WO2024069752A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024069752A1
WO2024069752A1 PCT/JP2022/035940 JP2022035940W WO2024069752A1 WO 2024069752 A1 WO2024069752 A1 WO 2024069752A1 JP 2022035940 W JP2022035940 W JP 2022035940W WO 2024069752 A1 WO2024069752 A1 WO 2024069752A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
cqi
information
report
index
Prior art date
Application number
PCT/JP2022/035940
Other languages
English (en)
French (fr)
Inventor
春陽 越後
浩樹 原田
祐輝 松村
尚哉 芝池
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/035940 priority Critical patent/WO2024069752A1/ja
Publication of WO2024069752A1 publication Critical patent/WO2024069752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • CSI channel state information
  • UE User Equipment
  • one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately reports CSI regarding the effects of movement.
  • a terminal is characterized by having a transmitter that transmits a channel state information (CSI) report, and a controller that, when at least one channel quality indicator (CQI) is included in the CSI report, determines at least one of the number of the CQIs, the bit width of the CQI, and the index of the CQI based on certain conditions.
  • CSI channel state information
  • CQI channel quality indicator
  • CSI reporting regarding the impact of movement can be performed appropriately.
  • FIG. 1 shows an example of a 16-level quantization table.
  • FIG. 2 shows an example of an 8-level quantization table.
  • 3A and 3B show an example of a Rel.16 type 2-port selection codebook.
  • 4A and 4B show an example of a Rel.17 Type 2-port selection codebook.
  • FIG. 5 shows an example of the relationship between CSI-RS resources and CSI reports.
  • FIG. 6 shows an example of a CSI-RS measurement window and a CSI reporting window.
  • FIG. 7 is a diagram illustrating an example of a framework for managing AI models.
  • 8A to 8C are diagrams showing the relationship between the CQI value and the offset level.
  • FIG. 9 is a diagram illustrating an example of AI-based CSI feedback.
  • FIG. 9 is a diagram illustrating an example of AI-based CSI feedback.
  • FIG. 10 is a diagram showing an example of a CSI report.
  • FIG. 11 is a diagram illustrating an example of a CSI report according to the first embodiment.
  • FIG. 12 is a diagram illustrating an example of a CSI reporting window according to the third embodiment.
  • FIG. 13 is a diagram showing another example of a CSI reporting window according to the third embodiment.
  • FIG. 14 is a diagram showing another example of a CSI reporting window according to the third embodiment.
  • FIG. 15 is a diagram illustrating an example of a CSI report according to the fourth embodiment.
  • FIG. 16 is a diagram showing another example of a CSI report according to the fourth embodiment.
  • FIG. 17 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 18 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 19 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 20 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 21 is a diagram illustrating an example of a vehicle according to an embodiment.
  • a terminal also referred to as a user terminal, User Equipment (UE), etc.
  • UE User Equipment
  • CSI channel state information
  • a network e.g., a base station
  • the CSI may be transmitted to the base station, for example, using an uplink control channel (e.g., a Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (e.g., a Physical Uplink Shared Channel (PUSCH)).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the RS used to generate the CSI may be, for example, at least one of a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Synchronization Signal (SS), a DeModulation Reference Signal (DMRS), etc.
  • CSI-RS Channel State Information Reference Signal
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • SS Synchronization Signal
  • DMRS DeModulation Reference Signal
  • the CSI-RS may include at least one of a Non-Zero Power (NZP) CSI-RS and a CSI-Interference Management (CSI-IM).
  • the SS/PBCH block is a block including an SS and a PBCH (and corresponding DMRS), and may be referred to as an SS block (SSB), etc.
  • the SS may also include at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSSS Secondary Synchronization Signal
  • the CSI may include at least one of a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a CSI-RS Resource Indicator (CRI), a SS/PBCH Block Resource Indicator (SSBRI), a Layer Indicator (LI), a Rank Indicator (RI), L1-RSRP (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), and L1-SNR (Signal to Noise Ratio).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • SSBRI SS/PBCH Block Resource Indicator
  • LI Layer Indicator
  • RI Rank Indicator
  • L1-RSRP Layer 1 Reference Signal Received Power
  • L1-RSRQ Reference Signal Received Quality
  • L1-SINR Signal Received Quality
  • the UE may receive information regarding CSI reporting (report configuration information) and control CSI reporting based on the report configuration information.
  • the report configuration information may be, for example, "CSI-ReportConfig" of the information element (IE) of Radio Resource Control (RRC).
  • IE information element
  • RRC Radio Resource Control
  • RRC IE may be interchangeably read as RRC parameters, higher layer parameters, etc.
  • the reporting configuration information may include, for example, at least one of the following: Information regarding the type of CSI report (report type information, e.g., RRC IE “reportConfigType”) Information on one or more quantities of CSI to be reported (one or more CSI parameters) (report quantity information, e.g., RRC IE “reportQuantity”) Information on the RS resource used to generate the amount (the CSI parameter) (resource information, for example, "CSI-ResourceConfigId" of the RRC IE) Information on the frequency domain to which the CSI is reported (frequency domain information, for example, the RRC IE "reportFreqConfiguration”)
  • the report type information may indicate a periodic CSI (Periodic CSI (P-CSI)) report, an aperiodic CSI (A-CSI) report, or a semi-persistent CSI (Semi-Persistent CSI (SP-CSI)) report.
  • P-CSI Period CSI
  • A-CSI aperiodic CSI
  • SP-CSI semi-persistent CSI
  • the reporting amount information may also specify a combination of at least one of the above CSI parameters (e.g., CRI, RI, PMI, CQI, LI, L1-RSRP, etc.).
  • CSI parameters e.g., CRI, RI, PMI, CQI, LI, L1-RSRP, etc.
  • the resource information may also be an ID of a resource for the RS.
  • the resource for the RS may include, for example, a non-zero power CSI-RS resource or SSB, and a CSI-IM resource (for example, a zero power CSI-RS resource).
  • the frequency domain information may also indicate the frequency granularity of the CSI reporting.
  • the frequency granularity may include, for example, a wideband and a subband.
  • the wideband is the entire CSI reporting band.
  • the wideband may be, for example, the entirety of a certain carrier (Component Carrier (CC)), cell, serving cell), or the entirety of a bandwidth part (BWP) within a certain carrier.
  • CC Component Carrier
  • BWP bandwidth part
  • the wideband may also be referred to as the CSI reporting band, the entire CSI reporting band, etc.
  • a subband may be a part of a wideband and may be composed of one or more resource blocks (RBs or PRBs).
  • the size of the subband may be determined according to the size of the BWP (number of PRBs).
  • the frequency domain information may indicate whether wideband or subband PMI is to be reported (the frequency domain information may include, for example, the RRC IE "pmi-FormatIndicator" used to determine whether wideband PMI reporting or subband PMI reporting is to be performed).
  • the UE may determine the frequency granularity of the CSI report (i.e., whether wideband PMI reporting or subband PMI reporting) based on at least one of the above reporting amount information and frequency domain information.
  • one wideband PMI may be reported for the entire CSI reporting band.
  • subband PMI reporting when wideband PMI reporting is configured, a single wideband indication i1 may be reported for the entire CSI reporting band, and one subband indication i2 (e.g., one subband indication for each subband) may be reported for each of one or more subbands within the entire CSI reporting band.
  • the UE performs channel estimation using the received RS and estimates the channel matrix H.
  • the UE feeds back an index (PMI) that is determined based on the estimated channel matrix.
  • the PMI may indicate a precoder matrix (also referred to simply as a precoder) that the UE considers appropriate to use for downlink (DL) transmissions to the UE.
  • a precoder matrix also referred to simply as a precoder
  • Each value of the PMI may correspond to one precoder matrix.
  • a set of PMI values may correspond to a set of different precoder matrices, called a precoder codebook (also referred to simply as a codebook).
  • the CSI report may include one or more types of CSI.
  • the CSI may include at least one of a first type (Type 1 CSI) used for selecting a single beam and a second type (Type 2 CSI) used for selecting multiple beams.
  • a single beam may be rephrased as a single layer, and multiple beams may be rephrased as multiple beams.
  • Type 1 CSI does not assume multi-user multiple input multiple output (MIMO), and Type 2 CSI may assume multi-user MIMO.
  • the codebook may include a codebook for type 1 CSI (also called a type 1 codebook, etc.) and a codebook for type 2 CSI (also called a type 2 codebook, etc.).
  • Type 1 CSI may also include type 1 single-panel CSI and type 1 multi-panel CSI, and different codebooks (type 1 single-panel codebook, type 1 multi-panel codebook) may be defined for each.
  • Type 1 and Type I may be interpreted as interchangeable.
  • Type 2 and Type II may be interpreted as interchangeable.
  • the uplink control information (UCI) type may include at least one of the following: Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), scheduling request (SR), and CSI.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • SR scheduling request
  • CSI CSI
  • UCI may contain one CSI part for wideband PMI feedback.
  • CSI report #n contains PMI wideband information if reported.
  • UCI can contain two CSI parts for subband PMI feedback.
  • CSI part 1 contains wideband PMI information.
  • CSI part 2 contains one wideband PMI information and some subband PMI information.
  • CSI part 1 and CSI part 2 are coded separately.
  • the UE is configured by a higher layer with N (N ⁇ 1) CSI reporting configuration report settings and M (M ⁇ 1) CSI resource configuration resource settings.
  • the CSI reporting configuration (CSI-ReportConfig) includes channel measurement resource settings (resourcesForChannelMeasurement), interference CSI-IM resource settings (csi-IM-ResourceForInterference), interference NZP-CSI-RS settings (nzp-CSI-RS-ResourceForInterference), and report quantity (reportQuantity).
  • Each of the channel measurement resource settings, interference CSI-IM resource settings, and interference NZP-CSI-RS settings is associated with a CSI resource configuration (CSI-ResourceConfig, CSI-ResourceConfigId).
  • the CSI resource configuration includes a list of CSI-RS resource sets (csi-RS-ResourceSetList, e.g., an NZP-CSI-RS resource set or a CSI-IM resource set).
  • evaluation and provision of CSI reporting for DL multi-TRP and multi-panel transmissions at least one is being considered to enable more dynamic channel/interference hypotheses for NCJT.
  • the UE is configured with parameters related to the codebook (CodebookConfig) by higher layer signaling (RRC signaling).
  • the codebook configuration is included in the CSI report configuration (CSI-ReportConfig) of the higher layer (RRC) parameters.
  • At least one codebook is selected from type 1 single panel (typeI-SinglePanel), type 1 multi-panel (typeI-MultiPanel), type 2 (typeII), and type 2 port selection (typeII-PortSelection).
  • the codebook parameters include parameters related to the codebook subset restriction (CBSR).
  • CBSR codebook subset restriction
  • the CBSR setting is a bit that indicates which PMI reports are allowed ('1') and which are not allowed ('0') for the precoder associated with the CBSR bit.
  • One bit in the CBSR bitmap corresponds to one codebook index/antenna port.
  • the CSI report configuration (CSI-ReportConfig) of Rel. 16 includes CSI-RS resources for channel measurement (resourcesForChannelMeasurement (CMR)), CSI-RS resources for interference measurement (csi-IM-ResourcesForInterference (ZP-IMR), nzp-CSI-RS-ResourcesForInterference (NZP-IMR)), etc.
  • CMR channel measurement
  • ZP-IMR CSI-RS resources for interference measurement
  • NZP-IMR nzp-CSI-RS-ResourcesForInterference
  • parameters other than codebookConfig-r16 are also included in the CSI report configuration of Rel. 15.
  • an extended CSI reporting configuration (CSI-ReportConfig) is being considered for CSI measurement/reporting of multi-TRP using NCJT.
  • CSI-ReportConfig two CMR groups corresponding to each of the two TRPs are configured.
  • the CMRs in the CMR group may be used for at least one measurement of multi-TRP and single-TRP using NCJT.
  • the N CMR pairs of the NCJT are configured by RRC signaling.
  • the UE may be configured by RRC signaling whether to use a CMR of a CMR pair for single-TRP measurement.
  • the UE may be configured to report one CSI associated with the best measurement result among the measurement hypotheses for the NCJT and single TRP.
  • the CBSR is set for each codebook setting for each CSI reporting setting.
  • the CBSR applies to all CMRs, etc. within the corresponding CSI reporting setting.
  • Option 2 Measure both the CSI of the NCJT and the CSI of a single TRP.
  • Type 1 Codebook For the base station panel, a type 1 single panel codebook and a type 1 multi-panel codebook are specified.
  • an antenna model of the CSI antenna port array (logical configuration) is specified for the number of CSI-RS antenna ports P CSI-RS and (N 1 ,N 2 ).
  • an antenna model of the CSI antenna port array (logical configuration) is specified for the number of CSI-RS antenna ports P CSI-RS and (N g ,N 1 ,N 2 ).
  • the UE sets the upper layer parameter of codebook type (subType in type1 in codebookType in CodebookConfig) to type 1 single panel ('typeI-SinglePanel'). If the number of layers v is not ⁇ 2,3,4 ⁇ , the PMI values correspond to three codebook indices i1,1 , i1,2 , i2 . If the number of layers v is not ⁇ 2,3,4 ⁇ , the PMI values correspond to four codebook indices i1,1 , i1,2 , i1,3 , i2 .
  • the supported settings (N 1 ,N 2 ) and (O 1 ,O 2 ) (combination of values) are specified.
  • (N 1 ,N 2 ) indicates the number of antenna elements in two dimensions, and is set by n1-n2 in moreThanTwo in nrOfAntennaPorts in typeI-SinglePanel.
  • (O 1 ,O 2 ) is the two-dimensional oversampling factor.
  • i 1,1 which corresponds to the horizontal beam, is ⁇ 0,1,...,N 1 O 1 -1 ⁇ .
  • i 1,2, which corresponds to the vertical beam is ⁇ 0,1,...,N 2 O 2 -1 ⁇ .
  • i 2 is ⁇ 0,1,2,3 ⁇ .
  • Type-1 multi-panel CSI compared to Type-1 single panel, the number of panels Ng is set in addition to N1 and N2 .
  • inter-panel co-phasing phase compensation between panels
  • i, 1, and 4 are added and reported.
  • the same SD beam (precoding matrix Wl ) is selected for each panel, and only inter-panel co-phasing is added and reported.
  • the supported settings (N g , N 1 , N 2 ) and (O 1 , O 2 ) are specified in the specification.
  • (N 1 , N 2 ) are set by ng-n1-n2 in typeI-MultiPanel.
  • i 1,1 is ⁇ 0,1,...,N 1 O 1 -1 ⁇ .
  • i 1,2 is ⁇ 0,1,...,N 2 O 2 -1 ⁇ .
  • i 2 is ⁇ 0,1,2,3 ⁇ .
  • ⁇ n e j ⁇ n/2 .
  • ⁇ _p 1 , ⁇ _p 2 , ⁇ _p 3 represent inter-panel co-phasing.
  • the same beams (SD beam matrix, precoding matrix W l ) are selected for panels 0, 1, 2, and 3, ⁇ _p 1 represents the phase compensation of panel 1 relative to panel 0, ⁇ _p 2 represents the phase compensation of panel 2 relative to panel 0, and ⁇ _p 3 represents the phase compensation of panel 3 relative to panel 0.
  • Type 2 Codebook Assuming ideal backhaul, synchronization, and the same number of antenna ports across multiple TRPs, CSI acquisition for coherent joint transmission (CJT) for FR1 and up to four TRPs is considered. For CJT multi-TRP for FDD, an improvement of the Rel. 16/17 type-2 codebook is considered.
  • a matrix Z with X rows and Y columns may be expressed as Z(X ⁇ Y).
  • N t is the number of antennas/ports.
  • N 3 is the total number of precoding (beamforming) matrices (precoders) (number of subbands) indicated by the PMI.
  • W 1 (N t ⁇ 2L) is a matrix (SD beam matrix) consisting of L ⁇ 2,4 ⁇ (oversampled) spatial domain (SD) two-dimensional (2D) DFT vectors (SD beams, 2D-DFT vectors).
  • W 2,k (2L ⁇ N 3 ) is the subband complex linear combination (LC) coefficient (combination coefficients) matrix for layer k.
  • W 2,k represents beam selection and co-phasing between the two polarizations.
  • the two W2 ,k are c i , c j respectively.
  • the feedback overhead is mainly due to the LC coefficient matrix W2 ,k .
  • Type-2 CSI in Rel. 15 only supports ranks 1 and 2.
  • Type-2 CSI in Rel. 16 reduces the overhead associated with W2 ,k through frequency domain (FD) compression.
  • Type-2 CSI in Rel. 16 supports ranks 3 and 4 in addition to ranks 1 and 2.
  • W 2,k is approximated by W ⁇ k W f,k H.
  • the matrix W ⁇ may be expressed as W with a ⁇ (w tilde) above it.
  • the matrix W f,k H is the adjugate matrix of W f,k .
  • the UE may be configured with one of two subband sizes.
  • the subband (CQI subband) is defined as N PRB SB contiguous PRBs and may depend on the total number of PRBs in the BWP.
  • the number of PMI subbands per CQI subband R is configured by the RRC IE (numberOfPMI-SubbandsPerCQI-Subband). R controls the total number of precoding matrices N3 represented by the PMI as a function of the number of subbands configured in the csi-ReportingBand, the subband size configured by subbandSize, and the total number of PRBs in the BWP.
  • W 1 (N t ⁇ 2L) is a matrix consisting of multiple (oversampled) spatial domain (SD) 2D-DFT (vector, beam).
  • SD spatial domain
  • 2D-DFT 2D discrete Fourier transform
  • the spatial domain response/distribution represented by the SD 2D-DFT vector may be called the SD beam.
  • W ⁇ k (2L ⁇ Mv ) is a matrix of combination coefficients (subband complex linear combination (LC) coefficients). For this matrix, up to K0 non-zero coefficients (NZCs) are reported. The report consists of two parts: a bitmap capturing the NZC positions and the quantized NZCs.
  • W f,k (N 3 ⁇ M v ) is a matrix of frequency domain (FD) bases (vectors) for layer k.
  • FD frequency domain
  • M v FD bases FD DFT bases
  • N 3 >19 M v DFTs from an intermediate subset (InS) of size N 3 '( ⁇ N 3 ) are selected.
  • N 3 ⁇ 19 log2(C(N 3 -1,M v -1)) bits are reported.
  • C(N 3 -1,M v -1) is the number of combinations of selecting M v -1 from N 3 -1, also called binomial coefficients.
  • the frequency domain response/distribution (frequency response) represented by a linear combination of FD basis vectors and combination coefficients may be called an FD beam.
  • the FD beam may correspond to a delay profile (time response).
  • the subset of FD bases is given as ⁇ f 1 ,...,f Mv ⁇ , where f i is the ith FD basis for the kth layer, i ⁇ 1,...,M v ⁇ .
