WO2010086969A1 - 送信装置、受信装置及び送信方法 - Google Patents

送信装置、受信装置及び送信方法 Download PDF

Info

Publication number
WO2010086969A1
WO2010086969A1 PCT/JP2009/051350 JP2009051350W WO2010086969A1 WO 2010086969 A1 WO2010086969 A1 WO 2010086969A1 JP 2009051350 W JP2009051350 W JP 2009051350W WO 2010086969 A1 WO2010086969 A1 WO 2010086969A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
mobile station
transmitted
station apparatus
symbol
Prior art date
Application number
PCT/JP2009/051350
Other languages
English (en)
French (fr)
Inventor
藤田 孝
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2009/051350 priority Critical patent/WO2010086969A1/ja
Publication of WO2010086969A1 publication Critical patent/WO2010086969A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2604Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present invention relates to a digital communication system using quadrature amplitude modulation (QAM).
  • QAM quadrature amplitude modulation
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • OFDMA orthogonal frequency division multiple access
  • a plurality of subcarriers are grouped. While a plurality of mobile station apparatuses share subcarriers belonging to each group, when the number of mobile station apparatuses belonging to the group is small, these users occupy subcarriers to increase the transmission speed, thereby increasing the frequency band. Enable effective use of.
  • the data to be transmitted is divided into transmission signals of a plurality of transmission subchannels, multilevel modulation is performed for each of the transmission signals of the plurality of transmission subchannels, and the transmission band for each of the multilevel modulation signals of the plurality of transmission subchannels
  • the transmission condition information including the modulation scheme of multilevel modulation, the broadband scheme, and the number of transmission subchannels is added to the related transmission signal, and the broadband modulation output of a plurality of transmission subchannels is added.
  • a multiplex transmission method for frequency multiplexing and outputting the same user channel has been proposed.
  • radio resources cannot be simultaneously allocated to a larger number of mobile station apparatuses than (number of time slots in time division multiplexing) ⁇ (total number of subcarriers). For this reason, when the number of mobile station apparatuses to be connected is large, it may occur that radio resources are insufficient.
  • the disclosed technology aims to increase the number of receivers that can be multiplexed when data is multiplexed and transmitted to a plurality of receivers.
  • a transmission device that transmits data to a plurality of reception devices.
  • This transmission apparatus includes symbol generation means for generating a symbol having a bit string in which data to be transmitted to a plurality of reception apparatuses is multiplexed, and modulation means for modulating subcarriers by quadrature amplitude modulation. This modulation means modulates one subcarrier by one symbol.
  • FIG. 1 is an overall configuration diagram of an embodiment of a wireless communication system. It is a block diagram of the Example of the base station apparatus shown in FIG. It is a figure which shows the 1st example of the signal point arrangement
  • FIG. 4 is an explanatory diagram (No. 1) when the signal point arrangement shown in FIG. 3 is rotated around the origin.
  • FIG. 4 is an explanatory diagram (No. 2) when the signal point arrangement shown in FIG. 3 is rotated around the origin.
  • FIG. 4 is an explanatory diagram (No. 3) when the signal point arrangement shown in FIG. 3 is rotated around the origin. It is a flowchart which shows the operation
  • FIG. 1 is an overall configuration diagram of an embodiment of a disclosed wireless communication system.
  • Reference numeral 1 indicates a radio communication system 1 configured in accordance with LTE
  • reference numeral eNB indicates a base station apparatus
  • reference numerals UE # 1, UE # 2 to UE # x indicate mobile station apparatuses, respectively.
  • the radio communication system 1 includes a base station apparatus eNB and a plurality of mobile station apparatuses UE # 1, UE # 2 to UE # x.
  • an example of the wireless communication system 1 compliant with LTE is shown and described.
  • the present embodiment is widely applicable to communication systems that perform multilevel quadrature amplitude modulation on a transmission signal.
  • FIG. 2 is a configuration diagram of an embodiment of the base station apparatus eNB shown in FIG.
  • Reference numeral 10 indicates a downlink IP packet processing unit
  • reference numeral 11 indicates a data channel transmission processing unit
  • reference numeral 12 indicates a control channel transmission processing unit
  • reference numeral 13 indicates a modulation unit.
  • Reference numeral 14 denotes a transmission antenna that transmits radio signals to the mobile station apparatuses UE # 1, UE # 2 to UE # x
  • reference numeral 15 denotes a scheduler
  • reference numeral 16 denotes a storage unit
  • Reference numeral 17 denotes a receiving antenna that receives radio signals transmitted from the mobile station apparatuses UE # 1, UE # 2 to UE # x
  • reference numeral 18 denotes a demodulation unit
  • reference numeral 19 denotes a data channel reception processing unit.
  • Reference numeral 20 indicates a control channel reception processing unit
  • reference numeral 21 indicates an uplink IP packet processing unit.
  • the base station apparatus eNB includes a downlink IP packet processing unit 10, a data channel transmission processing unit 11, a control channel transmission processing unit 12, a modulation unit 13, a transmission antenna 14, a scheduler 15, and a storage unit 16. .
  • the base station apparatus eNB includes a reception antenna 17, a demodulation unit 18, a data channel reception processing unit 19, a control channel reception processing unit 20, and an uplink IP packet processing unit 21.
  • the downlink IP packet processing unit 10 receives user data scheduled to be transmitted to each mobile station apparatus UE # 1, UE # 2 to UE # x on the downlink.
  • the downlink IP packet processing unit 10 determines the identifier of the mobile station apparatus that is the destination of the received user data and the data length of the user data, and notifies the scheduler 15 of the identifier.
  • the identifier of the mobile station apparatus is referred to as “terminal ID”.
  • the downlink IP packet processing unit 10 transfers the received user data to the data channel transmission processing unit 11.
  • the data channel transmission processing unit 11 divides the received user data into a bit string having a predetermined bit length, and generates symbols used for quadrature amplitude modulation of the subcarriers.
  • the data channel transmission processing unit 11 multiplexes data to be transmitted to a plurality of mobile station apparatuses in one symbol by combining bit sequences to be transmitted to a plurality of mobile station apparatuses in accordance with multiplexing information received from the scheduler 15 To do.
  • Multiplexing information is a signal point used to express a combination of identifiers of a plurality of mobile station apparatuses in which transmission data is multiplexed in the same symbol and a value of transmission data to each combined mobile station apparatus. And at least information that can specify a signal point group that is a group.
  • FIG. 3 is a diagram illustrating a first example of QAM signal point arrangement by the base station apparatus eNB illustrated in FIG.
  • the illustrated signal point arrangement is an arrangement used for 16QAM modulation using 16 signal points.
  • Sixteen circles 101, 102, 103, 104... Displayed with solid lines indicate signal points.
  • the 2-bit value displayed in each circle indicates the lower 2 bits of the symbol corresponding to each signal point, and the 2-bit value displayed in the center of each square 111-114 indicated by a dotted line surrounding each circle is The upper bits of the symbol corresponding to each signal point are shown.
  • the symbol corresponding to the signal point 101 is “0111” having “11” displayed in a circle in the lower 2 bits and “01” displayed in the center of the rectangle 111 in the upper 2 bits.
  • 16 values can be expressed.
  • the symbols are divided into upper 2 bits and lower 2 bits and are allocated to two mobile station apparatuses UE # 1 and UE # 2. That is, the four values indicated by the 2-bit bit string transmitted to UE # 1 are expressed by which of the four signal point groups 111 to 114 the signal point represented by the transmission data belongs to. In other words, the four values indicated by the 2-bit bit string transmitted to UE # 1 are expressed by four signal point groups 111-114.
  • the four values indicated by the 2-bit bit string transmitted to UE # 2 are expressed by which of the four signal points in each signal point group 111 to 114 is represented by the transmission data.
  • the in other words, the four values indicated by the 2-bit bit string transmitted to UE # 2 are expressed by four signal points in each signal point group 111-114.
  • the data channel transmission processing unit 11 generates a symbol using either new data or retransmission data according to the retransmission determination information (ACK / NACK) received from the mobile station apparatus via the uplink control channel.
  • the data channel transmission processing unit 11 outputs the generated symbol to the modulation unit 13.
  • the control channel transmission processing unit 12 receives the above-described multiplexing information from the scheduler 15 as control information to be transmitted to the mobile station apparatus. Further, the control channel transmission processing unit 12 receives, from the scheduler 15, resource block allocation information indicating radio resources allocated to each mobile station device UE # 1, UE # 2 to UE # x as control information transmitted to the mobile station device. To do.
  • the resource block allocation information includes information designating the frequency band and time slot of the subcarrier allocated for data transmission to UE # 1, UE # 2 to UE # x.
  • control channel transmission processing unit 12 uses modulation scheme instruction information indicating a modulation scheme for modulating transmission data to each mobile station apparatus UE # 1, UE # 2 to UE # x as control information transmitted to the mobile station apparatus. Received from the scheduler 15.
  • the control channel transmission processing unit 12 receives retransmission determination information (ACK / NACK) from the data channel reception processing unit 19 as control information to be transmitted to the mobile station apparatus. Further, the control channel transmission processing unit 12 receives NDI (New Data Indicator) information described later from the scheduler 15 as control information to be transmitted to the mobile station apparatus.
  • the control channel transmission processing unit 12 generates symbols indicating these control information and outputs them to the modulation unit 13.
  • the modulation unit 13 receives the modulation method instruction information from the scheduler 15.
  • the modulation unit 13 generates complex symbols by performing multilevel quadrature amplitude modulation on the subcarriers using the symbols received from the data channel transmission processing unit 11 in accordance with the modulation scheme instruction information. Also, the modulation unit 13 generates complex symbols by performing multi-level quadrature amplitude modulation on subcarriers according to a predetermined modulation method using the symbols received from the control channel transmission processing unit 12.
  • the modulation unit 13 receives the resource block allocation information from the scheduler 15.
  • the modulation unit 13 performs the complex symbol so that the subcarriers that transmit the transmission data to the mobile station apparatuses UE # 1, UE # 2 to UE # x are arranged in the frequency band allocated in the resource block allocation information. Is subjected to inverse Fourier transform to generate an OFDMA signal.
  • the base station apparatus eNB transmits an OFDMA signal to each mobile station apparatus UE # 1, UE # 2 to UE # x via the transmission antenna 14.
  • the scheduler 15 determines radio resources to be allocated to the mobile station apparatuses UE # 1, UE # 2 to UE # x respectively corresponding to the terminal ID received from the downlink IP packet processing unit 10, and uses the above-described resource block allocation information. Generate. The scheduler 15 outputs the resource block allocation information to the control channel transmission processing unit 12 and the demodulation unit 13.
  • the scheduler 15 receives feedback information such as channel quality indication (CQI) and retransmission determination information (ACK / NACK) received from each mobile station apparatus UE # 1, UE # 2 to UE # x from the control channel reception processing unit 20. Receive. The scheduler 15 determines a modulation scheme and transmission power for modulating transmission data to each mobile station apparatus UE # 1, UE # 2 to UE # x according to the channel quality display information. The scheduler 15 outputs the modulation scheme instruction information to the control channel transmission processing unit 12 and the demodulation unit 13.
  • CQI channel quality indication
  • ACK / NACK retransmission determination information
  • the scheduler 15 generates multiplexing information indicating which mobile station apparatuses UE # 1, UE # 2 to UE # x are to be multiplexed in the symbols generated by the data channel transmission processing unit 11 To do.
  • the scheduler 15 outputs the multiplexed information to the data channel transmission processing unit 11 and the control channel transmission processing unit 12.
  • the multiplexing information output from the scheduler 15 to the data channel transmission processing unit 11 and the control channel transmission processing unit 12 indicates that the data for which mobile station device UE # 1, UE # 2 to UE # x is multiplexed in the same symbol. And indicates to which mobile station apparatus UE # 1, UE # 2 to UE # x the data is transmitted without being multiplexed.
  • the multiplexing information indicates which mobile station apparatuses UE # 1, UE # 2 to UE # x are combined with each other and multiplexed in the symbol. Further, the multiplexing information includes information for designating signal point groups used to express values of transmission data to a plurality of mobile station apparatuses multiplexed in the same symbol.
  • the scheduler 15 stores the determined multiplexing information in the storage unit 16 as reference information for reproducing the current combination of mobile station apparatuses at the next data transmission.
  • FIG. 4 is a diagram illustrating an example of a data structure of multiplexed information output from the scheduler 15 to the data channel transmission processing unit 11 and the control channel transmission processing unit 12.
  • the multiplexing information includes terminal IDs of the mobile station apparatuses UE # 1, UE # 2 to UE # x, subcarrier identifiers modulated by transmission data to each mobile station apparatus, and group designation information. This means that when there are a plurality of mobile station apparatuses assigned to the same subcarrier identifier, transmission data to these mobile station apparatuses are multiplexed into the same symbol.
  • the group designation information is information for designating each signal point group used to express the value of transmission data to each mobile station apparatus multiplexed in the same symbol. For example, let us consider a case where the example of the signal point arrangement shown in FIG. In this case, for example, the group designation information of the value “1” designates four signal point groups 111 to 114. That is, the value “1” is designated as group designation information for the mobile station apparatus UE # 1 that uses the four signal point groups 111 to 114. Further, the group designation information having a value “0” designates four signal points in each of the signal point groups 111 to 114. That is, the value “0” is designated as group designation information for mobile station apparatus UE # 2 that uses four signal points in each group.
  • FIG. 5 is a diagram showing a second example of QAM signal point arrangement by the base station apparatus eNB shown in FIG.
  • the illustrated signal point arrangement is an arrangement used for 64QAM modulation using 64 signal points.
  • the 2-bit value displayed in each circle indicates the lower 2 bits of the symbol corresponding to each signal point.
  • a 2-bit value displayed at the center of 16 squares 211 to 214... Indicated by dotted lines surrounding each of the four circles indicates the lower third to fourth digit bits of the symbol corresponding to each signal point.
  • the 2-bit value displayed at the center of the four quadrilaterals 201, 202, 203, and 204 indicated by the one-dot chain line that surrounds four quadrilaterals indicated by the dotted lines is the higher rank of the symbol corresponding to each signal point. 2 bits are shown.
  • the symbol corresponding to the signal point 224 has “01” displayed in the circle as the lower 2 bits, “11” displayed at the center of the rectangle 211 at the lower 3rd to 4th digits, and the center of the rectangle 201.
  • the displayed “11” is “111101” in the upper 2 bits.
  • the symbol is divided into three partial bit strings of upper 2 bits, lower 3 to 4 digits of 2 bits and lower 2 bits, and each of them is used as three mobile station apparatuses UE # 1, UE # 2 and Assign to UE # 3. That is, the four values indicated by the 2-bit bit string transmitted to UE # 1 are expressed by which of the four signal point groups 201 to 204 the signal point represented by the transmission data belongs to. In other words, the four values indicated by the 2-bit bit string transmitted to UE # 1 are represented by four signal point groups 201-204.
  • the four values indicated by the 2-bit bit string transmitted to UE # 2 are 4 indicated by dotted-line squares in which the signal points represented by the transmission data are included in the four signal point groups 201 to 204, respectively. It is expressed by which of the two signal point groups it belongs to. In other words, the four values indicated by the 2-bit bit string transmitted to UE # 2 are expressed by four signal point groups indicated by dotted-line squares. For example, when the value of the upper 2 bits of the symbol is “11”, the 4 values indicated by the 2-bit bit string transmitted to UE # 2 are represented by signal point groups 211 to 214.
  • the signal point represented by the transmission data is any of the four signal points in each signal point group indicated by the dotted-line square. It is expressed by what. In other words, the four values indicated by the 2-bit bit string transmitted to UE # 3 are expressed by four signal points in each signal point group indicated by a dotted-line square. For example, when the value of the upper 4 bits of the symbol is “1111”, the 4 values indicated by the 2-bit bit string transmitted to UE # 3 are represented by signal points 221 to 224.
  • the value “10” may be used as the value of the group designation information for designating the four signal point groups 201 to 204 in the multiplexing information shown in FIG. Further, the value “01” may be used as the value of the group designation information that designates the signal point group indicated by the dotted line. The value “00” may be used as the value of the group designation information that designates four signal points in each signal point group indicated by a dotted line.
  • the scheduler 15 sets transmission data to each mobile station apparatus according to the data length of user data to each mobile station apparatus UE # 1, UE # 2 to UE # x notified from the downlink IP packet processing unit 10. Determine whether to multiplex within one symbol. For example, when the data length of transmission data to a certain mobile station apparatus is less than a predetermined value TL, the scheduler 15 designates this mobile station apparatus as a candidate for a mobile station apparatus that multiplexes transmission data within one symbol. . When the data length of transmission data to a certain mobile station apparatus is equal to or greater than a predetermined value TL, the scheduler 15 determines not to multiplex transmission data to this mobile station apparatus.
  • the transmission rate of the transmission data transmitted to each mobile station apparatus decreases.
  • the scheduler 15 determines whether or not multiplexing is possible based on the data length, only data having a relatively short data length is multiplexed, and the transmission rate of data having a relatively long data length may be reduced. Avoided.
  • scheduler 15 multiplexes transmission data to each mobile station apparatus in one symbol according to the priorities of mobile station apparatuses UE # 1, UE # 2 to UE # x stored in storage unit 16 in advance Decide whether or not. For example, when the priority of a certain mobile station apparatus is less than a predetermined value TP, the scheduler 15 designates this mobile station apparatus as a candidate for a mobile station apparatus that multiplexes transmission data within one symbol. When the priority for a certain mobile station apparatus is equal to or higher than the predetermined value TP, the scheduler 15 determines not to multiplex transmission data to this mobile station apparatus.
  • the scheduler 15 determines whether or not multiplexing is possible based on the priority, so that only data with a relatively low priority is multiplexed, and data with a high priority and a high transmission rate is low. Transmission at the transmission rate is avoided.
  • the scheduler 15 converts the transmission data to each mobile station apparatus into one symbol according to the modulation scheme that modulates the transmission data to each mobile station apparatus UE # 1, UE # 2 to UE # x determined according to the channel quality display information. Determine whether to multiplex in. For example, the scheduler 15 determines not to multiplex transmission data to a mobile station apparatus when the modulation method of transmission data to a certain mobile station apparatus is QPSK. Further, when the transmission data modulation method for a certain mobile station apparatus is multilevel quadrature amplitude modulation using 16 or more signal points, the scheduler 15 transmits the mobile station apparatus with transmission data within one symbol. Designated as a candidate for a mobile station apparatus to be multiplexed.
  • the scheduler 15 determines the mobile station apparatus that multiplexes data in one symbol according to the data length, priority, and modulation scheme, and then the mobile station apparatus that multiplexes data in the same symbol. Determine the combination.
  • the scheduler 15 classifies mobile station apparatuses according to a modulation scheme that modulates transmission data. Further, the scheduler 15 further classifies each mobile station device in each group classified by the modulation scheme according to the magnitude of transmission power.
