WO2024042953A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024042953A1
WO2024042953A1 PCT/JP2023/026957 JP2023026957W WO2024042953A1 WO 2024042953 A1 WO2024042953 A1 WO 2024042953A1 JP 2023026957 W JP2023026957 W JP 2023026957W WO 2024042953 A1 WO2024042953 A1 WO 2024042953A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
trp
information
layer
codebook
Prior art date
Application number
PCT/JP2023/026957
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024042953A1 publication Critical patent/WO2024042953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • CSI channel state information
  • TRPs multiple transmission/reception points (TRPs, Multi TRPs (MTRPs)) or multiple panels (multi-panels) can be connected to terminals (user terminals, User Equipment (DL transmission to UE) is being considered.
  • Coherent joint transmission (CJT) using multi-TRP/multi-panel is also being considered.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that determine an appropriate CSI/codebook for CJT.
  • a terminal includes a receiving unit that receives channel state information (CSI) reporting settings for a plurality of transmission points, a transmission point, a layer, an indicator in the CSI, and a reception unit that receives settings for reporting channel state information (CSI) for a plurality of transmission points.
  • CSI channel state information
  • a control unit for determining positions and bit widths for a plurality of indicators in the CSI according to at least one of a number of points and a number of points;
  • an appropriate CSI/codebook for CJT can be determined.
  • FIG. 1 shows an example of a 16-level quantization table.
  • FIG. 2 shows an example of an 8-level quantization table.
  • FIG. 3 shows an example of the bit width of the information field X1 of the PMI of the extended type 2 codebook.
  • FIG. 4 shows an example of the bit width of the information field X2 of the PMI of the extended type 2 codebook.
  • FIG. 5 shows an example of a mapping order of CSI fields of CSI part 1 of one CSI report in UCI on PUCCH.
  • FIG. 6 shows an example of the mapping order of CSI fields of CSI part 1 of one CSI report in UCI on PUSCH.
  • FIG. 7 shows an example of the mapping order of CSI fields of CSI part 2 of one CSI report in UCI on PUSCH.
  • FIG. 8A and 8B show an example of an extended type 2 port selection codebook.
  • 9A and 9B show an example of an extended type 2 port selection codebook.
  • 10A and 10B show an example of a CMR pair for NCJT CSI.
  • 11A to 11C illustrate an example of the mapping order of multiple fields within one CSI report for NCJT CSI.
  • FIG. 12 shows an example of changing CSI part 1 on PUCCH according to embodiment #1.
  • FIG. 13 shows another example of changing CSI part 1 on PUCCH according to embodiment #1.
  • FIG. 14 shows an example of changing CSI part 1 on PUSCH according to embodiment #1.
  • FIG. 15 shows another example of changing CSI part 1 on PUSCH according to embodiment #1.
  • FIG. 16 shows an example of the bit width of option 1 of type 2 CJT CSI according to embodiment #2.
  • FIG. 17 shows an example of the bit width of option 2a of type 2CJT CSI according to embodiment #2.
  • FIG. 18 shows another example of the bit width of option 2a of type 2CJT CSI according to embodiment #2.
  • FIG. 19 shows yet another example of the bit width of option 2a of type 2CJT CSI according to embodiment #2.
  • FIG. 20 shows an example of a change to option 2b of type 2 CJT CSI according to embodiment #2.
  • FIG. 21 shows an example of the bit width of multiple PMI fields X 2 according to embodiment #2.
  • FIG. 22 shows an example of a change in CSI part 2 according to embodiment #2.
  • FIG. 23 shows another example of changes to CSI part 2 according to embodiment #2.
  • FIG. 24 shows an example of the new report content bit width in multiple PMI fields X2 according to Embodiment #3.
  • FIG. 25 shows an example of changing CSI part 1 on PUSCH according to embodiment #3.
  • FIG. 26 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 27 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 28 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 29 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 30 is a diagram illustrating an example of a vehicle according to an embodiment.
  • Multi TRP In NR, one or more Transmission/Reception Points (TRPs) (multi TRPs (MTRPs)) communicate with the UE using one or more panels (multi-panels). DL transmission is being considered. Further, it is being considered that the UE performs UL transmission using one or more panels for one or more TRPs.
  • TRPs Transmission/Reception Points
  • multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • the multi-TRPs may be connected by an ideal/non-ideal backhaul, and information, data, etc. may be exchanged.
  • Each TRP of the multi-TRP may transmit a different code word (CW) and a different layer.
  • Non-Coherent Joint Transmission NCJT may be used as a form of multi-TRP transmission.
  • TRP1 modulates and maps a first codeword and layer maps a first number of layers (eg, 2 layers) to transmit a first PDSCH using a first precoding.
  • TRP2 also performs modulation mapping and layer mapping of the second codeword to a second number of layers (eg, 2 layers) and transmits the second PDSCH using a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap in at least one of time and frequency resources.
  • first PDSCH and second PDSCH may be assumed not to be in a quasi-co-location (QCL) relationship.
  • Reception of multiple PDSCHs may also be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode). ).
  • One DCI may be transmitted from one TRP of multiple TRPs.
  • Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCH (multiple PDCCH)) (multimaster mode).
  • M-DCI multiple DCI
  • M-DCI multiple DCI
  • multiple PDCCH multiple PDCCH
  • a plurality of DCIs may be transmitted from multiple TRPs. It may be assumed that the UE sends separate CSI reports for each TRP for different TRPs. Such CSI feedback may be called separate feedback, separate CSI feedback, or the like. In the present disclosure, "separate" may be mutually read as "independent.”
  • CSI feedback may be used to transmit CSI reports regarding both TRPs to one TRP.
  • Such CSI feedback may be called joint feedback, joint CSI feedback, or the like.
  • the UE transmits a CSI report for TRP#1 using a certain PUCCH (PUCCH1), and transmits a CSI report for TRP#2 to TRP#2 using a certain PUCCH (PUCCH1).
  • the CSI report is configured to be transmitted using another PUCCH (PUCCH2).
  • the UE transmits a CSI report for TRP #1 and a CSI report for TRP #2 to TRP #1 or #2.
  • a terminal also referred to as a user terminal, User Equipment (UE), etc. transmits channel state information (CSI) based on a reference signal (RS) (or resources for the RS). )) (also referred to as determination, calculation, estimation, measurement, etc.) and transmits (also referred to as report, feedback, etc.) the generated CSI to the network (for example, a base station).
  • the CSI may be transmitted to the base station using, for example, an uplink control channel (eg, Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (eg, Physical Uplink Shared Channel (PUSCH)).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the RS used to generate CSI is, for example, a channel state information reference signal (CSI-RS), a synchronization signal/physical broadcast channel (SS/PBCH) block, or a synchronization signal/physical broadcast channel (SS/PBCH) block.
  • CSI-RS channel state information reference signal
  • SS/PBCH synchronization signal/physical broadcast channel
  • SS/PBCH synchronization signal/physical broadcast channel
  • DMRS demodulation reference signal
  • the CSI-RS may include at least one of a Non-Zero Power (NZP) CSI-RS and a CSI-Interference Management (CSI-IM).
  • the SS/PBCH block is a block that includes SS and PBCH (and corresponding DMRS), and may be called an SS block (SSB) or the like. Further, the SS may include at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CSI includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), a CSI-RS resource indicator (CRI), and a SS /PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI), L1-RSRP (reference signal reception in layer 1) At least one of the even if it includes one good.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS /PBCH block resource indicator
  • LI layer indicator
  • RI rank indicator
  • L1-RSRP reference signal reception in layer 1
  • the UE may receive information regarding CSI reporting (report configuration information) and control CSI reporting based on the report configuration information.
  • the report configuration information may be, for example, "CSI-ReportConfig" of an information element (IE) of radio resource control (RRC).
  • IE information element
  • RRC radio resource control
  • the report configuration information may include, for example, at least one of the following.
  • - Information about the type of CSI report (report type information, e.g. "reportConfigType” of RRC IE)
  • - Information regarding one or more quantities of CSI to be reported (one or more CSI parameters)
  • report quantity information e.g. "reportQuantity” of RRC IE
  • report quantity information e.g. "reportQuantity” of RRC IE
  • resource information for example, "CSI-ResourceConfigId" of the RRC IE
  • frequency domain information e.g. "reportFreqConfiguration" of RRC IE
  • the report type information may include periodic CSI (P-CSI) reporting, aperiodic CSI (A-CSI) reporting, or semi-persistent (semi-persistent, semi-persistent) reporting.
  • P-CSI periodic CSI
  • A-CSI aperiodic CSI
  • SP-CSI Semi-Persistent CSI
  • the report amount information may specify at least one combination of the above CSI parameters (for example, CRI, RI, PMI, CQI, LI, L1-RSRP, etc.).
  • the resource information may be an ID of an RS resource.
  • the RS resources may include, for example, non-zero power CSI-RS resources or SSBs and CSI-IM resources (for example, zero-power CSI-RS resources).
  • the frequency domain information may also indicate the frequency granularity of the CSI report.
  • the frequency granularity may include, for example, widebands and subbands.
  • Wideband is the entire CSI reporting band.
  • the wideband may be, for example, the entirety of a certain carrier (component carrier (CC), cell, serving cell), or the entire bandwidth part (BWP) within a certain carrier. There may be.
  • the wideband may also be referred to as a CSI reporting band, the entire CSI reporting band, or the like.
  • a subband is a part of a wideband, and may be composed of one or more resource blocks (Resource Block (RB) or Physical Resource Block (PRB)).
  • the size of the subband may be determined according to the size of the BWP (number of PRBs).
  • the frequency domain information may indicate whether wideband or subband PMI is to be reported (the frequency domain information may include, for example, the RRC IE used to determine whether to report wideband or subband PMI). (may include "pmi-FormatIndicator").
  • the UE may determine the frequency granularity of the CSI report (ie, either wideband PMI report or subband PMI report) based on at least one of the report amount information and frequency domain information.
  • wideband PMI reporting is configured (determined)
  • one wideband PMI may be reported for the entire CSI reporting band.
  • subband PMI reporting is configured, a single wideband indication i 1 is reported for the entire CSI reporting band, and a subband indication for each of one or more subbands within the entire CSI reporting band.
  • One subband indication i 2 (eg, a subband indication for each subband) may be reported.
  • the UE performs channel estimation using the received RS and estimates a channel matrix H.
  • the UE feeds back an index (PMI) that is determined based on the estimated channel matrix.
  • the PMI may indicate a precoder matrix (also simply referred to as a precoder) that the UE considers appropriate for use in downlink (DL) transmission to the UE.
  • a precoder matrix also simply referred to as a precoder
  • Each value of PMI may correspond to one precoder matrix.
  • a set of PMI values may correspond to a different set of precoder matrices, referred to as a precoder codebook (also simply referred to as a codebook).
  • a CSI report may include one or more types of CSI.
  • the CSI may include at least one of a first type (type 1 CSI) used for single beam selection and a second type (type 2 CSI) used for multi beam selection.
  • a single beam may be referred to as a single layer, and a multibeam may be referred to as a plurality of beams.
  • type 1 CSI does not assume multi-user multiple input multiple output (MU-MIMO), and type 2 CSI may assume multi-user MIMO.
  • MU-MIMO multi-user multiple input multiple output
  • the codebook may include a codebook for type 1 CSI (also referred to as type 1 codebook, etc.) and a codebook for type 2 CSI (also referred to as type 2 codebook, etc.). Further, type 1 CSI may include type 1 single panel CSI and type 1 multi-panel CSI, and different codebooks (type 1 single panel codebook, type 1 multi-panel codebook) may be defined for each.
  • Type 1 and Type I may be read interchangeably.
  • Type 2 and Type II may be interchanged.
  • the uplink control information (UCI) type may include at least one of Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), scheduling request (SR), and CSI.
  • UCI may be carried by PUCCH or PUSCH.
  • the UCI may include one CSI part for wideband PMI feedback.
  • CSI report #n includes PMI wideband information if reported.
  • the UCI may include two CSI parts for subband PMI feedback.
  • CSI part 1 includes wideband PMI information.
  • CSI part 2 includes one wideband PMI information and some subband PMI information.
  • CSI part 1 and CSI part 2 are encoded separately.
  • the UE is configured with N (N ⁇ 1) CSI report settings and resource settings of M (M ⁇ 1) CSI resource settings by an upper layer.
  • the CSI report configuration (CSI-ReportConfig) includes channel measurement resource settings (resourcesForChannelMeasurement), interference CSI-IM resource settings (csi-IM-ResourceForInterference), and interference NZP-CSI-RS settings (nzp-CSI-RS -ResourceForInterference), report quantity (reportQuantity), etc.
  • Each of the channel measurement resource setting, interference CSI-IM resource setting, and interference NZP-CSI-RS setting is associated with a CSI resource configuration (CSI-ResourceConfig, CSI-ResourceConfigId).
  • the CSI resource configuration includes a list of CSI-RS resource sets (CSI-RS-ResourceSetList, eg, NZP-CSI-RS resource set or CSI-IM resource set).
  • the UE is configured with parameters related to the codebook (codebook configuration (CodebookConfig)) through upper layer signaling (RRC signaling).
  • codebook configuration is included in the CSI report configuration (CSI-ReportConfig) of the upper layer (RRC) parameters.
  • At least one of multiple codebooks including type 1 single panel (typeI-SinglePanel), type 1 multi-panel (typeI-MultiPanel), type 2 (typeII), type 2 port selection (typeII-PortSelection) One codebook is selected.
  • the codebook parameters include parameters related to codebook subset restriction (CBSR).
  • CBSR settings are bits that indicate which PMI reports are permitted (“1”) and which PMI reports are not permitted (“0”) for the precoder associated with the CBSR bit. .
  • One bit of the CBSR bitmap corresponds to one codebook index/antenna port.
  • CSI report settings Rel.
  • 16 CSI report settings include CSI-RS resources for channel measurement (resourcesForChannelMeasurement (CMR)), CSI-RS resources for interference measurement (csi-IM- ResourcesForInterference (ZP-IMR), nzp-CSI-RS-ResourcesForInterference (NZP-IMR), etc.
  • CMR channel measurement
  • ZP-IMR CSI-IM- ResourcesForInterference
  • NZP-IMR nzp-CSI-RS-ResourcesForInterference
  • the parameters except codebookConfig-r16 are Rel. Also included in 15 CSI reporting settings.
  • CSI-ReportConfig an extended CSI report configuration for multi-TRP CSI measurement/reporting using NCJT.
  • two CMR groups are set corresponding to each of the two TRPs.
  • CMRs in a CMR group may be used for at least one measurement of multi-TRP and single-TRP using NCJT.
  • the N CMR pairs of the NCJT are configured by RRC signaling.
  • the UE may be configured via RRC signaling whether to use the CMR of the CMR pair for single TRP measurement.
  • the UE may be configured to report one CSI associated with the best measurement result among the measurement hypotheses for NCJT and single TRP.
  • CBSR is set per codebook setting per CSI reporting setting. That is, the CBSR is applied to all CMRs, etc. within the corresponding CSI reporting configuration.
  • Option 2 Measure both the CSI of the NCJT and the CSI of a single TRP.
  • Type 1 codebook As the type 1 codebook (Rel. 15), a type 1 single panel codebook and a type 1 multipanel codebook are defined for base station panels.
  • an antenna model of a CSI antenna port array (logical setting) is defined for the number of CSI-RS antenna ports P CSI-RS and (N 1 , N 2 ).
  • an antenna model of a CSI antenna port array (logical setting) is defined for the number of CSI-RS antenna ports P CSI-RS and (N g , N 1 , N 2 ).
  • N 1 ,N 2 indicates the number of two-dimensional antenna elements, and is set by n1-n2 in moreThanTwo in nrOfAntennaPorts in typeI-SinglePanel.
  • O 1 ,O 2 is a two-dimensional oversampling factor. i 1,1 corresponding to the horizontal beam is ⁇ 0,1,...,N 1 O 1 -1 ⁇ . i 1,2 corresponding to the vertical beam is ⁇ 0,1,...,N 2 O 2 -1 ⁇ .