  • the PMI subband size is given by CQI subband size/R, where R ⁇ 1,2 ⁇ .
  • the number of FD bases M v for a given rank v is given by ceil(p v ⁇ N 3 /R).
  • the number of FD bases is the same for all layers k ⁇ 1,2,3,4 ⁇ .
  • p v is set by higher layers.
  • the M v FD bases with the highest gain are selected.
  • M v ⁇ N 3 the overhead of W ⁇ k is much smaller than that of W 2,k .
  • All or a part of the M v FD bases are used to approximate the frequency response of each SD beam.
  • a bitmap is used to report only the FD bases selected for each SD beam. If no bitmap is reported, all FD bases are selected for each SD beam. In this case, the nonzero coefficients (NZCs) of all FD bases are reported for each SD beam.
  • K k NZ ⁇ K 0 ceil( ⁇ 2LM v )
  • K NZ ⁇ 2K 0 ceil( ⁇ 2LM v )
  • Each reported complex coefficient in ⁇ tilde over (W ) ⁇ k is a separately quantized amplitude and phase.
  • the polarization specific reference amplitude is 16-level quantized using the table of Figure 1 (multiple element mapping of amplitude coefficient indicator i2,3,l : mapping of element kl ,p (1) to amplitude coefficient pl,p (1) ). All other coefficients are 8-level quantized using the table of Figure 2 (multiple element mapping of amplitude coefficient indicator i2,4,l : mapping of element kl,i,f (2) to amplitude coefficient pl,i,f (2) .
  • Type 2 CSI feedback on PUSCH in Rel. 16 includes two parts.
  • CSI Part 1 has a fixed payload size and is used to identify the number of information bits in CSI Part 2.
  • the size of Part 2 is variable (UCI size depends on the number of non-zero amplitude coefficients (NZC), which is unknown to the base station).
  • NZC non-zero amplitude coefficients
  • the UE reports the number of NZCs in CSI Part 1, which determines the size of CSI Part 2.
  • the base station knows the size of CSI Part 2 after receiving CSI Part 1.
  • CSI Part 1 includes RI, CQI, and an indication of the total number of non-zero amplitudes across layers for enhanced Type-2 CSI.
  • the fields of Part 1 are coded separately.
  • CSI Part 2 includes PMI for enhanced Type-2 CSI. Parts 1 and 2 are coded separately.
  • CSI Part 2 includes at least one of the following: oversampling factor, index of 2D-DFT basis, index M initial of initial DFT basis (start offset) of selected DFT window, selected DFT basis per layer, non-zero LC coefficients (NZC, amplitude and phase) per layer, strongest coefficient indicator (SCI) per layer, and strongest coefficient amplitude per layer/polarization.
  • the multiple PMI indices (PMI values, codebook indices) associated with different CSI Part 2 information may follow for the kth layer: i 1,1 : Oversampling factor i 1,2 : Multiple index of 2D-DFT basis i 1,5 : Index (start offset) of initial DFT basis of selected DFT window M initial i 1,6,k : the DFT basis selected for the kth layer; i 1,7,k : the bitmap for the kth layer; i 1,8,k : the strongest coefficient indicator (SCI) for the kth layer.
  • i2,3,k the amplitude of the strongest coefficient (for both polarizations) of the kth layer; i2,4,k : the amplitude of the reported coefficient of the kth layer; i2,5,k : the phase of the reported coefficient of the kth layer.
  • i1,5 and i1,6,k are PMI indices for DFT basis reporting. i1,5 is reported only if N3 >19.
  • the PMI information is organized into three groups (groups 0 to 2) for CSI part 2 groupings. This is important in case of CSI omission.
  • Each reported element with index i2,4,l , i2,5,l , and i1,7,l is associated with a specific priority rule.
  • Type-1 CSI an SD beam represented by an SD DFT vector is sent towards the UE.
  • Type-2 CSI L SD beams are linearly combined and sent towards the UE.
  • Each SD beam can be associated with multiple FD beams.
  • the channel frequency response can be obtained by linearly combining those FD basis vectors. The channel frequency response corresponds to the power delay profile.
  • Type-2 PS codebook In Rel. 16 Type-2 port selection (PS) CSI, the Type-2 PS codebook (CB) does not require the UE to derive the SD beam by considering the 2D-DFT in the normal Type-2 CB. Instead, the base station transmits CSI-RS using K CSI-RS ports that are beamformed by considering a set of SD beams. The UE identifies the best L( ⁇ K) CSI-RS ports and reports their indexes in W1 .
  • W 1 (K ⁇ 2L) is a block diagonal matrix.
  • W ⁇ k (2L ⁇ M) is the LC coefficient matrix.
  • W f,k (N 3 ⁇ M) consists of N 3 DFT basis vectors (FD basis vectors).
  • K is set by upper layers.
  • L is set by upper layers.
  • each CSI-RS port #i is associated with an SD beam (b i ) (FIGS. 3A and 3B).
  • each CSI-RS port #i is associated with an SD-FD beam pair (pair of SD beam b i and FD beam f i,j, where j is the frequency index) instead of an SD beam (FIGS. 4A and 4B).
  • ports 3 and 4 are associated with the same SD beam and different FD beams.
  • the frequency selectivity of the channel frequency response observed at the UE based on an SD beam-FD beam pair can be reduced by delay pre-compensation compared to the frequency selectivity of the channel frequency response observed at the UE based on an SD beam.
  • the main scenario for the Type 2 port selection codebook in Rel. 17 is FDD. Although the channel reciprocity based on SRS measurement is not perfect, the base station can obtain some partial information. By using the SRS measurement at the base station in addition to the CSI report, the base station can obtain the CSI for DL MIMO precoder decision. In this case, some CSI reports may be omitted to reduce the CSI overhead.
  • each CSI-RS port is beamformed using an SD beam and an FD basis vector.
  • Each port is associated with an SD-FD pair.
  • each matrix block consists of L columns of a K ⁇ K identity matrix.
  • the base station transmits K beamformed CSI-RS ports. Each port is associated with an SD-FD pair.
  • the UE selects L ports out of K and reports them to the base station as part of the PMI (W 1,k ). In Rel. 16, each port is associated with an SD beam.
  • W ⁇ k (2L ⁇ M v ) is a matrix of combining coefficients (subband complex LC coefficients). At most K 0 NZCs are reported. The report consists of two parts: a bitmap capturing the NZC positions and the quantized NZCs. In certain cases the bitmap can be omitted. In Rel. 16, the bitmap of NZC positions is always reported.
  • W f,k (N 3 ⁇ M v ) is a matrix of N 3 FD basis (FD DFT basis) vectors. There are M v FD bases per layer. The base station may turn off W f,k . If W f,k is on, M v additional FD bases are reported. If W f,k is off, no additional FD bases are reported. In Rel. 16, W f,k is always reported.
  • CSI-RS Resources and CSI Reporting As shown in the example of FIG. 5, the relationship between CSI-RS resources and CSI reports is set by a CSI measurement configuration (CSI-MeasConfig) configured for each cell, a CSI resource configuration (CSI-ResourceConfig) configured for each BWP, and a CSI report configuration (CSI-ReportConfig).
  • CSI-MeasConfig CSI measurement configuration
  • CSI-ResourceConfig CSI resource configuration
  • CSI-ReportConfig CSI report configuration
  • CSI-MeasConfig includes at least one of the following: non-zero power (NZP) CSI-RS resource configuration nzp-CSI-RS-Resource, NZP-CSI-RS resource set configuration nzp-CSI-RS-ResourceSet, CSI-interference measurement (IM) resource configuration csi-IM-Resource, CSI-IM resource set configuration csi-IM-ResourceSet, SSB resource set configuration for CSI csi-SSB-ResourceSet, CSI resource configuration CSI-ResouceConfig, and CSI report configuration CSI-ReportConfig.
  • NZP non-zero power
  • IM CSI-interference measurement
  • CSI-ResouceConfig includes at least one of nzp-CSI-RS-ResourceSet, csi-SSB-ResourceSet, csi-IM-ResourceSet, and resource type resourceType (periodic (P)/semi-persistent (SP)/aperiodic (A)).
  • CSI-ReportConfig includes at least one of the following: resource configuration ID resourceConfigId, report configuration type reportConfigType (P/SP/A), report amount, frequency domain configuration, time constraints for each of channel measurement/interference measurement, group-based beam report, CQI table, subband size, and non-PMI port indication.
  • Doppler shift It is being considered to extend/improve CSI reporting for UEs moving at high/medium speeds by utilizing time-domain correlation/Doppler-domain information, such as improving the Rel. 16/17 type-2 codebook without changing the spatial and frequency domain basis, and reporting time-domain channel characteristics measured via tracking CSI-RS (TRS) from the UE.
  • TRS tracking CSI-RS
  • the channel coherent time depends on the maximum Doppler shift.
  • the channel coherent time is the time when the measured channel characteristics are available or when the measured channel characteristics become unavailable (channel aging).
  • the maximum Doppler shift is estimated by the relative speed between the transmitter and the receiver.
  • ⁇ f max v/ ⁇ .
  • the channel coherent time decreases. For example, at a carrier frequency of 4.5 GHz, when the moving speed exceeds about 25 km/h, the channel coherent time falls below 10 ms. How to deal with such high moving speed and short channel coherent time is a problem.
  • TRS is supported.
  • TRS has the following problems: The number of ports per CSI-RS resource set is limited to only one. Each CSI-RS resource uses a single port. ⁇ The period that can be set is 10 ms or more. No CSI reporting is expected for TRS. There is no reporting configuration for P-TRS. Reporting can be configured but reportQuantity is set to "none" only. Up to 16 CSI-RS resources are used per CSI-RS resource set.
  • the TRS are placed in time and frequency domain resources. To measure the impact of Doppler shift, multiple RSs in the time domain are required within a given frequency domain resource.
  • CMR can be used to measure the effects of Doppler shift.
  • RS used for the measurement depends on the UE implementation.
  • Case 1 where the UE performs measurements based on CSI-RS
  • Case 2 where the base station performs measurements based on SRS.
  • Case 1-1 where the UE performs judgments based on CSI-RS measurement results
  • Case 1-2 where the base station performs judgments based on CSI-RS measurement results reported by the UE
  • Case 2-1 where the base station performs judgments based on SRS measurement results.
  • a CSI-RS measurement window and a CSI reporting window are considered. Within a CSI-RS measurement window, one or more CSI-RS occasions may be measured. The reported CSI may be associated with a CSI reporting window.
  • the length of the Doppler domain/time domain basis vectors may be N4 .
  • the CSI measurement window of slot [k, k+W meas -1] one or more CSI occasions for the calculation of the CSI report may be measured, where k may be a slot index and W meas may be the measurement window length (number of slots).
  • the CSI occasions may be configured in CSI-ReportConfig.
  • the CSI reporting window of slot [l, l+W CSI -1] may be associated with the CSI report in slot n, where l may be a slot index and W CSI may be the reporting window length (number of slots).
  • the location of the CSI reference resource may be denoted as n ref .
  • CSI reporting and measurement may follow at least one of the following options, as shown in Figure 6:
  • n ref may be taken into account at the boundary of the CSI reporting window as follows: [Option 1. A] l+W CSI -1 ⁇ n ref [Option 1. B]]n ref ⁇ l [Option 1. C]]l ⁇ nref and nref ⁇ l + W CSI -1
  • Reporting slot n may be considered as the boundary of the CSI reporting window as follows: [Option 2. A] l+W CSI -1 ⁇ n [Option 2. B] n ⁇ l [Option 2. C] l ⁇ n and n ⁇ l + W CSI -1
  • n ref nn ref
  • l n ref
  • W CSI 1, k ⁇ n ref
  • W meas 1.
  • the reported CSI can also be interpreted as being obtained by actual measurement. If the CSI reporting window does not overlap with a CSI-RS occasion, the reported CSI can also be interpreted as being obtained by prediction at the UE.
  • the CSI report can also be interpreted as having CSI obtained by actual measurement (measured CSI) and CSI obtained by prediction at the UE (predicted CSI) (options 1.C, 3.C).
  • the codebook structure may be one of several structures:
  • W is an N Tx N 3 row by N 4 column matrix.
  • W f is an N 3 row by M column matrix (similar to Rel. 16).
  • W 1 is an N Tx row by 2L column matrix (similar to Rel. 16).
  • W 2 is a 2LM row by D column matrix.
  • W t is an N 4 row by D column matrix.
  • W is an N Tx N 3 row by N 4 column matrix.
  • W f is an N 3 row by M column matrix (similar to Rel. 16).
  • W 1 is an N Tx row by 2L column matrix (similar to Rel. 16).
  • W 2 is a 2L row by MD column matrix.
  • W d is an N 4 row by D column matrix.
  • N4 is the number of time domain units (time domain bases).
  • D is the number of compressed/selected time domain units (time domain bases).
  • AI Artificial Intelligence
  • ML machine learning
  • CSI channel state information
  • beam management e.g., improving accuracy, prediction in the time/space domain
  • position measurement e.g., improving position estimation/prediction
  • Figure 7 shows an example of a framework for managing an AI model.
  • each stage related to the AI model is shown as a block.
  • This example is also expressed as life cycle management of an AI model.
  • the Data Collection stage corresponds to the stage of collecting data for generating/updating an AI model.
  • the data collection stage may include data organization (e.g., determining which data to forward for model training/model inference), data forwarding (e.g., forwarding data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
  • Model Training stage model training is performed based on the data (training data) transferred from the Collection stage.
  • This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
  • Model Inference stage model inference is performed based on the data (inference data) transferred from the Collection stage.
  • This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity training the model), and output (providing model output to the actor).
  • the Actor stage may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
  • action triggers e.g., deciding whether to trigger an action on another entity
  • feedback e.g., feeding back information needed for training data/inference data/performance feedback
  • training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB).
  • OAM Operation, Administration and Maintenance
  • NW network
  • gNodeB gNodeB
  • In the former case interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous.
  • the latency of model updates and the absence of data exchange for model deployment are advantageous.
  • Inference of the above model may be performed in, for example, a gNB.
  • the entity that performs training/inference may be different.
  • the OAM/gNB may perform model training and the gNB may perform model inference.
  • a Location Management Function may perform model training and the LMF may perform model inference.
  • the OAM/gNB/UE may perform model training and the gNB/UE may perform model inference (jointly).
  • the OAM/gNB/UE may perform model training and the UE may perform model inference.
  • An Identifier (ID)-based model approach can be one way to manage AI models in such a scenario.
  • the NW/gNB does not know the details of the AI model, but can know only some information about the AI model (e.g., which ML model is used in the UE and for what purpose) for AI model management.
  • the UE/BS may input channel state information, reference signal measurement values, etc. to the ML model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
  • AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: - Estimation based on observed or collected information; - making choices based on observed or collected information; - Predictions based on observed or collected information.
  • an object may be, for example, an apparatus or device such as a terminal or base station. Also, in this disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
  • an ML model may be interpreted as an object having (implementing) at least one of the following characteristics: - Producing estimates by feeding information, - Predicting estimates by providing information - Discover features by providing information, - Select an action by providing information.
  • AI, AI/ML, AI/ML model, ML model, model, AI model, predictive analytics, predictive analysis model, etc. may be interchangeable.
  • the ML model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
  • regression analysis e.g., linear regression analysis, multiple regression analysis, logistic regression analysis
  • support vector machine random forest
  • neural network e.g., neural network, deep learning, etc.
  • the model may be interchangeable with at least one of an encoder, a decoder, a tool, etc.
  • the ML model Based on the input information, the ML model outputs at least one piece of information, such as an estimate, a prediction, a selected action, or a classification.
  • ML models may include supervised learning, unsupervised learning, and reinforcement learning.
  • Supervised learning may be used to learn general rules that map inputs to outputs.
  • Unsupervised learning may be used to learn features of data.
  • Reinforcement learning may be used to learn actions to maximize a goal.
  • terms such as generate, calculate, derive, etc. may be interchangeable.
  • terms such as implement, operate, operate, execute, etc. may be interchangeable.
  • terms such as train, learn, update, retrain, etc. may be interchangeable.
  • terms such as infer, after-training, live use, actual use, etc. may be interchangeable.
  • Signal may be interchangeable with signal/channel.
  • the UE derives (calculates) the highest CQI value (reported in UL slot n) that satisfies the following conditions (1) to (4).
  • the block error probability of a single PDSCH TB with a CQI index and CSI reference resource does not exceed the following value: 0.1 when the cqi-table in CSI-ReportConfig sets a specified table (table1 or table2). - 0.00001 when the cqi-table of CSI-ReportConfig is set to a specified table (table3).
  • the UE makes the following assumptions about the PDSCH: - The PDSCH and DMRS symbols are 12 symbols (the first 2 symbols are occupied by control signals). The same bandwidth is set for CQI reporting. Frontload symbols and additional DMRS symbols based on DMRS-DownlinkConfig. - PRB bundling size is assumed to be PRB. The UE may assume PDSCH transmission with a precoding matrix corresponding to the reported PMI.
  • FIG. 8A is a diagram showing the relationship between the subband differential CQI value and the offset level.
  • Subband offset level(s) subband CQI index(s) ⁇ wideband CQI index.
  • the subband CQI value (index) is reported as a subband differential CQI value (subband offset level) which is the difference from the wideband CQI value (index).
  • the subband differential CQI value is indicated by two bits.
  • subband CQI values In Rel. 17, reporting of subband CQI values with 4 bits is supported for better reliability and resource efficiency.
  • the subband CQI values may be represented as absolute values instead of differential values.
  • subband differential CQI value subband offset level
  • differential value differential value
  • offset level may be interpreted as interchangeable.
  • CQI value based on precoding matrix If configured to report a CQI index, in the CSI reference resource the UE shall assume the following for deriving the CQI index and for deriving the PMI and RI (if configured):
  • the UE may assume that PDSCH transmission is performed in up to eight transmission layers.
  • the UE assumes that the PDSCH signal on the antenna port of the set of v layers [1000, ..., 1000 + v-1] is equivalent to the corresponding symbol transmitted on the antenna port [3000, ..., 3000 + P-1]. This signal is expressed as in equation (1).
  • x(i) is expressed as in equation (2).
  • x(i) is a vector of PDSCH symbols from the layer mapping.
  • p ⁇ [1,2,4,8,12,16,24,32] is the number of CSI-RS ports. If only one CSI-RS port is configured, W(i) is 1. If the higher layer parameter reportQuantity of the CSI-ReportConfig in which the CQI is reported is either 'cri-RI-PMI-CQI' or 'cri-RI-LI-PMI-CQI', W(i) is the precoding matrix corresponding to the reported PMI applied to x(i).
  • W(i) is set to the specific precoding matrix.