  • the scheduler 15 further classifies the mobile station apparatus by a new data indicator (NDI: New Data Indicator) as retransmission processing information indicating whether the transmission data is retransmission data or new data.
  • NDI New Data Indicator
  • 6A and 6B are explanatory diagrams of NDI information.
  • FIG. 6A is a time chart showing how new data and retransmission data are transmitted to a certain mobile station apparatus
  • FIG. 6B is a time chart showing the value of NDI information corresponding to FIG. 6A.
  • the NDI information has a value of “0” or “1”, and the value alternates only when new data is transmitted, and the value does not change when retransmission data is transmitted. For example, when new data is transmitted at time t1, the value changes from “0” to “1”, and when new data is transmitted at time t2, the value changes from “1” to “0”. However, the value does not change when retransmission data is transmitted at time t3, for example. Accordingly, whether the transmission data is retransmission data or new data is displayed depending on whether or not the NDI information has changed.
  • the scheduler 15 receives retransmission determination information (ACK / NACK) transmitted from each mobile station apparatus UE # 1, UE # 2 to UE # x from the control channel reception processing unit 20. Based on the retransmission determination information and the previously transmitted NDI information, the NDI information is determined for each mobile station apparatus. The scheduler 15 outputs the NDI information to the control channel transmission processing unit 12. The scheduler 15 transmits each mobile station device in each group classified according to the magnitude of transmission power, a group of mobile station devices to which NDI information with a value “0” is further transmitted, and NDI information with a value “1”. And group of mobile station devices to be classified.
  • ACK / NACK retransmission determination information
  • the scheduler 15 combines the mobile station devices classified into the same group as a result of the classification based on the modulation scheme, transmission power, and NDI information, and multiplexes the transmission data in the same symbol. Determine the combination.
  • the scheduler 15 based on the multiplexing information at the time of the previous transmission stored in the storage unit 16, the scheduler 15 combines mobile station apparatuses that can be combined in the same way as in the previous transmission in the same way as in the previous transmission. . Further, the scheduler 15 uses the same signal point group as used last time as a signal point group used for expressing transmission data to the mobile station apparatus that can be combined in the same way as the previous transmission.
  • the demodulator 18 demodulates the received signals from the mobile station apparatuses UE # 1, UE # 2 to UE # x received via the receiving antenna 17, and obtains received symbols.
  • the data channel reception processing unit 19 determines whether or not data has been normally received from each mobile station apparatus UE # 1, UE # 2 to UE # x, and transmits retransmission determination information (ACK / NACK) to the control channel transmission process. To the unit 12.
  • the data channel reception processing unit 19 outputs the received data received normally to the uplink IP packet processing unit 21.
  • the uplink IP packet processing unit 21 combines the received data received from the data channel reception processing unit 19 to form user data transmitted from each mobile station apparatus UE # 1, UE # 2 to UE # x.
  • the control channel reception processing unit 20 receives feedback information such as channel quality indication (CQI) and retransmission determination information (ACK / NACK) transmitted from each mobile station apparatus UE # 1, UE # 2 to UE # x.
  • the control channel reception processing unit 20 outputs channel quality indication and retransmission determination information (ACK / NACK) to the scheduler 15.
  • the control channel reception processing unit 20 outputs retransmission determination information (ACK / NACK) to the data channel transmission processing unit.
  • FIG. 7 is a diagram showing a third example of QAM signal point arrangement by the base station apparatus eNB shown in FIG.
  • the illustrated signal point arrangement is an arrangement used for 64QAM modulation using 64 signal points.
  • 64 circles 311, 312... Displayed by solid lines indicate signal points.
  • the 4-bit value displayed in each circle indicates the lower 4 bits of the symbol corresponding to each signal point.
  • a 2-bit value displayed at the center of four quadrilaterals 301 to 304 indicated by dotted lines surrounding 16 circles indicates the upper 2 bits of the symbol corresponding to each signal point.
  • the symbol corresponding to the signal point 312 is “111110” having “1110” displayed in the circle in the lower 4 bits and “11” displayed in the center of the rectangle 301 in the upper 2 bits.
  • the symbols are divided into two partial bit strings of upper 4 bits and lower 2 bits and used, and assigned to two mobile station apparatuses UE # 1 and UE # 2, respectively.
  • FIG. 8 is a diagram illustrating a fourth example of QAM signal point arrangement by the base station apparatus eNB illustrated in FIG.
  • the illustrated signal point arrangement is an arrangement used for 64QAM modulation using 64 signal points.
  • the 2-bit value displayed in each circle indicates the lower 2 bits of the symbol corresponding to each signal point.
  • the 4-bit value displayed at the center of the 16 rectangles 401 to 416 indicated by the dotted lines surrounding each of the four circles indicates the upper 4 bits of the symbol corresponding to each signal point.
  • the symbol corresponding to the signal point 424 is “111101” having “01” displayed in a circle in the lower 2 bits and “1111” displayed in the center of the rectangle 401 in the upper 4 bits.
  • the symbols are divided into two partial bit strings of upper 4 bits and lower 2 bits and used, and assigned to two mobile station apparatuses UE # 1 and UE # 2, respectively.
  • the quadrature amplitude modulation by the base station apparatus eNB is not limited to the modulation method with 16 or 64 signal points, and may be used for a modulation method with more than 64 modulation methods.
  • FIG. 3 FIG. 5, FIG. 7, FIG. 8, and FIG. 15 described later, signal point arrangements when the base station apparatus eNB performs 4 n QAM modulation are shown (n is an integer of 2 or more).
  • 2 ⁇ (n ⁇ ) represented by 4 (n ⁇ 1) signal points arranged in each quadrant of the complex plane included in one symbol having 2n bits.
  • the values of the bit portions are arranged so as to be rotationally symmetric about the origin of the complex plane.
  • the value of the lower 4 bits expressed by each signal point is the same value “1111”.
  • a set of bits of a 2 ⁇ (n ⁇ 1) bit portion represented by 4 (n ⁇ 1) signal points arranged in each quadrant of the complex plane is expressed as “Partial bit string”.
  • the partial bit string is not necessarily a continuous bit string in one symbol having 2n bits.
  • FIG. 9A and FIG. 9B use the signal point arrangement shown in FIG. 3 to multiplex transmission data to mobile station apparatuses UE # 1 and UE # 2 into the same 4-bit symbol and perform subcarriers by 16QAM modulation. The result of modulating is shown.
  • the value of the quaternary data transmitted to the mobile station apparatus UE # 1 by one symbol is expressed by four signal point groups including all signal points in each quadrant of the complex plane.
  • the value of the quaternary data transmitted to the mobile station apparatus UE # 2 by one symbol is arranged in four signal point groups each representing transmission data to the mobile station apparatus UE # 1. Represented by signal points.
  • data “11” and “10” are transmitted to the mobile station apparatuses UE # 1 and UE # 2, respectively. Is done.
  • the new data is transmitted to the mobile station apparatus UE # 1 in the next data transmission, Retransmission data is transmitted to station apparatus UE # 2.
  • FIG. 9B new data “01” is transmitted to the mobile station apparatus UE # 1, and the same retransmission data “10” as the previous time is transmitted to the mobile station apparatus UE # 2.
  • the position of the signal point is determined to be a position 502 different from the first position 501.
  • mobile station apparatus UE # 2 in order to increase the success rate of retransmission data reception, in retransmission control, retransmission data and data transmitted so far are combined, and the average value thereof is used as received data. Processing may be performed. However, when transmission data to a plurality of mobile station apparatuses is multiplexed in one symbol, as shown in FIGS. 9A and 9B, a signal including retransmission data and the previous transmission data are transmitted in mobile station apparatus UE # 2. Since the position of the signal point is different from the included signal, it becomes impossible to synthesize these signals as they are.
  • FIG. 9C shows a state where the signal shown in FIG. 9B is rotated 90 ° clockwise. As illustrated, the position of the signal point 502 in FIG. 9C is the same position as the signal point 501 in FIG. 9A.
  • the mobile station apparatus UE # 2 that has received the retransmission data rotates the current reception signal and / or the previous reception signal by j ⁇ 90 ° to match the quadrants to which the two signals belong to each other. It is possible to perform retransmission combining processing using.
  • the scheduler 15 can increase the transmission efficiency of the entire communication system by allocating a mobile station apparatus with relatively poor reception quality to such a mobile station apparatus. Therefore, the scheduler 15 may determine whether the reception quality is good or not based on channel quality display information received from the mobile station apparatus.
  • a data value is represented by a plurality of signal points or signal point groups respectively arranged in a signal point group including all signal points in one quadrant.
  • the station apparatus it is possible to improve the deterioration of transmission characteristics by performing the above-described retransmission combining process to increase the reception success rate.
  • the value of the partial bit string is between two signals to be combined. It is desirable that they are equal.
  • the scheduler 15 shown in FIG. 2 determines the combination of mobile station apparatuses to be multiplexed on each subcarrier, and then the value of the partial bit sequence included in the symbol for modulating each subcarrier is changed to the previous data and the current data. It is determined whether or not the data becomes equal. Thereby, the scheduler 15 determines whether or not the data transmitted on each subcarrier can be subjected to the retransmission combining process with the phase rotation.
  • the scheduler 15 generates retransmission instruction information indicating whether or not the data transmitted by each subcarrier can be subjected to retransmission combining processing with phase rotation, and each mobile station apparatus UE # 1 via the control channel , UE # 2 to UE # x.
  • the retransmission instruction information has, for example, a value “1” when the retransmission combining process with phase rotation can be performed, and a value “0” when the retransmission combining process with phase rotation cannot be performed.
  • the scheduler 15 determines whether all of the following (Condition 1) to (Condition 3) are satisfied, whereby the value of the partial bit string is It is determined whether or not the two signals to be combined are equal.
  • Transmission data is multiplexed into a partial bit string of 2 ⁇ (n ⁇ 1) bits represented by 4 (n ⁇ 1) signal points arranged in each quadrant of the complex plane.
  • the combination of mobile station apparatuses to be performed is equal to the combination at the previous transmission.
  • Condition 2 The signal point group used for expressing the value of the transmission data to the mobile station apparatus combined in Condition 1 is all equal to the signal point group used in the previous transmission.
  • Condition 3 All transmission data to the mobile station apparatus combined in Condition 1 is retransmission data.
  • the scheduler 15 determines the success or failure of the above (Condition 1) to (Condition 3) for each subcarrier after determining the combination of mobile station apparatuses multiplexed on each subcarrier. Thereby, the scheduler 15 determines whether or not the data transmitted on each subcarrier can be subjected to the retransmission combining process with the phase rotation. However, when all 2 ⁇ (n ⁇ 1) signal points in each quadrant are assigned to transmission data to the same mobile station apparatus as in the 16QAM modulation signal point arrangement shown in FIG. If the transmission data to the mobile station apparatus is retransmission data, (condition 1) to (condition 3) are automatically satisfied. Therefore, in this case, the determination by the scheduler 15 and the generation of retransmission instruction information are unnecessary.
  • Each mobile station apparatus determines whether or not the current transmission data is retransmission data according to the NDI information received from the base station apparatus eNB via the control channel.
  • the mobile station apparatus multiplexes the transmission data transmitted to the mobile station apparatus in the partial bit string according to the multiplexing information received from the base station apparatus eNB via the control channel. It is determined whether or not it is done.
  • the mobile station apparatus multiplexes the transmission data transmitted to the mobile station apparatus in the partial bit string according to the information specifying the signal point group used for expressing the value of the transmission data to the mobile station apparatus. It can be determined whether or not. For example, in the case of the signal point arrangement illustrated in FIG. 5, the mobile station apparatus transmits the above-mentioned transmission data as long as the value of the transmission data to the mobile station apparatus is not expressed using the signal point groups 201 to 204. It can be determined that they are multiplexed in the bit string.
  • each mobile station apparatus When transmission data is multiplexed in the partial bit sequence, can the mobile station apparatus perform retransmission combining processing between retransmission data and previous data according to retransmission instruction information received via the control channel? Determine whether or not.
  • retransmission combining processing can be performed, each mobile station apparatus performs retransmission combining processing with phase rotation.
  • FIG. 10 is a flowchart showing an operation flow of the base station apparatus eNB shown in FIG.
  • the scheduler 15 receives feedback information such as channel quality indication (CQI) and retransmission determination information (ACK / NACK) transmitted from each mobile station apparatus UE # 1, UE # 2 to UE # x.
  • CQI channel quality indication
  • ACK / NACK retransmission determination information
  • step S2 the downlink IP packet processing unit 10 acquires user data transmitted to each mobile station apparatus UE # 1, UE # 2 to UE # x.
  • the downlink IP packet processing unit 10 determines each data length of the received user data and notifies the scheduler 15 of the data length. Further, the downlink IP packet processing unit 10 transfers each user data to the data channel transmission processing unit 11.
  • step S3 the scheduler 15 determines whether or not the data length of the transmission data to each mobile station apparatus is less than the predetermined value TL.
  • step S3: Y the scheduler 15 leaves the mobile station apparatus as a candidate for the mobile station apparatus that multiplexes transmission data in one symbol. Thereafter, the scheduler 15 advances the process to step S4.
  • step S3: N the scheduler 15 determines not to multiplex the transmission data of the mobile station apparatus, and moves the process to step S13.
  • step S4 the scheduler 15 determines whether or not the priorities of the mobile station apparatuses UE # 1, UE # 2 to UE # x stored in advance in the storage unit 16 are less than a predetermined value TP.
  • the scheduler 15 leaves the mobile station apparatus as a candidate for the mobile station apparatus that multiplexes transmission data in one symbol. Thereafter, the scheduler 15 advances the process to step S5.
  • the scheduler 15 determines not to multiplex the transmission data of the mobile station apparatus, and moves the process to step S13.
  • step S5 the scheduler 15 determines a modulation scheme for modulating transmission data to each mobile station apparatus UE # 1, UE # 2 to UE # x according to the channel quality display information acquired in step S1.
  • step S6 the scheduler 15 determines whether or not the modulation method of transmission data to each mobile station apparatus is QPSK. When the modulation method is not QPSK but multilevel quadrature amplitude modulation using 16 or more signal points (step S6: N), the mobile station apparatus multiplexes transmission data in one symbol. Leave as a candidate. Thereafter, the scheduler 15 advances the process to step S7.
  • step S6: N the scheduler 15 determines not to multiplex the transmission data of the mobile station apparatus, and moves the process to step S13.
  • step S7 the scheduler 15 classifies each mobile station apparatus according to a modulation scheme for modulating transmission data. That is, the scheduler 15 classifies each mobile station device into a group of mobile station devices modulated by the same modulation scheme.
  • step S8 the scheduler 15 determines transmission power for transmitting data to each of the mobile station apparatuses UE # 1, UE # 2 to UE # x according to the channel quality display information acquired in step S1.
  • step S9 the scheduler 15 further classifies the mobile station devices classified into the groups of the mobile station devices modulated by the same modulation scheme, according to the strength of the transmission power.
  • step S10 the scheduler 15 determines the NDI information for each mobile station apparatus based on the retransmission determination information (ACK / NACK) acquired in step S1 and the NDI information previously transmitted to each mobile station apparatus.
  • step S11 the scheduler 15 combines the mobile station apparatuses that multiplex transmission data in the same symbol based on the NDI information determined in step S10 and the combination result of the mobile station apparatuses in the previous transmission. Decide.
  • FIG. 11 is a flowchart illustrating an example of the distribution process S11 for the retransmission process.
  • the scheduler 15 refers to the multiplexing information at the previous transmission stored in the storage unit 16 to obtain a combination of mobile station apparatuses multiplexed in the same symbol at the previous transmission.
  • the scheduler 15 determines whether or not a group of mobile station apparatuses classified into groups includes a combination of mobile station apparatuses multiplexed in the same symbol at the previous transmission.
  • step S23 the scheduler 15 combines these mobile station devices, and for these mobile station devices, the same as the previous time. Decide to use constellation. The scheduler 15 determines to use the signal point group used last time for these mobile station apparatuses without changing them.
  • step S24 the scheduler 15 arbitrarily selects the mobile station apparatus from the group of classified mobile station apparatuses, A new combination of mobile station apparatuses multiplexed in the same symbol and a signal point group used for these mobile station apparatuses are determined.
  • step S25 the scheduler 15 determines the success or failure of the above (Condition 1) to (Condition 3) for each symbol generated by the determined combination. It is determined whether or not application is possible.
  • step S26 the scheduler 15 sets the value of the retransmission instruction information to be transmitted to the mobile station apparatus that transmits this symbol to “1”.
  • step S27 the scheduler 15 sets the value of the retransmission instruction information to be transmitted to the mobile station apparatus that transmits this symbol to “0”.
  • step S12 the scheduler 15 creates multiplexing information shown in FIG. 4 according to the combination of mobile station apparatuses determined in step S11.
  • the scheduler 15 outputs the multiplexed information to the data channel transmission processing unit 11 and the control channel transmission processing unit 12.
  • the data channel transmission processing unit 11 generates a symbol used for quadrature amplitude modulation of the subcarrier from the user data received from the downlink IP packet processing unit 10 according to the received multiplexing information.
  • the control channel transmission processing unit 12 generates a control signal including information indicated by the multiplexed information.
  • FIG. 12 is a diagram illustrating a first example of a control signal transmitted from the base station apparatus eNB to each mobile station apparatus.
  • the control signal includes a format selection bit, a control information bit, a first modulation method instruction bit, a second modulation method instruction bit, and the retransmission instruction information.
  • retransmission instruction information may be omitted when the partial bit sequences are all assigned to transmission data to the same mobile station apparatus as in the 16QAM modulation signal point arrangement shown in FIG.
  • the format selection bit is a bit indicating whether or not the control signal includes multiplexing information.
  • the control information bits include control information such as resource block allocation information and retransmission determination information (ACK / NACK) determined on the base station apparatus eNB side.
  • control information bit includes resource block allocation information that indicates a resource block used for uplink, and modulation scheme indication information that indicates a modulation scheme used for uplink.
  • the first modulation method instruction bit is a bit that indicates a modulation method.
  • the 2-bit first modulation method instruction bit may indicate QPSK by the value “00”, 16 QAM by the value “01”, 64 QAM by the value “10”, and 256 QAM by the value “11”.
  • the control information bit may include the NDI information.
  • the NDI information may be transmitted from the base station apparatus eNB to the mobile station apparatus via a shared control channel that is not included in the control information bits and is shared by a plurality of mobile station apparatuses.
  • the second modulation method instruction bit is information for designating each signal point group used to express the value of transmission data to the target mobile station apparatus.
  • the second modulation scheme instruction bit may be the same value as the group designation information described with reference to FIG.
  • the control channel transmission processing unit 12 generates a symbol indicating this control signal and outputs it to the modulation unit 13.
