WO2011038677A1 - 一种空间复用模式中退秩的方法、基站及通信系统 - Google Patents

一种空间复用模式中退秩的方法、基站及通信系统 Download PDF

Info

Publication number
WO2011038677A1
WO2011038677A1 PCT/CN2010/077438 CN2010077438W WO2011038677A1 WO 2011038677 A1 WO2011038677 A1 WO 2011038677A1 CN 2010077438 W CN2010077438 W CN 2010077438W WO 2011038677 A1 WO2011038677 A1 WO 2011038677A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
feedback information
channel quality
information
codeword
Prior art date
Application number
PCT/CN2010/077438
Other languages
English (en)
French (fr)
Inventor
钱颖
张超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011038677A1 publication Critical patent/WO2011038677A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, a base station, and a communication system for de-ranking in a spatial multiplexing mode.
  • BACKGROUND OF THE INVENTION Spatial multiplexing transmission technology splits a data stream into multiple layers and transmits them in various layers of space, which greatly improves the reliability and transmission rate of the communication system. It has been defined by the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the information that the user needs to feedback in this mode is specified in the LTE protocol, including: Channel Quality Information (CQI, Channel Quality Information), Precoding Matrix Indicator (PMI), and Rank Indicator (RI, Rank Indicator ).
  • CQI Channel Quality Information
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • the CQI can represent the downlink channel quality information
  • the base station selects a suitable modulation and coding scheme (MCS) according to the CQI reported by the user; after receiving the RI reported by the user, the base station receives the multiplexed data stream supported by the user.
  • MCS modulation and coding scheme
  • the number is equal to RI, and the number of multiplexed data streams supported by the user in the current spatial multiplexing mode can be known.
  • the base station can determine the transmission parameters such as the rate, the transmission power, the rank (indicated by the RI parameter), and the format of the adaptive modulation coding (AMC) of the base station.
  • the transmission parameters such as the rate, the transmission power, the rank (indicated by the RI parameter), and the format of the adaptive modulation coding (AMC) of the base station.
  • AMC adaptive modulation coding
  • Embodiments of the present invention provide a method, a base station, and a communication system for retiring a rank in a spatial multiplexing mode.
  • the embodiment of the present invention can be specifically implemented by the following technical solutions:
  • a method for retiring a rank in a spatial multiplexing mode includes: receiving feedback information sent by a terminal, where the feedback information includes at least channel quality information and a rank indication;
  • the rank indication is greater than 1 in the feedback information, determining, according to the channel quality information and the preset information, whether the downlink channel experiences a small-scale deep fading, and if so, using a value smaller than the value indicated by the rank in the feedback information.
  • the current rank indication of the base station is determining, according to the channel quality information and the preset information, whether the downlink channel experiences a small-scale deep fading, and if so, using a value smaller than the value indicated by the rank in the feedback information.
  • a base station comprising: a receiving unit, a first determining unit, a second determining unit, and a performing de-ranking unit;
  • the receiving unit is configured to receive feedback information sent by the terminal, where the feedback information includes at least channel quality information and a rank indication;
  • the first determining unit is configured to determine whether the rank indication in the feedback information is greater than 1; the second determining unit is configured to: when the determining result in the first determining unit is: a rank in the feedback information When the indication is greater than 1, determining, according to the channel quality information and the preset information, whether the downlink channel experiences small-scale deep fading;
  • a communication system comprising: a terminal and a base station;
  • the terminal is configured to send feedback information, where the feedback information includes at least channel quality information and a rank indication;
  • the base station is the above base station.
  • the embodiment of the present invention determines whether the downlink channel experiences a small-scale deep fading according to the received feedback information, and when the determination result is yes, performs a de-rank operation, thereby reducing the number of transmission layers. Reduce the transmission error rate. Thereby ensuring communication quality and providing users with a better experience.
  • FIG. 1 is a schematic diagram showing the operation of a device employing spatial multiplexing at a physical layer according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for resuming rank in a spatial multiplexing mode according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for resuming rank in a spatial multiplexing mode according to another embodiment of the present invention.
  • FIG. 4 is a logic unit diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for retiring the rank in the spatial multiplexing mode, and the embodiment of the present invention further provides a corresponding base station and a communication system. The details are described below separately.
  • An embodiment of the present invention provides a method for retiring a rank in a spatial multiplexing mode.
  • the method includes: scrambling a codeword, performing modulation mapping on the scrambled codeword, performing layer mapping on the coded mapped codeword, precoding the layer mapped codeword, and passing the precoded codeword through the antenna Launched.
  • Figure 1 a schematic diagram of the operation of the device at the physical layer for spatial multiplexing is shown.
  • the layer indicates the number of multiplexed data streams supported on the same time-frequency resource when spatial multiplexing, and the number of layers is equal to the RI finally determined by the base station, and currently
  • the maximum number of layers implemented is 4 layers; the codewords represent independent data streams, and the number of codewords is usually 1 or 2.
  • Each codeword can be mapped to one or two layers through layer mapping.
  • CQI can be used to represent codewords.
  • Channel quality information In the embodiment, the case where the number of codewords is 2 is described, that is, the base station has two independent data streams, and the data transmission can be improved by using two independent data streams compared with the case of using one data stream. rate.
  • the downlink spatial multiplexing transmission mode includes: Open-loop Spatial Multiplexing (or Open Delay Cyclic Delay Diversity), and closed-loop spatial multiplexing (Closed- Loop Spatial Multiplexing ).
  • the base station After receiving the feedback information sent by the terminal, the base station can determine the current mode according to the transmission mode information stored in the terminal (for example, the base station stores the transmission mode information currently in open-loop spatial multiplexing or in closed-loop spatial multiplexing).
  • the spatial multiplexing transmission mode is open-loop spatial multiplexing or closed-loop spatial multiplexing.
  • the base station can know whether the current spatial multiplexing transmission mode is open-loop spatial multiplexing or closed-loop spatial multiplexing.
  • the base station determines, according to preset information (such as codeword number information, downlink spatial multiplexing transmission mode information used for downlink data transmission, etc.), the current number of codewords is 2, and downlink data transmission uses open-loop spatial multiplexing. Mode, and the RI of the received feedback information is greater than 1, a full-band CQI reported by the terminal at the same time may be used to indicate the channel quality of each codeword; when the base station determines the current codeword number according to the preset information The number of codewords is 2, and the downlink data transmission adopts a closed-loop spatial multiplexing mode, and the received feedback information has an RI greater than 1, and the two full-band CQIs reported by the terminal at the same time respectively represent channels of two codewords. quality.
  • preset information such as codeword number information, downlink spatial multiplexing transmission mode information used for downlink data transmission, etc.
  • the method for de-ranking in the spatial multiplexing mode provided in this embodiment is described by taking the closed-loop spatial multiplexing mode as an example.
  • the method includes:
  • Step 1 The base station receives the feedback information sent by the terminal, where the feedback information includes at least: channel quality information (CQI) and RI;
  • Step 2 When it is determined that the RI in the feedback information is greater than 1, according to the received CQI and the preset information, it is determined whether the downlink channel has experienced small-scale deep fading, and if yes, step 3 is performed, and if not, the process ends;
  • CQI channel quality information
  • RI channel quality information
  • the specific method for determining whether the downlink channel experiences small-scale deep fading in step 2 may include: determining whether the total spectral efficiency corresponding to all codewords in the base station is lower than a threshold of small-scale deep fading, and if so, the base station It is determined that the downlink channel has experienced small-scale deep fading, and step 3 is performed. If not, the process ends.
  • Step 3 The value indicated by the rank indication in the feedback information is used as the current rank indication of the base station.
  • the operation of using the value indicated by the rank in the feedback information as the current rank indication of the base station may also be understood as: performing a de-rank operation, The RI obtained after the rank is degraded is smaller (or lower) than the RI included in the feedback information.
  • the value of the RI parameter in the base station is smaller than the value of the RI parameter in the feedback information, where the value of the RI is an integer. Usually 1, 2, 3, or 4.
  • the RL in the feedback information sent by the UE received by the base station is obtained by the UE measuring the downlink channel quality, but the accuracy of the downlink cannot be accurately estimated only according to the RI transmitted by the UE.
  • the base station uses the RI sent by the UE to send downlink data, which may result in a decrease in the correct rate of data received by the UE. Therefore, the base station performs steps 2 and 3 to select a more reasonable RI and perform a more reasonable evaluation of the downlink channel quality, so that a reasonable scheme can be selected to transmit downlink data.
  • the determining operation of the downlink quality according to the RI may be the same as the prior art.
  • the number of layers is equal to the RI finally determined by the base station, that is, the RI obtained after the base station performs the de-rank operation, and the number of layers in the base station is reduced after the de-rank operation, the codeword is mapped to the layer, and then the base station is transmitted, because The number of layers to which the codeword is mapped is reduced, and the interference between the layers after the mapping is also reduced, so that the error rate of the data received at the receiving end (or terminal) is reduced.
  • the base station performs a de-rank operation that reduces the RI to 1, and it is not difficult to understand that the RI may also be 2 or 3 after the rank is degraded.
  • steps 1 to 3 above enable the base station to implement the de-rank operation, and according to the received feedback information, determine whether the downlink channel has experienced small-scale deep fading, and when the judgment result is yes.
  • the rank revocation operation is performed, the number of transmission layers is reduced, and the transmission error rate is reduced. Thereby ensuring communication quality and providing users with a better experience.
  • the method for resuming rank in the spatial multiplexing mode provided in this embodiment may further include:
  • Step 4 Send downlink control information to the terminal, where the downlink control information includes the number of current layers, and the number of the layers is the same as the current rank indication of the base station.