  • the corresponding PDSCH signals transmitted on antenna ports [3000, ..., 3000+P-1] are adjusted so that the ratio of EPRE to CSI-RS EPRE is equal to a specific ratio.
  • AI-based CSI feedback As a representative sub-use case, space-frequency domain CSI compression using a two-sided AI model is being considered.
  • FIG. 9 is a diagram showing an example of AI-based CSI feedback.
  • the UE performs pre-processing, AI/ML-based CSI generation, and post-processing on the CSI measurement results, etc., and transmits the encoded bits (CSI feedback information) to the NW (base station).
  • AI/ML-based CSI generation CSI compression may be performed.
  • the NW (base station) performs pre-processing, AI/ML-based CSI reconstruction, and post-processing on the received bits to obtain CSI (channel/precoding matrix).
  • the NW (base station) may calculate the precoding matrix based on the channel matrix output from the AI/ML model.
  • the target CSI may mean the CSI calculated based on UE measurements, the ideal CSI (simulated CSI, fixed value), or the actual CSI.
  • the UE When applying CSI compression (e.g., using the AI/ML model), the UE transmits information obtained by compressing the CSI (e.g., the Encoded bits in FIG. 9 ) to the NW (base station). Then, for CQI calculation, the UE may assume that the following precoding matrix is applied to PDSCH transmission. Then, the UE may calculate the CQI based on the following precoding matrix.
  • CSI compression e.g., using the AI/ML model
  • the UE When CSI compression is applied, the UE assumes that a precoding matrix calculated based on the AI/ML model output at the base station is applied to the PDSCH transmission. That is, the UE calculates the CQI based on the precoding matrix actually obtained using the AI/ML model. If the UE has an encoder and a decoder, it can derive the precoding matrix.
  • the UE assumes that a precoding matrix derived based on the ideal AI/ML model output (target CSI), e.g., CSI calculated based on UE measurements, is applied to the PDSCH transmission.
  • target CSI can be derived even if the UE does not have a decoder, but the performance difference between the ideal output of the target CSI/model and the actual output (CSI) is ignored.
  • the UE assumes that a precoding matrix derived based on the expected output (output expected for the AI/ML model) of the base station is applied to the PDSCH transmission.
  • the UE may derive the expected output of the model based on the target CSI (CSI calculated from measurements) and expected performance information.
  • the expected performance information (information about the AI/ML model) may be calculated by the UE, may be indicated/set by the base station (gNB), or may be transmitted from a server or the like.
  • the expected performance information may be expected estimation error information (such as the expected error fluctuation range).
  • the expected output can be derived based on the target CSI and expected performance. However, there is a performance difference between the expected output of the model and the actual output.
  • the UE assumes that a precoding matrix calculated based on a channel matrix derived based on the output of the AI/ML model in the base station is applied to the PDSCH transmission for CQI calculation. How to calculate the precoding matrix from the channel matrix may be determined by the UE or may be specified in the specification. This example can be applied to CSI compression for the channel matrix. In addition, since the CQI is calculated based on the actually obtained channel matrix, the UE can derive the obtained channel matrix if it has an encoder and a decoder.
  • one CSI report may include multiple CSIs within a certain time domain (CSI reporting window).
  • the CSI reporting window may refer to a window to which the reported CSI is associated.
  • FIG. 10 is a diagram showing an example of a CSI report.
  • the reported CSI may be after the CSI reference resource at the border of the CSI-RS occasion, or the CSI corresponding to CSI reporting slot n.
  • the fact that the CSI-RS occasion is before the CSI reference resource may be specified, for example, by a specification.
  • CSI prediction has been proposed as a sub-use case using the AI/ML model.
  • the AI/ML model deployed in the UE/gNB may predict CSI within a certain time domain. Even in such a case, one CSI report (one reporting instance) can include multiple CSI within a certain time domain (CSI reporting window). With multiple CSI, it is possible to recognize the time series changes of CSI, which is beneficial for CSI prediction on the gNB side. Also, multiple predicted CSI (predicted CSI) may be reported for CSI prediction on the UE side.
  • Temporal spatial frequency domain CSI compression is also being considered as another sub-use case using the AI/ML model.
  • one CSI report (one reporting instance) can contain multiple CSIs within a certain time domain (CSI reporting window).
  • issues to be considered include (issue 1.1) whether a CQI corresponding to each of the multiple precoding matrices is necessary, and (issue 1.2) how to associate (express) multiple CQIs per CSI report.
  • issues to be considered are (issue 2.1) whether the CQI should be calculated based on a predicted precoding matrix, or (issue 2.2) whether the CQI should be calculated based on a predicted PDSCH symbol (future channel) for the corresponding antenna port.
  • issue 3 there may be cases where only the CQI is predicted even if the precoding matrix is not predicted. In this case, one issue to consider is how to predict only the CQI.
  • the inventors have therefore come up with an appropriate method for reporting CSI. According to one aspect of the present disclosure, it is possible to appropriately measure, predict, and report on the effects of movement.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • the higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, positioning protocol (e.g., LTE Positioning Protocol (LPP)) messages, or any combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • LTP LTE Positioning Protocol
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • index identifier
  • indicator indicator
  • resource ID etc.
  • sequence list, set, group, cluster, subset, etc.
  • TRP
  • the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be read as interchangeable.
  • ID spatial relationship information
  • TCI state and TCI may be read as interchangeable.
  • a CSI report In the present disclosure, a CSI report, a report instance, a PMI, a precoding matrix, etc. may be interchangeable. Also, a CQI value, a bit width of a CQI, a CQI field, and a CQI index may be interchangeable. Also, CQI and CSI may be interchangeable. Also, a precoding matrix and a set of amplitude/phase coefficients may be interchangeable.
  • the first embodiment relates to the number of CQIs.
  • the UE may report N CQIs in one CSI report/reporting instance/PMI, where each CQI may correspond to a different time (e.g., symbol, slot, millisecond, subframe) or CSI occasion within the CSI reporting window. That is, one CSI report may contain N CQIs (N is an integer equal to or greater than 1).
  • N may be determined based on at least one of the following options: Option 1: Number of precoding matrices reported in one CSI report/reporting instance/PMI/number of PMIs; Option 2: Information associated with the activated model; Option 3: Information related to the registered/configured model, Option 4: Information from the network, Option 5: UE capabilities, Option 6: Value specified in the specification, Option 7: Dependent on UE implementation (e.g., the UE may report a number N of CQIs in CSI#1 and a corresponding CQI in CSI#2); Option 8: The length of the window (e.g. number of slots) corresponding to the time domain of the reported CSI/PMI; Option 9: Time or delay domain unit associated with one precoding matrix/CQI; ⁇ Option 10: A combination of options 1 to 9.
  • Option 1 Number of precoding matrices reported in one CSI report/reporting instance/PMI/number of PMIs
  • Option 2 Information associated with the activated model
  • the UE may determine the minimum or maximum value from among the above options as N. As another example, the UE may determine the number of CQIs per precoding matrix or the number of precoding matrices per CQI based on information from the NW.
  • FIG. 11 is a diagram showing an example of a CSI report according to the first embodiment.
  • a CSI report in slot n may include, for example, three CQIs (CQI#1-#3) corresponding to CSI#1-#3.
  • CQI#1-#3 CQI#1-#3
  • CSI#1-#3 CQI#1-#3
  • CSI#1-#3 may correspond to three different time instances within the CSI reporting window, respectively.
  • the UE may report N′ CQIs corresponding to one reported precoding matrix associated with a PMI, where each CQI may correspond to a different time (e.g., symbol, slot, ms, subframe) or CSI occasion within the CSI reporting window, i.e., the UE may report N′ CQIs per precoding matrix (one precoding matrix may be associated with a PMI, and N′ CQIs may be associated with the one precoding matrix).
  • the UE may report one CQI corresponding to the N'' reported precoding matrices associated with the PMI, where each precoding matrix may correspond to a different time (e.g., symbol, slot, millisecond, subframe) or CSI occasion within the CSI reporting window. That is, one CQI may be associated with the N'' precoding matrices.
  • N' and N'' may be determined based on at least one of options 1 to 10 described above.
  • the UE can appropriately determine the number of CQIs in one CSI report/reporting instance/PMI.
  • the second embodiment relates to the bit width of the CQI (CQI value).
  • the UE may determine the bit width of the CQI based on at least one of the following options (conditions). The UE can report one CQI using the bit width determined based on at least one of the following options.
  • Option 1 Value defined by specification (e.g. 2-bit 4-bit), Option 2: Information associated with the activated model; Option 3: Information related to the registered/configured model, Option 4: Information from the NW (existing parameters such as cqi-BitsPerSubband may be used or new parameters may be adopted); Option 5: UE capabilities, Option 6: Relative time/occasion associated with a certain CQI within the CSI reporting window; Option 7: Dependent on UE implementation (e.g., the UE may report a CQI bit width in CSI#1 and a corresponding CQI in CSI#2); Option 8: The length of the window (e.g. number of slots) corresponding to the time domain of the reported CSI/PMI; Option 9: Time or delay domain unit associated with one precoding matrix/CQI; ⁇ Option 10: A combination of options 1 to 9.
  • Option 2 Information associated with the activated model
  • Option 3 Information related to the registered/configured model
  • Option 4 Information from the NW (existing parameters such as c
  • the bit width of the CQI may be determined based on (1) the difference between the CQI value (CQI field) corresponding to a certain time instance among multiple CQIs in a CSI reporting window. More specifically, the bit width may be determined based on the first/last/middle CQI value (based on a specific CQI) among multiple CQI values (CQI field) in one CSI report/CSI reporting window.
  • the middle CQI value may be indicated by a field represented by ceil(N/2) or floor(N/2). It is assumed that the middle CQI value can take an average value among multiple CQI values. Therefore, when the middle CQI value is used as a reference, the difference between the other CQI values (the CQI values before and after it) becomes relatively small, and the bit width (other CQI values) can be made small.
  • the bit width of the CQI may be determined (based on a specific CQI) based on the oldest/latest/intermediate CQI value associated with a time (e.g., symbol, slot, millisecond, subframe) or occasion among multiple CQI values (CQI fields) in one CSI report/PMI.
  • the intermediate CQI value is assumed to be an average value among multiple CQI values. For this reason, when the intermediate CQI value is used as the standard, the difference with other CQI values (the CQI values before and after it) becomes relatively small, and the bit width (other CQI values) can be made small.
  • Each of the above options can be applied to both the wideband CQI index and the subband CQI index. Different options may be applied to each of the wideband CQI index and the subband CQI index.
  • the bit width can be flexibly determined for each of multiple CQIs.
  • the third embodiment relates to a relative expression of a CQI value (CQI index), which can be applied to both the subband and the wideband.
  • the UE may report a relative CQI value based on other CQI values in one CSI report/reporting instance/PMI.
  • the UE may determine a corresponding CQI index based on a CQI index corresponding to a CQI field (e.g., one field) before the corresponding CQI within one CSI report and a difference value (corresponding offset level) thereof.
  • a CQI field e.g., one field
  • a difference value corresponding offset level
  • the UE may determine a corresponding CQI index based on a (related) CQI index corresponding to a time/occasion (e.g., one) earlier than the corresponding CQI within one CSI report and its differential value (corresponding offset level).
  • a time/occasion e.g., one
  • differential value corresponding offset level
  • FIG. 12 is a diagram showing an example of a CSI reporting window according to the third embodiment (corresponding to options 3.1-3.2).
  • FIG. 12 shows a case where one CSI reporting window contains three CQI values (CQI#1-#3/CSI#1-#3) with different time instances.
  • CQI#1-#3/CSI#1-#3 may correspond to a time series in this order.
  • CQI#1 indicates a CQI index corresponding to CSI#1.
  • the CQI index (CQI#2) corresponding to CSI#2 may be indicated by an offset level for CQI#1+CQI#2 (a difference value from CQI#1).
  • the CQI index (CQI#3) corresponding to CSI#3 may be indicated by an offset level for CQI#2+CQI#3 (a difference value from CQI#2). In this way, the UE may determine the corresponding CQI index based on the previous CQI index.
  • the UE may determine a corresponding CQI index based on a certain reference CQI index (which may be called a reference CQI index) and its difference value (corresponding offset level).
  • a reference CQI index which may be called a reference CQI index
  • its difference value corresponding offset level
  • the UE may determine a corresponding CQI index based on the CQI index indicated in a particular (Xth) CQI field within one CSI reporting window.
  • the reference CQI index may be determined based on, for example, the first CQI field, the last CQI field, the ceil(N/2)th field, or the floor(N/2)th field in one CSI reporting window.
  • the UE may determine a corresponding CQI index based on a CQI index (CSI) corresponding to the Xth most recent/earliest time/occasion within one CSI reporting window.
  • CSI CQI index
  • the reference CQI index may be determined, for example, based on either the most recent CSI/ceil(N/2)-oldest CSI/floor(N/2)-oldest CSI time/occasion within a CSI reporting window.
  • FIG. 13 is a diagram showing another example of a CSI reporting window according to the third embodiment (corresponding to options 3.3.1-3.3.2). As shown in FIG. 13, the UE may determine the corresponding CQI index based on the CQI index corresponding to the oldest CSI among multiple CQIs (CSI) in a certain CSI reporting window.
  • CSI CQIs
  • CQI#1 indicates the CQI index corresponding to CSI#1.
  • the CQI index (CQI#2) corresponding to CSI#2 may be indicated by an offset level for CQI#1+CQI#2 (a difference value from CQI#1).
  • the CQI index (CQI#3) corresponding to CSI#3 may be indicated by an offset level for CQI#1+CQI#3 (a difference value from CQI#1).
  • the UE may determine the corresponding CQI index based on one (Xth) CQI index in the CSI reporting window.
  • the UE may determine a corresponding CQI index based on a certain reported CQI index (reference CQI index), i.e., the reference CQI index may not necessarily be associated with other CQIs within one CSI reporting window.
  • the reference CQI index may be determined based on, for example, a specific CQI in a previous CSI reporting window (a specific CQI based on a past CSI report).
  • the reference CQI index may be notified from the NW using higher layer parameters, or may be determined based on rules predefined in the specifications.
  • the value of the reference CQI index may be indicated by a specific value, or may be indicated by a CQI index corresponding to the maximum/minimum value of multiple measured values.
  • FIG. 14 is a diagram showing another example of a CSI reporting window according to the third embodiment (corresponding to option 3.3.3). As shown in FIG. 14, the UE may determine a corresponding CQI index based on a reference CQI index.
  • the CQI index (CQI#1) corresponding to CSI#1 may be indicated by the reference CQI index plus an offset level for CQI#1 (a difference value from the reference CQI index).
  • the CQI index (CQI#2) corresponding to CSI#2 may be indicated by the reference CQI index plus an offset level for CQI#2 (a difference value from the reference CQI index).
  • the CQI index (CQI#3) corresponding to CSI#3 may be indicated by the reference CQI index plus an offset level for CQI#3 (a difference value from the reference CQI index).
  • the corresponding CQI index can be flexibly determined (specified).
  • Embodiment 3.4 The above-mentioned embodiments 3.1 to 3.3 can be applied to both the wideband CQI index and the subband CQI index. Different embodiments may be applied to each of the wideband CQI index and the subband CQI index. In embodiment 3.4, the application of each of the wideband and the subband will be described.
  • the CQI index of a wideband may be calculated based on (the value of) the CQI index of another wideband and its differential value (corresponding offset level).
  • the wideband CQI index may be calculated based on the (value of) the reference CQI index and its differential value (corresponding offset level).
  • the CQI index for a subband may be calculated based on the (value of) the wideband CQI index corresponding to the CSI of the same time/occasion and its differential value (corresponding offset level).
  • the CQI index of a subband may be calculated based on other subband CQI indexes corresponding to the same subband, other subband CQI indexes corresponding to CSI of different times/occasions (values of the other subband CQI indexes), and their difference values (corresponding offset levels).
  • the CQI index of a subband may be calculated based on the reference CQI index and its difference value (corresponding offset level), where the reference CQI index may be a common value applied to all subbands or may be reported for each subband.
  • the fourth embodiment relates to a method for calculating a CQI.
  • the UE may assume that a precoding matrix shown in any of the following options 4.1.1-4.1.2 is applied to the PDSCH transmission for CQI calculation if certain parameters are set/certain AI/ML models are activated.
  • the UE may calculate the CQI based on the applied precoding matrix.
  • a precoding matrix derived based on the reported PMI The UE may derive a precoding matrix based on the reported PMI. In this case, the UE may calculate a CQI based on one/several of the precoding matrices. For example, the UE may calculate a corresponding CQI for each precoding matrix. According to option 4.1.1, the UE may calculate a CQI based on a predicted precoding matrix (predicted precoding matrix) when CSI prediction is applied.
  • CSI - A precoding matrix derived based on the CSI calculated from measurements of the RS occasions.
  • the UE may derive the precoding matrix based on the CSI calculated from the measurements of the CSI-RS occasions.
  • the UE does not need to calculate the CQI based on the predicted precoding matrix/predicted channel, which reduces the amount of computation on the UE side.
  • FIG. 15 is a diagram showing an example of a CSI report according to the fourth embodiment (corresponding to embodiment 4.1).
  • the CSI report in slot n may include, for example, three CQIs (CQI#1-#3) corresponding to precoding matrices #1-#3.
  • CSI#1-#3 (CQI#1-#3) may correspond to three different time instances in the CSI reporting window, respectively.
  • the CSI report in slot n may include one CQI (CQI#0) corresponding to, for example, precoding matrix #0.
  • CQI#0 CQI#0
  • CSI#0 CQI#0
  • CSI-RS occasion a certain time instance within the CSI-RS occasion.
  • the UE may assume that a vector of PDSCH symbols shown in any of the following options 4.2.1-4.2.3 is applied to the PDSCH transmission for CQI calculation if certain parameters are configured/certain AI/ML models are activated.
  • the UE may calculate the CQI based on the applied vector of PDSCH symbols, where the vector of PDSCH symbols may be at least one of the following: A vector of PDSCH symbols from layer mapping: x(i), A vector of PDSCH symbols from the resource element mapping: y(i).
  • ⁇ Option 4.2.1> A vector of PDSCH symbols at the time/occasion associated with the reported precoding matrix.
  • the UE may calculate the CQI based on, for example, a vector of PDSCH symbols at a time associated with one precoding matrix in the reported PMI. According to option 4.2.1, the UE can realize a predicted CQI calculation, taking into account the future channel.
  • ⁇ Option 4.2.2> A vector of PDSCH symbols at the time/occasion associated with the parameter being set/reported.
  • the UE may calculate the CQI based on a vector of PDSCH symbols at a time associated with configuration parameters received from/reported to the NW. According to option 4.2.2, the UE can realize a predicted CQI calculation, taking into account the future channel.