  • the modulation unit 13 generates a complex symbol by performing multi-level quadrature amplitude modulation on the subcarrier using the symbol received from the data channel transmission processing unit 11 and the symbol received from the control channel transmission processing unit 12. .
  • the modulation unit 13 generates an OFDMA signal by performing inverse Fourier transform on these complex symbols.
  • step S14 the base station apparatus eNB transmits an OFDMA signal to each mobile station apparatus UE # 1, UE # 2 to UE # x via the transmission antenna 14.
  • the determination processing based on the data length, priority, and modulation method in steps S3, S4, and S6 is shown to be executed in series. However, these determination processing is performed in parallel. The determination time may be shortened.
  • FIG. 13 is a configuration diagram of an embodiment of the mobile station apparatus UE # 1 shown in FIG.
  • Reference numeral 40 indicates a reception antenna that receives a radio signal transmitted from the base station apparatus eNB
  • reference numeral 41 indicates a demodulation unit
  • reference numeral 42 indicates a data channel reception processing unit
  • Reference numeral 43 indicates a control channel reception processing unit
  • reference numeral 44 indicates a downlink IP packet processing unit
  • reference numeral 45 indicates an uplink IP packet processing unit
  • reference numeral 46 indicates a data channel transmission processing unit.
  • Reference numeral 47 indicates a control channel transmission processing section
  • reference numeral 48 indicates a modulation section
  • reference numeral 49 indicates a retransmission combining section
  • reference numeral 50 indicates a transmission antenna that transmits a radio signal transmitted to the base station apparatus eNB. Indicates.
  • the mobile station apparatus UE # 1 includes a reception antenna 40, a demodulation unit 41, a data channel reception processing unit 42, a control channel reception processing unit 43, and a downlink IP packet processing unit 44.
  • the mobile station apparatus UE # 1 includes an uplink IP packet processing unit 45, a data channel transmission processing unit 46, a control channel transmission processing unit 47, a modulation unit 48, and a transmission antenna 50.
  • the data channel reception processing unit 42 includes a retransmission combining unit 49.
  • the demodulation unit 41 reproduces a complex symbol by performing a Fourier transform on the OFDMA signal received from the base station apparatus eNB via the reception antenna 40.
  • the demodulator 41 demodulates complex symbols corresponding to the control signal among the reconstructed complex symbols, thereby obtaining a bit string included in the control signal shown in FIG. 12 and the control signal transmitted via another control channel.
  • the demodulation unit 41 generates channel quality display information according to the measurement result of the reference signal, and outputs the channel quality display information to the control channel transmission processing unit 47.
  • the control channel reception processing unit 43 forms a control signal from the bit string received from the demodulation unit 41.
  • the control channel reception processing unit 43 receives the resource block allocation information indicating the resource block used for the downlink, the NDI information, the first modulation scheme instruction bit, and the second modulation scheme instruction bit from the demodulation unit 41 and the data channel.
  • the data is output to the reception processing unit 42.
  • the control channel reception processing unit 43 receives the resource block allocation information for instructing the resource block used for the uplink, and the modulation scheme instruction information for instructing the modulation scheme used for the uplink, and the modulation unit 48 and the data channel transmission processing unit. Output to 46.
  • the control channel reception processing unit 43 outputs retransmission determination information (ACK / NACK) determined on the base station apparatus eNB side to the data channel transmission processing unit 46.
  • the demodulation unit 41 and the data channel reception processing unit 42 move among the complex symbols reproduced from the OFDMA signal according to the resource block allocation information received from the control channel reception processing unit 43 and the modulation scheme designation by the first modulation scheme instruction bit. Demodulate complex symbols including transmission data to station apparatus UE # 1.
  • the data channel reception processing unit 42 determines whether the data received this time is retransmission data according to the NDI information received from the control channel reception processing unit 43.
  • the demodulation unit 41 and the data channel reception processing unit 42 multiplex transmission data to the mobile station apparatus UE # 1 into the partial bit string based on the second modulation scheme instruction bit received from the control channel reception processing unit 43. It is determined whether or not. Further, the data channel reception processing unit 42 has a value “1” indicating that the value of the retransmission instruction information received from the control channel reception processing unit 43 can be subjected to retransmission combining processing by rotating the phase of the received complex symbol. Is determined.
  • the data channel reception processing unit 42 checks the normality of the output data by the retransmission combining unit 49, and transmits the transmission data to the mobile station apparatus UE # 1 according to the second modulation method instruction bit received from the control channel reception processing unit 43. Take out.
  • the data channel reception processing unit 42 outputs the extracted signal to the downlink IP packet processing unit 44.
  • the data channel reception processing unit 42 generates retransmission determination information (ACK / NACK) according to the data normality check result from the base station apparatus eNB and outputs the retransmission determination information (ACK / NACK) to the control channel transmission processing unit 47.
  • the downlink IP packet processing unit 44 combines the received data received from the data channel reception processing unit 42 to form user data transmitted to the mobile station apparatus UE # 1.
  • the uplink IP packet processing unit 45 receives user data that is scheduled to be transmitted from the mobile station apparatus UE # 1 to the base station apparatus eNB.
  • the uplink IP packet processing unit 45 transfers the received user data to the data channel transmission processing unit 46.
  • the data channel transmission processing unit 46 divides the received user data into a bit string having a predetermined bit length, and generates a symbol used for modulating the carrier wave.
  • the data channel transmission processing unit 46 generates a symbol using either new data or retransmission data according to the retransmission determination information (ACK / NACK) received from the control channel reception processing unit 43.
  • the data channel transmission processing unit 46 outputs the generated symbol to the modulation unit 48.
  • the control channel transmission processing unit 47 receives channel quality display information from the demodulation unit 41 as control information to be transmitted to the base station apparatus eNB.
  • the control channel transmission processing unit 47 receives retransmission determination information (ACK / NACK) from the data channel reception processing unit 42 as control information to be transmitted to the base station apparatus eNB.
  • the control channel transmission processing unit 47 generates symbols indicating these control information and outputs them to the modulation unit 48.
  • the modulation unit 48 modulates the carrier wave using the symbols received from the data channel transmission processing unit 46 and the control channel transmission processing unit 47 in accordance with the resource block allocation information and the modulation scheme instruction information received from the control channel reception processing unit 43. Thus, a transmission radio signal is generated. A transmission radio signal is transmitted to the base station apparatus eNB via the transmission antenna 50.
  • FIG. 14 is a flowchart showing a reception operation of the mobile station apparatus UE # 1 shown in FIG.
  • the demodulation unit 41 receives an OFDMA signal including user data and a control signal from the base station apparatus eNB via the reception antenna 40.
  • the demodulation unit 41 reproduces a complex symbol by performing a Fourier transform on the OFDMA signal.
  • the demodulator 41 demodulates the complex symbol corresponding to the control signal and outputs the resulting bit string to the control channel reception processor 43.
  • the control channel reception processing unit 43 combines the bit strings received from the demodulation unit 41 to form a control signal.
  • step S32 the control channel reception processing unit 43 transmits downlink resource block allocation information, NDI information, a first modulation scheme instruction bit, a second modulation scheme instruction bit, and a retransmission included in the received control signal.
  • the instruction information is output to the demodulation unit 41 and the data channel reception processing unit 42.
  • the demodulation unit 41 and the data channel reception processing unit 42 are used for transmitting user data to the mobile station apparatus UE # 1 according to the resource block allocation information and the first modulation scheme instruction bit received from the control channel reception processing unit 43. Determine the radio resource and modulation method.
  • step S33 the demodulation unit 41 and the data channel reception processing unit 42 determine a signal point group used to multiplex transmission data to the mobile station apparatus UE # 1 into symbols according to the second modulation scheme instruction bit. .
  • step S34 the retransmission combining unit 49 determines whether the data received this time is retransmission data according to the NDI information.
  • the retransmission synthesis unit 49 advances the processing to step S35.
  • the received data is new data (step S34: N)
  • the retransmission synthesis unit 49 advances the processing to step S39.
  • step S35 the retransmission combining unit 49 determines whether or not the transmission data to the mobile station apparatus UE # 1 is multiplexed into the partial bit string according to the signal point group determined in step S33.
  • the retransmission synthesis unit 49 advances the process to step S36. If the transmission data is not multiplexed into the partial bit string (step S35: N), the retransmission synthesis unit 49 advances the process to step S39.
  • step S36 the retransmission combining unit 49 determines whether or not the value of the retransmission instruction information is “1”. When the value of the retransmission instruction information is “1” (step S36: Y), the retransmission synthesis unit 49 advances the process to step S37. If the value of the retransmission instruction information is not “1” (step S36: N), the retransmission composition unit 49 advances the processing to step S39.
  • step S37 the retransmission synthesis unit 49 rotates the complex symbol received this time and / or the complex symbol received last time by j ⁇ 90 ° (j is an integer of 0 to 3), and the signal points indicated by these two complex symbols are changed. Match quadrants to which they belong.
  • step S ⁇ b> 38 the retransmission combining unit 49 generates a combined complex symbol by calculating an average value of these two complex symbols.
  • step S39 the demodulation unit 41 and the data channel reception processing unit 42, when there is a complex symbol synthesized in steps S37 and S38, displays this complex symbol, and if not, converts the symbol reproduced in step S31 to the first modulation scheme. Demodulate / decode using a demodulation method corresponding to the modulation method indicated by the instruction bit.
  • step S40 the data channel reception processing unit 42 determines whether or not the data from the base station apparatus eNB has been normally received, and receives the received symbol according to the second modulation scheme instruction bit received from the control channel reception processing unit 43. Then, the transmission data to the mobile station apparatus UE # 1 is extracted and output to the downlink IP packet processing unit 44.
  • step S41 the data channel reception processing unit 42 generates retransmission determination information indicating “ACK”.
  • the control channel transmission processing unit 47 includes the “ACK” signal in the control signal, and the mobile station apparatus UE # 1 transmits the control signal including the “ACK” signal to the base station apparatus eNB.
  • step S42 When data from the base station apparatus eNB is not normally received (step S40: N), in step S42, the data channel reception processing unit 42 generates retransmission determination information indicating “NACK”.
  • the control channel transmission processing unit 47 includes the “NACK” signal in the control signal, and the mobile station apparatus UE # 1 transmits the control signal including the “NACK” signal to the base station apparatus eNB. If it cannot be normally received, in step S43, retransmission combining section 49 stores the complex symbol information received this time in order to perform retransmission combining processing with the retransmission data to be transmitted next time.
  • a mobile station in which data is modulated using a signal point group including all signal points in one quadrant such as the mobile station apparatus UE # 1 described with reference to FIG. 3 and FIG. It is possible to improve the transmission characteristics of the device. This is because the data transmitted to such a mobile station apparatus shows the same data value as long as the signal points after transmission are in the same signal point group, and thus the resistance to noise is increased. By assigning such a mobile station apparatus to a mobile station apparatus having relatively poor reception quality, it is possible to increase the transmission efficiency of the entire communication system.
  • the signal point group including all signal points in one quadrant such as the mobile station device UE # 2 described with reference to FIG. 3 and FIG. 5 and the mobile station device UE # 3 described with reference to FIG.
  • the transmission success rate is improved by performing the above retransmission combining process, thereby degrading transmission characteristics. Can be improved.
  • the transport block size (TBS: Transport Block Size) allocated to the mobile station apparatus increases.
  • TBS Transport Block Size
  • FIG. 15 is a diagram illustrating a fifth example of QAM signal point arrangement by the base station apparatus eNB illustrated in FIG.
  • the illustrated signal point arrangement is an arrangement used for 16QAM modulation using 16 signal points.
  • Sixteen circles 641 to 644... Displayed by solid lines indicate signal points.
  • the 2-bit value displayed in each circle indicates the lower 2 bits of the symbol corresponding to each signal point.
  • Each indicated by dotted lines surrounding four circles indicates the lower third digit bit of the symbol corresponding to each signal point.
  • the value of 1 bit displayed in the upper portions 611 and 612 of the four quadrilaterals 601 and 602 indicated by the one-dot chain line that surrounds each of the quadrilaterals indicated by the dotted lines is the top 1 of the symbol corresponding to each signal point Indicates a bit.
  • the symbol corresponding to the signal point 641 is displayed at the top of the rectangle 601 with “10” displayed in the circle as the lower 2 bits, “1” displayed at the center of the rectangle 622 as the lower third digit. “0110” having “0” in the upper 1 bit.
  • the symbol is divided into three partial bit strings of upper 1 bit, 1 bit in the lower 3 digits and lower 2 bits, and each of them is used as three mobile station apparatuses UE # 1, UE # 2 and UE #. Assign to 3.
  • symbol bits By assigning symbol bits in this manner, different mobile station apparatuses can be assigned for each symbol bit, and the number of mobile station apparatuses that can be multiplexed can be further increased.
  • FIG. 16 is a diagram illustrating a second example of a control signal transmitted from the base station apparatus eNB to the mobile station apparatus, corresponding to the bit allocation method illustrated in FIG.
  • a start position instruction bit 35 for indicating a start position of a bit assigned to transmission data to each mobile station apparatus, and transmission to each mobile station apparatus It includes an assigned digit indicating bit 36 that indicates the number of bits allocated to data.
  • the number of bits of the control signal is increased in order to secure a degree of freedom to assign one bit at a time.
  • the communication efficiency decreases due to an increase in the control signal by using a sequence that transmits the start position instruction bit 35 and the assigned digit instruction bit 36 only at the start of connection. Can be avoided.
  • FIG. 17 is a diagram showing an example of a communication sequence when the signal point arrangement shown in FIG. 15 is used.
  • the mobile station apparatus UE # 1 transmits a channel assignment request in order to start connection to the base station apparatus eNB.
  • the mobile station apparatus UE # 1 since the mobile station apparatus UE # 1 does not necessarily require a high-speed data communication service, the mobile station apparatus UE # 1 requests allocation of a channel using a low-speed communication rate (hereinafter referred to as “low-speed channel”).
  • a low-speed channel is assigned, transmission data to mobile station apparatus UE # 1 is multiplexed with transmission data to other mobile station apparatuses into one symbol that modulates one subcarrier as described above.
  • step S51 the base station apparatus eNB transmits a response to the assignment request to the low-speed channel to the mobile station apparatus UE # 1.
  • step S52 the mobile station apparatus UE # 2 also transmits an allocation request for a low-speed channel to the base station apparatus eNB.
  • step S53 the base station apparatus eNB transmits a response to the allocation request for the low-speed channel to the mobile station apparatus UE # 2.
  • the base station apparatus eNB In response to the allocation request to the low-speed channel in step S51 and step S53, the base station apparatus eNB includes resource block allocation information indicating a resource block used for data transmission to the mobile station apparatuses UE # 1 and UE # 2. The start position instruction bit 35 and the assigned digit instruction bit 36 are designated. Thereafter, the base station apparatus eNB multiplexes transmission data to the mobile station apparatuses UE # 1 and UE # 2 in symbols that modulate the same subcarrier.
  • the mobile station apparatus UE # 3 also transmits an allocation request to the low-speed channel to the base station apparatus eNB.
  • the base station apparatus eNB requests allocation to the low-speed channel and transmits a response to allocate a normal channel to the mobile station apparatus UE # 3.
  • the “normal channel” here is a channel in which transmission data to a plurality of mobile station apparatuses is not multiplexed on one symbol for modulating one subcarrier. For example, the reason is that a channel of good quality cannot be formed with the mobile station apparatus UE # 3 and multi-level quadrature amplitude modulation of 16 QAM or more cannot be performed.
  • step S56 the mobile station apparatuses UE # 1 and # 2 communicate with the base station apparatus eNB via a low-speed channel in which transmission data is multiplexed with each other.
  • step S57 the mobile station apparatus UE # 3 performs communication with the base station apparatus eNB via a normal channel.
  • step S58 the mobile station apparatus UE # 2 transmits a request to stop communication and release the low-speed channel to the base station apparatus eNB.
  • step S59 the base station apparatus eNB transmits a response to the release request for the low-speed channel to the mobile station apparatus UE # 2.
  • the mobile station apparatus UE # 1 uses the resource block that has been shared with the mobile station apparatus UE # 2 until now.
  • step S51 the mobile station apparatus UE # 1 still remains in the low-speed channel.
  • step S60 the mobile station apparatus UE # 3 still communicates with the base station apparatus eNB via the normal channel.
  • FIG. 18 is a sequence diagram illustrating a service providing method using the disclosed wireless communication system.
  • a store in the specific area transmits coupon information to the mobile station apparatus.
  • steps S70 to S72 stores # 1 to # 3 register coupon information in the base station apparatus eNB in advance.
  • stores # 1 and # 2 register coupon information to be transmitted to mobile station devices existing in area A
  • store # 3 registers coupon information to be transmitted to mobile station devices present in area B.
  • the mobile station apparatuses UE # 1 and UE # 2 register in advance with the base station apparatus eNB that they wish to distribute area information, which is guide information for each area, including coupon information.
  • the mobile station apparatus UE # 1 When the mobile station apparatus UE # 1 moves to the area B in step S75, the mobile station apparatus UE # 1 transmits a position registration signal notifying that the mobile station apparatus UE # 1 has moved to the area B to the base station apparatus eNB in step S76. In step S77, the base station apparatus eNB distributes the coupon information of the store # 3 registered in advance in the area B to the mobile station apparatus UE # 1.
  • the mobile station apparatus UE # 1 moves to area A in step S78 and the mobile station apparatus UE # 2 moves to area A in step S79, the mobile station apparatuses UE # 1 and UE # 2 A location registration signal notifying that the mobile station has moved to A is transmitted to the base station apparatus eNB.
  • step S82 the base station device eNB uses the same carrier for the coupon information data of the store # 1 transmitted to the mobile station device UE # 1 and the coupon information data of the store # 2 transmitted to the mobile station device UE # 2. Are multiplexed into a modulating symbol to generate an OFDMA signal.
  • step S83 the base station apparatus eNB transmits the obtained OFDMA signal to both the mobile station apparatuses UE # 1 and UE # 2.
  • the same type of information such as coupon information, advertisements, and short news is simultaneously sent to an unspecified number of mobile station devices
  • the information is transmitted on an individual data channel for each mobile station device. It is possible to multiplex these data and transmit them in one subcarrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の受信装置(UE#1~UE#x)にデータを送信する送信装置(eNB)は、複数の受信装置(UE#1~UE#x)に送信するデータが多重化されたビット列を有するシンボルを生成するシンボル生成手段(11)と、サブキャリアを直交振幅変調により変調する変調手段(13)と、を備え、この変調手段(13)は、1つのシンボルにより1つのサブキャリアを変調する。

