小小区环境下才使用 256QAM。 附图概述
图 1是本发明实施例应用于基站的调制处理方法示意图;
图 2是本发明实施例应用于终端的调制处理方法示意图;
图 3是本发明实施例基站的结构示意图;
图 4是本发明实施例终端的结构示意图。 本发明的较佳实施方式 下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
实施例一
本实施例提供了一种调制处理方法, 应用于基站, 包括:
基站 (eNodeB)向终端 (UE)发送高层配置信令, 所述高层配置信令用于指 示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方式 为大于 64QAM的调制方式。
本文中, 也将高阶 QAM称为 M QAM, 其中 M是大于 64的正整数, 并 且是 2的幂数。
该实施例 1中, M=256, M QAM就是 256QAM。
可选地, 所述高层配置信令可以是新增的高层配置信令或是已有的高层 配置信令, 比如已有的用于指示传输模式的高层配置信令;
所述高层配置信令是新增时, 预定义 1个或多个传输模式支持发送所述 高层配置信令, 其他模式不支持发送所述高层配置信令, 所述基站仅在传输 模式支持发送所述高层配置信令时发送所述高层配置信令。
可理解地, 当釆用已有的高层配置信令时, 相当于釆用隐式的方式指示 了是否支持高阶 QAM调制方式。 为了实现隐式指示的目的, 高层配置信令 的发送方和接收方即基站和终端都预定义了显式指示的内容(比如传输模 式、 )与隐式指示的内容(指是否支持高阶 QAM调制方式)之间的对应关 系。
可选地, 釆用用于指示传输模式的高层配置信令实现隐式指示是否支持 高阶 QAM 调制方式; 比如, 基站和终端预定义一个或者多个模式支持 MQAM , 其他传输模式不支持 MQAM;
可选的, 上述支持 MQAM 的传输模式, 可以为传输模式 9、 传输模式 10、 新定义的传输模式, 或者, 所有传输模式, 或者, 仅新定义 1个或多个 专有传输模式;
可选地, M还可以是 128、 256或者 1024。 本实施例方法, 保证了半静态切换支持使用 256QAM 或者不支持 256QAM, 保证了在合理的环境下使用 256QAM, 例如小小区环境下才使用 256QAM。
实施例二
本发明提供一种编码调制处理方法, 应用基站, 包括:
基站 (eNodeB)向终端 (UE)发送高层配置信令, 所所述高层配置信令用于 指示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM (也称 为 M QAM )调制方式为大于 64 QAM的调制方式。
在前述任一种高层配置信令实现方式的基础上, 基站 (eNodeB)接收所述 终端的信道状态信息, 所述信道状态信息至少包括信道质量指示 (CQI )信 息, 当所述高层配置信令指示不支持高阶 QAM调制方式时, 所述 CQI信息 基于不支持高阶 QAM调制方式的第一 CQI表格得到, 当所述高层配置信令 指示支持高阶 QAM调制方式时, 所述 CQI信息基于基于支持高阶 QAM调 制方式的第二 CQI表格得到。
第二 CQI表格中最后一个调制和码率的组合对应的码率 r的取值为 0.92 和 0.96之间的一个实数, 例如: r=0.93
所述第一 CQI表格是 LTE的版本 8 的 4比特 CQI表格; 第二 CQI表格 具有如下方式:
方式 A1 :
所述的第二 CQI表格具有 16个取值, 即 CQI用 4比特表示, 第一 CQI 表格中除 L2个调制方式和码率的组合之外 L1个调制方式和码率的组合作为 所述的第二 CQI表格中前 L1个的调制方式和码率的组合, 第二 CQI表格中 随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合; L1和 L2 是大于 1正整数, 且 Ll+L2=15;
方式 Al l : 第一 CQI表格中除前 L2 个调制方式和码率组合之外的 L1 个调制方式和码率的组合依次作为所述的第二 CQI表格中前 L1个调制方式 和码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64 的 QAM和码率的组合;
下面是根据方式 Al l设计的第二 CQI表格, 其中 L2=2, Ll=13 , 如下表 3所示:
表 3
Figure imgf000011_0001
上表中 CQI指标一列第 4行中的 "2 (原 4 ) "表示 CQI指标为 2时对应 的调制方式和码率组合与原 CQI表格 (即本文中所说的第一 CQI表格)中的 CQI指标为 4时对应的调制方式和码率组合相同,最后一行中的 "15 (新增)" 表示 CQI指标为 15时对应的调制方式和码率组合是相对于原 CQI表格新增 的。 下文中的第二 CQI表格的解读方式类似, 以下不再赘述。
方式 A12: 第一 CQI表格中除偶数调制和码率或者奇数调制和码率的前 L2个组合之外的 L1个组合依次作为所述的第二 CQI表格中前 L1个组合, 第二 CQI表格中最后 L2个调制方式和码率组合是大于 64的 QAM和码率组 合; 其中, 第一 CQI表格中, 所述奇数调制方式和码率组合是指第 1、 3、 5、 7、 9、 11、 13、 15 的调制方式和码率组合集合, 所述偶数调制方式和码率 组合是指第 2、 4、 6、 8、 10、 12、 14的调制方式和码率组合集合。 下面是根据方式 A12设计的第二 CQI表格, 其中 L2=2、 Ll=13 , 第一 CQI表格中除偶数调制和码率的前 2个组合之外的 13个组合依次作为所述的 第二 CQI表格中前 13个组合。 如下表 4所示:
表 4
Figure imgf000012_0001
或, 方式 A2: 所述第二 CQI表格中, CQI具有 16或者 32个取值, 所述 第二 CQI表格中任意一个调制方式和码率的组合都与所述第一 CQI表格中所 有调制方式和码率的组合不同; 或者, 所述第二 CQI表格中第一个调制方式 和码率的组合与第一 CQI表格的第 k个调制方式和码率的组合相同, 所述第 二 CQI表格中其他调制方式和码率的组合都与第一 CQI表格中所有调制方式 和码率的组合不同, k是 1到 5之间的正整数; 其中, 所述第二 CQI表格中, 第一个调制方式和码率组合是指第二 CQI表格中第二行,对应 CQI索引为 1.
下面是方式 A2设计的第二 CQI表格, 其中 k=l , 第二 CQI表格中第一 个调制方式和码率的组合与第一 CQI表格的第 1个调制方式和码率的组合相 同,第二 CQI表格中其他调制方式和码率的组合都与第一 CQI表格中所有调 制方式和码率的组合不同。 如表 5所示: CQI 索弓 1 调制方式 码率 x 1024 频谱效率
0 out of range
1 (原 1 ) QPSK 78 0.1523
2 QPSK 137 0.2676
3 QPSK 237 0.4629
4 QPSK 395 0.7715
5 QPSK 576 1 .1250
6 16QAM 380 1 .4844
7 16QAM 522 2.0391
8 16QAM 672 2.6250
9 64QAM 535 3.1348
10 64QAM 655 3.8379
1 1 64QAM 784 4.5938
12 64QAM 899 5.2676
13 256QAM 759 5.9297
14 256QAM 868 6.7813
15 256QAM 952 7.4375
或, 方式 A3: 所述第二 CQI表格中的 CQI具有 32个取值, 所述第二 CQI表格中奇数调制方式和码率的组合的前 13或者 14或者 15个组合都是第 一 CQI表格中调制方式和码率的组合。
下面是方式 A3设计的第二 CQI表格, 其中, 所述第二 CQI表格中奇数 调制方式和码率的组合的前 14个组合都是第一 CQI表格中调制方式和码率 的组合, 如表 6所示:
表 6
Figure imgf000013_0001
7 (原 5 ) QPSK 449 0.8770
8 (新增) QPSK 526 1.0273
9 (原 6 ) QPSK 602 1.1758
10 (新增) 16QAM 340 1.3281
11 (原 7) 16QAM 378 1.4766
12 (新增) 16QAM 434 1.6953
13 (原 8 ) 16QAM 490 1.9141
14 (新增) 16QAM 553 2.1602
15 (原 9 ) 16QAM 616 2.4063
16 (新增) 64QAM 438 2.5664
17 (原 10 ) 64QAM 466 2.7305
18 (新增) 64QAM 517 3.0293
19 (原 11 ) 64QAM 567 3.3223
20 (新增) 64QAM 616 3.6094
21 (原 12 ) 64QAM 666 3.9023
22 (新增) 64QAM 719 4.2129
23 (原 13 ) 64QAM 772 4.5234
24 (新增) 64QAM 822 4.8164
25 (原 14 ) 64QAM 873 5.1152
26 (新增) 64QAM 911 5.3379
27 (原 15 ) 64QAM 948 5.5547
28 (新增) 256QAM 779 6.0859
29 (新增) 256QAM 844 6.5938
30 (新增) 256QAM 903 7.0547
31 (新增) 256QAM 952 7.4375 实施例三
本发明编码调制处理方法实施例三, 应用于基站, 包括:
基站 (eNodeB)向终端 (UE)发送高层配置信令, 所述的高层配置信令可以 指示支持的调制方式是包括高阶 QAM还是不包括高阶 QAM。 其中, M是大 于 64的正整数, 并且是 2的幂数。
可选地,在前述任一种高层配置信令实现方式的基础上,基站(eNodeB ) 向终端 (UE)发送下行控制信令, 所述下行控制信令至少包括调制和编码方式 域 (/MCS), 当高层配置信令指示不支持高阶 QAM调制方式时, 则所述调制和 编码方式域 (/ )基于不支持高阶 QAM的第一调制和传输块大小 (TBS ) 索 引表格确定; 当高层配置信令指示支持高阶 QAM调制方式时, 结合预定义 的信息确定是否基于支持高阶 QAM的第二调制和 TBS索引表格确定调制和 编码方式域 (/MCS)。
可选地, 所述预定义的信息为以下至少一个: 搜索空间、 下行控制信息 格式、 下行控制信息对应的 CRC加扰方式。
可选地, 所述预定义的信息为搜索空间, 且预定义: 高层配置信令指示 支持高阶 QAM调制方式,且在公有搜索空间时,所述调制和编码方式域 (/MCS) 基于不支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定, 高层 配置信令指示支持高阶 QAM调制方式, 且在终端专有搜索空间时, 所述调 制和编码方式域 (/Mes)基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表格确定;
或者,所述预定义的信息为搜索空间和下行控制信息对应的 CRC加扰方 式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索 空间或在 UE专用搜索空间上 SPS C-RNTI加扰 CRC时, 所述调制和编码方 式域 (/^)基于不支持高阶 QAM的第一调制和传输块大小 (TBS ) 索引表格 确定, 高层配置信令指示支持高阶 QAM调制方式, 且在终端专有搜索空间 且在 UE专用搜索空间上 C-RNTI加扰 CRC时,所述调制和编码方式域 (/MCS) 基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表格确定。
可选地, 所述预定义的信息还可以为下行控制信息格式, 且预定义: 高 层配置信令指示支持高阶 QAM调制方式, 且下行控制信息格式为预定义支 持高阶 QAM调制方式的格式, 则所述调制和编码方式域 (/Mes)基于支持高阶 QAM的第二调制和传输块大小(TBS )索引表格确定, 所述高层配置信令指 示不支持高阶 QAM调制方式或下行控制信息格式为预定义不支持高阶 QAM 调制方式的格式, 则所述调制和编码方式域 (/^)基于不支持高阶 QAM的第 一调制和传输块大小 (TBS ) 索引表格确定。
又比如: 预定义支持高阶正交幅度调制的传输模式对应所有下行控制信 息格式都支持高阶正交幅度调制, 或者, 预定义支持高阶正交幅度调制的传 输模式对应所有下行控制信息格式中仅一个下行控制信息格式支持高阶正交 幅度调制。
可选得, 上述支持 MQAM 的控制信息格式, 可以包括以下至少之一: DCI Format 2C、 DCI Format 2D, DCI Format 4、 DCI Format 0、 DCI Format 1A、 DCI Format X (新定义的控制信息格式) ;