  • i 2 is ⁇ 0,1,2,3 ⁇ .
  • W l,m,n (1) is given by the following equation.
  • Number of CSI antenna ports P For CSI-RS supported settings (combinations of values) of (N g , N 1 , N 2 ) and (O 1 , O 2 ) are defined in the specifications.
  • (N 1 ,N 2 ) are set by ng-n1-n2 in typeI-MultiPanel.
  • i 1,1 is ⁇ 0,1,...,N 1 O 1 -1 ⁇ .
  • i 1,2 is ⁇ 0,1,...,N 2 O 2 -1 ⁇ .
  • i 2 is ⁇ 0,1,2,3 ⁇ .
  • ⁇ n e j ⁇ n/2 .
  • ⁇ _p 1 , ⁇ _p 2 , ⁇ _p 3 represent inter-panel co-phasing.
  • the same beam (SD beam matrix, precoding matrix W l ) is selected for panels 0, 1, 2, 3, ⁇ _p 1 represents the phase compensation of panel 1 with respect to panel 0, ⁇ _p 2 represents the phase compensation of panel 1 with respect to panel 0 represents the phase compensation of panel 2, and ⁇ _p 3 represents the phase compensation of panel 3 relative to panel 0.
  • a matrix Z with X rows and Y columns may be expressed as Z(X ⁇ Y).
  • Nt is the number of ports.
  • N 3 is the total number of precoding matrices (precoders) (number of subbands) indicated by PMI.
  • W 1 (N t ⁇ 2L) is L ⁇ 2,4 ⁇ (oversampled) spatial domain (SD) two-dimensional (2D) DFT vector (SD beam, 2D-DFT vector) This is a matrix (SD beam matrix) consisting of .
  • L is the number of beams.
  • W 2,k (2L ⁇ N 3 ) is a matrix (LC coefficient matrix) consisting of linear combination coefficients (linear combination (LC) coefficients, subband complex LC coefficients, and combination coefficients) for layer k.
  • W 2,k represents beam selection and co-phasing between the two polarizations.
  • the two W 2,k are c i and c j respectively.
  • the feedback overhead is mainly due to the LC coefficient matrix W 2,k .
  • Rel. 15 Type 2 CSI supports only ranks 1 and 2.
  • Type 2 CSI a channel (channel matrix) for a certain user is represented by a linear combination of two polarizations and L beams (L 2D-DFT vectors). Rel. 15 Type 2 CSIs support ranks 1 and 2.
  • the 16 type 2 CSI reduces the overhead associated with W 2,k by frequency domain (FD) compression. Rel.
  • the 16 Type 2 CSIs support ranks 1 and 2 as well as ranks 3 and 4.
  • W 2,k is approximated by W ⁇ k W f,k H.
  • the matrix W ⁇ may be expressed by adding ⁇ (w tilde) above W.
  • W ⁇ k may be expressed as W ⁇ 2,k .
  • the matrix W f,k H is an adjoint matrix of W f,k .
  • the UE may be configured with one of two subband sizes.
  • the subband (CQI subband) is defined as N PRB SB consecutive PRBs and may depend on the total number of PRBs in the BWP.
  • the number of PMI subbands R per CQI subband is set by RRC IE (numberOfPMI-SubbandsPerCQI-Subband).
  • R is the total number N3 of precoding matrices represented by PMI, the number of subbands set in csi-ReportingBand, the subband size set by subbandSize, and the total number of PRBs in BWP. Control as a function.
  • W 1 (N t ⁇ 2L) is a matrix consisting of multiple (oversampled) spatial domain (SD) 2D-DFTs (vectors, beams).
  • SD spatial domain
  • 2D-DFT two-dimensional discrete Fourier transform
  • the spatial domain response/distribution represented by the SD 2D-DFT vector may be called an SD beam.
  • W ⁇ k (2L ⁇ M v ) is a matrix consisting of LC coefficients.
  • NZCs non-zero coefficients
  • the report consists of two parts: a bitmap capturing the NZC position and the quantized NZC.
  • W f,k (N 3 ⁇ M v ) is a matrix of frequency domain (FD) bases (vectors) for layer k.
  • FD frequency domain
  • C(N 3 -1,M v -1) represents the number of combinations (combinatorial coefficient C(x,y)) for selecting M v -1 items from N 3 -1 items, and the binomial coefficient ( Also called binomial coefficients.
  • the frequency domain response/distribution (frequency response) represented by a linear combination of FD basis vectors and LC coefficients may be referred to as an FD beam.
  • the FD beam may correspond to a delay profile (time response).
  • the subset of FD basis is given as ⁇ f 1 ,...,f M_v ⁇ .
  • the PMI subband size is given by CQI subband size/R, with R ⁇ 1,2 ⁇ .
  • the number M v of FD bases for a given rank v is given by ceil(p v ⁇ N 3 /R).
  • the number of FD bases is the same for all layers k ⁇ 1,2,3,4 ⁇ .
  • p v is set by upper layers.
  • the M v FD bases with the highest gain are selected.
  • M v ⁇ N 3 the overhead of W ⁇ k is much smaller than the overhead of W 2,k .
  • All or some of the M v FD bases are used to approximate the frequency response of each SD beam.
  • a bitmap is used to report only the selected FD basis for each SD beam. If no bitmap is reported, all FD bases are selected for each SD beam. In this case, for each SD beam, all FD-based NZCs are reported.
  • Each reported LC coefficient (complex coefficient) in W ⁇ k is represented by a separately quantized amplitude and phase.
  • the polarization-specific reference amplitude can be calculated using the table in Figure 1 (mapping of multiple elements of amplitude coefficient indicator i 2,3,l : mapping from element k l,p (1) to amplitude coefficient p l,p (1) ). 16-level quantization is used.
  • Type 2 CSI feedback on PUSCH 16 includes two parts.
  • CSI Part 1 has a fixed payload size and is used to identify the number of information bits within CSI Part 2.
  • the size of part 2 is variable (UCI size depends on the number of NZCs, which number is unknown to the base station).
  • the UE reports the number of NZCs within CSI Part 1, which determines the size of CSI Part 2.
  • the base station After receiving CSI part 1, the base station recognizes the size of CSI part 2.
  • CSI Part 1 includes an RI, a CQI, and an indication of the total number of non-zero amplitudes (NZC) across layers for enhanced Type 2 CSI.
  • the fields of part 1 are encoded separately.
  • CSI part 2 includes PMI of extended type 2 CSI. Parts 1 and 2 are encoded separately.
  • CSI part 2 (PMI) includes an oversampling factor, an index of the 2D-DFT basis, an index M initial of the initial DFT basis (starting offset) of the selected DFT window, and the DFT basis selected for each layer. At least the following: NZC (amplitude and phase) for each layer; the strongest coefficeint indicator (SCI) for each layer; and the amplitude of the strongest coefficient for each layer/polarization. Contains one.
  • PMI indices (PMI values, codebook indexes) associated with different CSI Part 2 information may be according to the following for the kth layer.
  • ⁇ i 1,1 Oversampling factor
  • ⁇ i 1,2 Multiple indices of 2D-DFT basis
  • ⁇ i 1,5 Index (starting offset) of the initial DFT basis of the selected DFT window
  • ⁇ i 1,7,k Bitmap for the k-th layer
  • ⁇ i 1,8,k The strongest ( strongest, maximum strength) coefficient indicator (SCI) ⁇ i 2,3,k : Amplitude of the strongest coefficient (for both polarizations) of the kth layer ⁇ i 2,4,k : Amplitude of the reported coefficient of the kth layer ⁇ i 2,5, k : the phase of the reported coefficients of the kth layer
  • i 1,5 and i 1,6,k are PMI indices for DFT basis reporting. i 1,5 is reported only if N 3 > 19.
  • PMI information is grouped into three groups (groups 0 to 2) for a given CSI report. This is important when CSI omission is performed.
  • Each reported element of index i 2,4,l , i 2,5,l , i 1,7,l is associated with a particular priority rule.
  • Groups 0 to 2 follow the following.
  • type 1 CSI the SD beam represented by the SD DFT vector is sent towards the UE.
  • type 2 CSI L SD beams are linearly combined and sent towards the UE.
  • Each SD beam can be associated with multiple FD beams.
  • the channel frequency response can be obtained by linear combination of their FD basis vectors. The channel frequency response corresponds to the power delay profile.
  • the PMI of the extended type 2 codebook is represented by information fields X1 and X2 .
  • the bit widths of i 1,1 , i 1,2 , i 1,8,1 , i 1,8,2 , i 1,8,3 , i 1,8,4 in the information field X 1 are: It is given by FIG. i 1,1 and i 1,2 are indicators of the SD basis. i 1,8,1 , i 1,8,2 , i 1,8,3 , i 1,8,4 are indicators of SCI for each layer.
  • i 2,3,1 , i 2,3,2 , i 2,3,3 , i 2,3,4 are SCI amplitudes for each layer.
  • i 1,5 is the FD basis window.
  • i 1,6,1 , i 1,6,2 , i 1,6,3 , i 1,6,4 are the selected FD bases for each layer.
  • FIG. 6 shows an example of the mapping order of the CSI fields of the CSI part 1 of one CSI report #n in the UCI on the PUSCH. This mapping order differs from the mapping order of CSI Part 1 on PUCCH in that it includes an indication of the total number of NZCs, summed across all layers.
  • the order of each index included in the multiple PMI field X 1 and the multiple PMI field X 2 is determined by the bit width table described above.
  • Type 2 port selection (PS) CSI type 2 PS codebook
  • the UE does not need to consider 2D-DFT to derive the SD beam as in type 2 CSI.
  • the base station transmits the CSI-RS using K CSI-RS ports that are beamformed considering the set of SD beams.
  • the UE selects/identifies the best L ( ⁇ K) CSI-RS ports for each polarization and reports their index in W 1 .
  • Type 2 PS CSIs support ranks 1 and 2.
  • the operation of the 16 type 2PS CSI (enhanced type 2PS codebook) is based on Rel.16, except for SD beam selection. 16 type 2 CSI. Rel. 15 Type 2PS CSIs support ranks 1 to 4.
  • precoder generation for each subband (SB) is given by the following equation.
  • W k (N t ⁇ N 3 ) QW 1 W ⁇ k W f,k H (Y3)
  • Q(N t ⁇ K) indicates K SD beams used for CSI-RS beamforming.
  • W 1 (K ⁇ 2L) is a block diagonal matrix.
  • W ⁇ k (2L ⁇ M) is the LC coefficient matrix.
  • W f,k (N 3 ⁇ M) consists of N 3 DFT basis vectors (FD basis vectors).
  • K is set by upper layers.
  • L is set by upper layers.
  • P CSI-RS ⁇ 4,8,12,16,24,32 ⁇ . If P CSI-RS > 4, then L ⁇ 2,3,4 ⁇ .
  • each CSI-RS port #i is associated with an SD beam (b i ) (FIGS. 8A and 8B).
  • the 16 Type 2PS CSIs are Rel. By reducing the number of FD bases from N 3 to M v (M v ⁇ N 3 ) in a manner similar to Type 2 CSI in Rel. Overhead is reduced compared to Type 2 PS CSI of 15.
  • each CSI-RS port #i has an SD-FD beam pair instead of an SD beam. (pair of SD beam b i and FD beam f i,j (j is the frequency index)) (FIGS. 9A and 9B).
  • ports 3 and 4 are associated with the same SD beam and different FD beams.
  • the frequency selectivity of the channel frequency response observed at the UE based on the SD beam-FD beam pair is reduced by delay pre-compensation.
  • the frequency selectivity of the response can be more than reduced.
  • the main scenario of the 17 Type 2 port selection codebooks is FDD.
  • Channel reciprocity based on SRS measurements is not perfect (the angles of the UL and DL beams may be different, the UL and DL frequencies are different in FDD, the effect on the UL and DL frequencies) antenna spacing is different).
  • the base station can obtain/select some partial information (dominant angle and delay (SD beam and FD beam)).
  • the base station can obtain the CSI for DL MIMO precoder decisions. In this case, some CSI reports may be omitted to reduce CSI overhead.
  • each CSI-RS port is beamformed using an SD beam and an FD basis vector.
  • Each port is associated with an SD-FD pair.
  • W k (K ⁇ N 3 ) W 1 W ⁇ k W f,k H (Y4)
  • each matrix block consists of L columns of a K ⁇ K identity matrix.
  • the base station transmits K beamformed CSI-RS ports.
  • each port is associated with an SD beam.
  • Rel. In the 16 type 2 PS codebooks, each port is associated with an SD-FD pair.
  • the UE selects L out of K ports and reports them to the base station as part of PMI (W 1,k ).
  • W ⁇ k (2L ⁇ M v ) is a matrix consisting of LC coefficient (subband complex LC coefficient) vectors for layer k.
  • K 0 NZCs are reported.
  • the report consists of two parts: a bitmap capturing the NZC position and the quantized NZC.
  • Rel In the 16 Type 2 PS codebooks, the NZC position bitmap is always reported. On the other hand, Rel. In the 17 Type 2 PS codebooks, bitmaps in certain cases can be omitted. A particular case is that where the number of NZCs reported is equal to the maximum number K 1 *M*v (v ⁇ 2).
  • W f,k (N 3 ⁇ M v ) is a matrix consisting of M v FD basis (FD DFT basis) vectors for layer k. Mv is 1 or 2.
  • Joint transmission may refer to simultaneous data transmission from multiple points (eg, TRPs) to a single UE.
  • Rel. 17 supports NCJT from two TRPs.
  • PDSCHs from the two TRPs may be independently precoded and independently decoded.
  • Frequency resources may be non-overlapping, partially overlapping, or full-overlapping. If overlap occurs, the PDSCH from one TRP will interfere with the PDSCH from the other TRP.
  • the applicable scenario is a single DCI-based MTRP NCJT with a type 1 single-panel codebook.
  • two CMR groups can be configured within a single CSI-ReportConfig, with each channel measurement resource (CMR) from one TRP.
  • CMR channel measurement resource
  • One CSI reporting mode can be set from two modes.
  • NJT Non-coherent joint transmission
  • the K s CMRs correspond to a set of NZP-CSI-RS resources for channel measurements.
  • K 1 and K 2 are the number of CMRs in the two CMR groups, respectively.
  • Each CMR can include up to 32 CSI-RS ports depending on the UE capabilities.
  • Each CMR pair is associated with one CRI value.
  • the UE measures the single TRP CSI for TRP1 and the single TRP CSI for TRP2 using the CMRs in the two CMR groups, and measures the NCJT using the N CMR pairs. Measure CSI.
  • the UE selects one or more CSIs to report based on the mode set by csi-ReportMode.
  • csi-ReportMode indicates one of the following two modes, modes 1 and 2.
  • the UE is configured to report one CSI associated with the best one of the NCJT and single TRP measurement assumptions.
  • the UE reports one best CSI (one CSI) from all single TRP CSI and one NCJT CSI.
  • the NCJT CSI includes one CRI, two RIs (with one joint RI index), two PMIs, two LIs, and one CQI (up to 4 layers).
  • Single TRP CSI is the same as existing CSI and includes one CRI, one RI/PMI/LI, and one or two CQIs (up to 8 layers, one CQI for each CW).
  • New mapping orders (tables) of multiple fields within one CSI report are defined for the following several cases.
  • - Mapping order of CSI part 1 for modes 1 and 2 (FIG. 11B).
  • - CSI part 2 wideband mapping order for modes 1 and 2 (similar to FIG. 11B).
  • - Mapping order of CSI part 2 subbands for modes 1 and 2 (FIG. 11C).
  • CJT CJT Rel. 18, supporting CJT with up to four TRPs is being considered.
  • Data from the four TRPs may be coherently precoded and transmitted to the UE on the same time-frequency resource. For example, considering channels from four TRPs, the same precoding matrix may be used. Coherent may mean that there is a fixed relationship between the phases of multiple received signals. With 4TRP joint precoding, the signal quality is improved and there may be no interference between the 4 TRPs. Data may only be subject to interference outside of the four TRPs.