  • ⁇ Option 4.2.3> A vector of PDSCH symbols at time/occasion based on the CSI-RS occasion. According to option 4.2.3, the UE does not need to calculate the CQI by considering the future channel, which reduces the amount of calculation on the UE side.
  • FIG. 16 is a diagram showing an example of a CSI report according to the fourth embodiment (corresponding to embodiment 4.2).
  • the CSI report in slot n may include, for example, three CQIs (CQI#1-#3) corresponding to CSI#1-#3.
  • CSI#1-#3 (CQI#1-#3) may correspond to three different time instances in the CSI reporting window, respectively.
  • the CSI report in slot n may include one CQI (CQI#0) corresponding to, for example, CSI#0.
  • CQI#0 CQI#0
  • CSI#0 CQI#0
  • CSI-RS occasion a certain time instance within the CSI-RS occasion.
  • the UE may determine the application of any of the above-mentioned embodiments 4.1-4.2 based on at least one of the following options: Option 1: Information associated with the activated model; Option 2: Information related to the registered/configured model, ⁇ Option 3: Information from the network, Option 4: UE capabilities, Option 5: Value specified in the specification, Option 6: Dependent on UE implementation (e.g. UE may report the applicable option in CSI#1 and the corresponding CQI in CSI#2); Option 7: Based on each option of embodiment 4.1-4.2, Option 8: The length of the window (e.g. number of slots) corresponding to the time domain of the reported CSI/PMI; Option 9: Time or delay domain unit associated with one precoding matrix/CQI; ⁇ Option 10: A combination of options 1 to 9.
  • Option 1 Information associated with the activated model
  • Option 2 Information related to the registered/configured model
  • ⁇ Option 3 Information from the network
  • Option 4 UE capabilities
  • Option 5 Value specified in the specification
  • the UE can calculate the CQI based on the predicted precoding matrix/channel. Also, the UE can calculate the CQI even if the precoding matrix/channel is not predicted.
  • any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling (RRC message/LPP message), MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • NW network
  • BS base station
  • RRC signaling RRC message/LPP message
  • MAC CE e.g., MAC CE
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: Supporting specific processing/operations/control/information for at least one of the above embodiments; Supporting configuration of CSI reporting windows/CSI-RS occasions; Supporting the determination of the number of CQIs; Support for determining the bit width of CQI; Supporting CQI calculation; Supporting the application of CSI compression.
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information indicating that the functions of each embodiment are enabled, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
  • the UE may, for example, apply Rel. 15/16 operations.
  • Appendix A The following inventions are added regarding one embodiment (first to third embodiments) of the present disclosure.
  • Appendix 1 a transmitter for transmitting a channel state information (CSI) report;
  • a terminal comprising: a control unit that, when at least one channel quality indicator (CQI) is included in the CSI report, determines at least one of the number of the CQIs, a bit width of the CQI, and an index of the CQI based on a certain condition.
  • CQI channel quality indicator
  • Appendix B The following inventions are added regarding one embodiment (fourth embodiment) of the present disclosure.
  • Appendix 1 a transmitter for transmitting a channel state information (CSI) report; and a control unit that assumes that a specific precoding matrix or a specific vector of PDSCH symbols is applied to a physical downlink shared channel (PDSCH) transmission for CQI calculation when at least one channel quality indicator (CQI) is included in the CSI report.
  • PDSCH physical downlink shared channel
  • CQI channel quality indicator
  • the transmission unit transmits information obtained by compressing CSI using an Artificial Intelligence (AI) / Machine Learning (ML) model, the control unit assumes that the specific precoding matrix or the specific PDSCH symbol vector is applied.
  • the terminal according to any one of Supplementary Note 1 to Supplementary Note 3.
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 17 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • the SS, SSB, etc. may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 18 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transceiver 120 may transmit information related to a channel state information (CSI) report.
  • the transceiver 120 may receive at least one channel quality indicator (CQI) in the CSI report.
  • the transceiver 120 may receive information obtained by compressing the CSI using an artificial intelligence (AI)/machine learning (ML) model.
  • AI artificial intelligence
  • ML machine learning
  • the control unit 110 may apply a specific precoding matrix or a vector of specific PDSCH symbols to a physical downlink shared channel (PDSCH) transmission for CQI calculation when the user terminal 20 includes at least one channel quality indicator (CQI) in the CSI report.
  • the control unit 110 may apply the specific precoding matrix or the vector of specific PDSCH symbols when the user terminal 20 transmits information obtained by compressing CSI using an artificial intelligence (AI)/machine learning (ML) model.
  • AI artificial intelligence
  • ML machine learning
  • the user terminal 19 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transmitting/receiving unit 220, and a transmitting/receiving antenna 230.
  • the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transceiver 220 may transmit a channel state information (CSI) report.
  • the transceiver 220 may transmit information obtained by compressing the CSI using an artificial intelligence (AI)/machine learning (ML) model.
  • AI artificial intelligence
  • ML machine learning
  • the control unit 210 may determine at least one of the number of the CQIs, the bit width of the CQIs, and the index of the CQI based on certain conditions.
  • the control unit 210 may determine the bit width of the CQI based on a field of a CQI among multiple CQIs in a CSI report window.
  • the control unit 210 may determine the index of the CQI based on an offset level corresponding to an index of a CQI among multiple CQIs in a CSI report window.
  • the control unit 210 may determine the index of the CQI based on an offset level corresponding to a reference CQI index.
  • the control unit 210 may assume that a specific precoding matrix or a vector of a specific PDSCH symbol is applied to the physical downlink shared channel (PDSCH) transmission for CQI calculation.
  • the control unit 210 may derive the specific precoding matrix based on a reported precoding matrix indicator (PMI) or a CSI calculated from a measurement of a CSI-RS occasion.
  • the control unit 210 may perform the CQI calculation based on a vector of the specific PDSCH symbol at a time associated with the reported precoding matrix or a time based on a CSI-RS occasion.
  • the transmission unit 220 transmits information obtained by compressing CSI using an artificial intelligence (AI)/machine learning (ML) model
  • the control unit 210 may assume that the specific precoding matrix or the vector of the specific PDSCH symbol is applied.
  • AI artificial intelligence
  • ML machine learning
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 20 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
  • the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 21 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10, user terminal 20, etc.
  • the communication module 60 may be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
  • judgment may also be considered to mean “deciding” to take some kind of action.
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
  • connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、チャネル状態情報(CSI)報告を送信する送信部と、前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、ある条件に基づいて前記CQIの数、前記CQIのビット幅、及び前記CQIのインデックスの少なくともいずれかを決定する制御部と、を有することを特徴とする。本開示の一態様によれば、移動の影響に関するCSI報告を適切に行うことができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、参照信号の受信に基づくチャネル状態情報(CSI)を報告することが検討されている。また、移動/中速で移動する端末(user terminal、User Equipment(UE))における通信性能の向上が検討されている。
 しかしながら、移動の影響に関するCSI報告について、検討が進んでいない。このような方法が明確に規定されなければ、通信スループット、通信品質などが劣化するおそれがある。
 そこで、本開示は、移動の影響に関するCSI報告を適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、チャネル状態情報(CSI)報告を送信する送信部と、前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、ある条件に基づいて前記CQIの数、前記CQIのビット幅、及び前記CQIのインデックスの少なくともいずれかを決定する制御部と、を有することを特徴とする。
 本開示の一態様によれば、移動の影響に関するCSI報告を適切に行うことができる。
図1は、16レベル量子化テーブルの一例を示す。 図2は、8レベル量子化テーブルの一例を示す。 図3A及び3Bは、Rel.16タイプ2ポート選択コードブックの一例を示す。 図4A及び4Bは、Rel.17タイプ2ポート選択コードブックの一例を示す。 図5は、CSI-RSリソースとCSI報告の間の関係の一例を示す。 図6は、CSI-RS測定ウィンドウ及びCSI報告ウィンドウの一例を示す。 図7は、AIモデルの管理のフレームワークの一例を示す図である。 図8Aから8Cは、CQI値とオフセットレベルの関係を示す図である。 図9は、AIベースのCSIフィードバックの例を示す図である。 図10は、CSI報告の一例を示す図である。 図11は、第1の実施形態に係るCSI報告の一例を示す図である。 図12は、第3の実施形態に係るCSI報告ウィンドウの一例を示す図である。 図13は、第3の実施形態に係るCSI報告ウィンドウの他の一例を示す図である。 図14は、第3の実施形態に係るCSI報告ウィンドウの他の一例を示す図である。 図15は、第4の実施形態に係るCSI報告の一例を示す図である。 図16は、第4の実施形態に係るCSI報告の他の一例を示す図である。 図17は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図18は、一実施形態に係る基地局の構成の一例を示す図である。 図19は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図20は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図21は、一実施形態に係る車両の一例を示す図である。
(CSI報告(CSI report又はreporting))
 Rel.15 NRでは、端末(ユーザ端末、User Equipment(UE)等ともいう)は、参照信号(Reference Signal(RS))(又は、当該RS用のリソース)に基づいてチャネル状態情報(Channel State Information(CSI))を生成(決定、計算、推定、測定等ともいう)し、生成したCSIをネットワーク(例えば、基地局)に送信(報告、フィードバック等ともいう)する。当該CSIは、例えば、上り制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))又は上り共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))を用いて基地局に送信されてもよい。
 CSIの生成に用いられるRSは、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、同期信号(Synchronization Signal(SS))、復調用参照信号(DeModulation Reference Signal(DMRS))等の少なくとも一つであってもよい。
 CSI-RSは、ノンゼロパワー(Non Zero Power(NZP))CSI-RS及びCSI-Interference Management(CSI-IM)の少なくとも1つを含んでもよい。SS/PBCHブロックは、SS及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。また、SSは、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも一つを含んでもよい。
 なお、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも1つを含んでもよい。
 UEは、CSI報告に関する情報(報告設定(report configuration)情報)を受信し、当該報告設定情報に基づいてCSI報告を制御してもよい。当該報告設定情報は、例えば、無線リソース制御(Radio Resource Control(RRC))の情報要素(Information Element(IE))の「CSI-ReportConfig」であってもよい。なお、本開示において、RRC IEは、RRCパラメータ、上位レイヤパラメータなどと互いに読み替えられてもよい。