可选地, 基站基于下行控制信令发送下行数据。
可选地, 所述第一调制和 TBS索引表格是 LTE的版本 8 的 5比特调制 和 TBS索引表格; 所述第二调制和 TBS索引表格釆用如下方式之一:
方式 B1: 所述的第二调制和 TBS索引表格具有 32个取值,即 MCS索引 用 5比特表示, 第一调制和 TBS索引表格中除了 L2个调制方式和 TBS索引 的组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 23组 合, 第二调制和 TBS索引表格中紧跟前 L1之后的 L2-1个组合是大于 64的 QAM和 TBS索引的组合,第二调制和 TBS索引表格中最后 L3个组合的 TBS 索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
其中:
方式 B11 : 第一调制和 TBS索引表格中除前 L2个调制和 TBS索引组合 之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS索引 的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
根据方式 B11 , 若 L2=6, Ll=23 , L3=4, 则第二调制和 TBS索引表格可 设计如下表 7所示:
表 7
MCS 索引 调制阶数 TBS索弓 1
0 (原 6) 2 0
1 (原 7) 2 1
2 (原 8) 2 2
3 (原 9) 2 3
4 (原 10) 4 4
5 (原 11 ) 4 5
6 (原 12) 4 6
7 (原 13 ) 4 7
8 (原 14) 4 8
9 (原 15 ) 4 9
10 (原 16) 4 10
11 (原 17) 6 11
12 (原 18) 6 12
13 (原 19) 6 13
14 (原 20) 6 14
15 (原 21 ) 6 15
16 (原 22) 6 16
17 (原 23 ) 6 17
18 (原 24) 6 18
19 (原 25 ) 6 19
20 (原 26) 6 20
21 (原 27) 6 21
22 (原 28) 6 22
23 (新增) 8 23
24 (新增) 8 24
25 (新增) 8 25
26 (新增) 8 26
27 (新增) 8 27
28 (原 29) 2
29 (原 30) 4
reserved
30 (原 31 ) 6
31 (新增) 8
方式 B12:第一调制和 TBS索引表格中除偶数调制方式和 TBS索引组合 或者奇数调制方式和 TBS索引组合的前 L2个组合之外的 L1个组合依次作为 第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表 格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32; 其中, 第一调制和 TBS索引表格中, 所述奇数调制方式 和 TBS索引组合是指第 1、 3、 5 27、 29的调制方式和 TBS索引组合 集合, 所述偶数调制方式和 TBS索引是指第 2、 4、 6 28的调制方式和
TBS索引组合集合。
根据子方式 B12, 如 Ll=23 , L2=6, L3=4, 且第一调制和 TBS索引表格 中除偶数调制方式和 TBS索引组合的前 L2个组合之外的 L1个组合依次作为 第二调制和 TBS索引表格中前 L1个组合, 则第二调制和 TBS索引表格可设 计如下表 8所示:
表 8
MCS 索引 调制阶数 TBS索弓 1
0 (原 0) 2 0
1 (原 2) 2 1
2 (原 4) 2 2
3 (原 6) 2 3
4 (原 8) 2 4
5 (原 10) 4 5
6 (原 12) 4 6
7 (原 13 ) 4 7
8 (原 14) 4 8
9 (原 15 ) 4 9
10 (原 16) 4 10
11 (原 17) 6 11
12 (原 18) 6 12
13 (原 19) 6 13
14 (原 20) 6 14
15 (原 21 ) 6 15
16 (原 22) 6 16
17 (原 23 ) 6 17
18 (原 24) 6 18
19 (原 25 ) 6 19
20 (原 26) 6 20
21 (原 27) 6 21
22 (原 28) 6 22
23 (新增) 8 23
24 (新增) 8 24
25 (新增) 8 25
26 (新增) 8 26
27 (新增) 8 27
28 (原 29) 2
29 (原 30) 4
reserved
30 (原 31 ) 6
31 (新增) 8
方式 B13:
第一调制和 TBS索引表格中除前 L2-2个、 第 10和 11个两者之一和第 17和 18个两者之一以外的 Ll=个调制方式和 TBS索引组合依次作为所述的 第二调制和 TBS索引表格中前 L1个组合,第二调制和 TBS索引表格中前 L1 个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32;
根据方式 B13 , 若 Ll=23 , L2=6、 L3=4, 则第二调制和 TBS索引表格可 设计如下表 9所示:
表 9
Figure imgf000020_0001
25 (新增) 8 25
26 (新增) 8 26
27 (新增) 8 27
28 (原 29) 2
29 (原 30) 4
Reserved
30 (原 31 ) 6
31 (新增) 8 方式 B14:第一调制和 TBS索引表格中除偶数调制方式和 TBS索引的前 L2-2个、第 10和 11个两者之一和第 17和 18个两者之一以外的 L1个调制方 式和 TBS索引组合依次作为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中前 L1个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是 缺省的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
根据方式 B14, 若 Ll=23 , L2=6、 L3=4, 则第二调制和 TBS索引表格可 设计如下表 10所示:
表 10
Figure imgf000021_0001
17 (原 23 ) 6 17
18 (原 24) 6 18
19 (原 25 ) 6 19
20 (原 26) 6 20
21 (原 27) 6 21
22 (原 28 ) 6 22
23 (新增) 8 23
24 (新增) 8 24
25 (新增) 8 25
26 (新增) 8 26
27 (新增) 8 27
28 (原 29) 2
29 (原 30) 4
reserved
30 (原 31 ) 6
31 (新增) 8
或, 方式 B2: 所述第二调制和 TBS索引表格具有 32或者 64个取值, 所 述第二调制和 TBS索引表格中任意一个调制方式和 TBS索引的组合都与第一 调制和 TBS索引表格中所有的调制方式和 TBS索引组合不同; 或者, 所述第 二调制和 TBS索引表格中第一调制方式和 TBS索引的组合与第一调制和 TBS 索引表格中第 k个组合相同, 且所述第二调制和 TBS索引表格中最后 4个组 合的 TBS索引是缺省的, 其他都不同, k是 1到 5之间的正整数。 其中, 所 述第二调制和 TBS索引表格中第一调制方式和 TBS索引的组合是指第二调制 和 TBS索引表格中第一行, 对应 MCS索引为 0.
根据方式 B2, 若所述第二调制和 TBS索引表格具有 32个取值, 所述第 二调制和 TBS索引表格中任意一个调制方式和 TBS索引的组合都与第一调制 和 TBS索引表格中所有的调制方式和 TBS索引组合不同,则第二调制和 TBS 索引表格可设计如下表 11所示:
表 11
Figure imgf000022_0001
4 2 4
5 2 5
6 4 5
7 4 6
8 4 7
9 4 8
10 4 9
11 4 10
12 4 11
13 6 11
14 6 12
15 6 13
16 6 14
17 6 15
18 6 16
19 6 17
20 6 18
21 6 19
22 8 19
23 8 20
24 8 21
25 8 22
26 8 23
27 8 24
28 2
29 4 Reserved
30 6
31 8
或, 方式 B3: 所述第二调制和 TBS索引表格具有 64个取值, 所述第二 调制和 TBS索引表格中前 /个奇数或偶数调制方式和 TBS索引的组合都是第 一调制和 TBS索引表格中调制方式和 TBS索引的组合之一, 其中 /是 20到 29之间的正整数。
根据子方式 B3 , 若 /=26, 且所述第二调制和 TBS索引表格中前 /个偶数 调制方式和 TBS索引的组合都是第一调制和 TBS索引表格中调制方式和 TBS 索引的组合之一, 则第二调制和 TBS索引表格可设计如下表 12所示: 表 12
Figure imgf000024_0001
36 (新增) 6 36
37 (原 21 ) 6 37
38 (新增) 6 38
39 (原 22) 6 39
40 (新增) 6 40
41 (原 23 ) 6 41
42 (新增) 6 42
43 (原 24) 6 43
44 (新增) 6 44
45 (原 25 ) 6 45
46 (新增) 6 46
47 (原 26) 6 47
48 (新增) 6 48
49 (原 27) 6 49
50 (新增) 6 50
51 (原 28 ) 6 51
52 (新增) 8 52
53 (新增) 8 53
54 (新增) 8 54
55 (新增) 8 55
56 (新增) 8 56
57 (新增) 8 57
58 (新增) 8 58
59 (新增) 8 59
60 (原 29) 2
61 (原 30) 4
Reserved
62 (原 31 ) 6
63 (新增) 8
基于上述实施例, 本发明应用于基站的调制处理方法, 如图 1所示, 包 括如下步骤:
步骤 101 :基站 (eNodeB)向终端 (UE)发送高层配置信令,所述高层配置信 令用于指示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM 调制方式为大于 64QAM的调制方式。
步骤 102: 所述基站接收所述终端的信道状态信息, 所述信道状态信息 至少包括信道质量指示 (CQI )信息, 当所述高层配置信令指示不支持高阶 QAM调制方式时,所述 CQI信息基于不支持高阶 QAM调制方式的第一 CQI 表格得到, 当所述高层配置信令指示支持高阶 QAM调制方式时, 所述 CQI 信息基于支持高阶 QAM调制方式的第二 CQI表格得到。
步骤 103: 所述基站向所述终端发送下行控制信令, 所述下行控制信令 至少包括调制和编码方式域 (/MCS), 当高层配置信令指示不支持高阶 QAM调 制方式时, 则所述调制和编码方式域 (/Mes)基于不支持高阶 QAM的第一调制 和传输块大小(TBS )索引表格确定; 当高层配置信令指示支持高阶 QAM调 制方式时, 则所述调制和编码方式域基于支持高阶 QAM的第二调制和 TBS 索引表格确定。
之后基站(eNodeB )基于前述下行控制信令向终端 (UE)发送下行数据。
另外, 本发明还提供了一种编码调制处理方法, 该方法基于终端, 即从 终端的角度对本发明方法进行描述, 该方法包括:
终端接收基站发送的高层配置信令, 所述高层配置信令用于指示是否支 持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM的调制方式。
可选地, 所述高层配置信令是新增的。
可选地, 预定义 1个或多个传输模式支持发送所述高层配置信令, 其他 模式不支持发送所述高层配置信令, 所述基站仅在传输模式支持发送所述高 层配置信令时发送所述高层配置信令。
可选地, 预定义 1个或多个传输模式支持高阶正交幅度调制, 其他模式 不支持高阶正交幅度调制, 所述高层配置信令是传输模式指示信令。
可选地, 所述终端接收所述高层配置信令后, 该方法还包括:
在前述任一种高层配置信令实现方式的基础上, 所述终端向所述基站发 送信道状态信息, 所述信道状态信息至少包括信道质量指示 (CQI )信息, 当所述高层配置信令指示不支持高阶 QAM调制方式时, 所述 CQI信息基于 不支持高阶 QAM调制方式的第一 CQI表格得到, 当所述高层配置信令指示 支持高阶 QAM调制方式时, 所述 CQI信息基于支持高阶 QAM调制方式的 第二 CQI表格得到。 可选地,第二 CQI表格中最后一个组合的调制方式为大于 64的 QAM时, 对应的码率 r的为 0.92到 0.96之间的一个实数。
可选地, 所述第一 CQI表格是 LTE的版本 8 的 4比特 CQI表格 ; 所述 第二 CQI表格釆用如下方式构成:
方式 A1 :