  • a joint estimation of the aggregated channel matrix H can be performed, and the joint precoding matrix V is Feedback can be given.
  • the large-scale path losses of the four paths may be significantly different.
  • the joint precoding matrix V based on the constant module codebook is not accurate. In this case, the feedback for each TRP and the inter-TRP coefficients can be more consistent with the current NR type 2 codebook.
  • the selection of four TRPs may be semi-static. Therefore, the selection and configuration of four CMRs (four CSI-RS resources) for channel measurement may also be semi-static. Dynamic designation of four TRPs from the list of CSI-RS resources is also possible, but less likely.
  • NCJT that is, single TRP
  • CSI for each TRP that is, single TRP CSI such as Rel. 17 NCJT CSI
  • CJT CSI coherent joint transmission
  • CSI extensions for CJT.
  • CMR and IMR for measurement of up to 4 TRPs.
  • - Inter-TRP CSI New feedback and codebook for inter-TRP phase matrix/inter-TRP amplitude matrix/inter-TRP matrix (including both amplitude and phase). ⁇ Additionally reportable x-TRP CJT CQI.
  • W 1 (SD basis)/W f (FD basis) for each TRP may be the same or different.
  • W k (NZC) for each TRP may be different.
  • W 1 /W f /W k for each TRP may be selected jointly or individually.
  • W ⁇ may be reported as a separate content or within W k .
  • the precoding matrix for 4-TRP CJT CSI may be represented by W 1 /W f /W k for each TRP.
  • W 1 for each TRP may be the same, different, jointly selected, or individually selected.
  • W k for each TRP may be different, jointly selected, or individually selected.
  • W f for each TRP may be the same, different, jointly selected, or individually selected.
  • the Type 2 codebook (codebook structure) for CJT Multi-TRP may be at least one of the following several options, or a combination of some of the following several options: It may be something.
  • Codebook structure 1A SD/FD basis selection per TRP/per TRP group (port group or resource) + relative phase relationship (co-phasing)/amplitude relationship (co-amplitude) (including at least one of wideband and subband) .
  • its codebook structure is given by:
  • N is the number of TRPs or TRP groups.
  • ⁇ r is the co-amplitude.
  • p r is the phase relationship (co-phase).
  • N is the number of TRPs or TRP groups.
  • ⁇ r is the co-amplitude.
  • p r is the phase relationship (co-phase).
  • Codebook structure 2 SD basis selection per TRP/per TRP group (port group or resource) and joint FD basis selection (across N TRPs). For example, its codebook structure is given by:
  • N is the number of TRPs or TRP groups.
  • codebook structure options 1A and 2 are supported, both codebook structure options 1A and 2 are supported, and either is configured by the NW or selected by the UE in CSI reporting. , is possible.
  • Codebook structure options 1A and 2 may include the following several report contents (CSI fields).
  • the SD basis is per TRP.
  • at least one of i 1,1 , i 1,2 to be reported may follow any of several options below.
  • the FD basis is for each TRP.
  • the FD basis is common to multiple TRPs.
  • Each option may be configured by the NW, defined in the specifications, or reported by the UE.
  • each existing report content is increased into multiple sets, each set corresponding to one TRP, or one set for all TRPs.
  • the bit width of one set may be maintained or increased depending on the report content.
  • Each new report content may be set by the NW, may be defined in the specifications, or may be reported by the UE.
  • option 1A/2 the mapping order with the report contents and the bit width of each report contents are not clear.
  • the present inventors came up with a method for reporting CJT CSI.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages RRC messages
  • upper layer parameters information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • spatial relationship group spatial relationship group, code division multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource) , resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI state (unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • TCI state downlink Transmission Configuration Indication state
  • DL TCI state uplink TCI state
  • UL TCI state uplink TCI state
  • unified TCI state unified TCI state
  • common TCI state common TCI state
  • QCL quasi-co-location
  • QCL assumption etc.
  • panel In the present disclosure, the terms panel, base station (gNB) panel, and TRP may be interchanged.
  • gNB base station
  • TRP TRP
  • NW network
  • gNB base station
  • TRP T resource
  • time domain resource allocation and time domain resource assignment may be interchanged.
  • beam, SD beam, SD vector, and SD 2D-DFT vector may be read interchangeably.
  • L, 2L, the number of SD beams, the number of beams, and the number of SD 2D-DFT vectors may be read interchangeably.
  • FD basis, FD DFT basis, DFT basis, and f i may be read interchangeably.
  • the terms FD beam, FD vector, FD basis vector, FD DFT basis vector, and DFT basis vector may be interchanged.
  • coefficient, LC coefficient, coupling coefficient, subband complex LC coefficient, coupling coefficient matrix, amplitude and phase, amplitude coefficient and phase coefficient may be read interchangeably.
  • NZC, non-zero coefficient, non-zero LC coefficient, non-zero amplitude coefficient, and complex coefficient may be read interchangeably.
  • co-phasing, phase matching, phase compensation, phase adjustment, phase difference, and phase relationship may be read interchangeably.
  • co-amplitude, amplitude compensation, amplitude adjustment, amplitude ratio, and amplitude relationship may be read interchangeably.
  • the terms “difference,” “ratio,” and “relative value” may be interchanged.
  • layer k and layer l may be read interchangeably.
  • size and length may be read interchangeably.
  • TRP transmission point
  • TCI status and reference signal
  • TRP Wireless communication method
  • CMR magnetic resonance
  • CMR group CRI
  • CRI group may be read interchangeably.
  • X TRPs, X-TRPs, X panels, and Ng panels may be interchanged.
  • CJT using X TRPs, CJT using X panels, and X-TRP CJT may be interchanged.
  • the reference CSI, the CSI for the reference TRP, and the first reported CSI may be interchanged.
  • reference TRP, CSI corresponding to reference CSI, TRP corresponding to first reported CSI, CSI-RS resource/CMR/CMR group/CSI-RS corresponding to first reported CSI resource set may be read interchangeably.
  • the terms TRP, CSI-RS resource, CMR, CMR group, and CSI-RS resource set may be interchanged.
  • the strongest TRP and the TRP with the strongest amplitude (SCI) among all TRPs may be read interchangeably.
  • multi-TRP, multi-panel, intra-site multi-TRP, and inter-site multi-TRP may be interchanged.
  • inter-TRP, inter-panel, inter-TRP difference, and inter-TRP comparison may be interchanged.
  • the inter-TRP CSI, the inter-TRP CJT CSI, the inter-panel CSI, the CSI of another TRP with respect to the CSI of the reference TRP, and the CSI of another TRP with respect to the CSI of the reference panel may be read interchangeably.
  • per-TRP CSI and per-panel CSI may be read interchangeably.
  • the inter-TRP phase index and the inter-TRP phase matching index may be interchanged.
  • the inter-TRP index and the inter-TRP coefficient index may be read interchangeably.
  • the inter-TRP phase matrix and the inter-TRP phasing matrix may be interchanged.
  • the inter-TRP matrix and the inter-TRP coefficient matrix may be read interchangeably.
  • the inter-TRP phase codebook and the inter-TRP phasing codebook may be interchanged.
  • the inter-TRP codebook and the inter-TRP coefficient codebook may be interchanged.
  • target resource CMR, CSI-RS resource, NZP-CSI-RS resource, CMR group, CSI-RS resource set, NZP-CSI-RS resource set, and TRP may be interchanged.
  • Each embodiment may be applied to subband reporting or wideband reporting.
  • Each embodiment may be applied to a type 2 codebook or a type 2 port selection codebook.
  • the UE may receive configuration of channel state information (CSI) reporting for multiple transmission points (e.g., TRPs).
  • CSI channel state information
  • the UE determines positions and bit widths for a plurality of indicators in the CSI according to at least one of a transmission point, a layer, an indicator in the CSI, and a number of the plurality of transmission points. Good too.
  • This embodiment relates to the mapping order of multiple CSI fields of CSI part 1 of one CSI report.
  • mapping order for at least one of layer 0, layer 1, and all layers, an indicator of the number of non-zero wideband amplitude coefficients according to at least one of several options: Good too.
  • Each indicator includes information for multiple TRPs.
  • the index of the number for layer 0 may mean the total number for layer 0 for all TRPs.
  • the index is a separate index for each TRP. The order may follow at least one of several options below. [[Option 2a]] Index for layer 0, layer 1, all layers of the first TRP, then index for layer 0, layer 1, all layers of the second TRP, etc.
  • the CRI may follow at least one of several options: [Option 1]
  • the field contains CRI information for multiple TRPs. For example, the field indicates the index of the selected N TRP combination.
  • [Option 2] There is a separate field for each TRP. The order is the CRI of the strongest TRP, the CRI of the second strongest TRP, and so on.
  • Different options may be used for different codebook structures of options 1A/2, and different options may be configured to the UE by the NW.
  • a UE capability for supporting separate indicators for each TRP may be introduced.
  • Example 1 For CSI part 1 on PUCCH, the same new mapping order (table) may be specified in the specification for different codebook structures of option 1A/2, or different/separate new mapping orders (tables) may be specified in the specification. may be specified.
  • the CJT CSI is based on extended type 2 CSI and may correspond to subband CSI instead of wideband CSI.
  • the CRI part may be changed to either option 1 or 2 in FIG. 12.
  • the indicator part for the number of non-zero wideband amplitude coefficients may be changed to any of options 1, 2a, 2b in FIG. 13.
  • the same new mapping order (table) may be specified in the specification for different codebook structures of options 1A/2, or different/separate new mapping orders (tables) may be specified in the specification. may be specified.
  • the CJT CSI is based on extended type 2 CSI and may correspond to subband CSI instead of wideband CSI.
  • the CRI part may be changed to either option 1 or 2 in FIG. 14.
  • the indicator part for the number of non-zero wideband amplitude coefficients may be changed to any of options 1, 2a, 2b in FIG. 15.
  • the UE can appropriately report CSI part 1.
  • This embodiment relates to the mapping order of multiple CSI fields of CSI part 2 of one CSI report on PUSCH.
  • X 1 may include an SD basis index and an SCI index for each layer.
  • Each existing indicator may include information for multiple TRPs (selected/reported).
  • a new bit width (table) for PMI may be defined for CJT CSI.
  • a common bit width may be defined for codebook structure options 1A and 2, or individual bit widths may be defined.
  • the mapping order table may not be extended/changed.
  • the index is a separate index for each TRP.
  • the indicator may follow at least one of several options below. [[Option 2a]] For the PMI, a new bit width (table) of each indicator for each TRP is defined.
  • the mapping order may be an order of TRP first for each indicator, or an order of indicators first for each TRP. In this case, the mapping order table may not be extended/changed. [[Option 2b]] The mapping order table is extended/modified to account for X 1 from multiple TRPs.
  • the multiple PMI fields X 2 in group 1/2 may follow at least one of the several options described above for X 1 .
  • Different options may be used for different codebook structures of options 1A/2, and different options may be configured to the UE by the NW.
  • a UE capability for supporting separate indicators for each TRP may be introduced.
  • the SCI (i 1,8,1 , i 1,8,2 , i 1,8,3 , i 1,8,4 ) for each layer across all TRPs may be mapped. In this case, only one set of SCIs may be needed. Different indicators may have different designs depending on whether one set or multiple sets correspond to multiple TRPs.
  • Example 2 Regarding the new bit width table, the example for multiple PMI fields X 2 may be similar to the example for multiple PMI fields X 1 . Different options may be applied to each indicator depending on whether one set or multiple sets correspond to multiple TRPs.
  • the example for group 1/2 may be similar to the example for group 0. Different options may be applied to groups 0, 1, 2.
  • N-TRP N TRPs
  • the new bit-width table defined for the CJT may reuse a large portion of the existing table (option 2a).
  • option 2a SCI per layer spanning all TRPs, FIG. 19
  • N TRPs new report contents for N TRPs
  • the mapping order (table) may be expanded (option 2b).
  • the mapping order of CSI part 2 on PUSCH (table, FIG. 7) may be changed as in option A or B in FIG. 22.
  • option A group 0 is first mapped in TRP order, then group 1 is mapped in TRP order, and then group 2 is mapped in TRP order.
  • option B groups 0, 1, 2 for the first TRP are mapped first and then in TRP order.
  • Group 0 multiple PMI field X 1
  • groups 1 and 2 may include information on each TRP.
  • the mapping order of CSI part 2 on PUSCH (table, Figure 7)
  • the group 0 part may be changed as group 0 in Figure 23, and the group 1 and 2 parts may be changed to group 1 in Figure 23. It may be changed to option A or B of /2.
  • option A group 1 is first mapped in TRP order, and then group 2 is mapped in TRP order.
  • option B groups 1,2 for the first TRP are mapped first, and then in TRP order.
  • the UE can appropriately report CSI part 2 on the PUSCH.
  • the bit width of each new report content is specified, and the bit width is divided into multiple PMI fields x 1 (group 0) and multiple PMI fields x 2 (groups 1 and 2). may be defined in a table for at least one of .
  • j 1 (or layer-specific (layer k) j 1,k ) may be included in multiple PMI fields X 2 for FD basis selection.
  • j 1 may be for each TRP. Considering that the strongest TRP is a reference TRP starting from offset 0, the FD base offset may be omitted.
  • N TRPs N-1 sets of j 1 may be required.
  • j 1,k,n may mean j 1 for the kth layer and nth TRP.
  • j 2 may be included in multiple PMI field X 1 or multiple PMI field X 2 , or may be included in CSI part 1.
  • j 3 /j 4 may be included in multiple PMI field X 1 or multiple PMI field X 2 , and may be included in CSI Part 1. May be included. Similar to j 1 , in the case of N TRPs, N-1 sets of j 3 /j 4 may be required. In the table of bit widths of multiple PMI fields X 2 , j 3 /j 4 may be placed next to “SCI amplitude for each layer”. A new group x may be added for j 3 /j 4 . For example, a new group 3/4 for j 3 /j 4 may be placed after group 2/3 in the mapping order table. For example, a new group 0' for j 3 /j 4 may be placed after group 0 in the mapping order table.
  • a different codebook structure for options 1A/2 may be used depending on at least one of whether new report content is required and which option of embodiment #1/#2 is used.
  • the codebook structure of option 1A/2 may be configured by the NW to the UE.
  • UE capabilities for supporting at least one of new reporting content and separate indicators for each new reporting content and each TRP may be introduced.
  • j 1,k,n may be included in multiple PMI fields X 2 .
  • j 1,k,n may be included in multiple PMI fields X 2 .
  • i 1, 6, k for the k-th layer ( j 1,k,2 , j 1,k,3 , j 1,k,4 ) may be placed.
  • j 2 as in the example of FIG. 25 may be placed after the CRI. j 2 may be placed before CRI. Instead of CRI, j2 may be placed.
  • the UE can appropriately report new report content.
  • Notification of information to UE is performed using physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels (e.g. PDCCH, PDSCH, reference signals), or a combination thereof. It's okay.
  • NW Network
  • BS Base Station
  • the MAC CE may be identified by including a new logical channel ID (LCID), which is not specified in the existing standard, in the MAC subheader.
  • LCID logical channel ID
  • the above notification When the above notification is performed by a DCI, the above notification includes a specific field of the DCI, a radio network temporary identifier (Radio Network Temporary Identifier (RNTI)), the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • notification of any information to the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • the notification of any information from the UE (to the NW) in the above embodiments is performed using physical layer signaling (e.g. UCI), upper layer signaling (e.g. , RRC signaling, MAC CE), specific signals/channels (eg, PUCCH, PUSCH, PRACH, reference signals), or a combination thereof.
  • physical layer signaling e.g. UCI
  • upper layer signaling e.g. , RRC signaling, MAC CE
  • specific signals/channels eg, PUCCH, PUSCH, PRACH, reference signals
  • the MAC CE may be identified by including a new LCID that is not defined in the existing standard in the MAC subheader.
  • the above notification may be transmitted using PUCCH or PUSCH.