 当該報告設定情報(例えば、RRC IEの「CSI-ReportConfig」)は、例えば、以下の少なくとも一つを含んでもよい。
・CSI報告のタイプに関する情報(報告タイプ情報、例えば、RRC IEの「reportConfigType」)
・報告すべきCSIの一以上の量(quantity)(一以上のCSIパラメータ)に関する情報(報告量情報、例えば、RRC IEの「reportQuantity」)
・当該量(当該CSIパラメータ)の生成に用いられるRS用リソースに関する情報(リソース情報、例えば、RRC IEの「CSI-ResourceConfigId」)
・CSI報告の対象となる周波数ドメイン(frequency domain)に関する情報(周波数ドメイン情報、例えば、RRC IEの「reportFreqConfiguration」)
 例えば、報告タイプ情報は、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI))報告、又は、半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(Semi-Persistent CSI(SP-CSI))報告を示し(indicate)てもよい。
 また、報告量情報は、上記CSIパラメータ(例えば、CRI、RI、PMI、CQI、LI、L1-RSRP等)の少なくとも一つの組み合わせを指定してもよい。
 また、リソース情報は、RS用リソースのIDであってもよい。当該RS用リソースは、例えば、ノンゼロパワーのCSI-RSリソース又はSSBと、CSI-IMリソース(例えば、ゼロパワーのCSI-RSリソース)とを含んでもよい。
 また、周波数ドメイン情報は、CSI報告の周波数粒度(frequency granularity)を示してもよい。当該周波数粒度は、例えば、ワイドバンド及びサブバンドを含んでもよい。ワイドバンドは、CSI報告バンド全体(entire CSI reporting band)である。ワイドバンドは、例えば、ある(certain)キャリア(コンポーネントキャリア(Component Carrier(CC))、セル、サービングセル)全体であってもよいし、あるキャリア内の帯域幅部分(Bandwidth part(BWP))全体であってもよい。ワイドバンドは、CSI報告バンド、CSI報告バンド全体(entire CSI reporting band)等と言い換えられてもよい。
 また、サブバンドは、ワイドバンド内の一部であり、一以上のリソースブロック(Resource Block(RB)又は物理リソースブロック(Physical Resource Block(PRB)))で構成されてもよい。サブバンドのサイズは、BWPのサイズ(PRB数)に応じて決定されてもよい。
 周波数ドメイン情報は、ワイドバンド又はサブバンドのどちらのPMIを報告するかを示してもよい(周波数ドメイン情報は、例えば、ワイドバンドPMI報告又はサブバンドPMI報告の何れかの決定に用いられるRRC IEの「pmi-FormatIndicator」を含んでもよい)。UEは、上記報告量情報及び周波数ドメイン情報の少なくとも一つに基づいて、CSI報告の周波数粒度(すなわち、ワイドバンドPMI報告又はサブバンドPMI報告の何れか)を決定してもよい。
 ワイドバンドPMI報告が設定(決定)される場合、一つのワイドバンドPMIがCSI報告バンド全体用に報告されてもよい。一方、サブバンドPMI報告が設定される場合、単一のワイドバンド表示(single wideband indication)i1がCSI報告バンド全体用に報告され、当該CSI報告全体内の一以上のサブバンドそれぞれのサブバンド表示(one subband indication)i2(例えば、各サブバンドのサブバンド表示)が報告されてもよい。
 UEは、受信したRSを用いてチャネル推定(channel estimation)を行い、チャネル行列(Channel matrix)Hを推定する。UEは、推定されたチャネル行列に基づいて決定されるインデックス(PMI)をフィードバックする。
 PMIは、UEが、UEに対する下り(downlink(DL))送信に用いるに適切と考えるプリコーダ行列(単に、プリコーダともいう)を示してもよい。PMIの各値は、一つのプリコーダ行列に対応してもよい。PMIの値のセットは、プリコーダコードブック(単に、コードブックともいう)と呼ばれる異なるプリコーダ行列のセットに対応してもよい。
 空間ドメイン(space domain)において、CSI報告は一以上のタイプのCSIを含んでもよい。例えば、当該CSIは、シングルビームの選択に用いられる第1のタイプ(タイプ1CSI)及びマルチビームの選択に用いられる第2のタイプ(タイプ2CSI)の少なくとも一つを含んでもよい。シングルビームは、単一のレイヤ、マルチビームは、複数のビームと言い換えられてもよい。また、タイプ1CSIは、マルチユーザmultiple input multiple output(MIMO)を想定せず、タイプ2CSIは、マルチユーザMIMOを想定してもよい。
 上記コードブックは、タイプ1CSI用のコードブック(タイプ1コードブック等ともいう)と、タイプ2CSI用のコードブック(タイプ2コードブック等ともいう)を含んでもよい。また、タイプ1CSIは、タイプ1シングルパネルCSI及びタイプ1マルチパネルCSIを含んでもよく、それぞれ異なるコードブック(タイプ1シングルパネルコードブック、タイプ1マルチパネルコードブック)が規定されてもよい。
 本開示において、タイプ1及びタイプIは互いに読み替えられてもよい。本開示において、タイプ2及びタイプIIは互いに読み替えられてもよい。
 上り制御情報(UCI)タイプは、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、スケジューリング要求(scheduling request(SR))、CSI、の少なくとも1つを含んでもよい。UCIは、PUCCHによって運ばれてもよいし、PUSCHによって運ばれてもよい。
 Rel.15 NRにおいて、UCIは、ワイドバンドPMIフィードバック用の1つのCSIパートを含むことができる。CSI報告#nは、もし報告される場合にPMIワイドバンド情報を含む。
 Rel.15 NRにおいて、UCIは、サブバンドPMIフィードバック用の2つのCSIパートを含むことができる。CSIパート1は、ワイドバンドPMI情報を含む。CSIパート2は、1つのワイドバンドPMI情報と幾つかのサブバンドPMI情報とを含む。CSIパート1及びCSIパート2は、分離されて符号化される。
 Rel.15 NRにおいて、UEは、N(N≧1)個のCSI報告設定の報告セッティングと、M(M≧1)個のCSIリソース設定のリソースセッティングと、を上位レイヤによって設定される。例えば、CSI報告設定(CSI-ReportConfig)は、チャネル測定用リソースセッティング(resourcesForChannelMeasurement)、干渉用CSI-IMリソースセッティング(csi-IM-ResourceForInterference)、干渉用NZP-CSI-RSセッティング(nzp-CSI-RS-ResourceForInterference)、報告量(reportQuantity)などを含む。チャネル測定用リソースセッティングと干渉用CSI-IMリソースセッティングと干渉用NZP-CSI-RSセッティングとのそれぞれは、CSIリソース設定(CSI-ResourceConfig、CSI-ResourceConfigId)に関連付けられる。CSIリソース設定は、CSI-RSリソースセットのリスト(csi-RS-ResourceSetList、例えば、NZP-CSI-RSリソースセット又はCSI-IMリソースセット)を含む。
 FR1及びFR2の両方を対象として、NCJT用のより動的なチャネル/干渉の前提(hypotheses)を可能にするために、DLのマルチTRP及びマルチパネルの少なくとも1つの送信用のCSI報告の評価及び規定が検討されている。
(コードブック設定)
 UEは、コードブックに関するパラメータ(コードブック設定(CodebookConfig))を、上位レイヤシグナリング(RRCシグナリング)により設定される。コードブック設定は、上位レイヤ(RRC)パラメータのCSI報告設定(CSI-ReportConfig)に含まれる。
 コードブック設定において、タイプ1シングルパネル(typeI-SinglePanel)、タイプ1マルチパネル(typeI-MultiPanel)、タイプ2(typeII)、タイプ2ポート選択(typeII-PortSelection)のうちの少なくとも1つのコードブックが選択される。
 コードブックのパラメータには、コードブックサブセット制約(codebook subset restriction(CBSR))に関するパラメータ(…Restriction)が含まれる。CBSRの設定は、CBSRのビットに関連付けられたプリコーダに対して、どのPMIレポートが許可されているか(「1」)、どのPMIレポートが許可されていないか(「0」)を示すビットである。CBSRビットマップの1ビットは、1つのコードブックインデックス/アンテナポートに対応する。
(CSI報告設定)
 Rel.16のCSI報告設定(CSI-ReportConfig)は、コードブック設定(CodebookConfig)の他に、チャネル測定用のCSI-RSリソース(resourcesForChannelMeasurement(CMR))、干渉測定用のCSI-RSリソース(csi-IM-ResourcesForInterference(ZP-IMR)、nzp-CSI-RS-ResourcesForInterference(NZP-IMR))等が含まれている。CSI-ReportConfigのパラメータのうち、codebookConfig-r16を除くパラメータはRel.15のCSI報告設定にも含まれる。
 Rel.17において、NCJTを用いたマルチTRPのCSI測定/報告のための、拡張されたCSI報告設定(CSI-ReportConfig)が検討されている。当該CSI報告設定では、2つのTRPのそれぞれに対応する2つのCMRグループが設定される。CMRグループ内のCMRは、NCJTを用いたマルチTRPとシングルTRPの少なくとも1つの測定に用いられてもよい。NCJTのN個のCMRペアはRRCシグナリングにより設定される。UEは、RRCシグナリングにより、シングルTRP測定にCMRペアのCMRを使用するかどうかを設定されてもよい。
 単一のCSI報告設定によって設定される、マルチTRP/パネルのNCJT測定に関連するCSI報告について、次のオプション1、2の少なくとも1つがサポートされることが検討されている。
<オプション1>
 UEは、シングルTRP測定仮説/前提(hypotheses)に関連するX個(X=0、1、2)のCSIとNCJT測定に関連する1つのCSIを報告するように設定される。X=2の場合、2つのCSIは、異なるCMRグループのCMRを使用した2つの異なるシングルTRP測定に関連する。
<オプション2>
 UEは、NCJT及びシングルTRPについての測定仮説の中で最良の測定結果に関連する1つのCSIを報告するように設定されてもよい。
 上述のように、Rel.15/16では、CBSRは、CSI報告設定毎のコードブック設定毎に設定される。つまり、CBSRは、対応するCSI報告設定内の全てのCMR等に適用される。
 ただし、CSI報告設定によるRel.17のマルチTRP用のCSI報告設定では、上述のオプション1、2を適用した場合、以下のような測定の設定が行われる可能性がある。
オプション1(X=0):NCJTのCSIのみの測定。
オプション1(X=1):NCJTのCSIと、シングルTRP(1つのTRP)のCSIの測定。
オプション1(X=2):NCJTのCSIと、シングルTRP(2つのTRP)のCSIの測定。
オプション2:NCJTのCSIと、シングルTRPのCSIの両方の測定。
(タイプ1コードブック)
 基地局パネルに対し、タイプ1シングルパネルコードブックとタイプ1マルチパネルコードブックが規定されている。タイプ1シングルパネルにおいて、CSI-RSアンテナポート数PCSI-RSと、(N1,N2)、に対し、CSIアンテナポートアレイ(論理的設定)のアンテナモデルが規定されている。タイプ1マルチパネルにおいて、CSI-RSアンテナポート数PCSI-RSと、(Ng,N1,N2)、に対し、CSIアンテナポートアレイ(論理的設定)のアンテナモデルが規定されている。
 Rel.15タイプ1シングルパネルCSIのために、UEは、コードブックタイプの上位レイヤパラメータ(CodebookConfig内のcodebookType内のtype1内のsubType)をタイプ1シングルパネル('typeI-SinglePanel')にセットされる。レイヤ数v∈{2,3,4}でない場合、PMI値は、3つのコードブックインデックスi1,1,i1,2,i2に対応する。レイヤ数v∈{2,3,4}である場合、PMI値は、4つのコードブックインデックスi1,1,i1,2,i1,3,i2に対応する。レイヤ数v∈{2,3,4}でない場合、複合(composite)コードブックインデックスi1=[i1,1,i1,2]である。レイヤ数v∈{2,3,4}である場合、複合コードブックインデックスi1=[i1,1,i1,2,i1,3]である。
 CSIアンテナポート数PCSI-RSに対し、サポートされる(N1,N2)及び(O1,O2)の設定(値の組み合わせ)が仕様に規定されている。(N1,N2)は、2次元のアンテナエレメント数を示し、typeI-SinglePanel内のnrOfAntennaPorts内のmoreThanTwo内のn1-n2によって設定される。(O1,O2)は、2次元のオーバーサンプリング因子である。水平方向のビームに対応するi1,1は{0,1,...,N1O1-1}である。垂直方向のビームに対応するi1,2は{0,1,...,N2O2-1}である。i2は{0,1,2,3}である。コードブックモード(codebookMode)=1に対し、アンテナポート3000から2999+PCSI-RSを用いる1レイヤCSI報告コードブックのための行列はW_i1,1,i1,2,i2^(1)である。ここで、Wl,m,n (1)は、次式によって与えられる。
Figure JPOXMLDOC01-appb-I000001
 Rel.15タイプ1マルチパネルCSIに対し、タイプ1シングルパネルと比較すると、N1,N2に加えてパネル数Ngが設定される。パネル間位相整合(inter-panel co-phasing、パネル間の位相補償、phase compensation between panels、パネル間の位相調整/位相差)として、i,1,4が追加されて報告される。各パネルに対して同じSDビーム(プリコーディング行列Wl)が選択され、パネル間位相整合のみが追加されて報告される。
 CSIアンテナポート数PCSI-RSに対し、サポートされる(Ng,N1,N2)及び(O1,O2)の設定(値の組み合わせ)が、仕様に規定されている。(N1,N2)は、typeI-MultiPanel内のng-n1-n2によって設定される。i1,1は{0,1,...,N1O1-1}である。i1,2は{0,1,...,N2O2-1}である。q=1,...,Ng-1に対してi1,4,qは{0,1,2,3}である。i2は{0,1,2,3}である。コードブックモード(codebookMode)=1に対し、アンテナポート3000から2999+PCSI-RSを用いる1レイヤCSI報告コードブックのための行列はW_i1,1,i1,2,i1,4,i2^(1)である。ここで、Wl,m,p,n (1)=Wl,m,p,n^1,Ng,1である。
 Ng={2,4}に対するW_l,m,p,n^1,Ng,1及びW_l,m,p,n^2,Ng,1(1番目のレイヤ、Ng=2、codeBookMode=1に対する行列Wl,m,p,n 1,2,1と、2番目のレイヤ、Ng=2、codeBookMode=1に対する行列Wl,m,p,n 2,2,1と、1番目のレイヤ、Ng=4、codeBookMode=1に対する行列Wl,m,p,n 1,4,1と、2番目のレイヤ、Ng=4、codeBookMode=1に対する行列Wl,m,p,n 2,4,1と)は、次式によって与えられる。
Figure JPOXMLDOC01-appb-I000002
 ここで、φn=ejπn/2である。Ng=2に対し、p=p1であり、Ng=4に対し、p=[p1,p2,p3]である。φ_p1、φ_p2、φ_p3は、パネル間位相整合(inter-panel co-phasing)を表す。パネル0,1,2,3に対して同じビーム(SDビーム行列、プリコーディング行列Wl)が選択され、φ_p1は、パネル0に対するパネル1の位相補償を表し、φ_p2は、パネル0に対するパネル2の位相補償を表し、φ_p3は、パネル0に対するパネル3の位相補償を表す。
(タイプ2コードブック)
 理想バックホール(ideal backhaul)と、同期と、複数TRPに跨る同じ数のアンテナポートと、を想定し、FR1及び4つまでのTRP向けのcoherent joint transmission(CJT)用のCSI取得が検討されている。FDD向けのCJTマルチTRPのために、Rel.16/17のタイプ2コードブックの改良が検討されている。
 本開示において、X行Y列の行列ZをZ(X×Y)と表すことがある。
 Rel.15のタイプ2CSIは、与えられたレイヤkに対し、サブバンドごと(SB-wise)のプリコーディングベクトルの生成は、次式に基づく。
 Wk(Nt×N3) = W1W2,k    (Y1)
 Ntは、アンテナ/ポートの数である。N3は、PMIによって示されるプリコーディング(ビームフォーミング)行列(プリコーダ)の総数(サブバンド数)である。W1(Nt×2L)は、L∈{2,4}個の(オーバーサンプルされた)空間ドメイン(spatial domain(SD))2次元(2D)DFTベクトル(SDビーム、2D-DFTベクトル)から成る行列(SDビーム行列)である。Lは、ビーム数である。1箇所における水平偏波及び垂直偏波を考慮した実際のビーム数は2Lである。例えば、L=2個のSD 2D-DFTベクトルはそれぞれbi,bjである。W2,k(2L×N3)は、レイヤkに対するサブバンド複素線形結合(linear combination(LC))係数(結合係数(combination coefficients))行列である。W2,kは、ビーム選択と、2つの偏波(polarization)の間の位相整合(co-phasing)と、を表す。例えば、2つのW2,kはそれぞれci,cjである。例えば、チャネル行列hは、L=2個のSD 2D-DFTベクトルの線形結合cibi,+cjbjによって近似される。フィードバックのオーバーヘッドは、主として、LC係数行列W2,kに起因する。また、Rel.15のタイプ2CSIは、ランク1及び2のみをサポートする。
 Rel.16のタイプ2CSIは、周波数ドメイン(FD)圧縮によって、W2,kに関連するオーバーヘッドを低減する。Rel.16のタイプ2CSIは、ランク1及び2に加え、ランク3及び4をサポートする。
 Rel.16のタイプ2CSIは、与えられたレイヤkに対し、次式に基づく情報がUEによって報告されてもよい。
 Wk = W1W~ kWf,k H    (Y2)
 W2,kは、W~ kWf,k Hによって近似される。行列W~は、Wの上に~(wチルダ)を付して表されてもよい。行列Wf,k Hは、Wf,kの随伴(adjugate)行列である。
 CSI報告に対し、UEは、2つのサブバンドサイズの内の1つを設定されてもよい。そのサブバンド(CQIサブバンド)は、NPRB SB個の連続PRBとして定義され、BWP内のPRBの総数に依存してもよい。CQIサブバンド当たりのPMIサブバンド数Rは、RRC IE(numberOfPMI-SubbandsPerCQI-Subband)によって設定される。Rは、PMIによって表されるプリコーディング行列の総数N3を、csi-ReportingBand内において設定されたサブバンドの数と、subbandSizeによって設定されるサブバンドサイズと、BWP内のPRBの総数と、の関数として制御する。
 W1(Nt×2L)は、複数の(オーバーサンプルされた)空間ドメイン(spatial domain(SD))2D-DFT(ベクトル、ビーム)から成る行列である。この行列のために、2次元離散フーリエ変換(2D-DFT)ベクトルの複数インデックス(indices)と、2次元のオーバーサンプリング因子(over-sampling factor)とが報告される。SD 2D-DFTベクトルによって表される空間ドメインの応答/分布は、SDビームと呼ばれてもよい。
 W~ k(2L×Mv)は、結合係数(combination coefficients、サブバンド複素線形結合(linear combination(LC))係数)から成る行列である。この行列のために、最大でK0個の非ゼロ係数(non-zero coefficients(NZCs))が報告される。その報告は、NZC位置を捕らえるビットマップと、量子化NZCとの、2つのパートから成る。
 Wf,k(N3×Mv)は、レイヤkに対する複数の周波数ドメイン(frequency domain(FD))基底(bases)(ベクトル)から成る行列である。レイヤ毎にMv個のFD基底(FD DFT基底)がある。N3>19の場合、サイズN3'(<N3)の中間サブセット(InS)からのMv個のDFTが選択される。N3≦19の場合、log2(C(N3-1,Mv-1))ビットが報告される。ここで、C(N3-1,Mv-1)は、N3-1個からMv-1個を選ぶ組み合わせの数であり、二項係数(binomial coefficients)とも呼ばれる。FD基底ベクトル及び結合係数の線形結合によって表される周波数ドメインの応答/分布(周波数応答)は、FDビームと呼ばれてもよい。FDビームは、遅延プロファイル(時間応答)に対応してもよい。
 FD基底のサブセットは、{f1,...,fMv}として与えられる。ここで、fiは、k番目のレイヤに対するi番目のFD基底であり、i∈{1,...,Mv}である。PMIサブバンドサイズは、CQIサブバンドサイズ/Rによって与えられ、R∈{1,2}である。与えられたランクvに対するFD基底の数Mvは、ceil(pv×N3/R)によって与えられる。FD基底の数は、全てのレイヤk∈{1,2,3,4}に対して同じである。pvは上位レイヤによって設定される。
 行列W2,kの各行は、特定のSDビームのチャネル周波数応答を表す。SDビームが高い指向性を有する場合、ビームごとのチャネルタップは限定される(時間ドメインにおいて電力遅延プロファイルは疎になる)。その結果、SDビームごとのチャネル周波数応答は、高い相関を有する(周波数ドメインにおいてフラットに近づく)。この場合、チャネル周波数応答は、少ない数のFD基底の線形結合によって近似されることができる。例えば、Mv=2である場合、FD基底f2,fqと線形結合係数d1 0,d2 0とを用いて、SDビームb0に関連付けられた周波数応答は、d1 0f2+,d2 0fqによって近似される。
 最高のゲインをMv個のFD基底が選択される。Mv≪N3とすることによってW~ kのオーバーヘッドは、W2,kのオーバーヘッドよりかなり小さい。Mv個のFD基底の全部又は一部が、各SDビームの周波数応答の近似に用いられる。各SDビームに対して選択されたFD基底のみを報告するためにビットマップが用いられる。もしビットマップが報告されない場合、各SDビームに対して全てのFD基底が選択される。この場合、各SDビームに対して、全てのFD基底の非ゼロ係数(nonzero coefficient(NZC))が報告される。1つのレイヤ内のNZCの最大数Kk NZ≦K0=ceil(β×2LMv)であり、全てのレイヤに跨るNZCの最大数KNZ≦2K0=ceil(β×2LMv)である。βは上位レイヤによって設定される。