所述的第二 CQI表格具有 16个取值, 即 CQI用 4比特表示, 第一 CQI 表格中除 L2个调制方式和码率的组合之外的 L1个调制方式和码率的组合作 为所述的第二 CQI表格中前 L1个的调制方式和码率的组合, 第二 CQI表格 中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合; L1和 L2是大于 1正整数, 且 Ll+L2=15;
或, 方式 A2: 所述第二 CQI表格中, CQI具有 16或者 32个取值, 所述 第二 CQI表格中任意一个调制方式和码率的组合都与所述第一 CQI表格中所 有调制方式和码率的组合不同; 或者, 所述第二 CQI表格中第一个调制方式 和码率的组合与第一 CQI表格的第 k个调制方式和码率的组合相同, 所述第 二 CQI表格中其他调制方式和码率的组合都与第一 CQI表格中所有调制方式 和码率的组合不同, k是 1到 5之间的正整数; 其中, 所述第二 CQI表格中, 第一个调制方式和码率组合是指第二 CQI表格中第二行,对应 CQI索引为 1。
或, 方式 A3: 所述第二 CQI表格中的 CQI具有 32个取值, 所述第二 CQI表格中奇数调制方式和码率的组合的前 13或者 14或者 15个组合都是第 一 CQI表格中调制方式和码率的组合。 其中, 第二 CQI表格中, 所述奇数调 制方式和码率组合是指第 1、 3、 5、 7、 9、 11、 13、 15的调制方式和码率组 合集合。
可选地, 所述方式 A1为方式 Al l或方式 A12, 其中:
方式 Al l : 第一 CQI表格中除前 L2个调制方式和码率组合之外的 L1个 调制方式和码率的组合依次作为所述的第二 CQI表格中前 L1个调制方式和 码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合;
方式 A12: 第一 CQI表格中除偶数调制和码率组合或者奇数调制和码率 的前 L2个组合之外的 L1个组合依次作为所述的第二 CQI表格中前 L1个组 合, 第二 CQI表格中最后 L2个调制方式和码率组合是大于 64的 QAM和码 率组合; 其中, 第一 CQI表格中, 所述偶数调制方式和码率组合是指第 2、 4、 6、 8、 10、 12、 14的调制方式和码率组合集合。
可选地, 在前述任一种高层配置信令实现方式的基础上, 所述终端接收 所述基站发送的下行控制信令, 所述下行控制信令至少包括调制和编码方式 域 (/MCS), 当高层配置信令指示不支持高阶 QAM调制方式时, 则所述调制和 编码方式域 (/ )基于不支持高阶 QAM的第一调制和传输块大小 (TBS ) 索 引表格确定; 当高层配置信令指示支持高阶 QAM调制方式时, 则所述调制 和编码方式域基于支持高阶 QAM的第二调制和 TBS索引表格确定。
可选地, 所述第一调制和 TBS索引表格是 LTE的版本 8 的 5比特调制 和 TBS索引表格; 所述第二调制和 TBS索引表格釆用如下方式之一构成: 方式 B1: 所述的第二调制和 TBS索引表格具有 32个取值,即 MCS索引 用 5比特表示, 第一调制和 TBS索引表格中除了 L2个调制方式和 TBS索引 的组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1组 合, 第二调制和 TBS索引表格中紧跟前 L1之后的 L2-1个组合是大于 64的 QAM和 TBS索引的组合,第二调制和 TBS索引表格中最后 L3个组合的 TBS 索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
或, 方式 B2: 所述第二调制和 TBS索引表格具有 32或者 64个取值, 所 述第二调制和 TBS索引表格中任意一个调制方式和 TBS索引的组合都与第一 调制和 TBS索引表格中所有的调制方式和 TBS索引组合不同; 或者, 所述第 二调制和 TBS索引表格中第一调制方式和 TBS索引的组合与第一调制和 TBS 索引表格中第 k个组合相同, 且所述第二调制和 TBS索引表格中最后 4个组 合的 TBS索引是缺省的, 其他都不同, k是 1到 5之间的正整数; 其中, 所 述第二调制和 TBS索引表格中第一调制方式和 TBS索引的组合是指第二调制 和 TBS索引表格中第一行, 对应 MCS索引为 0。
或, 方式 B3: 所述第二调制和 TBS索引表格具有 64个取值, 所述第二 调制和 TBS索引表格中前 /个奇数或者偶数调制方式和 TBS索引的组合都是 第一调制和 TBS索引表格中调制方式和 TBS索引的组合之一, 其中 /是 20 到 29之间的正整数。
可选地, 所述方式 B1为方式 Bl l、 方式 B12、 方式 B13或方式 B14, 其 中:
方式 B11 : 第一调制和 TBS索引表格中除前 L2个调制和 TBS索引组合 之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS索引 的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B12:第一调制和 TBS索引表格中除偶数调制方式和 TBS索引组合 或者奇数调制方式和 TBS索引组合的前 L2个组合之外的 L1个组合依次作为 第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表 格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32; 其中, 第一调制和 TBS索引表格中, 所述奇数调制方式 和 TBS索引组合是指第 1、 3、 5 27、 29的调制方式和 TBS索引组合 集合, 所述偶数调制方式和 TBS索引是指第 2、 4、 6 28的调制方式和
TBS索引组合集合。
方式 B13: 第一调制和 TBS索引表格中除前 L2-2个、第 10和 11个两者 之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合依次作 为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表 格中前 L1个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合,第二调 制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是 大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B14:第一调制和 TBS索引表格中除偶数调制方式和 TBS索引或者 奇数调制方式和 TBS索引的前 L2-2个、第 10和 11个两者之一和第 17和 18 个两者之一以外的 L1个调制方式和 TBS索引组合依次作为所述的第二调制 和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中前 L1个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表 格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32。
基于上述描述, 应用于终端的编码调制处理方法, 如图 2所示, 包括: 步骤 201 : 终端接收基站发送的高层配置信令, 所述高层配置信令用于 指示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方 式为大于 64QAM的调制方式;
步骤 202: 所述终端向所述基站发送信道状态信息, 所述信道状态信息 至少包括信道质量指示 (CQI )信息, 当所述高层配置信令指示不支持高阶 QAM调制方式时,所述 CQI信息基于不支持高阶 QAM调制方式的第一 CQI 表格得到, 当所述高层配置信令指示支持高阶 QAM调制方式时, 所述 CQI 信息基于支持高阶 QAM调制方式的第二 CQI表格得到;
步骤 203: 所述终端接收所述基站发送的下行控制信令, 所述下行控制 信令至少包括调制和编码方式域( /MCS ) , 当高层配置信令指示不支持高阶 QAM调制方式时,则所述调制和编码方式域 (/Mes)基于不支持高阶 QAM的第 一调制和传输块大小 (TBS ) 索引表格确定; 当高层配置信令指示支持高阶 QAM调制方式时,则所述调制和编码方式域基于支持高阶 QAM的第二调制 和 TBS索引表格确定。
对应于上述方法实施例, 本发明还提供了一种基站实施例, 该基站包括: 配置信令发送单元, 其设置为向终端发送高层配置信令, 所述高层配置 信令用于指示是否支持高阶正交幅度调制(QAM )调制方式,所述高阶 QAM 调制方式为大于 64QAM的调制方式。
高层配置指令的具体实现如上文所述。
可选地, 该基站还包括信道状态信息接收单元, 其设置为接收所述终端 的信道状态信息, 所述信道状态信息至少包括信道质量指示 (CQI )信息, 当所述高层配置信令指示不支持高阶 QAM调制方式时, 所述 CQI信息基于 不支持高阶 QAM调制方式的第一 CQI表格得到, 当所述高层配置信令指示 不支持高阶 QAM调制方式时, 所述 CQI信息基于支持高阶 QAM调制方式 的第二 CQI表格得到。 第一、 第二 CQI表格的具体实现如上文所述。
可选地, 该基站还包括下行控制信令发送单元, 其设置为向所述终端发 送下行控制信令, 所述下行控制信令至少包括调制和编码方式域 (/MCS), 当高 层配置信令指示不支持高阶 QAM调制方式时, 则所述调制和编码方式域 )基于不支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定; 当高层配置信令指示支持高阶 QAM调制方式时, 则所述调制和编码方式域 基于支持高阶 QAM的第二调制和 TBS索引表格确定。
第一、 第二调制和 TBS索引表格的具体实现如上文所述。
总之, 本发明实施例的基站设备很好地支持了 MQAM 的传输和反馈, 在兼容现有系统的、 不增加信令开销、 保证传输和反馈一致条件下很好地支 持了 MQAM, 提高了系统的频率效率和数据峰值速率, 而且通过半静态切换 支持使用 256QAM 或者不支持 256QAM , 保证了在合理的环境下使用 256QAM, 例如小小区环境下才使用 256QAM。
终端实施例
对应于上述方法实施例, 本发明还提供了一种终端实施例, 如图 4所示, 该终端包括:
配置信息接收单元, 其设置为接收基站发送的高层配置信令, 所述高层 配置信令用于指示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM的调制方式。
高层配置信令的描述同上。
信道状态信息上报单元, 其设置为向所述基站发送信道状态信息, 所述 信道状态信息至少包括信道质量指示 (CQI )信息, 当所述高层配置信令指 示不支持高阶 QAM调制方式时, 所述 CQI信息基于不支持高阶 QAM调制 方式的第一 CQI表格得到, 当所述高层配置信令指示不支持高阶 QAM调制 方式时, 所述 CQI信息基于支持高阶 QAM调制方式的第二 CQI表格得到。
第一、 第二 CQI表格的描述同上。 控制信息接收和检测单元, 其设置为接收并检测所述基站发送的下行控 制信令, 所述下行控制信令至少包括调制和编码方式域 (/MCS), 当高层配置信 令指示不支持高阶 QAM调制方式时, 则所述调制和编码方式域 (/MCS)基于不 支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定; 当高层配置 信令指示支持高阶 QAM调制方式时, 则所述调制和编码方式域基于支持高 阶 QAM的第二调制和 TBS索引表格确定。
第一、 第二调制和 TBS表格的描述同上。
总之, 本发明实施例的终端设备很好地支持了 MQAM 的传输和反馈, 在兼容现有系统的、 不增加信令开销、 保证传输和反馈一致条件下很好地支 持了 MQAM, 提高了系统的频率效率和数据峰值速率, 而且通过半静态切换 支持使用 256QAM 或者不支持 256QAM , 保证了在合理的环境下使用 256QAM, 例如小小区环境下才使用 256QAM。
本发明实施例调制处理方法、基站及终端,通过指示是否支持高阶 QAM 的高层配置信令, 保证了反馈和传输的一致性, 一方面在兼容现有无线传输 网络基础上支持高阶 QAM调制, 从而提高了数据峰值速率和频谱效率, 另 一方面实现了是否使用高阶 QAM的切换支持,在适合高阶 QAM条件 (如小 小区,低干扰)下支持高阶 QAM传输,在不适合高阶 QAM条件下(如宏站) 下不支持高阶 QAM传输。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。 工业实用性
本发明实施例通过指示是否支持高阶 QAM的高层配置信令, 在兼容现 有无线传输网络基础上支持高阶 QAM调制, 提高了数据峰值速率和频谱效 率。