  • notification of arbitrary information from the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the embodiments described above may be applied if certain conditions are met.
  • the specific conditions may be specified in the standard, or may be notified to the UE/BS using upper layer signaling/physical layer signaling.
  • At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - Support individual metrics for each TRP. - Support at least one of new report content and individual indicators for each new report content and each TRP.
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • SCS subcarrier spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered.
  • the specific information may be information indicating that the functions of each embodiment are enabled, arbitrary RRC parameters for a specific release (for example, Rel. 18/19), or the like.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • a receiver configured to receive channel state information (CSI) reporting settings for a plurality of transmission points; a control unit that determines positions and bit widths for a plurality of indicators in the CSI according to at least one of a transmission point, a layer, an indicator in the CSI, and the number of the plurality of transmission points;
  • the terminal according to appendix 1 or 2 wherein positions of multiple values of multiple indicators are adjacent to each other for the same transmission point within the CSI.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 26 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 includes, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management Function (SMF), Unified Data Management (UDM), Application Function (AF), Data Network (DN), and Location. It may also include network functions (NF) such as Management Function (LMF) and Operation, Administration and Maintenance (Management) (OAM). Note that multiple functions may be provided by one network node. Further, communication with an external network (eg, the Internet) may be performed via the DN.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • NF network functions
  • NF network functions
  • LMF Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 27 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, the Reference Signal Received Power (RSRP)), the receiving quality (eg, the Reference Signal Received Quality (RSRQ), Signal To Interference Plus noisy. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit channel state information (CSI) reporting settings for multiple transmission points.
  • the control unit 110 determines positions and bit widths for the plurality of indicators in the CSI according to at least one of a transmission point, a layer, an indicator in the CSI, and the number of the plurality of transmission points. You may.
  • FIG. 28 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 may receive channel state information (CSI) reporting settings for multiple transmission points.
  • the control unit 210 determines positions and bit widths for the plurality of indicators in the CSI according to at least one of a transmission point, a layer, an indicator in the CSI, and the number of the plurality of transmission points. You may.
  • the location may be a location within CSI part 1 or CSI part 2.
  • the positions of multiple values of multiple indicators may be adjacent to each other for the same transmission point.
  • the positions of a plurality of values for the plurality of transmission points may be adjacent to each other for the same index.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 29 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process that the transceiver performs in the frequency domain, a specific windowing process that the transceiver performs in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 30 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60.
  • current sensor 50 including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service section 59 including a communication module 60.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Abstract

本開示の一態様に係る端末は、複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を受信する受信部と、送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、参照信号の受信に基づくチャネル状態情報(CSI)を報告することが検討されている。また、複数の送受信ポイント(multiple Transmission/Reception Points(TRPs)、マルチTRP(Multi TRP(MTRP)))、又は、複数のパネル(multiple panels、multi-panel)が、端末(user terminal、User Equipment(UE))に対してDL送信を行うことが検討されている。また、マルチTRP/マルチパネルを用いるcoherent joint transmission(CJT)が検討されている。
 しかしながら、CJTのためのCSI/コードブックについて、十分に検討されていない。このような方法が明確に規定されなければ、通信スループット、通信品質などが劣化するおそれがある。
 そこで、本開示は、CJTのための適切なCSI/コードブックを決定する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を受信する受信部と、送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定する制御部と、を有する。
 本開示の一態様によれば、CJTのための適切なCSI/コードブックを決定できる。
図1は、16レベル量子化テーブルの一例を示す。 図2は、8レベル量子化テーブルの一例を示す。 図3は、拡張タイプ2コードブックのPMIの情報フィールドX1のビット幅の一例を示す。 図4は、拡張タイプ2コードブックのPMIの情報フィールドX2のビット幅の一例を示す。 図5は、PUCCH上のUCIにおける1つのCSI報告のCSIパート1のCSIフィールドのマッピング順序の一例を示す。 図6は、PUSCH上のUCIにおける1つのCSI報告のCSIパート1のCSIフィールドのマッピング順序の一例を示す。 図7は、PUSCH上のUCIにおける1つのCSI報告のCSIパート2のCSIフィールドのマッピング順序の一例を示す。 図8A及び8Bは、拡張タイプ2ポート選択コードブックの一例を示す。 図9A及び9Bは、拡張タイプ2ポート選択コードブックの一例を示す。 図10A及び10Bは、NCJT CSIのためのCMRペアの一例を示す。 図11Aから11Cは、NCJT CSIのための1つのCSI報告内の複数フィールドのマッピング順序の一例を示す。 図12は、実施形態#1に係るPUCCH上のCSIパート1の変更の一例を示す。 図13は、実施形態#1に係るPUCCH上のCSIパート1の変更の別の一例を示す。 図14は、実施形態#1に係るPUSCH上のCSIパート1の変更の一例を示す。 図15は、実施形態#1に係るPUSCH上のCSIパート1の変更の別の一例を示す。 図16は、実施形態#2に係るタイプ2CJT CSIのオプション1のビット幅の一例を示す。 図17は、実施形態#2に係るタイプ2CJT CSIのオプション2aのビット幅の一例を示す。 図18は、実施形態#2に係るタイプ2CJT CSIのオプション2aのビット幅の別の一例を示す。 図19は、実施形態#2に係るタイプ2CJT CSIのオプション2aのビット幅の更に別の一例を示す。 図20は、実施形態#2に係るタイプ2CJT CSIのオプション2bの変更の一例を示す。 図21は、実施形態#2に係る複数PMIフィールドX2のビット幅の一例を示す。 図22は、実施形態#2に係るCSIパート2の変更の一例を示す。 図23は、実施形態#2に係るCSIパート2の変更の別の一例を示す。 図24は、実施形態#3に係る複数PMIフィールドX2における新規報告内容ビット幅の一例を示す。 図25は、実施形態#3に係るPUSCH上のCSIパート1の変更の一例を示す。 図26は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図27は、一実施形態に係る基地局の構成の一例を示す図である。 図28は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図29は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図30は、一実施形態に係る車両の一例を示す図である。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 マルチTRP(TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
 NCJTにおいて、例えば、TRP1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI(S-DCI)、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。1つのDCIは、マルチTRPの1つのTRPから送信されてもよい。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI(M-DCI)、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。複数のDCIは、マルチTRPからそれぞれ送信されてもよい。UEは、異なるTRPに対して、それぞれのTRPに関する別々のCSI報告(CSIレポート)を送信すると想定してもよい。このようなCSIフィードバックは、セパレートフィードバック、セパレートCSIフィードバックなどと呼ばれてもよい。本開示に置いて、「セパレート」は、「独立した(independent)」と互いに読み替えられてもよい。
 なお、1つのTRPに対して両方のTRPに関するCSIレポートを送信するCSIフィードバックが利用されてもよい。このようなCSIフィードバックは、ジョイントフィードバック、ジョイントCSIフィードバックなどと呼ばれてもよい。
 例えば、セパレートフィードバックの場合、UEは、TRP#1に対して、TRP#1のためのCSIレポートをあるPUCCH(PUCCH1)を用いて送信し、TRP#2に対して、TRP#2のためのCSIレポートを別のPUCCH(PUCCH2)を用いて送信するように設定される。ジョイントフィードバックの場合、UEは、TRP#1又は#2に対して、TRP#1のためのCSIレポート及びTRP#2のためのCSIレポートを送信する。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
(CSI報告(CSI report又はreporting))
 Rel.15 NRでは、端末(ユーザ端末、User Equipment(UE)等ともいう)は、参照信号(Reference Signal(RS))(又は、当該RS用のリソース)に基づいてチャネル状態情報(Channel State Information(CSI))を生成(決定、計算、推定、測定等ともいう)し、生成したCSIをネットワーク(例えば、基地局)に送信(報告、フィードバック等ともいう)する。当該CSIは、例えば、上り制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))又は上り共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))を用いて基地局に送信されてもよい。
 CSIの生成に用いられるRSは、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、同期信号(Synchronization Signal(SS))、復調用参照信号(DeModulation Reference Signal(DMRS))等の少なくとも一つであってもよい。
 CSI-RSは、ノンゼロパワー(Non Zero Power(NZP))CSI-RS及びCSI-Interference Management(CSI-IM)の少なくとも1つを含んでもよい。SS/PBCHブロックは、SS及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。また、SSは、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも一つを含んでもよい。
 なお、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも1つを含んでもよい。
 UEは、CSI報告に関する情報(報告設定(report configuration)情報)を受信し、当該報告設定情報に基づいてCSI報告を制御してもよい。当該報告設定情報は、例えば、無線リソース制御(Radio Resource Control(RRC))の情報要素(Information Element(IE))の「CSI-ReportConfig」であってもよい。なお、本開示において、RRC IEは、RRCパラメータ、上位レイヤパラメータなどと互いに読み替えられてもよい。
 当該報告設定情報(例えば、RRC IEの「CSI-ReportConfig」)は、例えば、以下の少なくとも一つを含んでもよい。
・CSI報告のタイプに関する情報(報告タイプ情報、例えば、RRC IEの「reportConfigType」)
・報告すべきCSIの一以上の量(quantity)(一以上のCSIパラメータ)に関する情報(報告量情報、例えば、RRC IEの「reportQuantity」)
・当該量(当該CSIパラメータ)の生成に用いられるRS用リソースに関する情報(リソース情報、例えば、RRC IEの「CSI-ResourceConfigId」)
・CSI報告の対象となる周波数ドメイン(frequency domain)に関する情報(周波数ドメイン情報、例えば、RRC IEの「reportFreqConfiguration」)
 例えば、報告タイプ情報は、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI))報告、又は、半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(Semi-Persistent CSI(SP-CSI))報告を示し(indicate)てもよい。