 W~ k内の報告される各複素係数は、別々に量子化された振幅及び位相である。
[振幅量子化]
 偏波固有参照振幅は、図1のテーブル(振幅係数インディケーターi2,3,lの複数要素のマッピング:要素kl,p (1)から振幅係数pl,p (1)へのマッピング)を用いる16レベル量子化である。他の全ての係数は、図2のテーブル(振幅係数インディケーターi2,4,lの複数要素のマッピング:要素kl,i,f (2)から振幅係数pl,i,f (2)へのマッピング)を用いる8レベル量子化である。
[位相量子化]
 全ての係数は、16-PSKを用いて量子化される。例えば、φl,i = exp(j2πcl,i/16)、cl,i∈{0,...,15}。ここで、cl,iは、関連付けられた位相値φl,iに対して、UEによって(4ビットを用いて)報告される位相係数である。
 Rel.16のPUSCH上タイプ2CSIフィードバックは2つのパートを含む。CSIパート1は、固定ペイロードサイズを有し、CSIパート2内の情報ビット数の識別に用いられる。パート2のサイズは可変である(UCIサイズは非ゼロ振幅係数(NZC)の数に依存し、その数は基地局に知られていない)。UEは、CSIパート1内においてNZCの数を報告し、その数は、CSIパート2のサイズを決定する。基地局はCSIパート1を受信した後、CSIパート2のサイズを認識する。
 拡張(enhanced)タイプ2CSIフィードバックにおいて、CSIパート1は、RIと、CQIと、拡張タイプ2CSIに対する複数レイヤに跨る非ゼロ振幅の総数の指示と、を含む。パート1のフィールドは、別々に符号化される。CSIパート2は、拡張タイプ2CSIのPMIを含む。パート1及び2は、別々に符号化される。CSIパート2(PMI)は、オーバーサンプリング因子と、2D-DFT基底のインデックスと、選択されたDFTウィンドウの初期DFT基底(開始オフセット)のインデックスMinitialと、レイヤ毎に選択されたDFT基底と、レイヤ毎の非ゼロLC係数(NZC、振幅及び位相)と、レイヤ毎の最強(strongest、最大強度)の係数インディケーター(strongest coefficeint indicator(SCI))と、レイヤ毎/偏波毎の最強の係数の振幅と、の少なくとも1つを含む。
 異なるCSIパート2情報に関連付けられた複数のPMIインデックス(PMI値、コードブックインデックス)は、k番目のレイヤに対し、以下に従ってもよい。
・i1,1:オーバーサンプリング因子
・i1,2:2D-DFT基底の複数インデックス
・i1,5:選択されたDFTウィンドウの初期DFT基底のインデックス(開始オフセット)Minitial
・i1,6,k:k番目のレイヤに対して選択されたDFT基底
・i1,7,k:k番目のレイヤに対するビットマップ
・i1,8,k:k番目のレイヤに対する最強(strongest、最大強度)の係数インディケーター(SCI)
・i2,3,k:k番目のレイヤの(両方の偏波に対する)最強の係数の振幅
・i2,4,k:k番目のレイヤの報告された係数の振幅
・i2,5,k:k番目のレイヤの報告された係数の位相
 i1,5及びi1,6,kは、DFT基底報告用のPMIインデックスである。N3>19の場合のみ、i1,5が報告される。
 CSIパート2のグルーピングとして、与えられたCSIレポートに対し、PMI情報は3グループ(グループ0から2)にまとめられる。これは、CSI省略(omission)が行われる場合に重要である。インデックスi2,4,l、i2,5,l、i1,7,lの報告される各要素は、特定の優先度ルールに関連付けられる。グループ0から2は、以下に従う。
・グループ0:インデックスi1,1、i1,2、i1,8,l(l=1,...,v)
・グループ1:(報告される場合の)インデックスi1,5、(報告される場合の)インデックスi1,6,l、i1,7,lの内の最高(上位)のv2LMv-floor(KNZ/2)個の優先度要素、i2,3,l、i2,4,lの内の最高(上位)のceil(KNZ/2)-v個の優先度要素、i2,5,lの内の最高(上位)のceil(KNZ/2)-v個の優先度要素(l=1,...,v)
・グループ2:i1,7,lの内の最低(下位)のfloor(KNZ/2)個の優先度要素、i2,4,lの内の最低(下位)のfloor(KNZ/2)個の優先度要素、i2,5,lの内の最低(下位)のfloor(KNZ/2)個の優先度要素(l=1,...,v)
 タイプ1CSIにおいて、SD DFTベクトルによって表されるSDビームは、UEに向けて送られる。タイプ2CSIにおいて、L個のSDビームが線形結合され、UEに向けて送られる。各SDビームは、複数のFDビームに関連付けられることができる。対応するSDビームに対し、それらのFD基底ベクトルの線形結合によって、チャネル周波数応答を得ることができる。チャネル周波数応答は、電力遅延プロファイルに対応する。
(タイプ2ポート選択コードブック)
 Rel.16のタイプ2ポート選択(port selection(PS))CSIにおいて、タイプ2PSコードブック(CB)は、通常のタイプ2CB内の2D-DFTを考慮してSDビームを導出することをUEに求めない。代わりに、基地局は、SDビームのセットを考慮してビームフォームされたK個のCSI-RSポートを用いてCSI-RSを送信する。UEは、最良のL(≦K)個のCSI-RSポートを識別し、W1内におけるそれらのインデックスを報告する。
 レイヤk∈{1,2,3,4}に対し、サブバンドごと(subband(SB)-wise)のプリコーダ生成は、次式によって与えられる。
 Wk(Nt×N3) = QW1W~ kWf,k H    (Y3)
 ここで、Q(Nt×K)は、CSI-RSビームフォーミングに用いられるK個のSDビームを示す。W1(K×2L)は、ブロック対角行列(diagonal matrix)である。W~ k(2L×M)は、LC係数行列である。Wf,k(N3×M)は、N3個のDFT基底ベクトル(FD基底ベクトル)から成る。Kは上位レイヤによって設定される。Lは上位レイヤによって設定される。PCSI-RS∈{4,8,12,16,24,32}。PCSI-RS>4の場合、L∈{2,3,4}。
 Rel.15/16のタイプ2ポート選択のCSI/コードブックにおいて、各CSI-RSポート#iは、SDビーム(bi)に関連付けられる(図3A及び3B)。Rel.17のタイプ2ポート選択のCSI/コードブック(拡張タイプ2ポート選択コードブック)において、各CSI-RSポート#iは、SDビームの代わりに、SD-FDビームペア(SDビームbi及びFDビームfi,jのペア(jは周波数インデックス))に関連付けられる(図4A及び4B)。この例において、ポート3及び4は、同じSDビームに関連付けられ、異なるFDビームに関連付けられる。
 SDビーム-FDビームのペアに基づきUEにおいて観測されるチャネル周波数応答の周波数選択性(frequency selectivity)は、遅延の事前補償(delay pre-compensation)によって、SDビームに基づきUEにおいて観測されるチャネル周波数応答の周波数選択性よりも低減されることができる。
 Rel.17のタイプ2ポート選択コードブックの主なシナリオは、FDDである。SRS測定に基づくチャネルレシプロシティ(channel reciprocity)は完全ではないが、基地局は幾つかの部分的な情報を得ることができる。CSI報告に加え、基地局におけるSRS測定を用いることによって、基地局は、DL MIMOプリコーダの決定のためのCSIを得ることができる。この場合、CSIオーバーヘッドの削減のために、幾つかのCSI報告が省かれてもよい。
 Rel.17のタイプ2PS CSIにおいて、各CSI-RSポートは、SDビーム及びFD基底ベクトルを用いてビームフォームされる。各ポートは、SD-FDペアに関連付けられる。
 与えられたレイヤkに対し、次式に基づく情報がUEによって報告されてもよい。
 Wk(K×N3) = W1W~ kWf,k H    (Y4)
 W1(K×2L)に対し、各行列ブロックは、K×K単位行列(identity matrix)のL列から成る。基地局は、K個のビームフォームされたCSI-RSポートを送信する。各ポートは、SD-FDペアに関連付けられる。UEは、K個の内のL個のポートを選択し、それらをPMI(W1,k)の一部として基地局へ報告する。Rel.16において、各ポートは、SDビームに関連付けられる。
 W~ k(2L×Mv)は、結合係数(サブバンド複素LC係数)から成る行列である。最大でK0個のNZCsが報告される。報告は、NZC位置を捕らえるビットマップと、量子化NZCとの、2つのパートから成る。特定のケースにおいてビットマップは、省略されることができる。Rel.16において、NZC位置のビットマップは常に報告される。
 Wf,k(N3×Mv)は、N3個のFD基底(FD DFT基底)ベクトルから成る行列である。レイヤ毎にMv個のFD基底がある。基地局は、Wf,kを消してもよい。Wf,kがオンである場合、Mv個の追加のFD基底が報告される。Wf,kがオフである場合、追加のFD基底は報告されない。Rel.16において、Wf,kは常に報告される。
(CSI-RSリソース及びCSI報告の設定)
 図5の例に示すように、CSI-RSリソースとCSI報告の間の関係は、セルごとに設定されるCSI測定設定(CSI-MeasConfig)と、BWPごとに設定されるCSIリソース設定(CSI-ResourceConfig)と、CSI報告設定(CSI-ReportConfig)と、によって設定される。
 CSI-MeasConfigは、ノンゼロパワー(NZP) CSI-RSリソースの設定nzp-CSI-RS-Resource、NZP-CSI-RSリソースセットの設定nzp-CSI-RS-ResourceSet、CSI-干渉測定(IM)リソースの設定csi-IM-Resource、CSI-IMリソースセットの設定csi-IM-ResourceSet、CSI用SSBリソースセットの設定csi-SSB-ResourceSet、CSIリソース設定CSI-ResouceConfig、CSI報告設定CSI-ReportConfig、の少なくとも1つを含む。
 CSI-ResouceConfigは、nzp-CSI-RS-ResourceSet、csi-SSB-ResourceSet、csi-IM-ResourceSet、リソースタイプresourceType(周期的(P)/セミパーシステント(SP)/非周期的(A))の少なくとも1つを含む。
 CSI-ReportConfigは、リソース設定IDresourceConfigId、報告設定タイプreportConfigType(P/SP/A)、報告量、周波数ドメイン設定、チャネル測定/干渉測定のそれぞれの時間制約、グループベースビーム報告、CQIテーブル、サブバンドサイズ、非PMIポート指示、の少なくとも1つを含む。
(ドップラーシフト)
 時間ドメイン相関(time-domain correlation)/ドップラードメイン情報(Doppler-domain information)を利用して、高速/中速で移動するUEのためのCSI報告を拡張/能力向上させることが検討されている。例えば、空間ドメイン基底及び周波数ドメイン基底を変更することなく、Rel.16/17のタイプ2コードブックを改良すること、トラッキング用CSI-RS(tracking RS(TRS))を介して測定される時間ドメインチャネル特性をUEから報告すること、が検討されている。
 チャネルコヒーレント時間(channel coherent time(CCT))は、最大ドップラーシフトに依存する。チャネルコヒーレント時間は、測定されたチャネル特性が利用できる時間、又は、測定されたチャネル特性が利用できなくなる(channel aging)までの時間である。最大ドップラーシフトは、送信機及び受信機の間の相対速度によって推定される。チャネルコヒーレント時間Tcは1/Δfmaxによって近似される。ここでΔfmax=v/λである。UEの移動速度が高くなると、チャネルコヒーレント時間は短くなる。例えば、キャリア周波数4.5GHzにおいて、移動速度が約25km/hを上回ると、チャネルコヒーレント時間は10msを下回る。このような高い移動速度、短いチャネルコヒーレント時間に対し、どのように対処するかが問題となる。
 ドップラーシフトに追従するためにTRSがサポートされている。しかしながら、TRSには、以下の問題がある。
・CSI-RSリソースセット当たりのポート数が1つだけに制限される。各CSI-RSリソースはシングルポートを用いる。
・設定可能な周期は10ms以上である。
・TRSに対するCSI報告が想定されていない。P-TRSに対する報告設定がない。報告を設定することはできるが、報告量(reportQuantity)は、なし("none")のみにセットされる。1つのCSI-RSリソースセット当たり、最大で16個のCSI-RSリソースが用いられる。
 TRSは、時間ドメイン及び周波数ドメインのリソースに配置される。ドップラーシフトによる影響の測定のために、特定の周波数ドメインリソース内において時間ドメイン内の複数のRSが必要となる。
 ドップラーシフトによる影響の測定に、CMRの利用が考えられる。しかし、測定に用いられるRSはUE実装次第である。
 CSI報告の量において、ドップラーシフトに関する情報はサポートされていない。CSIコードブック(PMI)を介して、W=W1W2の決定のための情報が、UEによって報告される。ここで、W1は、ワイドバンド特性であり、空間ビームを示す。W2は、サブバンド特性であり、各空間ビームに対する振幅/位相の係数を示す。
 ドップラーシフトに関する測定について、UEが、CSI-RSに基づいて測定を行うケース1と、基地局が、SRSに基づいて測定を行うケース2と、が考えられる。ドップラーシフトに関する影響の判定について、UEが、CSI-RS測定結果に基づいて判定を行うケース1-1と、基地局が、UEによって報告されるCSI-RS測定結果に基づいて判定を行うケース1-2と、基地局が、SRS測定結果に基づいて判定を行うケース2-1と、が考えられる。
(CSI-RS測定及びCSI報告のタイミングの関係)
 CSI-RS測定(measurement)ウィンドウ及びCSI報告(reporting)ウィンドウが検討されている。CSI-RS測定ウィンドウ内において、1つ以上のCSI-RSオケージョンが測定されてもよい。報告されるCSIは、CSI報告ウィンドウに関連付けられてもよい。
 スロットn内のCSI報告と想定し、ドップラードメイン/時間ドメインの基底ベクトルの長さをN4としてもよい。スロット[k,k+Wmeas-1]のCSI測定ウィンドウ内において、CSI報告の計算のための1つ以上のCSIオケージョンが測定されてもよい。ここで、kはスロットインデックスであってもよく、Wmeasは測定ウィンドウ長(スロット数)であってもよい。CSIオケージョンはCSI-ReportConfig内において設定されてもよい。スロット[l,l+WCSI-1]のCSI報告ウィンドウは、スロットn内のCSI報告に関連付けられてもよい。ここで、lはスロットインデックスであってもよく、WCSIは報告ウィンドウ長(スロット数)であってもよい。CSI参照リソースの位置がnrefと表されてもよい。
 タイプ2コードブックの改良のために、CSI報告及び測定(CSI-RS測定ウィンドウ/CSI報告ウィンドウ)は、図6に示すように、以下のいくつかの選択肢の少なくとも1つに従ってもよい。
[選択肢1]以下のいずれかのように、CSI報告ウィンドウの境界に、CSI参照リソーススロットnrefが考慮されてもよい。
 [[選択肢1.A]]l+WCSI-1≦nref
 [[選択肢1.B]]nref≦l
 [[選択肢1.C]]l<nref及びnref≦l+WCSI-1
[選択肢2]以下のいずれかのように、CSI報告ウィンドウの境界に、報告スロットnが考慮されてもよい。
 [[選択肢2.A]]l+WCSI-1≦n
 [[選択肢2.B]]n≦l
 [[選択肢2.C]]l<n及びn≦l+WCSI-1
[選択肢3]以下のいずれかのように、CSI報告ウィンドウの境界に、測定ウィンドウの最終スロットk+Wmeas-1が考慮されてもよい。
 [[選択肢3.A]]特別ケースl=k、WCSI=Wmeasにおいて、l+WCSI-1≦k+Wmeas-1
 [[選択肢3.B]]k+Wmeas-1≦l
 [[選択肢3.C]]特別ケースl=k、n=l+WCSI又はl=k、n<l+WCSIにおいて、l<k+Wmeas-1及びk+Wmeas-1≦l+WCSI-1
 なお、既存の仕様において、nref=n-nref、l=nref、WCSI=1、k≦nref、Wmeas=1である。
 CSI報告ウィンドウがCSI-RSオケージョンとオーバーラップする場合、報告されるCSIは、実際の測定によって得られる、と解釈されることもできる。CSI報告ウィンドウがCSI-RSオケージョンとオーバーラップしない場合、報告されるCSIは、UEにおける予測によって得られる、と解釈されることもできる。CSI報告は、実際の測定によって得られるCSI(測定(measured)CSI)と、UEにおける予測によって得られるCSI(予測(predicted)CSI)と、を有する(選択肢1.C、3.C)、と解釈されることもできる。
 コードブック構造は、以下のいくつかの構造のいずれかであってもよい。
[構造1]時間ドメイン基底
Figure JPOXMLDOC01-appb-I000003
 ここで、WはNTxN3行N4列の行列である。WfはN3行M列の行列である(Rel.16と同様)。W1はNTx行2L列の行列である(Rel.16と同様)。W2は2LM行D列の行列である。WtはN4行D列の行列である。
[構造2]ドップラードメイン基底
Figure JPOXMLDOC01-appb-I000004
 ここで、WはNTxN3行N4列の行列である。WfはN3行M列の行列である(Rel.16と同様)。W1はNTx行2L列の行列である(Rel.16と同様)。W2は2L行MD列の行列である。WdはN4行D列の行列である。
 N4は時間ドメイン単位(時間ドメイン基底)の数である。Dは圧縮/選択された時間ドメイン単位(時間ドメイン基底)の数である。
 時間ドメイン粒度とオーバーヘッドの間にはトレードオフがある。より大きいDは、より細かい精度の報告と、より大きいオーバーヘッドになる。より小さいDは、より粗い精度の報告と、より小さいオーバーヘッドになる。
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
 例えば、将来の無線通信技術について、チャネル状態情報(Channel State Information Reference Signal(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのためにAI技術を活用することが検討されている。
 図7は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理とも表現される。
 データ収集(Data Collection)ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。
 モデル訓練ステージ(Model Training)では、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。
 モデル推論(Model Inference)ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。
 アクター(Actor)ステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。
 なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。
 また、ユースケースに応じて、訓練/推論を行うエンティティは異なってもよい。
 例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。
 AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。
 自己符号化器(オートエンコーダ(autoencoder))を用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(ジョイントで)モデル推論を行ってもよい。
 ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。
 識別子(Identifier(ID))ベースのモデルアプローチは、そのようなシナリオにおけるAIモデルの管理方法の1つになり得る。例えば、NW/gNBはAIモデルの詳細を知らないが、AIモデル管理のために、AIモデルの一部情報(例えば、UEにおいてどのMLモデルが何のために利用されているか)のみを知ることができる。
 本開示においては、UE/BSは、MLモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。
 なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
 本開示において、オブジェクトは、例えば、端末、基地局などの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。
 また、本開示において、MLモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
 また、本開示において、AI、AI/ML、AI/MLモデル、MLモデル、モデル、AIモデル、予測分析(predictive analytics)、予測分析モデルなどは、互いに読み替えられてもよい。また、MLモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。本開示において、モデルは、エンコーダ、デコーダ、ツールなどの少なくとも1つで読み替えられてもよい。
 MLモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力する。
 MLモデルには、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)などが含まれてもよい。教師あり学習は、入力を出力にマップする一般的なルールを学習するために用いられてもよい。教師なし学習は、データの特徴を学習するために用いられてもよい。強化学習は、目的(ゴール)を最大化するための動作を学習するために用いられてもよい。
 本開示において、生成、算出、導出などは、互いに読み替えられてもよい。本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。本開示において、訓練、学習、更新、再訓練などは、互いに読み替えられてもよい。本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。信号は、信号/チャネルと互いに読み替えられてもよい。
(CQI)
 UEは、以下の(1)~(4)の条件を満たす最も高いCQI値(ULスロットnで報告される)を導出(計算)する。
(1)CQIインデックスとCSI参照リソースを持つシングルPDSCH TBのブロックエラー確率は、以下の値を超えない。
・CSI-ReportConfigのcqi-tableが所定のテーブル(table1又はtable2)を設定する場合、0.1。
・CSI-ReportConfigのcqi-tableが所定のテーブル(table3)を設定した場合、0.00001。