Claims

权 利 要 求 书
1、 一种编码调制处理方法, 该方法包括:
基站向终端发送高层配置信令, 所述高层配置信令用于指示是否支持高 阶正交幅度调制(QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM 的调制方式。
2、 如权利要求 1所述的方法, 其中: 所述高层配置信令是新增的。
3、 如权利要求 2所述的方法,其中: 预定义 1个或多个传输模式支持发 送所述高层配置信令, 其他模式不支持发送所述高层配置信令, 所述基站仅 在传输模式支持发送所述高层配置信令时发送所述高层配置信令。
4、 如权利要求 1所述的方法, 其中: 预定义 1个或多个传输模式支持 高阶正交幅度调制, 其他模式不支持高阶正交幅度调制, 所述高层配置信令 是传输模式指示信令。
5、 如权利要求 1所述的方法,其中: 所述基站发送所述高层配置信令 后, 该方法还包括:
所述基站接收所述终端的信道状态信息, 所述信道状态信息至少包括信 道质量指示(CQI )信息, 当所述高层配置信令指示不支持高阶 QAM调制方 式时, 所述 CQI信息基于不支持高阶 QAM调制方式的第一 CQI表格得到, 当所述高层配置信令指示支持高阶 QAM调制方式时, 所述 CQI信息基于支 持高阶 Q AM调制方式的第二 CQI表格得到。
6、 如权利要求 5所述的方法, 其中: 第二 CQI表格中最后一个调制 和码率的组合对应的码率 r的取值为 0.92到 0.96之间的一个实数。
7、 如权利要求 5所述的方法, 其中: 所述第一 CQI表格是 LTE的版 本 8 的 4比特 CQI表格 ; 所述第二 CQI表格按照如下方式之一构成:
方式 A1 :
所述的第二 CQI表格具有 16个取值, 即 CQI用 4比特表示, 第一 CQI 表格中除 L2个调制方式和码率的组合之外的 L1个调制方式和码率的组合作 为所述的第二 CQI表格中前 L1个的调制方式和码率的组合, 第二 CQI表格 中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合; L1和 L2是大于 1正整数, 且 Ll+L2=15;
或, 方式 A2: 所述第二 CQI表格中, CQI具有 16或者 32个取值, 所述 第二 CQI表格中任意一个调制方式和码率的组合都与所述第一 CQI表格中所 有调制方式和码率的组合不同; 或者, 所述第二 CQI表格中第一个调制方式 和码率的组合与第一 CQI表格的第 k个调制方式和码率的组合相同, 所述第 二 CQI表格中其他调制方式和码率的组合都与第一 CQI表格中所有调制方式 和码率的组合不同, k是 1到 5之间的正整数;
或, 方式 A3: 所述第二 CQI表格中的 CQI具有 32个取值, 所述第二 CQI表格中奇数调制方式和码率的组合的前 13或者 14或者 15个组合都是第 一 CQI表格中调制方式和码率的组合。
8、 如权利要求 5所述的方法, 其中, 所述方式 A1包括方式 Al l或方 式 A12, 其中:
方式 Al l包括: 第一 CQI表格中除前 L2个调制方式和码率组合之外的 L1个调制方式和码率的组合依次作为所述的第二 CQI表格中前 L1个调制方 式和码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合;
方式 A12包括: 第一 CQI表格中除偶数调制和码率组合或者奇数调制和 码率的前 L2个组合之外的 L1个组合依次作为所述的第二 CQI表格中前 L1 个组合, 第二 CQI表格中最后 L2个调制方式和码率组合是大于 64的 QAM 和码率的组合; 其中, 第一 CQI表格中, 所述奇数调制方式和码率组合是指 第 1、 3、 5、 7、 9、 11、 13、 15的调制方式和码率组合集合, 所述偶数调制 方式和码率组合是指第 2、 4、 6、 8、 10、 12、 14的调制方式和码率组合集合。
9、 如权利要求 1至 5中任一项所述的方法,其中, 所述基站发送所述 高层配置信令后, 该方法还包括:
所述基站向所述终端发送下行控制信令, 所述下行控制信令至少包括调 制和编码方式域 (/MCS), 当高层配置信令指示不支持高阶 QAM调制方式时, 则所述调制和编码方式域 (/^)基于不支持高阶 QAM的第一调制和传输块大 小 ( TBS ) 索引表格确定; 当高层配置信令指示支持高阶 QAM调制方式时, 结合预定义的信息确定是否基于支持高阶 QAM的第二调制和 TBS索引表格 确定调制和编码方式域 ( /MCS )。
10、 如权利要求 9 所述的方法, 其中: 所述预定义的信息为以下至少 一个: 搜索空间、 下行控制信息格式、 下行控制信息对应的 CRC加扰方式。
11、 如权利要求 9所述的方法, 其中:
所述预定义的信息为搜索空间, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索空间时, 所述调制和编码方式域 (/MCS)基于不 支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定, 高层配置信 令指示支持高阶 QAM调制方式, 且在终端专有搜索空间时, 所述调制和编 码方式域 (/MCS)基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表 格确定;
或者,所述预定义的信息为搜索空间和下行控制信息对应的 CRC加扰方 式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索 空间或在 UE专用搜索空间上 SPS C-RNTI加扰 CRC时, 所述调制和编码方 式域 (/^)基于不支持高阶 QAM的第一调制和传输块大小 (TBS ) 索引表格 确定, 高层配置信令指示支持高阶 QAM调制方式, 且在终端专有搜索空间 且在 UE专用搜索空间上 C-RNTI加扰 CRC时,所述调制和编码方式域 (/MCS) 基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表格确定。
12、 如权利要求 9所述的方法, 其中: 所述预定义的信息为下行控制 信息格式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且下行 控制信息格式为预定义支持高阶 QAM调制方式的格式, 则所述调制和编码 方式域 (/ )基于支持高阶 QAM的第二调制和传输块大小(TBS )索引表格 确定, 高层配置信令指示不支持高阶 QAM调制方式, 或者下行控制信息格 式为预定义不支持高阶 QAM调制方式的格式, 则所述调制和编码方式域 ( /MCS )基于不支持高阶 QAM的第一调制和传输块大小( TB S )索引表格确定。
13、 如权利要求 9所述的方法, 其中: 所述第一调制和 TBS索引表格 是 LTE的版本 8 的 5比特调制和 TBS索引表格; 所述第二调制和 TBS索引 表格釆用如下方式之一构成:
方式 B1: 所述的第二调制和 TBS索引表格具有 32个取值,即 MCS索引 用 5比特表示, 第一调制和 TBS索引表格中除了 L2个调制方式和 TBS索引 的组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1组 合, 第二调制和 TBS索引表格中紧跟前 L1之后的 L2-1个组合是大于 64的 QAM和 TBS索引的组合,第二调制和 TBS索引表格中最后 L3个组合的 TBS 索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
或, 方式 B2: 所述第二调制和 TBS索引表格具有 32或者 64个取值, 所 述第二调制和 TBS索引表格中任意一个调制方式和 TBS索引的组合都与第一 调制和 TBS索引表格中所有的调制方式和 TBS索引组合不同; 或者, 所述第 二调制和 TBS索引表格中第一调制方式和 TBS索引的组合与第一调制和 TBS 索引表格中第 k个组合相同, 且所述第二调制和 TBS索引表格中最后 4个组 合的 TBS索引是缺省的, 其他都不同, k是 1到 5之间的正整数;
或, 方式 B3: 所述第二调制和 TBS索引表格具有 64个取值, 所述第二 调制和 TBS索引表格中前 /个奇数或者偶数调制方式和 TBS索引的组合都是 第一调制和 TBS索引表格中调制方式和 TBS索引的组合之一, 其中 /是 20 到 29之间的正整数。
14、 如权利要求 13所述的方法, 其中: 所述方式 B1包括方式 B11、 方 式 B12、 方式 B13或方式 B14, 其中:
方式 B11包括: 第一调制和 TBS索引表格中除前 L2个调制和 TBS索引 组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1个组 合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS 索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省 的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B12包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引组合或者奇数调制方式和 TBS索引组合的前 L2个组合之外的 L1个组合依 次作为第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格 中随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32; 其中, 第一调制和 TBS索引表格中, 所述奇数调 制方式和 TBS索引组合是指第 1、 3、 5 27、 29的调制方式和 TBS索 引组合集合, 所述偶数调制方式和 TBS索引是指第 2、 4、 6 28的调制 方式和 TBS索引组合集合;
方式 B13包括: 第一调制和 TBS索引表格中除前 L2-2个、 第 10和 11 个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合 依次作为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS 索引表格中前 L1个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2 和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B14包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引或者奇数调制方式和 TBS索引的前 L2-2个、 第 10和 11个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合依次作为所述的第 二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中前 L1 个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32。
15、 一种编码调制处理方法, 该方法包括:
终端接收基站发送的高层配置信令, 所述高层配置信令用于指示是否支 持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM的调制方式。
16、 如权利要求 15所述的方法, 其中: 所述高层配置信令是新增的。
17、 如权利要求 15所述的方法,其中: 预定义 1个或多个传输模式支持 发送所述高层配置信令, 其他模式不支持发送所述高层配置信令, 所述基站 仅在传输模式支持发送所述高层配置信令时发送所述高层配置信令。
18、 如权利要求 16所述的方法, 其中: 预定义 1个或多个传输模式支 持高阶正交幅度调制, 其他模式不支持高阶正交幅度调制, 所述高层配置信 令是传输模式指示信令。
19、 如权利要求 15所述的方法, 其中: 所述终端接收所述高层配置信 令后, 该方法还包括:
所述终端向所述基站发送信道状态信息, 所述信道状态信息至少包括信 道质量指示(CQI )信息, 当所述高层配置信令指示不支持高阶 QAM调制方 式时, 所述 CQI信息基于不支持高阶 QAM调制方式的第一 CQI表格得到, 当所述高层配置信令指示支持高阶 QAM调制方式时, 所述 CQI信息基于支 持高阶 Q AM调制方式的第二 CQI表格得到。
20、 如权利要求 19所述的方法, 其中: 第二 CQI表格中最后一个组合 的调制方式为 256QAM时, 对应的码率 r的为 0.92到 0.96之间的一个实数。
21、 如权利要求 19所述的方法,其中: 所述第一 CQI表格是 LTE的版 本 8 的 4比特 CQI表格 ; 所述第二 CQI表格按照如下方式构成:
方式 A1 :
所述的第二 CQI表格具有 16个取值, 即 CQI用 4比特表示, 第一 CQI 表格中除 L2个调制方式和码率的组合之外的 L1个调制方式和码率的组合作 为所述的第二 CQI表格中前 L1个的调制方式和码率的组合, 第二 CQI表格 中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合; L1和 L2是大于 1正整数, 且 Ll+L2=15;
或, 方式 A2: 所述第二 CQI表格中, CQI具有 16或者 32个取值, 所述 第二 CQI表格中任意一个调制方式和码率的组合都与所述第一 CQI表格中所 有调制方式和码率的组合不同; 或者, 所述第二 CQI表格中第一个调制方式 和码率的组合与第一 CQI表格的第 k个调制方式和码率的组合相同, 所述第 二 CQI表格中其他调制方式和码率的组合都与第一 CQI表格中所有调制方式 和码率的组合不同, k是 1到 5之间的正整数; 或, 方式 A3: 所述第二 CQI表格中的 CQI具有 32个取值, 所述第二 CQI表格中奇数调制方式和码率的组合的前 13或者 14或者 15个组合都是第 一 CQI表格中调制方式和码率的组合。
22、 如权利要求 21所述的方法, 其中, 所述方式 A1包括方式 Al l或 方式 A12, 其中:
方式 Al l包括: 第一 CQI表格中除前 L2个调制方式和码率组合之外的
L1个调制方式和码率的组合依次作为所述的第二 CQI表格中前 L1个调制方 式和码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合;
方式 A12包括: 第一 CQI表格中除偶数调制和码率组合或者奇数调制和 码率的前 L2个组合之外的 L1个组合依次作为所述的第二 CQI表格中前 L1 个组合, 第二 CQI表格中最后 L2个调制方式和码率组合是大于 64的 QAM 和码率的组合; 其中, 第一 CQI表格中, 所述奇数调制方式和码率组合是指 第 1、 3、 5、 7、 9、 11、 13、 15的调制方式和码率组合集合, 所述偶数调制 方式和码率组合是指第 2、 4、 6、 8、 10、 12、 14的调制方式和码率组合集合。
23、 如权利要求 15至 19中任一项所述的方法,其中, 所述终端接收所 述高层配置信令后, 该方法还包括:
所述终端接收所述基站发送的下行控制信令, 所述下行控制信令至少包 括调制和编码方式域 (/MCS), 当高层配置信令指示不支持高阶 QAM调制方式 时, 则所述调制和编码方式域 (/Mes)基于不支持高阶 QAM的第一调制和传输 块大小(TBS )索引表格确定; 当高层配置信令指示支持高阶 QAM调制方式 时, 结合预定义的信息确定是否基于支持高阶 QAM的第二调制和 TBS索引 表格确定调制和编码方式域 ( /MCS )。
24、 如权利要求 23所述的方法, 其中: 所述预定义的信息为以下至少 一个: 搜索空间、 下行控制信息格式、 下行控制信息对应的 CRC加扰方式。
25、 如权利要求 23所述的方法, 其中:
所述预定义的信息为搜索空间, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索空间时, 所述调制和编码方式域 (/MCS)基于不 支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定, 高层配置信 令指示支持高阶 QAM调制方式, 且在终端专有搜索空间时, 所述调制和编 码方式域 (/MCS)基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表 格确定;
或者,所述预定义的信息为搜索空间和下行控制信息对应的 CRC加扰方 式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索 空间或在 UE专用搜索空间上 SPS C-RNTI加扰 CRC时, 所述调制和编码方 式域 (/^)基于不支持高阶 QAM的第一调制和传输块大小 (TBS ) 索引表格 确定, 高层配置信令指示支持高阶 QAM调制方式, 且在终端专有搜索空间 且在 UE专用搜索空间上 C-RNTI加扰 CRC时,所述调制和编码方式域 (/MCS) 基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表格确定。
26、 如权利要求 23 所述的方法, 其中: 所述预定义的信息为下行控 制信息格式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且下 行控制信息格式为预定义支持高阶 QAM调制方式的格式, 则所述调制和编 码方式域 (/MCS)基于支持高阶 QAM的第二调制和传输块大小(TBS )索引表 格确定, 高层配置信令指示不支持高阶 QAM调制方式, 或者下行控制信息 格式为预定义不支持高阶 QAM调制方式的格式, 则所述调制和编码方式域 ( /MCS )基于不支持高阶 QAM的第一调制和传输块大小( TB S )索引表格确定。
27、 如权利要求 23所述的方法, 其中: 所述第一调制和 TBS索引表格 是 LTE的版本 8 的 5比特调制和 TBS索引表格; 所述第二调制和 TBS索引 表格釆用如下方式之一构成:
方式 B1: 所述的第二调制和 TBS索引表格具有 32个取值,即 MCS索引 用 5比特表示, 第一调制和 TBS索引表格中除了 L2个调制方式和 TBS索引 的组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1组 合, 第二调制和 TBS索引表格中紧跟前 L1之后的 L2-1个组合是大于 64的 QAM和 TBS索引的组合,第二调制和 TBS索引表格中最后 L3个组合的 TBS 索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
或, 方式 B2: 所述第二调制和 TBS索引表格具有 32或者 64个取值, 所 述第二调制和 TBS索引表格中任意一个调制方式和 TBS索引的组合都与第一 调制和 TBS索引表格中所有的调制方式和 TBS索引组合不同; 或者, 所述第 二调制和 TBS索引表格中第一调制方式和 TBS索引的组合与第一调制和 TBS 索引表格中第 k个组合相同, 且所述第二调制和 TBS索引表格中最后 4个组 合的 TBS索引是缺省的, 其他都不同, k是 1到 5之间的正整数;
或, 方式 B3: 所述第二调制和 TBS索引表格具有 64个取值, 所述第二 调制和 TBS索引表格中前 /个奇数或者偶数调制方式和 TBS索引的组合都是 第一调制和 TBS索引表格中调制方式和 TBS索引的组合之一, 其中 /是 20 到 29之间的正整数。
28、 如权利要求 27所述的方法, 其中: 所述方式 B1包括方式 B11、 方 式 B12、 方式 B13或方式 B14, 其中:
方式 B11包括: 第一调制和 TBS索引表格中除前 L2个调制和 TBS索引 组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1个组 合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS 索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省 的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B12包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引组合或者奇数调制方式和 TBS索引组合的前 L2个组合之外的 L1个组合依 次作为第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格 中随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32; 其中, 第一调制和 TBS索引表格中, 所述奇数调 制方式和 TBS索引组合是指第 1、 3、 5 27、 29的调制方式和 TBS索 引组合集合, 所述偶数调制方式和 TBS索引是指第 2、 4、 6 28的调制 方式和 TBS索引组合集合;
方式 B13包括: 第一调制和 TBS索引表格中除前 L2-2个、 第 10和 11 个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合 依次作为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS 索引表格中前 L1个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2 和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B14包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引或者奇数调制方式和 TBS索引的前 L2-2个、 第 10和 11个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合依次作为所述的第 二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中前 L1 个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32。
29、 一种基站, 该基站包括:
配置信息发送单元, 其设置为: 向终端发送高层配置信令, 所述高层配 置信令用于指示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高阶 QAM调制方式为大于 64QAM的调制方式。
30、 如权利要求 29所述的基站, 其中: 所述高层配置信令是新增的。
31、 如权利要求 29所述的基站,其中: 预定义 1个或多个传输模式支持 发送所述高层配置信令, 其他模式不支持发送所述高层配置信令, 所述配置 信息发送单元是设置为仅在传输模式支持发送所述高层配置信令时发送所述 高层配置信令。
32、 如权利要求 30所述的基站,其中: 预定义 1个或多个传输模式支持 高阶正交幅度调制, 其他模式不支持高阶正交幅度调制, 所述高层配置信令 是传输模式指示信令。
33、 如权利要求 29所述的基站, 所述基站还包括:
信道状态信息接收单元, 其设置为: 接收所述终端的信道状态信息, 所 述信道状态信息至少包括信道质量指示 (CQI )信息, 当所述高层配置信令 指示不支持高阶 QAM调制方式时, 所述 CQI信息基于不支持高阶 QAM调 制方式的第一 CQI表格得到, 当所述高层配置信令指示支持高阶 QAM调制 方式时, 所述 CQI信息基于支持高阶 QAM调制方式的第二 CQI表格得到。
34、 如权利要求 33所述的基站, 其中: 第二 CQI表格中最后一个组合 的调制方式为 256QAM时, 对应的码率 r的为 0.92到 0.96之间的一个实数。
35、 如权利要求 33所述的基站,其中: 所述第一 CQI表格是 LTE的版 本 8 的 4比特 CQI表格 ; 所述第二 CQI表格为如下方式之一构成:
方式 A1 : 所述的第二 CQI表格具有 16个取值, 即 CQI用 4比特表示, 第一 CQI表格中除 L2个调制方式和码率的组合之外的 L1个调制方式和码率 的组合作为所述的第二 CQI表格中前 L1个的调制方式和码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组 合; L1和 L2是大于 1正整数, 且 Ll+L2=15;
或, 方式 A2: 所述第二 CQI表格中, CQI具有 16或者 32个取值, 所述 第二 CQI表格中任意一个调制方式和码率的组合都与所述第一 CQI表格中所 有调制方式和码率的组合不同; 或者, 所述第二 CQI表格中第一个调制方式 和码率的组合与第一 CQI表格的第 k个调制方式和码率的组合相同, 所述第 二 CQI表格中其他调制方式和码率的组合都与第一 CQI表格中所有调制方式 和码率的组合不同, k是 1到 5之间的正整数;
或, 方式 A3: 所述第二 CQI表格中的 CQI具有 32个取值, 所述第二 CQI表格中奇数调制方式和码率的组合的前 13或者 14或者 15个组合都是第 一 CQI表格中调制方式和码率的组合。
36、 如权利要求 35所述的基站, 其中, 所述方式 A1包括方式 Al l或 方式 A12, 其中:
方式 Al l包括: 第一 CQI表格中除前 L2个调制方式和码率组合之外的 L1个调制方式和码率的组合依次作为所述的第二 CQI表格中前 L1个调制方 式和码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合;
方式 A12包括: 第一 CQI表格中除偶数调制和码率组合或者奇数调制和 码率的前 L2个组合之外的 L1个组合依次作为所述的第二 CQI表格中前 L1 个组合, 第二 CQI表格中最后 L2个调制方式和码率组合是大于 64的 QAM 和码率的组合; 其中, 第一 CQI表格中, 所述奇数调制方式和码率组合是指 第 1、 3、 5、 7、 9、 11、 13、 15的调制方式和码率组合集合, 所述偶数调制 方式和码率组合是指第 2、 4、 6、 8、 10、 12、 14的调制方式和码率组合集合。
37、 如权利要求 29至 35中任一项所述的基站, 所述基站还包括: 下行控制信息发送单元, 其设置为: 向所述终端发送下行控制信令, 所 述下行控制信令至少包括调制和编码方式域 (/MCS), 当高层配置信令指示不支 持高阶 QAM调制方式时, 则所述调制和编码方式域 (/Mes )基于不支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定; 当高层配置信令指示 支持高阶 QAM调制方式时,结合预定义的信息确定是否基于支持高阶 QAM 的第二调制和 TBS索引表格确定调制和编码方式域 (/MCS)。
38、 如权利要求 37所述的基站, 其中: 所述预定义的信息为以下至少 一个: 搜索空间、 下行控制信息格式、 下行控制信息对应的 CRC加扰方式。
39、 如权利要求 37所述的基站, 其中:
所述预定义的信息为搜索空间, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索空间时, 所述调制和编码方式域 (/MCS)基于不 支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定, 高层配置信 令指示支持高阶 QAM调制方式, 且在终端专有搜索空间时, 所述调制和编 码方式域 (/MCS)基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表 格确定;
或者,所述预定义的信息为搜索空间和下行控制信息对应的 CRC加扰方 式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索 空间或在 UE专用搜索空间上 SPS C-RNTI加扰 CRC时, 所述调制和编码方 式域 (/^)基于不支持高阶 QAM的第一调制和传输块大小 (TBS ) 索引表格 确定, 高层配置信令指示支持高阶 QAM调制方式, 且在终端专有搜索空间 且在 UE专用搜索空间上 C-RNTI加扰 CRC时,所述调制和编码方式域 (/MCS) 基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表格确定。
40、 如权利要求 37 所述的基站, 其中: 所述预定义的信息为下行控 制信息格式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且下 行控制信息格式为预定义支持高阶 QAM调制方式的格式, 则所述调制和编 码方式域 (/MCS)基于支持高阶 QAM的第二调制和传输块大小(TBS )索引表 格确定, 高层配置信令指示不支持高阶 QAM调制方式, 或者下行控制信息 格式为预定义不支持高阶 QAM调制方式的格式, 则所述调制和编码方式域 )基于不支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定。
41、 如权利要求 37所述的基站, 其中: 所述第一调制和 TBS索引表格 是 LTE的版本 8 的 5比特调制和 TBS索引表格; 所述第二调制和 TBS索引 表格釆用如下方式之一构成:
方式 B1: 所述的第二调制和 TBS索引表格具有 32个取值,即 MCS索引 用 5比特表示, 第一调制和 TBS索引表格中除了 L2个调制方式和 TBS索引 的组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1组 合, 第二调制和 TBS索引表格中紧跟前 L1之后的 L2-1个组合是大于 64的 QAM和 TBS索引的组合,第二调制和 TBS索引表格中最后 L3个组合的 TBS 索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
或, 方式 B2: 所述第二调制和 TBS索引表格具有 32或者 64个取值, 所 述第二调制和 TBS索引表格中任意一个调制方式和 TBS索引的组合都与第一 调制和 TBS索引表格中所有的调制方式和 TBS索引组合不同; 或者, 所述第 二调制和 TBS索引表格中第一调制方式和 TBS索引的组合与第一调制和 TBS 索引表格中第 k个组合相同, 且所述第二调制和 TBS索引表格中最后 4个组 合的 TBS索引是缺省的, 其他都不同, k是 1到 5之间的正整数;
或, 方式 B3: 所述第二调制和 TBS索引表格具有 64个取值, 所述第二 调制和 TBS索引表格中前 /个奇数或者偶数调制方式和 TBS索引的组合都是 第一调制和 TBS索引表格中调制方式和 TBS索引的组合之一, 其中 /是 20 到 29之间的正整数。
42、 如权利要求 41所述的基站, 其特征在于: 所述方式 B1 包括方式
Bl l、 方式 B12、 方式 B13或方式 B14, 其中:
方式 B11包括: 第一调制和 TBS索引表格中除前 L2个调制和 TBS索引 组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1个组 合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS 索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省 的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B12包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引组合或者奇数调制方式和 TBS索引组合的前 L2个组合之外的 L1个组合依 次作为第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格 中随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32; 其中, 第一调制和 TBS索引表格中, 所述奇数调 制方式和 TBS索引组合是指第 1、 3、 5 27、 29的调制方式和 TBS索 引组合集合, 所述偶数调制方式和 TBS索引是指第 2、 4、 6 28的调制 方式和 TBS索引组合集合;