  • the terminal can know the number of layers to which all codewords in the base station are mapped, so that the received signal can be demodulated. If the RI is the value 1 after the de-ranking, the number of the layers including the de-ranking in the downlink control information is one; and the RI is the value 2 after the de-ranking, the downlink control information includes the layer after the re-ranking The number of the RBs after the de-ranking is 3, and the number of the layers including the de-ranked downlink control information is three.
  • determining whether the total spectral efficiency corresponding to all the codewords in the base station is lower than the threshold of the small-scale deep fading may specifically include:
  • Step S1 Obtain a spectrum efficiency corresponding to channel quality information of each codeword according to the preset information and the received feedback information;
  • the preset information in step S1 may include: codeword number information and a downlink spatial multiplexing transmission mode. If the base station is in the closed-loop spatial multiplexing mode and the number of codewords is 2, the CQI received by the base station in the feedback information includes two parameter values: CQI1 and CQI2, which respectively represent channel quality information parameters of the two codewords. According to the obtained CQI1 and CQI2, the base station can find the spectral effeffities effl and eff2 corresponding to CQI1 and CQI2 according to the stored list.
  • Step S2 Obtain a spectrum efficiency of each codeword according to the obtained spectral efficiency corresponding to the channel quality information of each codeword, and the RI and the preset layer mapping relationship information in the received feedback information.
  • the layer mapping relationship information preset in the foregoing step S2 may specifically be a relationship in which a codeword is mapped to a layer when data is transmitted downlink in the base station.
  • the preset layer mapping relationship includes: the first codeword is mapped on one layer.
  • the second codeword is mapped to the other two layers.
  • Step S3 According to the obtained spectral efficiency of each codeword, obtain the total corresponding to all the codewords. Spectral efficiency;
  • mapping relationship between the two codewords and the layer can be known in the base station, as follows. (1) shows the mapping between possible codewords and layers:
  • RI 4
  • i denotes the first codeword and the second codeword of the two codewords, i takes the value 1 or 2, / ; represents the ith code
  • the number of layers of the word mapping such as: When RI is 2, it indicates that all codewords in the spatial multiplexing mode can be mapped in two layers, wherein the first codeword and the second codeword are usually mapped respectively.
  • the total spectral efficiency corresponding to all the codewords can be easily obtained, as shown in the following formula (2).
  • the spectral efficiency of the codeword is the sum of the spectral efficiencies of the symbols carried on each layer ( Therefore, the spectral efficiency of the first codeword K is the spectral efficiency of the second codeword as e# 2 J 2 ;).
  • Step S4 determining whether the total spectral efficiency corresponding to all the acquired codewords is less than (ie, lower than) the threshold value of the preset small-scale deep fading, and if yes, triggering performing the de-rank operation, that is, performing step 3, if No, the process ends.
  • the specific setting value of the threshold of the small-scale deep fading mentioned in step 3 is related to the channel propagation environment, and different threshold values may be set according to the channel propagation environment. If the total spectral efficiency corresponding to all codewords is less than the threshold (indicated by e #), then the downlink channel is considered to have undergone small-scale deep fading, and the base station performs a de-rank operation.
  • the above is a specific operation for determining whether the total spectral efficiency corresponding to all codewords in the base station is lower than the threshold of the small-scale deep fading in the closed-loop spatial multiplexing mode, and the execution method in the open-loop spatial multiplexing mode, Since the terminal only reports a channel-wide CQI indicating the channel quality information of each codeword at the same time, the base station finds the corresponding spectrum efficiency eff according to the CQI stored in the list, that is, obtains the channel quality of each codeword.
  • the spectral efficiency corresponding to the information; the total spectral efficiency corresponding to all codewords is N times the spectral efficiency corresponding to the channel quality information of each codeword, where N is the number of layers in the base station, and subsequent operations and closed-loop space
  • the operations in the multiplexing mode are the same. You can refer to the description of the de-rank operation in the closed-loop spatial multiplexing mode, which is not repeated here.
  • Another embodiment of the present invention provides a method for retiring a rank in a spatial multiplexing mode, which is based on the method provided in the foregoing embodiment, and adds an operation of selecting a modulation and coding scheme (MCS) after the base station is relegated.
  • MCS modulation and coding scheme
  • a method for de-ranking in a spatial multiplexing mode is introduced.
  • the steps 301, 302 are the same as the steps 1 and 2 in the embodiment shown in FIG. 2.
  • Step 303 Use a value smaller than the rank indication in the feedback information as the current rank indication of the base station.
  • the base station reduces the RI to 1, so that the base station performs the layer mapping on the codeword in the re-ranking state, and the communication quality can be guaranteed.
  • Step 304 Determine the MCS after the rank is degraded according to the preset number of transmit antennas and the CQI in the received feedback information and the RI in the feedback information.
  • the RI is usually less than or equal to the number of antennas.
  • the MCS is selected according to the number of transmitting antennas and the CQI and RI in the received feedback information. Since the number of transmission days is known for a specific base station, the following is preset for the base station. In the case of the antenna data (where the various situations are in a parallel relationship), the following is an example of the operation of the base station to select the MCS, which specifically includes:
  • Case fl When the preset number of transmit antennas is 2, and the RI in the received feedback information is 2, the channel quality information (ie, CQI1 and CQI2) of the two codewords in the received feedback information is based on For larger channel quality information, select MCS and use the selected MCS as the current RI is 1. MCS;
  • the base station transmits signals in a closed-loop space division multiplexing mode. Therefore, the CQI received by the base station includes channel quality information of two codewords, that is, CQI1 and CQI2.
  • the CQI parameter can indicate the channel quality information of each codeword. Therefore, it is not necessary to select the channel quality information with larger median channel quality information of the two codewords, because the channel quality information of the two codewords is represented by a CQI parameter value received by the base station, which is the same.
  • the operation of the MCS is selected after the base station is retired, and the MCS may be selected according to a CQI parameter value received by the base station, and the selected MCS is used as the MCS when the current RI is 1. .
  • the two codewords are mapped to a unique layer in the base station, and the signal is transmitted by using the mapping, and each codeword acquired at the receiving end is used.
  • the value of the CQI parameter will be larger than the value of the CQI parameter of each codeword obtained when the signal is transmitted when the RI is greater than one. That is to say, when two codewords are mapped to the same layer (that is, when RI is 1), a better communication quality can be obtained, and an MCS with higher coding efficiency can be selected.
  • the MCS is selected based on the channel quality information having a larger value among the channel quality information (i.e., CQI1 and CQI2) of the two code words in the received feedback information. That is , approximate to the channel quality information of the codeword estimated by the receiving end when RI is 1. According to CQI miX , choose MCS.
  • the MCS may be specifically referred to the corresponding table, and the specific operation may refer to the prior art.
  • Case G is similar to case fl. The difference is that the number of transmitting antennas of the base station is different, and the number of different transmitting antennas is used. It should be understood that the value of the RI is the same as the number of layers mapped in the base station, and the number of layers may represent the number of effective antennas in the space division multiplexing mode, and the number of effective transmit antennas is less than or equal to the actual number of transmit antennas. It can be seen from equation (1) that when RI is 2, each codeword is mapped to a different layer. Then when the RI is reduced to 1, then based on the received feedback The channel quality information of the channel quality information (ie, CQI1 and CQI2) of the two codewords in the information is larger, and the MCS is selected.
  • the channel quality information ie, CQI1 and CQI2
  • the spectral efficiency of the two codewords is ⁇ and 2 ' e #2 takes 2 'U, and then selects the spectrum efficiency is greater than or equal to e# ma ⁇ ⁇ MCS , as the MCS when the RAN is 1 after the rank is retired.
  • the MCS is queried according to the spectrum efficiency, and the value of the spectrum efficiency may be a segmentation value, and the MCS is corresponding to each spectrum efficiency value.
  • the MCS with the most recent spectral efficiency and greater than or equal to e 3 ⁇ 4 ⁇ is selected.
  • the higher the coding efficiency of the MCS the greater the spectral efficiency of the codeword. Therefore, the number of layers is reduced in step ⁇ , and the MCS with higher coding efficiency can be selected.
  • Case f4 When the preset number of transmit antennas is 4, when the RI in the received feedback information is 4, according to the channel quality information (ie, CQI1 and CQI2) of the two codewords in the received feedback information, each is obtained.
  • the spectral efficiency of the codewords is selected as the current modulation and coding scheme of the base station, wherein the value of the spectral efficiency corresponding to the current modulation and coding scheme is greater than or equal to the maximum of the spectral efficiencies of all acquired codewords.
  • the two codewords are mapped to two layers, and the spectral efficiencies of the two codewords are 2 ' e #i and 2 ' e #2 respectively. , 2 'H , and then select the MCS whose spectral efficiency is greater than or equal to e , as the MCS when the RI is 1
  • the base station can select the MCS with higher coding efficiency after performing the de-rank operation, and reduce the impact of performing the de-rank operation on the throughput between the base station and the terminal.
  • step 304 An implementation scheme of selecting an MCS after the de-ranking is described in detail in the foregoing step 304.
  • an execution scheme for selecting the MCS after the re-ranking is also provided.
  • the step 305 is performed.
  • the designer can select step 304, or step 305, according to actual needs.
  • Step 305 Obtain a total spectrum efficiency corresponding to all codewords according to CQI and RI in the received feedback information. Select a modulation and coding scheme as a current modulation and coding scheme of the base station, where a spectrum efficiency corresponding to the current modulation and coding scheme is used. The value of, greater than or equal to the value of the total spectral efficiency corresponding to all acquired codewords.