(2)UEは、CQI/PMI/RIを導出するために、PDSCHについて以下の想定を行う。
・PDSCHとDMRSのシンボルは12シンボルである(最初の2シンボルは制御信号で占有される)。
・CQIレポート用に同じ帯域幅が設定される。
・DMRS-DownlinkConfigに基づくフロントロードシンボルと追加DMRSシンボル。
・PRBバンドリングサイズがPRBと想定される。
・UEは、報告したPMIに対応するプリコーディング行列を用いたPDSCH送信を想定してもよい。
(3)CQIの観測間隔。
・指定されない限り、時間領域では無制限。
・周波数領域では無制限。
(4)各サブバンドCQI値(インデックス)sに対して、2ビットのサブバンド差分CQIを次のように定義する(例えば図8A参照)。図8Aは、サブバンド差分CQI値とオフセットレベルの関係を示す図である。
・サブバンドオフセットレベル(s)=サブバンドCQIインデックス(s)-ワイドバンドCQIインデックス。
 上述したように、Rel.15/16では、サブバンドCQI値(インデックス)が、ワイドバンドCQI値(インデックス)との差分であるサブバンド差分CQI値(サブバンドオフセットレベル)として報告される。図8Bに示すように、サブバンドCQI値は、ワイドバンドCQI値(CQI index=6)に対して4つのオフセットレベルを用いて示される。この場合、サブバンド差分CQI値は、2ビットで示される。
 Rel.17では、より信頼性及びリソース効率を考慮して、4ビットでサブバンドCQI値を報告することがサポートされている。図8Cに示すように、サブバンドCQI値は、差分値ではなく絶対値で示されてよい。
 本開示において、サブバンド差分CQI値、サブバンドオフセットレベル、差分値、及びオフセットレベルは、互いに読み替えられてよい。
(プリコーディング行列に基づくCQI値)
 CQIインデックスを報告するように設定されている場合、CSI参照リソースにおいて、UEはCQIインデックスを導出するために、及び、PMIとRIを導出するために(設定されている場合)、以下を想定する。
 PDSCH送信スキームについて、UEは、最大8つの送信レイヤでPDSCH送信が行われると想定してもよい。CQI計算のために、UEは、νレイヤの集合[1000,…, 1000+ν-1]のアンテナポート上のPDSCH信号が、アンテナポート[3000,…, 3000+P-1]で送信される対応するシンボルと等価な信号になると想定する。この信号は、式(1)のように表される。x(i)は、式(2)のように表される。
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 式(2)のx(i)は、レイヤーマッピングからのPDSCHシンボルのベクトルである。p∈[1,2,4,8,12,16,24,32]は、CSI-RSポートの数である。CSI-RSポートが1つだけ設定されている場合、W(i)は1である。CQIが報告されるCSI-ReportConfigの上位レイヤパラメータreportQuantityが'cri-RI-PMI-CQI'又は'cri-RI-LI-PMI-CQI'のいずれかである場合、W(i)はx(i)に適用される報告されたPMIに対応したプリコーディング行列である。CQIが報告されるCSI-ReportConfigの上位レイヤのパラメータreportQuantityが'cri-RI-CQI'に設定された場合、W(i)は特定のプリコーディングマトリックスに設定される。アンテナポート[3000,…,3000+P-1]で送信される対応するPDSCH信号は、CSIーRS EPREに対するEPREの比が、特定の比に等しくなるように調整される。
(AIベースのCSIフィードバック)
 代表的なサブユースケースとして、2サイドAIモデルによる空間-周波数領域CSI圧縮が検討されている。
 図9は、AIベースのCSIフィードバックの例を示す図である。UEは、CSIに関する測定結果等に対して前処理、AI/MLベースCSI生成、後処理を行い、エンコードされたビット(CSIフィードバック情報)をNW(基地局)に送信する。このAI/MLベースCSI生成において、CSI圧縮が行われてもよい。NW(基地局)は、受信したビットに対して、前処理、AI/MLベースCSI再構成、後処理を行い、CSI(チャネル/プリコーディング行列)を取得する。NW(基地局)は、AI/MLモデルから出力されたチャネル行列(Channel matrix)に基づいて、プリコーディング行列を算出してもよい。
 この場合、NW(基地局)が取得するCSIがターゲットCSIに近くなるように、AI/MLを選択、調整することが望まれる。ターゲットCSIは、UE測定に基づいて計算されたCSI、理想的なCSI(シミュレーションによるCSI、固定値)、又は、実際のCSIを意味してもよい。
(CQI計算)
 UEは、CSI圧縮(例えばAI/MLモデルを用いた)を適用する場合、CSIを圧縮して得られた情報(例えば、図9のEncoded bits)をNW(基地局)に送信する。そして、UEは、CQI算出のために、PDSCH送信に以下のプリコーディング行列が適用されることを想定してもよい。そして、UEは、以下のプリコーディング行列に基づいてCQIを計算してもよい。
[態様1.1]
 UEは、CSI圧縮が適用される場合、基地局においてAI/MLモデル出力に基づき算出されるプリコーディング行列がPDSCH送信に適用されることを想定する。つまり、UEは、AI/MLモデルを用いて実際に得られたプリコーディング行列に基づいてCQIを計算する。UEは、エンコーダとデコーダを有する場合、当該プリコーディング行列を導出することができる。
[態様1.2]
 UEは、CSI圧縮が適用される場合、理想的なAI/MLモデルの出力(ターゲットCSI)、例えばUEの測定に基づいて算出されたCSIに基づいて導出されるプリコーディング行列が、PDSCH送信に適用されることを想定する。この例では、UEがデコーダを持たない場合でも、ターゲットCSIを導出することができる。ただし、ターゲットCSI/モデルの理想的な出力と実際の出力(CSI)との性能差は無視される。
[態様1.3]
 UEは、CSI圧縮が適用される場合、基地局におけるAI/MLモデルの期待出力(AI/MLモデルに対して想定される出力)に基づいて導出されるプリコーディング行列がPDSCH送信に適用されることを想定する。UEは、ターゲットCSI(測定値から算出されるCSI)と期待される性能情報に基づいて、当該モデルの期待出力を導出してもよい。期待される性能情報(AI/MLモデルに関する情報)は、UEによって計算されてもよいし、基地局(gNB)によって指示/設定されてもよいし、又はサーバ等から送信されてもよい。期待される性能情報は、期待される推定誤差情報(期待される誤差の変動幅など)であってもよい。
 この例では、UEがデコーダを持たない場合でも、ターゲットCSIと期待性能を基に期待出力(CSI)を導出することができる。ただし、モデルの期待出力と実際の出力との間に性能差が存在する。
[態様1.4]
 UEは、CSI圧縮が適用される場合、CQI計算のために、基地局におけるAI/MLモデルの出力に基づき導出されたチャネル行列を基に算出されたプリコーディング行列がPDSCH送信に適用されることを想定する。チャネル行列からプリコーディング行列をどのように計算するかは、UEが決定してもよいし仕様で規定されてもよい。この例は、チャネル行列に対するCSI圧縮に適用することができる。また、実際に得られたチャネル行列を元にCQIが算出されるので、UEは、エンコーダとデコーダを持つ場合、得られるチャネル行列を導出することができる。
(CSI予測)
 上述したように、将来の無線通信システム(例えばRel.18)においては、高速/中速で移動する端末における通信性能の向上が検討されている。例えば、1つのCSI報告(1つのレポーティングインスタンス)は、ある時間ドメイン(CSI報告ウィンドウ)内に複数のCSIを含むことができる。本開示において、CSI報告ウィンドウは、報告されるCSIが関連付けられるウィンドウを意味してもよい。
 図10は、CSI報告の一例を示す図である。図10に示すように、CSI報告ウィンドウがCSI-RSオケージョンとオーバーラップする場合、報告されるCSIは、CSI-RSオケージョンの境界におけるCSI参照リソースの後、又はCSI報告スロットnに対応するCSIであってもよい。CSI-RSオケージョンがCSI参照リソースよりも前であることは、例えば仕様により規定されてもよい。
 また、AI/MLモデルを用いたサブユースケースとして、CSI予測(CSI prediction)が提案されている。UE/gNBにデプロイされたAI/MLモデルは、ある時間ドメイン内でCSIを予測してもよい。このようなケースにおいても、1つのCSI報告(1つのレポーティングインスタンス)は、ある時間ドメイン(CSIレポーティングウィンドウ)内に複数のCSIを含むことができる。複数のCSIによれば、CSIの時系列の変化を認識することができ、gNB側のCSI予測に有益である。また、複数の予測されたCSI(予測CSI)は、UE側のCSI予測のために報告されてもよい。
 また、AI/MLモデルを用いた他のサブユースケースとして、時間空間周波数ドメインCSI圧縮(temporal spatial frequency domain CSI compression)が検討されている。このようなケースにおいても、1つのCSI報告(1つのレポーティングインスタンス)は、ある時間ドメイン(CSIレポーティングウィンドウ)内に複数のCSIを含むことができる。
 ところで、CSI予測におけるCQIの課題として、以下の課題1~3が存在する。
[課題1]CQIの数、
[課題2]CQIの計算、
[課題3]CQIのみの予測。
 課題1に関し、報告されるPMI/CSIには、複数のプリコーディング行列が含まれることが想定される。この場合、(課題1.1)複数のプリコーディング行列のそれぞれに対応したCQIが必要であるかどうか、(課題1.2)1つのCSI報告につき複数のCQIをどのように対応付ける(表現する)かどうか、が検討事項として挙げられる。
 課題2に関し、CQIは、PMIに関連づけられるプリコーディング行列、アンテナポートに対応するPDSCHシンボル(チャネル)に基づいて計算されることが想定される。この場合、(課題2.1)CQIは、予測されるプリコーディング行列に基づいて計算されるべきか、(課題2.2)対応するアンテナポートについて予測されるPDSCHシンボル(未来のチャネル)に基づいて計算されるべきか、が検討事項として挙げられる。
 課題3に関し、プリコーディング行列が予測されない場合でも、CQIのみが予測されるケースが想定される。この場合、どのようにCQIだけを予測するかが検討事項として挙げられる。
 そこで、本発明者らは、CSIの適切な報告方法を着想した。本開示の一態様によれば、移動の影響に関する測定/予測/報告を適切に行うことができる。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報、測位用プロトコル(例えば、LTE Positioning Protocol(LPP))メッセージなどのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。
 本開示において、ドロップ、中止、キャンセル、パンクチャ、レートマッチ、延期(postpone)、送信しない、などは、互いに読み替えられてもよい。
(無線通信方法)
 本開示において、CSI報告、報告インタンス、PMI、及びプリコーディング行列、等は、互いに読み替えられてよい。また、CQI値、CQIのビット幅、CQIフィールド、及びCQIインデックスは、互いに読み替えられてよい。また、CQI及びCSIは、互いに読み替えられてよい。また、プリコーディング行列、及び、振幅/位相係数のセットは、互いに読み替えられてよい。
<第1の実施形態>
 第1の実施形態は、CQIの数に関する。
 UEは、1つのCSI報告/報告インスタンス/PMIにおいて、N個のCQIを報告してもよい。ここで、各CQIは、異なる時間(例えばシンボル、スロット、ミリ秒、サブフレーム)、又はCSI報告ウィンドウ内のCSIオケージョンに対応してもよい。すなわち、1つのCSI報告にN個(Nは1以上の整数)のCQIが含まれてよい。
 Nは、以下の少なくとも1つの選択肢(条件)に基づいて決定されてもよい:
・選択肢1:1つのCSI報告/報告インスタンス/PMIにおいて報告されるプリコーディングマトリックスの数/PMIの数、
・選択肢2:アクティベートされたモデルに関連付けられる情報、
・選択肢3:登録/設定されたモデルに関連する情報、
・選択肢4:NWからの情報、
・選択肢5:UE能力、
・選択肢6:仕様で規定された値、
・選択肢7:UEの実装次第(例えばUEは、CSI#1においてCQIの数Nを報告し、CSI#2において対応するCQIを報告してもよい)、
・選択肢8:報告されるCSI/PMIの時間ドメインに対応するウィンドウの長さ(例えばスロット数)、
・選択肢9:1つのプリコーディング行列/CQIに関連付けられる時間又は遅延領域の単位、
・選択肢10:選択肢1~9の組み合わせ。
 選択肢8の例として、UEは、上記の各選択肢の中から最小値又は最大値をNとして決定してもよい。また、他の例として、UEは、NWからの情報に基づいて、プリコーディング行列当たりのCQIの数、又はCQI当たりのプリコーディング行列の数、を決定してもよい。
 図11は、第1の実施形態に係るCSI報告の一例を示す図である。図11に示すように、スロットnにおけるCSI報告には、例えばCSI#1-#3に対応する3つのCQI(CQI#1-#3)が含まれてよい。ここで、CSI#1-#3(CQI#1-#3)は、CSI報告ウィンドウ内の3つの異なる時間インスタンスにそれぞれ対応してもよい。
[バリエーション]
 UEは、PMIに関連付けられる1つの報告されるプリコーディング行列に対応するN’個のCQIを報告してもよい。ここで、各CQIは、異なる時間(例えばシンボル、スロット、ミリ秒、サブフレーム)、又はCSI報告ウィンドウ内のCSIオケージョンに対応してもよい。すなわち、UEは、1つのプリコーディング行列につき、N’個のCQIを報告してもよい(あるPMIに対して1つのプリコーディング行列が関連付けられ、当該1つのプリコーディング行列に対してN’個のCQIが関連付けられてよい)。
 上述したようにCSI報告の粒度(時間ドメイン粒度)とオーバーヘッドの間にはトレードオフの関係が存在する。例えば、CQIに比べてプリコーディング行列の方が、オーバーヘッドが大きいことが想定される。このため、1つのプリコーディング行列に対して複数のCQIを関連付けることにより、プリコーディング行列によるオーバーヘッドを削減しつつ、より細かい粒度でCQIを報告できる。
 UEは、PMIに関連付けられるN’’個の報告されるプリコーディング行列に対応する1つのCQIを報告してもよい。ここで、各プリコーディング行列は、異なる時間(例えばシンボル、スロット、ミリ秒、サブフレーム)、又はCSI報告ウィンドウ内のCSIオケージョンに対応してもよい。すなわち、N’’個のプリコーディング行列に対して1つのCQIが関連付けられてもよい。
 N’及びN’’は、上述した選択肢1~10のうち、少なくとも1つの選択肢に基づいて決定されてもよい。
 以上説明した第1の実施形態によれば、UEは、1つのCSI報告/報告インスタンス/PMIにおいて、適切にCQIの数を決定できる。
<第2の実施形態>
 第2の実施形態は、CQIのビット幅(CQI値)に関する。
 UEは、1つのCSI報告/報告インスタンス/PMIにおいて、N個のCQIを報告する場合、以下の少なくとも1つの選択肢(条件)に基づいてCQIのビット幅を決定してもよい。UEは、以下の少なくとも1つの選択肢に基づいて決定したビット幅を用いて1つのCQIを報告することができる。
・選択肢1:仕様で規定された値(例えば2ビット4ビット)、
・選択肢2:アクティベートされたモデルに関連付けられる情報、
・選択肢3:登録/設定されたモデルに関連する情報、
・選択肢4:NWからの情報(cqi-BitsPerSubband等の既存のパラメータが利用されてもよく、又は新しいパラメータが採用されてもよい)、
・選択肢5:UE能力、
・選択肢6:CSI報告ウィンドウ内のあるCQIに関連する相対的な時間/オケージョン、
・選択肢7:UEの実装次第(例えばUEは、CSI#1においてCQIのビット幅を報告し、CSI#2において対応するCQIを報告してもよい)、
・選択肢8:報告されるCSI/PMIの時間ドメインに対応するウィンドウの長さ(例えばスロット数)、
・選択肢9:1つのプリコーディング行列/CQIに関連付けられる時間又は遅延領域の単位、
・選択肢10:選択肢1~9の組み合わせ。
 選択肢6に関し、CQIのビット幅は、(1)CSI報告ウィンドウ内の複数のCQIのうち、ある時間インスタンスに対応するCQI値(CQIフィールド)との差分に基づいて決定されてもよい。より具体的に当該ビット幅は、1つのCSI報告内/CSI報告ウィンドウ内の複数のCQI値(CQIフィールド)のうち、最初/最後/中間のCQI値に基づいて(特定のCQIを基準に)決定されてもよい。ここで、中間のCQI値は、ceil(N/2)又はfloor(N/2)で表されるフィールドで示されてよい。中間のCQI値は、複数のCQI値の中で平均的な値を取り得ると想定される。このため、当該中間のCQI値を基準とすると、他のCQI値(その前後のCQI値)との差分が比較的小さくなり、ビット幅(他のCQI値)を小さくすることができる。
 また、選択肢6に関し、CQIのビット幅は、(2)1つのCSI報告/PMI内の複数のCQI値(CQIフィールド)のうち、関連付けられる時間(例えばシンボル、スロット、ミリ秒、サブフレーム)やオケーションが最も古い/最新/中間のCQI値に基づいて(特定のCQIを基準に)決定されてもよい。中間のCQI値は、複数のCQI値の中で平均的な値を取り得ると想定される。このため、当該中間のCQI値を基準とすると、他のCQI値(その前後のCQI値)との差分が比較的小さくなり、ビット幅(他のCQI値)を小さくすることができる。
 上述の各選択肢は、ワイドバンドCQIインデックス及びサブバンドCQIインデックスのいずれにも適用が可能である。ワイドバンドCQIインデックス及びサブバンドCQIインデックスのそれぞれに対して、異なる選択肢が適用されてもよい。
 以上説明した第2の実施形態によれば、複数のCQI毎に柔軟にビット幅を決定できる。
<第3の実施形態>
 第3の実施形態は、CQI値(CQIインデックス)の相対的な表現に関する。CQI値の表現は、サブバンド及びワイドバンドのいずれにも適用が可能である。
 UEは、1つのCSI報告/報告インスタンス/PMIにおいて、他のCQI値に基づいて相対的なCQI値を報告してもよい。
[実施形態3.1]
 UEは、1つのCSI報告内において、対応するCQIよりも(例えば1つ)前のCQIフィールドに対応するCQIインデックスと、その差分値(対応するオフセットレベル)と、に基づいて対応するCQIインデックスを決定してもよい。
[実施形態3.2]
 UEは、1つのCSI報告内において、対応するCQIよりも(例えば1つ)前の時間/オケージョンに対応する(関連する)CQIインデックスと、その差分値(対応するオフセットレベル)と、に基づいて、対応するCQIインデックスを決定してもよい。
 図12は、第3の実施形態に係るCSI報告ウィンドウの一例(オプション3.1-3.2に対応)を示す図である。図12では、1つのCSI報告ウィンドウ内に時間インスタンスの異なる3つのCQI値(CQI#1ー#3/CSI#1ー#3)が含まれる場合を示している。CQI#1ー#3/CSI#1ー#3は、この順の時系列に対応してもよい。
 図12に示すように、例えば、CQI#1がCSI#1に対応するCQIインデックスを示している。この場合、CSI#2に対応するCQIインデックス(CQI#2)は、CQI#1+CQI#2のためのオフセットレベル(CQI#1に対する差分値)で示されてよい。また、CSI#3に対応するCQIインデックス(CQI#3)は、CQI#2+CQI#3のためのオフセットレベル(CQI#2に対する差分値)で示されてよい。このように、UEは、1つの前のCQIインデックスに基づいて、対応するCQIインデックスを決定してもよい。
[実施形態3.3]
 UEは、ある基準となるCQIインデックス(reference CQI index:参照CQIインデックスと呼ばれてもよい)と、その差分値(対応するオフセットレベル)と、に基づいて、対応するCQIインデックスを決定してもよい。
[オプション3.3.1]
 UEは、1つのCSI報告ウィンドウ内の特定の(X番目の)CQIフィールドで示されるCQIインデックスに基づいて、対応するCQIインデックスを決定してもよい。
 基準となるCQIインデックスは、例えば、1つのCSI報告ウィンドウ内の最初のCQIフィールド/最後のCQIフィールド/ceil(N/2)番目のフィールド/floor(N/2)番目のフィールドのいずれかに基づいて決定されてもよい。
[オプション3.3.2]
 UEは、1つのCSI報告ウィンドウ内のX番目の最新/最古の時間/オケージョンに対応するCQIインデックス(CSI)に基づいて、対応するCQIインデックスを決定してもよい。
 基準となるCQIインデックスは、例えば、1つのCSI報告ウィンドウ内の直近のCSI/ceil(N/2)番目に古いCSI/floor(N/2)番目に古いCSIの時間/オケージョンのいずれかに基づいて決定されてもよい。
 図13は、第3の実施形態に係るCSI報告ウィンドウの他の一例(オプション3.3.1-3.3.2に対応)を示す図である。図13に示すように、UEは、ある1つのCSI報告ウィンドウ内の複数のCQI(CSI)のうち、最も古いCSIに対応するCQIインデックスに基づいて、対応するCQIインデックスを決定してもよい。
 図13では、例えば、CQI#1がCSI#1に対応するCQIインデックスを示している。この場合、CSI#2に対応するCQIインデックス(CQI#2)は、CQI#1+CQI#2のためのオフセットレベル(CQI#1に対する差分値)で示されてよい。また、CSI#3に対応するCQIインデックス(CQI#3)は、CQI#1+CQI#3のためのオフセットレベル(CQI#1に対する差分値)で示されてよい。このように、UEは、CSI報告ウィンドウ内の1つの(X番目の)CQIインデックスに基づいて、対応するCQIインデックスを決定してもよい。
[オプション3.3.3]
 UEは、ある報告されたCQIインデックス(参照CQIインデックス、reference CQI index)に基づいて、対応するCQIインデックスを決定してもよい。つまり、参照CQIインデックスは、1つのCSI報告ウィンドウ内の他のCQIと必ずしも関連付けられなくてよい。
 基準となるCQIインデックス(参照CQIインデックス)は、例えば、これより前のCSI報告ウィンドウ内の特定のCQI(過去のCSI報告に基づく特定のCQI)に基づいて決定されてもよい。また、参照CQIインデックスは、上位レイヤパラメータを用いてNWから通知されてもよく、予め仕様で規定された規則に基づいて決定されてもよい。また、参照CQIインデックスの値は、ある特定の値で示されてもよく、複数の測定値のうちの最大値/最小値に対応するCQIインデックスで示されてもよい。
 図14は、第3の実施形態に係るCSI報告ウィンドウの他の一例(オプション3.3.3に対応)を示す図である。図14に示すように、UEは、参照CQIインデックス(reference CQI index)に基づいて、対応するCQIインデックスを決定してもよい。