方式 B13包括: 第一调制和 TBS索引表格中除前 L2-2个、 第 10和 11 个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合 依次作为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS 索引表格中前 L1个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2 和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B14包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引或者奇数调制方式和 TBS索引的前 L2-2个、 第 10和 11个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合依次作为所述的第 二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中前 L1 个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32。
43、 一种终端, 该终端包括:
配置信息接收单元, 其设置为: 接收基站发送的高层配置信令, 所述高 层配置信令用于指示是否支持高阶正交幅度调制 (QAM )调制方式, 所述高 阶 QAM调制方式为大于 64QAM的调制方式。
44、 如权利要求 43所述的终端, 其中: 所述高层配置信令是新增的。
45、 如权利要求 43所述的终端,其中: 预定义 1个或多个传输模式支持 发送所述高层配置信令, 其他模式不支持发送所述高层配置信令, 所述配置 信息接收单元是设置为仅在传输模式支持发送所述高层配置信令时发送所述 高层配置信令。
46、 如权利要求 44所述的终端, 其中: 预定义 1个或多个传输模式支 持高阶正交幅度调制, 其他模式不支持高阶正交幅度调制, 所述高层配置信 令是传输模式指示信令。
47、 如权利要求 43所述的终端, 所述终端还包括:
信道状态信息上报单元, 其设置为: 向所述基站发送信道状态信息, 所 述信道状态信息至少包括信道质量指示 (CQI )信息, 当所述高层配置信令 指示不支持高阶 QAM调制方式时, 所述 CQI信息基于不支持高阶 QAM调 制方式的第一 CQI表格得到, 当所述高层配置信令指示不支持高阶 QAM调 制方式时,所述 CQI信息基于支持高阶 QAM调制方式的第二 CQI表格得到。
48、 如权利要求 47所述的终端, 其中: 第二 CQI表格中最后一个组合 的调制方式为 256QAM时, 对应的码率 r的为 0.92到 0.96之间的一个实数。
49、 如权利要求 47所述的终端,其中: 所述第一 CQI表格是 LTE的版 本 8 的 4比特 CQI表格 ; 所述第二 CQI表格釆用如下方式之一构成:
方式 A1 : 所述的第二 CQI表格具有 16个取值, 即 CQI用 4比特表示, 第一 CQI表格中除 L2个调制方式和码率的组合之外的 L1个调制方式和码率 的组合作为所述的第二 CQI表格中前 L1个的调制方式和码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组 合; L1和 L2是大于 1正整数, 且 Ll+L2=15;
或, 方式 A2: 所述第二 CQI表格中, CQI具有 16或者 32个取值, 所述 第二 CQI表格中任意一个调制方式和码率的组合都与所述第一 CQI表格中所 有调制方式和码率的组合不同; 或者, 所述第二 CQI表格中第一个调制方式 和码率的组合与第一 CQI表格的第 k个调制方式和码率的组合相同, 所述第 二 CQI表格中其他调制方式和码率的组合都与第一 CQI表格中所有调制方式 和码率的组合不同, k是 1到 5之间的正整数;
或, 方式 A3: 所述第二 CQI表格中的 CQI具有 32个取值, 所述第二 CQI表格中奇数调制方式和码率的组合的前 13或者 14或者 15个组合都是第 一 CQI表格中调制方式和码率的组合。
50、 如权利要求 49的终端, 其中, 所述方式 A1包括方式 Al l或方式 A12, 其中:
方式 Al l包括: 第一 CQI表格中除前 L2个调制方式和码率组合之外的 L1个调制方式和码率的组合依次作为所述的第二 CQI表格中前 L1个调制方 式和码率的组合, 第二 CQI表格中随后 L2个调制方式和码率的组合是大于 64的 QAM和码率的组合;
方式 A12包括: 第一 CQI表格中除偶数调制和码率组合或者奇数调制和 码率的前 L2个组合之外的 L1个组合依次作为所述的第二 CQI表格中前 L1 个组合, 第二 CQI表格中最后 L2个调制方式和码率组合是大于 64的 QAM 和码率的组合; 其中, 第一 CQI表格中, 所述奇数调制方式和码率组合是指 第 1、 3、 5、 7、 9、 11、 13、 15的调制方式和码率组合集合, 所述偶数调制 方式和码率组合是指第 2、 4、 6、 8、 10、 12、 14的调制方式和码率组合集合。
51、 如权利要求 43至 47中任一项的终端, 所述终端还包括: 下行控制信息接收检测单元, 其设置为: 接收并检测所述基站发送的下 行控制信令, 所述下行控制信令至少包括调制和编码方式域 (/MCS), 当高层配 置信令指示不支持高阶 QAM调制方式时, 则所述调制和编码方式域 (/^)基 于不支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定; 当高层 配置信令指示支持高阶 QAM调制方式时, 结合预定义的信息确定是否基于 支持高阶 QAM的第二调制和 TBS索引表格确定调制和编码方式域 (/MCS)。
52、 如权利要求 51所述的方法, 其中: 所述预定义的信息为以下至少 一个: 搜索空间、 下行控制信息格式、 下行控制信息对应的 CRC加扰方式。
53、 如权利要求 51所述的终端, 其中: 所述预定义的信息为搜索空间, 且预定义: 高层配置信令指示支持高阶
QAM调制方式, 且在公有搜索空间时, 所述调制和编码方式域 (/MCS)基于不 支持高阶 QAM的第一调制和传输块大小(TBS )索引表格确定, 高层配置信 令指示支持高阶 QAM调制方式, 且在终端专有搜索空间时, 所述调制和编 码方式域 (/MCS)基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表 格确定;
或者,所述预定义的信息为搜索空间和下行控制信息对应的 CRC加扰方 式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且在公有搜索 空间或在 UE专用搜索空间上 SPS C-RNTI加扰 CRC时, 所述调制和编码方 式域 (/^)基于不支持高阶 QAM的第一调制和传输块大小 (TBS ) 索引表格 确定, 高层配置信令指示支持高阶 QAM调制方式, 且在终端专有搜索空间 且在 UE专用搜索空间上 C-RNTI加扰 CRC时,所述调制和编码方式域 (/MCS) 基于支持高阶 QAM的第二调制和传输块大小 (TBS ) 索引表格确定。
54、 如权利要求 51 所述的终端, 其中: 所述预定义的信息为下行控 制信息格式, 且预定义: 高层配置信令指示支持高阶 QAM调制方式, 且下 行控制信息格式为预定义支持高阶 QAM调制方式的格式, 则所述调制和编 码方式域 (/MCS)基于支持高阶 QAM的第二调制和传输块大小(TBS )索引表 格确定, 高层配置信令指示不支持高阶 QAM调制方式, 且下行控制信息格 式为预定义不支持高阶 QAM调制方式的格式, 则所述调制和编码方式域 ( /MCS )基于不支持高阶 QAM的第一调制和传输块大小( TB S )索引表格确定。
55、 如权利要求 51所述的终端, 其中: 所述第一调制和 TBS索引表格 是 LTE的版本 8 的 5比特调制和 TBS索引表格; 所述第二调制和 TBS索引 表格釆用如下方式之一构成:
方式 B1: 所述的第二调制和 TBS索引表格具有 32个取值,即 MCS索引 用 5比特表示, 第一调制和 TBS索引表格中除了 L2个调制方式和 TBS索引 的组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1组 合, 第二调制和 TBS索引表格中紧跟前 L1之后的 L2-1个组合是大于 64的 QAM和 TBS索引的组合,第二调制和 TBS索引表格中最后 L3个组合的 TBS 索引是缺省的; LI、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
或, 方式 B2: 所述第二调制和 TBS索引表格具有 32或者 64个取值, 所 述第二调制和 TBS索引表格中任意一个调制方式和 TBS索引的组合都与第一 调制和 TBS索引表格中所有的调制方式和 TBS索引组合不同; 或者, 所述第 二调制和 TBS索引表格中第一调制方式和 TBS索引的组合与第一调制和 TBS 索引表格中第 k个组合相同, 且所述第二调制和 TBS索引表格中最后 4个组 合的 TBS索引是缺省的, 其他都不同, k是 1到 5之间的正整数;
或, 方式 B3: 所述第二调制和 TBS索引表格具有 64个取值, 所述第二 调制和 TBS索引表格中前 /个奇数或者偶数调制方式和 TBS索引的组合都是 第一调制和 TBS索引表格中调制方式和 TBS索引的组合之一, 其中 /是 20 到 29之间的正整数。
56、 如权利要求 55所述的终端, 其中: 所述方式 B1包括方式 Bl l、 方 式 B12、 方式 B13或方式 B14, 其中:
方式 B11包括: 第一调制和 TBS索引表格中除前 L2个调制和 TBS索引 组合之外的 L1个组合依次作为所述的第二调制和 TBS索引表格中前 L1个组 合, 第二调制和 TBS索引表格中随后 L2-1个组合是大于 64的 QAM和 TBS 索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省 的; Ll、 L2和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B12包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引组合或者奇数调制方式和 TBS索引组合的前 L2个组合之外的 L1个组合依 次作为第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格 中随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32; 其中, 第一调制和 TBS索引表格中, 所述奇数调 制方式和 TBS索引组合是指第 1、 3、 5 27、 29的调制方式和 TBS索 引组合集合, 所述偶数调制方式和 TBS索引是指第 2、 4、 6 28的调制 方式和 TBS索引组合集合;
方式 B13包括: 第一调制和 TBS索引表格中除前 L2-2个、 第 10和 11 个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合 依次作为所述的第二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS 索引表格中前 L1个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2 和 L3是大于 1正整数, 且 Ll+L2+L3-1=32;
方式 B14包括: 第一调制和 TBS索引表格中除偶数调制方式和 TBS索 引或者奇数调制方式和 TBS索引的前 L2-2个、 第 10和 11个两者之一和第 17和 18个两者之一以外的 L1个调制方式和 TBS索引组合依次作为所述的第 二调制和 TBS索引表格中前 L1个组合, 第二调制和 TBS索引表格中前 L1 个随后 L2-1个组合是大于 64的 QAM和 TBS索引的组合, 第二调制和 TBS 索引表格中最后 L3个组合的 TBS索引是缺省的; Ll、 L2和 L3是大于 1正 整数, 且 Ll+L2+L3-1=32。
PCT/CN2013/086202 2013-01-18 2013-10-30 调制处理方法及装置 WO2014110931A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES13872027.1T ES2694104T3 (es) 2013-01-18 2013-10-30 Procedimiento y dispositivo de procesamiento de modulación
KR1020157019700A KR101746317B1 (ko) 2013-01-18 2013-10-30 변조 처리 방법 및 장치
BR112015017291-1A BR112015017291B1 (pt) 2013-01-18 2013-10-30 Método e dispositivo de processamento de modulação
EP18183040.7A EP3419237B1 (en) 2013-10-30 Modulation processing method and device
US14/761,899 US9794022B2 (en) 2013-01-18 2013-10-30 Modulation processing method and device
JP2015552982A JP6067137B2 (ja) 2013-01-18 2013-10-30 変調処理方法及び装置
EP13872027.1A EP2933969B1 (en) 2013-01-18 2013-10-30 Modulation processing method and device
RU2015132033A RU2615763C2 (ru) 2013-01-18 2013-10-30 Способ и устройство для обработки данных о модуляции
AU2013373901A AU2013373901B2 (en) 2013-01-18 2013-10-30 Modulation processing method and device
US15/694,311 US10218456B2 (en) 2013-01-18 2017-09-01 Modulation processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310019608.4A CN103944855B (zh) 2013-01-18 2013-01-18 调制处理方法及装置
CN201310019608.4 2013-01-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/761,899 A-371-Of-International US9794022B2 (en) 2013-01-18 2013-10-30 Modulation processing method and device
US15/694,311 Continuation US10218456B2 (en) 2013-01-18 2017-09-01 Modulation processing method and device