Description

送信装置、受信装置及び送信方法
 本発明は、直交振幅変調(QAM)を使用するディジタル通信システムに関する。
 近年提案されているWiMAX(Worldwide Interoperability for Microwave Access)や、3GPP(Third Generation Partnership Project)において策定されたLTE(Long Term Evolution)では、直交周波数分割多元接続(OFDMA)が採用されている。直交周波数分割多元接続においては、複数のサブキャリアがグループ化される。複数の移動局装置が各グループに属するサブキャリアを共用する一方で、グループに属する移動局装置の数が少ない場合にはこれらのユーザでサブキャリアを占有して伝送速度を上げることで、周波数帯域の有効利用を可能にする。
 なお、送信するデータを複数の送信サブチャネルの送信信号に分割し、複数の送信サブチャネルの送信信号の各々について多値変調を行い、複数の送信サブチャネルの多値変調信号の各々について伝送帯域の広帯域化を行い、多値変調の変調方式と広帯域化方式と送信サブチャネルの数とを含む伝送条件情報を関連する送信信号に付加し、複数の送信サブチャネルの広帯域化された変調出力を周波数多重して同一ユーザのチャネルとして出力する多重伝送方法が提案されている。
 また、マルチキャリア変調方式によりデータ通信を行う電力線モデムが開示されている。
特開2004-159303号公報 特開2002-77298号公報
 従来の多重化方法では、(時分割多重におけるタイムスロット数)×(サブキャリア総数)よりも多数の移動局装置に同時に無線リソースを割り当てることができない。このため、接続する移動局装置の数が多い場合には、無線リソースが不足することが起こりえる。
 開示の技術は、複数の受信装置へのデータを多重化して送信する際に、多重化可能な受信装置数を増加することを目的とする。
 実施例の一形態によれば、複数の受信装置にデータを送信する送信装置が提供される。この送信装置は、複数の受信装置に送信するデータが多重化されたビット列を有するシンボルを生成するシンボル生成手段と、サブキャリアを直交振幅変調により変調する変調手段と、を備える。この変調手段は、1つのシンボルにより1つのサブキャリアを変調する。
 上記実施例によれば、1つのサブキャリアを複数の受信装置へのデータの送信に割り当てることが可能になる。このため、同時に多重化できる受信装置数を増加することが可能となる。
無線通信システムの実施例の全体構成図である。 図1に示す基地局装置の実施例の構成図である。 図2に示す基地局装置によるQAMの信号点配置の第1例を示す図である。 スケジューラからデータチャネル送信処理部及び制御チャネル送信処理部へ出力される多重化情報のデータ構造の例を示す図である。 図2に示す基地局装置によるQAMの信号点配置の第2例を示す図である。 新規データと再送データが送信される様子の説明図である。 図6Aに対応するNDI情報の説明図である。 図2に示す基地局装置によるQAMの信号点配置の第3例を示す図である。 図2に示す基地局装置によるQAMの信号点配置の第4例を示す図である。 原点を中心に図3に示す信号点配置を回転させた場合の説明図(その1)である。 原点を中心に図3に示す信号点配置を回転させた場合の説明図(その2)である。 原点を中心に図3に示す信号点配置を回転させた場合の説明図(その3)である。 図2に示す基地局装置の動作フローを示すフローチャートである。 再送処理のための振り分け処理の一例を示すフローチャートである。 基地局装置から移動局装置へ送信される制御信号の第1例を示す図である。 図1に示す移動局装置の実施例の構成図である。 図13に示す移動局装置の受信動作を示すフローチャートである。 図2に示す基地局装置によるQAMの信号点配置の第5例を示す図である。 基地局装置から移動局装置へ送信される制御信号の第2例を示す図である。 図15に示す信号点配置を使用した場合の通信シーケンスの例を示す図である。 開示の無線通信システムによるサービスの提供方法を示すシーケンス図である。
符号の説明
 111~114、201~204、211~214  信号点グループ
 101~104、221~224  信号点
 eNB  基地局装置
 NT  通信ネットワーク
 UE#1~UE#x  移動局装置
 以下、添付する図面を参照して実施例を説明する。図1は、開示の無線通信システムの実施例の全体構成図である。参照符号1は、LTEに準拠して構成された無線通信システム1を示し、参照符号eNBは基地局装置を示し、参照符号UE#1、UE#2~UE#xは、各々移動局装置を示す。無線通信システム1は、基地局装置eNBと、複数の移動局装置UE#1、UE#2~UE#xを含む。なお、本明細書においては、LTEに準拠する無線通信システム1の例を示して説明するが、本実施例は、送信信号に多値直交振幅変調を施す通信システムに広く適用可能である。
 図2は、図1に示す基地局装置eNBの実施例の構成図である。参照符号10は下りリンクIPパケット処理部を示し、参照符号11はデータチャネル送信処理部を示し、参照符号12は制御チャネル送信処理部を示し、参照符号13は変調部を示す。
 参照符号14は移動局装置UE#1、UE#2~UE#xへ無線信号を送信する送信アンテナを示し、参照符号15はスケジューラを示し、参照符号16は記憶部を示す。参照符号17は移動局装置UE#1、UE#2~UE#xから送信される無線信号を受信する受信アンテナを示し、参照符号18は復調部を示し、参照符号19はデータチャネル受信処理部を示す。参照符号20は制御チャネル受信処理部を示し、参照符号21は上りリンクIPパケット処理部を示す。
 基地局装置eNBは、下りリンクIPパケット処理部10と、データチャネル送信処理部11と、制御チャネル送信処理部12と、変調部13と、送信アンテナ14と、スケジューラ15と、記憶部16を備える。また、基地局装置eNBは、受信アンテナ17と、復調部18と、データチャネル受信処理部19と、制御チャネル受信処理部20と、上りリンクIPパケット処理部21を備える。
 下りリンクIPパケット処理部10は、下りリンク上において各移動局装置UE#1、UE#2~UE#xへ送信される予定のユーザデータを受信する。下りリンクIPパケット処理部10は、受信したユーザデータの宛先となる移動局装置の識別子と、ユーザデータのデータ長とを決定し、スケジューラ15へ通知する。以後、移動局装置の識別子を、「端末ID」と示す。下りリンクIPパケット処理部10は、受信したユーザデータをデータチャネル送信処理部11へ転送する。
 データチャネル送信処理部11は、受信したユーザデータを所定ビット長のビット列に分割し、サブキャリアを直交振幅変調するために使用されるシンボルを生成する。データチャネル送信処理部11は、スケジューラ15から受信される多重化情報に従って、複数の移動局装置に送信するビット列を組み合わせることにより、1つのシンボル内に複数の移動局装置に送信するデータを多重化する。多重化情報は、同一シンボル内に送信データが多重化される複数の移動局装置の識別子の組み合わせと、組み合わされた各移動局装置への送信データの値を表現するために使用される信号点のグループである信号点グループと、を指定できる情報を少なくとも含む。
 図3は、図2に示す基地局装置eNBによるQAMの信号点配置の第1例を示す図である。図示の信号点配置は、16個の信号点を使用する16QAM変調に使用される配置である。実線で表示された16個の円101、102、103、104…がそれぞれ信号点を示す。各円内に表示された2ビットの値は各信号点に対応するシンボルの下位2ビットを示し、各円を囲む点線で示した各四角形111~114の中心に表示された2ビットの値は、各信号点に対応するシンボルの上位ビットを示す。信号点101に対応するシンボルは、円内に表示された「11」を下位2ビットに、四角形111の中心に表示された「01」を上位2ビットに有する「0111」となる。
 16QAM変調では16個の信号点を用いるため16値を表現することができる。本例では、シンボルを上位2ビット及び下位2ビットの部分ビット列に分割して使用し、それぞれを2つの移動局装置UE#1及びUE#2に割り当てる。すなわち、UE#1に送信される2ビットのビット列が示す4値は、送信データによって表される信号点が、4つの信号点グループ111~114のいずれに属しているかによって表現される。いいかえれば、UE#1に送信される2ビットのビット列が示す4値は、4つの信号点グループ111~114によって表現される。
 また、UE#2に送信される2ビットのビット列が示す4値は、送信データによって表される信号点が、各信号点グループ111~114内の4つの信号点のいずれであるかによって表現される。いいかえれば、UE#2に送信される2ビットのビット列が示す4値は、各信号点グループ111~114内の4つの信号点によって表現される。
 図2を参照する。データチャネル送信処理部11は、上りリンク上の制御チャネルを経由して移動局装置から受信した再送判定情報(ACK/NACK)に従って、新規データ及び再送データのいずれかを用いてシンボルを生成する。データチャネル送信処理部11は、生成したシンボルを変調部13へ出力する。
 制御チャネル送信処理部12は、移動局装置へ送信する制御情報として、上述の多重化情報を、スケジューラ15から受信する。また制御チャネル送信処理部12は、移動局装置へ送信する制御情報として、各移動局装置UE#1、UE#2~UE#xへ割り当てた無線リソースを示すリソースブロック割り当て情報をスケジューラ15から受信する。リソースブロック割り当て情報には、UE#1、UE#2~UE#xへのデータ送信に割り当てられたサブキャリアの周波数帯域と時間スロットを指定する情報を含む。
 また制御チャネル送信処理部12は、移動局装置へ送信する制御情報として、各移動局装置UE#1、UE#2~UE#xへの送信データを変調する変調方式を示す変調方式指示情報をスケジューラ15から受信する。また制御チャネル送信処理部12は、移動局装置へ送信する制御情報として、データチャネル受信処理部19から再送判定情報(ACK/NACK)を受信する。また、制御チャネル送信処理部12は、移動局装置へ送信する制御情報として、後述のNDI(New Data Indicator)情報をスケジューラ15から受信する。制御チャネル送信処理部12は、これら制御情報を示すシンボルを生成し、変調部13へ出力する。
 変調部13は、スケジューラ15から上記変調方式指示情報を受信する。変調部13は、この変調方式指示情報に従い、データチャネル送信処理部11から受信したシンボルを用いて、サブキャリアを多値直交振幅変調することにより、複素シンボルを生成する。また、変調部13は、制御チャネル送信処理部12から受信したシンボルを用いて、所定の変調方式に従ってサブキャリアを多値直交振幅変調することにより、複素シンボルを生成する。
 また変調部13は、スケジューラ15から上記リソースブロック割り当て情報を受信する。変調部13は、各移動局装置UE#1、UE#2~UE#xへの送信データを伝送するサブキャリアが、リソースブロック割り当て情報において割り当てられた周波数帯域に配置されるように上記複素シンボルを逆フーリエ変換して、OFDMA信号を生成する。基地局装置eNBは、送信アンテナ14を介してOFDMA信号を各移動局装置UE#1、UE#2~UE#xへ送信する。
 スケジューラ15は、下りリンクIPパケット処理部10から受信した端末IDにそれぞれ対応する各移動局装置UE#1、UE#2~UE#xに割り当てる無線リソースを決定し、上述のリソースブロック割り当て情報を生成する。スケジューラ15は、リソースブロック割り当て情報を、制御チャネル送信処理部12と復調部13に出力する。
 スケジューラ15は、各移動局装置UE#1、UE#2~UE#xから受信したチャネル品質表示(CQI)や再送判定情報(ACK/NACK)などのフィードバック情報を、制御チャネル受信処理部20から受信する。スケジューラ15は、チャネル品質表示情報に従って、各移動局装置UE#1、UE#2~UE#xへの送信データを変調する変調方式や、送信電力を決定する。スケジューラ15は、変調方式指示情報を制御チャネル送信処理部12と復調部13へ出力する。
 スケジューラ15は、どの移動局装置UE#1、UE#2~UE#xへ送信するデータが、データチャネル送信処理部11により生成されるシンボル内に多重化されるかを示す多重化情報を生成する。スケジューラ15は、多重化情報を、データチャネル送信処理部11と、制御チャネル送信処理部12へ出力する。
 スケジューラ15からデータチャネル送信処理部11及び制御チャネル送信処理部12へ出力される多重化情報は、どの移動局装置UE#1、UE#2~UE#xへのデータが、同一シンボル内に多重化され、どの移動局装置UE#1、UE#2~UE#xへのデータが、多重化されずに送信されるかを示す。また上記多重化情報は、どの移動局装置UE#1、UE#2~UE#xへのデータ同士を組み合わせて、上記シンボル内に多重化するかを示す。さらに多重化情報は、同一シンボル内に多重化された複数の移動局装置への送信データの値をそれぞれ表現するために使用される信号点グループを指定する情報を含む。
 また、スケジューラ15は、決定した多重化情報を、次回のデータ送信の際に今回の移動局装置の組み合わせを再現するための参照情報として、記憶部16に格納する。
 図4は、スケジューラ15からデータチャネル送信処理部11及び制御チャネル送信処理部12へ出力される多重化情報のデータ構造の例を示す図である。多重化情報は、移動局装置UE#1、UE#2~UE#xの端末IDと、各移動局装置への送信データにより変調されるサブキャリアの識別子と、グループ指定情報を含む。同一のサブキャリアの識別子に割り当てられた複数の移動局装置が存在するとき、これらの移動局装置への送信データが同一シンボルに多重化されることを意味する。
 グループ指定情報は、同一シンボルに多重化された各移動局装置への送信データの値を表現するために使用される、それぞれの信号点グループを指定する情報である。例えば、図3に示す信号点配置の例を使用し、シンボルの上位2ビット及び下位2ビットを、それぞれ2つの移動局装置UE#1及びUE#2に割り当てる場合を考える。この場合、例えば、値「1」のグループ指定情報は、4つの信号点グループ111~114を指定する。すなわち、4つの信号点グループ111~114を使用する移動局装置UE#1のためのグループ指定情報として値「1」が指定される。また、値「0」のグループ指定情報は、各信号点グループ111~114のそれぞれのグループ内の4つの信号点を指定する。すなわち、各グループ内の4つの信号点を使用する移動局装置UE#2のためのグループ指定情報として値「0」が指定される。
 図5は、図2に示す基地局装置eNBによるQAMの信号点配置の第2例を示す図である。図示の信号点配置は、64個の信号点を使用する64QAM変調に使用される配置である。実線で表示された64個の円221~224…がそれぞれ信号点を示す。各円内に表示された2ビットの値は各信号点に対応するシンボルの下位2ビットを示す。それぞれ4つの円を囲む点線で示した16個の四角形211~214…の中心に表示された2ビットの値は、各信号点に対応するシンボルの下位3~4桁目のビットを示す。また、それぞれ点線で示した四角形を4つずつ囲む一点鎖線で示した4個の四角形201、202、203、204の中心に表示された2ビットの値は、各信号点に対応するシンボルの上位2ビットを示す。たとえば信号点224に対応するシンボルは、円内に表示された「01」を下位2ビットに、四角形211の中心に表示された「11」を下位3~4桁目に、四角形201の中心に表示された「11」を上位2ビットに有する「111101」となる。
 本例では、シンボルを上位2ビット、下位3~4桁目の2ビット及び下位2ビットの3つの部分ビット列に分割して使用し、それぞれを3つの移動局装置UE#1、UE#2及びUE#3に割り当てる。すなわち、UE#1に送信される2ビットのビット列が示す4値は、送信データによって表される信号点が、4つの信号点グループ201~204のいずれに属しているかによって表現される。いいかえれば、UE#1に送信される2ビットのビット列が示す4値は、4つの信号点グループ201~204によって表現される。