 また、報告量情報は、上記CSIパラメータ(例えば、CRI、RI、PMI、CQI、LI、L1-RSRP等)の少なくとも一つの組み合わせを指定してもよい。
 また、リソース情報は、RS用リソースのIDであってもよい。当該RS用リソースは、例えば、ノンゼロパワーのCSI-RSリソース又はSSBと、CSI-IMリソース(例えば、ゼロパワーのCSI-RSリソース)とを含んでもよい。
 また、周波数ドメイン情報は、CSI報告の周波数粒度(frequency granularity)を示してもよい。当該周波数粒度は、例えば、ワイドバンド及びサブバンドを含んでもよい。ワイドバンドは、CSI報告バンド全体(entire CSI reporting band)である。ワイドバンドは、例えば、ある(certain)キャリア(コンポーネントキャリア(Component Carrier(CC))、セル、サービングセル)全体であってもよいし、あるキャリア内の帯域幅部分(Bandwidth part(BWP))全体であってもよい。ワイドバンドは、CSI報告バンド、CSI報告バンド全体(entire CSI reporting band)等と言い換えられてもよい。
 また、サブバンドは、ワイドバンド内の一部であり、一以上のリソースブロック(Resource Block(RB)又は物理リソースブロック(Physical Resource Block(PRB)))で構成されてもよい。サブバンドのサイズは、BWPのサイズ(PRB数)に応じて決定されてもよい。
 周波数ドメイン情報は、ワイドバンド又はサブバンドのどちらのPMIを報告するかを示してもよい(周波数ドメイン情報は、例えば、ワイドバンドPMI報告又はサブバンドPMI報告の何れかの決定に用いられるRRC IEの「pmi-FormatIndicator」を含んでもよい)。UEは、上記報告量情報及び周波数ドメイン情報の少なくとも一つに基づいて、CSI報告の周波数粒度(すなわち、ワイドバンドPMI報告又はサブバンドPMI報告の何れか)を決定してもよい。
 ワイドバンドPMI報告が設定(決定)される場合、一つのワイドバンドPMIがCSI報告バンド全体用に報告されてもよい。一方、サブバンドPMI報告が設定される場合、単一のワイドバンド表示(single wideband indication)i1がCSI報告バンド全体用に報告され、当該CSI報告全体内の一以上のサブバンドそれぞれのサブバンド表示(one subband indication)i2(例えば、各サブバンドのサブバンド表示)が報告されてもよい。
 UEは、受信したRSを用いてチャネル推定(channel estimation)を行い、チャネル行列(Channel matrix)Hを推定する。UEは、推定されたチャネル行列に基づいて決定されるインデックス(PMI)をフィードバックする。
 PMIは、UEが、UEに対する下り(downlink(DL))送信に用いるに適切と考えるプリコーダ行列(単に、プリコーダともいう)を示してもよい。PMIの各値は、一つのプリコーダ行列に対応してもよい。PMIの値のセットは、プリコーダコードブック(単に、コードブックともいう)と呼ばれる異なるプリコーダ行列のセットに対応してもよい。
 空間ドメイン(space domain)において、CSI報告は一以上のタイプのCSIを含んでもよい。例えば、当該CSIは、シングルビームの選択に用いられる第1のタイプ(タイプ1CSI)及びマルチビームの選択に用いられる第2のタイプ(タイプ2CSI)の少なくとも一つを含んでもよい。シングルビームは、単一のレイヤ、マルチビームは、複数のビームと言い換えられてもよい。また、タイプ1CSIは、マルチユーザmultiple input multiple output(MU-MIMO)を想定せず、タイプ2CSIは、マルチユーザMIMOを想定してもよい。
 上記コードブックは、タイプ1CSI用のコードブック(タイプ1コードブック等ともいう)と、タイプ2CSI用のコードブック(タイプ2コードブック等ともいう)を含んでもよい。また、タイプ1CSIは、タイプ1シングルパネルCSI及びタイプ1マルチパネルCSIを含んでもよく、それぞれ異なるコードブック(タイプ1シングルパネルコードブック、タイプ1マルチパネルコードブック)が規定されてもよい。
 本開示において、タイプ1及びタイプIは互いに読み替えられてもよい。本開示において、タイプ2及びタイプIIは互いに読み替えられてもよい。
 上り制御情報(UCI)タイプは、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、スケジューリング要求(scheduling request(SR))、CSI、の少なくとも1つを含んでもよい。UCIは、PUCCHによって運ばれてもよいし、PUSCHによって運ばれてもよい。
 Rel.15 NRにおいて、UCIは、ワイドバンドPMIフィードバック用の1つのCSIパートを含むことができる。CSI報告#nは、もし報告される場合にPMIワイドバンド情報を含む。
 Rel.15 NRにおいて、UCIは、サブバンドPMIフィードバック用の2つのCSIパートを含むことができる。CSIパート1は、ワイドバンドPMI情報を含む。CSIパート2は、1つのワイドバンドPMI情報と幾つかのサブバンドPMI情報とを含む。CSIパート1及びCSIパート2は、分離されて符号化される。
 Rel.15 NRにおいて、UEは、N(N≧1)個のCSI報告設定の報告セッティングと、M(M≧1)個のCSIリソース設定のリソースセッティングと、を上位レイヤによって設定される。例えば、CSI報告設定(CSI-ReportConfig)は、チャネル測定用リソースセッティング(resourcesForChannelMeasurement)、干渉用CSI-IMリソースセッティング(csi-IM-ResourceForInterference)、干渉用NZP-CSI-RSセッティング(nzp-CSI-RS-ResourceForInterference)、報告量(reportQuantity)などを含む。チャネル測定用リソースセッティングと干渉用CSI-IMリソースセッティングと干渉用NZP-CSI-RSセッティングとのそれぞれは、CSIリソース設定(CSI-ResourceConfig、CSI-ResourceConfigId)に関連付けられる。CSIリソース設定は、CSI-RSリソースセットのリスト(csi-RS-ResourceSetList、例えば、NZP-CSI-RSリソースセット又はCSI-IMリソースセット)を含む。
 FR1及びFR2の両方を対象として、NCJT用のより動的なチャネル/干渉の前提(hypotheses)を可能にするために、DLのマルチTRP及びマルチパネルの少なくとも1つの送信用のCSI報告の評価及び規定が検討されている。
(コードブック設定)
 UEは、コードブックに関するパラメータ(コードブック設定(CodebookConfig))を、上位レイヤシグナリング(RRCシグナリング)により設定される。コードブック設定は、上位レイヤ(RRC)パラメータのCSI報告設定(CSI-ReportConfig)に含まれる。
 コードブック設定において、タイプ1シングルパネル(typeI-SinglePanel)、タイプ1マルチパネル(typeI-MultiPanel)、タイプ2(typeII)、タイプ2ポート選択(typeII-PortSelection)を含む複数のコードブックのうちの少なくとも1つのコードブックが選択される。
 コードブックのパラメータには、コードブックサブセット制約(codebook subset restriction(CBSR))に関するパラメータ(Restriction)が含まれる。CBSRの設定は、CBSRのビットに関連付けられたプリコーダに対して、どのPMIレポートが許可されているか(「1」)、どのPMIレポートが許可されていないか(「0」)を示すビットである。CBSRビットマップの1ビットは、1つのコードブックインデックス/アンテナポートに対応する。
(CSI報告設定)
 Rel.16のCSI報告設定(CSI-ReportConfig)は、コードブック設定(CodebookConfig)の他に、チャネル測定用のCSI-RSリソース(resourcesForChannelMeasurement(CMR))、干渉測定用のCSI-RSリソース(csi-IM-ResourcesForInterference(ZP-IMR)、nzp-CSI-RS-ResourcesForInterference(NZP-IMR))等が含まれている。CSI-ReportConfigのパラメータのうち、codebookConfig-r16を除くパラメータはRel.15のCSI報告設定にも含まれる。
 Rel.17において、NCJTを用いたマルチTRPのCSI測定/報告のための、拡張されたCSI報告設定(CSI-ReportConfig)が検討されている。当該CSI報告設定では、2つのTRPのそれぞれに対応する2つのCMRグループが設定される。CMRグループ内のCMRは、NCJTを用いたマルチTRPとシングルTRPの少なくとも1つの測定に用いられてもよい。NCJTのN個のCMRペアはRRCシグナリングにより設定される。UEは、RRCシグナリングにより、シングルTRP測定にCMRペアのCMRを使用するかどうかを設定されてもよい。
 単一のCSI報告設定によって設定される、マルチTRP/パネルのNCJT測定に関連するCSI報告について、次のオプション1、2の少なくとも1つがサポートされることが検討されている。
<オプション1>
 UEは、シングルTRP測定仮説/前提(hypotheses)に関連するX個(X=0、1、2)のCSIとNCJT測定に関連する1つのCSIを報告するように設定される。X=2の場合、2つのCSIは、異なるCMRグループのCMRを使用した2つの異なるシングルTRP測定に関連する。
<オプション2>
 UEは、NCJT及びシングルTRPについての測定仮説の中で最良の測定結果に関連する1つのCSIを報告するように設定されてもよい。
 上述のように、Rel.15/16では、CBSRは、CSI報告設定毎のコードブック設定毎に設定される。つまり、CBSRは、対応するCSI報告設定内の全てのCMR等に適用される。
 ただし、CSI報告設定によるRel.17のマルチTRP用のCSI報告設定では、上述のオプション1、2を適用した場合、以下のような測定の設定が行われる可能性がある。
オプション1(X=0):NCJTのCSIのみの測定。
オプション1(X=1):NCJTのCSIと、シングルTRP(1つのTRP)のCSIの測定。
オプション1(X=2):NCJTのCSIと、シングルTRP(2つのTRP)のCSIの測定。
オプション2:NCJTのCSIと、シングルTRPのCSIの両方の測定。
(タイプ1コードブック)
 タイプ1コードブック(Rel.15)として、基地局パネルに対し、タイプ1シングルパネルコードブックとタイプ1マルチパネルコードブックが規定されている。タイプ1シングルパネルにおいて、CSI-RSアンテナポート数PCSI-RSと、(N1,N2)、に対し、CSIアンテナポートアレイ(論理的設定)のアンテナモデルが規定されている。タイプ1マルチパネルにおいて、CSI-RSアンテナポート数PCSI-RSと、(Ng,N1,N2)、に対し、CSIアンテナポートアレイ(論理的設定)のアンテナモデルが規定されている。
 Rel.15タイプ1シングルパネルCSIのために、UEは、コードブックタイプの上位レイヤパラメータ(CodebookConfig内のcodebookType内のtype1内のsubType)をタイプ1シングルパネル('typeI-SinglePanel')にセットされる。レイヤ数v∈{2,3,4}でない場合、PMI値は、3つのコードブックインデックスi1,1,i1,2,i2に対応する。レイヤ数v∈{2,3,4}である場合、PMI値は、4つのコードブックインデックスi1,1,i1,2,i1,3,i2に対応する。レイヤ数v∈{2,3,4}でない場合、複合(composite)コードブックインデックスi1=[i1,1,i1,2]である。レイヤ数v∈{2,3,4}である場合、複合コードブックインデックスi1=[i1,1,i1,2,i1,3]である。
 CSIアンテナポート数PCSI-RSに対し、サポートされる(N1,N2)及び(O1,O2)の設定(値の組み合わせ)が仕様に規定されている。(N1,N2)は、2次元のアンテナエレメント数を示し、typeI-SinglePanel内のnrOfAntennaPorts内のmoreThanTwo内のn1-n2によって設定される。(O1,O2)は、2次元のオーバーサンプリング因子である。水平方向のビームに対応するi1,1は{0,1,...,N1O1-1}である。垂直方向のビームに対応するi1,2は{0,1,...,N2O2-1}である。i2は{0,1,2,3}である。コードブックモード(codebookMode)=1に対し、アンテナポート3000から2999+PCSI-RSを用いる1レイヤCSI報告コードブックのための行列はW_i1,1,i1,2,i2^(1)である。ここで、Wl,m,n (1)は、次式によって与えられる。
Figure JPOXMLDOC01-appb-I000001
 Rel.15タイプ1マルチパネルCSIに対し、タイプ1シングルパネルと比較すると、N1,N2に加えてパネル数Ngが設定される。パネル間位相整合(inter-panel co-phasing、パネル間の位相補償、phase compensation between panels、パネル間の位相調整/位相差)として、i,1,4が追加されて報告される。各パネルに対して同じSDビーム(プリコーディング行列Wl)が選択され、パネル間位相整合のみが追加されて報告される。
 CSIアンテナポート数PCSI-RSに対し、サポートされる(Ng,N1,N2)及び(O1,O2)の設定(値の組み合わせ)が、仕様に規定されている。(N1,N2)は、typeI-MultiPanel内のng-n1-n2によって設定される。i1,1は{0,1,...,N1O1-1}である。i1,2は{0,1,...,N2O2-1}である。q=1,...,Ng-1に対してi1,4,qは{0,1,2,3}である。i2は{0,1,2,3}である。コードブックモード(codebookMode)=1に対し、アンテナポート3000から2999+PCSI-RSを用いる1レイヤCSI報告コードブックのための行列はW_i1,1,i1,2,i1,4,i2^(1)である。ここで、Wl,m,p,n (1)=Wl,m,p,n^1,Ng,1である。
 Ng={2,4}に対するW_l,m,p,n^1,Ng,1及びW_l,m,p,n^2,Ng,1(1番目のレイヤ、Ng=2、codeBookMode=1に対する行列Wl,m,p,n 1,2,1と、2番目のレイヤ、Ng=2、codeBookMode=1に対する行列Wl,m,p,n 2,2,1と、1番目のレイヤ、Ng=4、codeBookMode=1に対する行列Wl,m,p,n 1,4,1と、2番目のレイヤ、Ng=4、codeBookMode=1に対する行列Wl,m,p,n 2,4,1と)は、次式によって与えられる。
Figure JPOXMLDOC01-appb-I000002
 ここで、φn=ejπn/2である。Ng=2に対し、p=p1であり、Ng=4に対し、p=[p1,p2,p3]である。φ_p1、φ_p2、φ_p3は、パネル間位相整合(inter-panel co-phasing)を表す。パネル0,1,2,3に対して同じビーム(SDビーム行列、プリコーディング行列Wl)が選択され、φ_p1は、パネル0に対するパネル1の位相補償を表し、φ_p2は、パネル0に対するパネル2の位相補償を表し、φ_p3は、パネル0に対するパネル3の位相補償を表す。
(タイプ2コードブック)
 本開示において、X行Y列の行列ZをZ(X×Y)と表すことがある。
 Rel.15のタイプ2CSIは、与えられたレイヤkに対し、サブバンドごと(SB-wise)のプリコーディングベクトルの生成は、次式に基づく。
 Wk(Nt×N3) = W1W2,k    (Y1)
 Ntは、ポート数である。N3は、PMIによって示されるプリコーディング行列(プリコーダ)の総数(サブバンド数)である。W1(Nt×2L)は、L∈{2,4}個の(オーバーサンプルされた)空間ドメイン(spatial domain(SD))2次元(2D)DFTベクトル(SDビーム、2D-DFTベクトル)から成る行列(SDビーム行列)である。Lは、ビーム数である。例えば、L=2個のSD 2D-DFTベクトルはそれぞれbi,bjである。W2,k(2L×N3)は、レイヤkに対する線形結合係数(linear combination(LC)係数(coefficients)、サブバンド複素LC係数、結合係数)からなる行列(LC係数行列)である。W2,kは、ビーム選択と、2つの偏波(polarization)の間の位相整合(co-phasing)と、を表す。例えば、2つのW2,kはそれぞれci,cjである。例えば、チャネル行列hは、L=2個のSD 2D-DFTベクトルの線形結合cibi,+cjbjによって近似される。フィードバックのオーバーヘッドは、主として、LC係数行列W2,kに起因する。また、Rel.15のタイプ2CSIは、ランク1及び2のみをサポートする。
 タイプ2CSIにおいて、あるユーザに対するチャネル(チャネル行列)は、2つの偏波及びL個のビーム(L個の2D-DFTベクトル)の線形結合によって表される。Rel.15のタイプ2CSIは、ランク1、2をサポートする。
(タイプ2コードブックの拡張)
 Rel.16のタイプ2CSI(拡張(enhanced)タイプ2コードブック)は、周波数ドメイン(FD)圧縮によって、W2,kに関連するオーバーヘッドを低減する。Rel.16のタイプ2CSIは、ランク1及び2に加え、ランク3及び4をサポートする。
 Rel.16のタイプ2CSIは、与えられたレイヤkに対し、次式に基づく情報がUEによって報告されてもよい。
 Wk = W1W~ kWf,k H    (Y2)
 W2,kは、W~ kWf,k Hによって近似される。行列W~は、Wの上に~(wチルダ)を付して表されてもよい。W~ kは、W~ 2,kと表されてもよい。行列Wf,k Hは、Wf,kの随伴行列である。
 CSI報告に対し、UEは、2つのサブバンドサイズの内の1つを設定されてもよい。そのサブバンド(CQIサブバンド)は、NPRB SB個の連続PRBとして定義され、BWP内のPRBの総数に依存してもよい。CQIサブバンド当たりのPMIサブバンド数Rは、RRC IE(numberOfPMI-SubbandsPerCQI-Subband)によって設定される。Rは、PMIによって表されるプリコーディング行列の総数N3を、csi-ReportingBand内において設定されたサブバンドの数と、subbandSizeによって設定されるサブバンドサイズと、BWP内のPRBの総数と、の関数として制御する。
 W1(Nt×2L)は、複数の(オーバーサンプルされた)空間ドメイン(spatial domain(SD))2D-DFT(ベクトル、ビーム)から成る行列である。この行列のために、2次元離散フーリエ変換(2D-DFT)ベクトルの複数インデックス(indices)と、2次元のオーバーサンプリング因子(over-sampling factor)とが報告される。SD 2D-DFTベクトルによって表される空間ドメインの応答/分布は、SDビームと呼ばれてもよい。