 図14では、例えば、CSI#1に対応するCQIインデックス(CQI#1)は、参照CQIインデックス+CQI#1のためのオフセットレベル(参照CQIインデックスに対する差分値)で示されてよい。CSI#2に対応するCQIインデックス(CQI#2)は、参照CQIインデックス+CQI#2のためのオフセットレベル(参照CQIインデックスに対する差分値)で示されてよい。CSI#3に対応するCQIインデックス(CQI#3)は、参照CQIインデックス+CQI#3のためのオフセットレベル(参照CQIインデックスに対する差分値)で示されてよい。
 このように、基準となるCQIインデックス(参照CQIインデックス)を用いることにより、対応するCQIインデックスを柔軟に決定(特定)することができる。
[実施形態3.4]
 上述した実施形態3.1~3.3は、ワイドバンドCQIインデックス及びサブバンドCQIインデックスのいずれにも適用が可能である。ワイドバンドCQIインデックス及びサブバンドCQIインデックスのそれぞれに対して、異なる実施形態が適用されてもよい。実施形態3.4では、ワイドバンド及びサブバンドのそれぞれの適用について説明する。
[ワイドバンドのCQI計算]
<オプション3.4.1>
 1つのCSI報告において、ワイドバンドのCQIインデックスは、他のワイドバンドのCQIインデックス(の値)と、その差分値(対応するオフセットレベル)と、に基づいて計算されてもよい。
<オプション3.4.2>
 ワイドバンドのCQIインデックスは、参照CQIインデックス(の値)と、その差分値(対応するオフセットレベル)と、に基づいて計算されてもよい。
[サブバンドのCQI計算]
<オプション3.4.3>
 サブバンドのCQIインデックスは、同じ時間/オケージョンのCSIに対応するワイドバンドCQIインデックス(の値)と、その差分値(対応するオフセットレベル)と、に基づいて計算されてもよい。
<オプション3.4.4>
 サブバンドのCQIインデックスは、同じサブバンドに対応する他のサブバンドCQIインデックスと、異なる時間/オケージョンのCSIに対応する他のサブバンドCQIインデックス(の値)と、その差分値(対応するオフセットレベル)と、に基づいて計算されてもよい。
<オプション3.4.5>
 サブバンドのCQIインデックスは、参照CQIインデックスと、その差分値(対応するオフセットレベル)と、に基づいて計算されてもよい。ここで、参照CQIインデックスは、全てのサブバンド間で共通の値が適用されてもよく、サブバンド毎に報告されてもよい。
 以上説明した第3の実施形態によれば、1つのCSI報告ウィンドウ内の複数のCQIのそれぞれに対応するCQI値(CQIインデックス)を適切に決定することができる。
<第4の実施形態>
 第4の実施形態は、CQIの計算方法に関する。
[実施形態4.1]
 UEは、ある(certain)パラメータが設定されている/ある(certain)AI/MLモデルがアクティベートされている場合、CQI計算のためのPDSCH送信に以下のオプション4.1.1-4.1.2のいずれかに示すプリコーディング行列が適用されると想定してもよい。UEは、適用されるプリコーディング行列に基づいてCQIを計算してもよい。
<オプション4.1.1>
・報告されるPMIに基づいて導出されるプリコーディング行列。
 UEは、報告されるPMIに基づいてプリコーディング行列を導出してもよい。この場合、UEは、当該複数のプリコーディング行列のうち、1つのプリコーディング行列/いくつかのプリコーディング行列に基づいてCQIを計算してもよい。例えばUEは、1つのプリコーディング行列につき、対応する1つのCQIを計算してもよい。オプション4.1.1によれば、UEは、CSI予測が適用される場合、予測されるプリコーディング行列(予測プリコーディング行列)に基づいてCQIを計算することができる。
<オプション4.1.2>
・CSI-RSオケージョンの測定から計算されるCSIに基づいて導出されるプリコーディング行列。
 UEは、CSI-RSオケージョンの測定から計算されるCSIに基づいてプリコーディング行列を導出してもよい。オプション4.1.2によれば、UEは、予測されるプリコーディング行列/予測されるチャネルに基づいてCQIを計算する必要がない。このため、UE側の計算量を削減することができる。
 図15は、第4の実施形態に係るCSI報告の一例(実施形態4.1に対応)を示す図である。図15において、上述したオプション4.1.1(Alt1)が適用される場合、スロットnにおけるCSI報告には、例えばプリコーディング行列(Precoding matrix)#1-#3に対応する3つのCQI(CQI#1-#3)が含まれてよい。ここで、CSI#1-#3(CQI#1-#3)は、CSI報告ウィンドウ内の3つの異なる時間インスタンスにそれぞれ対応してもよい。
 また、図15において、上述したオプション4.1.2(Alt2)が適用される場合、スロットnにおけるCSI報告には、例えばプリコーディング行列(Precoding matrix)#0に対応する1つのCQI(CQI#0)が含まれてよい。ここで、CSI#0(CQI#0)は、CSI-RSオケージョン内のある時間インスタンスに対応してもよい。
[実施形態4.2]
 UEは、ある(certain)パラメータが設定されている/ある(certain)AI/MLモデルがアクティベートされている場合、CQI計算のためのPDSCH送信に以下のオプション4.2.1-4.2.3のいずれかに示すPDSCHシンボルのベクトルが適用されると想定してもよい。UEは、適用されるPDSCHシンボルのベクトルに基づいてCQIを計算してもよい。ここで、PDSCHシンボルのベクトルは、以下の少なくとも1つであってよい:
・レイヤーマッピングからのPDSCHシンボルのベクトル:x(i)、
・リソースエレメントマッピングからのPDSCHシンボルのベクトル:y(i)。
<オプション4.2.1>
・報告されるプリコーディング行列に関連付けられる時間/オケージョンにおけるPDSCHシンボルのベクトル。
 UEは、例えば報告されるPMI内のある1つのプリコーディング行列に関連する時間におけるPDSCHシンボルのベクトルに基づいて、CQIを計算してもよい。オプション4.2.1によれば、UEは、将来のチャネルを考慮して、予測CQI計算(predicted CQI calculation)を実現できる。
<オプション4.2.2>
・設定/報告されるパラメータに関連付けられる時間/オケージョンにおけるPDSCHシンボルのベクトル。
 UEは、NWから受信する設定パラメータ/NWに対して報告するパラメータに関連付けられる時間におけるPDSCHシンボルのベクトルに基づいて、CQIを計算してもよい。オプション4.2.2によれば、UEは、将来のチャネルを考慮して、予測CQI計算(predicted CQI calculation)を実現できる。
<オプション4.2.3>
・CSI-RSオケージョンに基づく時間/オケージョンにおけるPDSCHシンボルのベクトル。
 オプション4.2.3によれば、UEは、将来のチャネルを考慮してCQIを計算する必要がない。このため、UE側の計算量を削減することができる。
 図16は、第4の実施形態に係るCSI報告の一例(実施形態4.2に対応)を示す図である。図16において、上述したオプション4.2.1(Alt1)/オプション4.2.2(Alt2)が適用される場合、スロットnにおけるCSI報告には、例えばCSI#1-#3に対応する3つのCQI(CQI#1-#3)が含まれてよい。ここで、CSI#1-#3(CQI#1-#3)は、CSI報告ウィンドウ内の3つの異なる時間インスタンスにそれぞれ対応してもよい。
 また、図16において、上述したオプション4.2.3(Alt3)が適用される場合、スロットnにおけるCSI報告には、例えばCSI#0に対応する1つのCQI(CQI#0)が含まれてよい。ここで、CSI#0(CQI#0)は、CSI-RSオケージョン内のある時間インスタンスに対応してもよい。
[実施形態4.3]
 UEは、上述した実施形態4.1-4.2のいずれかの適用を以下の少なくとも1つの選択肢に基づいて決定してもよい:
・選択肢1:アクティベートされたモデルに関連付けられる情報、
・選択肢2:登録/設定されたモデルに関連する情報、
・選択肢3:NWからの情報、
・選択肢4:UE能力、
・選択肢5:仕様で規定された値、
・選択肢6:UEの実装次第(例えばUEは、CSI#1において適用する選択肢を報告し、CSI#2において対応するCQIを報告してもよい)、
・選択肢7:実施形態4.1-4.2の各オプションに基づく、
・選択肢8:報告されるCSI/PMIの時間ドメインに対応するウィンドウの長さ(例えばスロット数)、
・選択肢9:1つのプリコーディング行列/CQIに関連付けられる時間又は遅延領域の単位、
・選択肢10:選択肢1~9の組み合わせ。
[実施形態4.4(バリエーション)]
 上述した実施形態4.1-4.3とCSI圧縮に関する態様1.1-1.4は、組み合わせて適用されてもよい。これにより、UEは、時間空間周波数ドメインCSI圧縮(temporal spatial frequency domain CSI compression)を考慮してCQIを計算することができる。時間空間周波数ドメインCSI圧縮を適用する場合、UEは、CQI計算において、以下の点を考慮する必要がある:
・プリコーディング行列とPDSCHシンボルのベクトルに関連付けられる時間、
・CQI計算におけるプリコーディング行列は、目標(target)CSI(UEで測定されるCSI)/予想(expected)CSI(予想ノイズを含む目標CSI)/獲得(obtained)CSI(gNBにおいて再設定されたCSI)に基づくこと。
 以上説明した第4の実施形態によれば、UEは、予測されるプリコーディング行列/チャネルに基づいてCQI計算できる。また、UEは、プリコーディング行列/チャネルが予測されなくてもCQIを計算できる。
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング(RRCメッセージ/LPPメッセージ)、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
 ・CSI報告ウィンドウ/CSI-RSオケージョンの設定をサポートすること、
 ・CQIの数の決定をサポートすること、
 ・CQIのビット幅の決定をサポートすること、
 ・CQI計算をサポートすること、
 ・CSI圧縮の適用をサポートすること。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、各実施形態の機能を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記A)
 本開示の一実施形態(第1-第3の実施形態)に関して、以下の発明を付記する。
[付記1]
 チャネル状態情報(CSI)報告を送信する送信部と、
 前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、ある条件に基づいて前記CQIの数、前記CQIのビット幅、及び前記CQIのインデックスの少なくともいずれかを決定する制御部と、を有する端末。
[付記2]
 前記制御部は、あるCSI報告ウィンドウ内の複数のCQIのうち、あるCQIのフィールドに基づいて、前記CQIのビット幅を決定する付記1に記載の端末。
[付記3]
 前記制御部は、あるCSI報告ウィンドウ内の複数のCQIのうち、あるCQIのインデックスに対応するオフセットレベルに基づいて、前記CQIのインデックスを決定する付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、参照CQIインデックスに対応するオフセットレベルに基づいて、前記CQIのインデックスを決定する付記1から付記3のいずれかに記載の端末。
(付記B)
 本開示の一実施形態(第4の実施形態)に関して、以下の発明を付記する。
[付記1]
 チャネル状態情報(CSI)報告を送信する送信部と、
 前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、CQI計算のために、特定のプリコーディング行列、又は特定のPDSCHシンボルのベクトルが物理下りリンク共有チャネル(PDSCH)送信に適用されることを想定する制御部と、を有する端末。
[付記2]
 前記制御部は、報告されるプリコーディング行列インディケーター(PMI)、又はCSI-RSオケージョンの測定から計算されるCSIに基づいて前記特定のプリコーディング行列を導出する付記1に記載の端末。
[付記3]
 前記制御部は、報告されるプリコーディング行列に関連付けられる時間、又はCSI-RSオケージョンに基づく時間における前記特定のPDSCHシンボルのベクトルに基づいて、前記CQI計算を実施する付記1又は付記2に記載の端末。
[付記4]
 前記送信部が、Artificial Intelligence(AI)/Machine Learning(ML)モデルを用いてCSIを圧縮して得られた情報を送信する場合、前記制御部は、前記特定のプリコーディング行列、又は前記特定のPDSCHシンボルのベクトルが適用されることを想定する付記1から付記3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図17は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図18は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、チャネル状態情報(CSI)報告に関する情報を送信してもよい。送受信部120は、前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を受信してもよい。送受信部120は、Artificial Intelligence(AI)/Machine Learning(ML)モデルを用いてCSIを圧縮して得られた情報を受信してもよい。
 制御部110は、ユーザ端末20が前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、CQI計算のために、特定のプリコーディング行列、又は特定のPDSCHシンボルのベクトルを物理下りリンク共有チャネル(PDSCH)送信に適用してもよい。制御部110は、ユーザ端末20がArtificial Intelligence(AI)/Machine Learning(ML)モデルを用いてCSIを圧縮して得られた情報を送信する場合、前記特定のプリコーディング行列、又は前記特定のPDSCHシンボルのベクトルを適用してもよい。
(ユーザ端末)
 図19は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、チャネル状態情報(CSI)報告を送信してもよい。送受信部220は、Artificial Intelligence(AI)/Machine Learning(ML)モデルを用いてCSIを圧縮して得られた情報を送信してもよい。
 制御部210は、前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、ある条件に基づいて前記CQIの数、前記CQIのビット幅、及び前記CQIのインデックスの少なくともいずれかを決定してもよい。制御部210は、あるCSI報告ウィンドウ内の複数のCQIのうち、あるCQIのフィールドに基づいて、前記CQIのビット幅を決定してもよい。制御部210は、あるCSI報告ウィンドウ内の複数のCQIのうち、あるCQIのインデックスに対応するオフセットレベルに基づいて、前記CQIのインデックスを決定してもよい。制御部210は、参照CQIインデックスに対応するオフセットレベルに基づいて、前記CQIのインデックスを決定してもよい。
 制御部210は、前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、CQI計算のために、特定のプリコーディング行列、又は特定のPDSCHシンボルのベクトルが物理下りリンク共有チャネル(PDSCH)送信に適用されることを想定してもよい。制御部210は、報告されるプリコーディング行列インディケーター(PMI)、又はCSI-RSオケージョンの測定から計算されるCSIに基づいて前記特定のプリコーディング行列を導出してもよい。制御部210は、報告されるプリコーディング行列に関連付けられる時間、又はCSI-RSオケージョンに基づく時間における前記特定のPDSCHシンボルのベクトルに基づいて、前記CQI計算を実施してもよい。送信部220が、Artificial Intelligence(AI)/Machine Learning(ML)モデルを用いてCSIを圧縮して得られた情報を送信する場合、制御部210は、前記特定のプリコーディング行列、又は前記特定のPDSCHシンボルのベクトルが適用されることを想定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図21は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  チャネル状態情報(CSI)報告を送信する送信部と、
     前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、ある条件に基づいて前記CQIの数、前記CQIのビット幅、及び前記CQIのインデックスの少なくともいずれかを決定する制御部と、を有する端末。
  2.  前記制御部は、あるCSI報告ウィンドウ内の複数のCQIのうち、あるCQIのフィールドに基づいて、前記CQIのビット幅を決定する請求項1に記載の端末。
  3.  前記制御部は、あるCSI報告ウィンドウ内の複数のCQIのうち、あるCQIのインデックスに対応するオフセットレベルに基づいて、前記CQIのインデックスを決定する請求項1に記載の端末。
  4.  前記制御部は、参照CQIインデックスに対応するオフセットレベルに基づいて、前記CQIのインデックスを決定する請求項1に記載の端末。
  5.  チャネル状態情報(CSI)報告を送信するステップと、
     前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を含める場合、ある条件に基づいて前記CQIの数、前記CQIのビット幅、及び前記CQIのインデックスの少なくともいずれかを決定するステップと、を有する端末の無線通信方法。
  6.  チャネル状態情報(CSI)報告に関する情報を送信する送信部と、
     前記CSI報告において、少なくとも1つのチャネル品質インディケーター(CQI)を受信する受信部と、を有し、
     前記CQIの数、前記CQIのビット幅、及び前記CQIのインデックスの少なくともいずれかは、ある条件に基づいて決定される、基地局。
PCT/JP2022/035940 2022-09-27 2022-09-27 端末、無線通信方法及び基地局 WO2024069752A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035940 WO2024069752A1 (ja) 2022-09-27 2022-09-27 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035940 WO2024069752A1 (ja) 2022-09-27 2022-09-27 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2024069752A1 true WO2024069752A1 (ja) 2024-04-04

Family

ID=90476655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035940 WO2024069752A1 (ja) 2022-09-27 2022-09-27 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024069752A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523218A (ja) * 2011-08-12 2014-09-08 富士通株式会社 マッピング関係の確立方法、チャネル品質情報のフィードバック方法、及び装置
JP2017509173A (ja) * 2014-01-06 2017-03-30 インテル アイピー コーポレーション 装置、方法、プログラム、および機械可読記憶媒体
US20180123772A1 (en) * 2015-04-20 2018-05-03 Zte Corporation Method and apparatus for determining quantity of channel quality indicators (cqi)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523218A (ja) * 2011-08-12 2014-09-08 富士通株式会社 マッピング関係の確立方法、チャネル品質情報のフィードバック方法、及び装置
JP2017509173A (ja) * 2014-01-06 2017-03-30 インテル アイピー コーポレーション 装置、方法、プログラム、および機械可読記憶媒体
US20180123772A1 (en) * 2015-04-20 2018-05-03 Zte Corporation Method and apparatus for determining quantity of channel quality indicators (cqi)

Similar Documents

Publication Publication Date Title
WO2024069752A1 (ja) 端末、無線通信方法及び基地局
WO2024069753A1 (ja) 端末、無線通信方法及び基地局
WO2024004199A1 (ja) 端末、無線通信方法及び基地局
WO2024069865A1 (ja) 端末、無線通信方法及び基地局
WO2024034065A1 (ja) 端末、無線通信方法及び基地局
WO2024034066A1 (ja) 端末、無線通信方法及び基地局
WO2023135820A1 (ja) 端末、無線通信方法及び基地局
WO2023135821A1 (ja) 端末、無線通信方法及び基地局
WO2023135819A1 (ja) 端末、無線通信方法及び基地局
WO2023228370A1 (ja) 端末、無線通信方法及び基地局
WO2024100711A1 (ja) 端末、無線通信方法及び基地局
WO2024004194A1 (ja) 端末、無線通信方法及び基地局
WO2024106379A1 (ja) 端末、無線通信方法及び基地局
WO2024106380A1 (ja) 端末、無線通信方法及び基地局
WO2024042953A1 (ja) 端末、無線通信方法及び基地局
WO2024038594A1 (ja) 端末、無線通信方法及び基地局
WO2023195079A1 (ja) 端末、無線通信方法及び基地局
WO2023209883A1 (ja) 端末、無線通信方法及び基地局
WO2023195080A1 (ja) 端末、無線通信方法及び基地局
WO2024100725A1 (ja) 端末、無線通信方法及び基地局
WO2024100882A1 (ja) 端末、無線通信方法及び基地局
WO2024069780A1 (ja) 端末、無線通信方法及び基地局
WO2024053071A1 (ja) 端末、無線通信方法及び基地局
WO2024004219A1 (ja) 端末、無線通信方法及び基地局
WO2024106440A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960816

Country of ref document: EP

Kind code of ref document: A1