  • the MCS in the step 305 that the selected spectrum efficiency is greater than or equal to the total spectrum efficiency value of all the acquired codewords is used as the MCS when the current RI is 1.
  • the method determines whether the downlink channel has experienced small-scale deep fading according to the received feedback information, and when the determination result is yes, performs a re-rank operation, thereby reducing the number of transmission layers and reducing transmission. Error rate.
  • the base station includes: a receiving unit 10, a first judging unit 20, a second judging unit 30, and a de-ranking unit 40.
  • the base station may further include: a sending unit 50.
  • the receiving unit 10 is configured to receive feedback information sent by the terminal, where the feedback information includes at least: channel quality information (CQI) and RI;
  • CQI channel quality information
  • RI RI
  • the channel quality information in the feedback information received by the receiving unit 10 may include two parameters, which are two codes respectively.
  • the channel quality parameters of the word can be represented by CQI1 and CQI2.
  • the first determining unit 20 is configured to determine whether the RI in the received feedback information is greater than 1, if yes, notify the second determining unit 30, and if not, do not perform any operation;
  • the second determining unit 30 is configured to: when the judgment result in the first determining unit is: when the rank indication in the feedback information is greater than 1, determine the downlink channel according to the received CQI and the preset information. Whether or not a small-scale deep fading has been experienced, and if so, the execution of the de-ranking unit 40 is notified, and if not, no operation is performed.
  • the second determining unit 30 determines whether the downlink channel experiences a small-scale deep fading, and specifically determines whether the total spectral efficiency corresponding to all the codewords is smaller than a threshold of the small-scale deep fading. If yes, the downlink channel experiences. The small-scale deep fading is notified to execute the de-rank unit 40.
  • the second judging unit 30 may also have other specific judging methods, which should be understood as limitations of the embodiment.
  • the de-ranking unit 40 is configured to: when the determining result in the second determining unit is: when the downlink channel experiences small-scale deep fading, the value indicated by the rank less than the rank in the feedback information is used as the current rank indication of the base station.
  • the base station determines, according to the feedback information received by the receiving unit 10, when the first determining unit 20 determines that the RI is greater than 1, the second determining unit 30 determines whether the downlink channel has experienced a small scale. Deep fading, when the judgment result is YES, the rank retreating operation is performed, thereby reducing the number of transmission layers and reducing the transmission error rate. Thereby ensuring communication quality and providing users with a better experience.
  • the base station may further include: a sending unit 50, configured to send downlink control information to the terminal, where the downlink control information includes a number of current layers, the number of the layers, and a current rank of the base station The instructions are the same.
  • a sending unit 50 configured to send downlink control information to the terminal, where the downlink control information includes a number of current layers, the number of the layers, and a current rank of the base station The instructions are the same.
  • the terminal can know the number of layers to which all code words in the base station are mapped, so that the received signal can be decoded more easily.
  • the second determining unit 30 may specifically include: a first obtaining unit 301, a second acquiring unit 302, a third obtaining unit 303, and a third determining unit 304.
  • the first obtaining unit 301 is configured to obtain, according to the preset information and the received feedback information, a spectrum efficiency corresponding to channel quality information of each codeword.
  • the preset information may include:
  • the base station is in a closed-loop spatial multiplexing mode, and the number of codewords is 2. Therefore, it is easy to determine that the channel quality information in the feedback information includes channel information of two codewords, respectively CQI1 and CQI2, and the spectrum effl, eff2 corresponding to CQI1 and CQI2 are easily obtained, which is a prior art, and is not detailed. .
  • the second obtaining unit 302 is configured to: according to the channel of each codeword acquired by the first acquiring unit 301 The spectral efficiency corresponding to the quality information, the RI in the received feedback information, and the layer mapping relationship information in the preset information, to obtain the spectral efficiency of each codeword;
  • the third obtaining unit 303 is configured to obtain a total spectral efficiency corresponding to all the codewords according to the obtained spectral efficiency of each codeword.
  • the process of obtaining the total spectrum efficiency corresponding to all the codewords in the third obtaining unit 303 can be easily obtained by referring to the description in the first and second embodiments of the method.
  • the third determining unit 304 is configured to determine whether the total spectral efficiency corresponding to all the codewords acquired by the second acquiring unit 302 is less than (or lower than) the preset threshold of the small-scale deep fading, and if yes, the notification is performed. Rank unit 40.
  • the base station can further implement a more reasonable modulation coding (MCS) scheme according to the current RL after performing the de-rank operation. Therefore, the base station may further include: a selective modulation coding scheme unit 60.
  • MCS modulation coding
  • the modulation and coding scheme unit 60 is configured to select a modulation and coding scheme (MCS) according to the CQI and RI in the received feedback information when the RI is 1 after performing the de-ranking in the de-ranking unit 40.
  • MCS modulation and coding scheme
  • the selection MCS unit 60 can have a variety of configurations. The details are as follows:
  • Selecting the MCS unit 60 may specifically include: a first selection MCS unit 601.
  • the first selection MCS unit 602 is configured to select the MCS as the MCS after the de-rank according to the preset number of transmit antennas and the CQI in the received feedback information and the RI in the feedback information.
  • the following may specifically include:
  • the channel quality information of the two codewords (ie, CQI1 and CQI2) is larger.
  • Quality information, select MCS use the selected MCS as the MCS when the current RI is 1; or, when the preset number of transmit antennas is 4, when the RI in the received feedback information is 2, according to the received feedback information
  • the channel quality information of the channel quality information of the two codewords (ie, CQI1 and CQI2) is larger, and the MCS is selected, and the selected MCS is used as the MCS when the current RI is 1.
  • the selection MCS unit 60 may further include: a first obtaining unit 301 and a second acquiring unit 302, on the basis of the first selecting MCS unit 601.
  • the first obtaining unit 301 and the second obtaining unit 302 may exist independently in the selecting MCS unit 60, or may exist independently in the second determining unit 30; or may select the MCS unit 60 and the second determining unit. 30 shares two acquisition units.
  • the method further includes: a first obtaining unit 301, a second obtaining unit 302; and then the first selecting MCS unit 601 is further configured to:
  • each codeword is obtained according to the channel quality information (ie, CQI1 and CQI2) of the two codewords in the received feedback information.
  • the spectral efficiency of the spectrum is selected as the current modulation and coding scheme of the base station, where the value of the spectral efficiency corresponding to the current modulation and coding scheme is greater than or equal to the maximum of the spectral efficiency of all the acquired codewords. It can also be understood as selecting an MCS whose spectral efficiency is greater than or equal to the acquired spectral efficiency value of a larger codeword, and using the selected MCS as the MCS when the current RI is 1.
  • the preset number of transmit antennas is 4, when the RI in the received feedback information is 4, according to the channel quality information (ie, CQI1 and CQI2) of the two codewords in the received feedback information, each is obtained.
  • the spectral efficiency of the codeword is selected as the current modulation and coding scheme of the base station, where the value of the spectral efficiency corresponding to the current modulation and coding scheme is greater than or equal to the spectral efficiency of all the acquired codewords.
  • Maximum value can also be understood as selecting the MCS whose spectral efficiency is greater than or equal to the spectral efficiency value of the acquired larger codeword, and using the selected MCS as the MCS when the current RI is 1.
  • the selecting MCS unit 60 may further include: a second selection MCS unit 602, configured to obtain, according to the total spectrum efficiency corresponding to all codewords acquired in the third obtaining unit 303,
  • the modulation coding scheme is selected as the current modulation and coding scheme of the base station, where the value of the spectral efficiency corresponding to the current modulation and coding scheme is greater than or equal to the value of the total spectral efficiency corresponding to all the acquired codewords.
  • the selected modulation and coding scheme is: the spectral efficiency corresponding to the modulation and coding scheme is greater than or equal to the total spectral efficiency corresponding to all the codewords, and is the MC S when the current RI is 1.
  • the base station determines whether the downlink channel has experienced small-scale deep fading according to the received feedback information, and when the determination result is yes, performs a re-rank operation, thereby reducing the number of transmission layers and reducing the transmission error rate. . Since the MCS unit 60 is selected, the base station can select the MCS with higher coding efficiency after performing the de-rank operation, and reduce the impact of performing the de-rank operation on the throughput between the base station and the terminal.
  • An embodiment of the present invention provides a communication system, as shown in FIG. 5, including: a terminal 100 and a base station 200.
  • the terminal 100 is configured to send feedback information to the base station 200, where the feedback information includes at least: channel quality information (CQI) and RI;
  • CQI channel quality information
  • RI RI
  • the base station 200 is configured to receive feedback information sent by the terminal, where the feedback information includes at least: channel quality information (CQI) and RI; determining whether the RI in the received feedback information is greater than 1, and if yes, according to the received CQI and The preset information determines whether the downlink channel has experienced small-scale deep fading, and if so, performs a de-rank operation, so that the RI after the de-ranking is smaller than the RI included in the feedback information.
  • CQI channel quality information
  • RI channel quality information
  • the preset information determines whether the downlink channel has experienced small-scale deep fading, and if so, performs a de-rank operation, so that the RI after the de-ranking is smaller than the RI included in the feedback information.
  • the base station 200 determines whether the downlink channel has experienced small-scale deep fading when determining that the RI is greater than 1 according to the received feedback information sent by the terminal 100.
  • the rank retreating operation is performed, thereby reducing the number of transmission layers and reducing the transmission error rate. This ensures communication quality and provides users with a better experience.
  • the base station 200 is further configured to send downlink control information to the terminal, where the downlink control information includes a number of layers after the de-ranking, and the number of layers is the same as the RI.