 W~ k(2L×Mv)は、LC係数から成る行列である。この行列のために、最大でK0個の非ゼロ係数(non-zero coefficients(NZCs)、非ゼロ振幅のLC係数)が報告される。その報告は、NZC位置を捕らえるビットマップと、量子化NZCとの、2つのパートから成る。
 Wf,k(N3×Mv)は、レイヤkに対する複数の周波数ドメイン(frequency domain(FD))基底(bases)(ベクトル)から成る行列である。レイヤ毎にMv個のFD基底(FD DFT基底)がある。N3>19の場合、サイズN3'(<N3)の中間サブセット(InS)からのMv個のDFTが選択される。N3≦19の場合、log2(C(N3-1,Mv-1))ビットが報告される。ここで、C(N3-1,Mv-1)は、N3-1個からMv-1個を選ぶ組み合わせの数(combinatorial coefficient C(x,y))を表し、二項係数(binomial coefficients)とも呼ばれる。FD基底ベクトル及びLC係数の線形結合によって表される周波数ドメインの応答/分布(周波数応答)は、FDビームと呼ばれてもよい。FDビームは、遅延プロファイル(時間応答)に対応してもよい。
 FD基底のサブセットは、{f1,...,fM_v}として与えられる。ここで、fiは、k(K=1,...,v)番目のレイヤに対するi番目のFD基底であり、i∈{1,...,Mv}である。PMIサブバンドサイズは、CQIサブバンドサイズ/Rによって与えられ、R∈{1,2}である。与えられたランクvに対するFD基底の数Mvは、ceil(pv×N3/R)によって与えられる。FD基底の数は、全てのレイヤk∈{1,2,3,4}に対して同じである。pvは上位レイヤによって設定される。
 行列W2,kの各行は、特定のSDビームのチャネル周波数応答を表す。SDビームが高い指向性を有する場合、ビームごとのチャネルタップは限定される(時間ドメインにおいて電力遅延プロファイルは疎になる)。その結果、SDビームごとのチャネル周波数応答は、高い相関を有する(周波数ドメインにおいてフラットに近づく)。この場合、チャネル周波数応答は、少ない数のFD基底の線形結合によって近似されることができる。例えば、Mv=2である場合、FD基底f2,fqとLC係数d1 0,d2 0とを用いて、SDビームb0に関連付けられた周波数応答は、d1 0f2+,d2 0fqによって近似される。
 最高のゲインをMv個のFD基底が選択される。Mv≪N3とすることによってW~ kのオーバーヘッドは、W2,kのオーバーヘッドよりかなり小さい。Mv個のFD基底の全部又は一部が、各SDビームの周波数応答の近似に用いられる。各SDビームに対して選択されたFD基底のみを報告するためにビットマップが用いられる。もしビットマップが報告されない場合、各SDビームに対して全てのFD基底が選択される。この場合、各SDビームに対して、全てのFD基底のNZCが報告される。1つのレイヤ内のNZCの最大数Kk NZ≦K0=ceil(β×2LMv)であり、全てのレイヤに跨るNZCの最大数KNZ≦2K0=ceil(β×2LMv)である。βは上位レイヤによって設定される。
 W~ k内の報告される各LC係数(複素係数)は、別々に量子化された振幅及び位相によって表される。
[振幅量子化]
 偏波固有参照振幅は、図1のテーブル(振幅係数インディケータi2,3,lの複数要素のマッピング:要素kl,p (1)から振幅係数pl,p (1)へのマッピング)を用いる16レベル量子化である。他の全ての係数は、図2のテーブル(振幅係数インディケータi2,4,lの複数要素のマッピング:要素kl,i,f (2)から振幅係数pl,i,f (2)へのマッピング)を用いる8レベル量子化である。
[位相量子化]
 全ての係数は、16-PSKを用いて量子化される。例えば、φl,i = exp(j2πcl,i/16)、cl,i∈{0,...,15}。ここで、cl,iは、関連付けられた位相値φl,iに対して、UEによって(4ビットを用いて)報告される位相係数である。
 Rel.16のPUSCH上タイプ2CSIフィードバックは2つのパートを含む。CSIパート1は、固定ペイロードサイズを有し、CSIパート2内の情報ビット数の識別に用いられる。パート2のサイズは可変である(UCIサイズはNZCの数に依存し、その数は基地局に知られていない)。UEは、CSIパート1内においてNZCの数を報告し、その数は、CSIパート2のサイズを決定する。基地局はCSIパート1を受信した後、CSIパート2のサイズを認識する。
 拡張(enhanced)タイプ2CSIフィードバックにおいて、CSIパート1は、RIと、CQIと、拡張タイプ2CSIに対する複数レイヤに跨る非ゼロ振幅(NZC)の総数の指示と、を含む。パート1のフィールドは、別々に符号化される。CSIパート2は、拡張タイプ2CSIのPMIを含む。パート1及び2は、別々に符号化される。CSIパート2(PMI)は、オーバーサンプリング因子と、2D-DFT基底のインデックスと、選択されたDFTウィンドウの初期DFT基底(開始オフセット)のインデックスMinitialと、レイヤ毎に選択されたDFT基底と、レイヤ毎のNZC(振幅及び位相)と、レイヤ毎の最強(strongest、最大強度)の係数インディケータ(strongest coefficeint indicator(SCI))と、レイヤ毎/偏波毎の最強の係数の振幅と、の少なくとも1つを含む。
 異なるCSIパート2情報に関連付けられた複数のPMIインデックス(PMI値、コードブックインデックス)は、k番目のレイヤに対し、以下に従ってもよい。
・i1,1:オーバーサンプリング因子
・i1,2:2D-DFT基底の複数インデックス
・i1,5:選択されたDFTウィンドウの初期DFT基底のインデックス(開始オフセット)Minitial
・i1,6,k:k番目のレイヤに対して選択されたDFT基底
・i1,7,k:k番目のレイヤに対するビットマップ
・i1,8,k:k番目のレイヤに対する最強(strongest、最大強度)の係数インディケータ(SCI)
・i2,3,k:k番目のレイヤの(両方の偏波に対する)最強の係数の振幅
・i2,4,k:k番目のレイヤの報告された係数の振幅
・i2,5,k:k番目のレイヤの報告された係数の位相
 i1,5及びi1,6,kは、DFT基底報告用のPMIインデックスである。N3>19の場合のみ、i1,5が報告される。
 CSIパート2のグルーピングとして、与えられたCSIレポートに対し、PMI情報は3グループ(グループ0から2)にまとめられる。これは、CSI省略(omission)が行われる場合に重要である。インデックスi2,4,l、i2,5,l、i1,7,lの報告される各要素は、特定の優先度ルールに関連付けられる。グループ0から2は、以下に従う。
・グループ0:インデックスi1,1、i1,2、i1,8,l(l=1,...,v)
・グループ1:(報告される場合の)インデックスi1,5、(報告される場合の)インデックスi1,6,l、i1,7,lの内の最高(上位)のv2LMv-floor(KNZ/2)個の優先度要素、i2,3,l、i2,4,lの内の最高(上位)のceil(KNZ/2)-v個の優先度要素、i2,5,lの内の最高(上位)のceil(KNZ/2)-v個の優先度要素(l=1,...,v)
・グループ2:i1,7,lの内の最低(下位)のfloor(KNZ/2)個の優先度要素、i2,4,lの内の最低(下位)のfloor(KNZ/2)個の優先度要素、i2,5,lの内の最低(下位)のfloor(KNZ/2)個の優先度要素(l=1,...,v)
 タイプ1CSIにおいて、SD DFTベクトルによって表されるSDビームは、UEに向けて送られる。タイプ2CSIにおいて、L個のSDビームが線形結合され、UEに向けて送られる。各SDビームは、複数のFDビームに関連付けられることができる。対応するSDビームに対し、それらのFD基底ベクトルの線形結合によって、チャネル周波数応答を得ることができる。チャネル周波数応答は、電力遅延プロファイルに対応する。
 拡張タイプ2コードブックのPMIは、情報フィールドX1及びX2によって表される。情報フィールドX1内の、i1,1、i1,2、i1,8,1、i1,8,2、i1,8,3、i1,8,4、のビット幅は、図3によって与えられる。i1,1、i1,2は、SD基底の指標である。i1,8,1、i1,8,2、i1,8,3、i1,8,4は、レイヤごとのSCIの指標である。情報フィールドX2内の、i2,3,1、i2,3,2、i2,3,3、i2,3,4、i1,5、i1,6,1、i1,6,2、i1,6,3、i1,6,4、{i2,4,l}l=1...v、{i2,5,l}l=1...v、{i2,7,l}l=1...v、のビット幅は、図4によって与えられる。i2,3,1、i2,3,2、i2,3,3、i2,3,4は、レイヤごとのSCIの振幅である。i1,5は、FD基底のウィンドウである。i1,6,1、i1,6,2、i1,6,3、i1,6,4は、レイヤごとの選択されたFD基底である。{i2,4,l}l=1...vは、レイヤごとの他の(SCI以外の)係数の振幅である。{i2,5,l}l=1...vは、レイヤごとの他の(SCI以外の)係数の位相である。{i2,7,l}l=1...vは、NZCのためのビットマップである。
 図5は、PUCCH上のUCIにおける、pmi-FormatIndicator=subbandPMI又はcqi-FormatIndicator=subbandCQIに対する1つのCSI報告#nのCSIパート1のCSIフィールドのマッピング順序の一例を示す。
 図6は、PUSCH上のUCIにおける、1つのCSI報告#nのCSIパート1のCSIフィールドのマッピング順序の一例を示す。このマッピング順序は、全てのレイヤに跨って合計される、NZCの総数の指標を含む点において、PUCCH上のCSIパート1のマッピング順序と異なる。
 図7は、PUSCH上のUCIにおける、codebookType=typeII-r16又はtypeII-PortSelection-r16の1つのCSI報告#nのCSIパート2のCSIフィールドのマッピング順序の一例を示す。複数PMIフィールドX1及び複数PMIフィールドX2に含まれる各指標の順序は、前述のビット幅のテーブルによって決定される。
(タイプ2ポート選択コードブックの拡張及び更なる拡張)
 Rel.15のタイプ2ポート選択(port selection(PS))CSI(タイプ2PSコードブック)において、UEは、タイプ2CSIのように2D-DFTを考慮してSDビームを導出する必要がない。基地局は、SDビームのセットを考慮してビームフォームされたK個のCSI-RSポートを用いてCSI-RSを送信する。UEは、偏波ごとに最良のL(≦K)個のCSI-RSポートを選択/識別し、W1内において、それらのインデックスを報告する。Rel.15のタイプ2PS CSIは、ランク1、2をサポートする。
 Rel.16のタイプ2PS CSI(拡張(enhanced)タイプ2PSコードブック)の動作は、SDビームの選択を除き、Rel.16のタイプ2CSIと同様である。Rel.15のタイプ2PS CSIは、ランク1から4をサポートする。
 レイヤk∈{1,2,3,4}に対し、サブバンドごと(subband(SB)-wise)のプリコーダ生成は、次式によって与えられる。
 Wk(Nt×N3) = QW1W~ kWf,k H    (Y3)
 ここで、Q(Nt×K)は、CSI-RSビームフォーミングに用いられるK個のSDビームを示す。W1(K×2L)は、ブロック対角行列(diagonal matrix)である。W~ k(2L×M)は、LC係数行列である。Wf,k(N3×M)は、N3個のDFT基底ベクトル(FD基底ベクトル)から成る。Kは上位レイヤによって設定される。Lは上位レイヤによって設定される。PCSI-RS∈{4,8,12,16,24,32}。PCSI-RS>4の場合、L∈{2,3,4}。
 Rel.15/16のタイプ2PS CSIにおいて、各CSI-RSポート#iは、SDビーム(bi)に関連付けられる(図8A及び8B)。
 Rel.16のタイプ2PS CSIは、Rel.16のタイプ2 CSIと同様にしてFD基底の数をN3からMvへ削減することによって(Mv≪N3)、Rel.15のタイプ2PS CSIと比較してオーバーヘッドが削減される。
 Rel.17のタイプ2ポート選択のCSI/コードブック(更なる拡張(続拡張、further enhanced)タイプ2ポート選択コードブック)において、各CSI-RSポート#iは、SDビームの代わりに、SD-FDビームペア(SDビームbi及びFDビームfi,jのペア(jは周波数インデックス))に関連付けられる(図9A及び9B)。この例において、ポート3及び4は、同じSDビームに関連付けられ、異なるFDビームに関連付けられる。
 SDビーム-FDビームのペアに基づきUEにおいて観測されるチャネル周波数応答の周波数選択性(frequency selectivity)は、遅延の事前補償(delay pre-compensation)によって、SDビームに基づきUEにおいて観測されるチャネル周波数応答の周波数選択性よりも低減されることができる。
 Rel.17のタイプ2ポート選択コードブックの主なシナリオは、FDDである。SRS測定に基づくチャネルレシプロシティ(channel reciprocity)は完全ではない(ULのビームとDLのビームの角度が異なる可能性がある、FDDにおいてUL周波数とDL周波数が異なる、そのUL周波数とDL周波数において効果的なアンテナ間隔が異なる)。しかし、基地局は幾つかの部分的な情報(支配的な角度及び遅延(SDビーム及びFDビーム))を得る/選択することができる。CSI報告に加え、基地局におけるSRS測定を用いることによって、基地局は、DL MIMOプリコーダの決定のためのCSIを得ることができる。この場合、CSIオーバーヘッドの削減のために、幾つかのCSI報告が省かれてもよい。
 Rel.17のタイプ2PS CSIにおいて、各CSI-RSポートは、SDビーム及びFD基底ベクトルを用いてビームフォームされる。各ポートは、SD-FDペアに関連付けられる。
 与えられたレイヤkに対し、次式に基づく情報がUEによって報告されてもよい。
 Wk(K×N3) = W1W~ kWf,k H    (Y4)
 W1(K×2L)に対し、各行列ブロックは、K×K単位行列(identity matrix)のL列から成る。基地局は、K個のビームフォームされたCSI-RSポートを送信する。Rel.16のタイプ2PSコードブックにおいて、各ポートは、SDビームに関連付けられる。これに対し、Rel.16のタイプ2PSコードブックにおいて、各ポートは、SD-FDペアに関連付けられる。UEは、K個の内のL個のポートを選択し、それらをPMI(W1,k)の一部として基地局へ報告する。
 W~ k(2L×Mv)は、レイヤkに対し、LC係数(サブバンド複素LC係数)ベクトルから成る行列である。最大でK0個のNZCsが報告される。報告は、NZC位置を捕らえるビットマップと、量子化NZCとの、2つのパートから成る。Rel.16のタイプ2PSコードブックにおいて、NZC位置のビットマップは常に報告される。これに対し、Rel.17のタイプ2PSコードブックにおいて、特定のケースのビットマップは、省略されることができる。特定のケースは、報告されるNZCの数が最大数K1*M*v(v≦2)に等しいケースである。
 Wf,k(N3×Mv)は、レイヤkに対し、Mv個のFD基底(FD DFT基底)ベクトルから成る行列である。Mvは1又は2である。基地局は、Wf,kの有無(オン/オフ)を決定できる。Wf,kがオン(Mv=2)である場合、Mv個の追加のFD基底が報告される。Wf,kがオフ(Mv=1、Wf,kがオフであることと、Mv=1でWf,kがオンであることとは、同じである)である場合、追加のFD基底は報告されない。Mv=2である場合、RRC設定されるウィンドウサイズN(Nは2又は4)からMv個のFD基底が選択/報告される。Rel.16において、Wf,kは常に報告される。
(Rel.17 NCJT CSI)
 joint transmission(JT)は、複数のポイント(例えば、TRP)から単一のUEへの同時データ送信を意味してもよい。
 Rel.17は、2つのTRPからのNCJTをサポートする。2つのTRPからのPDSCHは、独立にプリコードされ、独立に復号されてもよい。周波数リソースは、オーバーラップしなくてもよいし(non-overlapping)、部分的にオーバーラップしてもよいし(partial-overlapping)、完全にオーバーラップしてもよい(full-overlapping)。オーバーラップが起こる場合、1つのTRPからのPDSCHは、他のTRPからのPDSCHへの干渉になる。
 適用可能なシナリオは、タイプ1シングルパネルコードブックを伴うシングルDCIベースMTRP NCJTである。NCJT CSI測定のために、単一のCSI-ReportConfig内において、1つのTRPからの各channnel measurement resource(CMR)を伴う、2つのCMRグループが設定されることができる。1つのCSI報告モードは、2つのモードから設定されることができる。
 RRCシグナリングによって、Rel.17 non-coherent joint transmission(NCJT) CSIのためのCSI-ReportConfigは、CMRと、CSI報告モード(csi-ReportMode)と、を設定する。
 Ks=K1+K2個のCMRを伴う2つのCMRグループがUEに設定される。2≦Ks≦8である。Ks個のCMRは、チャネル測定用のNZP-CSI-RSリソースセットに対応する。K1及びK2はそれぞれ、2つのCMRグループ内のCMR数である。全ての可能なペアからの選択によって、N個(N組)のCMRペアが上位レイヤによって設定される。N=1、Ks=2がサポートされる。Nmax=2のサポートは、UEのオプショナル機能である。KS,max=Xのサポートは、UEのオプショナル機能である。各CMRは、UE能力に応じて、最大32個のCSI-RSポートを含むことができる。各CMRペアは、1つのCRI値に関連付けられる。
 図10Aの例のように、RRCシグナリングによるビットマップは、各CMRグループから1つのCMRを示すことによって、実際にNCJT測定に用いられるN(N=1,2)個のCMRペアを示す。図10Bの例のように、UEは、2つのCMRグループ内のCMRを用いて、TRP1に対するシングルTRP CSIと、TRP2に対するシングルTRP CSIと、を測定し、N個のCMRペアを用いて、NCJT CSIを測定する。
 UEは、csi-ReportModeによって設定されるモードに基づいて、報告する1つ以上のCSIを選択する。csi-ReportModeは、以下のモード1及び2の2つのモードの1つを示す。
 以下のモード1及び2の少なくとも1つがサポートされる。
[モード1]
 UEは、シングルTRP測定前提(hypothesis)に関連付けられたX個のCSIと、NCJT測定前提に関連付けられた1つのCSIと、を報告することを設定されてもよい。X=0,1,2である。X=2である場合、2つのCSIが、異なる複数のCMRグループからの複数CMRを伴う2つの異なるシングルTRP測定前提に関連付けられる。X=1,2のサポートは、オプション1をサポートするUEに対する、UEのオプショナル機能である。
[モード2]
 UEは、NCJT及びシングルTRPの測定前提の内の最良の1つに関連付けられた1つのCSIを報告することを設定される。
 モード1において、UEは、X(X=0,1,2)個のシングルTRP CSIと、1つのNCJT CSIと、を含む、総数としてX+1個のCSIを報告する。モード2において、UEは、全てのシングルTRP CSIと、1つのNCJT CSIと、からの1つの最良のCSI(1つのCSI)を報告する。