 また、UE#2に送信される2ビットのビット列が示す4値は、送信データによって表される信号点が、4つの信号点グループ201~204にそれぞれ含まれている、点線の四角で示す4つの信号点グループのいずれに属しているかによって表現される。いいかえれば、UE#2に送信される2ビットのビット列が示す4値は、点線の四角で示す4つの信号点グループによって表現される。例えば、シンボルの上位2ビットの値が「11」である場合には、UE#2に送信される2ビットのビット列が示す4値は、信号点グループ211~214によって表現される。
 さらに、UE#3に送信される2ビットのビット列が示す4値は、送信データによって表される信号点が、点線の四角で示された各信号点グループ内の4つの信号点のいずれであるかによって表現される。いいかえれば、UE#3に送信される2ビットのビット列が示す4値は、点線の四角で示された各信号点グループ内の4つの信号点によって表現される。例えば、シンボルの上位4ビットの値が「1111」である場合には、UE#3に送信される2ビットのビット列が示す4値は、信号点221~224によって表現される。
 図5に示す信号点配置の場合、図4に示す多重化情報において、4つの信号点グループ201~204を指定するグループ指定情報の値として、値「10」を使用してよい。また、点線で示される信号点グループを指定するグループ指定情報の値として、値「01」を使用してよい。点線で示される各信号点グループ内の4つの信号点を指定するグループ指定情報の値として、値「00」を使用してよい。
 図2を参照する。スケジューラ15は、下りリンクIPパケット処理部10から通知された、各移動局装置UE#1、UE#2~UE#xへのユーザデータのデータ長に従って、各移動局装置への送信データを1つのシンボル内に多重化するか否かを決定する。例えば、スケジューラ15は、ある移動局装置への送信データのデータ長が所定値TL未満であるとき、この移動局装置を、1シンボル内に送信データを多重化する移動局装置の候補に指定する。ある移動局装置への送信データのデータ長が所定値TL以上であるとき、スケジューラ15は、この移動局装置への送信データを多重化しないと決定する。
 1シンボル内に複数の移動局装置への送信データを多重化されると、個々の移動局装置へ送信される送信データの送信レートは低下する。上記のようにスケジューラ15がデータ長に基づいて多重化の可否を判定することにより、比較的短いデータ長のデータのみが多重化され、比較的データ長が長いデータの送信レートが低下することが回避される。
 スケジューラ15は、記憶部16に予め記憶された各移動局装置UE#1、UE#2~UE#xの優先度に従って、各移動局装置への送信データを1つのシンボル内に多重化するか否かを決定する。例えば、スケジューラ15は、ある移動局装置の優先度が所定値TP未満であるとき、この移動局装置を、1シンボル内に送信データを多重化する移動局装置の候補に指定する。ある移動局装置へ優先度が所定値TP以上であるとき、スケジューラ15は、この移動局装置への送信データを多重化しないと決定する。上記のようにスケジューラ15が優先度に基づいて多重化の可否を判定することにより、比較的優先度が低いデータのみが多重化され、優先度が高く、高い送信レートが要求されるデータが低い送信レートで送信されることが回避される。
 スケジューラ15は、チャネル品質表示情報に従って決定した、各移動局装置UE#1、UE#2~UE#xへの送信データを変調する変調方式に従って、各移動局装置への送信データを1つのシンボル内に多重化するか否かを決定する。例えば、スケジューラ15は、ある移動局装置への送信データの変調方式が、QPSKである場合にはこの移動局装置への送信データを多重化しないと決定する。また、スケジューラ15は、ある移動局装置への送信データの変調方式が、16個以上の信号点を使用する多値直交振幅変調であるとき、この移動局装置を、1シンボル内に送信データを多重化する移動局装置の候補に指定する。
 スケジューラ15は、上記の通り、データ長、優先度及び変調方式に従って、1つのシンボル内にデータを多重化する移動局装置を決定した後、同一のシンボル内にデータを多重化する移動局装置の組み合わせを決定する。スケジューラ15は、移動局装置を、送信データを変調する変調方式によって分類する。また、スケジューラ15は、変調方式によって分類された各グループ内の各移動局装置を、さらに送信電力の大小によって分類する。
 スケジューラ15は、送信データが再送データか新規データであるか否かを示す再送処理情報としての、新規データ指示子(NDI:New Data Indicator)によって、さらに移動局装置を分類する。以下、新規データ指示子を「NDI情報」と示す。図6A及び図6Bは、NDI情報の説明図である。図6Aは、ある移動局装置へ、新規データと再送データとが送信される様子を示すタイムチャートであり、図6Bは、図6Aに対応するNDI情報の値を示すタイムチャートである。
 図示するとおり、NDI情報は「0」又は「1」の値を有し、新規データが送信されるときのみ値が交番し、再送データが送信されるときには値が変化しない。例えば時刻t1にて新規データが送信されるときには値が「0」から「1」へ変化し、時刻t2にて新規データが送信されるときには値が「1」から「0」へ変化する。しかし、例えば時刻t3にて再送データが送信されるときには値が変化しない。したがって、NDI情報の変化の有無によって、送信データが再送データ及び新規データのいずれがあるかが表示される。
 スケジューラ15は、各移動局装置UE#1、UE#2~UE#xから送信された再送判定情報(ACK/NACK)を制御チャネル受信処理部20から受信する。この再送判定情報と前回送信したNDI情報に基づいて、各移動局装置についてNDI情報を決定する。スケジューラ15は、NDI情報を制御チャネル送信処理部12へ出力する。スケジューラ15は、送信電力の大小によって分類された各グループ内の各移動局装置を、さらに値「0」のNDI情報が送信される移動局装置のグループと、値「1」のNDI情報が送信される移動局装置のグループと、に分類する。
 スケジューラ15は、変調方式、送信電力及びNDI情報による分類分けの結果、同じグループに分類分けされた各移動局装置同士を組み合わせて、同一のシンボル内に送信データを多重化する移動局装置同士の組み合わせを決定する。このとき、スケジューラ15は、記憶部16に格納した前回の送信時の際の多重化情報に基づいて、前回の送信時と同じ組み合わせが可能な移動局装置は、前回の送信時と同様に組み合わせる。またスケジューラ15は、前回の送信時と同じ組み合わせが可能な移動局装置への送信データを表現するために使用する信号点グループとして、前回に使用したものと同一の信号点グループを使用する。
 このように同じNDI情報を有する移動局装置を組み合わせることにより、同じサブキャリアによりデータが伝送される複数の移動局装置についてのNDI情報を、移動局装置毎ではなくサブキャリア毎に送信すれば足りるため、制御情報のデータ長を節約できる。
 図2を参照する。復調部18は、受信アンテナ17を経由して受信した各移動局装置UE#1、UE#2~UE#xからの受信信号を復調して、受信シンボルを取得する。データチャネル受信処理部19は、各移動局装置UE#1、UE#2~UE#xから正常にデータを受信できたか否かを判定し、再送判定情報(ACK/NACK)を制御チャンネル送信処理部12へ出力する。データチャネル受信処理部19は、正常に受信された受信データを上りリンクIPパケット処理部21へ出力する。上りリンクIPパケット処理部21は、データチャネル受信処理部19から受信した受信データを結合して、各移動局装置UE#1、UE#2~UE#xから送信されたユーザデータを形成する。
 制御チャネル受信処理部20は、各移動局装置UE#1、UE#2~UE#xから送信されたチャネル品質表示(CQI)や再送判定情報(ACK/NACK)などのフィードバック情報を受信する。制御チャネル受信処理部20は、チャネル品質表示及び再送判定情報(ACK/NACK)をスケジューラ15へ出力する。制御チャネル受信処理部20は、再送判定情報(ACK/NACK)をデータチャネル送信処理部へ出力する。
 図3及び図5を参照して説明した信号点グループは、各移動局装置へ送信される2ビットのビット列が示す22=4個の値を表現するために、移動局装置毎に22個の信号点グループを用いて各移動局装置へ送信されるデータを表現していた。しかし、同一シンボルに多重化される1つの移動局装置へ送信されるデータのビット数は2ビットだけではなく、1以上の整数としてよい。
 図7は、図2に示す基地局装置eNBによるQAMの信号点配置の第3例を示す図である。図示の信号点配置は、64個の信号点を使用する64QAM変調に使用される配置である。実線で表示された64個の円311、312…がそれぞれ信号点を示す。各円内に表示された4ビットの値は各信号点に対応するシンボルの下位4ビットを示す。それぞれ16つの円を囲む点線で示した4個の四角形301~304の中心に表示された2ビットの値は、各信号点に対応するシンボルの上位2ビットを示す。たとえば信号点312に対応するシンボルは、円内に表示された「1110」を下位4ビットに、四角形301の中心に表示された「11」を上位2ビットに有する「111110」となる。シンボルを上位4ビット及び下位2ビットの2つの部分ビット列に分割して使用し、それぞれを2つの移動局装置UE#1及びUE#2に割り当てる。
 図8は、図2に示す基地局装置eNBによるQAMの信号点配置の第4例を示す図である。図示の信号点配置は、64個の信号点を使用する64QAM変調に使用される配置である。実線で表示された64個の円421~424…がそれぞれ信号点を示す。各円内に表示された2ビットの値は各信号点に対応するシンボルの下位2ビットを示す。それぞれ4つの円を囲む点線で示した16個の四角形401~416の中心に表示された4ビットの値は、各信号点に対応するシンボルの上位4ビットを示す。たとえば信号点424に対応するシンボルは、円内に表示された「01」を下位2ビットに、四角形401の中心に表示された「1111」を上位4ビットに有する「111101」となる。シンボルを上位4ビット及び下位2ビットの2つの部分ビット列に分割して使用し、それぞれを2つの移動局装置UE#1及びUE#2に割り当てる。
 また、基地局装置eNBによる直交振幅変調も、信号点が16個や64個の変調方法に限定されず、変調方法が64個よりも大きい変調方法に使用してもよい。
 図3、図5、図7、図8及び後に説明する図15において、基地局装置eNBが4nQAM変調を行う際の信号点配置が示されている(nは2以上の整数)。これらの図に示す信号点配置では、2nビットを有する1シンボルに含まれる、複素平面の各象限内に配置される4(n-1)個の各信号点によって表現される2×(n-1)ビットの部分の値が、複素平面の原点を中心として回転対称になるように配置される。例えば、信号点221、225、226及び227は、複素平面の原点を中心として信号点配置を、j×90°(j=0~3の整数)回転させたとき、互いに回転対称な位置にある。そして信号点221、225、226及び227に対応するシンボル値は、「111111」、「101111」、「001111」及び「011111」であり、各象限内に配置される4(3-1)=16個の各信号点によって表現される下位4ビットの値が、同一の値「1111」となっている。以下、説明の簡単のため、複素平面の各象限内に配置される4(n-1)個の各信号点によって表現される2×(n-1)ビットの部分のビットの集合を、「部分ビット列」と示す。部分ビット列は、2nビットを有する1シンボルにおいて、必ずしも連続したビットの列でなくともよい。
 図9A~図9Cを参照して、上記の信号点配置のメリットを説明する。図9A及び図9Bは、図3に示す信号点配置を使用して、移動局装置UE#1及びUE#2への送信データを同一の4ビットのシンボルに多重化して、16QAM変調によりサブキャリアを変調した結果を示す。1シンボルによって移動局装置UE#1に送信される4値データの値は、複素平面の各象限内の全信号点を含む4つの信号点グループによって表現される。また1シンボルによって移動局装置UE#2に送信される4値データの値は、移動局装置UE#1への送信データを表現する4つの信号点グループの中に各々配置されている、4つの信号点によって表現される。
 図9Aに示すように、第1回目の送信では、移動局装置UE#1及びUE#2にそれぞれ「11」及び「10」のデータを送信するため、信号点の位置は参照符号501に決定される。これらデータが、移動局装置UE#1にて正しく受信され、移動局装置UE#2では正しく受信されない場合には、次回のデータ送信において、移動局装置UE#1へ新規データが送信され、移動局装置UE#2へ再送データが送信される。例えば、図9Bに示すように、移動局装置UE#1には新規データ「01」が送信され、移動局装置UE#2には前回と同じ再送データ「10」が送信される。この場合に信号点の位置は、第1回目の位置501とは異なる位置502に決定される。
 移動局装置UE#2では、再送データの受信成功率を高めるために、再送制御において、再送データとそれまでに送信されたデータとを合成し、それらの平均値を受信データとして使用する再送合成処理を行う場合がある。しかしながら、1つのシンボル内に複数の移動局装置への送信データを多重化すると、図9A及び図9Bに示すように、移動局装置UE#2において、再送データを含む信号と前回の送信データを含む信号との間で信号点の位置が異なるため、そのままではこれら信号を合成できなくなってしまう。
 そこで、上述のように信号点を配置すると、再送データが送信された移動局装置において、信号点が前回と今回とで同一の象限に属するように受信信号をj×90°(j=0~3の整数)回転するという処理によって、2つの信号点の位置を合わせることができる。この様子を図9Cに示す。図9Cは、図9Bに示した信号を90°時計回りに回転させた状態を示す。図示するとおり、図9Cの信号点502の位置は、図9Aの信号点501と同じ位置になる。
 このため、再送データを受信した移動局装置UE#2は、今回の受信信号及び/又は前回の受信信号をj×90°回転させて、2つの信号が属する象限を合わせることにより、これらの信号を用いて再送合成処理を行うことができるようになる。
 移動局装置UE#1のような、1象限内の全信号点を含む信号点グループによってデータの値が表現される移動局装置については、伝送後の信号点が同一の信号点グループ内にある限り同一のデータ値を示すので伝送特性を良くすることが可能となる。スケジューラ15は、このような移動局装置に、受信品質が比較的悪い移動局装置を割り当てることにより、通信システム全体の送信効率を高めることができる。このためにスケジューラ15は、受信品質の良否を、移動局装置から受信したチャネル品質表示情報に基づいて決定してよい。
 一方で、移動局装置UE#2のような、1象限内の全信号点を含む信号点グループの中に各々配置されている複数の信号点又は信号点グループによってデータの値が表現される移動局装置については、上記の再送合成処理を行って受信成功率を高めることにより、伝送特性の劣化を改善することが可能となる。
 基地局装置eNBによる変調が4nQAM変調である場合に、上述のように受信信号の位相回転を伴う再生合成処理を行うためには、上記部分ビット列の値が、合成される2つの信号間で等しいことが望まれる。
 図2に示すスケジューラ15は、各サブキャリアに多重化される移動局装置の組み合わせを決定した後に、各サブキャリアを変調するシンボル中に含まれる上記部分ビット列の値が、前回のデータと今回のデータとの間で等しくなるか否かを判定する。これによって、スケジューラ15は、各サブキャリアで送信されるデータが、上記位相回転を伴う再送合成処理を施すことができるか否かを判定する。