  • the base station 200 is further configured to: when performing the de-ranking in the performing the de-ranking unit 40, when the RI is 1, select a modulation and coding scheme (MCS) according to the CQI and the RI in the received feedback information.
  • MCS modulation and coding scheme
  • the base station 200 in the communication system provided in this embodiment may be the base station provided in the previous embodiment.
  • the base station 200 in the communication system provided in this embodiment may be the base station provided in the previous embodiment.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can include: ROM, RAM, disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种空间复用模式中 的方法、 基站及通信系统 本申请要求于 2009年 09月 29日提交中国专利局、 申请号为
200910196894.5 , 发明名称为"一种空间复用模式中退秩的方法、 基站及通 信系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通讯技术领域, 具体涉及一种空间复用模式中退秩的 方法、 基站及通信系统。 背景技术 空间复用传输技术将一个数据流拆分为多层, 在空间各层传输, 大大 提高了通信系统的可靠性和传输速率, 已经被长期演进(LTE, Long Time Evolution ) 系统规定为下一代网络的传输技术。 为了配合空间复用模式, LTE 协议中指定了用户在该模式下需要反馈的信息包括: 信道质量信息 ( CQI, Channel Quality Information ), 预编码矩阵(PMI, Precoding Matrix Indicator )和秩指示(RI, Rank Indicator )。 其中, CQI可以表示下行信道 质量信息, 基站根据用户上报的 CQI来选择合适的调制编码方案 (MCS, Modulation and Coding Scheme ); 基站接收到用户上报的 RI后, 由于用户 所支持的复用数据流数目与 RI相等, 可以获知在当前的空间复用模式下, 用户所支持的复用数据流数目。还需要说明的是,基站根据用户上报的 CQI、 RI和 PMI, 可以确定基站的传输数据的速率、 发射功率、 秩(用 RI参数表 示)、 自适应调制编码( AMC ) 的格式等发射参数。
基站接收到用户反馈的 RI后, 可以采用用户反馈的 RI进行后续的传 输操作(如执行 MCS选择、 预编码操作等)但是, 现有技术中当下行信道 质量不理想时, 基站不能够降低自身发射信号的 RI, 而是采用用户反馈的 RI, 因此, 导致下行信道传输出错率高, 不能保证通信质量。 发明内容 本发明实施例提供一种空间复用模式中退秩的方法、基站及通信系统。 本发明实施例具体可以通过如下技术方案实现:
一方面, 提供了一种空间复用模式中退秩的方法, 该方法包括: 接收终端发送的反馈信息,所述反馈信息中至少包括信道质量信息和秩指 示;
当所述反馈信息中秩指示大于 1时,根据所述信道质量信息和预置的信息, 判断下行信道是否经历了小尺度深衰落, 如果是, 以小于所述反馈信息中 秩指示的值作为基站当前秩指示。
还提供了一种基站, 该基站包括: 接收单元、 第一判断单元、 第二判 断单元和执行退秩单元;
所述接收单元, 用于接收终端发送的反馈信息, 所述反馈信息中至少 包括信道质量信息和秩指示;
所述第一判断单元, 用于判断所述反馈信息中的秩指示是否大于 1; 所述第二判断单元, 用于当所述第一判断单元中判断结果为: 所述反 馈信息中的秩指示大于 1时, 根据所述信道质量信息和预置的信息, 判断下 行信道是否经历了小尺度深衰落;
所述执行退秩单元, 用于当所述第二判断单元中判断结果为: 所述下 行信道经历了小尺度深衰落时, 以小于所述反馈信息中秩指示的值作为基 站当前秩指示。 通信系统, 包括: 终端和基站;
所述终端, 用于发送反馈信息, 所述反馈信息中至少包括信道质量信 息和秩指示;
所述基站为上述基站。
本发明实施例采用根据接收到的反馈信息, 判断下行信道是否经历了 小尺度深衰落, 当判断结果为是时, 执行退秩操作, 从而减少了传输层数, 降低传输出错率。 从而保证通信质量, 为用户提供更好的体验。
附图说明 图 1是本发明一实施例中关于采用空间复用的设备在物理层的操作示 意简图;
图 2是本发明一实施例提供的一种空间复用模式中退秩的方法的流程 简图;
图 3是本发明另一实施例提供的一种空间复用模式中退秩的方法的流 程简图;
图 4是本发明一实施例提供的一种基站的逻辑单元图;
图 5是本发明一实施例提供的一种通信系统示意图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明实施例提供一种空间复用模式中退秩的方法, 本发明实施例还 提供相应的基站及通信系统。 以下分别进行详细说明。
本发明一实施例提供一种空间复用模式中退秩的方法, 在对本实施例 做说明之前, 需要理解的是, 在 LTE系统中采用空间复用技术的设备, 在物 理层传输数据的操作顺序包括: 对码字加扰、 对加扰后的码字进行调制映 射、 对调制映射后的码字进行层映射、 对层映射后的码字进行预编码、 将 预编码后的码字通过天线发射出去。 如图 1所示, 为采用空间复用的设备在 物理层的操作示意简图。
其中, 为了便于理解, 还需要说明: 层表示空间复用时, 在同一时频 资源上支持的复用数据流数目, 且层数等于基站最终确定的 RI, 目前可以 实现的最多层数为 4层; 码字表示独立的数据流, 码字数目通常为 1或者 2, 每个码字经过层映射, 可以映射到一层或者两层, CQI可以用于表示码字的 信道质量信息。 在本实施例中以码字数目为 2的情况进行说明, 即基站中具 有 2个独立的数据流, 与采用 1个数据流的传输的情况相比, 采用 2个独立数 据流可以提高数据传输速率。
还需要说明的是, 下行空间复用传输模式包括: 开环空间复用 ( Open-loop Spatial Multiplexing; 或者称为大延迟循环延迟分集, Large Delay Cyclic Delay Diversity ), 和闭环空间复用 ( Closed-loop Spatial Multiplexing )。 当基站接收到终端发送的反馈信息后,根据自身存储的传输 模式信息 (如: 基站中存储有当前处于开环空间复用, 或者处于闭环空间 复用的传输模式信息), 可以判断出当前的空间复用传输模式是开环空间复 用, 还是闭环空间复用。 或者根据反馈信息中是否有预编码矩阵(PMI, Precoding Matrix Indicator ), 可以判断出当前的空间复用传输模式是开环空 间复用, 还是闭环空间复用; 由于在闭环空间复用时, 用户发送给基站的 反馈信息中会包括 PMI, 因此,基站可以获知当前的空间复用传输模式是开 环空间复用, 还是闭环空间复用。
当基站根据预置的信息 (例如码字数目信息, 下行数据传输采用的下 行空间复用传输模式信息等), 判断出当前的码字数目为 2, 下行数据传输 采用的是开环空间复用模式, 且接收的反馈信息中 RI大于 1, 则终端在同一 时刻上报的一个全频带 CQI, 可以用来表示每个码字的信道质量; 当基站根 据预置的信息, 判断出当前的码字数目为码字数目为 2, 下行数据传输采用 的是闭环空间复用模式, 且接收的反馈信息中 RI大于 1, 则终端在同一时刻 上报的两个全频带 CQI分别表示两个码字的信道质量。
在本实施例中提供的一种空间复用模式中退秩的方法, 以闭环空间复 用模式为例做说明。
下面对本实施例提供的一种空间复用模式中退秩的方法做说明, 如图 2 所示, 该方法包括:
步骤 1 : 基站接收终端发送的反馈信息, 该反馈信息中至少包括: 信道 质量信息 (CQI )和 RI; 步骤 2: 当判断出反馈信息中的 RI大于 1时,根据接收到的 CQI和预置的 信息, 判断下行信道是否经历了小尺度深衰落, 如果是, 执行步骤 3, 如果 否, 结束流程;
其中, 步骤 2中判断下行信道是否经历小尺度深衰落的具体判断方法可 以包括: 判断基站中所有码字对应的总的频谱效率是否低于小尺度深衰落 的门限值, 如果是, 则基站判断出该下行信道经历了小尺度深衰落, 执行 步骤 3, 如果不是, 则结束流程。
步骤 3: 以小于所述反馈信息中秩指示的值作为基站当前秩指示; 其中, 以小于所述反馈信息中秩指示的值作为基站当前秩指示的操作 也可以理解为: 执行退秩操作, 使得退秩后得到的 RI比反馈信息中包括的 RI小 (或者低)。
需要说明的是, 步骤 3中所说的退秩操作是基站减小 RI参数的取值, 即 基站中 RI参数的取值是小于反馈信息中的 RI值, 其中, RI的取值是整数, 通常为 1、 2、 3、 或者 4。
基站中接收到的 UE发送的反馈信息中的 RL该 RI是 UE对下行信道质量 进行的测量而获取的, 但是, 由于仅仅依据 UE发送的 RI不能对下行链路的 质量进行准确的估计, 如果基站采用 UE发送的 RI发送下行数据, 则可能导 致 UE接收到数据的正确率降低。 因此, 基站执行步骤 2和步骤 3, 从而选择 更合理的 RI, 对下行信道质量进行更合理的评估, 从而可以选择合理的方 案发送下行数据。 其中, 根据 RI对下行链路质量的判断操作可以与现有技 术相同。
其中, 由于层个数等于基站最终确定的 RI, 即基站进行退秩操作后得 到的 RI, 退秩操作后基站中具有的层个数减少, 码字映射到层上, 再传输 出基站, 由于码字被映射的层数减少, 映射后层与层之间的干扰也会降低, 使得接收端 (或者终端) 中接收到的数据的误码率得到降低。