 1つのCSI報告内において、2つまでのシングルTRP CSIと、1つのNCJT CSIと、が報告されることができる(X=2を伴うモード1)。NCJT CSIは、1つのCRIと、(1つのジョイントRIインデックスを伴う)2つのRIと、2つのPMIと、2つのLIと、1つのCQI(4レイヤ以下)と、を含む。シングルTRP CSIは、既存のCSIと同じであり、1つのCRIと、1つのRI/PMI/LIと、1つ又は2つのCQI(8レイヤ以下、CWごとに1つのCQI)と、を含む。
 以下のいくつかのケースに対し、1つのCSI報告内の複数フィールドの新規マッピング順序(テーブル)が定義されている。
・X=0を伴うモード1に対するワイドバンドCSIのマッピング順序(図11A)。ワイドバンドCSIは、X=0を伴うモード1、すなわちNCJT CSI、のみに対してサポートされる。
・モード1及び2に対するCSIパート1のマッピング順序(図11B)。
・モード1及び2に対するCSIパート2ワイドバンドのマッピング順序(図11Bと同様)。
・モード1及び2に対するCSIパート2サブバンドのマッピング順序(図11C)。
(CJT)
 Rel.18において、4つまでのTRPを用いるCJTをサポートすることが検討されている。4つのTRPからのデータは、コヒーレントにプリコードされ、同じ時間-周波数リソース上においてUEへ送信されてもよい。例えば、4つのTRPからのチャネルを考慮し、同じプリコーディング行列が用いられてもよい。コヒーレントは、複数の受信信号の位相の間に一定の関係があることを意味してもよい。4TRPジョイントプリコーディングを用いて、信号品質が改善され、4つのTRPの間位において干渉がなくてもよい。データは、4つのTRPの外の干渉のみを受けてもよい。
 (4つのTRPがコロケートされる(同じ位置と見なせる))理想的なケースにおいて、集約された(aggregated)チャネル行列Hのジョイント推定(joint estimation)が行われることができ、ジョイントプリコーディング行列Vがフィードバックされることができる。しかしながら、4つのパスの大スケールパスロスは大きく異なることがある。一定モジュールコードブック(constant module codebook)に基づくジョイントプリコーディング行列Vは正確でない。この場合、TRPごとのフィードバックと、TRP間(inter-TRP)の係数(coefficient)が、現在のNRのタイプ2コードブックにより整合することができる。
 FR1における4つまでのTRPのCJTに対し、4つのTRPの選択は、セミスタティックであってもよい。そのため、その選択と、チャネル測定のための4つのCMR(4つのCSI-RSリソース)の設定も、セミスタティックであってもよい。CSI-RSリソースのリストからの4つのTRPの動的指示も可能であるが、可能性が低い。
 4つのTRPからUEへのパスロスは異なる。そのため、ジョイントチャネル行列を表す1つの集約されたCSIを報告するだけでは難しい。
 NCJT(すなわち、シングルTRP)へのフォールバック動作を考慮し、TRPごとのCSI(すなわち、Rel.17のNCJT CSIのようなシングルTRP CSI)も考えられる。
(CJT CSI)
 理想バックホール(ideal backhaul)と、同期と、複数TRPに跨る同じ数のアンテナポートと、を想定し、FR1及び4つまでのTRP向けのcoherent joint transmission(CJT)用のCSI取得が検討されている。FDD向けのCJTマルチTRPのために、Rel.16/17のタイプ2コードブックの改良が検討されている。
 CJTのためのCSI拡張として、以下のことが検討されている。
・4つまでのTRPの測定のためのCMR及びIMR。
・x-TRP CJTのためのTRP間(inter-TRP)CSIフィードバックを伴うTRPごとCSI。
・TRP間CSI:TRP間位相行列/TRP間振幅行列/(振幅及び位相の両方を含む)TRP間行列のための新規のフィードバック及びコードブック。
・追加で報告可能なx-TRP CJT CQI。
 マルチTRP CJT CSIとして、以下のことが検討されている。
・各TRPのためのCMR/CSIに対する設定の制限。
・TRP間のCSI/PMI(例えば、TRP間振幅を伴う/伴わないTRP間位相)。
[オプション1]Rel.16/17タイプ2コードブックに加えて、独立のコードブック及びフィードバック。
[オプション2]Wk ~Wf,k Hを伴って/の内において伝えられるTRP間のCSI/PMIのW2。複数TRPに対して共通の/異なるFD基底。
 マルチTRP CJTのためのマルチパネルタイプ2CSIとして、以下のことが検討されている。
・Rel.16/17のタイプ2コードブック及びタイプ2PSコードブックのマルチパネルへの拡張。
・タイプ2マルチパネルコードブックのための新規アンテナ設定。
 各TRPに対するW1(SD基底)/Wf(FD基底)は、同じであってもよいし、異なってもよい。各TRPに対するWk(NZC)は、異なってもよい。各TRPに対するW1/Wf/Wkは、共同で選択されてもよいし、個別に選択されてもよい。W1/Wf/Wkの設計に対し、異なるオプションを伴う異なるシナリオであることが好ましい。Wφは、個別の内容として報告されてもよいし、Wk内において報告されてもよい。これらの使用される方針は、配置シナリオ(例えば、サイト内(intra-site)マルチTRP又はサイト間(inter-site)マルチTRP)に関する。
 例えば、4-TRP CJT CSI(コードブック)のためのプリコーディング行列は、各TRPに対するW1/Wf/Wkによって表されてもよい。各TRPに対するW1は、同じであってもよいし、異なってもよいし、共同で選択されてもよいし、個別に選択されてもよい。各TRPに対するWkは、異なってもよいし、共同で選択されてもよいし、個別に選択されてもよい。各TRPに対するWfは、同じであってもよいし、異なってもよいし、共同で選択されてもよいし、個別に選択されてもよい。
(分析#1)
 CJT マルチTRP(mTRP)のためのタイプ2コードブック(コードブック構造)は、以下のいくつかの選択肢の少なくとも1つであってもよいし、以下のいくつかの選択肢からのいくつかを合わせたものであってもよい。
[選択肢1A](コードブック構造1A)
 TRPごと/TRPグループ(ポートグループ又はリソース)ごとのSD/FD基底選択+(ワイドバンド及びサブバンドの少なくとも1つを含む)相対的な位相関係(co-phasing)/振幅関係(co-amplitude)。
 例えば、そのコードブック構造は、次式によって与えられる。
Figure JPOXMLDOC01-appb-I000003
 ここで、Nは、TRP又はTRPグループの数である。αrは、振幅関係(co-amplitude)である。prは、位相関係(co-phase)である。このコードブックは、αr=pr=1(no co-scaling)又はαr=0の特別ケースを含む。
[選択肢1B](コードブック構造1B)
 TRPごと/TRPグループ(ポートグループ又はリソース)ごとのジョイントSD/FD基底選択+(ワイドバンド及びサブバンドの少なくとも1つを含む)相対的な位相関係/振幅関係。
 例えば、そのコードブック構造は、次式によって与えられる。
Figure JPOXMLDOC01-appb-I000004
 ここで、Nは、TRP又はTRPグループの数である。αrは、振幅関係(co-amplitude)である。prは、位相関係(co-phase)である。このコードブックは、αr=pr=1(no co-scaling)又はαr=0の特別ケースを含む。
[選択肢2](コードブック構造2)
 TRPごと/TRPグループ(ポートグループ又はリソース)ごとのSD基底選択と、(N TRPsに跨る)ジョイントFD基底選択。
 例えば、そのコードブック構造は、次式によって与えられる。
Figure JPOXMLDOC01-appb-I000005
 ここで、Nは、TRP又はTRPグループの数である。
 コードブック構造の選択肢1A及び2の一方がサポートされること、コードブック構造の選択肢1A及び2の両方がサポートされ、どちらかがNWによって設定される、又は、CSI報告においてUEによって選択されること、が考えられる。
(分析#2)
 コードブック構造の選択肢1A及び2は、以下のいくつかの報告内容(CSIフィールド)を含んでもよい。
・W1、SD基底(i1,1、i1,2)。
 選択肢A1及び2の両方において、SD基底は、TRPごとである。しかし、報告されるi1,1、i1,2の少なくとも1つは、以下のいくつかのオプションのいずれかに従ってもよい。
[オプション1]複数セット。各セットは1つのTRPに対応する。
[オプション2]複数TRPに対する情報を含むように増やされたビット幅を有する1つのセット。
・Wf、FD基底(i1,5、i1,6,k)。
 選択肢A1において、FD基底は、TRPごとである。選択肢2において、FD基底は、複数TRPに共通である。ここで、複数TRPに共通のFD基底に基づくTRP固有の遅延オフセットj1の追加の報告があってもよい。
・W2、NZCを示すビットマップ(i1,7,k)。
 選択肢A1及び2の両方において、その報告内容は、以下のいくつかのオプションのいずれかに従ってもよい。
[オプション1]全TRPに対する長いビットマップ。
[オプション2]各TRPに対して個別のビットマップ。
・W2、SCI指標(i1,8,k)、SCIの振幅(i2,8,k)。
 選択肢A1及び2の両方において、その報告内容は、以下のいくつかのオプションのいずれかに従ってもよい。
[オプション1](既存フィールドと同様、レイヤごとに)複数TRPに跨る1つのSCI。
[オプション2](既存フィールドと同様、レイヤごとに)TRPごとのSCI。最強TRPの追加の指標j2が必要とされてもよい。2つのTRPのSCIの間の振幅関係(co-amplitude)の追加の指標j3が必要とされてもよい。2つのTRPのSCIの間の位相関係(co-phase)の追加の指標j4が必要とされてもよい。
・W2、レイヤごとの他の係数の振幅(i2,4,k)。
 選択肢A1及び2の両方において、その報告内容は、以下のいくつかのオプションのいずれかに従ってもよい。
[オプション1]複数セット。各セットは1つのTRPに対応する。
[オプション2]複数TRPに対する情報を含むように増やされたビット幅を有する1つのセット。
・W2、レイヤごとの他の係数の位相(i2,5,k)。
 選択肢A1及び2の両方において、その報告内容は、以下のいくつかのオプションのいずれかに従ってもよい。
[オプション1]複数セット。各セットは1つのTRPに対応する。
[オプション2]複数TRPに対する情報を含むように増やされたビット幅を有する1つのセット。
 各オプションは、NWによって設定されてもよいし、仕様に規定されてもよいし、UEによって報告されてもよい。
 基本的には、それぞれの既存の報告内容は、複数セットに増加して、各セットが1つのTRPに対応する、又は、全TRPに対して1つのセットになる。1つのセットのビット幅は、報告内容に依存して、維持されてもよいし、増加してもよい。選択肢1A/2に対し、新規報告内容j1/j2/j3/j4があってもよい。各新規報告内容は、NWによって設定されてもよいし、仕様に規定されてもよいし、UEによって報告されてもよい。選択肢1A/2に対し、報告内容とのマッピング順序と、各報告内容のビット幅、が明らかでない。
 このように、CJT CSIの報告についての検討が十分でない。これらの検討が十分でなければ、通信スループット/通信品質の低下を招くおそれがある。
 そこで、本発明者らは、CJT CSIの報告の方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、以下の各実施形態(例えば、各ケース)はそれぞれ単独で用いられてもよいし、少なくとも2つを組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 本開示において、「…の能力を有する」は、「…の能力をサポートする/報告する」と互いに読み替えられてもよい。
 本開示において、パネル、基地局(gNB)パネル、TRP、は互いに読み替えられてもよい。
 本開示において、ネットワーク(NW)、基地局、gNB、TRP、は互いに読み替えられてもよい。
 本開示において、時間ドメインリソース配置(time domain resource allocation)、時間ドメインリソース割り当て(time domain resource assignment)、は互いに読み替えられてもよい。
 本開示において、ビーム、SDビーム、SDベクトル、SD 2D-DFTベクトル、は互いに読み替えられてもよい。L、2L、SDビーム数、ビーム数、SD 2D-DFTベクトル数、は互いに読み替えられてもよい。
 本開示において、FD基底、FD DFT基底、DFT基底、fi、は互いに読み替えられてもよい。本開示において、FDビーム、FDベクトル、FD基底ベクトル、FD DFT基底ベクトル、DFT基底ベクトル、は互いに読み替えられてもよい。
 本開示において、係数、LC係数、結合係数、サブバンド複素LC係数、結合係数行列、振幅及び位相、振幅係数及び位相係数、は互いに読み替えられてもよい。本開示において、NZC、非ゼロ係数、非ゼロLC係数、非ゼロ振幅係数、複素係数、は互いに読み替えられてもよい。
 本開示において、co-phasing、位相整合、位相補償、位相調整、位相差、位相関係、は互いに読み替えられてもよい。本開示において、co-amplitude、振幅補償、振幅調整、振幅比、振幅関係、は互いに読み替えられてもよい。本開示において、差、比、相対値、は互いに読み替えられてもよい。
 本開示において、レイヤk、レイヤl、は互いに読み替えられてもよい。
 本開示において、サイズ、長さ、は互いに読み替えられてもよい。
 本開示において、TRP、送信ポイント、TCI状態、参照信号、は互いに読み替えられてもよい。
(無線通信方法)
 各実施形態において、TRP、CMR、CMRグループ、CRI、CRIグループ、は互いに読み替えられてもよい。
 各実施形態において、X個のTRP、X-TRP、X個のパネル、Ng個のパネル、は互いに読み替えられてもよい。各実施形態において、X個のTRPを用いるCJT、X個のパネルを用いるCJT、X-TRP CJT、は互いに読み替えられてもよい。
 各実施形態において、参照CSI、参照TRPに対するCSI、1番目に報告されるCSI、は互いに読み替えられてもよい。各実施形態において、参照TRP、参照CSIに対応するCSI、1番目に報告されるCSIに対応するTRP、1番目に報告されるCSIに対応するCSI-RSリソース/CMR/CMRグループ/CSI-RSリソースセット、は互いに読み替えられてもよい。各実施形態において、TRP、CSI-RSリソース、CMR、CMRグループ、CSI-RSリソースセット、は互いに読み替えられてもよい。
 各実施形態において、最強TRP、全TRPの内の最強の振幅(SCI)を伴うTRP、は互いに読み替えられてもよい。
 各実施形態において、マルチTRP、マルチパネル、サイト内(intra-site)マルチTRP、サイト間(inter-site)マルチTRP、は互いに読み替えられてもよい。
 各実施形態において、TRP間(inter-TRP)、パネル間(inter-panel)、TRP間差分、TRP間比較、は互いに読み替えられてもよい。
 各実施形態において、TRP間CSI、TRP間CJT CSI、パネル間CSI、基準TRPのCSIに対する別のTRPのCSI、基準パネルのCSIに対する別のTRPのCSI、は互いに読み替えられてもよい。各実施形態において、TRPごと(per-TRP)CSI、パネルごと(per-panel)CSI、は互いに読み替えられてもよい。
 各実施形態において、TRP間(inter-TRP)位相(phase)インデックス、TRP間位相整合(phasing)インデックス、は互いに読み替えられてもよい。各実施形態において、TRP間インデックス、TRP間係数(coefficient)インデックス、は互いに読み替えられてもよい。各実施形態において、TRP間(inter-TRP)位相(phase)行列、TRP間位相整合(phasing)行列、は互いに読み替えられてもよい。各実施形態において、TRP間行列、TRP間係数(coefficient)行列、は互いに読み替えられてもよい。各実施形態において、TRP間(inter-TRP)位相(phase)コードブック、TRP間位相整合(phasing)コードブック、は互いに読み替えられてもよい。各実施形態において、TRP間コードブック、TRP間係数(coefficient)コードブック、は互いに読み替えられてもよい。
 各実施形態において、対象リソース、CMR、CSI-RSリソース、NZP-CSI-RSリソース、CMRグループ、CSI-RSリソースセット、NZP-CSI-RSリソースセット、TRP、は互いに読み替えられてもよい。
 各実施形態は、サブバンド報告に適用されてもよいし、ワイドバンド報告に適用されてもよい。
 各実施形態は、タイプ2コードブックに適用されてもよいし、タイプ2ポート選択コードブックに適用されてもよい。
 UEは、複数の送信ポイント(例えば、TRP)に対するチャネル状態情報(CSI)の報告の設定を受信してもよい。UEは、送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定してもよい。
<実施形態#1>
 この実施形態は、1つのCSI報告のCSIパート1の複数CSIフィールドのマッピング順序に関する。
 そのマッピング順序において、レイヤ0と、レイヤ1と、全レイヤと、の少なくとも1つに対し、非ゼロワイドバンド振幅係数の数の指標(indicator)は、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[オプション1]各指標は、複数TRPに対する情報を含む。例えば、レイヤ0に対する数の指標は、全TRPに対するレイヤ0に対する総数を意味してもよい。
[オプション2]その指標は、各TRPに対する個別の指標である。順序は、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[[オプション2a]]1番目のTRPの、レイヤ0、レイヤ1、全レイヤに対する指標、その後、2番目のTRPの、レイヤ0、レイヤ1、全レイヤに対する指標、…。
[[オプション2b]]1番目のTRP、2番目のTRP、3番目のTRP、4番目のTRPに対するレイヤ0に対する指標、その後、1番目のTRP、2番目のTRP、3番目のTRP、4番目のTRPに対するレイヤ1に対する指標、…。
 そのマッピング順序において、CRIは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[オプション1]そのフィールドは、複数TRPのCRI情報を含む。例えば、そのフィールドは、選択されたN個のTRPの組み合わせのインデックスを示す。
[オプション2]各TRPに対して個別のフィールドがある。その順序は、最強TRPのCRI、2番目に強いTRPのCRI、…である。
 選択肢1A/2の異なるコードブック構造に対し、異なるオプションが用いられてもよいし、異なるオプションがNWによってUEへ設定されてもよい。
 各TRPに対して個別の指標をサポートすることに関するUE能力が導入されてもよい。
《例1》
 PUCCH上のCSIパート1に対し、選択肢1A/2の異なるコードブック構造に対し、同じ新規マッピング順序(テーブル)が仕様に規定されてもよいし、異なる/個別の新規マッピング順序(テーブル)が仕様に規定されてもよい。CJT CSIは、拡張タイプ2CSIに基づき、ワイドバンドCSIではなく、サブバンドCSIに対応してもよい。