 スケジューラ15は、各サブキャリアにより送信されるデータが、位相回転を伴う再送合成処理を施すことができるか否かを示す再送指示情報を生成し、制御チャネルを介して各移動局装置UE#1、UE#2~UE#xへ送信する。再送指示情報は、例えば、位相回転を伴う再送合成処理を施すことができるとき値「1」を有し、位相回転を伴う再送合成処理を施すことができないとき値「0」を有する。
 基地局装置eNBによる変調が4nQAM変調である場合に、スケジューラ15は、以下の(条件1)~(条件3)がすべて成立するか否かを判定することによって、上記部分ビット列の値が、合成される2つの信号間で等しくなるか否かを判定する。
 (条件1)複素平面のそれぞれの象限内に配置される4(n-1)個の各信号点によって表現される2×(n-1)ビットの部分の部分ビット列に、送信データが多重化される移動局装置の組み合わせが、前回の送信時の組み合わせと等しい。
 (条件2)条件1において組み合わせられた移動局装置への送信データの値を表現するために使用される信号点グループが、前回の送信時に使用された信号点グループとすべて等しい。
 (条件3)条件1において組み合わせられた移動局装置への送信データがすべて再送データである。
 スケジューラ15は、各サブキャリアに多重化される移動局装置の組み合わせを決定した後に、各サブキャリアについて上記(条件1)~(条件3)の成否を判定する。これによりスケジューラ15は、各サブキャリアで送信されるデータが、上記位相回転を伴う再送合成処理を施すことができるか否かを判定する。但し、図3に示される16QAM変調の信号点配置のように、各象限内の2×(n-1)個の信号点が全て同一の移動局装置への送信データに割り当てられたとき、この移動局装置への送信データが再送データであれば(条件1)~(条件3)を自動的に満たす。したがってこの場合には、スケジューラ15による上記判定及び再送指示情報の生成は不要である。
 各移動局装置は、制御チャネルを介して基地局装置eNBから受信したNDI情報に従って、今回の送信データが再送データか否かを判定する。今回の送信データが再送データであるとき、移動局装置は、制御チャネルを介して基地局装置eNBから受信した多重化情報に従って、自装置へ送信される送信データが、上記部分ビット列内に多重化されているか否かを判定する。
 例えば移動局装置は、この移動局装置への送信データの値を表現するために使用される信号点グループを指定する情報に従って、自装置へ送信される送信データが、上記の部分ビット列内に多重化されているか否かを判定することができる。例えば図5に例示される信号点配置の場合には、移動局装置は、自装置への送信データの値が信号点グループ201~204を用いて表現されていない限り、送信データは上記の部分ビット列内に多重化されていることと判定することができる。
 送信データが上記部分ビット列内に多重化されているとき、移動局装置は、制御チャネルを介して受信した再送指示情報に従って、再送データと前回データとの間の再送合成処理を施すことができるか否かを判定する。再送合成処理を施すことができるとき、各移動局装置は位相回転を伴う再送合成処理を行う。
 図10は、図2に示す基地局装置eNBの動作フローを示すフローチャートである。ステップS1においてスケジューラ15は、各移動局装置UE#1、UE#2~UE#xから送信されたチャネル品質表示(CQI)や再送判定情報(ACK/NACK)などのフィードバック情報を受信する。
 ステップS2において下りリンクIPパケット処理部10は、各移動局装置UE#1、UE#2~UE#xへそれぞれ送信されるユーザデータを取得する。下りリンクIPパケット処理部10は、受信したユーザデータの各データ長を決定し、スケジューラ15へ通知する。また、下りリンクIPパケット処理部10は、各ユーザデータをデータチャネル送信処理部11へ転送する。
 ステップS3においてスケジューラ15は、各移動局装置への送信データのデータ長が所定値TL未満であるか否かを判定する。データ長が所定値TL未満であるとき(ステップS3:Y)、スケジューラ15は、その移動局装置を、1シンボル内に送信データを多重化する移動局装置の候補として残す。その後、スケジューラ15は、処理をステップS4へ進める。データ長が所定値TL以上であるとき(ステップS3:N)、スケジューラ15は、その移動局装置の送信データを多重化しないと決定し、処理をステップS13へ移す。
 ステップS4においてスケジューラ15は、記憶部16に予め記憶された各移動局装置UE#1、UE#2~UE#xの優先度が所定値TP未満か否かを判定する。優先度が所定値TP未満であるとき(ステップS4:Y)、スケジューラ15は、その移動局装置を、1シンボル内に送信データを多重化する移動局装置の候補として残す。その後、スケジューラ15は、処理をステップS5へ進める。データ長が所定値TP以上であるとき(ステップS4:N)、スケジューラ15は、その移動局装置の送信データを多重化しないと決定し、処理をステップS13へ移す。
 ステップS5においてスケジューラ15は、ステップS1で取得したチャネル品質表示情報に従って、各移動局装置UE#1、UE#2~UE#xへの送信データを変調する変調方式を決定する。ステップS6においてスケジューラ15は、各移動局装置への送信データの変調方式がQPSKであるか否かを判定する。変調方式がQPSKでなく16個以上の信号点を使用する多値直交振幅変調であるとき(ステップS6:N)、その移動局装置を、1シンボル内に送信データを多重化する移動局装置の候補として残す。その後、スケジューラ15は、処理をステップS7へ進める。
 変調方式がQPSKであるとき(ステップS6:N)、スケジューラ15は、その移動局装置の送信データを多重化しないと決定し、処理をステップS13へ移す。
 ステップS7においてスケジューラ15は、各移動局装置を、送信データを変調する変調方式によって分類する。すなわちスケジューラ15は、各移動局装置を、同じ変調方式によって変調される移動局装置同士のグループへ分類分けする。
 ステップS8においてスケジューラ15は、ステップS1で取得したチャネル品質表示情報に従って、各移動局装置UE#1、UE#2~UE#xへデータを送信する送信電力を決定する。ステップS9においてスケジューラ15は、同じ変調方式によって変調される移動局装置同士の各グループへ分類分けされた移動局装置を、更に送信電力の強度によって分類分けする。
 ステップS10においてスケジューラ15は、ステップS1で取得した再送判定情報(ACK/NACK)と、各移動局装置へ前回送信したNDI情報に基づいて、各移動局装置についてNDI情報を決定する。ステップS11においてスケジューラ15は、ステップS10にて決定したNDI情報と、前回の送信の際の移動局装置の組み合わせ結果に基づいて、同一のシンボル内に送信データを多重化する移動局装置同士の組み合わせを決定する。図11は、再送処理のための振り分け処理S11の一例を示すフローチャートである。
 ステップS21においてスケジューラ15は、送信電力の強度によって分類分けされた移動局装置を、更に、NDI情報=「1」のグループと、NDI情報=「0」のグループとに分類分けする。したがって、移動局装置は最終的に、変調方式、送信電力強度及びNDI情報の値に基づいて分類分けされる。なお、ステップS21による分類分けは必ずしも必須ではなく、省略してもよい。
 ステップS22においてスケジューラ15は、記憶部16に格納された前回の送信時の多重化情報を参照することにより、前回の送信時に同一シンボル内に多重化された移動局装置同士の組み合わせを取得する。スケジューラ15は、分類分けされた移動局装置のグループに、前回の送信時に同一シンボル内に多重化された移動局装置同士の組み合わせが存在するか否かを判定する。
 前回の送信時にも同一シンボル内に多重化された組み合わせについては(ステップS22:Y)、ステップS23においてスケジューラ15は、これらの移動局装置を組み合わせて、これらの移動局装置に対して前回と同じ信号点配置を使用することを決定する。スケジューラ15は、これらの移動局装置のために前回使用された信号点グループも、そのまま変更せずに使用することを決定する。
 前回の送信時の組み合わせが再現できない移動局装置については(ステップS22:N)、ステップS24においてスケジューラ15は、分類分けされた移動局装置のグループの中から任意に移動局装置を選択して、同一シンボル内に多重化される移動局装置の新たな組み合わせと、これらの移動局装置のために使用される信号点グループを決定する。
 ステップS25においてスケジューラ15は、決定された組み合わせにより生成される各シンボルについて、上記の(条件1)~(条件3)の成否を判定することによって、このシンボルを、位相回転を伴う再生合成処理を施すことが可能か否かを判定する。再生合成処理を施すことが可能な場合(ステップS25:Y)、ステップS26においてスケジューラ15は、このシンボルを送信する移動局装置へ送信する再送指示情報の値を「1」にセットする。再生合成処理を施すことが不可能な場合(ステップS25:N)、ステップS27においてスケジューラ15は、このシンボルを送信する移動局装置へ送信する再送指示情報の値を「0」にセットする。
 図10を参照する。ステップS12においてスケジューラ15は、ステップS11で決定した移動局装置の組み合わせに従って、図4に示す多重化情報を作成する。スケジューラ15は、多重化情報を、データチャネル送信処理部11と、制御チャネル送信処理部12へ出力する。
 データチャネル送信処理部11は、受信した多重化情報に従って、下りリンクIPパケット処理部10から受信したユーザデータから、サブキャリアを直交振幅変調するために使用されるシンボルを生成する。制御チャネル送信処理部12は、多重化情報によって示される情報を含む制御信号を生成する。
 図12は、基地局装置eNBから各移動局装置へ送信される制御信号の第1例を示す図である。制御信号は、フォーマット選択ビットと、制御情報ビットと、第1変調方式指示ビットと、第2変調方式指示ビットと、上記の再送指示情報を含む。上述の通り、図3に示される16QAM変調の信号点配置のように、前記部分ビット列が全て同一の移動局装置への送信データに割り当てられたときには、再送指示情報を省略してもよい。
 フォーマット選択ビットは、制御信号が多重化情報を含むものであるか否かを示すビットである。制御情報ビットは、リソースブロック割り当て情報や、基地局装置eNB側で判定された再送判定情報(ACK/NACK)などの制御情報を含む。
 また制御情報ビットは、上りリンクに使用されるリソースブロックを指示するリソースブロック割り当て情報や、上りリンクに使用される変調方式を指示する変調方式指示情報を含む。第1変調方式指示ビットは、変調方式を指示するビットである。例えば2ビットの第1変調方式指示ビットは、値「00」によりQPSKを、値「01」により16QAMを、値「10」により64QAMを、値「11」により256QAMを指示してよい。制御情報ビットは、上記NDI情報を含んでいてもよい。またはNDI情報は、制御情報ビットに含まれず、複数の移動局装置に共用される共用制御チャネルを介して、基地局装置eNBから移動局装置へ送信されてもよい。
 第2変調方式指示ビットは、対象の移動局装置への送信データの値を表現するために使用される、それぞれの信号点グループを指定する情報である。第2変調方式指示ビットは、図4を参照して説明したグループ指定情報と同じ値であってよい。
 制御チャネル送信処理部12は、この制御信号を示すシンボルを生成し、変調部13へ出力する。
 図10を参照する。ステップS13において変調部13は、データチャネル送信処理部11から受信したシンボルと、制御チャネル送信処理部12から受信したシンボルを用いて、サブキャリアを多値直交振幅変調することにより複素シンボルを生成する。変調部13は、これら複素シンボルを逆フーリエ変換してOFDMA信号を生成する。
 ステップS14において基地局装置eNBは、送信アンテナ14を介してOFDMA信号を各移動局装置UE#1、UE#2~UE#xへ送信する。なお、図10に示すフローチャートでは、ステップS3、S4及びS6におけるデータ長、優先度及び変調方式に基づく判定処理が直列的に実行されるように示したが、これらの判定処理を並列に行って判定時間を短縮してもよい。
 図13は、図1に示す移動局装置UE#1の実施例の構成図である。他の移動局装置UE#2~UE#xも同様の構成を有している。参照符号40は基地局装置eNBから送信される無線信号を受信する受信アンテナを示し、参照符号41は復調部を示し、参照符号42はデータチャネル受信処理部を示す。参照符号43は制御チャネル受信処理部を示し、参照符号44は下りリンクIPパケット処理部を示し、参照符号45は上りリンクIPパケット処理部を示し、参照符号46はデータチャネル送信処理部を示す。参照符号47は制御チャネル送信処理部を示し、参照符号48は変調部を示し、参照符号49は再送合成部を示し、参照符号50は基地局装置eNBへ送信される無線信号を送信する送信アンテナを示す。
 移動局装置UE#1は、受信アンテナ40と、復調部41と、データチャネル受信処理部42と、制御チャネル受信処理部43と、下りリンクIPパケット処理部44を備える。また移動局装置UE#1は、上りリンクIPパケット処理部45と、データチャネル送信処理部46と、制御チャネル送信処理部47と、変調部48と、送信アンテナ50を備える。データチャネル受信処理部42は再送合成部49を備える。
 復調部41は、受信アンテナ40を介して基地局装置eNBから受信したOFDMA信号をフーリエ変換することにより複素シンボルを再生する。復調部41は、再生された複素シンボルのうち、制御信号に対応する複素シンボルを復調することにより、図12に示す制御信号やその他の制御チャネルを介して伝送される制御信号に含まれるビット列を生成し、制御チャネル受信処理部43へ出力する。また復調部41は、リファレンス信号の測定結果に応じてチャネル品質表示情報を生成し、制御チャネル送信処理部47へ出力する。
 制御チャネル受信処理部43は、復調部41から受信したビット列から、制御信号を形成する。制御チャネル受信処理部43は、下りリンクに使用されるリソースブロックを指示するリソースブロック割り当て情報と、NDI情報と、第1変調方式指示ビットと、第2変調方式指示ビットを復調部41及びデータチャネル受信処理部42へ出力する。
 制御チャネル受信処理部43は、上りリンクに使用されるリソースブロックを指示するリソースブロック割り当て情報や、上りリンクに使用される変調方式を指示する変調方式指示情報を変調部48及びデータチャネル送信処理部46へ出力する。制御チャネル受信処理部43は、基地局装置eNB側で判定された再送判定情報(ACK/NACK)をデータチャネル送信処理部46へ出力する。
 復調部41及びデータチャネル受信処理部42は、制御チャネル受信処理部43から受信したリソースブロック割り当て情報と、第1変調方式指示ビットによる変調方式の指定に従って、OFDMA信号から再生した複素シンボルのうち移動局装置UE#1への送信データを含む複素シンボルを復調する。データチャネル受信処理部42は、制御チャネル受信処理部43から受信したNDI情報に従って、今回受信したデータが再送データか否かを判定する。
 また復調部41及びデータチャネル受信処理部42は、制御チャネル受信処理部43から受信した第2変調方式指示ビットに基づいて、移動局装置UE#1への送信データが上記部分ビット列に多重化されているか否かを判定する。さらにデータチャネル受信処理部42は、制御チャネル受信処理部43から受信した再送指示情報の値が、受信した複素シンボルを位相回転して再送合成処理を施すことが可能であることを示す値「1」であるか否かを判定する。
 今回受信したデータが再送データであり、移動局装置UE#1への送信データが上記部分ビット列に多重化され、再送指示情報の値が「1」であるとき、再送合成部49は、上述の位相回転を伴う再送合成処理を行う。すなわち再送合成部49は、前回受信した複素シンボル及び/又は今回受信した複素シンボルをj×90°(j=0~3の整数)回転させて、これら2つの複素シンボルが示す信号点が属する象限を合致させる。その後、再送合成部49は、これら2つの複素シンボルの平均値を算出し、受信シンボルとして使用する。