Publications (1)

Publication Number Publication Date
WO2014110931A1 true WO2014110931A1 (zh) 2014-07-24

Family

ID=51192342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086202 WO2014110931A1 (zh) 2013-01-18 2013-10-30 调制处理方法及装置

Country Status (10)

Country Link
US (2) US9794022B2 (zh)
EP (1) EP2933969B1 (zh)
JP (1) JP6067137B2 (zh)
KR (1) KR101746317B1 (zh)
CN (1) CN103944855B (zh)
AU (1) AU2013373901B2 (zh)
BR (1) BR112015017291B1 (zh)
ES (1) ES2694104T3 (zh)
RU (1) RU2615763C2 (zh)
WO (1) WO2014110931A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504830A (ja) * 2013-03-21 2016-02-12 ▲華▼▲為▼▲終▼端有限公司 データ送信方法、基地局、及びユーザ装置
JP2016526354A (ja) * 2013-06-08 2016-09-01 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル品質指標ならびに変調方式および符号化方式を通知するための方法および装置
EP3355502A4 (en) * 2015-09-25 2019-06-19 ZTE Corporation CQI INFORMATION RECEIVING METHOD, SENDING METHOD, RECEIVING DEVICE, AND SENDING DEVICE
CN111344972A (zh) * 2020-02-13 2020-06-26 北京小米移动软件有限公司 通信方法、通信装置及存储介质

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944855B (zh) * 2013-01-18 2018-08-17 中兴通讯股份有限公司 调制处理方法及装置
CN103973403B (zh) * 2013-02-06 2018-02-23 中国移动通信集团公司 调制编码方案指示、下行数据接收方法及装置
CN110492976B (zh) 2013-03-22 2022-10-25 富士通互联科技有限公司 用户设备、信道质量指示的配置方法和通信系统
WO2015064921A1 (ko) * 2013-10-30 2015-05-07 엘지전자 주식회사 채널 품질 지시자를 피드백하는 방법 및 사용자 장치
US9467269B2 (en) * 2014-01-06 2016-10-11 Intel IP Corporation Systems and methods for modulation and coding scheme selection and configuration
US20150195819A1 (en) 2014-01-06 2015-07-09 Intel IP Corporation Systems and methods for modulation and coding scheme selection and configuration
JP6314238B2 (ja) * 2014-01-24 2018-04-18 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンクパラメータを決定するための方法、デバイス、及び装置
WO2015141959A1 (ko) 2014-03-21 2015-09-24 주식회사 케이티 채널 상태 정보 송수신 방법 및 장치
DK3175593T3 (da) 2014-07-29 2020-02-24 Ericsson Telefon Ab L M Signalering af modulationskonfiguration
WO2016089184A1 (en) * 2014-12-05 2016-06-09 Lg Electronics Inc. Method and apparatus for supporting variable transport block size without associated downlink control information in wireless communication system
JP6424791B2 (ja) * 2015-10-08 2018-11-21 株式会社デンソー 無線通信装置、無線通信システム
US10225041B2 (en) * 2016-01-15 2019-03-05 Qualcomm Incorporated Methods and apparatus for higher modulation support in LTE
US10775361B2 (en) * 2016-07-22 2020-09-15 Qualcomm Incorporated Monitoring control channel with different encoding schemes
US10868634B2 (en) * 2016-09-12 2020-12-15 Lg Electronics Inc. Method for transmitting or receiving channel state information between terminal and base station in wireless communication system and device for supporting same
US10419192B2 (en) * 2016-09-30 2019-09-17 Motorola Mobility Llc Method and apparatus for reporting channel state information
CN108271214B (zh) 2017-01-04 2022-07-22 华为技术有限公司 一种通信方法及其终端设备、网络设备
EP3568962B1 (en) * 2017-03-24 2021-09-15 Telefonaktiebolaget LM Ericsson (Publ) Terminal device and method for facilitating communication between terminal devices
WO2018195720A1 (zh) * 2017-04-24 2018-11-01 北京小米移动软件有限公司 确定调制编码方式的方法及装置
KR102484328B1 (ko) * 2017-11-17 2023-01-03 삼성전자주식회사 통신 시스템에서 제어 정보를 송신하기 위한 장치 및 방법
US10944501B2 (en) * 2017-12-15 2021-03-09 Mediatek Singapore Pte. Ltd. Method and apparatus for determining modulation and coding scheme table in mobile communications
CN110061769A (zh) 2018-01-18 2019-07-26 华为技术有限公司 发送数据的方法和装置
CN112865919A (zh) * 2018-01-19 2021-05-28 华为技术有限公司 一种通信、mcs的接收、通知方法及设备
CN111510254B (zh) * 2018-02-23 2022-07-12 Oppo广东移动通信有限公司 动态配置方法、终端设备、网络设备及计算机存储介质
CN112088507B (zh) 2018-05-11 2022-05-10 华为技术有限公司 一种信息传输方法和通信设备以及网络设备
CN109818716B (zh) * 2018-06-07 2020-09-15 Oppo广东移动通信有限公司 一种mcs配置方法及装置、终端设备、网络设备
US12015478B2 (en) 2018-10-08 2024-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Defining a condition based on a reference time interval
CN111901067A (zh) * 2020-02-12 2020-11-06 中兴通讯股份有限公司 一种配置、接收方法、装置、设备及存储介质
CN111934821A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 信道质量上报、接收方法、装置、终端、服务节点及介质
US11736232B2 (en) * 2020-09-21 2023-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Code block size
CN112822000B (zh) * 2021-01-19 2022-07-15 深圳市联诚发科技股份有限公司 基于5g控制系统的智能LED显示屏的控制方法及智能LED显示屏