 PUCCH上のCSIパート1のマッピング順序(テーブル、図5)において、CRIの部分は、図12のオプション1及び2のいずれかに変更されてもよい。
 PUCCH上のCSIパート1のマッピング順序(テーブル、図5)において、非ゼロワイドバンド振幅係数の数の指標の部分は、図13のオプション1、2a、2bのいずれかに変更されてもよい。
《例2》
 PUSCH上のCSIパート1に対し、選択肢1A/2の異なるコードブック構造に対し、同じ新規マッピング順序(テーブル)が仕様に規定されてもよいし、異なる/個別の新規マッピング順序(テーブル)が仕様に規定されてもよい。CJT CSIは、拡張タイプ2CSIに基づき、ワイドバンドCSIではなく、サブバンドCSIに対応してもよい。
 PUSCH上のCSIパート1のマッピング順序(テーブル、図6)において、CRIの部分は、図14のオプション1及び2のいずれかに変更されてもよい。
 PUSCH上のCSIパート1のマッピング順序(テーブル、図6)において、非ゼロワイドバンド振幅係数の数の指標の部分は、図15のオプション1、2a、2bのいずれかに変更されてもよい。
 この実施形態によれば、UEは、CSIパート1を適切に報告できる。
<実施形態#2>
 この実施形態は、PUSCH上の1つのCSI報告のCSIパート2の複数CSIフィールドのマッピング順序に関する。
 そのマッピング順序において、グループ0における複数PMIフィールドX1は、以下のいくつかのオプションの少なくとも1つに従ってもよい。X1は、SD基底の指標と、レイヤごとのSCIの指標と、を含んでもよい。
[オプション1]既存の各指標は、(選択/報告される)複数TRPに対する情報を含んでもよい。この場合、CJT CSIに対し、PMIに対する新規ビット幅(テーブル)が規定されてもよい。コードブック構造の選択肢1A及び2に対して、共通のビット幅が規定されてもよいし、個別のビット幅が規定されてもよい。この場合、マッピング順序のテーブルが拡張/変更されなくてもよい。
[オプション2]その指標は、各TRPに対する個別の指標である。その指標は、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[[オプション2a]]PMIに対し、各TRPに対する各指標の新規ビット幅(テーブル)が規定される。そのマッピング順序は、各指標に対してまずTRPの順序であってもよいし、各TRPに対してまず指標の順序であってもよい。この場合、マッピング順序のテーブルが拡張/変更されなくてもよい。
[[オプション2b]]複数TRPからのX1を考慮して、マッピング順序のテーブルが拡張/変更される。
 そのマッピング順序において、グループ1/2における複数PMIフィールドX2は、X1に対する上記のいくつかのオプションの少なくとも1つに従ってもよい。
 選択肢1A/2の異なるコードブック構造に対し、異なるオプションが用いられてもよいし、異なるオプションがNWによってUEへ設定されてもよい。
 各TRPに対して個別の指標をサポートすることに関するUE能力が導入されてもよい。
《例1》
 複数PMIフィールドX1のオプション1に対し、図16の例のように、タイプ2CJT CSI(codebookType=typeII-CJT-r18)に対し、i1,1、i1,2、i1,8,1に対して新規ビット幅の値が規定されてもよい。
 複数PMIフィールドX1のオプション2aに対し、図17の例のように、タイプ2CJT CSI(codebookType=typeII-CJT-r18)に対し、まず1つのTRPに対するi1,1、i1,2、i1,8,1、i1,8,2、i1,8,3、i1,8,4がマップされてもよい。
 複数PMIフィールドX1のオプション2aに対し、図18の例のように、タイプ2CJT CSI(codebookType=typeII-CJT-r18)に対し、まず(i1,1、i1,2)がTRP順にマップされ、その後、(i1,8,1、i1,8,2、i1,8,3、i1,8,4)がTRP順にマップされてもよい。
 複数PMIフィールドX1のオプション2aに対し、図19の例のように、タイプ2CJT CSI(codebookType=typeII-CJT-r18)に対し、まず(i1,1、i1,2)がTRP順にマップされ、その後、全TRPに跨るレイヤごとのSCI(i1,8,1、i1,8,2、i1,8,3、i1,8,4)がマップされてもよい。この場合、SCIの1つのセットのみが必要とされてもよい。複数TRPに対して1つのセットが対応するか複数セットが対応するかによって、異なる指標が異なる設計を有していてもよい。
 グループ0(複数PMIフィールドX1)のオプション2bに対し、PUSCH上のCSIパート2のマッピング順序(テーブル、図7)において、CRIの部分は、図20のオプション2b又はオプション1/2aに変更されてもよい。
《例2》
 新規ビット幅のテーブルに関し、複数PMIフィールドX2に対する例は、複数PMIフィールドX1に対する例と同様であってもよい。複数TRPに対して1つのセットが対応するか複数セットが対応するかによって、各指標に異なるオプションが適用されてもよい。
 新規マッピング順序のテーブルに関し、グループ1/2に対する例は、グループ0に対する例と同様であってもよい。グループ0,1,2に異なるオプションが適用されてもよい。
 N-TRP(N個のTRP) CJTに対して定義される新規ビット幅のテーブルは、既存のテーブルの大部分を再利用してもよい(オプション2a)。図21の例のように、複数PMIフィールドX1に対してオプション2a(全TRPに跨るレイヤごとのSCI、図19)が用いられる場合、複数PMIフィールドX2に対して、SCIの振幅に対する1つのセット(i2,3,1、i2,3,2、i2,3,3、i2,3,4)と、FD基底に対する1つのセット(i1,5、i1,6,1、i1,6,2、i1,6,3、i1,6,4)と、N個のTRPに対する新規報告内容({i2,4,l}l=1,...v、{i2,5,l}l=1,...v、{i1,7,l}l=1,...v)と、に対するビット幅が規定されてもよい。
 マッピング順序(テーブル)が拡張されてもよい(オプション2b)。グループ0(複数PMIフィールドX1)に対し、PUSCH上のCSIパート2のマッピング順序(テーブル、図7)は、図22のオプションA又はBのように変更されてもよい。オプションAにおいて、まずTRP順にグループ0がマップされ、その後、TRP順にグループ1がマップされ、その後、TRP順にグループ2がマップされる。オプションBにおいて、まず最初のTRPに対するグループ0,1,2がマップされ、その後、TRP順にマップされる。
 グループ0と、グループ1及び2と、に対して、異なるオプションが用いられてもよい。グループ0(複数PMIフィールドX1)が複数TRPの情報を含み、グループ1及び2(複数PMIフィールドX2)が各TRPの情報を含んでもよい。PUSCH上のCSIパート2のマッピング順序(テーブル、図7)において、グループ0の部分は、図23のグループ0のように変更されてもよく、グループ1及び2の部分は、図23のグループ1/2のオプションA又はBのように変更されてもよい。オプションAにおいて、まずTRP順にグループ1がマップされ、その後、TRP順にグループ2がマップされる。オプションBにおいて、まず最初のTRPに対するグループ1,2がマップされ、その後、TRP順にマップされる。
 この実施形態によれば、UEは、PUSCH上のCSIパート2を適切に報告できる。
<実施形態#3>
 この実施形態は、新規報告内容のビット幅に関する。
 新規報告内容がサポート/設定される場合、各新規報告内容のビット幅が規定され、そのビット幅は、複数PMIフィールドX1(グループ0)と、複数PMIフィールドX2(グループ1及び2)と、の少なくとも1つに対するテーブルに規定されてもよい。
 j1(又は、レイヤ固有(レイヤk)のj1,k)は、FD基底の選択に関する複数PMIフィールドX2に含まれてもよい。j1は、TRPごとであってもよい。最強TRPが、オフセット0から開始する参照TRPであることを考慮し、FD基底オフセットが省略されてもよい。N個のTRPのケースにおいて、j1のN-1個のセットが必要とされてもよい。例えば、j1,k,nは、k番目のレイヤ及びn番目のTRPに対するj1を意味してもよい。
 j2は、複数PMIフィールドX1又は複数PMIフィールドX2に含まれてもよいし、CSIパート1に含まれてもよい。
 j3/j4(又は、レイヤ固有(レイヤk)のj3,k/j4,k)は、複数PMIフィールドX1又は複数PMIフィールドX2に含まれてもよいし、CSIパート1に含まれてもよい。j1と同様、N個のTRPのケースにおいて、j3/j4のN-1個のセットが必要とされてもよい。複数PMIフィールドX2のビット幅のテーブルにおいて、j3/j4は「レイヤごとのSCIの振幅」の次に置かれてもよい。j3/j4のために新規グループxが追加されてもよい。例えば、マッピング順序のテーブルにおいて、j3/j4のための新規グループ3/4が、グループ2/3の後に置かれてもよい。例えば、マッピング順序のテーブルにおいて、j3/j4のための新規グループ0'が、グループ0の後に置かれてもよい。
 新規報告内容が必要であるかと、実施形態#1/#2のどのオプションが用いられるかと、の少なくとも1つによって、選択肢1A/2の異なるコードブック構造が用いられてもよい。選択肢1A/2のコードブック構造がNWによってUEへ設定されてもよい。
 新規報告内容と、各新規報告内容及び各TRPに対して個別の指標と、の少なくとも1つをサポートすることに関するUE能力が導入されてもよい。
《例》
 新規ビット幅のテーブルにおいて、j1,k,nは、複数PMIフィールドX2に含まれてもよい。図24の例のように、複数PMIフィールドX2の新規ビット幅のテーブルにおいて、k番目のレイヤに対するi1,6,kの後に、k番目のレイヤ及び2,3,4番目のTRPに対する(j1,k,2、j1,k,3、j1,k,4)が置かれてもよい。
 PUSCH上のCSIパート1のマッピング順序(テーブル、図6)において、CRIの後に、図25の例のようなj2が置かれてもよい。CRIの前に、j2が置かれてもよい。CRIの代わりに、j2が置かれてもよい。
 この実施形態によれば、UEは、新規報告内容を適切に報告できる。
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・各TRPに対して個別の指標をサポートすること。
・新規報告内容と、各新規報告内容及び各TRPに対して個別の指標と、の少なくとも1つをサポートすること。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、各実施形態の機能を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を受信する受信部と、
 送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定する制御部と、を有する端末。
[付記2]
 前記位置は、CSIパート1内又はCSIパート2内の位置である、付記1に記載の端末。
[付記3]
 前記CSI内において、同じ送信ポイントに対し、複数の指標の複数の値の位置が、互いに隣接する、付記1又は付記2に記載の端末。
[付記4]
 前記CSI内において、同じ指標に対し、前記複数の送信ポイントに対する複数の値の位置が、互いに隣接する、付記1から付記3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図26は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図27は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を送信してもよい。制御部110は、送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定してもよい。
(ユーザ端末)
 図28は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を受信してもよい。制御部210は、送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定してもよい。
 前記位置は、CSIパート1内又はCSIパート2内の位置であってもよい。
 前記CSI内において、同じ送信ポイントに対し、複数の指標の複数の値の位置が、互いに隣接してもよい。
 前記CSI内において、同じ指標に対し、前記複数の送信ポイントに対する複数の値の位置が、互いに隣接してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図29は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図30は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
 本出願は、2022年8月24日出願の特願2022-133337に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を受信する受信部と、
     送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定する制御部と、を有する端末。
  2.  前記位置は、CSIパート1内又はCSIパート2内の位置である、請求項1に記載の端末。
  3.  前記CSI内において、同じ送信ポイントに対し、複数の指標の複数の値の位置が、互いに隣接する、請求項1に記載の端末。
  4.  前記CSI内において、同じ指標に対し、前記複数の送信ポイントに対する複数の値の位置が、互いに隣接する、請求項1に記載の端末。
  5.  複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を受信するステップと、
     送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定するステップと、を有する、端末の無線通信方法。
  6.  複数の送信ポイントに対するチャネル状態情報(CSI)の報告の設定を送信する送信部と、
     送信ポイントと、レイヤと、前記CSI内の指標と、前記複数の送信ポイントの数と、の少なくとも1つに従って、前記CSI内の複数の指標に対し、位置及びビット幅を決定する制御部と、を有する基地局。
PCT/JP2023/026957 2022-08-24 2023-07-24 端末、無線通信方法及び基地局 WO2024042953A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133337 2022-08-24
JP2022133337 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024042953A1 true WO2024042953A1 (ja) 2024-02-29

Family

ID=90013251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026957 WO2024042953A1 (ja) 2022-08-24 2023-07-24 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024042953A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "CSI enhancements for Multi-TRP and FR1 FDD reciprocity", 3GPP DRAFT; R1-2112322, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. eMeeting; 20211111 - 20211119, 6 November 2021 (2021-11-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052075415 *
FRAUNHOFER IIS, FRAUNHOFER HHI: "CSI enhancements for medium UE velocities and coherent JT", 3GPP DRAFT; R1-2206974, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274911 *
LENOVO: "CSI enhancements for high mobility and coherent JT", 3GPP DRAFT; R1-2206211, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274146 *
NTT DOCOMO, INC.: "Discussion on CSI enhancement", 3GPP DRAFT; R1-2207395, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275330 *

Similar Documents

Publication Publication Date Title
WO2024042953A1 (ja) 端末、無線通信方法及び基地局
WO2024038594A1 (ja) 端末、無線通信方法及び基地局
WO2024009494A1 (ja) 端末、無線通信方法及び基地局
WO2024009493A1 (ja) 端末、無線通信方法及び基地局
WO2023248419A1 (ja) 端末、無線通信方法及び基地局
WO2023223644A1 (ja) 端末、無線通信方法及び基地局
WO2023223645A1 (ja) 端末、無線通信方法及び基地局
WO2023199510A1 (ja) 端末、無線通信方法及び基地局
WO2023209883A1 (ja) 端末、無線通信方法及び基地局
WO2024034066A1 (ja) 端末、無線通信方法及び基地局
WO2024034065A1 (ja) 端末、無線通信方法及び基地局
WO2023188155A1 (ja) 端末、無線通信方法及び基地局
WO2023188156A1 (ja) 端末、無線通信方法及び基地局
WO2024069780A1 (ja) 端末、無線通信方法及び基地局
WO2023145002A1 (ja) 端末、無線通信方法及び基地局
WO2023145004A1 (ja) 端末、無線通信方法及び基地局
WO2023145003A1 (ja) 端末、無線通信方法及び基地局
WO2024009476A1 (ja) 端末、無線通信方法及び基地局
WO2024029043A1 (ja) 端末、無線通信方法及び基地局
WO2024069865A1 (ja) 端末、無線通信方法及び基地局
WO2023218954A1 (ja) 端末、無線通信方法及び基地局
WO2024100829A1 (ja) 端末、無線通信方法及び基地局
WO2024029044A1 (ja) 端末、無線通信方法及び基地局
WO2023181366A1 (ja) 端末、無線通信方法及び基地局
WO2024009492A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857069

Country of ref document: EP

Kind code of ref document: A1