 データチャネル受信処理部42は、再送合成部49で出力データの正常性をチェックし、制御チャネル受信処理部43から受信した第2変調方式指示ビットに従って、移動局装置UE#1への送信データを取り出す。データチャネル受信処理部42は、取り出した信号を下りリンクIPパケット処理部44へ出力する。データチャネル受信処理部42は、基地局装置eNBからのデータの正常性チェック結果に応じて、再送判定情報(ACK/NACK)を生成し、制御チャネル送信処理部47へ出力する。
 下りリンクIPパケット処理部44は、データチャネル受信処理部42から受信した受信データを結合して、移動局装置UE#1へ送信されたユーザデータを形成する。
 上りリンクIPパケット処理部45は、移動局装置UE#1から基地局装置eNBへ送信されることが予定されているユーザデータを受信する。上りリンクIPパケット処理部45は、受信したユーザデータを、データチャネル送信処理部46へ転送する。データチャネル送信処理部46は、受信したユーザデータを所定ビット長のビット列に分割し、搬送波を変調するために使用されるシンボルを生成する。データチャネル送信処理部46は、制御チャネル受信処理部43から受信した再送判定情報(ACK/NACK)に従って、新規データ及び再送データのいずれかを用いてシンボルを生成する。データチャネル送信処理部46は、生成したシンボルを変調部48へ出力する。
 制御チャネル送信処理部47は、基地局装置eNBへ送信する制御情報として、復調部41からチャネル品質表示情報を受信する。制御チャネル送信処理部47は、基地局装置eNBへ送信する制御情報として、再送判定情報(ACK/NACK)をデータチャネル受信処理部42から受信する。制御チャネル送信処理部47は、これら制御情報を示すシンボルを生成し、変調部48へ出力する。
 変調部48は、制御チャネル受信処理部43から受信したリソースブロック割り当て情報と変調方式指示情報に従い、データチャネル送信処理部46及び制御チャネル送信処理部47から受信したシンボルを用いて、搬送波を変調することにより送信無線信号を生成する。送信アンテナ50を介して送信無線信号を基地局装置eNBへ送信する。
 図14は、図13に示す移動局装置UE#1の受信動作を示すフローチャートである。ステップS31において、復調部41は、受信アンテナ40を介して基地局装置eNBから、ユーザデータ及び制御信号を含んだOFDMA信号を受信する。復調部41は、OFDMA信号をフーリエ変換することにより複素シンボルを再生する。復調部41は、制御信号に対応する複素シンボルを復調して、その結果生じるビット列を制御チャネル受信処理部43へ出力する。制御チャネル受信処理部43は、復調部41から受信したビット列を結合して制御信号を形成する。
 ステップS32において制御チャネル受信処理部43は、受信した制御信号に含まれる、下りリンク用のリソースブロック割り当て情報と、NDI情報と、第1変調方式指示ビットと、第2変調方式指示ビットと、再送指示情報を復調部41及びデータチャネル受信処理部42へ出力する。復調部41及びデータチャネル受信処理部42は、制御チャネル受信処理部43より受信した、リソースブロック割り当て情報と第1変調方式指示ビットに従って、移動局装置UE#1へユーザデータ送信するために使用された無線リソースと変調方式を決定する。
 ステップS33において復調部41及びデータチャネル受信処理部42は、第2変調方式指示ビットに従って、移動局装置UE#1への送信データをシンボルに多重化するために使用された信号点グループを決定する。
 ステップS34において再送合成部49は、NDI情報に従って、今回受信したデータが再送データか否かを判定する。受信したデータが再送データであるとき(ステップS34:Y)、再送合成部49は処理をステップS35に進める。受信したデータが新規データであるとき(ステップS34:N)、再送合成部49は処理をステップS39に進める。
 ステップS35において再送合成部49は、ステップS33で決定した信号点グループに従って、移動局装置UE#1への送信データが上記部分ビット列に多重化されているか否かを判定する。送信データが上記部分ビット列に多重化されている場合には(ステップS35:Y)、再送合成部49は処理をステップS36に進める。送信データが上記部分ビット列に多重化されていない場合には(ステップS35:N)、再送合成部49は処理をステップS39に進める。
 ステップS36において再送合成部49は、再送指示情報の値が「1」であるか否かを判定する。再送指示情報の値が「1」である場合には(ステップS36:Y)、再送合成部49は処理をステップS37に進める。再送指示情報の値が「1」でない場合には(ステップS36:N)、再送合成部49は処理をステップS39に進める。
 ステップS37において再送合成部49は、今回受信した複素シンボル及び/又は前回受信した複素シンボルをj×90°(j=0~3の整数)回転させて、これら2つの複素シンボルが示す信号点が属する象限を合致させる。ステップS38において再送合成部49は、これら2つの複素シンボルの平均値を算出することにより、合成された複素シンボルを生成する。
 ステップS39において復調部41及びデータチャネル受信処理部42は、ステップS37及びS38により合成された複素シンボルがあるときはこの複素シンボルを、そうでないときはステップS31で再生したシンボルを、第1変調方式指示ビットで指示された変調方式に対応する復調方式で復調・復号する。
 ステップS40においてデータチャネル受信処理部42は、基地局装置eNBからのデータが正常に受信できたか否かを判定し、制御チャネル受信処理部43から受信した第2変調方式指示ビットに従って、受信したシンボルから、移動局装置UE#1への送信データを取り出し、下りリンクIPパケット処理部44へ出力する。基地局装置eNBからのデータが正常であったとき(ステップS40:Y)、ステップS41においてデータチャネル受信処理部42は、「ACK」を示す再送判定情報を生成する。制御チャネル送信処理部47は「ACK」信号が制御信号に含め、移動局装置UE#1は「ACK」信号を含んだ制御信号を基地局装置eNBへ送信する。
 基地局装置eNBからのデータが正常に受信でないとき(ステップS40:N)、ステップS42においてデータチャネル受信処理部42は、「NACK」を示す再送判定情報を生成する。制御チャネル送信処理部47は「NACK」信号が制御信号に含め、移動局装置UE#1は「NACK」信号を含んだ制御信号を基地局装置eNBへ送信する。正常に受信できないときは、ステップS43において再送合成部49は、次回送信される再送データとの間で再送合成処理を行うため、今回受信した複素シンボル情報を保存する。
 本実施例によれば、図3や図5を参照して説明した移動局装置UE#1のような、1象限内の全信号点を含む信号点グループを用いてデータが変調される移動局装置について伝送特性を良くすることが可能となる。このような移動局装置へ送信されるデータは、伝送後の信号点が同一の信号点グループ内にある限り同一のデータ値を示すため、ノイズに対する耐性が高くなるためである。このような移動局装置に、受信品質が比較的悪い移動局装置を割り当てることにより、通信システム全体の送信効率を高めることができる。
 図3や図5を参照して説明した移動局装置UE#2や、図5を参照して説明した移動局装置UE#3のような、1象限内の全信号点を含む信号点グループの中に各々配置されている複数の信号点又は信号点グループを用いてデータが変調される移動局装置についても、上記の再送合成処理を行うことにより受信成功率を高めることにより、伝送特性の劣化を改善することが可能となる。
 特に従来の多重化方法では、電波環境が良く、多値変調のシンボルビット数を大きくすることができる状態では、移動局装置に割り当てられた搬送ブロックサイズ(TBS:Transport Block Size)が大きくなるため、実際の送信データが小さいと、パディングが行われ、電波の利用効率が低下するという問題があった。本実施例においては、このような場合でも、複数の移動局装置へ送信されるデータを1つのシンボルに多重化することにより、電波の利用効率を向上することができる。
 図15は、図2に示す基地局装置eNBによるQAMの信号点配置の第5例を示す図である。図示の信号点配置は、16個の信号点を使用する16QAM変調に使用される配置である。実線で表示された16個の円641~644…がそれぞれ信号点を示す。各円内に表示された2ビットの値は各信号点に対応するシンボルの下位2ビットを示す。それぞれ4つの円を囲む点線で示した4個の四角形621及び622…の中心に表示された1ビットの値は、各信号点に対応するシンボルの下位3桁目のビットを示す。また、それぞれ点線で示した四角形を2つずつ囲む一点鎖線で示した4個の四角形601及び602の上部611と612に表示された1ビットの値は、各信号点に対応するシンボルの上位1ビットを示す。たとえば信号点641に対応するシンボルは、円内に表示された「10」を下位2ビットに、四角形622の中心に表示された「1」を下位3桁目に、四角形601の上部に表示された「0」を上位1ビットに有する「0110」となる。
 本例では、シンボルを上位1ビット、下位3桁目の1ビット及び下位2ビットの3つの部分ビット列に分割して使用し、それぞれを3つの移動局装置UE#1、UE#2及びUE#3に割り当てる。このようにシンボルのビットを割り当てることにより、シンボル1ビット毎に異なる移動局装置を割り当てることができ、多重化できる移動局装置の数をさらに増加することが可能となる。
 図16は、図15に示すビットの割り当て方法に対応する、基地局装置eNBから移動局装置へ送信される制御信号の第2例を示す図である。図12に開示される第2変調方式指示ビット33に代えて、各移動局装置への送信データに割り当てられたビットの開始位置を指示する開始位置指示ビット35と、各移動局装置への送信データに割り当てたビット数を指示する割当桁指示ビット36を含む。本制御信号では、1ビットずつ割り当てる自由度を確保するため制御信号のビット数が増加する。しかしながら、下記の図17に示す通信シーケンスに示すとおり、接続開始時にのみこれら開始位置指示ビット35と割当桁指示ビット36とを送信するシーケンスを使用することにより、制御信号の増加による通信効率の低下を回避することができる。
 図17は、図15に示す信号点配置を使用した場合の通信シーケンスの例を示す図である。ステップS50において移動局装置UE#1は、基地局装置eNBへの接続を開始するため、チャネルの割り当て要求を送信する。ここで移動局装置UE#1は、必ずしも高速なデータ通信サービスを必要としないため、低速な通信レートを使用するチャネル(以下、「低速チャネル」と示す)の割り当てを要求する。低速チャネルが割り当てられると、移動局装置UE#1への送信データは、上述ように、1サブキャリアを変調する1つのシンボルに、他の移動局装置への送信データとともに多重化される。
 ステップS51において基地局装置eNBは、低速チャネルへの割り当て要求に対する応答を移動局装置UE#1へ送信する。ステップS52において移動局装置UE#2も基地局装置eNBへ、低速チャネルへの割り当て要求を送信する。ステップS53において基地局装置eNBは、低速チャネルへの割り当て要求に対する応答を移動局装置UE#2へ送信する。
 ステップS51及びステップS53における低速チャネルへの割り当て要求に対する応答において、基地局装置eNBは、移動局装置UE#1及びUE#2へのデータの送信に使用するリソースブロックを指示するリソースブロック割り当て情報と、開始位置指示ビット35と割当桁指示ビット36を指定する。以後、基地局装置eNBは、移動局装置UE#1及びUE#2への送信データを、同じサブキャリアを変調するシンボル内に多重化する。
 ステップS54において移動局装置UE#3も基地局装置eNBへ、低速チャネルへの割り当て要求を送信する。しかし、ステップS55において基地局装置eNBは、低速チャネルへの割り当てを要求して移動局装置UE#3に対して、通常のチャネルを割り当てる応答を送信する。ここでいう「通常のチャネル」とは、1サブキャリアを変調する1つのシンボルに、複数の移動局装置への送信データを多重化しないチャネルである。例えば、移動局装置UE#3との間に良好な品質のチャネルを形成できず、16QAM以上の多値直交振幅変調ができないことなどが理由として考えられる。
 ステップS56において、移動局装置UE#1及び#2は、相互に送信データが多重化される低速チャネルを介して基地局装置eNBとの通信を行う。ステップS57において、移動局装置UE#3は、通常のチャネルを介して基地局装置eNBとの通信を行う。
 ステップS58において、移動局装置UE#2は、通信を停止し低速チャネルを解放する要求を基地局装置eNBへ送信する。ステップS59において基地局装置eNBは、低速チャネルへの解放要求に対する応答を移動局装置UE#2へ送信する。このとき、移動局装置UE#1は、それまで移動局装置UE#2と共用していたリソースブロックを、1台で使用する。
 しかし移動局装置UE#1に対して、サブキャリアを変調するためのシンボルに割り当てられたビットは、ステップS51で指定されたビットのまま変わらないので、移動局装置UE#1は、依然として低速チャネルを使用し続ける(ステップS60)。ステップS61において移動局装置UE#3もまた、依然として通常のチャネルを介して基地局装置eNBとの通信を行う。
 本シーケンスのように、開始位置指示ビット35と割当桁指示ビット36を、接続開始時のチャネル割り当て時にのみ送信することで、制御信号の増加による通信効率の低下を回避することができる。
 図18は、開示の無線通信システムによるサービスの提供方法を示すシーケンス図である。本サービス例では、特定のエリアに移動局装置が存在するときに、特定のエリア内にある店舗がクーポン情報を移動局装置へ送信する。ステップS70~S72では、予め店舗#1~#3が、基地局装置eNBにクーポン情報を登録する。ここに店舗#1及び#2は、エリアAに存在する移動局装置へ送信するクーポン情報を登録し、店舗#3は、エリアBに存在する移動局装置へ送信するクーポン情報を登録する。
 ステップ73及びS74では、移動局装置UE#1及びUE#2が、クーポン情報を含む、各エリアの案内情報であるエリア情報の配信を希望することを、予め基地局装置eNBに登録する。
 ステップS75において移動局装置UE#1がエリアBへ移動すると、ステップS76において移動局装置UE#1は、エリアBへ移動したことを知らせる位置登録信号を基地局装置eNBに送信する。ステップS77において基地局装置eNBは、エリアBにおいて予め登録されていた店舗#3のクーポン情報を移動局装置UE#1へ配信する。
 ステップS78において移動局装置UE#1がエリアAへ移動し、ステップS79において移動局装置UE#2がエリアAへ移動すると、ステップS80及び81において移動局装置UE#1及びUE#2は、エリアAへ移動したことを知らせる位置登録信号を基地局装置eNBに送信する。
 ステップS82において基地局装置eNBは、移動局装置UE#1へ送信する店舗#1のクーポン情報のデータと、移動局装置UE#2へ送信する店舗#2のクーポン情報のデータと、を同じキャリアを変調するシンボル内に多重化し、OFDMA信号を生成する。
ステップS83において基地局装置eNBは、この得られたOFDMA信号を、移動局装置UE#1及びUE#2の双方に送信する。
 このように本実施例では、クーポン券情報や、広告、ショートニュースなどの同種の情報を不特定多数の移動局装置に同時に送る際に、従来では各移動局装置毎の個別のデータチャネルで送信されていたこれらデータを、1サブキャリア内に多重化して送信することが可能となる。
 以上、本発明の好適な実施態様について詳述したが、当業者が種々の修正及び変更をなし得ること、並びに、特許請求の範囲は本発明の真の精神および趣旨の範囲内にあるこの様な全ての修正及び変更を包含することは、本発明の範囲に含まれることは当業者に理解されるべきものである。