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272613A (zh) * 2007-03-23 2008-09-24 中兴通讯股份有限公司 一种高速物理下行共享信道使用高阶调制的方法
WO2010086969A1 (ja) * 2009-01-28 2010-08-05 富士通株式会社 送信装置、受信装置及び送信方法
CN102487314A (zh) * 2010-12-03 2012-06-06 华为技术有限公司 多用户输入输出信号的发送、接收方法和装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050345B1 (en) * 1999-08-09 2011-11-01 Kamilo Feher QAM and GMSK systems
JP3404382B2 (ja) 1999-05-19 2003-05-06 ノキア ネットワークス オサケ ユキチュア 送信ダイバーシティ方法及びシステム
CA2619489A1 (en) 2005-08-19 2007-02-22 Matsushita Electric Industrial Co. Ltd. Multicarrier communication system, multicarrier communication apparatus and cqi reporting method
US7903614B2 (en) * 2006-04-27 2011-03-08 Interdigital Technology Corporation Method and apparatus for selecting link adaptation parameters for CDMA-based wireless communication systems
US7979075B2 (en) 2006-05-03 2011-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Generation, deployment and use of tailored channel quality indicator tables
EP1901496B1 (en) * 2006-09-12 2010-09-01 Panasonic Corporation Link adaptation dependent on control signaling
EP1901491A1 (en) 2006-09-12 2008-03-19 Matsushita Electric Industrial Co., Ltd. Link adaptation dependent control signaling
CN101448284A (zh) * 2007-11-30 2009-06-03 美国博通公司 对通讯系统中的反馈建立信道质量指示器表的方法和系统
US20090161613A1 (en) 2007-11-30 2009-06-25 Mark Kent Method and system for constructing channel quality indicator tables for feedback in a communication system
CN101971687B (zh) 2007-12-17 2013-05-29 艾利森电话股份有限公司 增强无线终端的测距过程标识
JP5184651B2 (ja) * 2008-02-03 2013-04-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるcqi送信方法
KR101528896B1 (ko) 2008-06-03 2015-06-29 톰슨 라이센싱 신호 포맷의 판정을 위한 장치 및 방법
US8265128B2 (en) * 2008-12-19 2012-09-11 Research In Motion Limited Multiple-input multiple-output (MIMO) with relay nodes
WO2012029245A1 (ja) * 2010-09-03 2012-03-08 パナソニック株式会社 基地局及び制御情報送信方法
CN102624481A (zh) * 2011-01-31 2012-08-01 中兴通讯股份有限公司 自适应调制编码方法及装置
CN102624501B (zh) * 2011-01-31 2016-11-09 南京中兴新软件有限责任公司 一种发送信道质量指示的方法和装置
CN102684816A (zh) 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种热点小区覆盖的数据传输方法、装置及基站
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
US9763246B2 (en) * 2012-06-12 2017-09-12 Qualcomm Incorporated Transport block size determination in new carrier type in LTE
US9419772B2 (en) * 2012-12-17 2016-08-16 Lg Electronics Inc. Method and apparatus for transmitting and receiving MCS index for 256QAM in wireless access system
WO2014098358A1 (ko) * 2012-12-18 2014-06-26 엘지전자 주식회사 데이터 수신 방법 및 장치
US9407417B2 (en) * 2013-01-09 2016-08-02 Qualcomm Incorporated Identifying modulation and coding schemes and channel quality indicators
CN103944855B (zh) * 2013-01-18 2018-08-17 中兴通讯股份有限公司 调制处理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272613A (zh) * 2007-03-23 2008-09-24 中兴通讯股份有限公司 一种高速物理下行共享信道使用高阶调制的方法
WO2010086969A1 (ja) * 2009-01-28 2010-08-05 富士通株式会社 送信装置、受信装置及び送信方法
CN102487314A (zh) * 2010-12-03 2012-06-06 华为技术有限公司 多用户输入输出信号的发送、接收方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933969A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504830A (ja) * 2013-03-21 2016-02-12 ▲華▼▲為▼▲終▼端有限公司 データ送信方法、基地局、及びユーザ装置
US10721016B2 (en) 2013-06-08 2020-07-21 Huawei Technologies Co., Ltd. Notification method and apparatus for channel quality indicator and modulation and coding scheme
JP2016526354A (ja) * 2013-06-08 2016-09-01 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル品質指標ならびに変調方式および符号化方式を通知するための方法および装置
US10250356B2 (en) 2013-06-08 2019-04-02 Huawei Technologies Co., Ltd. Notification method and apparatus for channel quality indicator and modulation and coding scheme
US11764897B2 (en) 2013-06-08 2023-09-19 Huawei Technologies Co., Ltd. Notification method and apparatus for channel quality indicator and modulation and coding scheme
US11463193B2 (en) 2013-06-08 2022-10-04 Huawei Technologies Co., Ltd. Method and apparatus for notifying channel quality indicator and modulation and coding scheme
US10541779B2 (en) 2013-06-08 2020-01-21 Huawei Technologies Co., Ltd. Method and apparatus for notifying channel quality indicator and modulation and coding scheme
US10931357B2 (en) 2015-09-25 2021-02-23 Zte Corporation Method and apparatus for receiving CQI information and method and apparatus for transmitting CQI information
CN111769860A (zh) * 2015-09-25 2020-10-13 中兴通讯股份有限公司 Cqi信息接收方法、发送方法、接收装置及发送装置
CN111769860B (zh) * 2015-09-25 2021-07-23 中兴通讯股份有限公司 Cqi信息接收方法、发送方法、接收装置及发送装置
US10516464B2 (en) 2015-09-25 2019-12-24 Zte Corporation Method and apparatus for receiving CQI information and method and apparatus for transmitting CQI information
EP3355502A4 (en) * 2015-09-25 2019-06-19 ZTE Corporation CQI INFORMATION RECEIVING METHOD, SENDING METHOD, RECEIVING DEVICE, AND SENDING DEVICE
CN111344972A (zh) * 2020-02-13 2020-06-26 北京小米移动软件有限公司 通信方法、通信装置及存储介质

Also Published As

Publication number Publication date
EP2933969B1 (en) 2018-08-22
US9794022B2 (en) 2017-10-17
BR112015017291A2 (zh) 2017-10-03
JP2016509787A (ja) 2016-03-31
US20170366298A1 (en) 2017-12-21
AU2013373901A1 (en) 2015-08-06
EP2933969A1 (en) 2015-10-21
CN103944855B (zh) 2018-08-17
BR112015017291B1 (pt) 2022-10-11
JP6067137B2 (ja) 2017-01-25
AU2013373901B2 (en) 2016-12-15
RU2015132033A (ru) 2017-02-27
KR20150097777A (ko) 2015-08-26
US20150372784A1 (en) 2015-12-24
RU2615763C2 (ru) 2017-04-11
EP3419237A3 (en) 2019-04-24
KR101746317B1 (ko) 2017-06-27
CN103944855A (zh) 2014-07-23
EP3419237A2 (en) 2018-12-26
ES2694104T3 (es) 2018-12-18
US10218456B2 (en) 2019-02-26
EP2933969A4 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
US10218456B2 (en) Modulation processing method and device
JP6426681B2 (ja) 情報送信方法およびデバイス
WO2017050273A1 (zh) Cqi信息接收方法、发送方法、接收装置及发送装置
TWI455491B (zh) 用於字碼至層映射之方法及系統
WO2014015829A1 (zh) 一种传输mcs指示信息的方法及装置
JP2018531545A6 (ja) Cqi情報受信方法、送信方法、受信装置、及び送信装置
WO2014180185A1 (zh) 数据发送、接收方法、数据发送及接收端
WO2014015811A1 (zh) 信道状态信息的发送方法及装置
WO2012022140A1 (zh) 正确错误应答在物理上行控制信道上的反馈方法及系统
CN103384183A (zh) 一种上行控制信息传输方法及装置
WO2013097687A1 (zh) 编码上行控制信息的方法及装置
WO2012021231A2 (en) Method for multiplexing uplink control information a physical uplink shared channel
WO2012155499A1 (zh) 一种信道状态信息的发送方法和用户设备
US9345015B2 (en) Method and apparatus for re-interpreting channel state information
US10834748B2 (en) Indication of additional information in 5G systems with legacy downlink control channel
WO2016019741A1 (zh) 信道质量/状态指示信息处理方法、装置、终端及基站
CN117223362A (zh) 用于超可靠低延迟通信的信道状态信息反馈增强
CN108464046B (zh) 用于自适应下行链路调度和链路适配的装置、系统和方法
EP3419237B1 (en) Modulation processing method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14761899

Country of ref document: US

Ref document number: 2013872027

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157019700

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015552982

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013373901

Country of ref document: AU

Date of ref document: 20131030

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015132033

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201505036

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017291

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015017291

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150720