为说明的方便, 在一个可选的实施例中, 基站执行将 RI降为 1的退秩操 作, 不难理解, 退秩后 RI也可以为 2或者 3。
同时上述步骤 1至步骤 3的说明, 使得基站实现了退秩操作, 根据接收 到的反馈信息, 判断下行信道是否经历了小尺度深衰落, 当判断结果为是 时, 执行退秩操作, 从而减少了传输层数, 降低传输出错率。 从而保证通 信质量, 为用户提供更好的体验。
可选的, 本实施例中提供的一种空间复用模式中退秩的方法, 还可以 包括:
步骤 4: 发送下行控制信息给所述终端, 该下行控制信息中包括当前层 的个数, 所述层的个数与所述基站当前秩指示相同。
通过执行步骤 4, 使得终端可以获知到基站中所有码字被映射到的层的 个数, 从而可以解调出接收到的信号。 对于退秩后 RI为取值 1, 则该下行控 制信息中包括退秩后的层的个数为一个; 对于退秩后 RI为取值 2, 则该下行 控制信息中包括退秩后的层的个数为二个; 对于退秩后 RI为取值 3, 则该下 行控制信息中包括退秩后的层的个数为三个。
其中, 还需要说明的是, 上述步骤 2中判断基站中所有码字所对应的总 的频谱效率是否低于小尺度深衰落的门限值具体可以包括:
步骤 S1 : 根据预置的信息和接收到的反馈信息, 获取每个码字的信道 质量信息对应的频谱效率;
其中, 步骤 S1中所说的预置信息可以包括: 码字数目信息和下行空间 复用传输模式。 若基站处于闭环空间复用模式, 且码字数为 2, 则基站接收 到反馈信息中的的 CQI包括两个参数值: CQI1和 CQI2, 分别表示两个码字 的信道质量信息参数。 根据获取的 CQI1和 CQI2, 基站可以根据自身存储的 列表, 查找到与 CQI1、 CQI2分别对应的频谱效率 effl、 eff2。
步骤 S2: 根据获取的每个码字的信道质量信息对应的频谱效率, 以及 接收到的反馈信息中的 RI和预置的层映射关系信息, 获取每个码字的频谱 效率;
其中, 上述步骤 S2中预置的层映射关系信息, 具体可以是在基站中最 近一次下行传输数据时, 将码字映射到层的关系。 例如: 对本实施例中所 举例的两个码字, 基站中最近一次下行传输数据时的层数为 3层的情况, 预 置的层映射关系包括: 第一个码字被映射在一层, 第二个码字被映射到另 外两层, 具体映射的过程是现有技术, 这里不再赘述。
步骤 S3 : 根据获取的每个码字的频谱效率, 获取所有码字对应的总的 频谱效率;
其中, 需要说明的是, 码字上的数据就是在基站生成的 (或者说第几 个码字就是基站定义的), 因此, 基站中可以获知 2个码字与层之间映射关 系, 如下式(1 )所示为可能的码字与层之间的映射关系:
A = 1, /2 = 1 RI = 2
lx = \, l2 = 2 RI = 3
ll = 2, l2 = 2 RI = 4 其中, i表示两个码字中的第 1个码字和第 2个码字, i的取值为 1或者 2, /;表示第 i个码字映射的层数, 如: RI为 2时, 表示该空间复用模式中所有码 字可以被映射在两层中, 其中, 通常是将第 1个码字、 第 2个码字分别被映 射到各一层中; 当 RI为 3时, 该空间复用模式中 2个码字可以被映射的层数 为 3层,通常将第 1个码字映射到一层(即 = 1 ),将第 2个码字映射到两层(即 /2 = 2 ); 当 RI为 4时, 该空间复用模式中 2个码字可以被映射的层数为 4层, 通常是将每个码字各自映射两层, 每个码字映射的层与层之间是独立的。
根据码字与层之间的映射关系, 和已经获取的每个码字的信道质量信 息对应的频谱效率, 可以容易的获取到所有码字对应的总的频谱效率, 如 下式(2 )所示:
Figure imgf000009_0001
其中, 6# 表示所有码字对应的总的频谱效率; ^ 表示第 1个码字的 频谱效率; e#2 · /2表示第 2个码字的频谱效率。
对于将 1个码字映射到两个层的情况, 这两个层中每层上承载的码元数 目相同, 则该码字的频谱效率是每层上承载的码元的频谱效率的和(因此, 第 1个码字的频谱效率 K 第 2个码字的频谱效率为 e#2 J2;)。
步骤 S4: 判断获取的所有码字对应的总的频谱效率是否小于(即低于) 预置的小尺度深衰落的门限值, 如果是, 则触发执行退秩操作, 即执行步 骤 3, 如果否, 则结束流程。
其中, 需要说明的是, 步骤 3中所说的小尺度深衰落的门限值的具体设 置值, 与信道传播环境有关, 可以根据信道传播环境设定不同的门限值。 如果所有码字对应的总的频谱效率小于门限值(用 e# 表示), 则认为下行 信道经历了小尺度深衰落, 基站执行退秩操作。 以上是对闭环空间复用模式中, 判断基站中所有码字所对应的总的频 谱效率是否低于小尺度深衰落的门限值的具体操作, 对于开环空间复用模 式中的执行方法,由于终端在同一时刻只上报一个全频带 CQI表示每个码字 的信道质量信息,基站根据这一个 CQI在自身存储的列表, 查找到对应的频 谱效率 eff, 即获取到每个码字的信道质量信息对应的频谱效率; 所有码字 对应的总的频谱效率则是每个码字的信道质量信息对应的频谱效率的 N倍, 这里的 N为基站中的层的数目,后续的操作与闭环空间复用模式中的操作相 同, 可以参考对闭环空间复用模式中退秩操作的说明, 这里不再重述。
本发明另一实施例提供一种空间复用模式中退秩的方法, 该方法是在 前述实施例提供的方法的基础上, 增加了基站在退秩后, 选择调制编码方 案 (MCS ) 的操作, 使得基站在退秩后可以更合理的选择 MCS, 从而保证 基站与终端之间的通信质量。
如图 3所示, 介绍了本发明一个实施例提供的一种空间复用模式中退秩 的方法。 其中步骤 301、 302与图 2所示实施例中的步骤 1、 2相同, 具体可以 参考图 2所示实施例中的说明。
步骤 303: 以小于所述反馈信息中秩指示的值作为基站当前秩指示。 其中, 步骤 303中基站降低 RI为 1, 使得基站在退秩对码字进行的层映 射更简单, 且可以保证通信质量。
步骤 304: 根据预置的发射天线数目和接收到的反馈信息中的 CQI、 反 馈信息中 RI, 确定退秩后的 MCS。
其中, 在对步骤 304做说明之前, 需要说明的是, 在空分复用模式中, RI通常是小于或等于天线数目的。
上述步骤 304中根据发射天线数目和接收到的反馈信息中的 CQI、 RI, 选择 MCS, 由于对于一个特定的基站, 其发射天数的数目是已知的, 则下 面对于基站中具有预置的发射天线数据的情况下 (其中, 各种情况之间是 并列的关系), 下面以基站选址 MCS的操作为例进行说明, 具体包括:
情况 fl : 当预置的发射天线数目为 2时, 且接收到反馈信息中的 RI为 2 时,则根据接收到的反馈信息中两个码字的信道质量信息(即 CQI1和 CQI2 ) 中值较大的信道质量信息, 选择 MCS, 将选择的 MCS作为当前 RI为 1时的 MCS;
还需要理解的是, 本实施例中基站采用闭环空分复用模式发射信号, 因此, 基站接收到的 CQI包括两个码字的信道质量信息, 即 CQI1和 CQI2。 对于基站采用开环空分复用模式发射信号的情况, 由于基站接收到的 CQI 是用一个 CQI参数表示的, 这一个 CQI参数可以表示每个码字的信道质量信 息。 则不需要选取两个码字的信道质量信息中值较大的信道质量信息, 因 为, 两个码字的信道质量信息中都用基站接收到的一个 CQI参数值表示, 是 相同的。 所以, 对于开环空分复用模式发射信号的情况, 基站退秩后选择 MCS的操作, 可以根据基站接收到的一个 CQI参数值, 选择 MCS, 将选择 的 MCS作为当前 RI为 1时的 MCS。
还需要理解的是, 由于退秩后, 基站中的 RI为 1, 则基站中将两个码字 映射到唯一的层上, 采用这种映射发射信号, 在接收端获取的每个码字的 CQI参数的值, 将会比根据 RI为大于 1时发射信号时获取的每个码字的 CQI 参数的值大。 也就是说, 当两个码字映射到同一层时 (即 RI为 1时), 可以 获得更好的通信质量, 则可以选择更高编码效率的 MCS。 因此, 在情况 fl 中, 根据接收到的反馈信息中两个码字的信道质量信息 (即 CQI1和 CQI2 ) 中值较大的信道质量信息, 选择 MCS。 也就是将
Figure imgf000011_0001
, 近 似为 RI为 1时,接收端估计出的码字的信道质量信息。根据 CQImiX,选择 MCS。
其中, 根据 CQI参数的值, 选择 MCS具体可以参考对应的表格, 具体操 作可以参考现有技术。
情况 : 当预置的发射天线数目为 4时, 且接收到反馈信息中的 RI为 2 时,则根据接收到的反馈信息中两个码字的信道质量信息(即 CQI1和 CQI2 ) 中值较大的信道质量信息, 选择 MCS; 将选择的 MCS作为当前 RI为 1时的 MCS;
其中, 情况 G与情况 fl相似, 不同之处在于基站发射天线数目不同, 采 用不同的发射天线数目。 需要理解的是, RI的取值是与基站中进行层映射 的层数相同的, 层的数目可以代表空分复用模式中有效天线数目, 该有效 发射天线数目小于等于实际发射天线数目。 由式(1 )可知, 当 RI为 2时, 每个码字个映射到不同的一层上。 则当 RI降低为 1时, 则根据接收到的反馈 信息中两个码字的信道质量信息(即 CQI1和 CQI2 ) 中值较大的信道质量信 息, 选择 MCS
情况 β : 当预置的发射天线数目为 4时, 接收到反馈信息中的 RI为 3时, 则根据接收到的反馈信息中两个码字的信道质量信息 (即 CQI1和 CQI2 ), 获取每个码字的频谱效率; 选择调制编码方案作为基站当前的调制编码方 案, 其中, 当前的调制编码方案所对应的频谱效率的值, 大于或者等于所 述获取的所有码字的频谱效率中的最大值;
其中, 需要说明的是, 如果上报的 RI为 3, 则第一个码字映射到一个层 上,第二个码字映射到两个层上,此时两个码字频谱效率分别为^和 2 ' e#2 取 2'U, 然后选择频谱效率大于或等于 e#ma^々MCS, 作为退秩 使得 RI为 1时的 MCS。 其中, 由于在基站中通常是预置有频谱效率与 MCS 对应的列表, 可以根据频谱效率查询到 MCS, 频谱效率的取值具体可以是 分段的数值, 则 MCS是每个频谱效率数值对应的, 如果基站获取的6#皿在 列表中没有相同的频谱效率数值, 则选择频谱效率最近且大于或者等于 e¾ ^的 MCS。 通常, MCS的编码效率越高, 码字的频谱效率则越大。 因此, 步骤 β中降低了层数, 可以选择编码效率更高的 MCS
情况 f4: 当预置的发射天线数目为 4时, 接收到反馈信息中的 RI为 4时, 则根据接收到的反馈信息中两个码字的信道质量信息 (即 CQI1和 CQI2 ), 获取每个码字的频谱效率; 选择调制编码方案作为基站当前的调制编码方 案, 其中, 当前的调制编码方案所对应的频谱效率的值, 大于或者等于获 取的所有码字的频谱效率中的最大值。
其中, 需要说明的是, 如果上报的 RI为 4, 则两个码字均映射到两层, 此时两个码字的频谱效率分别为 2 ' e#i和 2 ' e#2 取 靈 =、2'H 、, 然后 选择频谱效率大于或等于 e 的 MCS, 作为退秩使得 RI为 1时的 MCS
通过上述对情况 fl至情况 f4的说明, 使得基站在进行退秩操作后, 可以 选择编码效率更高的 MCS, 降低执行退秩操作对基站与终端之间的吞吐量 的影响。
上述步骤 304中详细的说明了一种退秩后选择 MCS的执行方案,本实施 例中还提供了一种退秩后选择 MCS的执行方案,如下步骤 305所述,步骤 305 可以作为步骤 304的替换方案, 设计人员可以根据实际需要选择步骤 304, 或者步骤 305。
步骤 305: 根据接收到的反馈信息中的 CQI、 RI, 获取所有码字对应的 总的频谱效率; 选择调制编码方案作为基站当前的调制编码方案, 其中, 当前的调制编码方案所对应的频谱效率的值, 大于或者等于获取的所有码 字对应的总的频谱效率的值。
其中, 步骤 305中根据接收到的反馈信息中的 CQI、 RI, 获取所有码字 对应的总的频谱效率的具体操作可以参考上述实施例中的步骤 S 1和 S2。
步骤 305中所说的选择频谱效率大于或者等于获取的所有码字对应的 总的频谱效率值的 MCS, 作为当前 RI为 1时的 MCS, 具体操作可以包括: 在基站中存储有一张 MCS表格, 每一种 MCS都对应一个频谱效率值 SEi, 按照从大到小的顺序排: SE0<=SE1<=SE2....<=SE28,找出一个 MCSi ( i表示 MCS的索引), 满足 SEi<= e#∞m <SEi+l。
通过上述对本实施例的说明, 该方法采用根据接收到的反馈信息, 判 断下行信道是否经历了小尺度深衰落, 当判断结果为是时, 执行退秩操作, 从而减少了传输层数, 降低传输出错率。
本发明一实施例提供一种基站, 该基站可以执行上述任一实施例中所 说明的方法。 如图 4所示, 该基站包括: 接收单元 10、 第一判断单元 20、 第 二判断单元 30和执行退秩单元 40。 可选的, 该基站还可以包括: 发送单元 50。
其中, 接收单元 10, 用于接收终端发送的反馈信息, 该反馈信息中至 少包括: 信道质量信息 (CQI )和 RI;
需要说明的是, 对于闭环空分复用的模式, 且码字为 2时, 接收单元 10 中接收到的反馈信息中信道质量信息可以是包括两个参数, 这两个参数分 别是两个码字的信道质量参数, 可以用 CQI1、 CQI2来表示这两个参数。
第一判断单元 20, 用于判断接收到的反馈信息中的 RI是否大于 1, 如果 是, 通知第二判断单元 30, 如果否, 不执行任何操作;
第二判断单元 30, 用于当所述第一判断单元中判断结果为: 所述反馈 信息中的秩指示大于 1时, 根据接收到的 CQI和预置的信息, 判断下行信道 是否经历了小尺度深衰落, 如果是, 通知执行退秩单元 40, 如果否, 不执 行任何操作。
其中, 第二判断单元 30中判断下行信道是否经历了小尺度深衰落, 具 体可以是判断所有码字对应的总的频谱效率是否小于小尺度深衰落的门限 值, 如果是, 则下行信道经历了小尺度深衰落, 则通知执行退秩单元 40。 其中, 第二判断单元 30也可以有其它具体的判断方法, 此处比应该理解为 对本实施例的限制。
执行退秩单元 40, 用于当所述第二判断单元中判断结果为: 所述下行 信道经历了小尺度深衰落时, 以小于所述反馈信息中秩指示的值作为基站 当前秩指示。
通过上述对本实施例提供的基站的说明, 该基站根据接收单元 10接收 到的反馈信息, 当第一判断单元 20判断出 RI大于 1时, 由第二判断单元 30判 断下行信道是否经历了小尺度深衰落, 当判断结果为是时, 执行退秩操作, 从而减少了传输层数, 降低传输出错率。 从而保证通信质量, 为用户提供 更好的体验。
可选的, 该基站还可以包括: 发送单元 50, 用于发送下行控制信息给 所述终端, 所述下行控制信息中包括当前层的个数, 所述层的个数与所述 基站当前秩指示相同。
通过增加发送单元 50, 使得终端可以获知到基站中所有码字被映射到 的层数, 从而可以更容易解码出接收到的信号。
可选的, 第二判断单元 30具体可以包括: 第一获取单元 301、 第二获取 单元 302、 第三获取单元 303和第三判断单元 304。
其中, 第一获取单元 301, 用于根据预置的信息和接收到的反馈信息, 获取每个码字的信道质量信息对应的频谱效率;
需要说明的是, 预置的信息可以包括: 基站处于闭环空间复用模式, 且码字数为 2。 则容易判断出反馈信息中信道质量信息包括两个码字的信道 信息,分别为 CQI1、 CQI2,则容易的获取到 CQI1、 CQI2对应的频谱效率 effl、 eff2, 此为现有技术, 不详述。
第二获取单元 302, 用于根据第一获取单元 301获取的每个码字的信道 质量信息对应的频谱效率, 接收到的反馈信息中的 RI和预置信息中的层映 射关系信息三项, 获取每个码字的频谱效率;
第三获取单元 303, 用于根据获取的每个码字的频谱效率, 获取所有码 字对应的总的频谱效率。
其中, 第三获取单元 303中详细获取到所有码字对应的总的频谱效率的 过程, 可以参考方法实施例一、 二中的说明, 而容易获得。
第三判断单元 304, 用于判断第二获取单元 302中获取的所有码字对应 的总的频谱效率是否小于 (或者低于)预置的小尺度深衰落的门限值, 如 果是, 通知执行退秩单元 40。
还需要说明的是, 该基站还可以再实现退秩操作之后, 根据当前的 RL 选择更合理的调制编码 (MCS ) 方案。 因此, 该基站还可以包括: 选择调 制编码方案单元 60。
其中, 选择调制编码方案单元 60, 用于当执行退秩单元 40中执行退秩 后, 使得 RI为 1时, 根据接收到的反馈信息中的 CQI、 RI, 选择调制编码方 案 (MCS )。
需要说明的是, 选择 MCS单元 60中执行选择 MCS的具体操作可以有多 种。 因此, 选择 MCS单元 60可以具有多种结构。 详细说明如下:
选择 MCS单元 60可以具体包括: 第一选择 MCS单元 601。
第一选择 MCS单元 602,用于根据预置的发射天线数目和接收到的反馈 信息中的 CQI、 反馈信息中的 RI, 选择 MCS作为退秩后的 MCS。
需要说明的是, 第一选择 MCS单元 602中, 可以具体包括:
当预置的发射天线数目为 2时, 接收到反馈信息中的 RI为 2时, 则根据 接收到的反馈信息中两个码字的信道质量信息(即 CQI1和 CQI2 ) 中值较大 的信道质量信息, 选择 MCS, 将选择的 MCS作为当前 RI为 1时的 MCS; 或者, 当预置的发射天线数目为 4时, 接收到反馈信息中的 RI为 2时, 则根据接收到的反馈信息中两个码字的信道质量信息(即 CQI1和 CQI2 ) 中 值较大的信道质量信息,选择 MCS,将选择的 MCS作为当前 RI为 1时的 MCS。
选择 MCS单元 60中在包括第一选择 MCS单元 601的基础上, 还可以包 括: 第一获取单元 301、 第二获取单元 302。 其中, 第一获取单元 301、 第二获取单元 302, 可以独立的存在于选择 MCS单元 60中,也可以是独立存在于第二判断单元 30中;也可以是选择 MCS 单元 60和第二判断单元 30共用两个获取单元。
如果, 选择 MCS单元 60中在包括第一选择 MCS单元 601的基础上,还可 以包括: 第一获取单元 301、 第二获取单元 302; 则第一选择 MCS单元 601还 用于:
当预置的发射天线数目为 4时, 接收到反馈信息中的 RI为 3时, 则根据 接收到的反馈信息中两个码字的信道质量信息 (即 CQI1和 CQI2 ), 获取每 个码字的频谱效率; 选择调制编码方案作为基站当前的调制编码方案, 其 中, 所述当前的调制编码方案所对应的频谱效率的值, 大于或者等于所述 获取的所有码字的频谱效率中的最大值; 也可以理解为选择频谱效率大于 或者等于获取的较大的码字的频谱效率值的 MCS, 将选择的 MCS作为当前 RI为 1时的 MCS;
或者, 当预置的发射天线数目为 4时, 接收到反馈信息中的 RI为 4时, 则根据接收到的反馈信息中两个码字的信道质量信息 (即 CQI1和 CQI2 ), 获取每个码字的频谱效率; 选择调制编码方案作为基站当前的调制编码方 案, 其中, 所述当前的调制编码方案所对应的频谱效率的值, 大于或者等 于所述获取的所有码字的频谱效率中的最大值; 也可以理解为选择频谱效 率大于或者等于获取的较大的码字的频谱效率值的 MCS, 将选择的 MCS作 为当前 RI为 1时的 MCS;
可选的, 如图 4中虚线所示, 选择 MCS单元 60也可以具体包括: 第二选 择 MCS单元 602, 用于根据第三获取单元 303中获取的取所有码字对应的总 的频谱效率, 选择调制编码方案作为基站当前的调制编码方案, 其中, 所 述当前的调制编码方案所对应的频谱效率的值, 大于或者等于所述获取的 所有码字对应的总的频谱效率的值。 也可以理解为选择的调制编码方案为: 所述调制编码方案对应的频谱效率大于或者等于所述所有码字对应的总的 频谱效率, 作为当前 RI为 1时的 MC S。
需要理解的是, 上述对本实施例提供的基站的说明, 也可以参考方法 实施例中的说明。 通过对上述基站的说明, 该基站根据接收到的反馈信息, 判断下行信 道是否经历了小尺度深衰落, 当判断结果为是时, 执行退秩操作, 从而减 少了传输层数, 降低传输出错率。 由于选择 MCS单元 60, 使得基站在进行 退秩操作后, 可以选择编码效率更高的 MCS, 降低执行退秩操作对基站与 终端之间的吞吐量的影响。
本发明一实施例提供一种通讯系统, 如图 5所示, 包括: 终端 100和基 站 200。
其中, 终端 100, 用于发送反馈信息给基站 200, 该反馈信息中至少包 括: 信道质量信息 (CQI )和 RI;
基站 200, 用于接收终端发送的反馈信息, 该反馈信息中至少包括: 信 道质量信息 (CQI )和 RI; 判断接收到的反馈信息中的 RI是否大于 1, 如果 是, 根据接收到的 CQI和预置的信息, 判断下行信道是否经历了小尺度深衰 落, 如果是, 执行退秩操作, 使得退秩后的 RI比反馈信息中包括的 RI小。
通过上述对本实施例提供的通信系统的说明, 该通信系统中基站 200根 据接收到的终端 100发送的反馈信息, 当判断出 RI大于 1时, 判断下行信道 是否经历了小尺度深衰落, 当判断结果为是时, 执行退秩操作, 从而减少 了传输层数, 降低传输出错率。 从而保证通信质量, 为用户提供更好的体 验。
可选的, 该基站 200, 还用于发送下行控制信息给终端, 该下行控制信 息中包括退秩后的层数, 层数与 RI相同。
可选的, 该基站 200, 还用于当执行退秩单元 40中执行退秩后, 使得 RI 为 1时, 根据接收到的反馈信息中的 CQI、 RI, 选择调制编码方案 (MCS )。
其中, 本实施例提供的一种通信系统中的基站 200, 可以是上一实施例 中提供的基站, 详细说明可以参考上一实施例中的说明, 此处不重述。 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算 机可读存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。
以上对本发明实施例所提供的一种空间复用模式中退秩的方法、 基站 施方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及 其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在 具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不 应理解为对本发明的限制。

Claims

权利要求
1、 一种空间复用模式中退秩的方法, 其特征在于, 包括:
接收终端发送的反馈信息, 所述反馈信息中至少包括信道质量信息和 秩指示;
当所述反馈信息中秩指示大于 1时, 根据所述信道质量信息和预置的信 息, 判断下行信道是否经历了小尺度深衰落, 如果是, 以小于所述反馈信 息中秩指示的值作为基站当前秩指示。
2、 根据权利要求 1所述的一种空间复用模式中退秩的方法, 其特征在 于, 所述根据所述信道质量信息和预置的信息, 判断下行信道是否经历了 小尺度深衰落, 具体包括:
根据所述预置的信息和所述反馈信息中的信道质量信息, 获取每个码 字的信道质量信息对应的频谱效率;
根据所述获取到的每个码字的信道质量信息对应的频谱效率, 所述反 馈信息中的秩指示、 和所述预置的信息中的层映射关系, 获取每个码字的 频谱效率;
根据所述获取的每个码字的频谱效率, 获取所有码字对应的总的频谱 效率;
判断所述所有码字对应的总的频谱效率是否小于预置的小尺度深衰落 的门限值, 如果是, 则判断出下行信道经历了小尺度深衰落。
3、 根据权利要求 1所述的一种空间复用模式中退秩的方法, 其特征在 于, 所述以小于所述反馈信息中秩指示的值作为基站当前秩指示之后, 所 述方法还包括:
若所述基站当前秩指示为 1, 根据预置的发射天线数目和所述反馈信息 中的信道质量信息和所述反馈信息中的秩指示, 选择调制编码方案。
4、 根据权利要求 3所述的一种空间复用模式中退秩的方法, 其特征在 于, 所述根据预置的发射天线数目和所述反馈信息中的信道质量信息和所 述反馈信息中的秩指示, 选择调制编码方案, 具体包括:
当预置的发射天线数目为 2, 且所述反馈信息中的秩指示为 2时, 则根 据码字的信道质量信息中较大的参数值, 选择调制编码方案作为基站当前 的调制编码方案; 所述反馈信息中的信道质量信息包括: 第一个码字的信 道质量信息参数值, 和第二个码字的信道质量信息参数值;
或者, 当预置的发射天线数目为 4, 且所述反馈信息中的秩指示为 2时, 则根据码字的信道质量信息中较大的参数值, 选择调制编码方案作为基站 当前的调制编码方案; 所述反馈信息中的信道质量信息包括: 第一个码字 的信道质量信息参数值, 和第二个码字的信道质量信息参数值;
或者, 当预置的发射天线数目为 4, 且所述反馈信息中的秩指示为 3时, 则根据所述反馈信息中的信道质量信息, 获取每个码字的频谱效率; 选择 调制编码方案作为基站当前的调制编码方案, 其中, 所述当前的调制编码 方案所对应的频谱效率的值, 大于或者等于所述获取的所有码字的频谱效 率中的最大值;
或者, 当预置的发射天线数目为 4, 且所述反馈信息中的秩指示为 4时, 则根据所述反馈信息中的信道质量信息, 获取每个码字的频谱效率; 选择 调制编码方案作为基站当前的调制编码方案, 其中, 所述当前的调制编码 方案所对应的频谱效率的值, 大于或者等于所述获取的所有码字的频谱效 率中的最大值。
5、 根据权利要求 1所述的一种空间复用模式中退秩的方法, 其特征在 于, 所述以小于所述反馈信息中秩指示的值作为基站当前秩指示之后, 所 述方法还包括:
若当前秩指示为 1, 根据所述反馈信息中的信道质量信息、 所述反馈信 息中的秩指示, 获取所有码字对应的总的频谱效率, 选择调制编码方案作 为基站当前的调制编码方案, 其中, 所述当前的调制编码方案所对应的频 谱效率的值, 大于或者等于所述获取的所有码字对应的总的频谱效率的值。
6、根据权利要求 1-5任一项所述的一种空间复用模式中退秩的方法,其 特征在于, 所述以小于所述反馈信息中秩指示的值作为基站当前秩指示之 后, 所述方法还包括:
发送下行控制信息给所述终端, 所述下行控制信息中包括当前层的个 数, 所述层的个数与所述基站当前秩指示相同。
7、 一种基站, 其特征在于, 包括: 接收单元、 第一判断单元、 第二判 断单元和执行退秩单元;
所述接收单元, 用于接收终端发送的反馈信息, 所述反馈信息中至少 包括信道质量信息和秩指示;
所述第一判断单元, 用于判断所述反馈信息中的秩指示是否大于 1; 所述第二判断单元, 用于当所述第一判断单元中判断结果为所述反馈 信息中的秩指示大于 1时, 根据所述信道质量信息和预置的信息, 判断下行 信道是否经历了小尺度深衰落;
所述执行退秩单元, 用于当所述第二判断单元中判断结果为所述下行 信道经历了小尺度深衰落时, 以小于所述反馈信息中秩指示的值作为基站 当前秩指示。
8、 根据权利要求 7所述的基站, 其特征在于, 所述第二判断单元具体 包括:
第一获取单元, 用于根据所述预置的信息和所述反馈信息中的信道质 量信息, 获取每个码字的信道质量信息对应的频谱效率;
第二获取单元, 用于根据所述获取到的每个码字的信道质量信息对应 的频谱效率, 所述反馈信息中的秩指示、 和所述预置的信息中的层映射关 系, 获取每个码字的频谱效率;
第三获取单元, 用于根据所述获取的每个码字的频谱效率, 获取所有 码字对应的总的频谱效率;
第三判断单元, 用于判断所述所有码字对应的总的频谱效率是否小于 预置的小尺度深衰落的门限值, 如果是, 则判断出下行信道经历了小尺度 深衰落。
9、 根据权利要求 7或者 8所述的基站, 其特征在于, 所述基站还包括: 第一选择编码调制单元, 用于若当前秩指示为 1, 根据预置的发射天线数目 和所述反馈信息中的信道质量信息、 所述反馈信息中的秩指示, 选择调制 编码方案。
10、 根据权利要求 9所述的基站, 其特征在于, 所述第一选择编码调制 单元具体用于: 当预置的发射天线数目为 2, 且所述反馈信息中的秩指示为 2时, 则根 据码字的信道质量信息中较大的参数值, 选择调制编码方案作为基站当前 的调制编码方案; 所述反馈信息中的信道质量信息包括: 第一个码字的信 道质量信息参数值, 和第二个码字的信道质量信息参数值;
或者, 当预置的发射天线数目为 4, 且所述反馈信息中的秩指示为 2时, 则根据码字的信道质量信息中较大的参数值, 选择调制编码方案作为基站 当前的调制编码方案; 所述反馈信息中的信道质量信息包括: 第一个码字 的信道质量信息参数值, 和第二个码字的信道质量信息参数值;
或者, 当预置的发射天线数目为 4, 且所述反馈信息中的秩指示为 3时, 则根据所述反馈信息中的信道质量信息, 获取每个码字的频谱效率; 选择 调制编码方案作为基站当前的调制编码方案, 其中, 所述当前的调制编码 方案所对应的频谱效率的值, 大于或者等于所述获取的所有码字的频谱效 率中的最大值;
或者, 当预置的发射天线数目为 4, 且所述反馈信息中的秩指示为 4时, 则根据所述反馈信息中的信道质量信息, 获取每个码字的频谱效率; 选择 调制编码方案作为基站当前的调制编码方案, 其中, 所述当前的调制编码 方案所对应的频谱效率的值, 大于或者等于所述获取的所有码字的频谱效 率中的最大值。
11、 根据权利要求 8所述的基站, 其特征在于, 所述基站还包括: 第二 选择编码调制单元, 用于若当前秩指示为 1, 根据所述第三获取单元中获取 所有码字对应的总的频谱效率, 选择调制编码方案作为基站当前的调制编 码方案, 其中, 所述当前的调制编码方案所对应的频谱效率的值, 大于或 者等于所述获取的所有码字对应的总的频谱效率的值。
12、 根据权利要求 7-11任一项所述的基站, 其特征在于, 所述基站还 包括:
发送单元, 用于发送下行控制信息给所述终端, 所述下行控制信息中 包括当前层的个数, 所述层的个数与所述基站当前秩指示相同。
13、 一种通信系统, 其特征在于, 包括: 终端和基站;
所述终端, 用于发送反馈信息, 所述反馈信息中至少包括信道质量信 息和秩指示;
所述基站, 为如权利要求 8-12任一项所述的基站。
PCT/CN2010/077438 2009-09-29 2010-09-29 一种空间复用模式中退秩的方法、基站及通信系统 WO2011038677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910196894 CN102035580B (zh) 2009-09-29 2009-09-29 一种空间复用模式中退秩的方法、基站及通信系统
CN200910196894.5 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011038677A1 true WO2011038677A1 (zh) 2011-04-07

Family

ID=43825577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077438 WO2011038677A1 (zh) 2009-09-29 2010-09-29 一种空间复用模式中退秩的方法、基站及通信系统

Country Status (2)

Country Link
CN (1) CN102035580B (zh)
WO (1) WO2011038677A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131437A1 (en) * 2014-03-04 2015-09-11 Mediatek Inc. Communication apparatuses for one radio module to listen to paging signals without breaking the data transmission of the other radio module operating in the connected mode
US9642153B2 (en) 2013-10-09 2017-05-02 Mediatek Inc. Methods for one radio module to listen to paging signals without breaking the data transmission of the other radio module operating in the connected mode and communication apparatuses utilizing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774377B2 (en) 2013-05-06 2017-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for rank adaptation
EP2822344B1 (en) 2013-07-03 2016-03-23 Telefonaktiebolaget LM Ericsson (publ) Transmission rank selection when deploying a shared radio cell
US20190253876A1 (en) * 2016-11-03 2019-08-15 Huawei Technologies Co., Ltd. Status Switching Method, Network Device, and Terminal Device
CN109936401A (zh) 2017-12-15 2019-06-25 索尼公司 电子装置、无线通信方法以及计算机可读介质
CN110474739B (zh) * 2018-05-11 2022-06-28 中兴通讯股份有限公司 调制编码及cqi上报方法、装置、设备及存储介质
CN112688727B (zh) * 2021-03-08 2021-08-31 新华三技术有限公司 一种无线通信方法、基站设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228712A (zh) * 2005-05-31 2008-07-23 高通股份有限公司 针对采用harq的mimo scw设计的秩步降
CN101388699A (zh) * 2007-09-12 2009-03-18 夏普株式会社 基于空时频域的信息反馈方法和系统、用户设备及基站
WO2009074880A2 (en) * 2007-10-02 2009-06-18 Nortel Networks Limited Rank adaptation for an open loop multi-antenna mode of wireless communication
CN101505205A (zh) * 2008-02-05 2009-08-12 夏普株式会社 基于波达方向的开环mimo方法、基站及用户设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750304B1 (en) * 2007-10-08 2018-02-28 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for signaling control information in a communication system
CN101534177B (zh) * 2009-04-03 2012-05-23 西安交通大学 Mimo系统中基于rumswf的低复杂度降秩均衡方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228712A (zh) * 2005-05-31 2008-07-23 高通股份有限公司 针对采用harq的mimo scw设计的秩步降
CN101388699A (zh) * 2007-09-12 2009-03-18 夏普株式会社 基于空时频域的信息反馈方法和系统、用户设备及基站
WO2009074880A2 (en) * 2007-10-02 2009-06-18 Nortel Networks Limited Rank adaptation for an open loop multi-antenna mode of wireless communication
CN101505205A (zh) * 2008-02-05 2009-08-12 夏普株式会社 基于波达方向的开环mimo方法、基站及用户设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642153B2 (en) 2013-10-09 2017-05-02 Mediatek Inc. Methods for one radio module to listen to paging signals without breaking the data transmission of the other radio module operating in the connected mode and communication apparatuses utilizing the same
WO2015131437A1 (en) * 2014-03-04 2015-09-11 Mediatek Inc. Communication apparatuses for one radio module to listen to paging signals without breaking the data transmission of the other radio module operating in the connected mode
US9504085B2 (en) 2014-03-04 2016-11-22 Mediatek Inc. Methods for one radio module to listen to paging signals without breaking the data transmission of the other radio module operating in the connected mode and communication apparatuses utilizing the same

Also Published As

Publication number Publication date
CN102035580A (zh) 2011-04-27
CN102035580B (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
JP6426681B2 (ja) 情報送信方法およびデバイス
WO2011038677A1 (zh) 一种空间复用模式中退秩的方法、基站及通信系统
CN109962726B (zh) 信道状态信息的非周期性反馈方法、终端
WO2012146041A1 (zh) 信道状态信息处理方法、装置及系统
KR20160051758A (ko) 다운링크 전송 방법 및 사용자 단말 장치
WO2014110931A1 (zh) 调制处理方法及装置
WO2011134322A1 (zh) 信道状态信息的反馈方法及终端
BR112013006264B1 (pt) Método, equipamento de usuário e sistema de comunicação para reportar informação de canal
US9806870B2 (en) Methods and devices for providing feedback information
WO2012068880A1 (zh) 一种信道状态信息反馈方法及装置
WO2011160451A1 (zh) 信道状态信息的反馈方法及终端
WO2014047903A1 (zh) 信道状态信息进程处理方法、网络设备和用户设备
TW201021457A (en) Systems and methods providing mobile transmit diversity
WO2012022100A1 (zh) 一种码本的配置方法、装置和系统
WO2012041107A1 (zh) 信道状态信息反馈方法及终端
JP2013530612A (ja) プリコーディング情報を送受信するための方法および装置
JP6278325B2 (ja) チャネル状態情報フィードバック方法および装置
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
WO2014161166A1 (zh) 信道状态信息上报方法、接收方法及设备
WO2014015811A1 (zh) 信道状态信息的发送方法及装置
JP5967727B2 (ja) プリコーディング情報を送受信する方法およびデバイス
WO2012062122A1 (zh) 信道状态信息反馈方法及终端
WO2012155499A1 (zh) 一种信道状态信息的发送方法和用户设备
WO2012041103A1 (zh) 信道信息反馈方法及终端
CN113892238A (zh) 基于多波束预编码器的信道状态信息

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10819906

Country of ref document: EP

Kind code of ref document: A1