Claims (13)

  1.  複数の受信装置にデータを送信する送信装置であって、
     複数の前記受信装置に送信するデータが多重化されたビット列を有するシンボルを生成するシンボル生成部と、
     サブキャリアを直交振幅変調(QAM)により変調する変調部と、を備え、
     前記変調部は、1つの前記シンボルにより1つの前記サブキャリアを変調する送信装置。
  2.  前記変調部は4個の信号点を用いる4QAM変調を行い(nは2以上の整数)、
     前記シンボル生成部は、第1番目~第m番目の前記受信装置にそれぞれ送信されるk(1)~k(m)ビットのビット列を含む2×nビットの前記1つのシンボルを生成し(mは2~nの整数)、
     第(i+1)番目の受信装置(iは1~(m-1)の整数)に送信されるk(i+1)ビットのビット列が示す2k(i+1)値を各々表現する2k(i+1)個のグループの前記信号点の集合が、第i番目の受信装置に送信されるk(i)ビットのビット列により示される2k(i)値をそれぞれ表現する前記信号点のグループのそれぞれを形成するように、前記4QAM変調の各信号点が配置される請求項1に記載の送信装置。
  3.  前記信号点が配置される複素平面の各象限内の4(n-1)個の各信号点によって表現される前記シンボル内の2×(n-1)ビットの部分ビット列の値は、前記複素平面の原点を中心として回転対称になるように、前記信号点にそれぞれ割り当てられる請求項2に記載の送信装置。
  4.  前記複数の受信装置にそれぞれ送信するデータのデータ長に応じて、各前記受信装置へ送信するデータを前記シンボルに多重化するか否かを決定するスケジューラを備える請求項1又は2に記載の送信装置。
  5.  前記複数の受信装置のそれぞれの優先度に応じて、各前記受信装置へ送信するデータを前記シンボルに多重化するか否かを決定するスケジューラを備える請求項1又は2に記載の送信装置。
  6.  前記複数の受信装置からフィードバックされるフィードバック情報に応じて、各前記受信装置へ送信するデータを前記シンボルに多重化するか否かを決定するスケジューラを備える請求項1又は2に記載の送信装置。
  7.  前記複数の受信装置からフィードバックされるフィードバック情報に応じて、同一の前記シンボル内へ送信データを多重化する前記受信装置の組み合わせを決定するスケジューラを備える請求項1又は2に記載の送信装置。
  8.  各前記受信装置に対する制御信号を送信する制御信号送信部と、
     同一の前記シンボル内へ送信データを多重化する前記受信装置の組み合わせを決定するスケジューラと、を備え、
     前記制御信号は、対象の前記受信装置へ再送データ及び新規データのいずれが送信されるかに応じて交番する2値の再送処理情報を含み、
     前記スケジューラは、同一の値の前記再送処理情報が送信される前記受信装置同士を、同一の前記シンボル内へ送信データを多重化する前記受信装置として組み合わせる、請求項1又は2に記載の送信装置。
  9.  請求項3に記載の送信装置から送信される前記データを受信する受信装置であって、
     前記送信装置の前記シンボル生成部は、前記複素平面の各象限内の4(n-1)個の各信号点によって表現される2×(n-1)ビットの前記部分ビット列のすべてを、1つの前記受信装置に送信されるビット列に割り当て、
     前記送信装置は、前記受信装置のそれぞれに、対象の前記受信装置に送信されるビット列が示す値を表現するために使用される信号点のグループを示す多重化情報を送信する多重化情報送信部を備え、
     前記受信装置は、
     前記多重化情報を受信する多重化情報受信部と、
     前記送信装置から受信した前記データが再送データであるか否かを判定する再送判定部と、
     前記受信したデータが再送データであり、かつ今回及び前回受信したいずれのデータにおいても、前記部分ビット列のすべてが前記受信装置に送信されるビット列に割り当てられているとき、前記再送データ及び/又は前回受信したデータにj×90°(j=0~3の整数)の位相回転処理を行って、これらのデータが示すシンボルが存在する象限を相互に合わせた後に、これらデータを合成する再送合成部と、を備える受信装置。
  10.  請求項3に記載の送信装置から送信される前記データを受信する受信装置であって、
     前記送信装置は、
     前記受信装置のそれぞれに、対象の前記受信装置に送信されるビット列が示す値を表現するために使用される信号点のグループを示す多重化情報を送信する多重化情報送信部と、
     前記複素平面の各象限内の4(n-1)個の各信号点によって表現される2×(n-1)ビットの前記部分ビット列の値が、前回送信した値から変わっているか否かを示す再送指示情報を前記受信装置へ送信する再送指示情報送信部と、を備え、
     前記受信装置は、
     前記多重化情報を受信する多重化情報受信部と、
     前記再送指示情報を受信する再送指示情報受信部と、
     前記送信装置から受信した前記データが再送データであるか否かを判定する再送判定部と、
     前記受信したデータが再送データであり、前記部分ビット列の値が不変であり、かつ前記受信装置に送信されるビット列が前記部分ビット列に含まれているとき、前記再送データ及び/又は前回受信したデータにj×90°(j=0~3の整数)の位相回転処理を行って、これらのデータが示すシンボルが存在する象限を相互に合わせた後に、これらデータを合成する再送合成部と、を備える受信装置。
  11.  複数の受信装置にデータを送信する送信方法であって、
     複数の前記受信装置に送信するデータが多重化されたビット列を有するシンボルを生成するシンボル生成ステップと、
     サブキャリアを直交振幅変調(QAM)により変調する変調ステップと、を含み、
     前記変調ステップにおいて、1つの前記シンボルにより1つの前記サブキャリアを変調する送信方法。
  12.  前記変調ステップは4個の信号点を用いる4QAM変調を行い(nは2以上の整数)、
     前記シンボル生成ステップは、第1番目~第m番目の前記受信装置にそれぞれ送信されるk(1)~k(m)ビットのビット列を含む2×nビットの前記1つのシンボルを生成し(mは2~nの整数)、
     第(i+1)番目の受信装置(iは1~(m-1)の整数)に送信されるk(i+1)ビットのビット列が示す2k(i+1)値を各々表現する2k(i+1)個のグループの前記信号点の集合が、第i番目の受信装置に送信されるk(i)ビットのビット列により示される2k(i)値をそれぞれ表現する前記信号点のグループのそれぞれを形成するように、前記4QAM変調の各信号点が配置される請求項11に記載の送信方法。
  13.  前記信号点が配置される複素平面の各象限内の4(n-1)個の各信号点によって表現される前記シンボル内の2×(n-1)ビットの部分ビット列の値は、前記複素平面の原点を中心として回転対称になるように、前記信号点にそれぞれ割り当てられる請求項12に記載の送信方法。
PCT/JP2009/051350 2009-01-28 2009-01-28 送信装置、受信装置及び送信方法 WO2010086969A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051350 WO2010086969A1 (ja) 2009-01-28 2009-01-28 送信装置、受信装置及び送信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051350 WO2010086969A1 (ja) 2009-01-28 2009-01-28 送信装置、受信装置及び送信方法

Publications (1)

Publication Number Publication Date
WO2010086969A1 true WO2010086969A1 (ja) 2010-08-05

Family

ID=42395239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051350 WO2010086969A1 (ja) 2009-01-28 2009-01-28 送信装置、受信装置及び送信方法

Country Status (1)

Country Link
WO (1) WO2010086969A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110931A1 (zh) * 2013-01-18 2014-07-24 中兴通讯股份有限公司 调制处理方法及装置
WO2015074592A1 (zh) * 2013-11-22 2015-05-28 华为技术有限公司 一种兼容高阶调制和低阶调制的传输方法、装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068959A (ja) * 1998-08-26 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 無線送信装置および無線通信装置
JP2006303698A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 基地局装置および変調方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068959A (ja) * 1998-08-26 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 無線送信装置および無線通信装置
JP2006303698A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 基地局装置および変調方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Communications, 2004 IEEE International Conference on, vol.6, 2004.06.20", article SLAWOMIR PIETRZYK ET AL.: "Subcarrier and Power Allocation for QoS-aware OFDMA Systems Using Embedded Modulation", pages: 3202 - 3206 *
"Proceedings of the 1998 IEICE Communications Society Conference (1), 07 September, 1998 (07.09.98)", article SHINJI OKUDA ET AL.: "Kaiso Hencho o Mochiita Heiretsu Taju Soshin Access Seigyoho no Ichikento", pages: 450 *
"Vehicular Technology Conference, 2004. VTC 2004-Spring. 2004 IEEE 59th, vol.2, 2004.05.17", article HOSSAIN, M.J. ET AL.: "Hierarchical constellations for multi-class data transmission over block fading channels", pages: 934 - 938 *
HOSSAIN, MD.J. ET AL.: "Rate Adaptive Hierarchical Modulation-Assisted Two-User Opportunistic Scheduling", WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS ON, vol. 6, no. ISSUE:, June 2007 (2007-06-01), pages 2076 - 2085 *
JAHANGIR HOSSAIN ET AL.: "Multi-User Opportunistic Scheduling using Power Controlled Hierarchical Constellations", WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS ON, vol. 6, no. ISSUE:, May 2007 (2007-05-01), pages 1581 - 1586 *
MASAKAZU MORIMOTO ET AL.: "Kaiso Hencho o Mochiita Musen Seishi Gazo Denso Hoshiki ni Kansuru Kenkyu", IEICE TECHNICAL REPORT, vol. 96, no. 51, 21 May 1996 (1996-05-21), pages 33 - 38 *
VITTHALADEVUNI, P.K. ET AL.: "A recursive algorithm for the exact BER computation of generalized hierarchical QAM constellations", INFORMATION THEORY, IEEE TRANSACTIONS ON, vol. 49, no. ISSUE:, January 2003 (2003-01-01), pages 297 - 307 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110931A1 (zh) * 2013-01-18 2014-07-24 中兴通讯股份有限公司 调制处理方法及装置
US9794022B2 (en) 2013-01-18 2017-10-17 Xi'an Zhongxing New Software Co., Ltd. Modulation processing method and device
US10218456B2 (en) 2013-01-18 2019-02-26 Xi'an Zhongxing New Software Co., Ltd Modulation processing method and device
WO2015074592A1 (zh) * 2013-11-22 2015-05-28 华为技术有限公司 一种兼容高阶调制和低阶调制的传输方法、装置
US9806932B2 (en) 2013-11-22 2017-10-31 Huawei Technologies Co., Ltd. Transmission method compatible with higher order modulation and lower order modulation, and apparatus
US10003491B2 (en) 2013-11-22 2018-06-19 Huawei Technologies Co., Ltd. Transmission method compatible with higher order modulation and lower order modulation, and apparatus

Similar Documents

Publication Publication Date Title
US10827481B2 (en) Method and apparatus for transmitting and receiving control channels by restricting a set of the control channels in wireless communication system
RU2552378C2 (ru) Способ беспроводной связи с использованием пакетных данных мас
KR102010006B1 (ko) 무선 근거리 통신망에서의 soma를 사용하는 시스템 및 방법
JP5631416B2 (ja) 統合マルチデータストリーム伝送技術
US9197385B2 (en) Systems and methods for demodulation reference signal selection
US7936831B2 (en) Methods and apparatus for implementing and using an in-band rate indicator
JP6339211B2 (ja) セルラ通信ネットワークにおいて256qamのための効率的なtbsテーブル設計を利用するシステムおよび方法
US8452294B2 (en) In-band ate indicator methods and apparatus
US7826548B2 (en) Resource management in a wireless communication network
CN101395879B (zh) 用于在单载波频分多址系统中传送/接收上行链路信令信息的方法和设备
EP2985936B1 (en) Control information transmission method and sending and receiving device
KR20060042523A (ko) 다중 안테나를 사용하는 광대역 무선 접속 시스템에서다양한 다중안테나 기술을 지원하기 위한 방법
US20090003274A1 (en) Apparatus and method for transmitting control channel for frequency resource allocation in a wireless communication system
JP4933531B2 (ja) 通信装置および通信方法
WO2010061825A1 (ja) 通信システム、通信方法、基地局、移動局、及びプログラム
US8837271B1 (en) Method and system for sharing a downlink resource block among multiple users
CN107733553B (zh) 传输块的发送方法和装置、接收方法和装置
US11606164B2 (en) Modulation and coding for multiple resource units in wireless network
CN101116300A (zh) 在宽带无线接入系统中通信非相干可检测信号
JPWO2017051583A1 (ja) 装置、方法及びプログラム
JP2008042861A (ja) 通信システム、端末装置、基地局、及び通信方法
WO2010086969A1 (ja) 送信装置、受信装置及び送信方法
JP3786129B2 (ja) 直交周波数分割多重変復調回路
KR20100095129A (ko) 무선 통신 시스템에서 채널 자원 할당 정보 시그널링 방법 및 이를 위한 장치
WO2018173208A1 (ja) 基地局装置、端末装置、無線通信システム、および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP