WO2019047979A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2019047979A1
WO2019047979A1 PCT/CN2018/105094 CN2018105094W WO2019047979A1 WO 2019047979 A1 WO2019047979 A1 WO 2019047979A1 CN 2018105094 W CN2018105094 W CN 2018105094W WO 2019047979 A1 WO2019047979 A1 WO 2019047979A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
cri
bits
indication information
feedback
Prior art date
Application number
PCT/CN2018/105094
Other languages
English (en)
French (fr)
Inventor
王婷
梁津垚
窦圣跃
李元杰
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18853744.3A priority Critical patent/EP3678403A4/en
Publication of WO2019047979A1 publication Critical patent/WO2019047979A1/zh
Priority to US16/814,463 priority patent/US11290156B2/en
Priority to US17/692,736 priority patent/US11750250B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and device.
  • the transmission mode adopted between the terminal device and the network device supports a single point transmission mode and a coordinated multiple points transmission/reception (CoMP) mode.
  • the single-point transmission mode refers to a transmission point independently completing data transmission with a terminal device
  • the multi-point coordinated transmission mode refers to a plurality of transmission points separated by geographical locations jointly completing data transmission with a terminal device, and transmitting
  • a point can be understood as a network device, which can be a base station or a radio unit of a base station, such as a remote radio unit (RRU), a base station or a panel of a transmission point, a base station or a transmission.
  • a point can include one or more panels, and data transmission includes the transmission and reception of data.
  • a channel state information (CSI) process is configured for a scenario supporting a transmission mode, and only the terminal device for the CSI process is configured. It is necessary to measure and feed back the CSI corresponding to the transmission mode.
  • an enhanced CSI process is configured for a scenario supporting multiple transmission modes.
  • the terminal device needs to measure CSI in multiple transmission modes, and then indicates the single-point transmission by feeding back the measured CSI to the network device.
  • the performance of the mode is good or the performance of the multi-point cooperative transmission mode is good.
  • the process of measuring the measured CSI to the network device is different because the process of measuring the CSI is different in the different transmission modes.
  • the terminal device cannot determine whether the CSI process is an enhanced CSI process, that is, the terminal device. It is impossible to determine in which transmission mode the CSI needs to be measured and fed back, and the terminal device cannot perform the process of measuring CSI and the process of feeding back CSI.
  • 5G fifth generation
  • the embodiment of the present invention provides a communication method and device for implementing measurement of CSI by a terminal device for a scenario supporting multiple transmission modes, and feeding back the measured CSI to the network device.
  • the embodiment of the present application provides a communication method, in which a network device sends configuration information to a terminal device, and after receiving the configuration information, the terminal device determines channel state information CSI measurement behavior and/or CSI feedback related information. Wherein the channel state information CSI measurement behavior and/or CSI feedback related information is related to the configuration information.
  • the terminal device performs CSI measurement to obtain at least one CSI according to the CSI measurement behavior and/or the CSI feedback related information, and the configuration information, and sends all or part of the at least one CSI to the network device.
  • the CSI measurement behavior indicates how the terminal device measures the CSI.
  • the CSI feedback related information refers to related information when the terminal device feeds back the CSI to the network device.
  • the CSI feedback related information may include content of the feedback CSI (such as at least one of CRI, RI, PMI, CQI), bit information of the fed CSI content (such as bit information, including the number of bits, and/or , the determination rule of the number of bits), the coding mode of the feedback CSI content (such as independent coding or joint coding), the interleaving mode (such as independent interleaving or joint interleaving, etc.), mapping mode (such as mapped time-frequency resources and/or At least one of information such as mapping rules, etc.).
  • content of the feedback CSI such as at least one of CRI, RI, PMI, CQI
  • bit information of the fed CSI content such as bit information, including the number of bits, and/or , the determination rule of the number of bits
  • the network device determines how the terminal device needs to measure and feed back the CSI, that is, the network device determines in which transmission mode the terminal device needs to measure and feed back the CSI, and then the network device determines the configuration information based on how the terminal device needs to measure and feed back the CSI. .
  • the terminal device can learn how to measure and feed back the CSI according to the configuration information, and the configuration information is related to the CSI measurement behavior and/or the CSI feedback related information. Therefore, through the foregoing method, even if the terminal device cannot determine which transmission mode needs to be measured and fed back CSI, the terminal device can learn how to measure and/or feed back CSI according to the configuration information sent by the network device, and further, for supporting multiple transmission modes.
  • the scenario implementation terminal device measures CSI and feeds back the measured CSI to the network device.
  • the terminal device and the network device determine CSI measurement behavior and/or CSI feedback related information according to the existing configuration information, which may reduce signaling overhead.
  • the terminal device can perform CSI measurement and feedback in multiple transmission modes. Compared with configuring CSI measurement and feedback in one transmission mode at a time, signaling overhead can be reduced and the reference signal overhead can be reduced. Reduce the delay of CSI measurement feedback and improve performance. If the terminal device only feeds back the CSI in the transmission mode with the best transmission performance, the feedback overhead can be reduced, and the auxiliary network device performs data scheduling according to the best transmission mode. Alternatively, if the terminal device can feed back CSI in multiple transmission modes, the network device can acquire transmission performance in multiple transmission modes, thereby assisting data scheduling and improving performance.
  • the network device determines CSI measurement behavior and/or CSI feedback related information of the terminal device, and then receives CSI from the terminal device based on the CSI measurement behavior and/or the CSI feedback related information.
  • the network device receives the CSI from the terminal device by using a method corresponding to the method for measuring and feeding back the CSI by the terminal device, that is, the network device receives the CSI from the terminal device based on the CSI measurement behavior and/or the CSI feedback related information. It should be noted that, in the case that the network device learns the method for the terminal device to measure and feed back the CSI, the method for the network device to receive the CSI may be the same as the prior art.
  • the network device determines that the terminal device is required to measure and feed back CSI, configuration information, and channel state information CSI measurement in a mixed mode of the single point transmission mode + multipoint coordinated transmission mode (also referred to as a hybrid transmission mode).
  • the behavior and/or CSI feedback related information is as follows:
  • the configuration information satisfies at least one of the following conditions:
  • the configuration information includes a non-zero power channel state information reference signal NZP CSI-RS resource of N1 class class A, where N1 is a positive integer greater than or equal to 2.
  • the configuration information includes the NZP CSI-RS resources of the N1 class A, and the configuration information includes configuration information of a CSI process.
  • the configuration information includes N1 class A NZP CSI-RS resources, which may mean that the configuration information includes a CSI reporting setting, and the reporting setting associates R related information for measuring channels ( Link), that is, associate R reference signal settings (RS setting), each RS setting includes at least one class A NZP CSI-RS resource, and R RS setting includes N1 class A NZP CSI-RS resources; or, configuration
  • the information includes a reporting setting, which is associated with one link for measuring the channel, that is, associated with one RS setting, and the RS setting includes N1 class A NZP CSI-RS resources.
  • the configuration information includes N2 class B NZP CSI-RS resources, and CSI measurement behavior indication information and/or CSI feedback related information indication information, where N2 is a positive integer greater than or equal to 2, the CSI The measurement behavior indication information indicates the CSI measurement behavior, and the CSI feedback related information indication information indicates the CSI feedback related information.
  • the configuration information includes CSI measurement behavior indication information and/or CSI feedback related information indication information.
  • the CSI measurement behavior indication information indicates a CSI measurement behavior, which is a behavior in which the terminal device performs CSI measurement in the hybrid mode;
  • the CSI feedback related information indication information indicates CSI feedback related information, the CSI
  • the feedback related information is related information when the terminal device feeds back CSI in the hybrid mode. The behavior of the terminal device performing CSI measurement in the hybrid mode and the related information when feeding back the CSI will be described below.
  • the terminal device and the network device can determine the CSI measurement behavior and/or the CSI feedback related information directly according to the configuration information according to the configuration information that satisfies the condition 3), thereby preventing the terminal device from performing the judgment selection, thereby reducing the complexity of the terminal device.
  • the configuration information includes a type C of the quasi-co-location QCL of the antenna port.
  • the CSI measurement behavior and/or the CSI feedback related information may be determined in combination with other conditions, such as at least one of 1) to 12) configuration information, or other conditions, which are specifically not used herein. limited.
  • the configuration information includes that the type of the QCL of the antenna port is type C and the number of included CSI processes is 1.
  • Condition 5 Applicable to the LTE communication system.
  • the configuration information satisfies the condition 5
  • the configuration information includes a physical downlink shared channel mapping and a quasi-co-location indication PQI indicating that the number of QCLs is greater than M, and the M is a positive integer greater than or equal to 1.
  • the configuration information includes that the parameter parameter group number in the PQI is greater than P, and the P is a positive integer greater than or equal to 1.
  • the configuration information includes at least one of bit information reported by the CSI reference signal resource indication information CRI, bit information reported by the CRI and the RI, and bit information reported by the RI.
  • At least one of the bit information reported by the CRI, the reported bit information of the CRI and the RI, and the bit information reported by the RI may be a predefined value.
  • the configuration information does not need to include at least one of the bit information reported by the CRI, the reported bit information of the CRI and the RI, and the bit information reported by the RI, when the configuration information satisfies the condition 8), it may be determined that the network device needs the terminal device in the mixed mode. Perform CSI measurements and feedback below.
  • the network device requires the terminal device to perform CSI measurement and feedback in the single-point transmission mode, one or more of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI are also configured by using the configuration information. Then, when the configuration information satisfies the condition 8), it is also required to combine other information in the configuration information to determine that the network device needs the terminal device to perform CSI measurement and feedback in the hybrid mode.
  • the configuration information includes when the bit information reported by the CRI is L and the NZP CSI-RS resource is K,
  • the NZP CSI-RS resource may be a resource for measuring a channel, or a resource for measuring interference, or a resource for measuring a channel and measuring interference, or a resource for measuring a channel and a resource for measuring interference.
  • Resources specific, are not limited here.
  • the bit information reported by the CRI may be configured by higher layer signaling, or may be physical layer signaling.
  • the high layer signaling may be RRC signaling or MAC layer signaling, which is not limited herein.
  • the configuration information includes a CSI report setting reporting setting, the reporting setting is associated with at least one of a Q channel link link, a T reference signal setting RS setting, and S reference signal sets RS set, where the Q is greater than Or a positive integer equal to 2, T is a positive integer greater than or equal to 2, and S is a positive integer greater than or equal to 2.
  • the configuration information includes a first resource and a second resource, where the first resource is a resource used when measuring at least one of the first CSI, the second CSI, and the third CSI, where the second resource is used to measure the fourth CSI. Resources used.
  • the first CSI is obtained based on the interference power
  • the second CSI is obtained based on the interference obtained by the preset algorithm when the resource used for the channel measurement is the same as the resource used for the interference measurement
  • the third CSI is based on the interference power.
  • the preset algorithm may be: the interference is equal to the difference between the received signal and the useful signal, and the fourth CSI is based on the stream. Inter-interference or inter-symbol interference.
  • the configuration information includes second indication information, which indicates that the terminal device performs CSI measurement and feedback in the hybrid transmission mode.
  • the second indication information indicates that the current CSI process is a CSI process in the coordinated mode, and the terminal device learns to perform CSI measurement and feedback in the hybrid transmission mode according to the indication information.
  • the second indication information may be signaling.
  • the second indication information is an NCJT CSI process indication
  • the second indication information may be used to indicate the first resource and the second resource, where the first resource is a resource used when measuring at least one of the first CSI, the second CSI, and the third CSI, where the second resource is The resource used when measuring the fourth CSI.
  • the relevant CSI measurement behavior and/or CSI feedback related information is as follows:
  • the CSI measurement behavior includes: measuring at least one of a first CSI, a second CSI, and a third CSI, and measuring a fourth CS; and/or
  • the CSI feedback related information includes: performing joint coding or independent coding on the channel state information reference signal resource indication CRI and the rank indication RI, and/or mapping the CRI and the RI to the time-frequency resource mapping manner.
  • CRI and RI are jointly coded or independently coded, which means that CRI and RI are jointly coded or separately coded, and there is no limitation on whether CRI and/or RI are combined with other information.
  • the CSI measurement behavior indication information indicates measuring at least one of the first CSI, the second CSI, and the third CSI, and indicating measuring the fourth CSI.
  • the terminal device can directly determine the CSI measurement behavior according to the configuration information, and prevent the terminal device from performing the judgment selection, thereby reducing the complexity of the terminal device.
  • the CSI feedback related information indicates that the information indicates that the CRI and the RI are jointly coded, or that the CRI and the RI are independently coded, and/or,
  • the CSI feedback related information indication information indicates a mapping manner of mapping CRI and RI to time-frequency resources.
  • the terminal device can directly determine the CSI feedback related information according to the configuration information, and prevent the terminal device from performing the judgment selection, thereby reducing the complexity of the terminal device.
  • the fourth CSI is further obtained based on interference power, or the fourth CSI is further based on interference obtained by a preset algorithm when the resource used for channel measurement is the same as the resource used for interference measurement. Obtaining, or, the fourth CSI is further obtained based on interference obtained by a preset algorithm when the interference power and the resource used for channel measurement are the same as the resource used for the interference measurement.
  • the CSI feedback related information further includes: at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI, and the bit reported by the CRI, and the bit reported by the CRI. At least one of the reported bit information of the information, the CRI and the RI, and the bit information reported by the RI may be determined as follows:
  • Preset rule 1 Determine at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI based on the maximum number of bits of the CRI and the RI.
  • Preset rule 2 jointly consider the CRI and the RI, and determine at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI.
  • Preset rule 3 In the NR communication system, at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI may be determined according to the number of links or the number of measurement channels.
  • the configuration information includes second indication information, where the second indication information indicates that the terminal device performs CSI measurement and feedback in the hybrid transmission mode, or indicates that the current CSI process is in the coordinated multi-point transmission mode.
  • the CSI process may be determined by the terminal device according to the second indication information, where the CSI feedback related information includes a coding manner of the CRI and the RI, a number of bits of the CRI, a number of bits of the RI, a bit meaning of the CRI, or At least one of the bit meanings of the RI.
  • the CSI feedback related information includes at least one of a coding mode of the CRI and the RI, a number of bits of the CRI, a number of bits of the RI, a bit meaning of the CRI, or a bit meaning of the RI
  • the configuration information is related to the CSI measurement behavior and/or the CSI feedback related information, including: the coding mode of the CRI and the RI, the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or at least the bit meaning of the RI.
  • One is related to the second indication information.
  • the network device determines in which transmission mode the CSI measurement and feedback are required by the terminal device, and then the network device determines the second indication information based on the transmission mode in which the terminal device is required to perform CSI measurement and feedback.
  • the terminal device can learn, according to the second indication information, in which transmission mode, the CSI is measured and fed back, the second indication information is encoded with the CRI and the RI, the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or At least one of the bit meanings of RI is related.
  • the terminal device can learn the measurement and/or feedback CSI in which transmission mode according to the second indication information sent by the network device, and further The terminal device measures CSI for a scenario supporting multiple transmission modes, and feeds back the measured CSI to the network device.
  • the determined encoding for CRI and RI is: CRI and RI using joint coding or independent coding.
  • determining the CSI feedback related information according to the second indication information including: determining, according to the second indication information, the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or at least one of the bit meanings of the RI. Or; determining the CRI bit according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI and the second indication information.
  • At least one of the values and the second indication information determine at least one of a bit meaning of the CRI or a bit meaning of the RI.
  • the encoding manner of the CRI and the RI, the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or the bit meaning of the RI is related to the second indication information, including: CRI At least one of the number of bits, the number of bits of the RI, the bit meaning of the CRI, or the bit meaning of the RI is related to the second indication information; or, the number of bits of the CRI, or at least the number of bits of the RI One related to at least one of the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the second indication information; or, CRI Bit meaning, or, at least one of the BER bit meanings and the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the CRI At least one of the number
  • the CSI feedback related information may be determined in a plurality of different manners, which is flexible.
  • determining at least one of a number of bits of the CRI, a number of bits of the RI, a bit meaning of the CRI, or a bit meaning of the RI according to the second indication information including at least one of the following cases:
  • the two indication information determines the number of bits of the CRI and/or the number of bits of the RI; or, determines the bit meaning of the CRI and/or the bit meaning of the RI according to the second indication information.
  • At least one of the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or the bit meaning of the RI is related to the second indication information, including at least one of the following: a CRI bit The number of bits of the number and/or RI is related to the second indication information; or, the bit meaning of the CRI and/or the bit meaning of the RI is related to the second indication information.
  • the number of bits of the RI does not depend on the value of the CRI, that is, the number of bits of the CRI and the RI can be fixed, and the network device can be correctly combined or received. Joint decoding of CRI and RI.
  • the CRI is determined according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the second indication information.
  • the number of bits, or at least one of the number of bits of the RI includes at least one of the following: determining the number of bits of the CRI according to the number of NZP CSI-RS resources and the second indication information; or, according to the NZP CSI- The number of antenna ports of the RS and/or the capability information of the terminal device, and the second indication information, determining the number of bits of the RI; or, according to the number of antenna ports of the NZP CSI-RS and/or the capability information of the terminal device, And determining the number of bits of the RI by using the second indication information and the value of the CRI; or determining the number of bits of the RI according to the second indication information and the value of the CRI.
  • the number of bits of the CRI or at least one of the number of bits of the RI and the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI Corresponding to the at least one item and the second indication information, including at least one of the following: the number of bits of the CRI is related to the number of NZP CSI-RS resources and the second indication information; or, the number of bits of the RI Corresponding to the number of antenna ports of the NZP CSI-RS and/or the capability information of the terminal device, and the second indication information; or the number of bits of the RI and the number of antenna ports of the NZP CSI-RS and/or the terminal
  • the capability information of the device, and the second indication information, and the value of the CRI are related; or, the number of bits of the RI is related to the value of the second indication information and the CRI.
  • At least one of the number of bits of the CRI and the number of bits of the RI may be determined in a plurality of different manners, which is flexible.
  • the number of bits of the RI does not depend on the value of the CRI, that is, the number of bits of the CRI and the RI can be known by the network device and the terminal device, and can be made.
  • the network device can correctly receive or jointly decode CRI and RI.
  • the bit number overhead of the RI is relatively small.
  • the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or at least one of the values of the CRI, and the second Determining information determining at least one of a bit meaning of the CRI or a bit meaning of the RI, including at least one of: determining a bit meaning of the RI according to the second indication information and a value of the CRI; or, according to the NZP CSI-RS
  • At least one of the bit meaning of the CRI or the bit meaning of the RI and the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or, CRI Corresponding at least one of the values and the second indication information, including at least one of the following: the bit meaning of the RI is related to the value of the second indication information and the CRI; or the bit meaning of the RI
  • the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, at least one of the number of bits of the RI, and the value of the CRI are related to the second indication information; or, the meaning of the bit of the RI
  • the second indication information is related to the number of bits of the RI; or, the bit meaning of the RI is related to the value of the second indication information and the CRI; or, the bit meaning of the CRI and the second indication information and the NZP CSI- The number of RS
  • the terminal device determines to feed back at least two CSI sets according to the second indication information, where the at least two CSI sets include a CSI of the first set and a CSI of the second set; and feedback of the at least two CSI sets
  • the sequence includes one of the following cases: the feedback order is the first set of CQIs, and the second set of CQIs; or, the feedback order is the first set of CQIs, the second set of CQIs, and, the first set PMI; or, the feedback order is the first set of CQI, the second set of CQI, the first set of PMI, and the second set of PMI; or, the feedback order is the first set of CQI, the first set PMI, and, the second set of CQI; or, the feedback order is the first set of CQI, the second set of CQI, and the second set of PMI; or, the feedback order is the first set of CQI, a set of PMIs, a second set of CQIs, or
  • the network device determines that the at least two CSI sets fed back by the terminal device are related to the second indication information, where the at least two CSI sets comprise a first set of CSIs and a second set of CSIs; the at least two CSIs
  • the feedback sequence of the set includes one of the following situations: the feedback order is the first set of CQIs, and the second set of CQIs; or, the feedback order is the first set of CQIs, the second set of CQIs, and, The PMI of the first set; or, the feedback order is the CQI of the first set, the CQI of the second set, the PMI of the first set, and the PMI of the second set; or, the feedback order is the CQI of the first set, a PMI of the first set, and a CQI of the second set; or, the feedback order is a CQI of the first set, a CQI of the second set, and a PMI of the second set; or, the feedback order is the feedback order
  • the feedback order of the at least two CSI sets may be multiple, and the specific feedback order may be specified by the network device in advance, or specified by the protocol.
  • the terminal device further transmits third indication information to the network device, the third indication information indicating that the terminal device supports the QCL type, or supports CSI measurement and/or feedback of the FeCoMP.
  • the network device receives third indication information from the terminal device, the third indication information indicating a QCL type supported by the terminal device, or supporting CSI measurement and/or feedback of FeCoMP.
  • the CSI measurement behavior described in the embodiments of the present application includes measurement of CSI of FeCoMP.
  • the FeCoMP feature is introduced in the protocol version R15.
  • some terminal devices may not support FeCoMP due to limitations in hardware storage or processing capabilities.
  • Some terminal devices may not support FeCoMP. Strong ability to support FeCoMP. Therefore, the embodiment of the present application provides a solution: when the terminal device accesses the network, the device can report the CSI measurement of the FeCoMP as a capability of the terminal device to the network device by using the third indication information, so that the network device can learn the network device.
  • the third indication information may also indicate a QCL type supported by the terminal device, such as whether the QCL type C is supported.
  • an embodiment of the present application provides a communication device having a function of implementing the method provided by the foregoing first aspect.
  • the function of the communication device can be implemented by hardware, or can be implemented by hardware corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device corresponding to the communication device may be a terminal device or a network device.
  • the communication device when the device corresponding to the communication device is a terminal device, the communication device includes a processing unit and a transceiver unit, and the processing unit is configured to support the terminal device to perform a corresponding function in the foregoing method.
  • the transceiver unit is configured to support communication between the terminal device and other devices, including network devices.
  • the terminal device may further comprise a storage unit for coupling with the processing unit, which stores program instructions and data necessary for the terminal device.
  • the communication device when the device corresponding to the communication device is a terminal device, the communication device includes a memory, a processor, and an input and output port; the memory is configured to store the computer readable program; and the processor is called to be stored in the memory. Instructing to execute the above method in the terminal device in the first aspect; the input/output port is configured to receive and/or transmit under the control of the processor.
  • the communication device when the device corresponding to the communication device is a network device, the communication device includes a processing unit and a transceiver unit, and the processing unit is configured to support the network device to perform a corresponding function in the foregoing method.
  • the transceiver unit is configured to support communication between a network device and other devices, including terminal devices.
  • the network device can also include a storage unit for coupling with the processing unit that holds program instructions and data necessary for the network device.
  • the communication device when the device corresponding to the communication device is a network device, the communication device includes a memory, a processor, and an input/output port; the memory is configured to store the computer readable program; and the processor calls the instruction stored in the memory.
  • the network device in the first aspect described above performs the above method; the input/output port is configured to receive and/or transmit under the control of the processor.
  • the processing unit may be a processor
  • the transceiver unit may be an input and output port
  • the storage unit may be a memory
  • the input and output ports may be multiple components, including a transmitter and a receiver, or include a communication interface, the communication The interface has the function of receiving and transmitting.
  • the embodiment of the present application further provides a computer storage medium, where the software program or instruction is stored, and the software program or instruction can implement the first step when read and executed by one or more processors.
  • the communication method provided by the aspect is not limited to a computer storage medium, where the software program or instruction is stored, and the software program or instruction can implement the first step when read and executed by one or more processors.
  • the embodiment of the present application further provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the communication method provided by the above first aspect.
  • the embodiment of the present application further provides a communication system, where the communication system includes a terminal device and a network device.
  • the embodiment of the present application further provides a communication method, in which the network device sends first indication information to the terminal device, the network device determines CSI feedback related information, and receives the relevant terminal information based on the CSI feedback related information.
  • the CSI feedback related information is related to the first indication information, and the terminal device may determine CSI feedback related information according to the first indication information, where the CSI feedback related information includes encoding the CRI and the RI.
  • the mode the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or at least one of the bit meanings of the RI.
  • the first indication information is used to enable FeCoMP-based CSI feedback, or enable CSI feedback based on coordinated multi-point transmission, or enable CSI feedback in the hybrid transmission mode.
  • the network device determines in which transmission mode the CSI measurement and feedback are required by the terminal device, and then the network device determines the first indication information based on which transmission mode the terminal device is required to perform CSI measurement and feedback.
  • the terminal device can learn, according to the first indication information, in which transmission mode the CSI is measured and fed back, the first indication information and the coding manner of the CRI and the RI, the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or At least one of the bit meanings of RI is related.
  • the terminal device can learn the measurement and/or feedback CSI in which transmission mode according to the first indication information sent by the network device, and further The terminal device measures CSI for a scenario supporting multiple transmission modes, and feeds back the measured CSI to the network device.
  • the determined encoding for CRI and RI is: CRI and RI using joint coding or independent coding.
  • determining CSI feedback related information according to the first indication information including: determining, according to the first indication information, the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or at least one of the bit meanings of the RI. Or; determining CRI based on the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI and the first indication information.
  • At least one of the number of bits, or the number of bits of the RI; or, according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or, CRI At least one of the values of the metric determines the bit meaning of the CRI, or at least one of the bit meanings of the RI.
  • the coding manner of the CRI and the RI, the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or the bit meaning of the RI is related to the first indication information, including: CRI At least one of the number of bits, the number of bits of the RI, the bit meaning of the CRI, or the bit meaning of the RI is related to the first indication information; or, the number of bits of the CRI, or at least the number of bits of the RI One relating to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the first indication information; or, CRI Bit meaning, or, at least one of the BER bit meanings and the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the CRI At least one of the values
  • the CSI feedback related information may be determined in a plurality of different manners, which is flexible.
  • determining at least one of a number of bits of the CRI, a number of bits of the RI, a bit meaning of the CRI, or a bit meaning of the RI according to the first indication information including at least one of the following cases:
  • An indication information determines the number of bits of the CRI and/or the number of bits of the RI; or determines the bit meaning of the CRI and/or the bit meaning of the RI according to the first indication information.
  • At least one of the number of bits of the CRI, the number of bits of the RI, the meaning of the bit of the CRI, or the meaning of the bit of the RI is related to the first indication information, including at least one of the following: a bit of the CRI The number of bits of the number and/or RI is related to the first indication information; or, the bit meaning of the CRI and/or the bit meaning of the RI is related to the first indication information.
  • the number of bits of the RI does not depend on the value of the CRI, that is, the number of bits of the CRI and the RI can be fixed, and the network device can be correctly combined or received. Joint decoding of CRI and RI.
  • determining, according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the first indication information, At least one of the number of bits of the CRI, or the number of bits of the RI includes at least one of the following: determining the number of bits of the CRI according to the number of NZP CSI-RS resources and the first indication information; or, according to the NZP CSI - the number of antenna ports of the RS and/or the capability information of the terminal device, determining the number of bits of the RI with the first indication information; or, according to the number of antenna ports of the NZP CSI-RS and/or the capability information of the terminal device And the first indication information, and the value of the CRI, determining the number of bits of the RI; or determining the number of bits of the RI according to the first indication information and the value of the CRI.
  • the number of bits of the CRI or at least one of the number of bits of the RI and the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI Corresponding to the first indication information, including at least one of the following: the number of bits of the CRI is related to the number of NZP CSI-RS resources and the first indication information; or, the number of bits of the RI Corresponding to the number of antenna ports of the NZP CSI-RS and/or the capability information of the terminal device, and the first indication information; or the number of bits of the RI and the number of antenna ports of the NZP CSI-RS and/or the terminal
  • the capability information of the device, and the first indication information, and the value of the CRI are related; or, the number of bits of the RI is related to the value of the first indication information and the CRI.
  • At least one of the number of bits of the CRI and the number of bits of the RI may be determined in a plurality of different manners, which is flexible.
  • the number of bits of the RI does not depend on the value of the CRI, that is, the number of bits of the CRI and the RI can be known by the network device and the terminal device, and can be made.
  • the network device can correctly receive or jointly decode CRI and RI.
  • the bit number overhead of the RI is relatively small.
  • the number of NZP CSI-RS resources at least one of the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the value of the CRI is first.
  • Determining information determining at least one of a bit meaning of the CRI or a bit meaning of the RI, including at least one of: determining a bit meaning of the RI according to the value of the first indication information and the CRI; or, according to the NZP CSI-RS
  • At least one of the values and the first indication information are related, including at least one of the following: the bit meaning of the RI is related to the value of the first indication information and the CRI; or, the bit meaning of the RI is The number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, at least one of the number of bits of the RI, and the value of the CRI are related to the first indication information; or, the meaning of the bit of the RI
  • the first indication information is related to the number of bits of the RI; or, the bit meaning of the RI is related to the value of the first indication information and the CRI; or, the bit meaning of the CRI is related to the first indication information and the NZP CSI-
  • the terminal device determines to feed back at least two CSI sets according to the first indication information, where the at least two CSI sets include a CSI of the first set and a CSI of the second set; and feedback of the at least two CSI sets
  • the sequence includes one of the following cases: the feedback order is the first set of CQIs, and the second set of CQIs; or, the feedback order is the first set of CQIs, the second set of CQIs, and, the first set PMI; or, the feedback order is the first set of CQI, the second set of CQI, the first set of PMI, and the second set of PMI; or, the feedback order is the first set of CQI, the first set PMI, and, the second set of CQI; or, the feedback order is the first set of CQI, the second set of CQI, and the second set of PMI; or, the feedback order is the first set of CQI, a set of PMIs, a second set of CQIs, or
  • the network device determines that the at least two CSI sets fed back by the terminal device are related to the first indication information, where the at least two CSI sets comprise a first set of CSIs and a second set of CSIs; the at least two CSIs
  • the feedback sequence of the set includes one of the following situations: the feedback order is the first set of CQIs, and the second set of CQIs; or, the feedback order is the first set of CQIs, the second set of CQIs, and, The PMI of the first set; or, the feedback order is the CQI of the first set, the CQI of the second set, the PMI of the first set, and the PMI of the second set; or, the feedback order is the CQI of the first set, a PMI of the first set, and a CQI of the second set; or, the feedback order is a CQI of the first set, a CQI of the second set, and a PMI of the second set; or, the feedback order is the feedback order
  • the feedback order of the at least two CSI sets may be multiple, and the specific feedback order may be specified by the network device in advance, or specified by the protocol.
  • the terminal device further transmits third indication information to the network device, the third indication information indicating that the terminal device supports CSI measurement and/or feedback of FeCoMP.
  • the network device receives third indication information from the terminal device, the third indication information indicating a QCL type supported by the terminal device, or supporting CSI measurement and/or feedback of the FeCoMP.
  • the CSI measurement behavior described in the embodiments of the present application includes measurement of CSI of FeCoMP.
  • the FeCoMP feature is introduced in the protocol version R15.
  • some terminal devices may not support FeCoMP due to limitations in hardware storage or processing capabilities.
  • Some terminal devices may not support FeCoMP. Strong ability to support FeCoMP. Therefore, the embodiment of the present application provides a solution: when the terminal device accesses the network, the device can report the CSI measurement of the FeCoMP as a capability of the terminal device to the network device by using the third indication information, so that the network device can learn the network device. Whether the terminal device supports the measurement of CSI of FeCoMP.
  • the third indication information may also indicate a QCL type supported by the terminal device.
  • the first indication information in the sixth aspect, and the second indication information in the first aspect, may be the same indication information.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus has a function of implementing the method provided by the sixth aspect.
  • the function of the communication device can be implemented by hardware, or can be implemented by hardware corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device corresponding to the communication device may be a terminal device or a network device.
  • the communication device when the device corresponding to the communication device is a terminal device or a chip that can be disposed on the terminal device, the communication device includes a processing unit and a transceiver unit, and the processing unit is configured to support the terminal device to perform corresponding in the foregoing method.
  • the transceiver unit is configured to support communication between the terminal device and other devices, including network devices.
  • the terminal device may further comprise a storage unit for coupling with the processing unit, which stores program instructions and/or data necessary for the terminal device.
  • the communication device when the device corresponding to the communication device may be a terminal device, the communication device includes a memory, a processor, and an input/output port; the memory is configured to store the computer readable program or the instruction; and the processor is stored in the memory.
  • the program or the instruction in the above method performs the above method performed by the terminal device in the sixth aspect; the input/output port is configured to receive and/or transmit under the control of the processor.
  • the communication device when the device corresponding to the communication device is a network device, the communication device includes a processing unit and a transceiver unit, and the processing unit is configured to support the network device to perform the corresponding one of the methods described in the sixth aspect above.
  • the transceiver unit is configured to support communication between a network device and other devices, including terminal devices.
  • the network device may also include a storage unit for coupling with the processing unit that holds program instructions and/or data necessary for the network device.
  • the communication device when the device corresponding to the communication device is a network device or a chip that can be disposed in the network device, the communication device includes a memory, a processor, and an input and output port; and the memory is configured to store the computer readable program or the instruction. And a processor executing the program or the instruction stored in the memory, wherein the network device in the sixth aspect performs the above method; the input/output port is configured to receive and/or transmit under the control of the processor.
  • the processing unit may be a processor
  • the transceiver unit may be an input/output port
  • the storage unit may be a memory
  • the input/output port may include a transmitter and a receiver, or include a communication interface, such as an input/output port of the chip,
  • the communication interface has the function of receiving and transmitting.
  • the embodiment of the present application further provides a computer storage medium, where the software program or instruction is stored, and the software program or instruction can implement the sixth sixth when read and executed by one or more processors.
  • the communication method provided by the aspect is not limited to a computer storage medium, where the software program or instruction is stored, and the software program or instruction can implement the sixth sixth when read and executed by one or more processors.
  • the embodiment of the present application further provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the communication method provided by the sixth aspect.
  • the embodiment of the present application further provides a communication system, where the communication system includes a terminal device and a network device.
  • the network device since the network device is based on how the terminal device needs to measure and feed back the CSI, that is, in which transmission mode the terminal device needs to measure and feed back the CSI, to determine the configuration information sent to the terminal device, The terminal device can know how to measure and feed back CSI according to the configuration information. Therefore, the terminal device can learn how to measure and/or feed back CSI according to the configuration information sent by the network device, and then implement the terminal device measurement CSI for the scenario supporting multiple transmission modes, and feed back the measured CSI to the network device. In the technical solution, the terminal device determines CSI measurement behavior and/or CSI feedback related information according to the configuration information, which can reduce signaling overhead.
  • the terminal device can perform CSI measurement and feedback in multiple transmission modes. Compared with configuring CSI measurement and feedback in one transmission mode at a time, signaling overhead can be reduced and the signaling cost can be reduced.
  • the overhead of the reference signal reduces the delay of CSI measurement feedback and improves performance.
  • the terminal device only feeds back the CSI in the transmission mode with the best transmission performance, the feedback overhead can be reduced, and the auxiliary network device performs data scheduling according to the best transmission mode.
  • the network device can obtain transmission performance in multiple transmission modes, thereby assisting data scheduling and improving performance.
  • FIG. 1 is a schematic diagram of a network architecture in a multi-point cooperative transmission mode according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a network architecture of a multi-point multi-stream cooperative transmission technology according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a network architecture of a 5G system according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a network architecture of a 5G system according to an embodiment of the present application.
  • 5-1 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5-2 is a schematic diagram of resource configuration of a CSI according to an embodiment of the present disclosure.
  • 5-3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first mapping manner provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second mapping manner provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a third mapping manner provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fourth mapping manner provided by an embodiment of the present application.
  • FIG. 10A is a schematic diagram of resource configuration of another CSI according to an embodiment of the present disclosure.
  • FIG. 10B is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 11 is a first schematic diagram of a device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a second schematic diagram of a device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the embodiment of the present invention provides a communication method and device for implementing measurement of CSI by a terminal device for a scenario supporting multiple transmission modes, and feeding back the measured CSI to the network device.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • the technical solution provided by the embodiment of the present application is applicable to a scenario in which a transmission mode adopted between a terminal device and a network device supports multiple transmission modes, and the multiple transmission modes may include a single-point transmission mode and a multi-point coordinated transmission mode.
  • the single-point transmission mode refers to supporting data transmission between a single transmission point and the same terminal device in one time unit.
  • the multi-point coordinated transmission mode refers to supporting multiple transmission points and the same one in one time unit.
  • Data transmission between terminal devices including data transmission and reception.
  • the time unit may be a scheduling unit, and the scheduling unit may include one or more subframes, one or more time slots, one or more mini-slots, and at least one of one or more symbols, specifically System implementation or protocol determination.
  • the single-point transmission mode may be a single-site transmission, a dynamic point selection (DPS) transmission, or a dynamic point blanking (DPB) transmission and other single-point transmission methods.
  • DPS dynamic point selection
  • DB dynamic point blanking
  • the specifics are not limited herein.
  • the multi-point coordinated transmission mode may be a joint transmission method such as a coherent joint transmission (JT) or a non-coherent joint transmission (NCJT), and is not limited herein.
  • a transmission point refers to a transmission point for cooperative transmission
  • a transmission point for cooperative transmission is a transmission point in a cooperative set
  • a transmission point in the cooperation set is jointly completed with the terminal device.
  • the signals sent by any two transmission points in the collaboration set may pass different large-scale fading characteristics (that is, not co-located), and the two transmission points may belong to the same cell or different cells, and the embodiment does not do this. limited.
  • the definition of QCL in this embodiment may refer to the definition in LTE, that is, the signal sent from the antenna port of the QCL will undergo the same large-scale fading, and the large-scale fading includes one or more of the following: delay extension, Doppler Le expansion, Doppler shift, average channel gain, and average delay.
  • the definition of QCL in the embodiment of the present application can also refer to the definition of QCL in 5G.
  • the definition of QCL is similar to that of the LTE system, but the airspace information is added, for example, the signal sent from the antenna port of the QCL.
  • the spatial parameters may be, for example, the emission angle (AOA), the main emission angle (Dominant AoA), the average arrival angle (Average AoA), the angle of arrival (AOD), the channel correlation matrix, the power angle spread spectrum of the angle of arrival, and the average starting angle. (Average AoD), power angle spread spectrum of the departure angle, transmit channel correlation, receive channel correlation, transmit beamforming, receive beamforming, spatial channel correlation, filters, spatial filtering parameters, or spatial receive parameters, etc.
  • AOA emission angle
  • Dominant AoA the main emission angle
  • Average AoA the average arrival angle
  • AOD angle of arrival
  • RRU remote radio unit
  • FIG. 1 shows a schematic diagram of a network architecture in a coordinated multi-point transmission mode.
  • a remote radio unit RRU1 and RRU2 jointly send data to the terminal device 1
  • RRU1 and RRU2 jointly receives data from the terminal device 1, and performs cooperative scheduling or cooperative beamforming between RRU1 and RRU2.
  • the multi-point coordinated transmission mode includes a multi-point multi-stream cooperative transmission technology, in which different transmission points are independently pre-coded, and different transmission points transmit different data streams, different code words or different transmission blocks;
  • different transmission points can also transmit the same data stream or the same data stream/codeword/transport block, etc., and the same data stream transmitted by different transmission points.
  • the code/transport block is in a different coding mode, or the same data stream/codeword/transport block is transmitted as a redundancy version, which is not limited herein.
  • CQI channel quality indicator
  • FIG. 2 shows a schematic diagram of a network architecture under a multi-point multi-stream cooperative transmission technology.
  • a plurality of transmission points included in the transmission point 1 jointly transmit data to the terminal device, and the transmission point 1 corresponds to
  • the different elliptical regions indicate that the plurality of transmission points included in the transmission point 1 transmit different data streams.
  • the network device in this embodiment of the present application may be a device having a wireless transceiving function, including but not limited to: a base station, a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network or a public in the future.
  • PLMN land mobile communication network
  • UE user equipment
  • a transmission point (TRP or TP) in the NR system a base station (gNB) in the NR system, one or a group of base stations (including a plurality of antenna panels) in the 5G system, and the like, etc. It is not particularly limited.
  • the terminal device in the embodiment of the present application is a device with a wireless transceiver function, including but not limited to a UE, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • the application embodiment is not limited thereto.
  • the technical solution provided by the embodiment of the present application can be applied to a new radio (NR) communication technology, where the NR refers to a new generation radio access network technology, which can be applied in a future evolving network, such as a 5G communication system.
  • NR new radio
  • the technical solutions provided by the embodiments of the present application are also applicable to wireless communication systems such as LTE and wireless fidelity (WIFI).
  • WIFI wireless fidelity
  • the wireless communication system is a network that provides wireless communication functions.
  • the wireless communication system can employ different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), and time division multiple access (TDMA).
  • Code division multiple access CDMA
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • Frequency division multiple access (FDMA) orthogonal frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the network can be classified into 2G networks, 3G networks, 4G networks, or future evolved networks, such as 5G networks, according to factors such as capacity, rate, and delay of different networks.
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM general packet radio service
  • GPRS general packet radio service
  • a typical 3G network includes a universal mobile communication system (universal mobile communication system).
  • a typical 4G network includes a long term evolution (LTE) network.
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (E-).
  • E- evolved universal terrestrial radio access network
  • UTRAN Universal Terrestriality
  • it can be divided into a cellular communication network and a wireless local area network (WLAN), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • WLAN wireless local area network
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks.
  • the technical solution provided by the embodiment of the present application can be applied to a 4.5G or 5G network, or other non-cellular communication network. It is to be understood that, as the technology advances, the technical solution provided by the embodiment of the present application may also be applied to a subsequent evolved network, such as 6G, which is not limited herein.
  • the embodiment of the present application sometimes refers to a wireless communication network as a network.
  • the cellular communication network is a type of wireless communication network, which adopts a cellular wireless networking mode, and is connected between the terminal device and the network device through a wireless channel, thereby enabling users to communicate with each other during activities.
  • the technical solution provided by the embodiment of the present application is applicable to a 5G communication system.
  • the network shown in FIG. 4 includes a network device and a terminal device 10, and only one network device 20 and two terminal devices 10 in communication with the network device 20 are shown in FIG.
  • the network shown in FIG. 4 differs from the network shown in FIG. 3 in that, in the network shown in FIG. 4, a part of the functions of the network device are implemented on a distributed unit (DU) 21, the network device The other part of the function is implemented on the centralized unit (CU) 22.
  • DU distributed unit
  • CU centralized unit
  • the CU implements the functions of the RRC (radio resource control) and the PDCP (packet data convergence protocol) layer.
  • the functions of the RLC (radio link control), the MAC (media access control), and the PHY (physical) layer are implemented. Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture. It is considered to be sent by the DU or sent by the DU+RU. Multiple DUs 21 can be connected to the same CU 22. It should be noted that the network shown in FIG. 3 and FIG.
  • the terminal device that communicates with each network device may have at least one, and is not limited to the ones shown in FIG. 1 and FIG.
  • the number of network devices and terminal devices can be understood that the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • the technical solution provided by the embodiment of the present application may also be applied to a network centered on a terminal device.
  • CSI refers to information for performing channel state measurement and/or reporting.
  • CSI may include CSI reference signal resource indication (CRI), rank indicator (RI), and precoding.
  • CRI CSI reference signal resource indication
  • RI rank indicator
  • precoding At least one of a matrix indicator (PMI) and a channel quality indicator (CQI).
  • PMI matrix indicator
  • CQI channel quality indicator
  • the terminal device and/or the network device can obtain CSI, thereby performing data scheduling and improving transmission performance.
  • Type A defines a TP antenna port that satisfies the QCL relationship.
  • the antenna port can refer to an antenna port that transmits a reference signal, such as a synchronization signal, a demodulation reference signal (DMRS), and a CSI reference signal (CSI).
  • DMRS demodulation reference signal
  • CSI CSI reference signal
  • Type B defines the QCL configuration of the antenna port between multiple TPs, and the QCL configuration of the inter-TP antenna ports can pass downlink control information (DCI).
  • DCI downlink control information
  • the physical downlink shared channel (PDSCH) resource mapping and the pseudo-co-location indicator (PQI) indicate that the PQI is 2 bits.
  • PDSCH physical downlink shared channel
  • PQI pseudo-co-location indicator
  • the PQI can be used to indicate a channel state information-reference signal (CSI-RS), a DMRS, and a phase tracking reference signal (PTRS), which is also called a phase noise reference signal ( Referred to as the phase noise reference signal)), the quasi-co-location relationship of the antenna ports of one or more signals in the synchronized signal block (SS block), wherein the PTRS may also be referred to as a phase compensation reference signal.
  • CSI-RS channel state information-reference signal
  • PTRS phase tracking reference signal
  • the SS block includes one or more of a synchronization signal and a broadcast channel
  • the synchronization signal includes a primary synchronized signal (PSS) and/or a secondary synchronized signal (SSS).
  • the type A may correspond to the same antenna device of the same network device in the NR communication system
  • the type B may correspond to the case of different antenna panels of the same network device in the NR communication system
  • the Type-B may correspond to The situation of different network devices in the NR communication system.
  • Type A and Type B can correspond to single-point transmission mode.
  • the single-point transmission mode can be single-site transmission, DPS transmission, or DPB transmission.
  • type The antenna ports 7-14 corresponding to A or type B all satisfy the QCL relationship.
  • the QCL indication information indicates that the QCL type of the DMRS antenna port is type C
  • the multi-point coordinated transmission mode is adopted between the terminal device and the network device, for example, the coordinated multi-point transmission mode may be NCJT.
  • the QCL relationship of the DMRS antenna port corresponding to the type C is different from the QCL relationship of the DMRS antenna port corresponding to the type A or the type B.
  • the DMRS antenna ports in the type C are not all QCL-related.
  • antenna ports 7, 8, 11, and 13 satisfy the QCL relationship
  • antenna ports 9, 10, 12, and 14 satisfy the QCL relationship.
  • any one of the antenna ports 7, 8, 11, and 13 and the antenna ports 9, 10, 12, and 14 do not satisfy the QCL relationship.
  • each type in the QCL type may be replaced by a name corresponding to the name in the above, and may be replaced by another name of the corresponding function, which is not limited in the embodiment of the present application.
  • the interaction in the embodiment of the present application refers to a process in which two parties exchange information with each other, and the information transmitted here may be the same or different.
  • the two parties are the base station 1 and the base station 2, and the base station 1 may request information from the base station 2, and the base station 2 provides the base station 1 with the information requested by the base station 1.
  • the base station 1 and the base station 2 may request information from each other, and the information requested here may be the same or different.
  • "Multiple” means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character “/” generally indicates that the contextual object is an "or” relationship.
  • At least one means one or more; “at least one of A and B", similar to "A and/or B", describing the association of associated objects, indicating that there may be three relationships, for example, A and B. At least one of them may indicate that A exists separately, and A and B exist simultaneously, and B cases exist separately.
  • FIG. 5-1 shows an interaction process between a terminal device and a network device in the communication method, including the following steps:
  • Step 501 The network device sends configuration information to the terminal device.
  • the network device determines how the terminal device needs to measure and feed back CSI, that is, the network device determines in which transmission mode the terminal device needs to measure and feed back CSI, and then the network device determines the configuration based on how the terminal device needs to measure and feed back CSI. information.
  • the network device sends the configuration information to the terminal device in step 501.
  • the terminal device can learn how to measure and feed back the CSI according to the configuration information, and the configuration information is related to the CSI measurement behavior and/or the CSI feedback related information.
  • the method for the terminal device to measure and feed back the CSI in different transmission modes is different.
  • the configuration information determined by the network device is different when the terminal device measures and feeds back the CSI in different transmission modes, and the configuration information is used by the terminal device to learn how Measure and feedback CSI.
  • the network device determines the transmission mode in which the terminal device needs to measure and feed back CSI, including the following three situations: Case 1: The network device determines that the terminal device needs to measure and feed back in the mixed mode of the single point transmission mode + multi-point coordinated transmission mode. CSI; Case 2: The network device determines that the terminal device needs to measure and feed back CSI in the single-point transmission mode. Case 3: The network device determines that the terminal device needs to measure and feed back CSI in the coordinated multi-point transmission mode. These three cases correspond to different configuration information, which will be described in detail below.
  • Step 502 The terminal device determines CSI measurement behavior and/or CSI feedback related information, where the channel state information CSI measurement behavior and/or CSI feedback related information is related to the configuration information.
  • the CSI measurement behavior indicates how the terminal device measures the CSI.
  • the CSI feedback related information refers to related information when the terminal device feeds back the CSI to the network device.
  • the CSI feedback related information may include content of the feedback CSI (such as at least one of CRI, RI, PMI, CQI), bit information of the fed CSI content (such as bit information, including the number of bits, and/or , the determination rule of the number of bits), the coding mode of the feedback CSI content (such as independent coding or joint coding), the interleaving mode (such as independent interleaving or joint interleaving, etc.), mapping mode (such as mapped time-frequency resources and/or At least one of information such as mapping rules, etc.).
  • content of the feedback CSI such as at least one of CRI, RI, PMI, CQI
  • bit information of the fed CSI content such as bit information, including the number of bits, and/or , the determination rule of the number of bits
  • Step 503 The terminal device performs CSI measurement to obtain at least one CSI according to CSI measurement behavior and/or CSI feedback related information, and configuration information, and sends all or part of the at least one CSI to the network device.
  • step 503 the terminal device determines CSI measurement behavior and/or CSI feedback related information.
  • step 503 can be implemented in the following three manners:
  • Step 502 the terminal device determines CSI measurement behavior and CSI feedback related information according to the configuration information.
  • the terminal device may perform CSI measurement based on the configuration information and the determined CSI measurement behavior to obtain at least one CSI, and then send all of the at least one CSI to the network device based on the CSI feedback related information and the configuration information. section.
  • the terminal device determines only the CSI measurement behavior according to the configuration information.
  • the terminal device may perform CSI measurement based on the configuration information and the determined CSI measurement behavior to obtain at least one CSI, and then send all or part of the at least one CSI to the network device based on the predefined CSI feedback method.
  • the predefined CSI feedback method may be defined by a protocol, or may be defined by the terminal device and the network device.
  • the predefined or negotiated CSI feedback method may be a method using feedback CSI in the prior art. This embodiment is not limited.
  • the terminal device may also be configured according to the configuration information when all or part of the at least one CSI is sent to the network device according to the predefined CSI feedback method.
  • the terminal device determines only the CSI feedback related information according to the configuration information.
  • the terminal device may perform CSI measurement based on the predefined CSI measurement method to obtain at least one CSI in step 503, and then send all or part of the at least one CSI to the network device based on the configuration information and the CSI feedback related information.
  • the pre-defined CSI measurement method may be defined by a protocol, or may be defined by a terminal device and a network device in advance, or may be a CSI measurement method in the prior art, which is not limited in this embodiment.
  • the terminal device may also be configured according to the configuration information when performing CSI measurement based on the predefined CSI measurement method to obtain at least one CSI.
  • the configuration information may be determined according to the situation 1.
  • the first case is that the network device determines that the terminal device needs to measure and feed back CSI in the hybrid mode of the single-point transmission mode+multi-point coordinated transmission mode, and the terminal device in step 503
  • the CSI measurement is performed to obtain two or more CSIs, and the terminal device sends part or all of the obtained CSI to the network device.
  • the terminal device may feed back the CSI part of the current feedback to the network device.
  • the configuration information may be determined according to case 2.
  • the second case is that the network device determines that the terminal device needs to measure and feed back CSI in the single-point transmission mode, and the terminal device performs CSI measurement to obtain one or more CSIs in step 503.
  • the terminal device sends some or all of the obtained CSIs to the network device to implement the performance of indicating the single-point transmission mode to the network device.
  • the configuration information may be determined according to case 3.
  • the third case is that the network device determines that the terminal device needs to measure and feed back CSI in the coordinated multi-point transmission mode, and the terminal device performs CSI measurement in step 503 to obtain one or more The CSI sends the obtained part or all of the CSI to the network device to indicate the performance of the multi-point coordinated transmission mode to the network device.
  • the CSI measurement behavior and/or the CSI feedback related information is related to the configuration information, and the configuration information is sent by the network device to the terminal device, so the network device is based on
  • the CSI measurement behavior and/or CSI feedback related information that is indicated to the terminal device may correctly receive (eg, at least one of decoding, deinterleaving) the CSI from the terminal device.
  • the network device receives the CSI from the terminal device by a method corresponding to the method of measuring and feeding back the CSI by the terminal device, that is, the network device receives the CSI from the terminal device based on the CSI measurement behavior and/or the CSI feedback related information. It should be noted that, in the case that the network device learns the method for the terminal device to measure and feedback the CSI, the method for the network device to receive the CSI may be the same as the prior art, and details are not described herein again.
  • the network device is based on how the terminal device needs to measure and feed back CSI, that is, in which transmission mode the terminal device needs to measure and feed back CSI, to determine configuration information sent to the terminal device.
  • the terminal device can learn how to measure and feed back CSI according to the configuration information. Therefore, through the communication method shown in FIG. 5-1, even if the terminal device cannot determine in which transmission mode the CSI needs to be measured and fed back, the terminal device can learn how to measure and/or feedback the CSI according to the configuration information sent by the network device, and further The terminal device measures CSI for a scenario supporting multiple transmission modes, and feeds back the measured CSI to the network device.
  • FIG. 5-1 since the network device is based on how the terminal device needs to measure and feed back CSI, that is, in which transmission mode the terminal device needs to measure and feed back CSI, to determine configuration information sent to the terminal device.
  • the terminal device can learn how to measure and feed back CSI according to the configuration information. Therefore, through the communication method shown in FIG. 5-1, even
  • the terminal device determines the CSI measurement behavior and/or the CSI feedback related information according to the existing configuration information, which can reduce the signaling overhead.
  • the terminal device can perform CSI measurement and feedback in multiple transmission modes. Compared with configuring CSI measurement and feedback in one transmission mode at a time, signaling overhead can be reduced and the reference signal overhead can be reduced. Reduce the delay of CSI measurement feedback and improve performance. If the terminal device only feeds back the CSI in the transmission mode with the best transmission performance, the feedback overhead can be reduced, and the auxiliary network device performs data scheduling according to the best transmission mode. Alternatively, if the terminal device can feed back CSI in multiple transmission modes, the network device can acquire transmission performance in multiple transmission modes, thereby assisting data scheduling and improving performance.
  • the terminal device supports measurement and feedback of CSI in mixed mode, and supports measurement and feedback of CSI in single-point transmission mode.
  • the network device determines that the terminal device needs to measure and feed back CSI in the hybrid mode of the single-point transmission mode+multipoint coordinated transmission mode, and the configuration information sent by the network device to the terminal device satisfies the following conditions: To at least one of 12), the terminal device can know how to perform CSI measurement and feedback according to configuration information satisfying at least one of the following conditions 1) to 12), that is, knowing that the single point transmission mode + multipoint coordinated transmission mode is known Perform CSI measurements and feedback in mixed mode.
  • hybrid mode of the single point transmission mode + multipoint coordinated transmission mode is simply referred to as a hybrid mode (also referred to as a hybrid transmission mode).
  • the configuration information includes N1 non-zero power (NZP) CSI-RS resources of class A, and the N1 is a positive integer greater than or equal to 2.
  • the configuration information includes the NZP CSI-RS resources of the N1 class A, and the configuration information includes configuration information of a CSI process.
  • the network device sends configuration information, that is, the network device sends configuration information of a CSI process.
  • the CSI process is configured with N1 class A NZP CSI-RS resources.
  • N1 may be 2
  • the NZP CSI-RS resource of 2 class A is not configured for the CSI process corresponding to the single-point transmission mode. Therefore, the configuration information includes a CSI process configured with two class A NZP CSIs.
  • the RS resource can be used to determine that the network device needs the terminal device to measure and feed back CSI in the hybrid mode.
  • the two NZP CSI-RS resources configured in the CSI process are not class A, the two NZP CSI-RS resources may be class A, class B, or Class A+Class. B, therefore, it is also necessary to combine other information in the configuration information to indicate that the network device requires the terminal device to measure and feed back CSI in the hybrid mode.
  • the configuration information includes N1 class A NZP CSI-RS resources, which may mean that the configuration information includes a CSI reporting setting, and the reporting setting associates R related information for measuring channels ( Link), that is, associate R reference signal settings (RS setting), each RS setting includes at least one class A NZP CSI-RS resource, and R RS setting includes N1 class A NZP CSI-RS resources; or, configuration
  • the information includes a reporting setting, which is associated with one link for measuring channel information, that is, associated with one RS setting, and the RS setting includes N1 class A NZP CSI-RS resources.
  • N1 can be 2.
  • the NZP CSI-RS resource of Class A refers to a non-beamformed CSI-RS resource, that is, a CSI-RS resource that does not perform beam or precoding operations before transmission.
  • Class B's NZP CSI-RS resource refers to a beamformed CSI-RS resource, that is, a CSI-RS resource that performs beam or precoding operations before transmission.
  • the configuration information includes N2 class B NZP CSI-RS resources, and CSI measurement behavior indication information and/or CSI feedback related information indication information, where N2 is a positive integer greater than or equal to 2.
  • the configuration information includes N2 class B NZP CSI-RS resources, it is not possible to determine that the network device requires the terminal device to perform CSI in the hybrid mode based only on the condition. Measurement and feedback, in this case, it is also required to combine CSI measurement behavior indication information and/or CSI feedback related information indication information to determine that the network device needs the terminal device to measure and feed back CSI in the coordinated multi-point transmission mode.
  • the NZP CSI-RS resources of the N2 Class Bs included in the configuration information may be used for channel measurement and interference measurement, and the terminal device may perform CSI measurement on the resource to obtain CSI.
  • the configuration information includes N3 Class B NZP CSI-RS resources
  • N3 is a positive integer greater than or equal to 2
  • the protocol pre-defines the terminal device in the hybrid mode when there are N3 Class B NZP CSI-RS resources. If the CSI measurement and the feedback are performed, the CSI measurement behavior indication information and/or the CSI feedback related information indication information may not be combined to determine that the network device needs the terminal device to measure and feed back the CSI in the coordinated multi-point transmission mode. That is, CSI measurement behavior and/or CSI feedback related information is determined according to N3 Class B NZP CSI-RS resources.
  • the configuration information includes CSI measurement behavior indication information and/or CSI feedback related information indication information.
  • the CSI measurement behavior indication information indicates a CSI measurement behavior, which is a behavior in which the terminal device performs CSI measurement in the hybrid mode;
  • the CSI feedback related information indication information indicates CSI feedback related information, the CSI
  • the feedback related information is related information when the terminal device feeds back CSI in the hybrid mode. The behavior of the terminal device performing CSI measurement in the hybrid mode and the related information when feeding back the CSI will be described below.
  • the terminal device can directly determine the CSI measurement behavior and/or the CSI feedback related information according to the configuration information that meets the condition 3), thereby preventing the terminal device from performing the judgment selection, thereby reducing the complexity of the terminal device.
  • the configuration information includes the type of the QCL of the antenna port being type C.
  • the type C can determine that the network device needs the terminal device. The CSI is measured and fed back in mixed mode. The reason is: according to the type of the QCL, the type C can determine that the current CSI process is a CSI process in the coordinated mode, where the CSI process is configured with K NZP CSI-RS resources and a CSI interference measurement (CSI-interference measurement (CSI-IM) resource, where K is an integer not less than 2.
  • CSI-IM CSI interference measurement
  • the configuration information includes the QCL type of the antenna port is type C
  • the number of CSI processes included in the configuration information is more than one
  • the type of the CCL cannot be determined according to the type of the QCL.
  • Measuring and feeding back CSI in the hybrid mode needs to be determined in combination with other information in the configuration information, for example, may be determined in conjunction with condition 1), that is, if the configuration information includes the type of the QCL of the antenna port is type C, and the configuration information includes one
  • the CSI process is configured with N1 class A NZP CSI-RS resources. At this time, it can be determined that the network device needs the terminal device to measure and feed back CSI in the hybrid mode.
  • the type of the QCL of the antenna port is type C and the number of NZP CSI-RS resources configured in the multiple CSI processes included together determines the current CSI process.
  • the CSI measurement behavior and/or the CSI feedback related information may be determined in combination with other conditions, such as at least one of 1) to 12) configuration information, or other conditions, which are specifically not used herein. limited.
  • QCL type C for the QCL type of the antenna port, only one QCL type may be defined, such as QCL type C, or similar to the LTE communication system, and multiple QCL types, such as three QCL types, namely type A, may be defined. Type B, type C. It is also possible to define other types of QCL types, or to divide QCL types according to other features, which are not limited herein. Thus, in the case where a plurality of QCL types are defined, CSI measurement behavior and/or CSI feedback related information can also be determined according to the QCL type in the NR communication system.
  • the terminal device determines the CSI measurement behavior and/or the CSI feedback related information according to the configuration information that satisfies the condition 4), that is, the CSI measurement behavior and/or the CSI feedback related information, thereby implementing CSI measurement and feedback, and indicating the CSI measurement behavior and/or compared with the configuration specific information. Or the CSI feeds back relevant information, and the above method can reduce signaling overhead.
  • the configuration information includes that the type of the QCL of the antenna port is type C and the number of included CSI processes is 1.
  • Condition 5 Applicable to the LTE communication system.
  • the configuration information satisfies the condition 5
  • the configuration information includes that the number of QCLs in the PQI is greater than M, and the M is a positive integer greater than or equal to 1.
  • the configuration information includes that the number of parameter parameters in the PQI is greater than P, and the P is a positive integer greater than or equal to 1.
  • the configuration information includes at least one of bit information reported by the CRI, bit information reported by the CRI and the RI, and bit information reported by the RI.
  • At least one of the bit information reported by the CRI, the reported bit information of the CRI and the RI, and the bit information reported by the RI may be a predefined value.
  • the configuration information does not need to include at least one of the bit information reported by the CRI, the reported bit information of the CRI and the RI, and the bit information reported by the RI, when the configuration information satisfies the condition 8), it may be determined that the network device needs the terminal device in the mixed mode.
  • the CSI measurement and feedback are performed below, and the bit information included in the configuration information is bit information when the terminal device performs CSI measurement and feedback in the hybrid mode.
  • the network device requires the terminal device to perform CSI measurement and feedback in the single-point transmission mode, one or more of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI are also configured by using the configuration information. Then, when the configuration information satisfies the condition 8), it is also required to combine other information in the configuration information to determine that the network device needs the terminal device to perform CSI measurement and feedback in the hybrid mode, for example, in combination with 1) to 12) configuration information, except 8) At least one of the other conditions, or other conditions, is not limited herein, such as the number of NZP CSI-RS resources.
  • the NZP CSI-RS resource may be a resource for measuring a channel, or a resource for measuring interference, or a resource for measuring a channel and for measuring interference, or a resource including a measurement channel.
  • the total resources of the resources for the interference are measured, and are not limited herein.
  • the configuration information When the configuration information satisfies the condition 9), it may be determined that the network device requires the terminal device to perform CSI measurement and feedback in the hybrid mode, and the configuration information includes the bit information reported by the CRI, which is reported by the CRI when the terminal device performs CSI measurement and feedback in the hybrid mode. Bit information.
  • the bit information reported by the CRI may be configured by higher layer signaling or physical layer signaling.
  • the high-level signaling may be referred to as RRC signaling or MAC (media access control) layer signaling, which is not limited herein.
  • the bit information of one CRI is used as the bit information reported by the CRI.
  • the NZP CSI-RS resource is K, and is satisfied.
  • the terminal device determines whether the current CSI process is a CSI process in the coordinated mode, that is, needs to perform CSI measurement and feedback in the hybrid mode. For example, if the bit information reported by the CRI is 2, the NZP CSI-RS resource is 2, because it is satisfied. It can therefore be determined that CSI measurements and feedback need to be performed in mixed mode.
  • the configuration of the high layer signaling may be included in the reporting setting, for example, the high layer signaling CRI-bit-size is included in the ReportConfig.
  • the bit information reported by the CRI is L
  • the NZP CSI-RS resources are K, and are satisfied.
  • the terminal device determines that CSI measurement and feedback needs to be performed in the hybrid mode.
  • the signaling overhead can be reduced.
  • the configuration information includes a reporting setting associated with at least one of Q channel links, T RS settings, and S RS sets, where Q is a positive integer greater than or equal to 2, and T is greater than or equal to A positive integer of 2, S is a positive integer greater than or equal to 2.
  • the network device configures three sets of terminal devices for the CSI reporting setting, the RS setting, and the CSI measurement setting.
  • the CSI measurement settings include association information (link), and each associated information corresponds to one CSI report setting and one resource setting.
  • the reporting setting is used to indicate the reported parameter information, such as parameters reported by the CSI (for example, at least one of RI, PMI, CQI, and CRI), CSI type (such as type I and/or type II), and codebook configuration information ( For example, codebook limited information), time domain behavior, frequency domain granularity (such as PMI and/or CQI reporting granularity, full bandwidth, subband, or at least one of partial subbands), measurement limited configuration, etc. At least one of them.
  • parameters reported by the CSI for example, at least one of RI, PMI, CQI, and CRI
  • CSI type such as type I and/or type II
  • codebook configuration information For example, codebook limited information
  • time domain behavior such as PMI and/or CQI reporting granularity, full bandwidth, subband, or at least one of partial subbands
  • measurement limited configuration etc. At least one of them.
  • Each RS setting includes at least one reference signal set (RS set, which may also be referred to as an RS resource set), and each reference signal set includes at least one reference signal resource.
  • RS set which may also be referred to as an RS resource set
  • each reference signal set includes at least one reference signal resource.
  • an RS setting may be used. Include at least one CSI-RS resource set, where each CSI resource set may include at least one CSI-RS resource.
  • the configuration information includes at least one of a mapped resource REs, an antenna port number, a time domain behavior, and the like. One.
  • Each associated information in the measurement setting includes one or more of a CSI report setting identifier, a resource setting identifier, and a measured attribute (such as channel or interference).
  • the configuration information includes a reporting setting associated with at least one of a Q channel link, a T RS setting, and an S RS set, wherein the Q is a positive integer greater than or equal to 2, and T is a positive greater than or equal to 2.
  • An integer, S is a positive integer greater than or equal to 2 means that the configuration information includes a reporting setting associated with the Q channels and/or T RS settings and/or S RS sets.
  • the configuration information includes a reporting setting associated with at least one of the Q channel links, the T RS settings, and the S RS sets, which should not be understood as any one of the following three descriptions: the configuration information includes a reporting setting associated with the Q channel links. At least one link, the configuration information includes a reporting setting associated with at least one of the RS settings, and the configuration information includes a reporting setting associated with at least one of the RS sets.
  • the value of Q can be 2.
  • the configuration information includes a first resource and a second resource, where the first resource is a resource used when measuring at least one of the first CSI, the second CSI, and the third CSI, where the second resource is used to measure the fourth CSI. Resources used.
  • the first CSI is obtained based on the interference power
  • the second CSI is obtained based on the interference obtained by the preset algorithm when the resource used for the channel measurement is the same as the resource used for the interference measurement
  • the third CSI is based on the interference power
  • the preset algorithm may be: the interference is equal to the difference between the received signal and the useful signal
  • the fourth CSI is based on the stream. Inter-interference or inter-symbol interference.
  • the interference for the first CSI may be obtained by measuring the interference resource only for the ZP CSI-RS resource, that is, measuring the interference power by using the ZP CSI-RS resource, and calculating the CSI according to the interference power.
  • the interference for the second CSI may be that the channel measurement resource and the interference measurement resource are configured as the same CSI-RS resource, and the terminal device interferes by processing the received signal and the useful signal based on the CSI-RS resource.
  • the information may be, for example, subtracting the received signal from the received signal to obtain interference information.
  • the interference for the third CSI may be configured to configure the first interference measurement resource as a ZP CSI-RS resource and a second interference measurement resource, and the second interference measurement resource is the same as the channel measurement and the interference measurement.
  • H. Obtaining first interference information, that is, interference power, by using the first interference measurement resource, obtaining second interference information according to the second interference measurement resource, and further obtaining total interference information based on the first interference information and the second interference information, for example, using interference power and The second interference information is added to obtain the total interference information.
  • the interference for the fourth CSI may be that the NZP CSI-RS resource is configured for interference measurement.
  • the interference when the interference is measured by using the NZP CSI-RS resource, the interference may be obtained after the channel measured by the resource is processed by a precoding matrix corresponding to the resource.
  • This embodiment provides a method for determining CSI measurement and/or feedback corresponding to a resource, and the part may be applied in combination with other parts in the embodiment, or may be independently applied.
  • the method is specifically described as follows.
  • the network device can notify the terminal device through the configuration information by using the condition 11), and which of the associated links are in the single-point transmission mode.
  • the resources used by the CSI are measured, and the resources used by the CSI are measured in the coordinated multi-point transmission mode.
  • a reporting setting has more than Q links, it is also possible to pre-define which of the associated links measure the resources used by the CSI in the single-point transmission mode, and which are the resources used by the CSI in the coordinated multi-point transmission mode, for example,
  • the identification information of the resource determines that the resource is a resource for performing CSI measurement and/or feedback in the hybrid mode, for example, the two channel measurement resources with a smaller index number connected to the resource set are measured in the multi-point coordinated transmission mode. Resources used by CSI.
  • a reporting setting associates three channel measurement resources, namely NZP CSI-RS1, NZP CSI-RS2, and NZP CSI-RS3, and can pre-define NZP CSI-RS1 and NZP CSI-RS2 in coordinated multi-point transmission.
  • the resources used by the CSI are measured in the mode, or the NZP CSI-RS2 and the NZP CSI-RS3 may be pre-defined to measure the resources used by the CSI in the coordinated multi-point transmission mode.
  • a reporting setting is associated with three links, namely link1, link2, and link3. You can pre-define link1 and link2 to measure the resources used by CSI in the coordinated multi-point transmission mode, or you can pre-define link1 and link2. Measures the resources used by CSI in single-point transmission mode.
  • the configuration indication information may be used to indicate, which are the resources used by the CSI in the single-point transmission mode, and the resources used by the CSI in the coordinated multi-point transmission mode.
  • the element or field is a specific value, such as 1)
  • the indication information is "joint”
  • the resource is a resource used for measuring CSI in the coordinated multi-point transmission mode.
  • NZP1 is the channel measurement resource
  • ZP1 is the interference measurement resource
  • the terminal device calculates the CSI report after measuring the CSI.
  • NZP2 is the channel measurement resource
  • ZP1 is the interference measurement resource
  • the CSI report 2 is calculated after the terminal device measures the CSI
  • NZP3 is the channel measurement resource
  • ZP1 is the interference measurement resource
  • the CSI report 3 is calculated after the terminal device measures the CSI
  • NZP1 and NZP2 are channel measurement resources
  • ZP1 is the interference measurement resource
  • the terminal equipment uses NZP1 and NZP2 respectively to calculate the channel.
  • the channel part of CQI of CSI report a is the measured value on NZP1
  • the interference part is the measured value on NZP2.
  • CSI report 1 and CSI report 2 may be measurement results in DPS mode
  • CSI report a and CSI report b may be measurement results in NCJT mode, where a and b are labels of CSI information, which are used to distinguish other The CSI information, the specific value is not limited herein.
  • the terminal device can measure at least one of CSI report 1, CSI report 2, CSI report 3, CSI report a, and CSI report b, and can selectively report the CSI with the best transmission performance.
  • the configuration information includes indication information, which indicates that the terminal device performs CSI measurement and feedback in the hybrid transmission mode.
  • the indication information indicates that the current CSI process is a CSI process in the coordinated mode, and the terminal device learns to perform CSI measurement and feedback in the hybrid transmission mode according to the indication information.
  • the indication information may be signaling.
  • the process is a CSI process in the multi-point cooperation mode, which instructs the terminal device to perform CSI measurement and feedback in the hybrid transmission mode.
  • the high layer signaling may be included in the measurement configuration MeasConfig, or may be included in the report configuration ReportConfig.
  • the indication information may be used to indicate the first resource and the second resource, where the first resource is a resource used when measuring at least one of the first CSI, the second CSI, and the third CSI, where the second resource is a measurement The resources used in the four CSI.
  • the configuration indication information may be used to indicate, which are the resources used by the CSI in the single-point transmission mode, and the resources used by the CSI in the coordinated multi-point transmission mode.
  • the element or field is a specific value, such as 1)
  • the indication information is "joint”
  • the resource is a resource used for measuring CSI in the coordinated multi-point transmission mode.
  • the network device needs the terminal device to measure and feed back CSI in the hybrid mode, and the applicable scenario is: the terminal device supports the CSI is measured and fed back in mixed mode, and CSI is measured and fed back in single-point transmission mode.
  • the configuration information satisfies the above condition 1) In at least one of 12), it may be that the network device needs the terminal device to measure and feed back CSI in the hybrid mode, or the network device needs the terminal device to measure and feed back the CSI in the multi-point cooperation mode, so it is also required to combine other
  • the information indicates which of the two possibilities, such as indicated by 1-bit information, 0 indicates the former possibility, and 1 indicates the latter possibility.
  • the terminal device can know how to perform CSI measurement and feedback according to the configuration information that satisfies at least one of the above conditions 1) to 12), and can also be understood to know that CSI measurement and feedback are performed in the hybrid mode.
  • the terminal device may determine all or part of the CSI measurement behavior and/or all or part of the CSI feedback related information, that is, the CSI measurement behavior and/or the CSI feedback related information, according to the configuration information that satisfies at least one of the above conditions 1) to 12). At least one of the above conditions 1) to 12) is related.
  • the CSI measurement behavior and/or CSI feedback related information mentioned in this application does not represent all CSI measurement behaviors of the terminal device and/or all CSI feedback related information, and may refer to one or more of the CSI measurement behaviors. Item, all or part.
  • the determined CSI measurement behavior and/or CSI feedback related information is described below. It can be understood that the determined CSI measurement behavior and/or CSI feedback related information is different from the prior art design, and may be applied in combination with the foregoing configuration information, or may be separately applied to provide a CSI measurement. And/or feedback methods.
  • the determined CSI measurement behavior and/or CSI feedback related information may be:
  • the determined CSI measurement behavior includes: measuring at least one of a first CSI, a second CSI, and a third CSI, and measuring a fourth CSI.
  • the first CSI is obtained based on the interference power
  • the second CSI is obtained based on the interference obtained by the preset algorithm when the resource used for the channel measurement is the same as the resource used for the interference measurement
  • the third CSI is based on the interference power.
  • the preset algorithm may be: the interference is equal to the difference between the received signal and the useful signal
  • the fourth CSI is based on the stream. Inter-interference or inter-symbol interference.
  • the part may be applied in combination with other parts in the embodiment, or may be applied independently to provide a CSI measurement method.
  • the terminal device may determine the CSI measurement behavior according to the CSI measurement behavior indication information.
  • the CSI measurement behavior indication information indicates measuring at least one of the first CSI, the second CSI, and the third CSI, and measuring the fourth CSI, determining that the CSI measurement behavior includes measuring the first CSI, the second CSI, and At least one of the third CSIs, and measuring the fourth CSI.
  • the CSI measurement behavior indication information may indicate which one or more combinations of the first CSI, the second CSI, and the third CSI are measured, and the fourth CSI is measured, for example, the CSI measurement behavior indication information indicates that the first CSI and the fourth CSI are measured.
  • the CSI measurement behavior includes measuring the first CSI and measuring the fourth CSI
  • the CSI measurement behavior indication information indicates measuring the first CSI and the second CSI and measuring the fourth CSI
  • the CSI measurement behavior includes measuring the first CSI and And the second CSI and the fourth CSI.
  • the CSI measurement behavior indication information may indicate which one or more combinations of the first CSI, the second CSI, and the third CSI are measured.
  • the CSI measurement behavior indication information indicates that the first CSI is measured, where the CSI measurement behavior includes measuring the first CSI and measuring the fourth CSI, and for example, the CSI measurement behavior indication information indicates that the first CSI and the second CSI are measured, and the CSI measurement behavior is performed at this time.
  • the measurement includes a first CSI and a second CSI and a fourth CSI. Specifically, it is not limited herein.
  • the terminal device may also determine, according to the configuration information, that the network device needs the terminal device to perform CSI measurement and feedback CSI in the hybrid mode, and determine the CSI measurement behavior in the pre-configured hybrid mode as the CSI measurement behavior adopted by itself.
  • the CSI measurement behavior includes measuring at least one of the first CSI, the second CSI, and the third CSI, and measuring the fourth CSI.
  • determining the CSI measurement behavior according to the configuration information includes measuring which one or a combination of the first CSI, the second CSI, and the third CSI is combined. Exemplary, the method is as follows:
  • the first CSI is obtained based on the interference power, so if the interference measurement resource included in the configuration information includes zero-power CSI-RS resources, the CSI measurement behavior includes measuring the first CSI.
  • the second CSI is obtained based on the interference obtained by the preset algorithm when the resource used for the channel measurement is the same as the resource used for the interference measurement, and therefore, if the configuration information includes the interference resource, the channel measurement resource and the interference measurement resource are the same resource.
  • the CSI measurement behavior includes measuring the second CSI.
  • the third CSI is obtained by using the interference obtained by the preset algorithm when the interference power and the resource used for the channel measurement are the same as the resource used for the interference measurement, and therefore, if the configuration information includes the first interference measurement resource and the second interference measurement resource, And the first interference measurement resource is a zero-power CSI-RS resource, and the second interference measurement resource is the same resource as the channel measurement resource, and the CSI measurement behavior may be predefined, including only measuring the third CSI, or the predefined CSI measurement behavior includes the measurement.
  • the first CSI and the third CSI, or the predefined CSI measurement behavior includes measuring the second CSI and the third CSI, or the predefined CSI measurement behavior includes measuring the first CSI, the second CSI, and the third CSI.
  • the fourth CSI may be obtained in multiple manners, which is not limited in this embodiment.
  • the fourth CSI can be obtained based on the following four ways.
  • the first mode, the fourth CSI may be obtained based only on inter-stream interference or inter-codeword interference.
  • the second mode, the fourth CSI may be obtained based on inter-stream interference or inter-codeword interference, and may further be obtained based on interference power, that is, the fourth CSI is based on inter-stream interference or inter-codeword interference, and interference power acquisition.
  • the third mode, the fourth CSI may be obtained based on the inter-stream interference or the inter-code inter-symbol, and may further be obtained by using the interference obtained by the preset algorithm when the resource used for the channel measurement is the same as the resource used for the interference measurement, that is, The fourth CSI is obtained based on inter-stream interference or inter-codeword interference, and the interference obtained by the preset algorithm when the resources for channel measurement are the same as the resources used for the interference measurement.
  • the preset algorithm may be: the interference is equal to the difference between the received signal and the useful signal.
  • the fourth mode and the fourth CSI may be obtained based on inter-stream interference or inter-code inter-frame interference, and may further be based on the interference power and the interference obtained by the preset algorithm when the resources used for the channel measurement are the same as the resources used for the interference measurement. Obtained, that is, the fourth CSI is obtained based on inter-stream interference or inter-code interference, and interference power, and the interference obtained by the preset algorithm when the resources for channel measurement are the same as the resources used for the interference measurement.
  • the network device may notify the terminal device whether the fourth CSI is obtained based on the foregoing method.
  • the network device may notify the terminal device whether the fourth CSI is obtained by using the fourth CSI related interference measurement resource in the configuration information, for example, if the fourth CSI related interference measurement resource in the configuration information includes zero.
  • the fourth CSI is also obtained based on the interference power, that is, the fourth CSI is obtained based on the second method described above.
  • the determined CSI feedback related information includes: joint coding or independent coding for CRI and RI, and/or mapping of CRI and RI to time-frequency resources.
  • CRI and RI are jointly coded or independently coded, which means that CRI and RI are jointly coded or separately coded, and there is no limitation on whether CRI and/or RI are combined with other information.
  • the part may be applied in combination with other parts in the embodiment, or may be applied independently to provide a CSI feedback method.
  • the terminal device may determine the CSI feedback related information according to the CSI feedback related information indication information included in the configuration information. If the configuration information includes the CSI feedback related information indication information, and the CSI feedback related information indication information indicates the CSI feedback related information, the terminal device may determine the CSI feedback related information according to the CSI feedback related information indication information.
  • the CSI feedback related information indication information indicates that the CRI and the RI are jointly coded, and/or the CSI feedback related information indication information indicates that the CRI and the RI are mapped to the time-frequency resource mapping manner, and then the CSI feedback correlation is determined.
  • the information includes joint coding for CRI and RI, and/or CSI feedback related information indicates information indicating how to map CRI and RI to time-frequency resources.
  • the CSI feedback related information indication information indicates that the CRI and the RI are independently coded, and/or the CSI feedback related information indication information indicates that the CRI and the RI are mapped to the time-frequency resource mapping manner, and then the CSI feedback is determined.
  • the related information includes independent coding of CRI and RI, and/or CSI feedback related information indication information indicating mapping of CRI and RI to time-frequency resources.
  • the terminal device may also determine, according to the configuration information, that the network device needs the terminal device to perform CSI measurement and feedback CSI in the hybrid mode, and determine the CSI feedback related parameter in the pre-configured hybrid mode as the CSI feedback related parameter that is used by itself.
  • Determining CSI feedback related information includes: joint coding or independent coding for CRI and RI, and/or mapping of CRI and RI to time-frequency resources.
  • the encoding mode used for the CRI and the RI in the CSI feedback related information is the joint coding or the independent coding, and the specific coding mode may be predefined, or may be notified by the network device to the terminal device, for example, through configuration information. Other information in the notification to tell which encoding method.
  • the CSI feedback related information may further include: at least one of bit information reported by the CRI, bit information reported by the CRI and the RI, and bit information reported by the RI.
  • the CSI feedback related information may include the bit information reported by the CRI and the bit information reported by the RI, so that the terminal device determines the CRI of the bit information that is reported by the CRI after measuring the CSI.
  • the RI of the bit information reported by the RI is satisfied, and the CRI and the RI are independently coded.
  • the independently coded CRI and RI are mapped to the time-frequency resource by using a mapping manner included in the CSI feedback related information.
  • the CSI feedback related information may include the reported bit information of the CRI and the RI, and the CSI feedback related information may also include the bit information reported by the CRI and the bit information reported by the RI, CRI.
  • the reported bit information and the bit information reported by the RI can determine the reported bit information of the CRI and the RI.
  • the terminal device determines the CRI and RI that satisfy the reported bit information of the CRI and the RI, and then jointly encodes the CRI and the RI, and finally maps the jointly encoded CRI and RI by using a mapping manner included in the CSI feedback related information. On time-frequency resources.
  • mapping mode used to map CRI and RI to time-frequency resources is not limited in this embodiment. Some possible mapping modes are exemplified below.
  • the part may be applied in combination with other parts in the embodiment, or may be applied independently to provide a resource mapping method.
  • channel coding is performed on the CRI
  • channel coding is performed on the RI
  • channel coding is performed on the RI.
  • the CRI enters the interleaver to obtain the interleaved CRI
  • the RI enters the interleaver to obtain the interleaved RI, that is, CRI and RI are separately interlaced.
  • the CRI and the RI are mapped to the time-frequency resource by using any one of the following mapping modes.
  • This embodiment does not limit the first-time domain mapping, or the first-frequency domain mapping, or the first-layer mapping.
  • the layer mapping is the concept of airspace, and the time domain, the frequency domain is juxtaposed.
  • mapping mode 1 The CRI is mapped to the symbol next to the acknowledgement (ACK)/negative acknowledge (NACK) symbol next to the uplink pilot symbol, and ACK/NACK is simply referred to as A/N, CRI can perform time domain mapping and then perform frequency domain mapping.
  • the RI is mapped to the symbol next to the A/N symbol next to the uplink pilot symbol, but does not include the RE occupied by the CRI.
  • the RI may perform time domain mapping and then perform frequency domain mapping. Taking symbols 1 to 7 in FIG. 6 as an example, symbols 1 to 7 are one slot, symbol 4 is mapped to uplink pilot, symbol 3 and symbol 5 are mapped to A/N, and symbols are used.
  • CRI and RI are mapped on 2 and 6.
  • mapping CRI and RI on symbol 2 and symbol 6 When mapping CRI and RI on symbol 2 and symbol 6, first map CRI on symbol 2 and symbol 6 in the first time domain, and then map RI on symbol 2 and symbol 6 in the first time domain. Mapping the resource elements (REs) on the REs; or, first mapping the RIs on the symbols 2 and 6 in a first-time domain manner, and then mapping the CRIs to the symbols 2 and symbols in a first-time domain manner. 6 is on the RE other than the CRI mapped resource element (RE).
  • the specific CRI first mapping or the RI first mapping may be predefined based on the protocol, or may be based on the specific implementation of the system.
  • Mapping Method 2 Map the CRI on the symbol next to the A/N symbol next to the uplink pilot symbol, and map the RI on the symbol next to the CRI symbol next to the A/N symbol next to the upstream pilot symbol (ie the same CRI and RI occupy different symbols on the frequency resource). Taking symbols 1 to 7 in FIG. 6 as an example, the uplink pilot is mapped on symbol 4, A/N is mapped on symbol 3 and symbol 5, CRI is mapped on symbol 2 and symbol 6, and RI is mapped on symbol 1 and symbol 7.
  • Mapping Method 3 Map the CRI on the side symbol next to the A/N symbol next to the uplink pilot symbol, and map the RI on the other side symbol next to the A/N symbol next to the upstream pilot symbol.
  • the CRI may be pre-defined to be mapped to one side of the A/N symbol next to the uplink pilot symbol, and the RI is mapped to the other side of the A/N symbol next to the uplink pilot symbol, such as mapping the CRI to On the small numbered side symbol, the RI is mapped on the larger numbered side symbol.
  • the uplink pilot is mapped on symbol 4, A/N is mapped on symbol 3 and symbol 5, CRI is mapped on symbol 2, and RI is mapped on symbol 6.
  • the uplink pilot is mapped on symbol 11
  • A/N is mapped on symbol 10 and symbol 12
  • CRI is mapped on symbol 9
  • RI is mapped on symbol 13.
  • the uplink pilot is mapped on symbols 4 and 11, and A/N is mapped on symbols 3, 5, 10, and 12;
  • the mapping of CRI and RI may be: mapping CRI on symbol 2 and symbol 13 , symbol 6 and symbol 9 are mapped on RI;
  • the mapping of CRI and RI may also be: mapping RI on symbol 2 and symbol 13, and mapping CRI on symbol 6 and symbol 9.
  • channel coding is performed on the CRI
  • channel coding is performed on the RI
  • channel coding is performed on the RI.
  • the CRI enters the interleaver to obtain the interleaved CRI
  • the RI enters the interleaver to obtain the interleaved RI, that is, CRI and RI are separately interlaced.
  • the CRI is mapped on the PUCCH, such as on the long PUCCH; the RI is mapped on the RE other than the RE occupied by the CRI in the PUCCH mapped by the CRI, or the RI is mapped in the same scheduling unit as the CRI mapping.
  • This embodiment does not limit the first time domain mapping, or the first frequency domain mapping, or the first layer mapping, nor the time domain mapping is a front-to-back mapping or a back-to-front mapping, and the frequency domain mapping is a small to large mapping or a Large to small mapping, whether the layer mapping is a small to large mapping or a large to small mapping, coding block group (CBG) from small to large mapping or large to small mapping.
  • CBG coding block group
  • the method may include at least one of the following mapping methods, and specifically, which items may be pre-defined by the protocol, or may be notified by the network device to the terminal device, that is, sending indication information, indicating a specific mapping method.
  • the specifics are not here.
  • the part may be applied in combination with other parts in the embodiment, or may be independently applied to provide a resource mapping method.
  • Mapping method 1 Map the CRI on the symbol next to the A/N symbol next to the uplink pilot symbol, and map the RI on the symbol next to the A/N symbol next to the uplink pilot symbol, but not including the CRI RE.
  • the uplink pilot is mapped on symbol 4
  • A/N is mapped on symbol 3 and symbol 5
  • CRI and RI are mapped on symbol 2 and symbol 6.
  • mapping CRI and RI on symbol 2 and symbol 6 first map CRI on symbol 2 and symbol 6 in the first time domain, and then map RI on symbol 2 and symbol 6 in the first time domain. Map the RE outside the RE.
  • mapping CRI and RI on symbol 2 and symbol 6 first mapping RI on symbol 2 and symbol 6 in a first-time domain manner, and then mapping CRI in symbol 2 and symbol in a first-time domain manner. 6 is on the RE other than the CRI mapped resource element (RE).
  • RE CRI mapped resource element
  • CRI and RI can be mapped onto the same symbol and mapped on different REs in order.
  • DMRS is mapped on symbols 1, 2, 5, and 6 symbols, CRI and RI are mapped on symbols 3 and 7, and DMRS can be basic (front-loaded, also The DMRS, referred to as the top position, may also be an additional (also referred to as additional) DMRS, mapping the CRI on the symbol next to the front-loaded DMRS and/or the symbol next to the additional DMRS, or The CRI is mapped on the symbol next to the front-loaded DMRS, ie the CRI and RI are mapped on symbol 3.
  • Mapping Method 2 Map the CRI on the symbol next to the A/N symbol next to the uplink pilot symbol, and map the RI on the symbol next to the CRI symbol next to the A/N symbol next to the upstream pilot symbol. Taking symbols 1 to 7 in FIG. 6 as an example, the uplink pilot is mapped on symbol 4, A/N is mapped on symbol 3 and symbol 5, CRI is mapped on symbol 2 and symbol 6, and RI is mapped on symbol 1 and symbol 7.
  • CRI and RI can be mapped onto different symbols and mapped on different symbols in order.
  • Mapping Method 3 Map the CRI on the side symbol next to the A/N symbol next to the uplink pilot symbol, and map the RI on the other side symbol next to the A/N symbol next to the upstream pilot symbol.
  • the CRI may be pre-defined to be mapped to the side of the A/N symbol next to the uplink pilot symbol, and the RI may be mapped to the other side of the A/N symbol next to the uplink pilot symbol, such as a smaller CRI mapping.
  • the RI is mapped onto the larger numbered side of the symbol.
  • mapping CRI and RI may be: mapping CRI on symbol 2, mapping RI on symbol 6
  • mapping of CRI and RI may also be: mapping RI on symbol 2, mapping CRI on symbol 6.
  • CRI and RI can be mapped onto different symbols and mapped on different symbols in order.
  • Mapping method 4 Map CRI and RI on REs that are closer to the uplink pilot.
  • the CRI is mapped to the same symbol on which the part of the RE occupied by the uplink pilot is located, and the RI is mapped on the same symbol as the other part of the RE occupied by the uplink pilot.
  • the symbols mapped by the CRI and the RI may be defined in advance, for example, the first half of the symbols occupied by the uplink pilot are mapped to the CRI, and the second half of the symbols occupied by the uplink pilot are mapped to the RI.
  • DMRS is mapped on symbols 1, 2, 5, and 6, and CRI is mapped on symbols 1 and 2, and RI is mapped on symbols 5 and 6.
  • the REs mapped by the CRI and the RI may be mapped in order from the frequency domain locations mapped by the uplink RSs according to the frequency domain unit numbers from small to large or from large to small.
  • CRI and RI can be mapped onto the same symbol and mapped on different REs in order.
  • the terminal device determines to perform CSI measurement and feedback in the hybrid mode
  • the coding, interleaving, and mapping schemes of the CQI/PMI corresponding to the multiple CSI reports may be Method 1 or Method 2 as follows:
  • the part may be applied in combination with other parts in the embodiment, or may be independently applied to provide at least one of an encoding method, an interleaving method, and a mapping method.
  • the CQI/PMI corresponding to the RI is interleaved, and the mapping order
  • Method 2 The sequence of coding, interleaving, and mapping of the CQI/PMI corresponding to the RI is consistent with the order of the NZP CSI-RS resource ID used for channel measurement. For example, the CQI1/PMI1 obtained by using the NZP CSI-RS1 as the channel measurement resource and the CQI2/PMI2 obtained by the NZP CSI-RS2 as the channel measurement resource are sequentially combined and input to the encoder, the interleaver and mapped, that is, the smaller NZP CSI-RS ID.
  • the CSI may include at least one of PMI, RI, or CQI, and reporting CSI involves reporting at least one of PMI, RI, or CQI, and at least one of PMI, RI, or CQI is reported. There will be an escalation order.
  • the following describes an embodiment of the reporting sequence of the PMI and the CQI, and a method for determining the number of bits included in the CSI, such as a PMI, a CQI, etc., wherein the reporting sequence and the number of bits of the content included in the CSI are determined in this embodiment.
  • the method may be implemented independently or in combination with each other, or may be combined with other embodiments in the present application, and is not limited herein.
  • the first set (first set) in the embodiment of the present application may refer to the CSI corresponding to the first NZP CSI-RS resource
  • the second set (second set) may refer to the second NZP CSI-RS resource corresponding. CSI.
  • the first set (or first set) in the embodiment of the present application may refer to a CSI corresponding to a first codeword (for example, codeword 0), and the second set (second set) may refer to a second code.
  • the CSI corresponding to the word eg, codeword 1).
  • the first set, the first set, the first CSI set, the first set, the first CSI set in the embodiment of the present application may refer to the same meaning, or may be replaced with each other.
  • the CSI of the first codeword (for example, the codeword 0) may be replaced with the CSI of the first NZP CSI-RS resource, and the like, which is not limited herein.
  • the second set, the second set, the second CSI set, the second set, and the second CSI set in the embodiment of the present application may refer to the same meaning, or may be mutually replaced.
  • the CSI of the second codeword (for example, the codeword 1) may be replaced with the CSI of the second NZP CSI-RS resource, which is not limited herein.
  • the terminal device determines to feed back at least two CSI sets according to the first indication information, where the at least two CSI sets include a CSI of the first set (ie, the first set) and a CSI of the second set (ie, the second set), the first set of The CSI includes a first set of CQIs and/or a first set of PMIs, and a second set of CSIs includes a second set of CQIs and/or a second set of PMIs.
  • Method 1 of reporting method first report CQI (including CQI of the first set and/or CQI of the second set), and then report the PMI (including the PMI of the first set and/or the PMI of the second set).
  • it further includes at least one of the following methods:
  • Method 1.1 If the first set includes only the CQI and the second set only includes the CQI, the reporting order is sequentially the CQI of the first set and the CQI of the second set;
  • Method 1.2 If the first set includes the CQI and the PMI, and the second set includes only the CQI, the reporting order is the CQI of the first set, the CQI of the second set, and the PMI of the first set;
  • Method 1.3 If the first set includes CQI and PMI, and the second set includes CQI and PMI, the reporting order is the CQI of the first set, the CQI of the second set, the PMI of the first set, and the PMI of the second set. ;
  • Method 1.4 If there is a first PMI and a second PMI in the PMI of each set, the first PMI (including the first PMI of the first set and/or the first PMI of the second set) is reported first, and then reported. The second PMI (including the second PMI of the first set and/or the second PMI of the second set).
  • Method 1.5 If there is a first PMI and a second PMI in the PMI of each set, the first PMI and/or the second PMI of the first set are reported first, and then the first PMI of the second set is reported and/or Second PMI.
  • the corresponding mode is mode 1-0.
  • Which mode is specifically adopted may be predefined by a protocol, or may be determined by interaction between a base station and a terminal, for example, the base station notifies the terminal by signaling.
  • the method 1 of the reporting method that is, first reporting the CQI (including the CQI of the first set and the CQI of the second set), and then reporting the PMI (including the PMI of the first set) And the second set of PMI).
  • the method 2 of the reporting method is described below.
  • Method 2 of reporting method first set (including CQI and/or PMI of the first set), then second set (including CQI and/or PMI of the second set).
  • first set including CQI and/or PMI of the first set
  • second set including CQI and/or PMI of the second set
  • Method 2.1 If the first set includes the CQI and the PMI, and the second set includes only the CQI, the reporting order is the CQI of the first set, the PMI of the first set, and the CQI of the second set;
  • Method 2.2 If the first set includes the CQI and the second set includes the CQI and the PMI, the reporting order is the CQI of the first set, the CQI of the second set, and the PMI of the second set;
  • Method 2.3 If the first set includes CQI and PMI, and the second set includes CQI and PMI, the reporting order is the CQI of the first set, the PMI of the first set, the CQI of the second set, and the PMI of the second set. .
  • At least one of CTI reported bit information, CRI and RI reported bit information, and RI reported bit information included in the CSI feedback related information may be determined by any one of the following manners.
  • the part may be applied in combination with other parts in the embodiment, or may be applied independently to provide a CSI feedback method or a CSI feedback related information determining method.
  • Manner 1 At least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI is a predefined value, and the network device and the terminal device both know the predefined value.
  • the bit information reported by the CRI includes 2 bits
  • the bit information reported by the RI includes 4 bits
  • the reported bit information of the CRI and the RI includes 6 bits.
  • the maximum number of bits for reporting RI for one CSI is 3.
  • the base station 1 and the base station 2 cooperate to transmit
  • RI1 corresponds to the base station 1
  • RI2 corresponds to the base station 2
  • the bit information reported by the RI can be 4 bits.
  • the bit information reported by the CRI can be 2 bits.
  • the number of bits of the CRI, and/or the number of bits of the RI is determined according to the second indication information.
  • the number of bits of the CRI and/or the number of bits of the RI may be determined according to the second indication information.
  • the configuration information includes second indication information, where the second indication information indicates that the terminal device performs CSI measurement and feedback in the hybrid transmission mode, or indicates that the current CSI process is a CSI process in the coordinated multi-point transmission mode.
  • the number of bits of the RI may be determined according to the second indication information.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits when the single RI is reported and/or determining the multiple RIs (or RI combinations) when multiple RIs (or RIs are combined) are reported.
  • the total number of bits specifically, is not limited herein.
  • the second indication information indicates that CSI feedback of FeCoMP is enabled
  • the capability of the terminal device may refer to the maximum number of layers supported by the terminal (short for the terminal device), or the maximum number of antenna ports supported by the terminal, or the maximum supported transmission rate of the terminal, or the transmission mode supported by the terminal (such as open loop, At least one of a closed loop, a single cell, a collaboration, and the like.
  • the RI bit can be fixed to 4 bits.
  • other values are also possible, and are not limited herein.
  • the base station determines that when the FeCoMP-based CSI feedback is enabled, the second indication information is sent, and the number of RI bits of the terminal is determined to be 4 bits, that is, the RI bit.
  • the number is related to the second indication information.
  • the number of bits of the RI may be determined according to the second indication information, for example, the number of bits of the RI is 4 bits.
  • the base station determines that the FeCoMP-based CSI feedback is not enabled, the second indication information is not sent, and the number of bits of the RI is determined according to the prior art.
  • the number of bits of the RI may be determined according to the prior art.
  • the prior art determines the number of bits of the RI as follows: the number of bits of the RI is related to the number of antenna ports and the capabilities of the terminal device. Specifically, for example, the number of antenna ports is 4, and the capability of the terminal device can support transmission of a maximum of 4 layers, and the number of bits of the RI is 2.
  • the following is an example of configuring two NZP CSI-RS resources, and determining the number of bits of the CRI and/or the number of bits of the RI according to the number of NZP CSI-RS resources and the second indication information.
  • the second indication information indicates that the CSI measurement feedback is enabled to enable CSI feedback based on FeCoMP, and the number of bits of the RI is 4 bits, and the number of bits of the CRI is 2 bits. .
  • the determining, by the terminal, that the CSI measurement behavior is based on the CSI of the FeCoMP may be determined by the method in the foregoing embodiment, for example, by configuring the second indication information, where the second indication information is used to enable FeCoMP-based CSI feedback, or Enable CSI feedback based on coordinated multi-point transmission, or enable CSI feedback based on hybrid transmission mode.
  • the following embodiment is configured by configuring the high-level parameter FeCoMPCSIEnabled, and configuring FeCoMPCSIEnabled.
  • the scheme of TRUE is similar, and specificity will not be described here.
  • This embodiment provides a method for determining the bit meaning of the RI, and the method can be combined with the method for determining the number of RI bits in the first method.
  • the bit mapping of the RI that is, the manner in which the bit meaning of the RI is determined may include one of the following implementations.
  • Embodiment 1 determines the bit meaning of the RI according to the second indication information.
  • the bit meaning of the RI when the terminal receives the second indication information, the bit meaning of the RI may be determined according to the second indication information.
  • Embodiment 2 determines the bit meaning of the RI according to the second indication information and the value of the CRI.
  • the number of bits of the RI may be determined, for example, 4 bits.
  • the implementation 2 (ie, the method 1.2) can also be understood as: determining the bit meaning of the RI according to the number of bits of the RI and the value of the CRI. That is, determining the bit meaning of the RI according to the second indication information and the value of the CRI includes: determining the number of bits of the RI according to the second indication information, and further determining the bit meaning of the RI according to the number of bits of the RI and the value of the CRI.
  • This embodiment provides another method of determining the bit meaning of the RI.
  • the determining method may be combined with other methods for determining the number of bits of the RI in the embodiment, such as method 2.2, or a method for determining the number of bits of the RI in the method 3, and may also be combined with other methods for determining the number of bits of the RI. The combination is not repeated here.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits of the RI when the single RI is reported and/or determining multiple RIs (or RI combinations) when reporting multiple RIs (or RIs).
  • the total number of bits occupied is not limited herein.
  • This embodiment may be implemented independently or in combination with other embodiments, and is not limited thereto.
  • the bit meaning of CRI and/or the bit meaning of RI may be determined according to at least one of the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, and the value of the CRI and the second indication information.
  • the terminal determines the bit meaning of the RI according to the number of antenna ports of the NZP CSI-RS resource, the value of the CRI, and the second indication information. For example, the terminal can determine the number of bits of the RI according to the number of antenna ports of the NZP CSI-RS resource, and determine the bit meaning of the RI according to the number of bits of the RI, the value of the CRI, and the second indication information.
  • the terminal determines the bit meaning of the RI according to the number of antenna ports of the NZP CSI-RS resource, the capability information of the terminal device, and the value of the CRI and the second indication information.
  • the terminal can determine the number of bits of the RI according to the number of antenna ports of the NZP CSI-RS resource and the capability information of the terminal device, and determine the bit meaning of the RI according to the number of bits of the RI, the value of the CRI, and the second indication information.
  • the terminal determines the bit meaning of the RI according to the number of bits of the RI, the value of the CRI, and the second indication information.
  • Determining according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the value of the CRI, and the second indication information. At least one of the bit meaning of the CRI or the bit meaning of the RI. As an example, the bit meaning of the RI may be determined according to the second indication information and the number of bits of the RI.
  • RI bit number is 4 bits:
  • the bit meaning of the RI may be determined according to at least one of the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, and the value of the CRI and the second indication information.
  • the bit meaning of the RI may be determined according to the second indication information and the number of bits of the RI.
  • the terminal may determine the bit meaning of the RI according to the second indication information and the number of bits of the RI.
  • the terminal may determine the bit meaning of the RI according to the number of bits of the RI.
  • the number of bits of the RI does not depend on the value of the CRI, that is, the number of bits of the CRI and the RI can be known by the network device and the terminal device, and can be made.
  • the network device can correctly receive or decode the CRI and RI.
  • the bit number overhead of the RI is relatively small.
  • the bit information reported by the RI is 4 bits and the bit information reported by the CRI is 2 bits, and the bit information reported by the CRI and the RI is 6 bits.
  • the values of the bits of RI and CRI have the following meanings:
  • the predefined value of at least one of the bit information reported by the CRI, the reported bit information of the CRI and the RI, and the bit information reported by the RI in the embodiment is not limited to the predefined value described above, and may also be used. For other predefined values.
  • Manner 2 The network device determines at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI, and notifies the terminal device of the determination.
  • the network device sends, by using the high layer signaling, at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI to the terminal device, where the signaling may be radio resource control. , RRC) signaling or media access control (MAC) signaling.
  • the signaling may be in the configuration information of the CSI process, or the signaling reported by the CQI, or other signaling fields, which is not limited in this embodiment.
  • the signaling may be in the configuration information of the reporting setting, or other signaling fields, which is not limited in this embodiment.
  • the notification may be an index corresponding to at least one of bit information reported by the CRI, bit information reported by the CRI and the RI, and value of the bit information reported by the RI.
  • the index is 1, the bit information reported by the corresponding CRI includes 2 bits, the bit information reported by the RI includes 4 bits, and the reported bit information of the CRI and the RI includes at least one of 6 bits.
  • the index is 2, the bit information corresponding to the corresponding CRI report includes 1 bit, the bit information reported by the RI includes 3 bits, and the reported bit information of the CRI and the RI includes 4 bits.
  • the index is other values, it can also correspond to other situations. Specifically, it is not limited herein.
  • the manner in which the network device determines at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI may be predefined by a protocol, or may be determined based on a preset rule.
  • the terminal device determines at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI, and the network device is based on the same pre-determination as the terminal device, based on the preset rule.
  • the rule determines at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI.
  • the terminal device may determine the CRI according to at least one of the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the second indication information.
  • the number of bits, and/or the number of bits of the RI may be determined according to the number of antenna ports and/or capability information of the terminal device, and the second indication information.
  • the following is an example of configuring more than one NZP CSI-RS resource, and exemplifying the number of bits of the RI according to the number of antenna ports and/or capability information of the terminal device, and the second indication information.
  • Method 2.1 Determine the number of bits of the RI according to the second indication information and whether the number of antenna ports is 1.
  • the number of antenna ports at this time may be greater than one NZP CSI-RS configured.
  • the number of antenna ports is 1, it indicates that the maximum number of antenna ports configured for more than one NZP CSI-RS resource is 1, that is, the number of antenna ports per NZP CSI-RS resource is 1. If the number of antenna ports is greater than 1, it indicates that the maximum number of antenna ports in the configured NZP CSI-RS resources is greater than 1, that is, the number of antenna ports of at least one NZP CSI-RS resource is greater than 1.
  • the value of the number of bits defining the RI is, for example, 4 bits.
  • the terminal may determine that the RI is not fed back, and only the CRI is fed back.
  • the terminal can determine the number of bits of the RI, for example, 4 bits, according to the second indication information and the number of antenna ports is greater than 1.
  • the value of the number of bits is only an example, and other values may be used. Specifically, it is not limited herein.
  • Method 2.2 Determine the number of bits of the RI according to at least one of the number of antenna ports of the NZP CSI-RS resource and the capability information of the terminal device (referred to as the capability of the terminal device).
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits of the RI when the single RI is reported and/or determining multiple RIs (or RI combinations) when reporting multiple RIs (or RIs).
  • the total number of bits occupied is not limited herein.
  • This embodiment may be implemented independently or in combination with other embodiments. Specifically, it is not limited herein.
  • the RI when the number of antenna ports of the NZP CSI-RS resource is 1, the RI is not fed back; if the number of antenna ports of the NZP CSI-RS resource is greater than 1, the number of antenna ports and the capabilities of the terminal device may be used.
  • At least one item and the second indication information determine the number of bits of the RI, for example, the number of antenna ports is 2 and/or the capability of the terminal device is to support the maximum layer number of 2 layers and the second indication information is configured, The number of bits of the RI is 2, or the number of antenna ports of the NZP CSI-RS resource is 4 and/or the capability of the terminal device is to support the maximum number of layers of 4 layers, and the second indication information is configured, the bits of the RI The number is 4.
  • the number of antenna ports of the NZP CSI-RS resource may be the configured NZP CSI-RS.
  • the maximum number of antenna ports corresponding to the resource For example, two NZP CSI-RS resources are configured.
  • the number of antenna ports of one NZP CSI-RS resource is 2, and the number of antenna ports of another NZP CSI-RS resource is 4.
  • the number of RI bits is based on the number of antenna ports. 4 determined.
  • the number of antenna ports corresponding to the resource can be understood as the number of antenna ports used to transmit the resource.
  • the preset rule mentioned in the second mode or the third mode may be one or more of the following preset rules, and specifically, which one or more may be pre-defined for the protocol.
  • the network device and/or the terminal device It can be configured according to the definition of the protocol, or can be determined according to the specific implementation, and can also be notified to the terminal device by using a predetermined rule, such as high-level information such as RRC signaling or MAC signaling, or physical layer channel. Specifically, it is not limited here.
  • Preset rule 1 Determine at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI based on the maximum number of bits of the CRI and the RI.
  • two NZP CSI-RSs are configured as an example.
  • the first NZP CSI-RS resource and the second NZP CSI-RS resource are configured as an example.
  • the following describes how to determine the number of bits in the CRI and/or the bit meaning of the CRI.
  • the determination of the number of bits of the CRI and/or the meaning of the bit of the CRI may be an independent embodiment, or may be combined with other embodiments, and is not limited herein.
  • Determining the method A, the number of bits of the CRI, and/or the bit meaning of the CRI is determined according to the second indication information.
  • the terminal determines the number of bits of the CRI according to the second indication information. And/or the terminal determines the bit meaning of the CRI according to the second indication information.
  • the terminal when the terminal receives the second indication information, the CSI feedback based on the FeCoMP is enabled.
  • the second indication information is configured with the FeCoMPCSIEnabled or the FeCoMPCSIEnabled value being TRUE
  • the terminal can determine the number of CRI bits, for example, the number of bits of the CRI is 2 bits (bit).
  • the base station sends the second indication information, and determines that the CRI bit number of the terminal is 2 bits.
  • the number of bits of the CRI is 2 bits, which is only an example, and other values are also possible, and specific, and are not limited.
  • the terminal when the terminal receives the second indication information, the CSI feedback based on the FeCoMP is enabled.
  • the NZP CSI-RS resource is measured; 11 represents that the reported CSI is measured based on the first NZP CSI-RS resource and the second NZP CSI-RS resource.
  • the base station determines to enable the FeCoMP-based CSI feedback, the first indication information is sent, and the number of CRI bits of the terminal is determined to be 2 bits and/or the bit meaning of the CRI.
  • the number of bits of the CRI is 2 bits, which is only an example, and other values are also possible, and specific, and are not limited.
  • the number of bits of the CRI may be determined according to the prior art, for example, according to the configured NZP.
  • the number of resources K of the CSI-RS is determined, for example, Where K is a positive integer, Indicates rounding up.
  • Determining the method B, the number of bits of the CRI, and/or the bit meaning of the CRI according to at least one of the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI The item and the second indication information are determined.
  • the number of bits of the CRI and/or the bit meaning of the CRI may be determined according to the first two indication information and the number of resources K of the configured NZP CSI-RS.
  • the number of the CRI bits is determined according to the configured number of resources of the NZP CSI-RS. For example, the number of configured NZP CSI-RS resources is 2, the number of bits of the CRI is 2.
  • the second indication information is not configured with the value of FeCoMPCSIEnabled or FeCoMPCSIEnabled
  • the number of bits of the CRI is determined according to the number of resources K of the configured NZP CSI-RS, for example, For example, if the number of resources K of the configured NZP CSI-RS is 2, the number of bits of the CRI is 1.
  • the relationship between the number of bits of the CRI and/or the meaning of the CRI bit and the configured number of resources of the NZP CSI-RS may include at least one of the following:
  • the number of NZP CSI-RS resources under CSI measurement and/or feedback (referred to as CSI measurement feedback) based on coordinated multi-point transmission (or based on FeCoMP or based on hybrid transmission mode or non-coherent transmission mode)
  • CSI measurement feedback based on coordinated multi-point transmission (or based on FeCoMP or based on hybrid transmission mode or non-coherent transmission mode)
  • K the number of bits of the CRI can be
  • NZP CSI-RS resources are configured for CSI measurement and/or feedback (referred to as CSI measurement feedback) based on coordinated multi-point transmission (or based on FeCoMP or based on hybrid transmission mode or based on non-coherent transmission mode).
  • CSI measurement feedback CSI measurement feedback
  • two resources can be arbitrarily selected from the resources of the four NZP CSI-RSs in a coordinated multi-point transmission scenario or FeCoMP.
  • CRI needs a total of instructions
  • the case, that is, the number of bits of the CRI can be Where K is the number of resources of the NZP CSI-RS.
  • the bit meaning of the CRI may be at least one of the following.
  • the value of the CRI is expressed in decimal.
  • the value of the CRI may also be expressed in binary, octal or hexadecimal. The values are all in a hexadecimal example, but are not limited to the hexadecimal numbers:
  • the value of the CRI or the meaning of the bit indicates the meaning of the CSI feedback.
  • the meaning of the CSI feedback may be indicated by another information, such as the first feedback information, that is, the first feedback information is used to indicate the meaning of the CSI feedback.
  • the meaning of the CSI feedback may refer to at least one of a CSI measurement result under multi-point coordinated transmission, a measurement result under single cell transmission, or a CSI measurement result under FeCoMP.
  • the meaning of the CSI feedback may refer to at least one of the first CSI, the second CSI, the third CSI, or the fourth CSI.
  • the first CSI is obtained based on interference power
  • the second CSI is obtained based on interference obtained by a preset algorithm when a resource used for channel measurement is the same as a resource used for interference measurement
  • the third The CSI is obtained based on the interference power and the resources used for the channel measurement, which are obtained by the preset algorithm when the resources used for the interference measurement are the same
  • the fourth CSI is obtained based on the inter-stream interference or the inter-codeword interference
  • the terminal may feed back the first feedback information, where the first feedback information is used to indicate the meaning of the CSI feedback.
  • the base station may determine the meaning of the CSI feedback corresponding to the received CSI by receiving the first feedback information.
  • the implementation may be a separate embodiment, or may be combined with other embodiments, and is not limited herein.
  • the second indication information indicates that CSI measurement based on multi-point coordinated transmission (or based on FeCoMP or based on hybrid transmission mode or based on non-coherent transmission mode) is enabled and/or During feedback, the terminal determines the number of bits of the CRI according to the second indication information and the number of NZP CSI-RS resources.
  • the base station when determining, by the base station, the FeCoMP-based CSI feedback, the base station sends the second indication information, and determines that the CRI bit number of the terminal is Where K is the number of resources of the NZP CSI-RS.
  • the terminal does not receive the second indication information, that is, when CSI measurement and/or feedback based on coordinated multi-point transmission (or based on FeCoMP or based on hybrid transmission mode or based on non-coherent transmission mode) is not enabled, such as when conventional measurement or
  • the number of resources of the NZP CSI-RS is K
  • the number of bits of the CRI may be Where K is a positive integer
  • the number of bits of the CRI may be Or other specified number of bits, or calculated according to other prescribed calculation formulas, specifically, not limited herein;
  • the bit meaning of the CRI may be at least one of the following.
  • the value of the CRI is expressed in decimal.
  • the value of the CRI may also be expressed in binary, octal or hexadecimal. The values are all in a hexadecimal example, but are not limited to the hexadecimal numbers:
  • the number of bits of the CRI may be
  • the maximum number of bits of the CRI is 2.
  • the transmission mode of the DPS+DPB can be corresponding
  • the maximum number of bits of the CRI is 3.
  • the bit information of the RI report may be determined by using one or more of the following methods, and the specific one or more may be determined according to the protocol, or Achieve ok.
  • Manner 1 In the LTE communication system, in the single-point transmission mode, since the maximum number of layers supported by all terminal devices is 8 layers, the maximum number of bits for reporting RI for one CSI is 3, that is, the bit information reported by the RI is 3 bits.
  • the maximum number of bits of the RI is determined according to the maximum number of antenna ports of the configured NZP CSI-RS resources. For example, if the maximum number of antenna ports is 1, the maximum number of bits of the RI is 1, that is, the bit information reported by the RI is 1 bit. For example, if the number of antenna ports is 2 or 4, the maximum number of bits of the RI is 2, RI. The reported bit information is 2 bits. For example, if the maximum number of antenna ports is 8, the maximum number of bits of the RI is 3, and the bit information reported by the RI is 3 bits.
  • the maximum number of bits of the RI is determined according to the maximum number of layers supported by the terminal device that performs CSI measurement and feedback. For example, if the maximum number of layers supported is 1, the maximum number of bits of the RI is 1, that is, the bit information reported by the RI is 1 bit. For example, if the number of supported layers is 2 or 4, the maximum number of bits of the RI is 2. That is, the bit information reported by the RI is 2 bits; for example, the maximum number of layers supported is 8, and the maximum number of bits of the RI is 3, that is, the bit information reported by the RI is 3 bits.
  • the maximum number of bits of the RI corresponding to the NZP CSI-RS may be calculated for each NZP CSI-RS resource, and the maximum number of bits of each RI is obtained, and then The maximum number of bits per RI is added to obtain the bit information reported by the RI.
  • the maximum number of antenna ports among these resources is determined as the number of RI-related antenna ports. Another method for determining the number of RI-related antenna ports is described below. This embodiment may be used as a separate embodiment, or may be combined with other embodiments, and is not limited thereto. It can be understood that the following describes the more detailed determination method:
  • the number of bits of the RI is determined according to the number of antenna ports per CSI-RS resource.
  • the number of bits of the RI may be 1 or
  • the specific RI bit number is 1 or It can be pre-defined by the protocol, or the base station can be notified by signaling. Specifically, it is not limited herein.
  • the number of bits of the RI can be 1, or
  • the number of bits of the RI is Use this
  • the number of bits of the RI may be a bit considering a maximum RI of various CRI values. number.
  • the terminal and/or the base station may determine the maximum number of RI bits under various values of the CRI according to the number of bits of the RI corresponding to each CSI-RS resource, and further determine the number of bits of the fed back RI.
  • the number of antenna ports of one CSI-RS resource is 2, and the number of antenna ports of another CSI-RS resource is 4.
  • the number of bits of the RI may be 2 bits or 3 bits, and the number of bits of the largest RI under various values of the CRI may be satisfied.
  • the specific number of RIs is 2 or 3, which may be predefined by the protocol, or the base station may be notified by signaling. Specifically, it is not limited herein.
  • ⁇ RI1, RI2 ⁇ ⁇ 1, 1 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 2, 1 ⁇ , ⁇ 2, 2 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 3, 2 ⁇ , ⁇ 1, 4 ⁇ , ⁇ 4, 1 ⁇ , ⁇ 3, 3 ⁇ , ⁇ 2, 4 ⁇ ⁇ 4, 2 ⁇ , ⁇ 1, 5 ⁇ , ⁇ 5, 1 ⁇ , ⁇ 3, 4 ⁇ , ⁇ 4 , 3 ⁇ , ⁇ 2, 5 ⁇ , ⁇ 5, 2 ⁇ , ⁇ 4, 4 ⁇ , ⁇ 3, 5 ⁇ , ⁇ 5, 3 ⁇ , ⁇ 2, 6 ⁇ , ⁇ 6, 2 ⁇ , ie RI combined reporting
  • the number of supported combinations is 22, and the bit information reported by the RI is 5 bits.
  • ⁇ RI1, RI2 ⁇ ⁇ 1,0 ⁇ , ⁇ 0,1 ⁇ , ⁇ 2,0 ⁇ , ⁇ 0,2 ⁇ , ⁇ 3,0 ⁇ , ⁇ 0,3 ⁇ , ⁇ 4,0 ⁇ , ⁇ 0,4 ⁇ , ⁇ 5,0 ⁇ , ⁇ 0,5 ⁇ , ⁇ 6,0 ⁇ , ⁇ 0,6 ⁇ , ⁇ 7,0 ⁇ , ⁇ 0,7 ⁇ , ⁇ 7,0 ⁇ , ⁇ 0,7 ⁇ , ⁇ 8,0 ⁇ , ⁇ 0,8 ⁇ , ⁇ 1,1 ⁇ , ⁇ 1,2 ⁇ , ⁇ 2,1 ⁇ , ⁇ 2,2 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 3, 2 ⁇ , ⁇ 1, 4 ⁇ , ⁇ 4, 1 ⁇ , ⁇ 3, 3 ⁇ , ⁇ 2, 4 ⁇ ⁇ 4, 2 ⁇ , ⁇ 1, 5 ⁇ , ⁇ 5, 1 ⁇ , ⁇ 3,4 ⁇ , ⁇ 4,3 ⁇ , ⁇ 2,5 ⁇ , ⁇ 5,2 ⁇ , ⁇ 4,4 ⁇ , ⁇ 3,5 ⁇ , ⁇ 5,3 ⁇ , ⁇ 2,6 ⁇ , ⁇ 6 At least one of , 2 ⁇ ,
  • the bit information reported by the CRI and the RI may be equal to the sum of the bit information reported by the CRI and the bit information reported by the RI.
  • Preset rule 2 jointly consider the CRI and the RI, and determine at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI.
  • the following is an example.
  • the maximum number of bits reported by the RI can be determined according to the number of antenna ports of the first NZP CSI-RS resource and the number of antenna ports of the second NZP CSI-RS resource, such as independently reporting multiple RIs or combining reports. Multiple RIs.
  • the maximum number of bits reported by the RI is 4. Therefore, for the case of CRI, the bit information reported by the CRI is 2 bits, the bit information reported by the RI is 4 bits, and the bit information reported by the CRI and the RI is 6 bits.
  • Preset rule 3 In the NR communication system, at least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI may be determined according to the number of links or the number of measurement channels.
  • the bit reported by the CRI can be 2 bits.
  • the value of the bit information for CRI may be three.
  • the value of the bit information for the RI may be determined according to the number of antenna ports of the NZP CSI-RS resource corresponding to each link. There may be other ways of determining, which are not limited herein.
  • the CSI fed back by the terminal device includes information indicating which transmission performance is better in the information (that is, the CSI obtained under feedback of which measurement behavior is fed back) may be the same as the prior art, or may be different. .
  • This part can be used in combination with other parts in this embodiment, or can be applied independently to provide a CSI feedback method.
  • the CRI fed back in the single-point transmission mode is a CSI-RS resource indication, which is used to indicate which resource has better transmission performance.
  • CRI is used to indicate which resource has better transmission performance or to indicate that multiple resources have better joint transmission performance.
  • the feedback index is a feedback indication
  • a feedback index indicates a transmission indication of a resource under definition. Specifically, it may be at least one of the following designs, specifically, which design or combination of several designs may be defined by the protocol, or determined according to the system design:
  • a reporting setting is associated with multiple resource settings, and a resource setting includes a resource set, a resource set includes a resource for measuring a channel, or a resource set includes one or more resources related to a CSI measurement result.
  • the feedback index corresponding to the resource setting index can be fed back to indicate which resource has better transmission performance or indicates that multiple resources have better joint transmission performance.
  • a reporting setting is associated with multiple resource settings, and a resource setting includes one or more resource sets, a resource set includes a resource for measuring a channel, or a resource set includes one or more related to a CSI measurement result.
  • Resources At this time, feedback feedback indexes corresponding to the resource setting index and the resource set index can be used to indicate which resource has better transmission performance or indicate that multiple resources have better joint transmission performance.
  • the manner of feeding back the resource setting index and the resource set index may be a joint indication or an independent indication, and the specific feedback manner may be configured or predefined by the network device.
  • a reporting setting is associated with multiple resource settings, and one resource setting includes one or more resource sets, one resource set includes resources of one or more measurement channels, or one resource set includes one or more CSI measurement results.
  • Related resources resources related to each CSI measurement result may include one or more resources.
  • feedback corresponding to the resource setting index, the resource set index, and the feedback index of the resource index indicate which resource has better transmission performance or indicates that the joint transmission performance of multiple resources is better.
  • the feedback setting of the resource setting index, the resource set index, and the resource index may be performed by using a joint indication or an independent indication, or the two indexes of the three are combined indications, and the specific feedback mode and the specific mapping coding order may be by the network.
  • Bit bit 10 represents the resource index.
  • the resources related to each CSI measurement result include resources of one or more measurement channels, indicating that the multi-point coordinated transmission mode transmission performance under the multiple resources is better.
  • a reporting setting is associated with a resource setting, and the resource setting includes one or more resource sets, each resource set includes a resource for measuring a channel, or each resource set includes one or more related CSI measurement results. Resources. At this time, by feedback feedback index corresponding to the resource set index, it is indicated which resource has better transmission performance or indicates that multiple resources have better joint transmission performance.
  • a reporting setting is associated with a resource setting, and the resource setting includes one or more resource sets, each resource set includes resources of one or more measurement channels, or each resource set includes one or more CSI measurements As a result of the related resources, one or more resources related to each CSI measurement result.
  • the manner in which the resource set index and the resource index are fed back may be a joint indication or an independent indication.
  • a reporting setting is associated with multiple resource settings, and each resource setting includes a resource set, the resource set includes resource resources of one or more measurement channels, or the resource set includes one or more CSI measurement results related Resource resource, one or more resource resources related to each CSI measurement result, by feedback corresponding to the feedback setting of the resource setting index and the resource index to indicate which resource has better transmission performance or indicates joint performance of multiple resources. better.
  • a new feedback amount such as a resource set index (RSI) or a name of a feedback amount following the CRI may be defined when the resource setting index is fed back; when the resource set index is fed back, a new one may be defined.
  • the feedback amount is, for example, RSI1, or the name of the feedback amount along the CRI; when the resource index is fed back, the CRI can be used, which is not limited in this embodiment.
  • the feedback mode and/or the mapping coding sequence used for the feedback index may be configured by the base station or predefined. This embodiment is not limited thereto.
  • the embodiment of the present application also provides a hypothetical scenario: the terminal device supports measurement and feedback of CSI in the hybrid mode, and supports measurement and feedback of CSI in the single-point transmission mode, based on case 2, that is, the network device determines the need
  • the terminal device measures and feeds back the CSI in the single-point transmission mode, and the condition that the configuration information that the network device sends to the terminal device meets.
  • the configuration information satisfies at least one of the following conditions 1) to 8
  • the terminal device can learn how to perform CSI measurement and feedback according to configuration information that satisfies at least one of the following conditions 1) to 8), that is, learn Perform CSI measurements and feedback in single-point transmission mode. It can be understood that this part can be applied in combination with other parts of the embodiments of the present application, or can be applied separately.
  • the configuration information includes one classA NZPCSI-RS resource.
  • the configuration information includes M1 class B NZP CSI-RS resources, M1 is greater than or equal to 1, and CSI measurement behavior indication information and/or CSI feedback related information indication information.
  • the configuration information includes M2 class B NZP CSI-RS resources, and M2 is greater than or equal to 1.
  • the protocol may also be predefined as the measurement and feedback in the single point transmission mode.
  • the configuration information includes CSI measurement behavior indication information and/or CSI feedback related information indication information.
  • the CSI measurement behavior indication information indicates the CSI measurement behavior in the single point transmission mode
  • the CSI feedback related information indication information indication information indicates the CSI feedback related information in the single point transmission mode.
  • the CSI measurement behavior indication information indicates that at least one of the first CSI, the second CSI, and the third CSI is measured
  • the CSI feedback related information indication information includes joint coding for the CRI and the RI.
  • the configuration information includes the type of the QCL of the antenna port being type A or type B.
  • the configuration information includes the number of QCLs indicated in the PQI being equal to one.
  • the configuration information includes that the number of parameter groups indicated in the PQI is equal to one.
  • the configuration information includes a reporting setting associated with 1 channel link or 1 RS setting or 1 RS set.
  • the configuration information includes indication information, which indicates that the terminal device performs CSI measurement and feedback in the single point transmission mode.
  • the indication information indicates that the current CSI process is a CSI process in the single-point transmission mode, and the terminal device learns to perform CSI measurement and feedback in the single-point transmission mode according to the indication information.
  • the determined CSI measurement behavior includes measuring at least one of the first CSI, the second CSI, and the third CSI.
  • the related explanations of the first CSI, the second CSI, and the third CSI have been described in the foregoing, and are not described herein.
  • Determining CSI feedback related information includes: joint coding for CRI and RI.
  • the network device determines that the terminal device needs to measure and feed back CSI in the single-point transmission mode, and the related explanation may be combined with the situation-based one, that is, the network device determines that the terminal device needs to measure and feed back in the hybrid mode.
  • CSI no more details here.
  • the embodiment of the present application also provides a hypothetical scenario: the terminal device supports measurement and feedback of CSI in the coordinated multi-point transmission mode, and supports measurement and feedback of CSI in the single-point transmission mode, based on case 3, that is, the network.
  • the device determines the condition that the terminal device needs to measure and feed back the CSI in the coordinated multi-point transmission mode, and the configuration information that the network device sends to the terminal device.
  • the configuration information satisfies at least one of the following conditions 1) to 11), and the terminal device can learn how to perform CSI measurement and feedback according to configuration information that satisfies at least one of the following conditions 1) to 11), that is, know Perform CSI measurements and feedback in a coordinated multi-point transmission mode.
  • this part can be applied in combination with other parts of the embodiments of the present application, or can be applied separately.
  • the configuration information includes N11 non-zero power (NZP) CSI-RS resources of class A, and the N11 is a positive integer greater than or equal to 2.
  • the configuration information includes N21 class B NZP CSI-RS resources, and CSI measurement behavior indication information and/or CSI feedback related information indication information, where N21 is a positive integer greater than or equal to 2.
  • the configuration information includes N22 class B NZP CSI-RS resources, and N22 is greater than or equal to 1.
  • the protocol may also be predefined as the measurement and/or feedback in the coordinated multi-point transmission mode.
  • the configuration information includes CSI measurement behavior indication information and/or CSI feedback related information indication information.
  • the CSI measurement behavior indication information indicates the CSI measurement behavior in the multipoint coordinated transmission mode
  • the CSI feedback related information indication information indication information indicates the CSI feedback related information in the coordinated multipoint transmission mode.
  • the CSI measurement behavior indication information indicates that the fourth CSI is measured, and the fourth CSI is obtained based on inter-stream interference or inter-codeword interference
  • the CSI feedback-related information indication information includes joint coding or independent coding for CRI and RI.
  • the configuration information includes the type of the QCL of the antenna port being type C.
  • the configuration information includes that the type of the QCL of the antenna port is type C and the number of included CSI processes is 1.
  • the configuration information includes that the number of QCLs in the PQI is greater than M3, and the M3 is a positive integer greater than or equal to 1.
  • the configuration information includes that the parameter parameter number group number in the PQI is greater than P1, and the P1 is a positive integer greater than or equal to 1.
  • the configuration information includes at least one of bit information reported by the CRI, bit information reported by the CRI and the RI, and bit information reported by the RI.
  • the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI are predefined values, and the configuration information is not required at this time. At least one of the bit information reported by the CRI, the bit information reported by the CRI and the RI, and the bit information reported by the RI, when the configuration information satisfies the condition 8), it may be determined that the network device needs the terminal device to perform the CSI in the coordinated multi-point transmission mode.
  • the measurement and feedback, and the bit information included in the configuration information is bit information when the terminal device performs CSI measurement and feedback in the coordinated multi-point transmission mode. Otherwise, when the configuration information satisfies the condition 8), it is also required to combine other information in the configuration information to determine that the network device needs the terminal device to perform CSI measurement and feedback in the coordinated multi-point transmission mode.
  • the configuration information includes a reporting setting associated with at least one of Q channel links, T RS settings, and S RS sets, where Q is a positive integer greater than or equal to 2, and T is a positive integer greater than or equal to 2. , S is a positive integer greater than or equal to 2.
  • the configuration information includes indication information, which indicates that the terminal device performs CSI measurement and feedback in the coordinated multi-point transmission mode.
  • the indication information indicates that the current CSI process is a CSI process in the coordinated mode, and the terminal device learns to perform CSI measurement and feedback in the coordinated mode according to the indication.
  • Determining the CSI measurement behavior includes measuring the fourth CSI.
  • the fourth CSI is obtained based on inter-stream interference or inter-codeword interference.
  • Determining CSI feedback related information includes: joint coding or independent coding for CRI and RI, and/or mapping of CRI and RI to time-frequency resources.
  • the network device determines that the terminal device needs to measure and feed back CSI in the coordinated multi-point transmission mode, and the related explanation may be combined with the case-based, that is, the network device determines that the terminal device needs to be measured in the hybrid mode. Feedback on CSI is not repeated here.
  • the above several hypothetical scenarios, which ones are specifically adopted, may be predefined by the protocol, or determined according to the system implementation.
  • the base station may be notified to the terminal device by using a signaling, and is not limited herein.
  • FIG. 5-3 illustrates an interaction process between the terminal device and the network device in the communication method, including the following steps:
  • Step 511 The network device sends the first indication information to the terminal device, where the terminal device receives the first indication information, where the first indication information is used to enable CSI feedback based on the enhanced enhancement multiple points (FeCoMP). Or, enable CSI feedback based on coordinated multi-point transmission, or enable CSI feedback based on hybrid transmission mode;
  • FeCoMP enhanced enhancement multiple points
  • Step 512 The terminal device determines CSI feedback related information according to the first indication information, where the CSI feedback related information includes a coding manner for CRI and RI, a number of bits of CRI, a number of bits of RI, a bit meaning of CRI, or At least one of the bit meanings of the RI.
  • the network device is used as the base station, and all the solutions may also be applied to the network device.
  • the network device may be other network devices. If not specified, the network device and the base station may replace each other.
  • the terminal device, the terminal, and the UE can be replaced each other unless otherwise specified.
  • This embodiment may be an independent embodiment, and may be combined with other embodiments in the present application, and is not limited herein. It should be noted that the numbering of the steps in this embodiment is only for distinguishing the step numbers in FIG. 5-1, and does not mean that the steps of the embodiment are completed after the steps shown in FIG. 5-1.
  • the first indication information is used to enable the CSI feedback of the FeCoMP, or the CSI feedback based on the coordinated multi-point transmission is enabled, or the CSI feedback in the hybrid transmission mode is enabled. It can be understood that the first indication information is used to enable FeCoMP based CSI measurement and/or feedback, or enable CSI measurement and/or feedback based on coordinated multi-point transmission, or enable CSI measurement and/or feedback based on hybrid transmission mode. It can also be understood that the terminal device can determine the CSI measurement behavior according to the first indication information.
  • enabling FeCoMP-based CSI feedback means supporting at least CSI measurement feedback of FeCoMP. For example, support only CSI measurement feedback under FeCoMP, or both CSI measurement feedback under FeCoMP and CSI measurement feedback under single cell.
  • Enabling CSI measurement and/or feedback based on coordinated multi-point transmission may refer to CSI measurement and/or feedback of at least one of non-coherent joint transmission, coherent transmission or other coordinated multi-point transmission. Or it may refer to CSI measurement and/or feedback based on other multipoint coordinated transmission modes.
  • Enabling CSI feedback based on the hybrid transmission mode means supporting at least CSI measurement and/or feedback in two transmission modes. For example, FeCoMP and CSI measurement and/or feedback under a single cell, or CSI measurement and/or feedback under single-cell and multi-point cooperation, or CSI measurement and/or feedback based on any other two transmission modes.
  • CSI measurement also referred to as CSI measurement behavior
  • CSI feedback also referred to as CSI reporting
  • the number of bits of the CRI and/or the number of bits of the RI may be determined according to the CSI measurement behavior and the CSI feedback related information.
  • the CSI measurement behavior may be a FeCoMP-based CSI measurement, wherein the CSI measurement of the FeCoMP can be understood as a non-coherent joint transmission (JT) measurement.
  • the measurement of FeCoMP includes, for example, measuring inter-stream interference and conventional measurement (such as single-cell measurement), and specific examples are as follows:
  • the network device configures two NZP CSI-RS resources and one interference measurement resource (such as ZP CSI-RS resources) for the terminal device.
  • the FeCoMP-based CSI feedback may include the following:
  • the CSI report is for the first NZP CSI-RS resource, and the CSI report can be performed by using the prior art reporting method.
  • the CSI report is for the second NZP CSI-RS resource, and the CSI report can be performed by using the prior art reporting method.
  • the terminal device can calculate two sets of CSI sets for two NZP CSI-RS resources. Each set of CSI sets corresponds to one codeword.
  • the specific calculation may adopt the following method. For each NZP CSI-RS resource or codeword, the terminal device determines the RI and/or PMI, and calculates the CQI of each resource or codeword. Interference between codewords or resources needs to be considered when calculating CQI. For example, inter-codeword or inter-resource interference is obtained by channel measurement and precoding matrix of another resource or codeword in two NZP CSI-RS resources.
  • the precoding matrix may be a unit matrix or a measured PMI or a PMI indicated by the base station, and is not limited herein.
  • CQI1
  • CQI2
  • H1 is the channel measured by the first NZP CSI-RS resource
  • W1 is the precoding matrix measured by the first NZP CSI-RS resource
  • H2 is the channel measured by the second NZP CSI-RS resource
  • W2 is a precoding matrix measured by the second NZP CSI-RS resource
  • I1 and I2 are interferences obtained by interference measurement resources.
  • Other calculation methods are not limited.
  • the measurement behavior based on CSI under FeCoMP may not include conventional measurements (such as single cell measurement). Specifically, it is not limited herein.
  • Conventional measurements in the present application may refer to CSI measurements that are not considered to be interfered with NZP (non zero power) CSI-RS resource measurements. / or feedback. For example, it may be that only CSI measurement and/or feedback under ZP (zero power) CSI-RS resource measurement interference is considered.
  • the first indication information may be implemented by using the parameter FeCoMPCSIEnabled. If the parameter exists (that is, the parameter is configured), or the value of the parameter is TRUE, the CSI measurement indicated by the first indication information is indicated. The behavior is based on the CSI measurement of FeCoMP, and if the parameter does not exist (ie, the parameter is not configured), or the value of the parameter is FALSE, it indicates that the CSI measurement behavior indicated by the first indication information is a conventional measurement, ie, Not a CSI measurement based on FeCoMP.
  • the first indication information is used to enable CSI feedback based on enhanced enhancement coordination (FeCoMP), or enable CSI feedback based on coordinated multi-point transmission, or enable CSI feedback based on hybrid transmission mode Specifically, it may be that if the parameter is configured, it indicates that CSI feedback based on enhanced enhancement coordination (FeCoMP) is enabled, or CSI feedback based on coordinated multi-point transmission is enabled, or the enabling is based on CSI feedback in mixed transmission mode. Or if the value of the parameter is TRUE, enable CSI feedback based on enhanced multi-point cooperation (FeCoMP), or enable CSI feedback based on coordinated multi-point transmission, or enable hybrid transmission based on hybrid transmission. CSI feedback in mode.
  • FeCoMP enhanced enhancement coordination
  • FeCoMP enhanced multi-point cooperation
  • the CSI feedback related information may include a CSI reporting mode, such as periodic reporting or aperiodic reporting, or semi-persistent reporting, or reporting mode 1-0, or 1-1, or 2-0, or 2-1, or 2-2, or 3-0, or 3-1, or 3-2, and so on.
  • a CSI reporting mode such as periodic reporting or aperiodic reporting, or semi-persistent reporting, or reporting mode 1-0, or 1-1, or 2-0, or 2-1, or 2-2, or 3-0, or 3-1, or 3-2, and so on.
  • the CSI reporting mode may refer to a CSI reporting manner, such as at least one of periodic, aperiodic, and semi-static.
  • the CSI reporting mode can also refer to the content reported by the CSI, such as reporting CQI, reporting CQI and PMI, reporting full CQI, reporting sub-band CQI, reporting full-band PMI, reporting sub-band PMI, UE selecting sub-band reporting, base station configuration At least one of the sub-reports.
  • the CSI reporting mode may also refer to a CSI reporting method and a collection of reported content.
  • the CSI in the aperiodic CSI reporting mode may be fed back on the PUSCH (Physical Uplink Shared Channel), and the CSI in the periodic CSI reporting mode may be fed back on the PUCCH, or in the PUCCH (Physical Uplink Control Channel) and the PUSCH. Feedback can be made on the PUSCH when it exists at the same time.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the reporting mode can be similar to the reporting mode in LTE.
  • the specific examples are as follows:
  • Table 1 Feedback types for CQI and PMI in PUSCH CSI reporting mode
  • Report mode 1-0 refers to full-band CQI reporting, and does not feed back PMI.
  • the reporting mode 1-1 refers to the full-band CQI reporting, and the full PMI reporting.
  • the reporting mode 1-2 refers to the full-band CQI reporting, and the sub-band PMI reporting.
  • the reporting mode 2-0 means that the UE selects the CQI report reported by the sub-band CQI, and does not feed back the PMI.
  • the reporting mode 2-2 is that the UE selects the CQI report reported by the sub-band CQI, and the sub-band PMI reports.
  • the reporting mode 3-0 refers to the CQI reporting reported by the high-level configuration sub-band CQI, and does not feed back the PMI.
  • the reporting mode 3-1 refers to the CQI report reported by the CQI in the high-level configuration sub-band, and is reported by the PMI.
  • the report mode 3-2 refers to the CQI report reported by the high-level configuration sub-band CQI, and the sub-band PMI reports.
  • the first possibility determines the CSI measurement behavior. For example, if FeCoMPCSIEnabled is configured, or the value of FeCoMPCSIEnabled is TRUE, and the aperiodic reporting mode is configured, the measurement and/or feedback based on FeCoMP-based CSI is adopted; and if the value of FeCoMPCSIEnabled or FeCoMPCSIEnabled is TRUE, and The periodic reporting mode is configured, or the value of FeCoMPCSIEnabled or FeCoMPCSIEnabled is not configured to FALSE, and the measurement and/or feedback is performed according to the prior art.
  • the number of bits of the CRI, the bit of the RI may be determined according to the manner in which the present application is to be provided.
  • the number, the bit meaning of the CRI, or at least one of the bit meanings of the RI, that is, at least one of the number of bits of the CRI, the number of bits of the RI, the meaning of the bit of the CRI, or the meaning of the bit of the RI An indication is relevant. Further, it can also be related to the reporting mode.
  • the second possibility is that the CSI measurement behavior can be determined without the configuration of the reporting mode.
  • the reporting mode is specified in advance. If the value of FeCoMPCSIEnable or FeCoMPCSIEnable is TRUE, the restriction can only be configured in the aperiodic reporting mode. In this case, whether FeCoMPCSIEnabled or FeCoMPCSIEnabled is set to TRUE can be used to determine whether to use FeCoMP-based measurement and reporting. That is, if FeCoMPCSIEnabled or FeCoMPCSIEnabled is configured as TRUE, it is determined that FeCoMP-based measurement is used. / or feedback, and if the value of FeCoMPCSIEnabled or FeCoMPCSIEnabled is not configured to FALSE, then it is determined and/or feedback according to the prior art.
  • the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or At least one of the bit meanings of the RI that is, at least one of the number of bits of the CRI, the number of bits of the RI, the bit meaning of the CRI, or the bit meaning of the RI is related to the first indication information.
  • the terminal device may use at least one of the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the first indication.
  • the information determines at least one of the number of bits of the CRI, or the number of bits of the RI. That is, the number of bits of the CRI, and/or the number of bits of the RI and the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or at least one of the values of the CRI
  • the item and the first indication information are related.
  • the terminal device may use at least one of the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the value of the CRI, and the first indication.
  • Information determining the bit meaning of the CRI, and/or the bit meaning of the RI. That is, the bit meaning of the CRI, and/or the bit meaning of the RI and the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the CRI At least one of the values is associated with the first indication.
  • bit meaning may refer to the information feature included in the bit.
  • the bit meaning of the RI may refer to a single RI report, or may refer to an RI (also referred to as RI Combination) report under cooperation, or may refer to multiple RI reports.
  • the bit meaning of the RI may also refer to the mapping of the value of the RI to the bit of the RI.
  • the bit meaning of the RI may refer to the number of RIs fed back, for example, feedback of one RI, or two RIs, or multiple RIs, and the like.
  • the following describes the determination of CSI feedback related information according to the first indication information. There are three cases:
  • Case 1 For CSI feedback based on multi-point coordinated transmission mode (or based on FeCoMP or hybrid transmission mode), CRI and RI are jointly coded.
  • Case 2 CRI and RI are coded separately for CSI feedback based on multipoint coordinated transmission mode (or based on FeCoMP or hybrid transmission mode).
  • Case 3 For CSI feedback based on a coordinated multi-point transmission mode (or based on FeCoMP or based on a hybrid transmission mode), if the CSI includes at least two RIs, at least one of the RIs included in the CRI and the CSI is jointly encoded. The remaining RIs included in the CSI may not be jointly encoded with the CRI.
  • the following is a description of how to determine the coding mode of the CRI and the RI.
  • the embodiment may be an independent embodiment, or may be combined with other embodiments, and is not limited herein.
  • the CSI feedback related information in the embodiment of the present application may include at least one of the following: CRI and RI adopt joint coding; CRI and RI respectively encode; CRI includes at least two RIs, and CRI and at least one of at least two RIs are jointly coded, Optionally, in this manner, the remaining RIs in the at least one RI are not jointly encoded with the CRI. For example, when there are two RIs, the CRI and one of the RIs can be jointly coded, and the other RI is not coded jointly with the CRI.
  • the terminal device can determine the coding manner of the CRI and the RI according to the first indication information, for example, the determined coding manner for the CRI and the RI is: the CRI includes at least two of the at least two RI, the CRI, and the at least two RIs.
  • the RI is jointly coded, or the determined coding method for CRI and RI is: CRI and RI are respectively encoded. Specifically, whether "CRI and at least one RI of at least two RIs are jointly coded" or "CRI and RI coded separately" may be determined according to the situation adopted by the protocol.
  • the coding mode determined according to the first indication information is jointly coded from the CRI and one of the at least two RIs, and the remaining RIs are not jointly coded with the CRI, and the CRI and the RI are jointly coded to determine the two options, that is, if After receiving the first indication information, the terminal determines, according to the first indication information, that the coding mode is CRI and one of the at least two RIs is jointly coded, and the remaining RIs are not jointly coded with the CRI, if the terminal does not receive the first indication information or After receiving other indication information, the terminal determines that the coding mode is CRI and RI joint coding.
  • the coding mode determined according to the first indication information is determined from CRI and RI respectively, and CRI and RI joint coding, that is, when the terminal receives the first indication information, determining, according to the first indication information, that the coding mode is CRI If the terminal does not receive the first indication information or receives other indication information, the terminal determines that the coding mode is CRI and RI joint coding.
  • the above coding method is only an example, and other coding methods are also possible, and specific, and are not limited herein.
  • the joint coding in the embodiment of the present application may also refer to joint feedback.
  • Independent coding in the embodiment of the present application refers to independent coding with X, also referred to as non-co-coding with X (or not combined with X), or separately from X, and X is a collection of other information or other information.
  • absolute independent coding which is not coded jointly with any other information, can be independent coding under joint feedback, or can be independent feedback (referred to as Y independent feedback, also known as Y non-joint feedback, or , separate feedback from Y, Y is a collection of other information or other information, such as absolute independent feedback, refers to independent coding under no feedback with any other information.
  • the joint feedback may refer to feedback on the same time unit, or may refer to feedback on the same channel resource of the same time unit.
  • Joint coding may refer to channel coding after bit concatenation.
  • Independent feedback can refer to feedback on different time units, or can be feedback on different channel resources of the same time unit.
  • Independent coding may refer to independent channel coding.
  • the RI independent feedback and/or the RI independent coding in the embodiment of the present application may also be referred to as RI and CRI independent feedback and/or coding, which may be combined with CRI feedback and/or joint coding, or Feedback with and/or separately from CRI, but does not limit joint feedback and/or joint coding with other CSI feedback information.
  • RI independent feedback and/or independent feedback may refer to RI and CRI independent coding and/or independent feedback, and RI is not combined with any CSI feedback and/or joint coding, or may also refer to RI and CRI independent coding and/or Independently, the RI can also be combined with the PMI, the precoding type indicator (PTI), the CQI, and the like, and the joint encoding is not limited.
  • the following describes five implementations for determining the number of bits of CRI and/or RI, wherein the first implementation (method 1) and the second implementation (method 2) may be the solution for the above case, the third The implementation (method 3) and the fourth implementation (method 4) may be for the above scenario.
  • the fifth implementation method (method 5) may be the solution for the above case three. Further, a method of determining the bit meaning of CRI and/or RI is also introduced.
  • the solution that is determined according to the first indication information in the embodiment of the present application may be replaced with a solution that is determined according to the CSI measurement behavior.
  • the scheme according to the first indication information in the embodiment of the present application may be replaced by determining according to the CSI measurement behavior. The scheme, which is determined according to the CSI measurement behavior, is not described here.
  • the CSI measurement behavior may be replaced by FeCoMP-based CSI measurement and/or feedback, or CSI measurement and/or feedback based on coordinated multi-point transmission, or based on CSI measurement and/or feedback in mixed transmission mode.” That is, "When the first indication information is configured with FeCoMPCSIEnabled or FeCoMPCSIEnabled, the value is TRUE", and the "CSI measurement behavior is based on FeCoMP-based CSI measurement and/or feedback, or CSI measurement and/or feedback based on multi-point coordinated transmission. Or, based on the CSI measurement and/or feedback in the hybrid transmission mode, the embodiments of the present application are also applicable, and details are not described herein.
  • FeCoMPCSIEnabled is configured
  • FeCoMPCSIEnabled is TRUE
  • FeCoMPCSIEnabled and cqi-ReportModeAperiodic are configured
  • the CSI measurement and/or feedback based on coordinated multi-point transmission described in the embodiments of the present application is also applicable to FeCoMP-based CSI measurement and/or feedback, or is also applicable to CSI measurement and/or feedback based on hybrid transmission mode. Or, it is also applicable to CSI measurement and/or feedback based on non-coherent transmission, and is not limited herein.
  • the first implementation manner ie, method 1): determining the number of bits of the CRI according to the first indication information, and/or the number of bits of the RI.
  • the number of bits of the CRI and/or the number of bits of the RI may be determined according to the first indication information.
  • the number of bits of the RI may be determined according to the first indication information.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits when the single RI is reported and/or determining the multiple RIs (or RI combinations) when multiple RIs (or RIs are combined) are reported.
  • the total number of bits specifically, is not limited herein.
  • the capability of the terminal device may refer to the maximum number of layers supported by the terminal (short for the terminal device), or the maximum number of antenna ports supported by the terminal, or the maximum supported transmission rate of the terminal, or the transmission mode supported by the terminal (such as open loop, At least one of a closed loop, a single cell, a collaboration, and the like.
  • the RI bit can be fixed to 4 bits.
  • other values are also possible, and are not limited herein.
  • the base station determines that when the FeCoMP-based CSI feedback is enabled, the first indication information is sent, and the number of RI bits of the terminal is determined to be 4 bits, that is, the RI bit.
  • the number is related to the first indication information.
  • the number of bits of the RI may be determined according to the first indication information, for example, the number of bits of the RI is 4 bits.
  • the base station determines that the FeCoMP-based CSI feedback is not enabled, the first indication information is not sent, and the number of bits of the RI is determined according to the prior art.
  • the number of bits of the RI may be determined according to the prior art.
  • the prior art determines the number of bits of the RI as follows: the number of bits of the RI is related to the number of antenna ports and the capabilities of the terminal device. Specifically, for example, the number of antenna ports is 4, and the capability of the terminal device can support transmission of a maximum of 4 layers, and the number of bits of the RI is 2.
  • the following describes how to determine the number of bits in the CRI and/or the bit meaning of the CRI.
  • the determination of the number of bits of the CRI and/or the meaning of the bit of the CRI may be an independent embodiment, or may be combined with other embodiments, and is not limited herein.
  • Determining the method A, the number of bits of the CRI, and/or the bit meaning of the CRI is determined according to the first indication information.
  • the terminal determines the number of bits of the CRI according to the first indication information. And/or the terminal determines the bit meaning of the CRI according to the first indication information.
  • the terminal when the terminal receives the first indication information and enables CSI feedback based on the FeCoMP, for example, when the first indication information is configured with FeCoMPCSIEnabled or FeCoMPCSIEnabled, the terminal can determine the number of CRI bits, for example, the number of bits of the CRI is 2 bits (bit).
  • the base station when determining, by the base station, the FeCoMP-based CSI feedback, the base station sends the first indication information, and determines that the CRI bit number of the terminal is 2 bits.
  • the number of bits of the CRI is 2 bits, which is only an example, and other values are also possible, and specific, and are not limited.
  • the base station determines to enable the FeCoMP-based CSI feedback
  • the first indication information is sent, and the number of CRI bits of the terminal is determined to be 2 bits and/or the bit meaning of the CRI.
  • the number of bits of the CRI is 2 bits, which is only an example, and other values are also possible, and specific, and are not limited.
  • the number of bits of the CRI may be determined according to the prior art, for example, according to the configured NZP.
  • the number of resources K of the CSI-RS is determined, for example, Where K is a positive integer, Indicates rounding up.
  • Determining the method B, the number of bits of the CRI, and/or the bit meaning of the CRI according to at least one of the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI The item and the first indication information are determined.
  • the number of bits of the CRI and/or the bit meaning of the CRI may be determined according to the first indication information and the number K of resources of the configured NZP CSI-RS.
  • the number of the CRI bits is determined according to the configured number of resources of the NZP CSI-RS. For example, the number of configured NZP CSI-RS resources is 2, the number of bits of the CRI is 2.
  • the first indication information is not configured with FeCoMPCSIEnabled or the value of FeCoMPCSIEnabled is FALSE
  • the number of bits of the CRI is determined according to the number of resources K of the configured NZP CSI-RS, for example, For example, if the number of resources K of the configured NZP CSI-RS is 2, the number of bits of the CRI is 1.
  • the relationship between the number of bits of the CRI and/or the meaning of the CRI bit and the configured number of resources of the NZP CSI-RS may include at least one of the following:
  • the number of NZP CSI-RS resources under CSI measurement and/or feedback (referred to as CSI measurement feedback) based on coordinated multi-point transmission (or based on FeCoMP or based on hybrid transmission mode or non-coherent transmission mode)
  • CSI measurement feedback based on coordinated multi-point transmission (or based on FeCoMP or based on hybrid transmission mode or non-coherent transmission mode)
  • K the number of bits of the CRI can be
  • NZP CSI-RS resources are configured for CSI measurement and/or feedback (referred to as CSI measurement feedback) based on coordinated multi-point transmission (or based on FeCoMP or based on hybrid transmission mode or based on non-coherent transmission mode).
  • CSI measurement feedback CSI measurement feedback
  • two resources can be arbitrarily selected from the resources of the four NZP CSI-RSs in a coordinated multi-point transmission scenario or FeCoMP.
  • CRI needs a total of instructions
  • the case, that is, the number of bits of the CRI can be Where K is the number of resources of the NZP CSI-RS.
  • the bit meaning of the CRI may be at least one of the following.
  • the value of the CRI is expressed in decimal.
  • the value of the CRI may also be expressed in binary, octal or hexadecimal. The values are all in a hexadecimal example, but are not limited to the hexadecimal numbers:
  • the value of the CRI can be indicated by 4 bits, and the specific bit map can be any one of the following table.
  • the value of the number of bits of the CRI is only an example.
  • the bit meaning of the CRI is only an example.
  • the correspondence between the bit value in the table and the value of the CRI is only an example, other values or correspondences, and not limited.
  • the value of the CRI or the meaning of the bit indicates the meaning of the CSI feedback.
  • the meaning of the CSI feedback may be indicated by another information, such as the first feedback information, that is, the first feedback information is used to indicate the meaning of the CSI feedback.
  • the meaning of the CSI feedback may refer to at least one of a CSI measurement result under multi-point coordinated transmission, a measurement result under single cell transmission, or a CSI measurement result under FeCoMP.
  • the meaning of the CSI feedback may refer to at least one of the first CSI, the second CSI, the third CSI, or the fourth CSI.
  • the first CSI is obtained based on interference power
  • the second CSI is obtained based on interference obtained by a preset algorithm when a resource used for channel measurement is the same as a resource used for interference measurement
  • the third The CSI is obtained based on the interference power and the resources used for the channel measurement, which are obtained by the preset algorithm when the resources used for the interference measurement are the same
  • the fourth CSI is obtained based on the inter-stream interference or the inter-codeword interference
  • the terminal may feed back the first feedback information, where the first feedback information is used to indicate the meaning of the CSI feedback.
  • the base station may determine the meaning of the CSI feedback corresponding to the received CSI by receiving the first feedback information.
  • the implementation may be a separate embodiment, or may be combined with other embodiments, and is not limited herein.
  • the first indication information indicates that CSI measurement based on multi-point coordinated transmission (or based on FeCoMP or based on hybrid transmission mode or based on non-coherent transmission mode) is enabled and/or During feedback, the terminal determines the number of bits of the CRI according to the first indication information and the number of NZP CSI-RS resources.
  • the base station when determining, by the base station, the FeCoMP-based CSI feedback, the base station sends the first indication information, and determines that the CRI bit number of the terminal is Where K is the number of resources of the NZP CSI-RS.
  • the terminal does not receive the first indication information, that is, when CSI measurement and/or feedback based on multi-point coordinated transmission (or based on FeCoMP or based on hybrid transmission mode or based on non-coherent transmission mode) is not enabled, such as when conventional measurement or
  • the number of resources of the NZP CSI-RS is K
  • the number of bits of the CRI may be Where K is a positive integer
  • the number of bits of the CRI may be Or other specified number of bits, or calculated according to other prescribed calculation formulas, specifically, not limited herein;
  • the bit meaning of the CRI may be at least one of the following.
  • the value of the CRI is expressed in decimal.
  • the value of the CRI may also be expressed in binary, octal or hexadecimal. The values are all in a hexadecimal example, but are not limited to the hexadecimal numbers:
  • the value of the CRI can be indicated by 3 bits, and the specific bit map can be any one of the following table.
  • the value of the number of bits of the CRI is only an example.
  • the bit meaning of the CRI is only an example.
  • the correspondence between the bit value in the table and the value of the CRI is only an example, other values or correspondences, and not limited.
  • the number of bits of the CRI may be
  • the following takes the configuration of two NZP CSI-RS resources as an example.
  • the number of bits of the CRI and/or the number of bits of the RI are determined according to the number of NZP CSI-RS resources and the first indication information.
  • the first indication information indicates that the CSI measurement feedback is enabled to enable CSI feedback based on FeCoMP, and the number of bits of the RI is 4 bits, and the number of bits of the CRI is 2 bits. .
  • the determining, by the terminal, that the CSI measurement behavior is based on the CSI of the FeCoMP may be determined by using the method in the foregoing embodiment, for example, by configuring the first indication information, where the first indication information is used to enable FeCoMP-based CSI feedback, or Enable CSI feedback based on coordinated multi-point transmission, or enable CSI feedback based on hybrid transmission mode.
  • the first indication information is the high-level parameter FeCoMPCSIEnabled
  • the following embodiment is configured by configuring the high-level parameter FeCoMPCSIEnabled, and configuring FeCoMPCSIEnabled.
  • the scheme of TRUE is similar, and specificity will not be described here.
  • At least one of the three existing reporting modes that is, the full-band CQI reporting (that is, reporting the full-band CQI), and the high-level configuration of the sub-band CQI reporting (that is, reporting the CQI of the sub-band configured by the upper layer)
  • at least one of the sub-band CQI report ie, the CQI of the sub-band selected by the terminal
  • the number of bits of the feedback of the respective CRI and/or RI may be respectively defined, or the CRI and/or may be uniformly described. Or the number of bits of feedback from the RI.
  • the unified description and the separate description may mean that the terminal and/or the base station may save the mapping relationship, such as a mapping table or a mapping sequence or a mapping formula, for different reporting modes, or may save respective mapping relationships, such as a mapping table or a mapping sequence. Or map formulas.
  • the reporting mode in the embodiment of the present application may also be a reporting mode in the NR (New Radio) or the 5G or the future research system. Specifically, it is not limited herein.
  • the transmission mode 10 is taken as an example, even if the CSI measurement and/or feedback based on FeCoMP is applicable only to the terminal of the transmission mode 10 in the LTE system, and is not applicable to other transmissions in the LTE system. mode.
  • the embodiment of the present application is also applicable to the transmission mode in the NR or 5G or the future communication system, and is not limited to the transmission mode 10.
  • the transmission mode 10 is only an example, and other transmission modes are not limited herein. Or it can be applied to any transmission mode, even if the CSI measurement and/or feedback based on FeCoMP is independent of the transmission mode.
  • the manner of unified description refers to at least one of Tables 5.2.2.6.3-3F:
  • the number of bits under the combined feedback of the CRI and the RI is shown in Table 5.2.2.6.3-3F.
  • the terminal and/or the base station may only save one mapping table or mapping sequence or mapping formula.
  • Table 5.2.2.6.3-3F Fields for joint CRI and RI feedback (Transmission mode 10 and higher layer parameters FeCoMPCSIEnabled (transmission mode 10 and higher layer parameter FeCoMPCSI Enabled))
  • the number of bits of the CRI (also called the bit width) is 2, and the number of bits of the RI is 4.
  • the manner respectively described may be at least one of the following:
  • the terminal maintains a corresponding mapping relationship, such as a mapping table or a mapping sequence or a mapping formula, for different transmission modes according to at least one of the three reporting modes.
  • a mapping relationship such as a mapping table or a mapping sequence or a mapping formula
  • the terminal When the terminal is configured with FeCoMPCSIEnabled (or FeCoMPCSIEnabled and aperiodic reporting mode is configured), the number of bits for CRI and RI (or RI merge) feedback is fixed for the full-band CQI reporting.
  • Table 5.2.2.6.1. -2F For example, for the full-band CQI report, the terminal can save the table 5.2.2.6.11-2F, that is, when the full-band CQI report and the first indication information are configured, the terminal can use the table in 5.2.2.6.11-2F. The number of bits for CRI and RI.
  • Table 5.2.2.6.1-2F Fields for joint CRI and RI feedback for wideband CQI reports (transmission mode 10 and high-level parameters FeCoMPCSIEnabled (transmission mode 10 and higher layer parameter) FeCoMPCSIEnabled))
  • the terminal When the terminal is configured with FeCoMPCSIEnabled (or FeCoMPCSIEnabled and aperiodic reporting mode is configured), the CRI and RI (or RI merge) feedback bits are fixed for the high-level configuration sub-band CQI reporting.
  • Table 5.2. 2.6.2-3F1 For example, for a sub-band CQI report of a high-level configuration, the terminal can save the table 5.2.2.2.6-3F1, that is, when the sub-band CQI report and the first indication information of the high-level configuration are configured, the terminal can use the table. The number of bits of CRI and RI in 5.2.2.6.2-3F1.
  • Table 5.2.2.6.2-3F1 Fields for joint CRI and RI feedback for higher layer configured subband CQI reports (Transmission mode 10 and high-level parameters FeCoMPCSIEnabled(transmission) Mode 10 and higher layer parameter FeCoMPCSIEnabled))
  • the CRI and RI (or RI merge) feedback bits are fixed for the sub-band CQI report selected by the UE.
  • the terminal may save the table 5.2.2.6.3-3F2, that is, when the sub-band CQI report and the first indication information selected by the UE are configured, the terminal may use the table.
  • the number of bits of CRI and RI in 5.2.2.6.3-3F2.
  • Table 5.2.2.6.3-3F2 Fields for joint CRI and RI feedback for UE selected subband CQI reports (Transmission mode 10 and high-level parameters FeCoMPCSIEnabled (transmission mode) 10 and higher layer parameter FeCoMPCSIEnabled))
  • the number of bits of the RI does not depend on the value of the CRI, that is, the number of bits of the CRI and the RI is fixed, and The base station is caused to correctly receive and/or decode the CRI and RI.
  • the bit number overhead of the RI may be relatively large.
  • the second implementation manner (ie, method 2): according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the foregoing
  • the first indication information determines the number of bits of the CRI, and/or the number of bits of the RI.
  • the number of bits of the RI may be determined according to the number of antenna ports and/or capability information of the terminal device, and the first indication information.
  • determining the number of bits of the RI may refer to determining the number of bits of the RI when the single RI is reported and/or determining when multiple RIs (or RIs are combined) are reported.
  • the total number of bits occupied by the RI (or RI merge) is not limited herein.
  • the following is an example of configuring more than one NZP CSI-RS resource, and exemplifying the number of bits of the RI according to the number of antenna ports and/or capability information of the terminal device, and the first indication information.
  • Method 2.1 Determine the number of bits of the RI according to the first indication information and whether the number of antenna ports is 1.
  • the number of antenna ports at this time may be greater than one NZP CSI-RS configured.
  • the number of antenna ports is 1, it indicates that the maximum number of antenna ports configured for more than one NZP CSI-RS resource is 1, that is, the number of antenna ports per NZP CSI-RS resource is 1. If the number of antenna ports is greater than 1, it indicates that the maximum number of antenna ports in the configured NZP CSI-RS resources is greater than 1, that is, the number of antenna ports of at least one NZP CSI-RS resource is greater than 1.
  • the value of the number of bits defining the RI is, for example, 4 bits.
  • the terminal may determine that the RI is not fed back, and only the CRI is fed back.
  • the terminal can determine the number of bits of the RI according to the first indication information and the number of antenna ports is greater than 1, for example, 4 bits.
  • the value of the number of bits is only an example, and other values may be used. Specifically, it is not limited herein.
  • the CRI and/or RI feedback may be separately defined for at least one of the existing three reporting modes (full-band CQI reporting, high-level configuration sub-band CQI reporting, and UE-selected sub-band CQI reporting).
  • the number of bits may also be the number of bits that uniformly describe the feedback of the CRI and/or RI.
  • the unified description and the separate description may mean that the terminal device and/or the base station may save one or more mapping tables or mapping sequences or mapping formulas for different reporting modes, or may respectively save respective mapping tables or mapping sequences or mapping formulas. .
  • the reporting mode in the embodiment of the present application may also be a reporting mode in the NR or 5G or the future research system. Specifically, it is not limited herein.
  • the table in the embodiment of the present application is exemplified by applying FeCoMP-based CSI measurement and/or feedback only under the condition that the CSI-RS resource of the CLASS B is configured, that is, The first indication information is configured when the high-level parameter eMIMO-Type is CLASS B and K>1 NZP CS-RS resources are configured, or further, the high-level parameter eMIMO-Type is configured as CLASS B and The first indication information is configured only when two NZP CS-RS resources are configured.
  • This condition is only an example.
  • the applicable conditions for enabling the CSI measurement and/or feedback based on the FeCoMP may also be other conditions.
  • the CSI-RS resource of the CLASS A may also be applicable.
  • the NZP CSI-RS resource of the CLASS B may refer to an NZP CSI-RS resource that performs precoding or beamforming, that is, precoding or beamforming of the CSI-RS before transmitting the CSI-RS, CLASS A
  • the NZP CSI-RS resource may refer to an NZP CSI-RS resource that does not perform precoding or beamforming, that is, does not perform precoding or beamforming operations before transmitting the CSI-RS.
  • the table in the embodiment of the present application exemplifies the number of bits of the CRI, and/or the number of bits of the RI, under the condition that only the transmission mode 10 is configured and the PMI/RI feedback is configured.
  • This condition is only an example, and may be other conditions, such as no configuration feedback PMI, etc., and is not limited herein.
  • the manner of unified description can refer to at least one of Tables 5.2.2.6.1-2F1 and Table 5.2.2.6.1-2G1, where Table 5.2.2.6.1-2F1 is the case where the number of antenna ports is greater than 1. Table 5.2.2.6.1-2G1 is the case where the number of antenna ports is 1.
  • the number of bits of the CRI and the RI may be determined by using at least one of the items in the 5.2.2.6.1-2 F1, and the first indication information and the number of antenna ports are configured.
  • the number of bits of CRI and RI can be determined using at least one of Tables 5.2.2.6.1-2G1.
  • Table 5.2.2.6.1-2F1 Fields for joint CRI and RI feedback (multiple-input multiple-output (enhanced multiple-inputmultiple) configured with PMI/RI reporting and high-level parameter enhancement in transmission mode 10 -output, eMIMO)-type (Type), and eMIMO-Type is configured as 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports in at least one CSI-RS resource is greater than 1 and higher-level parameters FeCoMPCSIEnabled(transmission mode 10configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource And higher layer parameter FeCoMPCSIEnabled))
  • CRI scenario Fields for CRI
  • PMI/RI reporting and high-level parameter eMIMO-Type are configured in transmission mode 10
  • eMIMO-Type is configured as 'CLASS B'
  • K>1 is configured.
  • CRI-RS resources, the number of antenna ports in each CRI-RS resource is 1 and the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to' CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the RI is not fed back, so the number of bits of the RI can be considered to be zero.
  • the manner described separately may be at least one of the following:
  • the terminal can save two tables, such as at least one of Tables 5.2.2.6.11-2F2 and Tables 5.2.2.6.1-2G2, that is, when the full-band CQI report is configured and configured.
  • the terminal may use the number of bits of CRI and RI in Tables 5.2.2.6.1-2F2; when the full-band CQI report is configured and the first indication information is configured and the number of antenna ports is configured.
  • the terminal can use the number of bits of CRI and RI in Tables 5.2.2.6.1-2G2.
  • Table 5.2.2.6.1-2F2 Fields for joint CRI and RI feedback for wideband CQI reports (Transmission mode 10 configured with PMI/RI reporting and high-level parameters eMIMO-Type
  • the eMIMO-Type is configured as 'CLASS B', and K>1 CSI-RS resources are configured, and the number of antenna ports of at least one CSI-RS resource is greater than 1, and the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI) is configured.
  • /RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • Table 5.2.2.6.1-2G2 Fields for CRI feedback for wideband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, eMIMO-Type is configured 'CLASS B', configured with K>1 CSI-RS resources, the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO) -Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the terminal can save at least one of the table 5.2.2.6.3-3F1 and the table 5.2.2.6.2-3G1, that is, when the sub-band CQI report of the high-level configuration is configured and the first When the indication information is used and the number of antenna ports is greater than 1, the terminal can use the number of bits of CRI and RI in Table 5.2.2.6.2-3F1; when the sub-band CQI is configured and configured with the first indication information and the antenna is configured. When the number of ports is 1, the terminal can use the number of bits of CRI and RI in Table 5.2.2.6.3-3G1.
  • Table 5.2.2.6.2-3F1 Fields for joint CRI and RI feedback for higher layer configured subband CQI reports (Transmission mode 10 configured with PMI/RI reporting) And the high-level parameter eMIMO-Type, the eMIMO-Type is configured as 'CLASS B', and K>1 CSI-RS resources are configured, and the number of antenna ports of at least one CSI-RS resource is greater than 1, and the high-level parameter FeCoMPCSIEnabled is configured. Transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and Higher layer parameter FeCoMPCSIEnabled))
  • Table 5.2.2.6.2-3G1 Fields for CRI feedback for higher layer configured subband CQI reports (Transmission mode 10 configured with PMI/RI reporting and high-level parameters eMIMO-Type)
  • the eMIMO-Type is configured as 'CLASS B', and K>1 CSI-RS resources are configured, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI/ is configured.
  • RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the terminal may save at least one of the table 5.2.2.6.3-3F2 and the table 5.2.2.6.3-3G2, that is, when the sub-band CQI report selected by the UE is configured and the first
  • the terminal may use the number of bits of CRI and RI in Table 5.2.2.6.3-3F2; when the sub-band CQI selected by the UE is configured and the first indication information is configured and the antenna is configured.
  • the terminal can use the number of bits of CRI and RI in Table 5.2.2.6.3-3G2.
  • Table 5.2.2.6.3-3F2 Fields for joint CRI and RI feedback for UE selected subband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and The high-level parameter eMIMO-Type, eMIMO-Type is configured as 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports of at least one CSI-RS resource is greater than 1, and the high-level parameter FeCoMPCSIEnabled(transmission) is configured.
  • Mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher Layer parameter FeCoMPCSIEnabled))
  • Table 5.2.2.6.3-3G2 Fields for CRI feedback for UE selected subband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, The eMIMO-Type is configured as 'CLASS B', and K>1 CSI-RS resources are configured, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI/RI) is configured. Reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the number of bits of the RI can be determined for the case where the number of antenna ports is 1 and the number of antenna ports is greater than 1 respectively, which can reduce the bit overhead of the RI and improve performance.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits when the single RI is reported and/or determining the multiple RIs (or RI combinations) when multiple RIs (or RIs are combined) are reported.
  • the total number of bits specifically, is not limited herein.
  • Method 2.2 Determine the number of bits of the RI according to at least one of the number of antenna ports of the NZP CSI-RS resource and the capability information of the terminal device (abbreviated as the capability of the terminal device) and the first indication information.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits of the RI when the single RI is reported and/or determining multiple RIs (or RI combinations) when reporting multiple RIs (or RIs).
  • the total number of bits occupied is not limited herein.
  • This embodiment may be implemented independently or in combination with other embodiments. Specifically, it is not limited herein.
  • the RI is not fed back; if the number of antenna ports of the NZP CSI-RS resource is greater than 1, the number of antenna ports and the capabilities of the terminal device may be used.
  • At least one item and the first indication information determine the number of bits of the RI, for example, the number of antenna ports is 2 and/or the capability of the terminal device is to support the maximum layer number of 2 layers and the first indication information is configured, The number of bits of the RI is 2, or the number of antenna ports of the NZP CSI-RS resource is 4 and/or the capability of the terminal device is to support the maximum number of layers of 4 layers, and the first indication information is configured, and the bits of the RI are The number is 4.
  • the number of antenna ports of the NZP CSI-RS resource may be the configured NZP CSI-RS.
  • the maximum number of antenna ports corresponding to the resource For example, two NZP CSI-RS resources are configured.
  • the number of antenna ports of one NZP CSI-RS resource is 2, and the number of antenna ports of another NZP CSI-RS resource is 4.
  • the number of RI bits is based on the number of antenna ports. 4 determined.
  • the number of antenna ports corresponding to the resource can be understood as the number of antenna ports used to transmit the resource.
  • CRI and /RI feedback may be separately defined.
  • the number of bits may also be the number of bits that uniformly describe the feedback of the CRI and/or RI.
  • the unified description may be that the terminal and/or the base station may save one or more mapping tables or mapping sequences or mapping formulas for different reporting modes, and the descriptions may refer to that the terminal and/or the base station may be different for different reporting modes.
  • the mapping relationship corresponding to the reporting mode such as a mapping table or a mapping sequence or a mapping formula, is saved.
  • the reporting mode in the embodiment of the present application may also be a reporting mode in the NR or 5G or the future research system. Specifically, it is not limited herein.
  • the manner of unified description may include at least one of Tables 5.2.2.6.3-3F3 and Tables 5.2.2.6.3-3G3, where Tables 5.2.2.6.3-3F3 are cases where the number of antenna ports is greater than one.
  • Table 5.2.2.6.1-2G1 is the case where the number of antenna ports is 1.
  • the terminal configures the first indication information and the number of antenna ports is greater than 1, and saves at least one of the items 5.2.2.6.3-3F3, and configures the first indication information and the number of antenna ports is 1, and saves the table 5.2.2.6. At least one of .3-3G3.
  • the terminal can save a total of 2 tables.
  • Table 5.2.2.6.3-3F3 Fields for joint CRI and RI/RI Combination feedback (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, eMIMO-Type Configured as 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports of at least one CSI-RS resource is greater than 1, and the high-level parameter FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and Higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • Table 5.2.2.6.3-3G3 Fields for CRI feedback (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, eMIMO-Type is configured for 'CLASS B', and K>1 is configured. CSI-RS resources, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set) To'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • Table 5.2.2.6.3-3G3 indicates that the number of antenna ports is 1. If the RI is not fed back, the number of bits of the RI can be considered to be zero.
  • the number of bits fed back by CRI and RI (or RI combining) for full-band CQI reporting may include Table 5.2.2.6.3-3F4 And at least one of Tables 5.2.2.6.3-3G4:
  • the terminal can save two tables, such as at least one of Tables 5.2.2.6.3-3F4 and Tables 5.2.2.6.3-3G4, that is, when the full-band CQI report is configured and configured.
  • the terminal may use the number of bits of CRI and RI in Tables 5.2.2.6.3-3F4; when the full-band CQI report is configured and the first indication information is configured and the number of antenna ports is configured.
  • the terminal can use the number of bits of CRI and RI in Tables 5.2.2.6.3-3G4.
  • Table 5.2.2.6.3-3F4 CRI and RI/RI Combination feedback for wideband CQI reports when the CQI is reported.
  • Transmission mode 10 is configured with PMI/RI reporting. And the high-level parameter eMIMO-Type, the eMIMO-Type is configured as 'CLASS B', and K>1 CSI-RS resources are configured, and the number of antenna ports of at least one CSI-RS resource is greater than 1, and the high-level parameter FeCoMPCSIEnabled is configured.
  • Transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and Higher layer parameter FeCoMPCSIEnabled)
  • the number of bits of the RI is 2
  • the number of bits of the CRI is 2
  • the number of bits of the RI may be 2 or 3.
  • the maximum supported layer number of the terminal device is 1 or 2 layers
  • the number of bits of the RI can be 2 or 3, and so on.
  • the value is 2 or 3, which may be predefined by the protocol, or may be notified by the base station to the terminal. Specifically, it is not limited herein.
  • Table 5.2.2.6.3-3G4 Fields for CRI feedback for wideband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, eMIMO-Type is configured 'CLASS B', configured with K>1 CSI-RS resources, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter) eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the number of bits fed back by CRI and RI (or RI combining) for the sub-band CQI reporting of the upper layer configuration may include Table 5.2.2.6. 2-3F5 and at least one of Tables 5.2.2.6.3-3G5:
  • the terminal can save at least one of the items in the table 5.2.2.6.3-3F5 and the table 5.2.2.6.3-3G5, that is, when the sub-band CQI report of the high-level configuration is configured and the first When the indication information is used and the number of antenna ports is greater than 1, the terminal can use the number of bits of CRI and RI in Tables 5.2.2.2.3-3F5; when the sub-band CQI is configured and configured with the first indication information and the antenna is configured. When the number of ports is 1, the terminal can use the number of bits of CRI and RI in Table 5.2.2.6.3-3G5.
  • Table 5.2.2.6.2-3F5 CIR and RI/RI Combination feedback for higher layer configured subband CQI reports when the sub-band CQI is reported in the high-level configuration.
  • the PMI/RI report and the high-level parameter eMIMO-Type, the eMIMO-Type configuration is 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports of at least one CSI-RS resource is greater than 1, and the configuration is configured.
  • the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type.
  • the eMIMO-Type is configured as 'CLASS B', and K>1 CSI-RS resources are configured, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI/RI) is configured.
  • Reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the number of bits fed back by CRI and RI (or RI combining) for the sub-band CQI report selected by the UE may include Table 5.2.2.6. At least one of 3-3F6 and Tables 5.2.2.6.3-3G6:
  • the terminal may save at least one of Tables 5.2.2.6.3-3F6 and Tables 5.2.2.6.3-3G6, that is, when the sub-band CQI report selected by the UE is configured and the first When the indication information and the number of antenna ports are greater than 1, the terminal may use the number of bits of CRI and RI in Tables 5.2.2.6.3-3F6; when the sub-band CQI selected by the UE is configured and the first indication information is configured and the antenna is configured. When the number of ports is 1, the terminal can use the number of bits of CRI and RI in Tables 5.2.2.6.3-3G6.
  • Table 5.2.2.6.3-3F6 Fields for joint CRI and RI/RI Combination feedback for UE selected subband CQI reports when the sub-band CQI is selected by the UE (Transmission Mode 10 Configuration)
  • the PMI/RI report and the high-level parameter eMIMO-Type, the eMIMO-Type configuration is 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports of at least one CSI-RS resource is greater than 1, and the configuration is configured.
  • the high-level parameter FeCoMPCSIEnabled (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • the number of bits of the RI is 2, which can be replaced by 3, or a description of adding 3, to obtain another correspondence.
  • the number of bits of the CRI is 2
  • the number of bits of the RI may be 2 or 3.
  • the capability of the terminal device is up to 1 layer or 2.
  • Layer the number of bits of the RI can be 2 or 3, and so on.
  • the value is 2 or 3, which may be predefined by the protocol, or may be notified by the base station to the terminal. Specifically, it is not limited herein.
  • Table 5.2.2.6.3-3G6 Fields for CRI feedback for UE selected subband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, The eMIMO-Type is configured as 'CLASS B', and K>1 CSI-RS resources are configured, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled ((transmission mode 10 configured with PMI/) is configured.
  • RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • a third implementation manner (ie, method 3): according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the The first indication information determines the number of bits of the CRI, and/or the number of bits of the RI.
  • the number of bits of the RI may be determined according to the number of antenna ports of the NZP CSI-RS and/or the capability information of the terminal device, the first indication information, and the value of the CRI, that is, the CRI is determined at this time. value.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits of the RI when the single RI is reported and/or determining multiple RIs (or RI combinations) when reporting multiple RIs (or RIs).
  • the total number of bits occupied is not limited herein.
  • the following is an example of configuring two NZP CSI-RS resources, and exemplifying the number of antenna ports according to the NZP CSI-RS and/or the capability information of the terminal device, the first indication information, and the value of the CRI, and determining the number of bits of the RI. .
  • the number of bits of the CRI is 2.
  • determining the number of antenna ports of the RI may refer to the maximum number of antenna ports in the configured NZP CSI-RS resources.
  • At least one of the existing three types of reporting modes may respectively define respective CRI and /RI
  • the number of bits fed back may be the number of bits that uniformly describe the feedback of the CRI and/or RI.
  • the unified description may be that the terminal and/or the base station may save one or more mapping tables or mapping sequences or mapping formulas for different reporting modes, and the descriptions may refer to that the terminal and/or the base station respectively save mappings corresponding to different reporting modes. Relationships, such as mapping tables or mapping sequences or mapping formulas.
  • the reporting mode in the embodiment of the present application may also be a reporting mode in the NR or 5G or the future research system. Specifically, it is not limited herein.
  • the table in the embodiment of the present application exemplifies the number of bits of the CRI, and/or the number of bits of the RI, under the condition that only the transmission mode 10 is configured and the PMI/RI feedback is configured.
  • This condition is only an example, and may be other conditions, such as no configuration feedback PMI, etc., and is not limited herein.
  • the unified description may include at least one of Tables 5.2.2.6.1-2F3 and Tables 5.2.2.6.3-3 G7: where Table 5.2.2.6. 1-2F3 is the case where the number of antenna ports is greater than 1. Table 5.2.2.6.1-3G7 shows the case where the number of antenna ports is 1.
  • the terminal is configured with the first indication information and the number of the antenna ports is greater than 1, the number of bits of the CRI and the RI may be determined by using at least one of the items in the 5.2.2.6.1-2 F3, and the first indication information and the number of the antenna ports are configured.
  • the number of bits of CRI and RI can be determined using at least one of Tables 5.2.2.6.1-3G7.
  • the terminal can save at least one of the two tables.
  • Table 5.2.2.6.1-2F3 Fields for CRI and RI feedback (Transmission mode 10 and FeCoMPCSIEnabled transmission mode 10 and higher layer parameter FeCoMPCSIEnabled)
  • Table 5.2.2.6.3-3G7 Fields for CRI feedback (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, eMIMO-Type is configured for 'CLASS B', and K>1 is configured.
  • CSI-RS resources, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled ((transmission mode 10 configured with PMI/RI reporting and higher layer parametere MIMO-Type, and eMIMO-Type is set) To'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • Table 5.2.2.6.3-3G7 indicates that the number of antenna ports is 1. If the RI is not fed back, the number of bits of the RI can be considered to be zero.
  • the number of bits fed back by CRI and RI (or RI combining) for full-band CQI reporting may include at least one of Tables 5.2.2.6.1-2F4. :
  • the terminal can save at least one of the items in the table 5.2.2.6.11-2F4 and the table 5.2.2.6.3-3 G7-1, that is, when the full-band CQI report is configured and the first indication is configured. If the number of antenna ports is greater than 1, the terminal can use the number of bits of CRI and RI in Tables 5.2.2.6.1-2F4. When the full-band CQI is reported and the first indication information is configured and the number of antenna ports is 1. The terminal can use the number of bits of CRI and RI in Table 5.2.2.6.3-3G7-1.
  • Table 5.2.2.6.1-2F4 Fields for CRI and RI feedback for wideband CQI reports (Transmission mode 10 and high-level parameters FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter) FeCoMPCSIEnabled))
  • the number of antenna ports is 2
  • the number of bits of CRI is 2
  • the number of bits of RI is 2
  • the capability of the terminal device is to support the maximum number of layers is 4 layers
  • the number of bits of the RI is 4.
  • Table 5.2.2.6.3-3G7-1 Fields for CRI feedback for wideband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, eMIMO-Type Configured as 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled ((transmission mode 10 configured with PMI/RI reporting and Higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • Table 5.2.2.6.3-3G7-1 indicates that the number of antenna ports is 1. If RI is not fed back, the number of bits of RI can be considered to be zero.
  • the number of antenna ports is 2, and when the value of CRI is 0 or 1, the value of RI is 1 or 2, and RI can be indicated by 1 bit.
  • the value of CRI is 2, the value of RI or RI is taken as ⁇ 1, 1 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 2, 1 ⁇ , ⁇ 2, 2 ⁇ .
  • the RI can be indicated by 2 bits.
  • the value of RI is 1, 2, 3, 4, that is,
  • the RI can be indicated by 2 bits (the number of bits of the RI is 2).
  • the value of RI or RI is ⁇ 1, 1 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 2, 1 ⁇ , ⁇ 2, 2 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 3,2 ⁇ , ⁇ 3,3 ⁇ , ⁇ 3,4 ⁇ , ⁇ 4,3 ⁇ , ⁇ 4,4 ⁇ .
  • the RI can be indicated by 4 bits (the number of bits of the RI is 4).
  • the number of bits fed back by CRI and RI (or RI combining) for the sub-band CQI reporting of the higher layer configuration may include those in Table 5.2.2.6.2-3F2. At least one item:
  • the terminal can save at least one of the table 5.2.2.6.3-3F2 and the table 5.2.2.6.3-3G7-2, that is, when the sub-band CQI report of the high-level configuration is configured and When the first indication information and the number of antenna ports are greater than 1, the terminal may use the number of bits of CRI and RI in Tables 5.2.2.2.3-3F2; when the sub-band CQI is configured and configured with the first indication information. When the number of antenna ports is 1, the terminal can use the number of bits of CRI and RI in Table 5.2.2.2.3-3G7-2.
  • Table 5.2.2.6.2-3F2 Fields for CRI and RI feedback for higher layer configured subband CQI reports. (Transmission mode 10 and high-level parameters FeCoMPCSIEnabled(transmission) Mode 10 and higher layer parameter FeCoMPCSIEnabled))
  • the number of antenna ports is 2
  • the number of bits of CRI is 2
  • the number of bits of RI is 2
  • the capability of the terminal device is to support the maximum number of layers is 4 layers
  • the number of bits of the RI is 4.
  • Table 5.2.2.6.3-3G7-2 Fields for CRI feedback for higher layer configured subband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO) -Type, eMIMO-Type is configured as 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports per CSI-RS resource is 1, and the high-level parameter FeCoMPCSIEnabled ((transmission mode 10 configured) is configured. With PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
  • Tables 5.2.2.6.3-3G7-2 indicate that the number of antenna ports is 1. If the RI is not fed back, the number of bits of the RI can be considered to be zero.
  • the number of bits fed back by CRI and RI (or RI combining) for the sub-band CQI report selected by the UE may include Table 5.2.2.6.3-3F7 and the table. At least one of 5.2.2.6.3-3G7-3:
  • the terminal may save at least one of Tables 5.2.2.6.3-3F7 and Tables 5.2.2.6.3-3G7-3, that is, when the sub-band CQI report selected by the UE is configured. And when the first indication information is configured and the number of antenna ports is greater than 1, the terminal can use the number of bits of CRI and RI in Table 5.2.2.6.3-3F7; when the sub-band CQI selected by the UE is configured and configured first When the indication information and the number of antenna ports are 1, the terminal can use the number of bits of CRI and RI in Tables 5.2.2.6.3-3G7-3.
  • Table 5.2.2.6.3-3F7 Fields for CRI and RIfeedback for UE selected subband CQI reports when the sub-band CQI is selected by the UE (transmission mode 10 and high-level parameter FeCoMPCSIEnabled (transmission mode 10) And higher layer parameter FeCoMPCSIEnabled))
  • the number of antenna ports is 2
  • the number of antenna ports is 4, and the capability of the terminal device is to support the maximum number of layers is 4 layers
  • Table 5.2.2.6.3-3G7-3 Fields for CRI feedback for higher layer configured subband CQI reports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO- Type, eMIMO-Type is configured as 'CLASS B', K>1 CSI-RS resources are configured, and the number of antenna ports per CSI-RS resource is one antenna port, and the high-level parameter FeCoMPCSIEnabled ((transmissionmode 10 configured) is configured. With PMI/RI reporting and higher layer parameter eMIMO-Type, andeMIMO-Type is set to 'CLASS B'with K>1 CSI-RS resources and one port for each CSI-RSresource and higher layer parameter FeCoMPCSIEnabled))
  • Tables 5.2.2.6.3-3G7-3 indicate that the number of antenna ports is 1. If RI is not fed back, the number of bits of RI can be considered to be zero.
  • the fourth implementation manner (ie, method 4): according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, or the value of the CRI, and the foregoing
  • the first indication information determines at least one of the number of bits of the CRI, or the number of bits of the RI.
  • the number of bits of the RI may be determined according to the first indication information and the value of the CRI.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits of the RI when the single RI is reported and/or determining multiple RIs (or RIs) when reporting multiple RIs (or RIs).
  • the total number of bits occupied is not limited herein.
  • the following is an example of configuring two NZP CSI-RS resources as an example to determine how to determine the number of bits of the RI according to the first indication information and the value of the CRI.
  • the number of bits of the CRI is 2.
  • At least one of the existing three types of reporting modes may respectively define respective CRI and /RI
  • the number of bits fed back may also be the number of bits that uniformly describe the feedback of the CRI and/or RI.
  • the unified description and the separate description may mean that the terminal and/or the base station may save one or more mapping tables or mapping sequences or mapping formulas for different reporting modes, or may respectively save respective mapping tables or mapping sequences or mapping formulas.
  • the reporting mode in the embodiment of the present application may also be a reporting mode in the NR or 5G or the future research system. Specifically, it is not limited herein.
  • the transmission mode 10 is taken as an example, even if the CSI measurement and/or feedback based on FeCoMP is applicable only to the terminal of the transmission mode 10 in the LTE system, and is not applicable to other transmissions in the LTE system. mode.
  • the embodiment of the present application is also applicable to the transmission mode in the NR or 5G or the future communication system, and is not limited to the transmission mode 10.
  • the transmission mode 10 is only an example, and other transmission modes are not limited herein. Or it can be applied to any transmission mode, even if the CSI measurement and/or feedback based on FeCoMP is independent of the transmission mode.
  • the unified description includes at least one of Tables 5.2.2.6.1-25F5:
  • the terminal When the terminal is configured with the transmission mode 10 and the high-level parameter FeCoMPCSIEnabled, the number of bits under the CRI and RI feedback is shown in Table 5.2.2.6.3-3F.
  • the terminal can save only one mapping table or mapping sequence or mapping formula.
  • Table 5.2.2.6.1-2F5 Fields for CRI and RI feedback (Transmission mode 10 and configuration of high-level parameters FeCoMPCSIEnabled (transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
  • the value of the value of the CRI and the value of the number of bits of the RI are merely examples, and may be other values, and are not limited herein.
  • the manner respectively described may be at least one of the following:
  • the number of bits of CRI and RI (or RI merge) feedback is fixed for the full-band CQI reporting, which may include Table 5.2.2.6.1- At least one of 2F6: For example, for a full-band CQI report, the terminal can save Table 5.2.2.6.1-2F6, that is, when the full-band CQI report and the first indication information are configured, the terminal can use Table 5.2.2.6.1. The number of bits of CRI and RI in -2F6.
  • Table 5.2.2.6.1-2F6 Fields for CRI and RI feedback for wideband CQI reports (transmission mode 10 and high-level parameters FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter) FeCoMPCSIEnabled))
  • the value of the value of the CRI and the value of the number of bits of the RI are merely examples, and may be other values, and are not limited herein.
  • the CRI and RI (or RI merge) feedback bits are fixed for the sub-band CQI reporting, and may include at least one of Tables 5.2.2.6.3-3F3.
  • the terminal can save the table 5.2.2.2.6-3F3, that is, when the sub-band CQI report and the first indication information of the high-level configuration are configured, the terminal can use Table 5.2.2.6. The number of bits of CRI and RI in 2-3F3.
  • Table 5.2.2.6.2-3F3 Fields for CRI and RI feedback for higher layer configured subband CQI reports. (Transmission mode 10 and high-level parameters FeCoMPCSIEnabled(transmission) Mode 10 and higher layer parameter FeCoMPCSIEnabled))
  • the value of the value of the CRI and the value of the number of bits of the RI are merely examples, and may be other values, and are not limited herein.
  • the terminal can save the table 5.2.2.6.3-3F8, that is, when the sub-band CQI report and the first indication information selected by the UE are configured, the terminal can use the table 5.2.
  • Table 5.2.2.6.3-3F8 Fields for CRI and RI feedback for UE selected subband CQI reports when the sub-band CQI is selected by the UE (transmission mode 10 and high-level parameters FeCoMPCSIEnabled(transmission mode) 10 and higher layer parameter FeCoMPCSIEnabled))
  • the value of the value of the CRI and the value of the number of bits of the RI are merely examples, and may be other values, and are not limited herein.
  • CRI and RI are jointly coded, or CRI and RI are independently coded.
  • a fifth implementation is provided below.
  • the CRI and at least one of the RIs are jointly encoded, and the remaining RIs are not jointly encoded with the CRI.
  • This embodiment may be an independent embodiment, or may be combined with other embodiments, and is not limited herein.
  • the CSI feedback related information is determined according to the first indication information, where the CSI feedback related information includes a coding mode for the CRI and the RI, and in the fifth implementation manner, the CSI and the RI are encoded by the CSI including at least two At least one of the RI, CRI and the RI is jointly encoded, and the remaining RIs are independently encoded.
  • the CSI includes at least two RIs, and the CRI and the RI are jointly coded.
  • the remaining RI independent coding may refer to a CRI and an RI of the RI, and the remaining RIs are independently changed. It may also mean that the CRI and the two RIs in the RI are jointly encoded, and the remaining RIs vary independently. Other situations are also applicable and are not limited herein.
  • the remaining RIs may be determined according to the value of the CRI according to the value of the CRI, and the remaining RIs except the at least one RI (ie, the RI jointly encoded with the CRI) are determined.
  • the two NZP CSI-RS resources are configured as an example, that is, the CRI is 2 bits, for example, how to determine whether there are other RIs except at least one RI according to the value of the CRI.
  • CRI can be as follows:
  • the first group of CSIs may be CSIs corresponding to the first NZP CSI-RS resources
  • the second group of CSIs may be CSIs corresponding to the second NZP CSI-RS resources.
  • the first group of CSIs corresponds to the CSI of the first codeword (for example, codeword 0), and the second group of CSIs corresponds to the CSI of the second codeword.
  • At least one of RI, PMI, and CQI may be included in each group of CSIs.
  • inter-stream interference or inter-symbol interference between two NZP CSI-RS resources needs to be considered when calculating CQI.
  • CRI 0 or 1
  • at least one RI is an RI measured according to the NZP CSI-RS resource corresponding to the value of the CRI.
  • CRI 2
  • the network device and/or the terminal device may receive the RI according to the value of the CRI, including whether to receive the remaining RI except at least one RI.
  • the number of remaining RIs other than the at least one RI may be determined according to the value of the CRI, where the number of remaining RIs may be an integer greater than or equal to 0, for example, 0, 1, 2 And so on, the specifics are not limited here.
  • At this time at least one RI is an RI measured corresponding to the first NZP CSI-RS resource, and the remaining RI is The RI obtained by measuring the second NZP CSI-RS resource. Or it can be said that at least one RI is an RI corresponding to the CSI of the first codeword, and the remaining RI is a CSI corresponding to the second codeword. Or it can be said that at least one RI is an RI corresponding to the first group of CSIs, and the remaining RIs are RIs corresponding to the second group of CSIs.
  • the fifth implementation (ie, method 5) of determining the number of bits of the CRI and/or the number of bits of the RI may be:
  • the method for determining the number of bits of the RI includes at least one of the following:
  • the number of bits of the RI may refer to the number of bits of the RI jointly encoded with the CRI.
  • the RI of the first NZP CSI-RS resource may be corresponding; when the CRI value is 1, the RI of the second NZP CSI-RS resource may be corresponding; when the CRI value is When it is 2, it can correspond to the RI of the first NZP CSI-RS resource.
  • the determination can be made by the following methods A-G.
  • the number of bits of the RI may be determined according to the maximum number of antenna ports of the two NZP CSI-RS resources and/or the capability information of the terminal device. For example, the number of bits of the RI can be determined by using the solution in the prior art, and the other manners are not limited, and details are not described herein again.
  • Method B The number of bits of the RI can be determined according to the first indication information. For example, when the terminal receives the first indication information, it may be determined according to the first indication information that the number of bits of the RI is fixed, for example, fixed to 3.
  • the range of RI can be [1, 8]. For example, it is fixed to 2 bits, and the range of RI is [1, 4].
  • the specific value is only an example here, and the value may be predefined by the protocol, or the base station notifies the terminal, and is not limited herein.
  • the method for determining the number of bits of the independently coded RI may include at least one of the following:
  • the number of bits of the independently coded RI may be the number of bits of the RI corresponding to the second NZP CSI-RS resource, or may be the number of bits of the second RI of the multiple RIs, or may be Refers to the number of bits of the second RI in the RI merge.
  • the meaning of the independent coding has been explained in other parts, and will not be described here.
  • Method C Determine according to the maximum value of the number of antenna ports corresponding to the two NZP CSI-RS resources and/or the capability information of the terminal device.
  • Method D Determine according to the number of antenna ports of the second NZP CSI-RS resource (ie, the NZP CSI-RS resource corresponding to the remaining RI).
  • the number of bits of the RI may be determined according to the first indication information. For example, when the terminal receives the first indication information, it may be determined according to the first indication information that the number of bits of the RI is fixed, for example, fixed to 2 bits.
  • RI1 ⁇ ⁇ 1,2 ⁇ , ⁇ 2,1 ⁇ , ⁇ 2,2 ⁇ , ⁇ 2,3 ⁇ , ⁇ 3,2 ⁇ , ⁇ 3,3 ⁇ , ⁇ 3,4 ⁇ , ⁇ 4,3 ⁇ , ⁇ 4,4 ⁇
  • the values of the two RIs are equal or different by one, so that two states can be represented by two bits.
  • the state 0 indicates that the value of each RI in at least one RI is equal to the value of the remaining RI, that is, the difference. 0; state 1 indicates that the value of the remaining RI is smaller than the value of at least one RI, that is, the difference is -1; the state 2 indicates that the value of the remaining RI is greater than the value of at least one RI by 1, that is, the difference
  • the value is 1.
  • bit 00 represents state
  • bit 01 represents state 1
  • bit 10 represents state 2.
  • the state meaning and status number here are only examples, and there may be other correspondences.
  • the correspondence between the bit meaning and the state is also only an example, and there may be other correspondences.
  • the bits of the independently coded RI can be indicated by 2 bits.
  • the 2-bit bit meaning can be at least one of the following:
  • the value of the table in the embodiment of the present application is only an example.
  • the correspondence between the value of the bit value and the value of the feedback variable is only an example. Other values or correspondences may also be used. Specifically, the content is not limited herein. .
  • Method F Determine according to the rule of the number of antenna ports of the second NZP CSI-RS resource and the maximum number of bits of the RI of 2 bits, that is, 2 bits and the RI determined according to the number of antenna ports of the second NZP CSI-RS resource The larger the number of bits.
  • Method G The number of bits of the RI is fixed, for example, fixed to 3 bits.
  • the range of RI can be [1, 8].
  • the order of RIs is involved. For example, if it is determined that 2 RIs are fed back, the order of the RIs may be predefined by the protocol, or the order of the RIs may be configured by the network device.
  • the order of the predefined RI is that at least one RI corresponds to the first NZP CSI-RS resource, and the remaining RI corresponds to the second NZP CSI-RS resource, or is determined according to the identifier of the NZP CSI-RS resource or the identifier of the resource set. .
  • This embodiment provides a method for determining the bit meaning of the RI, and the method may be the method 2.1 or the fourth implementation manner in the foregoing first implementation manner (method 1) or the second implementation manner (method 2). 4) The method of determining the number of RI bits is combined.
  • the bit mapping of the RI that is, the manner in which the bit meaning of the RI is determined may include one of the following implementations.
  • Embodiment 1 determines the bit meaning of the RI according to the first indication information.
  • the bit meaning of the RI when the terminal receives the first indication information, the bit meaning of the RI may be determined according to the first indication information.
  • the specific bit meaning may be at least one of Table 5.2.2.6-8-1.
  • the bit meaning of RI (or RI merge) feedback may include at least one of Table 5.2.2.6-8-1:
  • Table 5.2.2.6-8-1 takes the number of bits of RI as 4, for example. and Represents 4 bits of the RI. For example, when 4 bits of the RI are 0000, corresponding to 1 RI, and the value of the RI is 1, or, for example, when 4 bits of the RI are 1000, two RIs or one RI are combined, and the two are combined.
  • the case of the number of bits of other RIs is similar, and specificity is not limited herein.
  • the implementation mode 2 (or referred to as method 1.2) determines the bit meaning of the RI according to the first indication information and the value of the CRI.
  • the number of bits of the RI may be determined, for example, 4 bits.
  • the implementation 2 (ie, the method 1.2) can also be understood as: determining the bit meaning of the RI according to the number of bits of the RI and the value of the CRI. That is, determining the bit meaning of the RI according to the value of the first indication information and the CRI includes: determining the number of bits of the RI according to the first indication information, and further determining the bit meaning of the RI according to the number of bits of the RI and the value of the CRI.
  • the meaning of the bits of the RI (or RI merge) feedback is as follows.
  • the number of bits of the RI is 4, and when the number of bits of the RI is other values, a similar design can be used:
  • mapping method may include at least one of the tables X21:
  • Table X21 if the value of the CRI is 0 or 1, and the 4 bits occupied by the RI are 0000, one RI is corresponding, and the value of the RI is 1.
  • the RI combination may be corresponding to a value of ⁇ 1, 0 ⁇ , that is, the value of the first RI is 1, the value of the second RI is 0, or the second RI is considered to be absent.
  • Other lines have similar explanations, and similar situations in other parts can also be applied.
  • mapping method may include at least one of the items in Table X31:
  • mapping mode may include at least one of the items in Table X22:
  • mapping manner may include at least one of the tables X33:
  • RI1 and RI2 represent the two RIs of the feedback, respectively.
  • Table X21, Table X31, Table X31-1, Table X22, and Table X33 the values of one RI or two RIs are indicated by four bits, which are all joint indications. Another way is to divide the 4 bits of the RI into 2 bits plus 2 bits, which is equivalent to indicating 1 RI with 2 bits.
  • mapping of 2 bits in 4 bits of the RI may include at least one of Table 5.2.2.6-6A.
  • mapping method By combining 2 2-bit mapping methods, a 4-bit RI can be obtained.
  • This embodiment provides another method of determining the bit meaning of the RI.
  • the determining method may be combined with other methods for determining the number of bits of the RI in the embodiment, such as method 2.2, or a method for determining the number of bits of the RI in the method 3, and may also be combined with other methods for determining the number of bits of the RI. The combination is not repeated here.
  • determining the number of bits of the RI in the embodiment of the present application may refer to determining the number of bits of the RI when the single RI is reported and/or determining multiple RIs (or RI combinations) when reporting multiple RIs (or RIs).
  • the total number of bits occupied is not limited herein.
  • This embodiment may be implemented independently or in combination with other embodiments, and is not limited thereto.
  • the bit meaning of CRI and/or the bit meaning of RI may be determined according to at least one of the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, and the value of the CRI and the first indication information.
  • the terminal determines the bit meaning of the RI according to the number of antenna ports of the NZP CSI-RS resource, the value of the CRI, and the first indication information. For example, the terminal can determine the number of bits of the RI according to the number of antenna ports of the NZP CSI-RS resource, and determine the bit meaning of the RI according to the number of bits of the RI, the value of the CRI, and the first indication information.
  • the terminal determines the bit meaning of the RI according to the number of antenna ports of the NZP CSI-RS resource, the capability information of the terminal device, and the value of the CRI and the first indication information.
  • the terminal can determine the number of bits of the RI according to the number of antenna ports of the NZP CSI-RS resource and the capability information of the terminal device, and determine the bit meaning of the RI according to the number of bits of the RI, the value of the CRI, and the first indication information.
  • the terminal determines the bit meaning of the RI according to the number of bits of the RI, the value of the CRI, and the first indication information.
  • the terminal determines the number of bits of the RI according to at least one of the number of antenna ports of the NZP CSI-RS resource, the capability information of the terminal device, and the first indication information, for example, 2 bits, according to the value of the CRI and the An indication information determines the meaning of the bits of the RI, as follows:
  • the bits of the RI (or RI merge) feedback mean:
  • mapping method may include at least one of Tables 5.2.2.6-6A1:
  • CRI 0 or 1
  • the bit meaning of RI may refer to feeding back an RI.
  • mapping method may include at least one of Tables 5.2.2.6-6A2:
  • the bit meaning of RI may refer to feedback 2 RI or feedback RI merge.
  • the bit meaning of the RI may refer to feeding back an RI.
  • bit meaning of RI can mean feedback 2 RI or feedback RI merge.
  • mapping method may include at least one of Tables 5.2.2.6-6A3:
  • the bit meaning of RI may refer to feedback 2 RI or feedback RI merge.
  • mapping manner may include at least one of Tables 5.2.2.6-6A4, wherein Table 5.2.2.6-6A4 splits 2 bits of the RI into 1 bit plus 1 bit, wherein each bit
  • the mapping method may include at least one of Tables 5.2.2.6-6A4:
  • the terminal may save at least one of the foregoing table, determine the number of bits of the RI according to at least one of the number of antenna ports of the NZP CSI-RS resource, the capability information of the terminal device, and the first indication information, for example, 2
  • the bit meaning of the RI is determined from the above table based on the value of the CRI and the first indication information. It can be understood that when the number of bits of the RI is determined to be 2 bits according to other methods, the bit meaning of the RI is also applicable.
  • Determining according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the value of the CRI, and the first indication information. At least one of the bit meaning of the CRI or the bit meaning of the RI. As an example, the bit meaning of the RI may be determined according to the first indication information and the number of bits of the RI.
  • the meaning of the bits of the RI (or RI merge) feedback may include Table 5.2.2.6-8. At least one of -2:
  • the terminal may save at least one of the foregoing table, determine the number of bits of the RI according to at least one of the number of antenna ports of the NZP CSI-RS resource, the capability information of the terminal device, and the first indication information, for example, 3
  • the bit meaning of the RI is determined from the above table based on the number of bits of the RI and the first indication information. It can be understood that when the number of bits of the RI is determined to be 3 bits according to other manners, the bit meaning of the above RI is also applicable.
  • RI bit number is 4 bits:
  • the bit meaning of the RI may be determined according to at least one of the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, and the value of the CRI and the first indication information. For example, when FeCoMPCSIEnabled is configured (or FeCoMPCSIEnabled and aperiodic reporting mode are configured), the bits of the RI (or RI merge) feedback mean:
  • mapping method includes at least one of the tables X24:
  • mapping method includes at least one of the items in Table X34:
  • the terminal determines the bit meaning of the RI according to the number of bits of the RI and the value of the CRI. Specifically, for example, the terminal determines that the number of bits of the RI is 4 bits, and further, the bit meaning of the RI may be determined according to the value of the CRI, for example, may be at least one of the following Table X34-1.
  • CRI 0 or 1
  • the bit meaning of RI can mean feedback of an RI.
  • bit meaning of RI can mean feedback 2 RI or feedback RI merge.
  • Determining according to the number of NZP CSI-RS resources, the number of antenna ports of the NZP CSI-RS, the capability information of the terminal device, the number of bits of the RI, or the value of the CRI, and the first indication information.
  • the meaning of the bit of RI As an example, the bit meaning of the RI may be determined according to the first indication information and the number of bits of the RI.
  • the terminal may determine the bit meaning of the RI according to the first indication information and the number of bits of the RI. For example, when FeCoMPCSIEnabled is configured (or FeCoMPCSIEnabled and aperiodic reporting mode are configured), when the number of bits of the RI is 4 bits, the meaning of the bits of the RI (or RI combining) feedback may include those in Table 5.2.2.6-8-3. At least one of:
  • the terminal may determine the bit meaning of the RI according to the number of bits of the RI.
  • the terminal determines that the number of bits of the RI is 4 bits, it can be determined that the bit meaning of the RI is at least one of the foregoing Table 5.2.2.6-8-3. It can be understood that when the number of bits of the RI is determined to be 4 bits, the bit meaning of the above RI can be applied without considering other factors, such as the value of CRI.
  • the number of bits of the RI does not depend on the value of the CRI, that is, the number of bits of the CRI and the RI can be known by the network device and the terminal device, and can be made.
  • the network device can correctly receive or decode the CRI and RI.
  • the bit number overhead of the RI is relatively small.
  • the maximum of the number of antenna ports corresponding to these resources is used as the number of antenna ports for determining the RI.
  • Another method for determining the number of antenna ports for determining the RI is described below. This embodiment may be implemented as an independent embodiment, or may be combined with other embodiments, and is not limited thereto. It can be understood that the following describes the more detailed determination method:
  • the number of bits of the RI is determined according to the number of antenna ports per CSI-RS resource.
  • the number of bits of the RI may be 1 or
  • the specific RI bit number is 1 or It can be pre-defined by the protocol, or the base station can be notified by signaling. Specifically, it is not limited herein.
  • the number of bits of the RI can be 1, or
  • the number of bits of the RI is Use this
  • the number of bits of the RI may be a bit considering a maximum RI of various CRI values. number.
  • the terminal and/or the base station may determine the maximum number of RI bits under various values of the CRI according to the number of bits of the RI corresponding to each CSI-RS resource, and further determine the number of bits of the fed back RI.
  • the number of antenna ports of one CSI-RS resource is 2, and the number of antenna ports of another CSI-RS resource is 4.
  • the number of bits of the RI may be 2 bits or 3 bits, and the number of bits of the largest RI under various values of the CRI may be satisfied.
  • the specific number of RIs is 2 or 3, which may be predefined by the protocol, or the base station may be notified by signaling. Specifically, it is not limited herein.
  • the resources, the CRI-RS resource, and the NZP CSI-RS resource refer to the NZP CSI-RS resource.
  • the number of antenna ports, the number of antenna ports of the NZP CSI-RS, the number of antenna ports of the CSI-RS resources, and the like, refer to the number of antenna ports, and refer to the number of antenna ports of the NZP CSI-RS resource.
  • the CSI may include at least one of PMI, RI, or CQI, and then reporting the CSI involves reporting at least one of PMI, RI, or CQI. At least one of PMI, RI, or CQI will have an escalation order when reported.
  • the following describes an embodiment of the reporting sequence of the PMI and the CQI, and a method for determining the number of bits included in the CSI, such as a PMI, a CQI, etc., wherein the reporting sequence and the number of bits of the content included in the CSI are determined in this embodiment.
  • the method may be implemented independently or in combination with each other, or may be combined with other embodiments in the present application, and is not limited herein.
  • the first set (first set) in the embodiment of the present application may refer to the CSI corresponding to the first NZP CSI-RS resource
  • the second set (second set) may refer to the second NZP CSI-RS resource corresponding. CSI.
  • the first set (or first set) in the embodiment of the present application may refer to a CSI corresponding to a first codeword (for example, codeword 0), and the second set (second set) may refer to a second code.
  • the CSI corresponding to the word eg, codeword 1).
  • the first set, the first set, the first CSI set, the first set, the first CSI set in the embodiment of the present application may refer to the same meaning, or may be replaced with each other.
  • the CSI of the first codeword (for example, the codeword 0) may be replaced with the CSI of the first NZP CSI-RS resource, and the like, which is not limited herein.
  • the second set, the second set, the second CSI set, the second set, and the second CSI set in the embodiment of the present application may refer to the same meaning, or may be mutually replaced.
  • the CSI of the second codeword (for example, the codeword 1) may be replaced with the CSI of the second NZP CSI-RS resource, which is not limited herein.
  • the terminal device determines to feed back at least two CSI sets according to the first indication information, where the at least two CSI sets include a CSI of the first set (ie, the first set) and a CSI of the second set (ie, the second set), the first set of The CSI includes a first set of CQIs and/or a first set of PMIs, and a second set of CSIs includes a second set of CQIs and/or a second set of PMIs.
  • Method 1 of reporting method first report CQI (including CQI of the first set and/or CQI of the second set), and then report the PMI (including the PMI of the first set and/or the PMI of the second set).
  • it further includes at least one of the following methods:
  • Method 1.1 If the first set includes only the CQI and the second set only includes the CQI, the reporting order is sequentially the CQI of the first set and the CQI of the second set;
  • Method 1.2 If the first set includes the CQI and the PMI, and the second set includes only the CQI, the reporting order is the CQI of the first set, the CQI of the second set, and the PMI of the first set;
  • Method 1.3 If the first set includes CQI and PMI, and the second set includes CQI and PMI, the reporting order is the CQI of the first set, the CQI of the second set, the PMI of the first set, and the PMI of the second set. ;
  • Method 1.4 If there is a first PMI and a second PMI in the PMI of each set, the first PMI (including the first PMI of the first set and/or the first PMI of the second set) is reported first, and then reported. The second PMI (including the second PMI of the first set and/or the second PMI of the second set).
  • Method 1.5 If there is a first PMI and a second PMI in the PMI of each set, the first PMI and/or the second PMI of the first set are reported first, and then the first PMI of the second set is reported and/or Second PMI.
  • the corresponding mode is mode 1-0.
  • Which mode is specifically adopted may be predefined by a protocol, or may be determined by interaction between a base station and a terminal, for example, the base station notifies the terminal by signaling.
  • the three reporting modes are: full-band CQI reporting mode, high-level configuration sub-band CQI reporting mode, and UE-selected sub-band CQI reporting mode.
  • the at least one reporting mode in the three reporting modes may adopt at least one of the following methods.
  • the reporting mode in the embodiment of the present application may also be a reporting mode in the NR or 5G or the future research system. Specifically, it is not limited herein.
  • the table in the embodiment of the present application is used to determine the number of bits of the CSI feedback content, such as the number of bits that may be CQI and/or PMI feedback.
  • the order of the PMI and/or the CQI in the table may also be the reporting order of the CSI.
  • the terminal can feed back in the order from the top to the bottom according to the number of bits indicated in the table.
  • the base station may also determine the information received by the CSI according to the order of the number of bits indicated in the table.
  • the correspondence between the order in the table and the reporting sequence may be predefined by the protocol, and is pre-configured at the base station and/or the terminal, which is not limited herein.
  • the CQI report (including the CQI of the first set and/or the CQI of the second set) and then the PMI (including the first set).
  • the reporting sequence of the PMI and/or the PMI of the second set is an example.
  • the method may be: at least one of the following: (A1), for the mode1-2, the reporting mode may include (A1) At least one of the tables shown below.
  • the mode 1-2 for the full-band CQI reporting mode may refer to a feedback mode of the full-band CQI and the sub-band PMI.
  • the following table 5.2.2.6.1-1L-1 can be used to indicate mode 1-2 and the first indication information is configured, and the number of antenna ports is 2 or 4, and the CSI of the R12 codebook enhancement is not configured. Feedback bit number and / or CSI feedback order.
  • At least one of Tables 5.2.2.6.1-1L-2-1 and Table 5.2.2.6.1-1L-2-2 may be used to indicate mode 1-2 and configured with the first indication information, and the number of antenna ports The number of feedback bits and/or CSI feedback order for CSI under 8.
  • At least one table of Tables 5.2.2.6.1-1L-3-1 and Tables 5.2.2.6.1-1L-3-2 may be used to indicate mode 1-2 and configured with the first indication information, and the number of antenna ports is The number of feedback bits and/or the CSI feedback order of the CSI when the R12 codebook is enhanced is configured.
  • the CSI feedback in other configurations is also applicable. Specifically, it is not limited herein.
  • the terminal may save at least one of the following forms.
  • the terminal configures the corresponding parameter
  • the number of feedback bits of the CSI and/or the feedback order of the CSI may be determined according to the table corresponding to the parameter.
  • N in the table refers to the number of sub-bands.
  • the meanings in the following tables are similar, and are not described here.
  • Table 5.2.2.6.1-1L-2-1 Fields for channel quality information feedback for wideband CQI and subband PMI reports (Transmission mode 10 is configured with PMI/ RI report and high-level parameter eMIMO-Type, eMIMO-Type is configured as 'CLASS B', K>1 CSI-RS resources of 8 antenna ports are configured, and high-level parameters FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI) Reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B'with 8 antenna ports with K>1 and higher layer parameter FeCoMPCSIEnabled))
  • the PMI i1 is the first PMI introduced as before, and the PMI i2 is the second PMI as described above.
  • the meanings in the following tables are similar, and are not described here.
  • Table 5.2.2.6.1-1L-2-1 can also be replaced by Table 5.2.2.6.1-1L-2-2 as follows:
  • Table 5.2.2.6.1-1L-2-1 differs from Table 5.2.2.6.1-1L-2-2 in that Table 5.2.2.6.1-1L-2-1 is reported first in the first set. a PMI and a first PMI in the second set, and then reporting a second PMI in the first set and a second PMI in the second set, and Table 5.2.2.6.1-1L-2-2 is first reported first The first PMI and the second PMI in the set are then reported to the first PMI and the second PMI in the second set.
  • Table 5.2.2.6.1-1L-3-1 Channels for channel quality information feedback for wideband CQI and subband PMI reports with 4 antennas Ports (Transmission mode 10 is configured with PMI/RI reporting and high-level parameters eMIMO-Type, eMIMO-Type is configured as 'CLASS B', K>1 CSI-RS resources of 4 antenna ports are configured, and high-level parameters are configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及设备。该方法包括:网络设备向终端设备发送配置信息;终端设备确定信道状态信息CSI测量行为和/或CSI反馈相关信息,其中,所述信道状态信息CSI测量行为和/或CSI反馈相关信息与所述配置信息相关;终端设备根据所述CSI测量行为和/或所述CSI反馈相关信息,以及所述配置信息,执行CSI测量得到至少一个CSI,并向所述网络设备发送所述至少一个CSI中的全部或部分。可见,针对支持多种传输模式的场景通过上述方法可实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。

Description

一种通信方法及设备
本申请要求在2017年9月11日提交中国专利局、申请号为201710812735.8、申请名称为“一种通信方法及设备”的中国专利申请的优先权,以及要求在2017年11月14日提交中国专利局、申请号为201711125639.2、申请名称为“一种通信方法及设备”的中国专利申请的优先权,这两篇中国专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
目前,终端设备与网络设备之间所采用的传输模式支持单点传输模式和多点协作传输(coordinated multiple points transmission/reception,CoMP)模式。单点传输模式是指一个传输点独立完成与一个终端设备之间的数据传输,多点协作传输模式是指地理位置上分离的多个传输点联合完成与一个终端设备之间的数据传输,传输点可理解为网络设备,可以为基站,也可以为基站的射频单元,如远端射频单元RRU(remote radio unit),也可以是一个基站或者一个传输点的一个面板等,一个基站或者一个传输点可以包括一个或者多个面板,数据传输包括数据的发送和接收。
在长期演进(long term evolution,LTE)通信系统中,现有技术中对于支持一种传输模式的场景配置一个信道状态信息(channel state information,CSI)进程(process),针对该CSI进程终端设备仅需测量并反馈该传输模式对应的CSI即可。而对于支持多种传输模式的场景配置的是增强的CSI进程,针对增强的CSI进程终端设备需要测量多种传输模式下的CSI,然后通过向网络设备反馈测量得到的CSI来指示是单点传输模式的性能好还是多点协作传输模式的性能好。由于不同的传输模式下,终端设备测量CSI的过程不同,向网络设备反馈测量得到的CSI的过程也不相同,但现有技术中终端设备无法确定CSI进程是否为增强的CSI进程,即终端设备无法确定需要在何种传输模式下测量和反馈CSI,终端设备也就无法执行测量CSI的过程和反馈CSI的过程。在第五代(5G)系统中对于支持多种传输模式的场景,目前尚未提供终端设备测量并反馈CSI的技术方案。
综上,如何提供一种适用于支持多种传输模式的场景的用以实现CSI测量并反馈的技术方案,急需解决。
发明内容
本申请实施例提供一种通信方法及设备,用以针对支持多种传输模式的场景实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。
第一方面,本申请实施例提供一种通信方法,在该方法中,网络设备向终端设备发送配置信息,终端设备接收到配置信息后,确定信道状态信息CSI测量行为和/或CSI反馈相关信息,其中,信道状态信息CSI测量行为和/或CSI反馈相关信息与配置信息相关。终端设备根据所述CSI测量行为和/或所述CSI反馈相关信息,以及所述配置信息,执行CSI 测量得到至少一个CSI,并向所述网络设备发送所述至少一个CSI中的全部或部分。
其中,CSI测量行为指示终端设备如何测量CSI,CSI反馈相关信息是指终端设备向网络设备反馈CSI时的相关信息。示例性的,CSI反馈相关信息可以包括反馈的CSI的内容(比如CRI、RI、PMI、CQI中的至少一个),反馈的CSI内容的比特信息(比如比特信息,包括比特个数,和/或,比特个数的确定规则),反馈的CSI内容采用的编码方式(比如独立编码或联合编码)、交织方式(比如独立交织或联合交织等)、映射方式(比如映射的时频资源和/或映射规则等)等信息中的至少一个信息。
上述方法中,网络设备确定需要终端设备如何测量并反馈CSI,即网络设备确定需要终端设备在何种传输模式下测量并反馈CSI,然后网络设备基于需要终端设备如何测量并反馈CSI来确定配置信息。终端设备根据该配置信息可以获知如何测量并反馈CSI,配置信息与CSI测量行为和/或CSI反馈相关信息相关。因此通过上述方法,即使终端设备无法确定需要在何种传输模式下测量和反馈CSI,终端设备根据网络设备发送的配置信息也可以获知如何测量和/或反馈CSI,进而针对支持多种传输模式的场景实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。上述方法中,终端设备和网络设备根据已有的配置信息确定CSI测量行为和/或CSI反馈相关信息,可以降低信令开销。配置信息配置有资源时,可以实现终端设备在多种传输模式下执行CSI测量和反馈,相比于一次配置一种传输模式下的CSI测量和反馈,可以降低信令开销,降低参考信号的开销,降低CSI测量反馈的时延,提高性能。如果终端设备仅反馈传输性能最好的一种传输模式下的CSI,可以降低反馈开销,同时辅助网络设备根据最好的传输模式进行数据调度。或者,如果终端设备可以反馈多种传输模式下的CSI,使得网络设备可以获取多种传输模式下的传输性能情况,进而辅助数据调度,提高性能。
在一种设计中,网络设备确定所述终端设备的CSI测量行为和/或CSI反馈相关信息,然后基于所述CSI测量行为和/或所述CSI反馈相关信息接收来自所述终端设备的CSI。
上述方法中,网络设备采用与终端设备测量和反馈CSI的方法相对应的方法接收来自终端设备的CSI,即网络设备基于CSI测量行为和/或CSI反馈相关信息接收来自终端设备的CSI。需要说明的是,在网络设备获知终端设备测量和反馈CSI的方法的情况下,网络设备接收CSI的方法与现有技术可以相同。
在一种设计中,基于网络设备确定需要终端设备在单点传输模式+多点协作传输模式的混合模式(也可称为混合传输模式)下测量并反馈CSI,配置信息以及信道状态信息CSI测量行为和/或CSI反馈相关信息如下:
所述配置信息满足如下条件中的至少一个时:
1)、所述配置信息包括N1个类别classA的非零功率信道状态信息参考信号NZP CSI-RS资源,所述N1为大于或等于2的正整数。
其中,在LTE通信系统中,配置信息包括N1个class A的NZP CSI-RS资源是指,配置信息包括一个CSI进程的配置信息。在NR通信系统中,配置信息包括N1个class A的NZP CSI-RS资源可以是指,配置信息包括一个CSI上报设置(reporting setting),该reporting setting关联了R个用于测量信道的关联信息(link),即关联R个参考信号设置(RS setting),每个RS setting包括至少一个class A的NZP CSI-RS资源,R个RS setting包括N1个class A的NZP CSI-RS资源;或者,配置信息包括一个reporting setting,该reporting setting关联了1个用于测量信道的关联信息link,即关联1个RS setting,该RS setting包括N1个class A的NZP CSI-RS 资源。
2)、所述配置信息包括N2个class B的NZP CSI-RS资源,以及CSI测量行为指示信息和/或CSI反馈相关信息指示信息,所述N2为大于或等于2的正整数,所述CSI测量行为指示信息指示所述CSI测量行为,所述CSI反馈相关信息指示信息指示所述CSI反馈相关信息。
3)、所述配置信息包括CSI测量行为指示信息和/或CSI反馈相关信息指示信息。
上述条件2)和3)中,CSI测量行为指示信息指示CSI测量行为,该CSI测量行为是终端设备在混合模式下执行CSI测量的行为;CSI反馈相关信息指示信息指示CSI反馈相关信息,该CSI反馈相关信息是终端设备在混合模式下反馈CSI时的相关信息。终端设备在混合模式下执行CSI测量的行为和反馈CSI时的相关信息会在下文中描述。
终端设备和网络设备根据满足条件3)的配置信息,可以直接根据该配置信息确定CSI测量行为和/或CSI反馈相关信息,避免终端设备进行判断选择,进而降低终端设备复杂度。
4)、所述配置信息包括天线端口的准共址QCL的类型为类型C。
可选的,QCL类型为类型C时也可以结合其他条件确定CSI测量行为和/或CSI反馈相关信息,比如1)至12)配置信息中的至少一项,或者其他条件,具体的在此不作限定。
5)、所述配置信息包括天线端口的QCL的类型为类型C且所包括的CSI进程的个数为1。
条件5)适用于LTE通信系统,配置信息满足条件5)时,可以确定网络设备需要终端设备在混合模式下测量并反馈CSI。
6)、所述配置信息包括物理下行链路共享信道映射和准共址指示PQI中指示QCL个数大于M,所述M为大于或等于1的正整数。
7)、所述配置信息包括PQI中指示参数parameter组数大于P,所述P为大于或等于1的正整数。
8)、所述配置信息包括CSI参考信号资源指示信息CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
若网络设备需要终端设备在单点传输模式下执行CSI测量和反馈时CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一项可以是预定义值,此时不需要配置信息包括CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个,则当配置信息满足条件8)时可以确定网络设备需要终端设备在混合模式下执行CSI测量和反馈。若网络设备需要终端设备在单点传输模式下执行CSI测量和反馈时CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的一个或多个也是通过配置信息配置的,那么在配置信息满足条件8)时还需要结合配置信息中的其他信息,来确定网络设备需要终端设备在混合模式下执行CSI测量和反馈。
9)、所述配置信息包括CRI上报的比特信息为L且NZP CSI-RS资源为K个时,
Figure PCTCN2018105094-appb-000001
可选的,NZP CSI-RS资源可以是测量信道的资源,也可以是指测量干扰的资源,也可以即测量信道又测量干扰的资源,也可以是测量信道的资源和测量干扰的资源下总的资源,具体的,在此不作限定。
当配置信息满足条件9)时可以确定网络设备需要终端设备在混合模式下执行CSI测量和反馈。可以由高层信令配置CRI上报的比特信息,也可以是物理层信令。高层信令可 以是指RRC信令或者MAC层信令,具体的在此不作限定。
10)、所述配置信息包括一个CSI上报设置reporting setting,该reporting setting关联Q个信道链接link、T个参考信号设置RS setting和S个参考信号集合RS set中的至少一个,所述Q为大于或等于2的正整数,T为大于或等于2的正整数,S为大于或等于2的正整数。
11)、配置信息包括第一资源和第二资源,该第一资源为测量第一CSI、第二CSI和第三CSI中的至少一个时使用的资源,该第二资源为测量第四CSI时使用的资源。
其中,第一CSI是基于干扰功率获得的,第二CSI是基于当用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,第三CSI是基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,该预设算法可以为:干扰等于接收信号与有用信号的差值,第四CSI是基于流间干扰或者码字间干扰获得的。
测量第一CSI、第二CSI和第三CSI中的至少一个,表示需要终端设备在单点传输模式下测量和反馈CSI,测量第四CSI表示需要终端设备在多点协作传输模式下测量和反馈CSI,因此当配置信息包括第一资源和第二资源时,表示需要终端设备在混合模式下测量和反馈CSI。
12)、配置信息包括第二指示信息,该第二指示信息会指示终端设备在混合传输模式下执行CSI测量和反馈。该第二指示信息指示当前的CSI进程为多点协作传输模式下的CSI进程,终端设备根据该指示信息获知在混合传输模式下执行CSI测量和反馈。
可选的,该第二指示信息可以是信令。例如,在LTE通信系统中,该第二指示信息为NCJT CSI process指示,高层信令CoMP-Process=TRUE时,表示当前的CSI进程为多点协作模式下的CSI进程,则指示终端设备在混合传输模式下执行CSI测量和反馈。又例如,在NR通信系统中,高层信令CoMP-Process=TRUE时,表示终端设备在混合传输模式下执行CSI测量和反馈,该高层信令可以包含在测量配置MeasConfig中,也可以包含在上报配置ReportConfig中。
可选的,该第二指示信息可以指示第一资源和第二资源,该第一资源为测量第一CSI、第二CSI和第三CSI中的至少一个时使用的资源,该第二资源为测量第四CSI时使用的资源。
配置信息满足上述条件1)至12)中的至少一个时,相关的CSI测量行为和/或CSI反馈相关信息如下:
所述CSI测量行为包括:测量第一CSI、第二CSI和第三CSI中的至少一个,以及测量第四CS;和/或
所述CSI反馈相关信息包括:对信道状态信息参考信号资源指示CRI和秩指示RI采用联合编码或者独立编码,和/或,将CRI和RI映射到时频资源的映射方式。其中,对CRI和RI采用联合编码或者独立编码,是指CRI和RI联合编码或分别编码,对于CRI和/或RI是否与其他信息联合编码不作限定。
在一种设计中,所述CSI测量行为指示信息指示测量所述第一CSI,所述第二CSI和所述第三CSI中的至少一个,以及指示测量所述第四CSI。
这样,终端设备可以直接根据该配置信息确定CSI测量行为,避免终端设备进行判断选择,进而降低终端设备复杂度。
在一种设计中,所述CSI反馈相关信息指示信息指示对CRI和RI采用联合编码,或指示对CRI和RI采用独立编码,和/或,
所述CSI反馈相关信息指示信息指示将CRI和RI映射到时频资源的映射方式。
这样,终端设备可以直接根据该配置信息确定CSI反馈相关信息,避免终端设备进行判断选择,进而降低终端设备复杂度。
在一种设计中,所述第四CSI还进一步基于干扰功率获得,或,所述第四CSI还进一步基于用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得,或,所述第四CSI还进一步基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得。
在一种设计中,所述CSI反馈相关信息还包括:所述CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个,所述所述CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个可以通过如下方式确定:
预设规则一:基于CRI和RI的最大比特个数,确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
预设规则二:联合考虑CRI和RI,确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
预设规则三:在NR通信系统中,可以根据link个数或者测量信道的个数,确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
在一种设计中,所述配置信息包括第二指示信息,所述第二指示信息指示终端设备在混合传输模式下执行CSI测量和反馈,或者,指示当前的CSI进程为多点协作传输模式下的CSI进程;终端设备可根据第二指示信息确定CSI反馈相关信息,所述CSI反馈相关信息包括对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项。对于网络设备来说,所述CSI反馈相关信息包括对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项,所述配置信息与CSI测量行为和/或CSI反馈相关信息相关包括:所述对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第二指示信息相关。
上述方法中,网络设备确定需要终端设备在何种传输模式下执行CSI测量和反馈,然后网络设备基于需要终端设备在何种传输模式下执行CSI测量和反馈来确定第二指示信息。终端设备根据该第二指示信息可以获知在何种传输模式下测量并反馈CSI,第二指示信息与对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项相关。因此通过上述方法,即使终端设备无法确定需要在何种传输模式下测量和反馈CSI,终端设备根据网络设备发送的第二指示信息也可以获知在何种传输模式下测量和/或反馈CSI,进而针对支持多种传输模式的场景实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。
在一种设计中,所确定的对CRI和RI的编码方式为:CRI和RI采用联合编码或者独立编码。
在一种设计中,根据第二指示信息确定CSI反馈相关信息,包括:根据第二指示信息确定CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项;或者,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第二指示信息,确定CRI的比特数,或,RI的比特数中的至少一项;或者,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备 的能力信息,RI的比特数,或,CRI的取值中的至少一项以及第二指示信息,确定CRI的比特含义,或,RI的比特含义中的至少一项。相应的,所述对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第二指示信息相关包括:CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第二指示信息相关;或者,CRI的比特数,或,RI的比特数中的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第二指示信息相关;或者,CRI的比特含义,或,RI的比特含义中的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第二指示信息相关。
本申请实施例中可以采用多种不同的方式来确定CSI反馈相关信息,较为灵活。
在一种设计中,根据第二指示信息确定CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项,包括以下情况中的至少一种:根据第二指示信息确定CRI的比特数和/或RI的比特数;或,根据第二指示信息确定CRI的比特含义和/或RI的比特含义。相应的,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第二指示信息相关,包括以下情况中的至少一种:CRI的比特数和/或RI的比特数与所述第二指示信息相关;或,CRI的比特含义和/或RI的比特含义与所述第二指示信息相关。
通过这种方式,可以使得RI和CRI联合反馈或者联合编码时,RI的比特数不依赖于CRI的取值,即可以保证CRI和RI的比特数是固定的,可以使得网络设备正确联合接收或者联合解码CRI和RI。
在一种设计中,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第二指示信息,确定CRI的比特数,或,RI的比特数的至少一项,包括以下情况中的至少一种:根据NZP CSI-RS资源的个数和第二指示信息确定CRI的比特数;或,根据NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及第二指示信息,确定RI的比特数;或,根据NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及第二指示信息,以及CRI的取值,确定RI的比特数;或,根据第二指示信息以及CRI的取值,确定RI的比特数。相应的,CRI的比特数,或,RI的比特数的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第二指示信息相关,包括以下情况中的至少一种:CRI的比特数与NZP CSI-RS资源的个数和所述第二指示信息相关;或,RI的比特数与NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第二指示信息相关;或,RI的比特数与NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第二指示信息,以及CRI的取值相关;或,RI的比特数与所述第二指示信息以及CRI的取值相关。
本申请实施例中可以采用多种不同的方式来确定CRI的比特数和RI的比特数中的至少一项,较为灵活。
采用如上的方法,可以使得RI和CRI联合反馈或者联合编码时,RI的比特数不依赖于CRI的取值,即可以保证CRI和RI的比特数是网络设备和终端设备共同知道的,可以使得网络设备可以正确联合接收或者联合解码CRI和RI。而且因为RI的比特数是与天线端口的个数和/或终端设备的能力相关的,RI的比特数开销相对较小。
在一种设计中,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及第二指示信息,确定CRI的比特含义或RI的比特含义的至少一项,包括以下情况中的至少一种:根据第二指示信息和CRI的取值确定RI的比特含义;或,根据NZP CSI-RS的天线端口数,所述终端设备的能力信息,所述RI的比特数中的至少一项、以及CRI的取值和第二指示信息,确定RI的比特含义;或,根据第二指示信息及RI的比特数确定RI的比特含义;或,根据第二指示信息和CRI的取值确定所述RI的比特含义;或,根据第二指示信息和NZP CSI-RS资源的个数确定CRI的比特含义。相应的,CRI的比特含义或RI的比特含义的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第二指示信息相关,包括以下情况中的至少一种:RI的比特含义与所述第二指示信息和CRI的取值相关;或,RI的比特含义与NZP CSI-RS的天线端口数,所述终端设备的能力信息,所述RI的比特数中的至少一项、以及CRI的取值和所述第二指示信息相关;或,RI的比特含义与所述第二指示信息及RI的比特数相关;或,RI的比特含义与所述第二指示信息和CRI的取值相关;或,CRI的比特含义与所述第二指示信息和NZP CSI-RS资源的个数相关。
在一种设计中,终端设备根据第二指示信息确定反馈至少两个CSI集合,所述至少两个CSI集合包括第一集合的CSI和第二集合的CSI;所述至少两个CSI集合的反馈顺序包括以下情况中的一种:反馈顺序依次为第一集合的CQI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第一集合的PMI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,第一集合的PMI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,第二集合的CQI,和,第二集合的PMI;其中第一集合的CSI对应第一个NZP CSI-RS资源的CSI,第二集合的CSI对应第二个NZP CSI-RS资源的CSI;或者,第一集合的CSI对应第一个码字的CSI,第二集合的CSI对应第二个码字的CSI。相应的,网络设备确定终端设备反馈的至少两个CSI集合与所述第二指示信息相关,所述至少两个CSI集合包括第一集合的CSI和第二集合的CSI;所述至少两个CSI集合的反馈顺序包括以下情况中的一种:反馈顺序依次为第一集合的CQI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第一集合的PMI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,第一集合的PMI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,第二集合的CQI,和,第二集合的PMI;其中第一集合的CSI对应第一个NZP CSI-RS资源的CSI,第二集合的CSI对应第二个NZP CSI-RS资源的CSI;或者,第一集合的CSI对应第一个码字的CSI,第二集合的CSI对应第二个码字的CSI。
如果有至少两个CSI集合,则至少两个CSI集合的反馈顺序可以有多种,具体使用何种反馈顺序可以由网络设备事先规定,或者由协议规定。
在一种设计中,终端设备还向网络设备发送第三指示信息,所述第三指示信息指示终端设备支持QCL类型,或者支持FeCoMP的CSI测量和/或反馈。相应的,网络设备接收 来自终端设备的第三指示信息,所述第三指示信息指示终端设备支持的QCL类型,或者支持FeCoMP的CSI测量和/或反馈。
本申请实施例所述的CSI测量行为,包括FeCoMP的CSI的测量。在协议版本R15中引入了FeCoMP特性,那么对于支持R15协议版本的终端设备,由于终端设备的能力不同,有些终端设备由于硬件存储或处理能力等能力的限制,可能不支持FeCoMP,有的终端设备能力强,可以支持FeCoMP。因此本申请实施例提供一种方案:终端设备在入网时,可以通过第三指示信息将是否支持FeCoMP的CSI的测量作为终端设备的一种能力上报给网络设备,从而使得网络设备能够得知该终端设备是否支持FeCoMP的CSI的测量。第三指示信息还可以指示终端设备支持的QCL类型,比如是否支持QCL类型C。
第二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面提供的方法的功能。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。该通信装置对应的设备可以为终端设备,也可以为网络设备。
在一种设计中,上述通信装置对应的设备为终端设备时,通信装置中包括处理单元和收发单元,所述处理单元被配置为支持终端设备执行上述方法中相应的功能。所述收发单元用于支持终端设备与其他设备(包括网络设备)之间的通信。所述终端设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存终端设备必要的程序指令和数据。
在又一种设计中,上述通信装置对应的设备可以为终端设备时,通信装置包括存储器、处理器以及输入输出口;存储器,用于存储计算机可读程序;处理器,调用存储在存储器中的指令,执行上述第一方面中终端设备执行上述方法;输入输出口,用于在处理器的控制下接收和/或发送。
在又一种设计中,上述通信装置对应的设备为网络设备时,通信装置中包括处理单元和收发单元,所述处理单元被配置为支持网络设备执行上述方法中相应的功能。所述收发单元用于支持网络设备与其他设备(包括终端设备)之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存网络设备必要的程序指令和数据。
在又一种设计中,上述通信装置对应的设备为网络设备时,通信装置包括存储器、处理器以及输入输出口;存储器,用于存储计算机可读程序;处理器,调用存储在存储器中的指令,执行上述第一方面中网络设备执行上述方法;输入输出口,用于在处理器的控制下接收和/或发送。
作为示例,处理单元可以为处理器,收发单元可以为输入输出口,存储单元可以为存储器,其中,输入输出口可以是多个元件,即包括发送机和接收机,或者包括通信接口,该通信接口具有接收和发送的功能。
第三方面,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序或指令,该软件程序或指令在被一个或多个处理器读取并执行时可实现上述第一方面提供的通信方法。
第四方面,本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面提供的通信方法。
第五方面,本申请实施例还提供了一种通信系统,该通信系统包括终端设备和网络设备。
第六方面,本申请实施例还提供一种通信方法,在该通信方法中,网络设备向终端设 备发送第一指示信息,网络设备确定CSI反馈相关信息并基于所述CSI反馈相关信息接收来自终端设备的CSI反馈,所述CSI反馈相关信息与所述第一指示信息相关,则终端设备根据所述第一指示信息可以确定CSI反馈相关信息,所述CSI反馈相关信息包括对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项。所述第一指示信息用于使能基于FeCoMP的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能混合传输模式下的CSI反馈。
上述方法中,网络设备确定需要终端设备在何种传输模式下执行CSI测量和反馈,然后网络设备基于需要终端设备在何种传输模式下执行CSI测量和反馈来确定第一指示信息。终端设备根据该第一指示信息可以获知在何种传输模式下测量并反馈CSI,第一指示信息与对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项相关。因此通过上述方法,即使终端设备无法确定需要在何种传输模式下测量和反馈CSI,终端设备根据网络设备发送的第一指示信息也可以获知在何种传输模式下测量和/或反馈CSI,进而针对支持多种传输模式的场景实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。
在一种设计中,所确定的对CRI和RI的编码方式为:CRI和RI采用联合编码或者独立编码。
在一种设计中,根据第一指示信息确定CSI反馈相关信息,包括:根据第一指示信息确定CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项;或者,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第第一指示信息,确定CRI的比特数,或,RI的比特数中的至少一项;或者,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以第一指示信息,确定CRI的比特含义,或,RI的比特含义中的至少一项。相应的,所述对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第一指示信息相关包括:CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第一指示信息相关;或者,CRI的比特数,或,RI的比特数中的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息相关;或者,CRI的比特含义,或,RI的比特含义中的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息相关。
本申请实施例中可以采用多种不同的方式来确定CSI反馈相关信息,较为灵活。
在一种设计中,根据第一指示信息确定CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项,包括以下情况中的至少一种:根据第一指示信息确定CRI的比特数和/或RI的比特数;或,根据第一指示信息确定CRI的比特含义和/或RI的比特含义。相应的,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第一指示信息相关,包括以下情况中的至少一种:CRI的比特数和/或RI的比特数与所述第一指示信息相关;或,CRI的比特含义和/或RI的比特含义与所述第一指示信息相关。
通过这种方式,可以使得RI和CRI联合反馈或者联合编码时,RI的比特数不依赖于CRI的取值,即可以保证CRI和RI的比特数是固定的,可以使得网络设备正确联合接收或者联 合解码CRI和RI。
在一种设计中,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第第一指示信息,确定CRI的比特数,或,RI的比特数的至少一项,包括以下情况中的至少一种:根据NZP CSI-RS资源的个数和第一指示信息确定CRI的比特数;或,根据NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以第一指示信息,确定RI的比特数;或,根据NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及第第一指示信息,以及CRI的取值,确定RI的比特数;或,根据第一指示信息以及CRI的取值,确定RI的比特数。相应的,CRI的比特数,或,RI的比特数的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息相关,包括以下情况中的至少一种:CRI的比特数与NZP CSI-RS资源的个数和所述第一指示信息相关;或,RI的比特数与NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第一指示信息相关;或,RI的比特数与NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第一指示信息,以及CRI的取值相关;或,RI的比特数与所述第一指示信息以及CRI的取值相关。
本申请实施例中可以采用多种不同的方式来确定CRI的比特数和RI的比特数中的至少一项,较为灵活。
采用如上的方法,可以使得RI和CRI联合反馈或者联合编码时,RI的比特数不依赖于CRI的取值,即可以保证CRI和RI的比特数是网络设备和终端设备共同知道的,可以使得网络设备可以正确联合接收或者联合解码CRI和RI。而且因为RI的比特数是与天线端口的个数和/或终端设备的能力相关的,RI的比特数开销相对较小。
在一种设计中,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以第一指示信息,确定CRI的比特含义或RI的比特含义的至少一项,包括以下情况中的至少一种:根据第一指示信息和CRI的取值确定RI的比特含义;或,根据NZP CSI-RS的天线端口数,所述终端设备的能力信息,所述RI的比特数中的至少一项、以及CRI的取值和第一指示信息,确定RI的比特含义;或,根据第一指示信息及RI的比特数确定RI的比特含义;或,根据第一指示信息和CRI的取值确定所述RI的比特含义;或,根据第一指示信息和NZP CSI-RS资源的个数确定CRI的比特含义。相应的,CRI的比特含义或RI的比特含义的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息相关,包括以下情况中的至少一种:RI的比特含义与所述第一指示信息和CRI的取值相关;或,RI的比特含义与NZP CSI-RS的天线端口数,所述终端设备的能力信息,所述RI的比特数中的至少一项、以及CRI的取值和所述第一指示信息相关;或,RI的比特含义与所述第一指示信息及RI的比特数相关;或,RI的比特含义与所述第一指示信息和CRI的取值相关;或,CRI的比特含义与所述第一指示信息和NZP CSI-RS资源的个数相关。
在一种设计中,终端设备根据第一指示信息确定反馈至少两个CSI集合,所述至少两个CSI集合包括第一集合的CSI和第二集合的CSI;所述至少两个CSI集合的反馈顺序包括以下情况中的一种:反馈顺序依次为第一集合的CQI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第一集合的PMI;或,反馈顺序依次 为第一集合的CQI,第二集合的CQI,第一集合的PMI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,第二集合的CQI,和,第二集合的PMI;其中第一集合的CSI对应第一个NZP CSI-RS资源的CSI,第二集合的CSI对应第二个NZP CSI-RS资源的CSI;或者,第一集合的CSI对应第一个码字的CSI,第二集合的CSI对应第二个码字的CSI。相应的,网络设备确定终端设备反馈的至少两个CSI集合与所述第一指示信息相关,所述至少两个CSI集合包括第一集合的CSI和第二集合的CSI;所述至少两个CSI集合的反馈顺序包括以下情况中的一种:反馈顺序依次为第一集合的CQI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第一集合的PMI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,第一集合的PMI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,和,第二集合的CQI;或,反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第二集合的PMI;或,反馈顺序依次为第一集合的CQI,第一集合的PMI,第二集合的CQI,和,第二集合的PMI;其中第一集合的CSI对应第一个NZP CSI-RS资源的CSI,第二集合的CSI对应第二个NZP CSI-RS资源的CSI;或者,第一集合的CSI对应第一个码字的CSI,第二集合的CSI对应第二个码字的CSI。
如果有至少两个CSI集合,则至少两个CSI集合的反馈顺序可以有多种,具体使用何种反馈顺序可以由网络设备事先规定,或者由协议规定。
在一种设计中,终端设备还向网络设备发送第三指示信息,所述第三指示信息指示终端设备支持FeCoMP的CSI测量和/或反馈。相应的,网络设备接收来自终端设备的第三指示信息,所述第三指示信息指示终端设备支持的QCL类型,或者,支持FeCoMP的CSI测量和/或反馈。
本申请实施例所述的CSI测量行为,包括FeCoMP的CSI的测量。在协议版本R15中引入了FeCoMP特性,那么对于支持R15协议版本的终端设备,由于终端设备的能力不同,有些终端设备由于硬件存储或处理能力等能力的限制,可能不支持FeCoMP,有的终端设备能力强,可以支持FeCoMP。因此本申请实施例提供一种方案:终端设备在入网时,可以通过第三指示信息将是否支持FeCoMP的CSI的测量作为终端设备的一种能力上报给网络设备,从而使得网络设备能够得知该终端设备是否支持FeCoMP的CSI的测量。第三指示信息还可以指示终端设备支持的QCL类型。
其中,第六方面所述的第一指示信息,与如前的第一方面所述的第二指示信息,可以是同一指示信息。
第七方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第六方面提供的方法的功能。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。该通信装置对应的设备可以为终端设备,也可以为网络设备。
在一种设计中,上述通信装置对应的设备为终端设备或可设置于终端设备的芯片时,通信装置中包括处理单元和收发单元,所述处理单元被配置为支持终端设备执行上述方法中相应的功能。所述收发单元用于支持终端设备与其他设备(包括网络设备)之间的通信。所述终端设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存终端设备 必要的程序指令和/或数据。
在又一种设计中,上述通信装置对应的设备可以为终端设备时,通信装置包括存储器、处理器以及输入输出口;存储器,用于存储计算机可读程序或指令;处理器,运行存储在存储器中的程序或指令,执行上述第六方面中终端设备执行的上述方法;输入输出口,用于在处理器的控制下接收和/或发送。
在又一种设计中,上述通信装置对应的设备为网络设备时,通信装置中包括处理单元和收发单元,所述处理单元被配置为支持网络设备执行上述第六方面所述的方法中相应的功能。所述收发单元用于支持网络设备与其他设备(包括终端设备)之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存网络设备必要的程序指令和/或数据。
在又一种设计中,上述通信装置对应的设备为网络设备或可设置于网络设备内的芯片时,通信装置包括存储器、处理器以及输入输出口;存储器,用于存储计算机可读程序或指令;处理器,运行存储在存储器中的程序或指令,执行上述第六方面中网络设备执行上述方法;输入输出口,用于在处理器的控制下接收和/或发送。
作为示例,处理单元可以为处理器,收发单元可以为输入输出口,存储单元可以为存储器,其中,输入输出口可以包括发送机和接收机,或者包括通信接口,如芯片的输入输出口,该通信接口具有接收和发送的功能。
第八方面,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序或指令,该软件程序或指令在被一个或多个处理器读取并执行时可实现上述第六方面提供的通信方法。
第九方面,本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第六方面提供的通信方法。
第十方面,本申请实施例还提供了一种通信系统,该通信系统包括终端设备和网络设备。
本申请实施例提供的技术方案中,由于网络设备是基于需要终端设备如何测量并反馈CSI,即需要终端设备在何种传输模式下测量并反馈CSI,来确定向终端设备发送的配置信息的,终端设备根据该配置信息可以获知如何测量并反馈CSI。因此该技术方案,终端设备根据网络设备发送的配置信息可以获知如何测量和/或反馈CSI,进而针对支持多种传输模式的场景实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。该技术方案中,终端设备根据配置信息确定CSI测量行为和/或CSI反馈相关信息,可以降低信令开销。进一步的,配置信息配置有相应资源时,可以实现终端设备在多种传输模式下执行CSI测量和反馈,相比于一次配置一种传输模式下的CSI测量和反馈,可以降低信令开销,降低参考信号的开销,降低CSI测量反馈的时延,提高性能。进一步的,如果终端设备仅反馈传输性能最好的一种传输模式下的CSI,可以降低反馈开销,同时辅助网络设备根据最好的传输模式进行数据调度。或者,进一步的,如果终端设备可以反馈多种传输模式下的CSI,使得网络设备可以获取多种传输模式下的传输性能情况,进而辅助数据调度,提高性能。
附图说明
图1为本申请实施例提供的一种多点协作传输模式下的网络架构示意图;
图2为本申请实施例提供的一种多点多流协作传输技术下的网络架构示意图;
图3为本申请实施例提供的一种5G系统的网络架构示意图;
图4为本申请实施例提供的一种5G系统的网络架构示意图;
图5-1为本申请实施例提供的一种通信方法流程示意图;
图5-2为本申请实施例提供的一种CSI的资源配置示意图;
图5-3为本申请实施例提供的一种通信方法流程示意图;
图6为本申请实施例提供的第一种映射方式示意图;
图7为本申请实施例提供的第二种映射方式示意图;
图8为本申请实施例提供的第三种映射方式示意图;
图9为本申请实施例提供的第四种映射方式示意图;
图10A为本申请实施例提供的另一种CSI的资源配置示意图;
图10B为本申请实施例提供的一种通信方法流程示意图;
图11为本申请实施例提供的设备的示意图一;
图12为本申请实施例提供的一种终端设备的结构示意图;
图13为本申请实施例提供的设备的示意图二;
图14为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
本申请实施例提供一种通信方法及设备,用以针对支持多种传输模式的场景实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。其中,方法和设备是基于同一发明构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案适用于终端设备与网络设备之间所采用的传输模式支持多种传输模式的场景,多种传输模式可以包括单点传输模式和多点协作传输模式。其中,单点传输模式是指在一个时间单位内可以支持单个传输点与同一个终端设备之间的数据传输,多点协作传输模式是指在一个时间单位内可以支持多个传输点与同一个终端设备之间的数据传输,数据传输包括数据的发送和接收。其中,时间单位可以为调度单位,该调度单位可以包括一个或多个子帧,一个或多个时隙,一个或多个微时隙,和,一个或多个符号中的至少一个,具体可以视系统实现或协议确定。在本申请实施例中,单点传输模式可以为单站点传输、动态点选择(dynamic point selection,DPS)传输、或,动态点静默(dynamic point blanking,DPB)传输等其他单点传输的方式,具体的在此不作限定。多点协作传输模式可以为相干联合传输(JT)、非相干联合传输(non-coherent joint transmission,NCJT)等其他联合传输的方式,具体的在此不作限定。
对于多点协作传输模式,传输点是指用于协作传输的传输点,一个用于协作传输的传输点是协作集合中的一个传输点,协作集合中的传输点联合完成与终端设备之间的数据传输。协作集合中的任意两个传输点发送出的信号可能会经过不同的大尺度衰落特性(即不准共址),该两个传输点可以属于同一个小区或不同小区,本申请实施例不做限定。本申请实施例中QCL的定义可以参考LTE中的定义,即从QCL的天线端口发送出的信号会经过相同的大尺度衰落,大尺度衰落包括以下一项或多项:时延扩展、多普勒扩展、多普勒 频移、平均信道增益和平均时延等。本申请实施例中QCL的定义还可以参考5G中QCL的定义,在新无线NR系统中,对QCL的定义与LTE系统类似,但增加了空域信息,如:从QCL的天线端口发送出的信号会经过相同的大尺度衰落,其中,大尺度衰落包括以下参数中的一项或多项:时延扩展、多普勒扩展、多普勒频移、平均信道增益、平均时延和空域参数等,空间参数则可以为如发射角(AOA)、主发射角(Dominant AoA)、平均到达角(Average AoA)、到达角(AOD)、信道相关矩阵,到达角的功率角度扩展谱,平均出发角(Average AoD)、出发角的功率角度扩展谱、发射信道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、滤波器,空间滤波参数,或,空间接收参数等中的一项。例如图1示出一种多点协作传输模式下的网络架构示意图,图1中射频拉远单元(remote radio unit,RRU)作为传输点,RRU1和RRU2联合向终端设备1发送数据,以及RRU1和RRU2联合接收来自终端设备1的数据,RRU1和RRU2之间进行协作调度或协作波束成型。进一步的,多点协作传输模式包括多点多流协作传输技术,该技术中不同的传输点各自独立进行预编码,不同的传输点传输不同的数据流、不同的码字或者不同的传输块;而多点协作传输模式中除多点多流协作传输技术之外,不同的传输点也可以传输相同的数据流或者相同数据流/码字/传输块等,不同的传输点传输的相同数据流/码字/传输块采用不同编码方式,或者传输的相同数据流/码字/传输块采用为冗余版本,具体的在此不作限定。需注意,多点多流协作传输技术中在计算数据流的信道质量信息(channel quality indicator,CQI)时,考虑其他数据流的干扰情况。例如图2示出一种多点多流协作传输技术下的网络架构示意图,图2中以传输点1为例,传输点1包括的多个传输点联合向终端设备传输数据,传输点1对应的不同的椭圆形区域表示传输点1包括的多个传输点传输不同的数据流。
本申请实施例中的网络设备可以是具有无线收发功能的设备,包括但不限于:基站、中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的网络设备、WiFI系统中的接入点、以及用户设备(user Equipment,UE)等。例如,NR系统中传输点(TRP或TP)、NR系统中的基站(gNB)、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等,本申请实施例对此并未特别限定。
本申请实施例中的终端设备为具有无线收发功能的设备,包括但不限于UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、无人机设备、智能家居以及未来网络中的终端设备或者未来演进的PLMN中的终端设备等,本申请实施例对此并不限定。
本申请实施例提供的技术方案可应用于新无线(new radio,NR)通信技术中,所述NR是指新一代无线接入网络技术,可以应用在未来演进网络,如5G通信系统中。本申请实施例提供的技术方案也可应用于LTE和无线保真(wireless fidelity,WIFI)等无线通信系统中。
可以理解的是,无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以 采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(carrier sense multiple access with collision avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(global system for mobile communications/general packet radio service,GSM)网络或者通用分组无线业务(general packet radio service,GPRS)网络,典型的3G网络包括通用移动通信系统(universal mobile telecommunications system,UMTS)网络,典型的4G网络包括长期演进(long term evolution,LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(universal terrestrial radio access network,UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(wireless local area networks,WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。随着技术的发展本申请实施例提供的技术方案可以应用于4.5G或者5G网络,或其他非蜂窝通信网络。可以理解的是,随着技术的发展,本申请实施例提供的技术方案也可以应用于后续的演进网络,如6G中,在此不予限定。为了简洁,本申请实施例有时会将无线通信网络简称为网络。蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。
本申请实施例以下以应用于5G通信系统中为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例提供的技术方案适用于5G通信系统,基于5G系统,如图3和图4示出两种本申请实施例提供的技术方案可能适用的网络架构示意图。如图4示出的网络包括网络设备和终端设备10,图3中仅示出一个网络设备20和与该网络设备20通信的两个终端设备10。如图4示出的网络与如图3示出的网络的区别在于,如图4示出的网络中,网络设备的一部分功能在分布式单元(distributed unit,DU)21上实现,网络设备的另一部分功能在集中式单元(centralized unit,CU)22上实现,比如,CU实现RRC(无线资源控制,radio resource control),PDCP(packet data convergence protocol,分组数据汇聚层协议)层的功能,DU实现RLC(radio link control,无线链路控制)、MAC(media access control,媒体接入控制)和PHY(physical)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。多个DU 21可以连接到相同的CU 22上。需要说明的是,图3和图4示出的网络中均可以包括至少一个网络设备,与每一个网络设备进行通信的终端设备可以有至少一个,并不局限于图1和图2示出的网络设备和终端设备的数量。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为RAN中网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。可选的,本申请实施例提供的 技术方案还可以应用于以终端设备为中心的网络中。
下面对本申请实施例中的部分名词、用于进行解释说明,以便于本领域技术人员理解。
1)、CSI是指进行信道状态测量和/或上报的信息,比如:CSI可以包括CSI参考信号资源指示信息(CSI-reference signal resource indication,CRI)、秩指示(rank indicator,RI)、预编码矩阵指示器(precoding matrix indicator,PMI)、信道质量信息(channel quality indicator,CQI)中的至少一项。
通过CSI测量和/或上报,可以使得终端设备和/或网络设备获取CSI,进而进行数据调度,提高传输性能。
2)、准共址(quasi-co-location,QCL)类型
在现有的LTE通信系统中,定义了两种QCL类型,即类型A(Type-A)和类型B(Type-B)。其中,类型A定义了一个TP的天线端口满足QCL关系,天线端口可以是指发送参考信号的天线端口,参考信号比如同步信号、解调参考信号(demodulation reference signal,DMRS)以及CSI参考信号(CSI-Reference Signal,CSI-RS)中的至少一项;类型B定义了多个TP之间天线端口的QCL配置,多个TP间天线端口的QCL配置可以通过下行控制信息(downlink control information,DCI)中的物理下行链路共享信道(physical downlink shared channel,PDSCH)资源映射和准共址指示(PDSCH RE mapping andquasi-co-location indicator,PQI)来指示,PQI为2比特。PQI可以用来指示满足QCL的信道状态信息参考信号(channel state information-reference signal,CSI-RS),DMRS,相位跟踪参考信号((phase tracking reference signal,PTRS),也称为相位噪声参考信号(简称相噪参考信号)),同步信号块(synchronized signal block,SS block)中一个或多个信号的天线端口的准共址关系,其中,PTRS也可称为相位补偿参考信号(phase compensation reference signal,PCRS),SS block包括同步信号和广播信道中的一个或多个,同步信号包括主同步信号(primary synchronized signal,PSS)和/或辅同步信号(secondary synchronized signal,SSS)。在本申请实施例中,类型A可以对应于NR通信系统中同一网络设备同一天线面板的情形,类型B可以对应于NR通信系统中同一网络设备不同天线面板的情形,或者Type-B可以对应于NR通信系统中不同网络设备的情形。
类型A和类型B对应的所有DMRS天线端口均满足QCL关系,类型A和类型B可以对应单点传输模式,例如单点传输模式可以为单站点传输、DPS传输、或DPB传输等,例如,类型A或类型B对应的天线端口7-14均满足QCL关系。
当为终端设备传输不同的数据流时,为了区分对应于不同的数据流的参考信号的天线端口的准共址信息,为对应于不同的数据流的参考信号的天线端口配置不同的准共址信息。因此使得同一种参考信号的部分天线端口不是准共址的。当QCL指示信息指示DMRS天线端口的QCL类型为类型C时,表示终端设备与网络设备之间采用多点协作传输模式,例如多点协作传输模式可以为NCJT。其中,类型C对应的DMRS天线端口的QCL关系与类型A或类型B对应的DMRS天线端口的QCL关系不同,比如在类型C下的DMRS天线端口不全部都是具有QCL关系的。例如,类型C对应的,天线端口7、8、11、13满足QCL关系,天线端口9、10、12、14满足QCL关系。但是天线端口7、8、11、13任意一个天线端口与天线端口9、10、12、14中的任意一个天线端口不满足QCL关系。
需要说明的是,QCL类型中各个类型的名称可以以上文中的名称相应的名称,也可以用对应功能的其他名称进行替代,本申请实施例中并不限定。
3)、交互,本申请实施例中的交互是指交互双方彼此向对方传递信息的过程,这里传递的信息可以相同,也可以不同。例如,交互双方为基站1和基站2,可以是基站1向基站2请求信息,基站2向基站1提供基站1请求的信息。当然,也可以基站1和基站2彼此向对方请求信息,这里请求的信息可以相同,也可以不同。
4)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
5)、名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
下面结合说明书附图对本申请提供的技术方案进行介绍。需要说明的是,本申请中各个实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供了一种通信方法,图5-1示出一种该通信方法中终端设备与网络设备的交互流程,包括如下步骤:
步骤501:网络设备向终端设备发送配置信息。
本实施例中,网络设备确定需要终端设备如何测量并反馈CSI,即网络设备确定需要终端设备在何种传输模式下测量并反馈CSI,然后网络设备基于需要终端设备如何测量并反馈CSI来确定配置信息。网络设备通过步骤501将配置信息发送给终端设备,终端设备根据该配置信息可以获知如何测量并反馈CSI,配置信息与CSI测量行为和/或CSI反馈相关信息相关。
本实施例中,终端设备在不同传输模式下测量并反馈CSI的方法不同,终端设备在不同传输模式下测量并反馈CSI时网络设备确定的配置信息也不同,该配置信息用于终端设备获知如何测量并反馈CSI。网络设备确定需要终端设备在何种传输模式下测量并反馈CSI,包括以下三种情况:情况一、网络设备确定需要终端设备在单点传输模式+多点协作传输模式的混合模式下测量并反馈CSI;情况二、网络设备确定需要终端设备在单点传输模式下测量并反馈CSI;情况三、网络设备确定需要终端设备在多点协作传输模式下测量并反馈CSI。这三种情况分别对应不同的配置信息,会在下文中详细描述。
步骤502:终端设备确定CSI测量行为和/或CSI反馈相关信息,其中,信道状态信息CSI测量行为和/或CSI反馈相关信息与配置信息相关。
其中,CSI测量行为指示终端设备如何测量CSI,CSI反馈相关信息是指终端设备向网络设备反馈CSI时的相关信息。示例性的,CSI反馈相关信息可以包括反馈的CSI的内容(比如CRI、RI、PMI、CQI中的至少一个),反馈的CSI内容的比特信息(比如比特信息,包括比特个数,和/或,比特个数的确定规则),反馈的CSI内容采用的编码方式(比如独立编码或联合编码)、交织方式(比如独立交织或联合交织等)、映射方式(比如映射的时 频资源和/或映射规则等)等信息中的至少一个信息。
步骤503:终端设备根据CSI测量行为和/或CSI反馈相关信息,以及配置信息,执行CSI测量得到至少一个CSI,并向网络设备发送所述至少一个CSI中的全部或部分。
基于步骤502终端设备确定CSI测量行为和/或CSI反馈相关信息,可选的,步骤503可以通过如下三种方式实现:
实现方式一:步骤502中终端设备根据配置信息确定CSI测量行为和CSI反馈相关信息。此种情况下,步骤503中终端设备可以基于配置信息和确定的CSI测量行为执行CSI测量得到至少一个CSI,然后基于CSI反馈相关信息和配置信息向网络设备发送所述至少一个CSI中的全部或部分。
实现方式二:步骤502中终端设备根据配置信息仅确定CSI测量行为。此种情况下,步骤503中终端设备可以基于配置信息和确定的CSI测量行为执行CSI测量得到至少一个CSI,然后基于预定义的CSI反馈方法向网络设备发送所述至少一个CSI中的全部或部分。该预定义的CSI反馈方法可以是协议定义的,也可以是终端设备与网络设备协商定义的,例如该预定义的或协商定义的CSI反馈方法可以是采用现有技术中的反馈CSI的方法,本实施例中并不限定。可选的,终端设备在基于预定义的CSI反馈方法向网络设备发送所述至少一个CSI中的全部或部分时还可以根据配置信息。
实现方式三:步骤502中终端设备根据配置信息仅确定CSI反馈相关信息。此种情况下,步骤503中终端设备可以基于预定义的CSI测量方法执行CSI测量得到至少一个CSI,然后基于配置信息和CSI反馈相关信息向网络设备发送所述至少一个CSI中的全部或部分。该预定义的CSI测量方法可以是协议定义的,也可以是终端设备与网络设备预先协商定义的,还可以是采用现有技术中的CSI测量方法,本实施例中并不限定。可选的,终端设备在基于预定义的CSI测量方法执行CSI测量得到至少一个CSI时还可以根据配置信息。
其中,可选的,配置信息可以是基于情况一确定,情况一为网络设备确定需要终端设备在单点传输模式+多点协作传输模式的混合模式下测量并反馈CSI,则步骤503中终端设备执行CSI测量得到两个或两个以上的CSI,终端设备将得到的CSI中的部分或者全部发送给网络设备,当反馈CSI的部分时,终端设备可以向网络设备反馈当前反馈的CSI的部分对应的测量方式、测量资源、传输模式中的至少一项,这样可以向网络设备指示是单点传输模式的性能好还是多点协作传输模式的性能好。
可选的,配置信息可以是基于情况二确定的,情况二为网络设备确定需要终端设备在单点传输模式下测量并反馈CSI,则步骤503中终端设备执行CSI测量得到一个或一个以上的CSI,终端设备将得到的部分或者全部CSI发送给网络设备,以实现向网络设备指示单点传输模式的性能好坏。
可选的,配置信息可以是基于情况三确定的,情况三为网络设备确定需要终端设备在多点协作传输模式下测量并反馈CSI,则步骤503中终端设备执行CSI测量得到一个或一个以上的CSI,终端设备将得到的部分或者全部CSI发送给网络设备,以实现向网络设备指示多点协作传输模式的性能好坏。
通过步骤503网络设备接收来自终端设备的CSI的过程中,由于CSI测量行为和/或CSI反馈相关信息与配置信息相关,而配置信息又是网络设备发给所述终端设备的,因此网络设备基于其所指示给所述终端设备的CSI测量行为和/或CSI反馈相关信息可以对来自终端设备的CSI进行正确的接收(如解码、解交织中的至少一项)。网络设备采用与终端 设备测量和反馈CSI的方法相对应的方法接收来自终端设备的CSI,即网络设备基于CSI测量行为和/或CSI反馈相关信息接收来自终端设备的CSI。需要说明的是,在网络设备获知终端设备测量和反馈CSI的方法的情况下,网络设备接收CSI的方法与现有技术可以相同,此处不再赘述。
图5-1示出的通信方法中,由于网络设备是基于需要终端设备如何测量并反馈CSI,即需要终端设备在何种传输模式下测量并反馈CSI,来确定向终端设备发送的配置信息的,终端设备根据该配置信息可以获知如何测量并反馈CSI。因此通过图5-1示出的通信方法,即使终端设备无法确定需要在何种传输模式下测量和反馈CSI,终端设备根据网络设备发送的配置信息也可以获知如何测量和/或反馈CSI,进而针对支持多种传输模式的场景实现终端设备测量CSI,并向网络设备反馈测量得到的CSI。图5-1示出的通信方法中,终端设备根据已有的配置信息确定CSI测量行为和/或CSI反馈相关信息,可以降低信令开销。配置信息配置有资源时,可以实现终端设备在多种传输模式下执行CSI测量和反馈,相比于一次配置一种传输模式下的CSI测量和反馈,可以降低信令开销,降低参考信号的开销,降低CSI测量反馈的时延,提高性能。如果终端设备仅反馈传输性能最好的一种传输模式下的CSI,可以降低反馈开销,同时辅助网络设备根据最好的传输模式进行数据调度。或者,如果终端设备可以反馈多种传输模式下的CSI,使得网络设备可以获取多种传输模式下的传输性能情况,进而辅助数据调度,提高性能。
下面,基于前述三种情况,具体描述各种情况下的配置信息及对应的CSI测量行为和/或CSI反馈相关信息。
假设场景是:终端设备支持在混合模式下测量并反馈CSI,以及支持在单点传输模式下测量并反馈CSI。在该场景下,基于情况一,即网络设备确定需要终端设备在单点传输模式+多点协作传输模式的混合模式下测量并反馈CSI,网络设备向终端设备发送的配置信息满足如下条件1)至12)中的至少一项,终端设备根据满足如下条件1)至12)中的至少一项的配置信息可以获知如何执行CSI测量和反馈,即获知在单点传输模式+多点协作传输模式的混合模式下执行CSI测量和反馈。
下文中将单点传输模式+多点协作传输模式的混合模式简称为混合模式(也可称为混合传输模式)。
1)、配置信息包括N1个类别(class)A的非零功率(no zero power,NZP)CSI-RS资源,所述N1为大于或等于2的正整数。
可选的,在LTE通信系统中,配置信息包括N1个class A的NZP CSI-RS资源是指,配置信息包括一个CSI进程的配置信息。网络设备发送配置信息,即网络设备发送一个CSI进程的配置信息。该CSI进程配置有N1个class A的NZP CSI-RS资源。示例性的,N1可以为2,对于单点传输模式对应的CSI进程没有配置2个class A的NZP CSI-RS资源的情况,因此配置信息包括一个CSI进程配置有2个class A的NZP CSI-RS资源,可以用来确定网络设备需要终端设备在混合模式下测量并反馈CSI。若配置信息中没有限定CSI进程配置的2个NZP CSI-RS资源是class A的,则该2个NZP CSI-RS资源可能是class A,也可以是Class B的,还可能是Class A+Class B的,因此还需要结合配置信息中的其他信息来指示是网络设备需要终端设备在混合模式下测量并反馈CSI。
在NR通信系统中,配置信息包括N1个class A的NZP CSI-RS资源可以是指,配置信息包括一个CSI上报设置(reporting setting),该reporting setting关联了R个用于测量信道的关 联信息(link),即关联R个参考信号设置(RS setting),每个RS setting包括至少一个class A的NZP CSI-RS资源,R个RS setting包括N1个class A的NZP CSI-RS资源;或者,配置信息包括一个reporting setting,该reporting setting关联了1个用于测量信道的关联信息link,即关联1个RS setting,该RS setting包括N1个class A的NZP CSI-RS资源。示例性的,N1可以为2。
本实施例中,Class A的NZP CSI-RS资源是指non-beamformed CSI-RS资源,即在发送之前不进行波束或者预编码的操作的CSI-RS资源。
Class B的NZP CSI-RS资源是指beamformed CSI-RS资源,即在发送之前进行波束或者预编码的操作的CSI-RS资源。
2)、配置信息包括N2个class B的NZP CSI-RS资源,以及CSI测量行为指示信息和/或CSI反馈相关信息指示信息,N2为大于或等于2的正整数。
在基于配置信息包括的资源来确定如何CSI测量和反馈时,若配置信息包括N2个class B的NZP CSI-RS资源,则不能够仅根据该条件确定网络设备需要终端设备在混合模式下执行CSI测量和反馈,此时还需要结合CSI测量行为指示信息和/或CSI反馈相关信息指示信息,来确定网络设备需要终端设备在多点协作传输模式下测量并反馈CSI。配置信息包括的N2个Class B的NZP CSI-RS资源可以用于信道测量也可以用于干扰测量,终端设备可以在该资源上进行CSI测量,进而获取CSI。
可选的,如果配置信息包括N3个Class B的NZP CSI-RS资源,N3为大于等于2的正整数,而协议预定义当有N3个Class B的NZP CSI-RS资源时终端设备在混合模式下执行CSI测量和反馈,则此时也可以不结合CSI测量行为指示信息和/或CSI反馈相关信息指示信息,来确定网络设备需要终端设备在多点协作传输模式下测量并反馈CSI。即根据N3个Class B的NZP CSI-RS资源就确定CSI测量行为和/或CSI反馈相关信息。
3)、配置信息包括CSI测量行为指示信息和/或CSI反馈相关信息指示信息。
上述条件2)和3)中,CSI测量行为指示信息指示CSI测量行为,该CSI测量行为是终端设备在混合模式下执行CSI测量的行为;CSI反馈相关信息指示信息指示CSI反馈相关信息,该CSI反馈相关信息是终端设备在混合模式下反馈CSI时的相关信息。终端设备在混合模式下执行CSI测量的行为和反馈CSI时的相关信息会在下文中描述。
终端设备根据满足条件3)的配置信息,可以直接根据该配置信息确定CSI测量行为和/或CSI反馈相关信息,避免终端设备进行判断选择,进而降低终端设备复杂度。
4)、配置信息包括天线端口的QCL的类型为类型C。
在LTE通信系统中,配置信息包括天线端口的QCL的类型为类型C时,若配置信息所包括的CSI进程的个数为1,则根据QCL的类型为类型C可以确定网络设备需要终端设备在混合模式下测量并反馈CSI。理由是:根据QCL的类型为类型C可以确定当前的CSI进程为多点协作传输模式下的CSI进程,该CSI进程具有的特征是,配置有K个NZP CSI-RS资源和一个CSI干扰测量(CSI-interference measurement,CSI-IM)资源,其中,K为不小于2的整数。
在LTE通信系统中,配置信息包括天线端口的QCL类型为类型C时,若配置信息所包括的CSI进程的个数多于1个,则根据QCL的类型为类型C不能确定网络设备需要终端设备在混合模式下测量并反馈CSI,还需要结合配置信息中的其他信息来确定,例如可以结合条件1)来确定,即如果配置信息包括天线端口的QCL的类型为类型C,并且配置信息包括一个CSI进程,该CSI进程配置有N1个class A的NZP CSI-RS资源,此时可以 确定网络设备需要终端设备在混合模式下测量并反馈CSI。当所包括的CSI进程的个数多于1个时,天线端口的QCL的类型为类型C和所包括的多个CSI进程内配置的NZP CSI-RS资源的个数共同决定当前的CSI进程为多点协作传输模式下的CSI进程。
可选的,QCL类型为类型C时也可以结合其他条件确定CSI测量行为和/或CSI反馈相关信息,比如1)至12)配置信息中的至少一项,或者其他条件,具体的在此不作限定。
在NR通信系统中,针对天线端口的QCL类型,可能仅定义一种QCL类型,比如QCL类型C,也可能与LTE通信系统类似,定义多种QCL类型,比如三种QCL类型,即类型A、类型B、类型C。还可以定义其他类型的QCL类型,或者根据其他的特征划分QCL类型,具体的在此不作限定。这样在定义了多种QCL类型的情况下,在NR通信系统中也可以根据QCL类型确定CSI测量行为和/或CSI反馈相关信息。
终端设备根据满足条件4)的配置信息,即基于现有的配置信息确定CSI测量行为和/或CSI反馈相关信息,进而实现CSI测量和反馈,相比于配置专门的信息指示CSI测量行为和/或CSI反馈相关信息,上述方法可以减小信令开销。
5)、配置信息包括天线端口的QCL的类型为类型C且所包括的CSI进程的个数为1。
条件5)适用于LTE通信系统,配置信息满足条件5)时,可以确定网络设备需要终端设备在混合模式下测量并反馈CSI。
6)、配置信息包括PQI中指示QCL个数大于M,所述M为大于或等于1的正整数。
7)、配置信息包括PQI中指示参数parameter组数大于P,所述P为大于或等于1的正整数。
8)、配置信息包括CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
若网络设备需要终端设备在单点传输模式下执行CSI测量和反馈时CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一项可以是预定义值,此时不需要配置信息包括CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个,则当配置信息满足条件8)时可以确定网络设备需要终端设备在混合模式下执行CSI测量和反馈,并且配置信息包括的比特信息为终端设备在混合模式下执行CSI测量和反馈时的比特信息。若网络设备需要终端设备在单点传输模式下执行CSI测量和反馈时CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的一个或多个也是通过配置信息配置的,那么在配置信息满足条件8)时还需要结合配置信息中的其他信息,来确定网络设备需要终端设备在混合模式下执行CSI测量和反馈,比如结合1)至12)配置信息中除8)外的其他条件中的至少一项,或者其他条件,具体的在此不作限定比如NZP CSI-RS资源的个数等。
9)、配置信息包括CRI上报的比特信息为L且NZP CSI-RS资源为K个时,
Figure PCTCN2018105094-appb-000002
可选的,NZP CSI-RS资源可以是测量信道的资源,也可以是指测量干扰的资源,也可以是既用于测量信道又用于测量干扰的资源,也可以是包括测量信道的资源和测量干扰的资源的总的资源,具体的,在此不作限定。
当配置信息满足条件9)时可以确定网络设备需要终端设备在混合模式下执行CSI测量和反馈,并且配置信息包括CRI上报的比特信息为终端设备在混合模式下执行CSI测量和反馈时CRI上报的比特信息。
可以由高层信令或物理层信令配置CRI上报的比特信息。高层信令可以是指RRC信 令或者MAC(媒体接入控制,media access control)层信令,具体的在此不作限定。
例如高层信令CRI-bitsize=2表示CRI上报的比特信息为2;又例如,高层信令配置多种CRI的比特信息,物理层信令在这多个CRI的比特信息中触发(或激活)一个CRI的比特信息作为CRI上报的比特信息。
可选的,比如在LTE通信系统中,当CRI上报的比特信息为L,NZP CSI-RS资源为K个,且满足
Figure PCTCN2018105094-appb-000003
时,终端设备确定当前的CSI进程是否为多点协作模式下的CSI进程,即需要在混合模式下执行CSI测量和反馈。例如,如果CRI上报的比特信息为2,NZP CSI-RS资源为2个,由于满足
Figure PCTCN2018105094-appb-000004
因此可以确定需要在混合模式下执行CSI测量和反馈。
可选的,比如在NR通信系统中,高层信令的配置可以在reporting setting中,例如高层信令CRI-bit-size包含在ReportConfig中。当CRI上报的比特信息为L,NZP CSI-RS资源为K个,且满足
Figure PCTCN2018105094-appb-000005
时,终端设备确定需要在混合模式下执行CSI测量和反馈。
根据该配置信息即基于现有的配置信息确定CSI测量行为和/或CSI反馈相关信息,进而进行CSI测量和/或反馈,相比于配置专门的信息指示CSI测量行为和/或CSI反馈相关信息可以减小信令开销。
10)、配置信息包括一个reporting setting,该reporting setting关联Q个信道link、T个RS setting和S个RS set中的至少一个,所述Q为大于或等于2的正整数,T为大于或等于2的正整数,S为大于或等于2的正整数。网络设备会为终端设备配置三个集合,分别为CSI上报设置(reporting setting),参考信号设置(RS setting)和CSI测量设置(measurement setting)。CSI测量设置中包括关联信息(link),每个关联信息对应一个CSI上报设置和一个资源设置。
reporting setting用于指示上报的参数信息,比如CSI上报的参数(比如,RI、PMI、CQI、CRI中的至少一项),CSI类型(比如类型I和/或类型II),码本配置信息(比如码本受限信息),时域行为,频域粒度(比如PMI和/或CQI的上报粒度,全带宽,子带,或,部分子带中的至少一项),测量受限配置等中的至少一项。
每个RS setting包括至少一个参考信号集合(RS set,也可以称为RS resource set(参考信号资源集合),每个参考信号集合包括至少一个参考信号资源。比如针对CSI-RS,一个RS setting可以包括至少一个CSI-RS资源集(CSI-RS resource set),每个CSI资源集可以包括至少一个CSI-RS资源。配置信息包括映射的资源REs,天线端口个数,时域行为等中的至少一项。
measurement setting中的每个关联信息,包括CSI上报设置标识,资源设置标识,测量的属性(比如是信道还是干扰)中的一项或多项。
配置信息包括一个reporting setting,该reporting setting关联Q个信道link、T个RS setting和S个RS set中的至少一个,所述Q为大于或等于2的正整数,T为大于或等于2的正整数,S为大于或等于2的正整数是指,配置信息包括一个reporting setting,该reporting setting关联Q个信道的link和/或T个RS setting和/或S个RS set。配置信息包括一个reporting setting关联Q个信道link、T个RS setting和S个RS set中的至少一个不应理解为以下三种描述中的任意一个:配置信息包括一个reporting setting关联Q个信道link中的至少一个link,配置信息包括一个reporting setting关联T个RS setting中的至少一个RS setting,配置信息包括一个reporting setting关联S个RS set中的至少一个RS set。示例性的,Q的取值可以为2。
11)、配置信息包括第一资源和第二资源,该第一资源为测量第一CSI、第二CSI和第三CSI中的至少一个时使用的资源,该第二资源为测量第四CSI时使用的资源。
其中,第一CSI是基于干扰功率获得的,第二CSI是基于当用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,第三CSI是基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,该预设算法可以为:干扰等于接收信号与有用信号的差值,第四CSI是基于流间干扰或者码字间干扰获得的。本实施例中的第一CSI、第二CSI、第三CSI和第四CSI的解释可适应于本申请其他实施例中。
可选的,比如针对第一CSI的干扰可以是仅通过配置干扰资源为ZP CSI-RS资源测量得到的,即通过ZP CSI-RS资源测量干扰功率,根据干扰功率计算CSI。
可选的,比如针对第二CSI的干扰可以是通过配置信道测量资源和干扰测量资源为同一个CSI-RS资源,基于该CSI-RS资源,终端设备通过将接收信号和有用信号进行处理得到干扰信息,比如可以是将接收信号减去有用信号得到干扰信息。
可选的,比如针对第三CSI的干扰可以是既配置了第一干扰测量资源为ZP CSI-RS资源,又配置了第二干扰测量资源,并且第二干扰测量资源为信道测量和干扰测量相同的资源。通过第一干扰测量资源得到第一干扰信息即干扰功率,根据第二干扰测量资源得到第二干扰信息,基于第一干扰信息和第二干扰信息进而得到总的干扰信息,例如:将干扰功率与第二干扰信息相加得到总的干扰信息。
可选的,比如针对第四CSI的干扰可以是指配置了NZP CSI-RS资源进行干扰测量。可选的,通过该NZP CSI-RS资源测量干扰时可以是通过该资源测得的信道与该资源对应的预编码矩阵进行处理之后得到的干扰。
测量第一CSI、第二CSI和第三CSI中的至少一个,表示需要终端设备在单点传输模式下测量和反馈CSI,测量第四CSI表示需要终端设备在多点协作传输模式下测量和反馈CSI,因此当配置信息包括第一资源和第二资源时,表示需要终端设备在混合模式下测量和反馈CSI。
本实施例提供一种确定资源所对应的CSI测量和/或反馈的方法,该部分可以结合本实施例中的其他部分应用,也可以独立应用,该方法具体描述如下。
可选的,在NR通信系统中,如果一个reporting setting关联多于Q个link,则可以通过条件11)的方式实现网络设备通过配置信息通知终端设备,关联的link中哪些是在单点传输模式下测量CSI使用的资源,哪些是在多点协作传输模式下测量CSI使用的资源。
如果一个reporting setting关联多于Q个link,也可以预定义关联的link中哪些是在单点传输模式下测量CSI使用的资源,哪些是在多点协作传输模式下测量CSI使用的资源,比如通过资源的标识信息确定该资源是用于进行混合模式下的CSI测量和/或反馈的资源,例如预定义与资源集合连接的索引号较小的2个信道测量资源是多点协作传输模式下测量CSI使用的资源。举例说明一,一个reporting setting关联了3个信道测量资源,分别为NZP CSI-RS1、NZP CSI-RS2和NZP CSI-RS3,则可以预定义NZP CSI-RS1和NZP CSI-RS2在多点协作传输模式下测量CSI使用的资源,或者,也可以预定义NZP CSI-RS2和NZP CSI-RS3在多点协作传输模式下测量CSI使用的资源。举例说明二,一个reporting setting关联了3个link,分别为link1、link2和link3,则可以预定义link1和link2为多点协作传输模式下测量CSI使用的资源,或者,也可以预定义link1和link2为单点传输模式下测量CSI使用的资源。
可选的,可以通过配置指示信息来指示,哪些是在单点传输模式下测量CSI使用的资源,哪些是在多点协作传输模式下测量CSI使用的资源。举例说明一,以在NZP CSI-RS 1和NZP CSI-RS 2的资源配置中配置指示信息为例,NZP CSI-RS1的资源配置中的指示信息为“joint measurement=TRUE”(比如相应的信元或字段为特定值,如1),NZP CSI-RS2的资源配置中的指示信息为“joint measurement=TRUE”(比如相应的信元或字段为特定值,如1),指示信息为“joint measurement=TRUE”时表示该资源为在多点协作传输模式下测量CSI使用的资源。举例说明二,以在link 1和link2的资源配置中配置指示信息,link 1的指示信息为“joint measurement=TRUE”(比如相应的信元或字段为特定值,如1),link 2的指示信息为“joint measurement=TRUE(比如相应的信元或字段为特定值,如1)”,指示信息为“joint measurement=TRUE”时表示该link资源为在多点协作传输模式下测量CSI使用的资源。
以图5-2所示的资源配置示意图为例:NZP1为信道测量资源,ZP1为干扰测量资源,终端设备测量CSI之后计算得到CSI report 1,终端设备反馈CRI=1及CSI report 1,其中CRI=1表示CSI report1的信道测量资源是索引为1的测量资源。NZP2为信道测量资源,ZP1为干扰测量资源,终端设备测量CSI之后计算得到CSI report 2,终端设备反馈CRI=2及CSI report 2。NZP3为信道测量资源,ZP1为干扰测量资源,终端设备测量CSI之后计算得到CSI report 3,终端设备反馈CRI=3及CSI report 3。NZP1和NZP2均为信道测量资源,ZP1为干扰测量资源,终端设备将NZP1和NZP2分别用于计算信道,CSI report a的CQI的信道部分是NZP1上的测量值,干扰部分是NZP2上的测量值加上ZP1上的测量值;CSI report b的CQI的信道部分是NZP2上的测量值,干扰部分是NZP1上的测量值加上ZP1上的测量值,终端设备反馈CRI=4及CSI report a和CSI report b。其中,CSI report 1和CSI report 2可以是DPS模式下的测量结果,CSI report a和CSI report b可以是NCJT模式下的测量结果,其中,a和b是CSI信息的标号,用于区别其他的CSI信息,具体值在此不予限定。
在实际中,终端设备可以测量得到CSI report 1,CSI report 2,CSI report 3,CSI report a,CSI report b中的至少一项,并且可以选择性的上报传输性能最好的CSI。
比如如果NZP CSI-RS资源1对应的性能最好,则终端设备上报CRI=1以及CSI report 1对应的CSI。如果NZP CSI-RS资源2对应的性能最好,则终端设备上报CRI=2以及CSI report2对应的CSI。如果NZP CSI-RS资源3对应的性能最好,则终端设备上报CRI=3以及CSI report3对应的CSI。如果NZP CSI-RS资源1和NZP CSI-RS资源2联合传输对应的性能最好,则终端设备上报CRI=4以及CSI report a和CSI report b对应的CSI。
12)、配置信息包括指示信息,该指示信息会指示终端设备在混合传输模式下执行CSI测量和反馈。该指示信息指示当前的CSI进程为多点协作传输模式下的CSI进程,终端设备根据该指示信息获知在混合传输模式下执行CSI测量和反馈。
可选的,该指示信息可以是信令。例如,在LTE通信系统中,该指示信息可以为NCJT CSI process指示,高层信令CoMP-Process=TRUE(比如对应于相应的信元或字段为特定取值,如1)时,表示当前的CSI进程为多点协作模式下的CSI进程,则指示终端设备在混合传输模式下执行CSI测量和反馈。又例如,在NR通信系统中,高层信令CoMP-Process=TRUE(比如对应于相应的信元或字段为特定取值,如1)时,表示终端设备在混合传输模式下执行CSI测量和反馈,该高层信令可以包含在测量配置MeasConfig中,也可以包含在上报配置ReportConfig中。
可选的,该指示信息可以指示第一资源和第二资源,该第一资源为测量第一CSI、第二CSI和第三CSI中的至少一个时使用的资源,该第二资源为测量第四CSI时使用的资源。
可选的,可以通过配置指示信息来指示,哪些是在单点传输模式下测量CSI使用的资源,哪些是在多点协作传输模式下测量CSI使用的资源。举例说明一,以在NZP CSI-RS 1和NZP CSI-RS 2的资源配置中配置指示信息为例,NZP CSI-RS1的资源配置中的指示信息为“joint measurement=TRUE”(比如相应的信元或字段为特定值,如1),NZP CSI-RS2的资源配置中的指示信息为“joint measurement=TRUE”(比如相应的信元或字段为特定值,如1),指示信息为“joint measurement=TRUE”时表示该资源为在多点协作传输模式下测量CSI使用的资源。举例说明二,以在link 1和link2的资源配置中配置指示信息,link 1的指示信息为“joint measurement=TRUE”(比如相应的信元或字段为特定值,如1),link 2的指示信息为“joint measurement=TRUE(比如相应的信元或字段为特定值,如1)”,指示信息为“joint measurement=TRUE”时表示该link资源为在多点协作传输模式下测量CSI使用的资源。
需要说明的是,在基于配置信息满足上述条件1)至12)中的至少一项,来确定网络设备需要终端设备在混合模式下测量并反馈CSI时,可以适用的场景是:终端设备支持在混合模式下测量并反馈CSI,以及支持在单点传输模式下测量并反馈CSI。若场景是:终端设备支持在混合模式下测量并反馈CSI,支持在单点传输模式下测量并反馈CSI,以及支持在多点协作传输模式下测量并反馈CSI,则配置信息满足上述条件1)至12)中的至少一项时,可能是网络设备需要终端设备在混合模式下测量并反馈CSI,也可能是网络设备需要终端设备在多点协作模式下测量并反馈CSI,因此还需要结合其他信息来指示是这两种可能中的哪一种,比如通过1比特信息来指示,0表示前一种可能,1表示后一种可能。
终端设备根据满足上述条件1)至12)中的至少一项的配置信息,可以获知如何执行CSI测量和反馈,也可理解为获知在混合模式下执行CSI测量和反馈。终端设备根据满足上述条件1)至12)中的至少一项的配置信息可以确定全部或部分CSI测量行为和/或全部或部分CSI反馈相关信息,即CSI测量行为和/或CSI反馈相关信息与上述条件1)至12)中的至少一项相关。可以理解的是,本申请中提到的CSI测量行为和/或CSI反馈相关信息并不代表终端设备的所有的CSI测量行为和/或所有的CSI反馈相关信息,可以指其中的一项或多项,即全部或部分。
可选的,以下对所确定的CSI测量行为和/或CSI反馈相关信息进行描述。可以理解的是,所确定的CSI测量行为和/或CSI反馈相关信息与现有技术的设计有所不同,其可以与前述的配置信息结合应用,也可以单独应用,用于提供一种CSI测量和/或反馈的方法。所确定的CSI测量行为和/或CSI反馈相关信息可以为:
一、所确定的CSI测量行为包括:测量第一CSI,第二CSI和第三CSI中的至少一个,以及测量第四CSI。其中,第一CSI是基于干扰功率获得的,第二CSI是基于当用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,第三CSI是基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,该预设算法可以为:干扰等于接收信号与有用信号的差值,第四CSI是基于流间干扰或者码字间干扰获得的。测量第一CSI、第二CSI和第三CSI中的至少一个,为终端设备在单点传输模式下测量CSI时的测量行为,测量第四CSI为终端设备在多点协作传输模式下测量CSI时的测量行为。
可选的,该部分可以结合实施例中的其他部分应用,也可以独立应用,以提供一种CSI测量方法。
若配置信息包括CSI测量行为指示信息,该CSI测量行为指示信息指示CSI测量行为,则终端设备可以根据该CSI测量行为指示信息确定出CSI测量行为。一种实现方式为,CSI测量行为指示信息指示测量第一CSI、第二CSI和第三CSI中的至少一个,以及测量第四CSI,则确定CSI测量行为包括测量第一CSI,第二CSI和第三CSI中的至少一个,以及测量第四CSI。进一步的,CSI测量行为指示信息可以指示测量第一CSI、第二CSI和第三CSI中哪一个或多个组合以及测量第四CSI,例如CSI测量行为指示信息指示测量第一CSI和第四CSI,此时CSI测量行为包括测量第一CSI和测量第四CSI,又例如CSI测量行为指示信息指示测量第一CSI和第二CSI以及测量第四CSI,此时CSI测量行为包括测量第一CSI和和第二CSI和第四CSI。
可选的,如果配置信息确定了测量第四CSI,则CSI测量行为指示信息可以指示测量第一CSI、第二CSI和第三CSI中哪一个或多个组合。例如CSI测量行为指示信息指示测量第一CSI,此时CSI测量行为包括测量第一CSI和测量第四CSI,又例如CSI测量行为指示信息指示测量第一CSI和第二CSI,此时CSI测量行为包括测量第一CSI和和第二CSI和第四CSI。具体的,在此不作限定。
终端设备也可以根据配置信息确定出网络设备需要终端设备在混合模式下执行CSI测量和反馈CSI,将预先配置的混合模式下的CSI测量行为确定为自身采用的CSI测量行为。比如,CSI测量行为包括测量第一CSI,第二CSI和第三CSI中的至少一个,以及测量第四CSI。进一步的,可以根据配置信息确定CSI测量行为包括测量第一CSI,第二CSI和第三CSI中的哪一个或哪几个的组合,示例性的,方法如下:
第一CSI是基于干扰功率获得的,因此若配置信息包括的干扰测量资源包括零功率的CSI-RS资源,则CSI测量行为包括测量第一CSI。
第二CSI是基于当用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,因此若配置信息包括的干扰资源包括信道测量资源与干扰测量资源相同的资源,则CSI测量行为包括测量第二CSI。
第三CSI是基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,因此若配置信息包括第一干扰测量资源和第二干扰测量资源,且第一干扰测量资源为零功率CSI-RS资源,第二干扰测量资源是与信道测量资源相同的资源,则可以预定义CSI测量行为包括仅测量第三CSI,或者预定义CSI测量行为包括测量第一CSI和第三CSI,或者预定义CSI测量行为包括测量第二CSI和第三CSI,或者预定义CSI测量行为包括测量第一CSI、第二CSI和第三CSI。
可选的,在第四CSI基于流间干扰或者码字间干扰获得的基础上,第四CSI还可以基于多种方式获得,本实施例并不限定。示例性的,第四CSI可以基于以下四种方式获得的。第一种方式、第四CSI可以仅基于流间干扰或者码字间干扰获得。
第二种方式、第四CSI可以基于流间干扰或者码字间干扰获得,进一步的还可以基于干扰功率获得,即第四CSI基于流间干扰或者码字间干扰,以及干扰功率获得。
第三种方式、第四CSI可以基于流间干扰或者码字间干扰获得,进一步的还可以基于用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得,即第四CSI基于流间干扰或者码字间干扰,以及用于信道测量的资源与用于干扰测量的资源相同 时通过预设算法得到的干扰获得。其中,该预设算法可以为:干扰等于接收信号与有用信号的差值。
第四种方式、第四CSI可以基于流间干扰或者码字间干扰获得,进一步的还可以基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得,即第四CSI基于流间干扰或者码字间干扰,以及干扰功率,以及用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得。
进一步的,可以是预定义第四CSI是基于上述哪种方式获得的,也可以是网络设备通知终端设备第四CSI是基于上述哪种方式获得的。示例性的,网络设备可以通过配置信息中第四CSI相关的干扰测量资源来通知终端设备第四CSI是基于上述哪种方式获得的,例如若配置信息中第四CSI相关的干扰测量资源包括零功率的CSI-RS资源时,则第四CSI还基于干扰功率获得,即第四CSI是基于上述第二种方式获得的。
可以理解的是,以上CSI测量行为所包括的第一CSI至第四CSI中的一个或多个的描述可以分别独立应用,也可以结合应用。
二、所确定的CSI反馈相关信息包括:对CRI和RI采用联合编码或者独立编码,和/或,将CRI和RI映射到时频资源的映射方式。其中,对CRI和RI采用联合编码或者独立编码,是指CRI和RI联合编码或分别编码,对于CRI和/或RI是否与其他信息联合编码不作限定。
可选的,该部分可以结合实施例中的其他部分应用,也可以独立应用,以提供一种CSI反馈方法。
其中,终端设备可以根据配置信息包括的CSI反馈相关信息指示信息确定CSI反馈相关信息。若配置信息包括CSI反馈相关信息指示信息,该CSI反馈相关信息指示信息指示CSI反馈相关信息,则终端设备可以根据该CSI反馈相关信息指示信息确定出该CSI反馈相关信息。一种实现方式为,CSI反馈相关信息指示信息指示对CRI和RI采用联合编码,和/或,CSI反馈相关信息指示信息指示将CRI和RI映射到时频资源的映射方式,则确定CSI反馈相关信息包括对CRI和RI采用联合编码,和/或,CSI反馈相关信息指示信息指示将CRI和RI映射到时频资源的映射方式。另一种实现方式中,CSI反馈相关信息指示信息指示对CRI和RI采用独立编码,和/或,CSI反馈相关信息指示信息指示将CRI和RI映射到时频资源的映射方式,则确定CSI反馈相关信息包括对CRI和RI采用独立编码,和/或,CSI反馈相关信息指示信息指示将CRI和RI映射到时频资源的映射方式。
终端设备也可以根据配置信息确定出网络设备需要终端设备在混合模式下执行CSI测量和反馈CSI,将预先配置的混合模式下的CSI反馈相关参数确定为自身采用的CSI反馈相关参数。确定CSI反馈相关信息包括:对CRI和RI采用联合编码或者独立编码,和/或,将CRI和RI映射到时频资源的映射方式。其中,CSI反馈相关信息中对CRI和RI采用的编码方式为联合编码或者独立编码,具体为哪一种编码方式可以是预定义的,也可以是网络设备通知给终端设备的,例如通过配置信息中的其他信息来通知是哪种编码方式。
可选的,CSI反馈相关信息还可以包括:CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。当CSI反馈相关信息包括对CRI和RI采用独立编码时,CSI反馈相关信息可包括CRI上报的比特信息和RI上报的比特信息,这样终端设备测量CSI之后确定出满足CRI上报的比特信息的CRI和满足RI上报的比特信息的RI,再对CRI和RI独立编码,最后通过CSI反馈相关信息包括的映射方式将独立编码后的CRI和RI映射到时频资源上。当CSI反馈相关信息包括对CRI和RI采用联合编码时,CSI反 馈相关信息可包括CRI和RI的上报的比特信息,CSI反馈相关信息也可包括CRI上报的比特信息和RI上报的比特信息,CRI上报的比特信息和RI上报的比特信息可确定CRI和RI的上报的比特信息。这样终端设备测量CSI之后确定出满足CRI和RI的上报的比特信息的CRI和RI,再对CRI和RI联合编码,最后通过CSI反馈相关信息包括的映射方式将联合编码后的CRI和RI映射到时频资源上。
本实施例中并不限定将CRI和RI映射到时频资源所采用的映射方式,下面对一些可能的映射方式举例说明。
可选的,该部分可以结合实施例中的其他部分应用,也可以独立应用,以提供一种资源映射方法。
举例说明一
在LTE通信系统中,对CRI进行信道编码,对RI进行信道编码,即对CRI和RI分别进行独立编码后,CRI进入交织器得到交织后的CRI,RI进入交织器得到交织后的RI,即CRI和RI是分别交织的。然后采用如下映射方式中的任意一种将CRI和RI映射到时频资源,本实施例并不限定先时域映射,或者先频域映射,或者先层映射。其中,层映射是空域的概念,和时域,频域是并列的。
映射方式1:将CRI映射在上行导频符号的旁边的应答指令(acknowledge,ACK)/错误应答指令(negative acknowledge,NACK)符号旁边的符号上,下面将ACK/NACK简称为A/N,对CRI可以先进行时域映射后进行频域映射。将RI映射在上行导频符号的旁边的A/N符号旁边的符号上,但不包括CRI所占用RE,对RI可以先进行时域映射后进行频域映射。以图6中的符号(symbol)1~7为例,符号(symbol)1~7为一个时隙(slot),符号4上映射上行导频,符号3和符号5上映射A/N,符号2和符号6上映射CRI和RI。在符号2和符号6上映射CRI和RI时,先将CRI按照先时域的方式映射在符号2和符号6上,再将RI按照先时域的方式映射在符号2和符号6上除CRI映射的资源单元(resource element,RE)外的RE上;或者,先将RI按照先时域的方式映射在符号2和符号6上,再将CRI按照先时域的方式映射在符号2和符号6上除CRI映射的资源单元(resource element,RE)外的RE上。具体CRI先映射还是RI先映射,可以基于协议预定义,也可以依据系统的具体实现。
映射方法2:将CRI映射在上行导频符号的旁边的A/N符号旁边的符号上,将RI映射在上行导频符号的旁边的A/N符号旁边的CRI符号旁边的符号上(即相同频率资源上CRI和RI占用不同的符号)。以图6中的符号1~7为例,符号4上映射上行导频,符号3和符号5上映射A/N,符号2和符号6上映射CRI,符号1和符号7上映射RI。
映射方法3:将CRI映射在上行导频符号的旁边的A/N符号旁边的一侧符号上,将RI映射在上行导频符号的旁边的A/N符号旁边的另一侧符号上。可以预先定义将CRI映射在上行导频符号的旁边的A/N符号旁边的一侧,将RI映射在上行导频符号的旁边的A/N符号旁边的另一侧,比如将CRI映射在较小编号的一侧符号上,将RI映射在较大编号的一侧符号上。
例如,以图6中的符号1~7为例,符号4上映射上行导频,符号3和符号5上映射A/N,符号2上映射CRI,符号6上映射RI。以图6中的符号8~14为例,符号11上映射上行导频,符号10和符号12上映射A/N,符号9上映射CRI,符号13上映射RI。又例如,以图6为例,符号4和符号11上映射上行导频,符号3、5、10、12上映射A/N;CRI和RI的映射可以是:符号2和符号13上映射CRI,符号6和符号9上映射RI;CRI和RI的映射也可以是:符号2和符号13上映射RI,符号6和符号9上映射CRI。
举例说明二
在NR通信系统中,对CRI进行信道编码,对RI进行信道编码,即对CRI和RI分别进行独立编码后,CRI进入交织器得到交织后的CRI,RI进入交织器得到交织后的RI,即CRI和RI是分别交织的。将CRI映射在PUCCH上,如long PUCCH上;将RI映射在CRI所映射的PUCCH中CRI所占用RE之外的RE上,或者,将RI映射在与CRI映射所在的同一个调度单元的但不包括CRI映射所在的PUCCH的其他PUCCH上,如short PUCCH上。本实施例并不限定先时域映射,或者先频域映射,或者先层映射,也不限定时域映射是从前到后映射还是从后到前映射,频域映射是从小到大映射还是从大到小映射,层映射是从小到大映射还是从大到小映射,编码块组(code block group,CBG)从小到大映射还是从大到小映射。
具体可以包括如下的映射方法中的至少一项,具体采用哪些项可以是协议预定义的,也可以是网络设备通知给终端设备的,即发送指示信息,指示具体的映射方法。具体的在此不作想到。
可选的,可选的,该部分可以结合实施例中的其他部分应用,也可以独立应用,以提供一种资源映射方法。
映射方法1:将CRI映射在上行导频符号的旁边的A/N符号旁边的符号上,将RI映射在上行导频符号的旁边的A/N符号旁边的符号上,但不包括CRI所占用的RE。以图6中的符号1~7为例,符号4上映射上行导频,符号3和符号5上映射A/N,符号2和符号6上映射CRI和RI。在符号2和符号6上映射CRI和RI时,先将CRI按照先时域的方式映射在符号2和符号6上,再将RI按照先时域的方式映射在符号2和符号6上除CRI映射的RE外的RE上。或者也可以是在符号2和符号6上映射CRI和RI时,先将RI按照先时域的方式映射在符号2和符号6上,再将CRI按照先时域的方式映射在符号2和符号6上除CRI映射的资源单元(resource element,RE)外的RE上。
针对该方案,CRI和RI可以是映射到相同的符号上,且按照顺序映射在不同的RE上。
以图7中的符号1~7为例,DMRS映射在符号1、2、5、6符号上,CRI和RI映射在符号3和符号7上,DMRS可以是基本的(front-loaded,也可以称为位置在前的)DMRS,也可以是额外的(additional,也可以称为附加的)DMRS,将CRI映射在front-loaded DMRS旁边的符号上和/或additional DMRS旁边的符号上,或者,将CRI映射在front-loaded DMRS旁边的符号上,即将CRI和RI映射在符号3上。
映射方法2:将CRI映射在上行导频符号的旁边的A/N符号旁边的符号上,将RI映射在上行导频符号的旁边的A/N符号旁边的CRI符号旁边的符号上。以图6中的符号1~7为例,符号4上映射上行导频,符号3和符号5上映射A/N,符号2和符号6上映射CRI,符号1和符号7上映射RI。
针对该方案,CRI和RI可以是映射到不同的符号上,且按照顺序映射在不同的符号上。
映射方法3:将CRI映射在上行导频符号的旁边的A/N符号旁边的一侧符号上,将RI映射在上行导频符号的旁边的A/N符号旁边的另一侧符号上。可以预先定义将CRI映射在上行导频符号的旁边的A/N符号旁边的一侧,将RI映射在上行导频符号的旁边的A/N符号旁边的另一侧,比如将CRI映射较小编号的一侧符号上,将RI映射较大编号的一侧符号上。
以图6中的符号1~7为例,符号4上映射上行导频,符号3和符号5上映射A/N;CRI和RI的映射可以是:符号2上映射CRI,符号6上映射RI;CRI和RI的映射也可以是:符号2上映射RI,符号6上映射CRI。
针对该方案,CRI和RI可以是映射到不同的符号上,且按照顺序映射在不同的符号上。
映射方法4:将CRI和RI映射在距离上行导频较近的RE上。
将CRI映射在上行导频所占的部分RE所在的相同符号上,RI映射在上行导频所占的另外一部分RE所在的相同符号上。可以预先定义CRI和RI所映射的符号,如预先定义上行导频所占用符号的前一半映射CRI,上行导频所占用符号的后一半映射RI。以图8和图9为例,DMRS映射在符号1、2、5、6上,则符号1和符号2上映射CRI,符号5和符号6上映射RI。CRI和RI所映射的RE可以是从上行RS所映射的频域位置按照频域单元序号从小到大或从大到小的顺序映射。
针对该方案,CRI和RI可以是映射到相同的符号上,且按照顺序映射在不同的RE上。
本实施例中,终端设备确定在混合模式下执行CSI测量和反馈时,对CRI和RI进行编码、交织、映射时,多个CSI report所对应的CQI/PMI的编码、交织、映射方案可以是如下方法1或方法2:
可选的,该部分可以结合实施例中的其他部分应用,也可以独立应用,以提供编码方法,交织方法,映射方法中的至少一种。
方法1:RI对应的CQI/PMI进行编码、交织、映射的顺序与RI合并中RI的顺序一致。例如,RI合并为{4,3},则RI=4所对应的CQI/PMI的比特O 0O 1..O m-1与RI=3所对应的CQI/PMI的比特O mO m+1..O n-1组成O 0O 1..O n-1输入编码器,即RI对应的CQI/PMI进行编码的顺序与RI合并中RI的顺序一致,RI=4所对应的CQI/PMI先输入编码器,RI=3所对应的CQI/PMI后输入编码器。RI对应的CQI/PMI进行交织、映射顺序与RI合并中RI的顺序也一致。
方法2:RI对应的CQI/PMI进行编码、交织、映射的顺序与信道测量所用NZP CSI-RS resource ID的顺序一致。例如,NZP CSI-RS1作为信道测量资源得到的CQI1/PMI1与NZP CSI-RS2作为信道测量资源得到的CQI2/PMI2顺序组合输入编码器、交织器并映射,即较小的NZP CSI-RS ID的资源所测量得到的CQI/PMI O 0O 1..O m-1,较大的NZP CSI-RS ID的资源所测量得到的CQI/PMI O mO m+1..O n-1组成O 0O 1..O n-1输入编码器,并进行交织和映射。
CSI可以包括PMI,RI,或CQI中的至少一种,那么上报CSI,就涉及到上报PMI,RI,或CQI中的至少一种,则PMI,RI,或CQI中的至少一种在上报时就会有上报顺序。接下来介绍PMI和CQI的上报顺序的实施例以及CSI所包括的内容,如PMI,CQI等的比特数的确定方法,其中,该实施例中的确定CSI所包括内容的上报顺序及比特数的方法可以是各自独立实施,也可以相互结合应用,也可以是分别和本申请中的其他实施例结合,具体的在此不做限定。
可选的,本申请实施例中的第一set(first set)可以是指第一个NZP CSI-RS资源对应的CSI,第二set(second set)可以是指第二NZP CSI-RS资源对应的CSI。
可选的,本申请实施例中的第一set(或first set)可以是指第一个码字(例如码字0)对应的CSI,第二set(second set)可以是指第二个码字(例如码字1)对应的CSI。
可选的,本申请实施例中的第一set,第一个set,第一个CSI set,first set,first CSI set可以是指相同的含义,也可以相互替换。另外,也可以替换成第一个码字(例如码字0)的CSI,或者替换成第一个NZP CSI-RS资源对应的CSI等,具体的在此不做限定。
可选的,本申请实施例中的第二set,第二个set,第二个CSI set,second set,second CSI set可以是指相同的含义,也可以相互替换。另外,也可以替换成第二个码字(例如码字1)的CSI,或者替换成第二个NZP CSI-RS资源对应的CSI等,具体的在此不做限定。
针对一个CSI process(或者CSI reporting)中的first set和second set中的PMI和CQI,可以有不同的上报顺序(在本申请实施例中,上报顺序也可称为反馈顺序)。例如终端设备根据第一指示信息确定反馈至少两个CSI集合,至少两个CSI集合包括第一集合(即第一set)的CSI和第二集合(即第二set)的CSI,第一集合的CSI包括第一集合的CQI和/或第一集合的PMI,第二集合的CSI包括第二集合的CQI和/或第二集合的PMI。上报方法的方法1:先上报CQI(包括第一set的CQI和/或第二set的CQI),然后再上报PMI(包括第一set的PMI和/或第二set的PMI)。在方法1下面又包括以下几种方法中的至少一种:
方法1.1:如果第一set只包括CQI,第二set也只包括CQI,则上报顺序依次为第一set的CQI和第二set的CQI;
方法1.2:如果第一set包括CQI和PMI,第二set只包括CQI,则上报顺序依次为第一set的CQI、第二set的CQI,和,第一set的PMI;
方法1.3:如果第一set包括CQI和PMI,第二set包括CQI和PMI,则上报顺序依次为第一set的CQI、第二set的CQI,第一set的PMI,和,第二set的PMI;
方法1.4:如果每个集合的PMI中都有第一PMI和第二PMI,则先上报第一PMI(包括第一set的第一PMI和/或第二set的第一PMI),然后再上报第二PMI(包括第一set的第二PMI和/或第二set的第二PMI)。
方法1.5:如果每个集合的PMI中都有第一PMI和第二PMI,则先上报第一set的第一PMI和/或第二PMI,然后再上报第二set的第一PMI和/或第二PMI。
例如,在全带CQI上报模式下,如果无PMI反馈,则对应的模式为模式1-0。
具体采用哪种模式,可以通过协议预定义,或者,基站和终端之间交互确定,比如,基站通过信令告知终端。
关于PMI和CQI的上报顺序,如前介绍的是上报方法的方法1,即,先上报CQI(包括第一set的CQI和第二set的CQI),然后再上报PMI(包括第一set的PMI和第二set的PMI)。下面介绍上报方法的方法2。
上报方法的方法2:先第一set(包括第一set的CQI和/或PMI),然后再第二set(包括第二set的CQI和/或PMI)。在方法2下面,又包括以下几种具体的方法中的至少一种:
方法2.1:如果第一set包括CQI和PMI,第二set只包括CQI,则上报顺序依次为第一set的CQI,第一set的PMI,和,第二set的CQI;
方法2.2:如果第一set包括CQI,第二set包括CQI和PMI,则上报顺序依次为第一set的CQI,第二set的CQI,和,第二set的PMI;
方法2.3:如果第一set包括CQI和PMI,第二set包括CQI和PMI,则上报顺序依次为第一set的CQI,第一set的PMI,第二set的CQI,和,第二set的PMI。
可选的,本实施例中,可以通过以下任意一种方式确定CSI反馈相关信息包括的CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
可选的,该部分可以结合实施例中的其他部分应用,也可以独立应用,以提供一种CSI反馈方法,或是,CSI反馈相关信息确定方法。
方式一:CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个为预定义值,网络设备和终端设备均已知该预定义值。
示例性的,CRI上报的比特信息包括2个比特,RI上报的比特信息包括4个比特,CRI和RI的上报的比特信息包括6个比特。
在LTE通信系统中,在单点传输模式下,由于终端设备支持的最大层数是8层,因此针对一个CSI上报RI的最大比特个数为3。在多点协作传输模式下,假设基站1和基站2协作传输,RI1对应基站1,RI2对应基站2,RI1和RI2合并上报,可能的合并情况如下{RI1,RI2}={1,1},{1,2},{2,1},{2,2},{2,3},{3,2}{3,3},{3,4},{4,3},{4,4},因此上报RI的最大比特个数为4。综上,RI上报的比特信息可以为4个比特个数。
CRI的可能取值为0、1、2,所所表示的含义如下:CRI=0表示第一个NZP CSI-RS资源对应的基站1的传输性能最好;CRI=1表明第二个NZP CSI-RS资源对应的基站2的传输性能最好;CRI=2表示两个NZP CSI-RS资源对应的基站1和基站2协作传输性能最好。综上,CRI上报的比特信息可以为2个比特个数。
例如,方式一下,根据第二指示信息确定CRI的比特数,和/或,RI的比特数。
作为一种示例,在方式一中,可以根据第二指示信息确定CRI的比特数和/或RI的比特数。其中,配置信息包括第二指示信息,所述第二指示信息指示终端设备在混合传输模式下执行CSI测量和反馈,或者,指示当前的CSI进程为多点协作传输模式下的CSI进程。
RI的比特数可根据第二指示信息确定。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
具体的,例如当第二指示信息指示使能FeCoMP的CSI反馈时,则RI的比特数固定(例如通过协议规定),不区分CRI=0,1,2,…,也不区分天线端口数和/或终端设备的能力。
所述终端设备的能力可以是指终端(终端设备的简称)最大支持的层数,或者终端最大支持的天线端口数,或者终端最大支持的传输速率,或终端支持的传输方式(比如开环,闭环,单小区,协作)等中的至少一项。
例如,针对配置了2个NZP CSI-RS资源为例,当第二指示信息指示使能FeCoMP的CSI反馈时,RI比特可以固定为4比特。当然其他的数值也可以,在此不做限定。
在本申请实施例中,基站(网络设备以基站为例进行描述)确定使能基于FeCoMP的CSI反馈时,发送第二指示信息,并确定该终端的RI比特数为4比特,即RI的比特数与第二指示信息相关。当终端接收到第二指示信息,即可以根据第二指示信息确定RI的比特数,比如RI的比特数为4比特。
基站确定不使能基于FeCoMP的CSI反馈时,不发送第二指示信息,并确定按照现有技术确定RI的比特数。当终端没有接收到第二指示信息时,则可以按照现有技术确定RI的比特数。现有技术确定RI的比特数比如为:RI的比特数与天线端口数和终端设备的能力相关。具体的,比如天线端口数为4,终端设备的能力可以支持最大4层的传输,则RI的比特数为2。
针对终端和基站的实施方式的描述,本实施例中其他部分也可参考。以下均以终端的实施方式为例进行描述。
下面以配置了2个NZP CSI-RS资源为例,举例说明根据NZP CSI-RS资源的个数和第二指示信息确定CRI的比特数和/或RI的比特数。
具体的,配置了2个NZP CSI-RS资源,且,第二指示信息指示了CSI测量反馈为使能基于FeCoMP下的CSI反馈时,可以确定RI的比特数为4bit,CRI的比特数是2bit。
取值在此仅是举例,其他的数值也可以,具体的,不做限制。
具体的,终端确定CSI测量行为是基于FeCoMP下CSI的测量可以是通过上述实施例中的方法确定,比如通过配置第二指示信息,第二指示信息用于使能基于FeCoMP的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能基于混合传输模式下的CSI反馈。例如第二指示信息为高层参数FeCoMPCSIEnabled,通过配置了高层参数FeCoMPCSIEnabled或者通过配置FeCoMPCSIEnabled=TRUE确定(即通过第二指示信息确定),下面的实施例以配置了高层参数FeCoMPCSIEnabled来具体说明,通过配置FeCoMPCSIEnabled=TRUE的方案与之类似,具体的,在此不赘述。
下面介绍RI的比特映射,或理解为,介绍RI的比特含义。
本实施例提供一种RI的比特含义的确定方法,该方法可以与方式一中RI比特数的确定方法相结合。RI的比特映射,即RI的比特含义的确定方式可以包括如下实现方式中的一种。
实现方式1(或称为方法1.1)、根据第二指示信息确定RI的比特含义。
本申请实施例中,当终端接收到第二指示信息,即可根据第二指示信息确定RI的比特含义。
实现方式2(或称为方法1.2)、根据第二指示信息和CRI的取值确定RI的比特含义。
当第二指示信息配置为FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE时,RI的比特数可以确定,比如为4比特。
鉴于此,实现方式2(即方法1.2)也可以理解为:根据RI的比特数和CRI的取值确定RI的比特含义。也就是说,根据第二指示信息和CRI的取值确定RI的比特含义包括:根据第二指示信息确定RI的比特数,进一步根据RI的比特数和CRI的取值确定RI的比特含义。
本实施例提供RI的比特含义的另一种确定方法。该确定方法可以与本实施例中其他确定RI的比特数的方法相结合,比如方法2.2,或,方法3中确定RI的比特数的方法相结合,也可以与其他确定RI的比特数的方法相结合,在此不予赘述。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的RI的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
本实施例可以独立实施,或者也可以与其他实施例结合应用,具体的,在此不作限定。
A、RI的比特数为2比特的情况:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第二指示信息,确定CRI的比特含义和/或RI的比特含义。作为一种示例,可根据NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数中的至少一项、以及CRI的取值和第二指示信息,确定RI的比特含义。
可选的,终端根据NZP CSI-RS资源的天线端口数以及CRI的取值和第二指示信息,确定RI的比特含义。比如终端根据NZP CSI-RS资源的天线端口数可以确定RI的比特数,进而根据RI的比特数以及CRI的取值和第二指示信息,确定RI的比特含义。
可选的,终端根据NZP CSI-RS资源的天线端口数,终端设备的能力信息以及CRI的取值和第二指示信息,确定RI的比特含义。比如终端根据NZP CSI-RS资源的天线端口数和终端设备的能力信息可以确定RI的比特数,进而根据RI的比特数以及CRI的取值和第二指示信息,确定RI的比特含义。
可选的,终端根据RI的比特数以及CRI的取值和第二指示信息,确定RI的比特含义。
B、RI的比特数为3比特的情况:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第二指示信息,确定CRI的比特含义或RI的比特含义的至少一项。作为一种示例,可根据第二指示信息和RI的比特数确定RI的比特含义。
C、RI的比特数为4比特的情况:
可能的方式1:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第二指示信息,确定CRI的比特含义或RI的比特含义的至少一项。作为一种示例,可根据NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数中的至少一项、以及CRI的取值和第二指示信息,确定RI的比特含义。
可能的方式2:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第二指示信息,确定RI的比特含义。作为一种示例,可根据第二指示信息和RI的比特数确定RI的比特含义。
可选的,终端可以根据第二指示信息和RI的比特数确定RI的比特含义。
可选的,终端可以根据RI的比特数确定RI的比特含义。
可能的方式2,可以使得RI和CRI联合反馈或者联合编码时,RI的比特数不依赖于CRI的取值,即可以保证CRI和RI的比特数是网络设备和终端设备共同知道的,可以使得网络设备可以正确接收或者解码CRI和RI。而且因为RI的比特数是与天线端口的个数和/或终端设备的能力相关的,RI的比特数开销相对较小。
例如,基于RI上报的比特信息为4个比特个数和CRI上报的比特信息为2个比特个数,CRI和RI的上报的比特信息为6个比特个数。示例性的,RI和CRI的比特取值含义如下:
针对CRI=0、1时,0000表示RI=1,0001表示RI=2,以此类推;
针对CRI=2时,{RI1,RI2}={1,1},{1,2},{2,1},{2,2},{2,3},{3,2}{3,3},{3,4},{4,3},{4,4},其中,0000表示{RI1,RI2}={1,1},0001表示{RI1,RI2}={1,2},以此类推。
需要说明的是,本实施例中CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中至少一个的预定义值并不限定于上文描述的预定义值,也可以为其他预定义值。
方式二:网络设备确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个,并将确定的通知给终端设备。
例如,网络设备通过高层信令将CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个发送给终端设备,该信令可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制(media access control,MAC)信令。在LTE通信系统中,该信令可以在CSI进程的配置信息中,或者CQI上报的信令中,或者其他信令字段,本实施例并不限定。在NR通信系统中,该信令可以在reporting setting的配置信息中,或者其他信令字段,本实施例并不限定。
示例的,所通知的可以为索引,该索引对应一种CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息的取值中的至少一项。比如,索引为1,对应CRI上报的比特信息包括2个比特,RI上报的比特信息包括4个比特,CRI和RI的上报的比 特信息包括6个比特中的至少一项。比如索引为2,对应对应CRI上报的比特信息包括1个比特,RI上报的比特信息包括3个比特,CRI和RI的上报的比特信息包括4个比特。索引为其他值时,还可以对应其他情况。具体的,在此不作限定。
可选的,网络设备确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个的方式可以为协议预定义的,也可以为基于预设规则确定的。
方式三:终端设备基于预设规则确定CSI反馈相关信息包括的CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个,网络设备基于与终端设备相同的预设规则确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
终端设备可以根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第二指示信息,确定CRI的比特数,和/或,RI的比特数。作为一种示例,可根据天线端口数和/或终端设备的能力信息,以及第二指示信息确定RI的比特数。在第二种实现方式下,RI比特数根据第二指示信息和天线端口数,和/或,终端设备的能力信息,确定,而不考虑CRI的取值,比如不区分CRI=0,1,2。
下面以配置了大于1个NZP CSI-RS资源为例,举例说明根据天线端口数和/或终端设备的能力信息,以及第二指示信息确定RI的比特数。
方法2.1:根据第二指示信息以及天线端口数是否为1确定RI的比特数。
在下面的介绍过程中,涉及到天线端口数时,只是区分天线端口数为1和天线端口数大于1的两种情况。
本申请中当配置了大于1个NZP CSI-RS资源时,如果没有特殊说明天线端口数是哪个NZP CSI-RS资源时,此时的天线端口数可以是指配置的大于1个NZP CSI-RS资源所对应的天线端口数中的最大值。
比如,如果说天线端口数为1,则表明配置的大于1个NZP CSI-RS资源的天线端口数最大值为1,即每个NZP CSI-RS资源的天线端口数都为1。如果说天线端口数大于1,则表明配置的大于1个NZP CSI-RS资源中的天线端口数最大值为大于1,即至少一个NZP CSI-RS资源的天线端口数大于1。
具体的,天线端口数为1的情况下,不反馈RI,天线端口数大于1的情况下,规定RI的比特数的取值,比如为4比特。
即本申请实施例中终端根据第二指示信息和天线端口数为1,则可以确定不反馈RI,仅反馈CRI。终端根据第二指示信息和天线端口数大于1,则可以确定RI的比特数,比如为4bit。其中比特数的取值为4仅是举例,其他的数值也可以,具体的,在此不做限定。
另外,关于方式三,还提供更为详细的方案。
方法2.2:根据NZP CSI-RS资源的天线端口数和终端设备的能力信息(简称终端设备的能力)中的至少一项以及第二指示信息确定RI的比特数。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的RI的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
本实施例可以独立实施,也可以是跟其他实施例结合应用,具体的,在此不作限定。
具体的,例如NZP CSI-RS资源的天线端口数为1的情况下,不反馈RI;NZP CSI-RS资源的天线端口数大于1的情况下,可以根据天线端口数和终端设备的能力中的至少一项以 及第二指示信息确定RI的比特数,例如天线端口数为2和/或终端设备的能力为支持最大层数为2层(layer)的情况下且配置了第二指示信息,则RI的比特数为2,或者NZP CSI-RS资源的天线端口数为4和/或终端设备的能力为支持最大层数为4层的情况下,且配置了第二指示信息,则RI的比特数为4。
可选的,本申请实施例中在配置了多个CSI-RS资源的情况下,在确定RI的比特数时,根据的NZP CSI-RS资源的天线端口数可以是指配置的NZP CSI-RS资源所对应的天线端口数中的最大值。例如配置了2个NZP CSI-RS资源,其中一个NZP CSI-RS资源的天线端口数为2,另一个NZP CSI-RS资源的天线端口数为4,则RI的比特数是根据天线端口数是4确定的。其中,资源所对应的天线端口数可以理解为传输该资源所采用的天线端口的数量。
方式二或方式三中提到的预设规则可以为以下预设规则中的一种或多种,具体为哪一种或多种可以为协议预先定义,此时,网络设备和/或终端设备可以依据协议的定义有相应配置,也可以依据具体实现确定,还可以通过信令告知终端设备采用预设的哪种规则确定,比如通过RRC信令或者MAC信令等高层信息或者物理层信道等,具体的,在此不作限定。
预设规则一:基于CRI和RI的最大比特个数,确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
针对CRI上报的比特信息,以配置了2个NZP CSI-RS(第一个NZP CSI-RS资源和第二个NZP CSI-RS资源)为例,为了同时测量多种传输模式下的CSI,可以规定CRI的取值和含义。
下面介绍如何确定CRI的比特数和/或CRI的比特含义。其中,CRI的比特数和/或CRI的比特含义的确定可以是独立的实施例,也可以是与其他实施例结合,具体的在此不做限制。
确定方法A、CRI的比特数和/或CRI的比特含义根据第二指示信息确定。
具体的,终端根据第二指示信息确定CRI的比特数。和/或终端根据第二指示信息确定CRI的比特含义。
比如当终端接收到第二指示信息,使能基于FeCoMP下的CSI反馈,比如当第二指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,终端可以确定CRI的比特数,比如CRI的比特数为2比特(bit)。基站确定使能终端基于FeCoMP的CSI反馈时,发送第二指示信息,并确定该终端的CRI比特数为2比特。此处CRI的比特数为2bit仅是举例,其他的数值也可以,具体的,不做限定。
比如当终端接收到第二指示信息,使能基于FeCoMP下的CSI反馈,比如当第二指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,终端可以确定CRI的比特含义,比如CRI的比特数为2比特(bit)下的比特含义具体如下,比如00代表CRI=0,表明上报的CSI是基于第一个NZP CSI-RS资源测量得到;01代表CRI=1,表明上报的CSI是基于第二个NZP CSI-RS资源测量得到的;11代表上报的CSI是基于第一个NZP CSI-RS资源和第二个NZP CSI-RS资源测量得到的。基站确定使能基于FeCoMP的CSI反馈时,发送第一指示信息,并确定该终端的CRI比特数为2比特和/或CRI的比特含义。此处CRI的比特数为2bit仅是举例,其他的数值也可以,具体的,不做限定。
可选的,而当终端没有接收到第二指示信息,比如当第二指示信息没有配置FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为FALSE,则CRI的比特数可以是根据现 有技术确定,比如根据配置的NZP CSI-RS的资源个数K确定,例如为
Figure PCTCN2018105094-appb-000006
其中,K为正整数,
Figure PCTCN2018105094-appb-000007
表示向上取整。
确定方法B、CRI的比特数和/或CRI的比特含义根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第二指示信息确定。
作为一种示例,CRI的比特数和/或CRI的比特含义可根据第一二指示信息和配置的NZP CSI-RS的资源个数K确定。
具体的,当第二指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,CRI的比特数是根据配置的NZP CSI-RS的资源个数确定,例如,配置的NZP CSI-RS的资源个数为2,则CRI的比特数为2。而当第二指示信息没有配置FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为FALSE,CRI的比特数是根据配置的NZP CSI-RS的资源个数K确定,例如为 例如配置的NZP CSI-RS的资源个数K为2,则CRI的比特数为1。
本申请实施例中,CRI的比特数和/或CRI的比特含义与配置的NZP CSI-RS的资源个数的关系可以包括如下的至少一种:
1、在基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈(可简称为CSI测量反馈)下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000009
例如配置了4个NZP CSI-RS的资源,在基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈(可简称为CSI测量反馈)下,可以包括在单小区场景下有4种情况,在多点协作传输场景或FeCoMP下从这4个NZP CSI-RS的资源中任意选择2个资源,即可以存在
Figure PCTCN2018105094-appb-000010
种情况,因此CRI总共需要指示
Figure PCTCN2018105094-appb-000011
种情况,即CRI的比特数可以为
Figure PCTCN2018105094-appb-000012
其中,K为NZP CSI-RS的资源个数。
比如K=4,则此时总共需要4个比特指示CRI的取值。此时CRI的比特含义可以为下面至少一项,以下以十进制表示CRI的取值,可以理解的是CRI的取值也可以采用二进制,八进制或是十六进制进行表示,本申请实施例中的取值均以一种进制进行举例,但并不限于所举的进制:
CRI=0,表示上报的CSI是基于第一个NZP CSI-RS资源测量得到的。
CRI=1,表示上报的CSI是基于第二个NZP CSI-RS资源测量得到的。
CRI=2,表示上报的CSI是基于第三个NZP CSI-RS资源测量得到的。
CRI=3,表示上报的CSI是基于第四个NZP CSI-RS资源测量得到的。
CRI=4,表示上报的CSI是基于第一个和第二个NZP CSI-RS资源测量得到的。
CRI=5,表示上报的CSI是基于第一个和第三个NZP CSI-RS资源测量得到的。
CRI=6,表示上报的CSI是基于第一个和第四个NZP CSI-RS资源测量得到的。
CRI=7,表示上报的CSI是基于第二个和第三个NZP CSI-RS资源测量得到的。
CRI=8,表示上报的CSI是基于第二个和第四个NZP CSI-RS资源测量得到的。
CRI=9,表示上报的CSI是基于第三个和第四个NZP CSI-RS资源测量得到的。
上述实施例中,CRI的取值或比特含义指示了CSI反馈的含义。可选的,CSI反馈的含义可以通过另一信息,比如第一反馈信息,指示,即,第一反馈信息用于指示CSI反馈的含义。其中CSI反馈的含义可以是指多点协作传输下的CSI测量结果,单小区传输下的测量结果,或,FeCoMP下的CSI测量结果中的至少一项。或者CSI反馈的含义可以是指第一CSI,第二CSI,第三CSI,或,第四CSI中的至少一项。其中所述第一CSI是基于干扰功率获得的,所述第二CSI是基于当用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,所述第三CSI是基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,所述第四CSI是基于流间干扰或者码字间干扰获得的;
比如终端可以反馈第一反馈信息,该第一反馈信息用于指示CSI反馈的含义,通过该方法,基站可以通过接收第一反馈信息确定接收的CSI对应的CSI反馈的含义。所述实现方式可以是独立的实施例,也可以是与其他实施例结合,具体的,在此不做限定。
本申请实施例中,当终端接收到第二指示信息,第二指示信息指示使能基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈时,终端根据第二指示信息和NZP CSI-RS资源的个数确定CRI的比特数为
Figure PCTCN2018105094-appb-000013
类似的,针对基站侧,基站确定使能终端基于FeCoMP的CSI反馈时,发送第二指示信息,并确定该终端的CRI比特数为
Figure PCTCN2018105094-appb-000014
其中,K为NZP CSI-RS的资源个数。
当终端没有接收到第二指示信息,即没有使能基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈时,比如当常规测量或进行单小区的测量反馈下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000015
其中,K为正整数,
Figure PCTCN2018105094-appb-000016
2、在基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量反馈下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000017
或者其他规定的比特数,或者按照其他规定的计算公式来计算,具体的,在此不做限定;
比如K=4,则此时总共需要3个比特指示CRI的取值。此时CRI的比特含义可以为下面至少一项,以下以十进制表示CRI的取值,可以理解的是CRI的取值也可以采用二进制,八进制或是十六进制进行表示,本申请实施例中的取值均以一种进制进行举例,但并不限于所举的进制:
CRI=0,表示上报的CSI是基于第一个NZP CSI-RS资源测量得到的。
CRI=1,表示上报的CSI是基于第二个NZP CSI-RS资源测量得到的。
CRI=2,表示上报的CSI是基于第三个NZP CSI-RS资源测量得到的。
CRI=3,表示上报的CSI是基于第四个NZP CSI-RS资源测量得到的。
CRI=4,表示上报的CSI是基于第一个和第二个NZP CSI-RS资源测量得到的。
CRI=5,表示上报的CSI是基于第一个和第三个NZP CSI-RS资源测量得到的。
CRI=6,表示上报的CSI是基于第一个和第四个NZP CSI-RS资源测量得到的。
在常规测量如单小区的测量反馈下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000018
举例说明一:比如CRI=0表示第一个NZP CSI-RS资源对应的传输性能最好,此时可以对应DPS传输模式,CRI=1表示第二个NZP CSI-RS资源对应的传输性能最好,此时可以对应DPS传输模式,CRI=2表示第一个NZP CSI-RS和第二个NZP CSI-RS联合传输的性能最好,此时可以对应多点协作传输模式。在CRI的取值为0、1、2的情况下,CRI的最大比特个数为2。
举例说明二:在举例说明一种CRI=0、1、2的基础上增加CRI=3和CRI=4。其中,CRI=3表示第一个NZP CSI-RS资源对应的传输性能最好,而且第二个NZP CSI-RS资源对应的传输点没有干扰,此时可以对应DPS+DPB的传输模式;CRI=4表示第二个NZP CSI-RS资源对应的传输性能最好,而且第一个NZP CSI-RS资源对应的传输点没有干扰,此时可以对应DPS+DPB的传输模式。在CRI的取值为0、1、2、3、4的情况下,CRI的最大比特个数为3。
针对RI上报的比特信息,可以通过如下方式中的一种或多种实现基于RI的最大比特个数确定RI上报的比特信息,具体采用哪一种或多种可以依据协议规定,或者,依据具体实现确定。
方式一:在LTE通信系统中,在单点传输模式下,由于所有终端设备支持的最大层数是8层,因此针对一个CSI上报RI的最大比特个数为3,即RI上报的比特信息为3个比特。
方式二:根据配置的NZP CSI-RS的资源的最大天线端口数确定RI的最大比特个数。例如最大天线端口数为1,则RI的最大比特个数为1,即RI上报的比特信息为1个比特;又例如天线端口数为2或4,则RI的最大比特个数为2,RI上报的比特信息为2个比特;又例如最大天线端口数为8,则RI的最大比特个数为3,RI上报的比特信息为3个比特。
方式三:根据执行CSI测量和反馈的终端设备支持的最大层数确定RI的最大比特个数。例如支持的最大层数为1,则RI的最大比特个数为1,即RI上报的比特信息为1个比特;又例如支持的层数为2或4,则RI的最大比特个数为2,即RI上报的比特信息为2个比特;又例如支持的最大层数为8,则RI的最大比特个数为3,即RI上报的比特信息为3个比特。
方式四:多点协作传输模式下需要上报多个RI时,可以针对每个NZP CSI-RS的资源计算该资源对应的RI的最大比特个数,得到每个RI的最大比特个数,然后将每个RI的最大比特个数相加得到RI上报的比特信息。
如果有多个CSI-RS资源,那么是将这些资源中的最大的天线端口数确定为RI相关的天线端口数。下面再介绍另一种确定RI相关的天线端口数的方法。本实施例可以作为独立的实施例,也可以与其他实施例相结合,具体的,在此不做限定。可理解为,下面介绍的是更细节的确定方法:
针对基于多点协作传输模式(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈,根据每个CSI-RS资源的天线端口数,确定RI的比特数。
可选的,当一个CSI-RS资源的天线端口数为1,一个CSI-RS资源的天线端口数为M时,RI的比特数可以为1或者
Figure PCTCN2018105094-appb-000019
具体的RI的比特数为1还是
Figure PCTCN2018105094-appb-000020
可以是协议预定义的,或者基站通过信令通知的,具体的,在此不做限定。
例如两个CSI-RS资源,一个CSI-RS资源的天线端口数为1,另一个CSI-RS资源的天线端口数为M,M大于1。则RI的比特数可以为1,或者为
Figure PCTCN2018105094-appb-000021
RI的比特数为1时,用该1比特可以分别指示CRI=0,1,2下的RI(或RI合并)的2个取值。比如支持CRI=0,1下的RI=1或2,CRI=2下的RI={1,1}或{1,2}。
RI的比特数为
Figure PCTCN2018105094-appb-000022
时,用该
Figure PCTCN2018105094-appb-000023
比特可以分别指示CRI=0,1,2下的RI(或RI合并)的M个取值。比如支持CRI=0下的RI=1,2,…M,支持CRI=1下的,RI=1,2,…M,支持CRI=2下的RI={1,1},{1,2},…,{1,M}。
可选的,当一个CSI-RS资源的天线端口数为M1,至少一个CSI-RS资源的天线端口数为M2时,RI的比特数可以是考虑各种CRI取值下的最大的RI的比特数。
具体的,终端和/或基站可以根据每个CSI-RS资源对应的RI的比特数,确定CRI的各种取值下的最大的RI的比特数,进而确定反馈的RI的比特数。
例如,两个CSI-RS资源,一个CSI-RS资源的天线端口数为2,另一个CSI-RS资源的天线端口数为4。此时,可以有RI的比特数为2bit或3bit两种情况,均满足CRI的各种取值下的最大的RI的比特数。具体的RI的比特数为2还是3,可以是协议预定义的,或者基站通过信令通知的,具体的,在此不做限定。
RI的比特数为2bit的情况:
第一个CSI-RS资源的天线端口数为2,反馈第一个CSI-RS资源对应的CSI时(比如CRI=0),此时对应的RI需要1比特反馈,通过该1比特可以指示RI=1或2。以第二个CSI-RS资源的天线端口数为4为例,反馈第二个CSI-RS资源对应的CSI时(比如CRI=1),此时对应的RI需要2比特反馈,通过该2比特可以指示RI=1或2或3或4。以反馈第一CSI-RS资源和第二CSI-RS资源对应的CSI时(比如CRI=2),此时对应的RI需要2比特反馈,通过该2比特可以指示RI={1,1}或{1,2}或{2,1}或{2,3}。因此考虑各CRI取值下的最大的RI的比特数,可以确定RI的反馈比特数为2比特,比如支持CRI=0下的RI=1或2,CRI=1下的RI=1或2或3或4,CRI=2下的{1,1}或{1,2}或{2,1}或{2,3}。
RI的比特数为3bit的情况:
以第一个CSI-RS资源的天线端口数为2,反馈第一个CSI-RS资源对应的CSI时(比如CRI=0),此时对应的RI需要1比特反馈,通过该1比特可以指示RI=1或2。以第二个CSI-RS资源的天线端口数为4为例,反馈第二个CSI-RS资源对应的CSI时(比如CRI=1),此时对应的RI需要2比特反馈,通过该2比特可以指示RI=1或2或3或4。以反馈第一CSI-RS资源和第二CSI-RS资源对应的CSI时(比如CRI=2),此时对应的RI需要3比特反馈,通过该3比特可以指示RI={1,1}或{1,2}或{2,1}或{2,3}或{1,3}或{1,4}或{2,4}。因此考虑各CRI取值下的最大的RI的比特数,可以确定可以支持RI的反馈比特数为3比特,比如支持CRI=0下的RI-1或2,,CRI=1下的RI=1或2或3或4,CRI=2下的{1,1}或{1,2}或{2,1}或{2,3}或{1,3}或{1,4}或{2,4}。
方式五:多点协作传输模式下需要合并上报多个RI时,可以根据多个RI合并上报支持 的组合的个数,确定RI上报的比特信息。例如合并上报RI1和RI2时,{RI1,RI2}={1,1},{1,2},{2,1},{2,2},{2,3},{3,2}{3,3},{3,4},{4,3},{4,4},即RI合并上报支持的组合的个数为10,则RI上报的比特信息为4比特。又例如合并上报RI1和RI2时,{RI1,RI2}={1,1},{1,2},{2,1},{2,2},{2,3},{3,2},{1,4},{4,1},{3,3},{2,4}{4,2},{1,5},{5,1},{3,4},{4,3},{2,5},{5,2},{4,4},{3,5},{5,3},{2,6},{6,2},即RI合并上报支持的组合的个数为22,则RI上报的比特信息为5比特。又例如合并上报RI1和RI2时,{RI1,RI2}={1,0},{0,1},{2,0},{0,2},{3,0},{0,3},{4,0},{0,4},{5,0},{0,5},{6,0},{0,6},{7,0},{0,7},{7,0},{0,7},{8,0},{0,8},{1,1},{1,2},{2,1},{2,2},{2,3},{3,2},{1,4},{4,1},{3,3},{2,4}{4,2},{1,5},{5,1},{3,4},{4,3},{2,5},{5,2},{4,4},{3,5},{5,3},{2,6},{6,2},{7,1}{1,7}中的至少一项,比如选择其中的一部分取值时,当RI合并上报支持的组合的个数为22,则RI上报的比特信息为5比特。
通过上述预设规则一确定CRI上报的比特信息和RI上报的比特信息之后,CRI和RI的上报的比特信息可以等于CRI上报的比特信息与RI上报的比特信息之和。
预设规则二:联合考虑CRI和RI,确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。下面举例说明。
反馈考虑DPS时,CRI=0时,RI上报的最大比特个数可以根据第一个NZP CSI-RS资源的天线端口数确定,比如RI的最大比特个数为3;CRI=1,RI上报的最大比特个数可以根据第二个NZP CSI-RS资源的天线端口数确定,比如RI的最大比特个数为2。因此针对CRI的情况一,CRI上报的比特信息为1个比特,RI上报的比特信息为3个比特,CRI和RI的上报的比特信息为4个比特。
反馈考虑DPS和多点协作传输模式时,基于上述反馈仅考虑DPS中CRI=0、1,增加CRI=2。CRI=2时,RI上报的最大比特个数可以根据第一个NZP CSI-RS资源的天线端口数和第二个NZP CSI-RS资源的天线端口数确定,比如独立上报多个RI或合并上报多个RI。此时假设RI上报的最大比特个数为4。因此针对CRI的情况二,CRI上报的比特信息为2个比特,RI上报的比特信息为4个比特,CRI和RI的上报的比特信息为6个比特。
反馈考虑DPS、DPB以及多点协作传输模式时,基于上述反馈仅考虑DPS和多点协作传输模式中CRI=0、1、2,增加CRI=3、4。CRI=3时,RI上报的最大比特个数可以根据第一个NZP CSI-RS资源的天线端口数确定,假设RI上报的最大比特个数为2;CRI=4时,RI上报的最大比特个数可以根据第二个NZP CSI-RS资源的天线端口数确定,假设RI上报的最大比特个数为2。因此针对CRI的情况二,CRI上报的比特信息为3个比特,RI上报的比特信息为4个比特,CRI和RI的上报的比特信息为7个比特。
预设规则三:在NR通信系统中,可以根据link个数或者测量信道的个数,确定CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
例如,若link的个数或者测量信道的个数为2,则针对CRI的比特信息取值,可以有3种情况:比如CRI=0时,表示根据第一个link或者第一个测量信道的link对应的NZP CSI-RS资源的测量得到的CSI的性能最好;比如CRI=1时,表示根据第二个link或者第二个测量信道的link对应的NZP CSI-RS资源的测量得到的CSI的性能最好;比如CRI=2时,表示根据第一个link或者第一个测量信道的link对应的NZP CSI-RS资源和第二个link或者第二个测量信道的link对应的NZP CSI-RS资源的联合传输下测量得到的CSI的性能最好,此时CRI上报的bit可以是2个bit。
又例如,若当link的个数或者测量信道的个数为3,则针对CRI的比特信息取值,可以 有3种情况:比如CRI=0时,表示根据第一个link或者第一个测量信道的link对应的NZP CSI-RS资源的测量得到的CSI的性能最好;比如CRI=1时,表示根据第二个link或者第二个测量信道的link对应的NZP CSI-RS资源的测量得到的CSI的性能最好;比如CRI=2时,表示根据第三个link或者第三个测量信道的link对应的NZP CSI-RS资源的测量得到的CSI的性能最好,此时CRI上报的bit可以是2个bit。
针对RI的比特信息取值,可以是根据每个link对应的NZP CSI-RS资源的天线端口数确定的。也可以有其他的确定方式,在此不作限定。
本实施例中,终端设备反馈的CSI包括信息中用于指示哪种传输性能更好的信息(即反馈哪种测量行为下获得的CSI)与现有技术可以相同,也可以不同,下面进行说明。本实施例中该部分可以与其他部分结合使用,也可以独立应用,以提供一种CSI反馈方法。现有技术中,在单点传输模式下反馈的CRI是CSI-RS resource indication,用于指示哪个资源的传输性能更好。在多点协作传输模式下通过CRI来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。
而本实施例中可以通过反馈resource setting index、resource set index以及resource index中的一个或多个来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。下面分别针对不同场景介绍。feedback index为反馈指示,一个feedback index表示一种定义下的资源的传输指示。具体可以为以下几种设计中的至少一种,具体为哪种设计或哪几种设计的结合可以为协议定义,或者,根据系统设计确定:
设计一:一个reporting setting关联多个resource setting,而且一个resource setting中包括一个resource set,一个resource set包括一个测量信道的资源,或者一个resource set包括一个CSI测量结果相关的一个或多个资源。此时可以通过反馈对应于resource setting index的feedback index来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。
以图10A所示的CSI的资源配置示意图为例,反馈feedback index=2时,表示终端设备反馈的CSI report的信道部分是resource setting index=2中的测量资源下传输性能更好。若resource setting index=2对应一个测量信道的资源,或者resource setting index=2包括的一个CSI测量结果相关的资源包括一个测量信道的资源,则表示该一个资源下的单点传输模式传输性能更好;若resource setting index=2对应一个CSI测量结果相关的资源包括多于一个测量信道的资源,则表示该多个资源下的多点协作传输模式传输性能更好。反馈feedback index=1和2时,表示终端设备反馈的CSI report的信道部分是resource setting index=1和2中的测量资源下的多点协作传输模式传输性能更好。
设计二:一个reporting setting关联多个resource setting,而且一个resource setting中包括一个或者多个resource set,一个resource set包括一个测量信道的资源,或者一个resource set包括一个CSI测量结果相关的一个或多个资源。此时可以通过反馈对应于resource setting index和resource set index的feedback index来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。反馈resource setting index和resource set index的方式可以采用联合指示或者独立指示,具体采用哪种反馈方式可以是由网络设备配置或者预定义。
以图10A所示的CSI的资源配置示意图为例,反馈feedback index=0110时,表示终端设备反馈的CSI report的信道部分是resource setting index=1中的resource set index=2中的测量资源下传输性能更好,其中,feedback index=0110中前两位比特01表示resource setting index,feedback index=0110中后两位比特10表示resource set index。若resource setting  index=1中的resource set index=2对应一个测量信道的资源,或者resource setting index=1中的resource set index=2对应的一个CSI测量结果相关的资源包括一个测量信道的资源,则表示该一个资源下的单点传输模式传输性能更好;若resource setting index=1中的resource set index=2对应的一个CSI测量结果相关的资源包括多于一个测量信道的资源,则表示该多个资源下的多点协作传输模式传输性能更好。
设计三:一个reporting setting关联多个resource setting,而且一个resource setting中包括一个或者多个resource set,一个resource set包括一个或者多个测量信道的资源,或者一个resource set包括一个或者多个CSI测量结果相关的资源,每个CSI测量结果相关的资源可以包括一个或多个资源。此时通过反馈对应于resource setting index,resource set index和resource index的feedback index来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。反馈resource setting index,resource set index和resource index的方式可以采用联合指示,或者独立指示,或者三者中的2个index采用联合指示,具体采用哪种反馈方式和具体的映射编码顺序可以是由网络设备配置或者预定义。
以图10A所示的CSI的资源配置示意图为例,反馈feedback index=011001时,表示终端设备反馈的CSI report的信道部分是resource setting index=1中的resource set index=2中的resource index=1的测量资源下传输性能更好,其中,feedback index=011001中前两位比特01表示resource setting index,feedback index=011001中的中间两位比特10表示resource set index,feedback index=011001中的后两位比特10表示resource index。若resource setting index=1中的resource set index=2中的resource index=1对应一个测量信道的资源,或者resource setting index=1中的resource set index=2中的resource index=1对应一个CSI测量结果相关的资源,且该CSI测量结果相关的资源包括一个测量信道的资源,则表示该一个资源下的单点传输模式传输性能更好;若resource setting index=1中的resource set index=2中的resource index=1对应一个CSI测量结果相关的资源,该CSI测量结果相关的资源包括多于一个测量信道的资源,或者resource setting index=1中的resource set index=2中的resource index=1对应多个(多于1个)CSI测量结果相关的资源,每个CSI测量结果相关的资源包括一个或多个测量信道的资源,则表示该多个资源下的多点协作传输模式传输性能更好。
设计四:一个reporting setting关联一个resource setting,而且该resource setting中包括一个或者多个resource set,每个resource set包括一个测量信道的资源,或者每个resource set包括一个CSI测量结果相关的一个或多个资源。此时通过反馈对应于resource set index的feedback index来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。
以图10A所示的CSI的资源配置示意图为例,反馈feedback index=2时,表示终端设备反馈的CSI report的信道部分是resource set index=2中的测量资源下传输性能更好。若resource set index=2对应一个测量信道的资源,或者resource set index=2对应一个CSI测量结果相关的资源包括一个测量信道的资源,则表示该一个资源下的单点传输模式传输性能更好;若resource set index=2对应一个CSI测量结果相关的资源包括多于一个测量信道的资源,则表示该多个资源下的多点协作传输模式传输性能更好。反馈resource set index=1和2时,表示终端设备反馈的CSI report的信道部分是resource set index=1和2中的测量资源下的多点协作传输模式传输性能更好。
设计五:一个reporting setting关联一个resource setting,而且该resource setting中包括一个或者多个resource set,每个resource set包括一个或者多个测量信道的资源,或者每个 resource set包括一个或者多个CSI测量结果相关的资源,每个CSI测量结果相关的资源为一个或者多个。此时通过反馈对应于resource set index和resource index的feedback index来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。反馈resource set index和resource index的方式可以采用联合指示或者独立指示。
设计六:一个reporting setting关联多个resource setting,而且每个resource setting中包括一个resource set,该resource set包括一个或者多个测量信道的资源resource,或者该resource set包括一个或者多个CSI测量结果相关的资源resource,每个CSI测量结果相关的资源resource为一个或多个,通过反馈对应于resource setting index和resource index的feedback index来指示哪一个资源下传输性能更好或者指示多个资源联合传输性能更好。
上述六种设计中,在反馈resource settingindex时可以定义新的反馈量比如资源集合标识,(resource setting index,RSI),或者沿用CRI的反馈量的名称;在反馈resource set index时,可以定义新的反馈量比如RSI1,或者沿用CRI的反馈量的名称;在反馈resource index时,可以用CRI,本实施例对此并不限定。反馈index所采用的反馈方式和/或映射编码顺序可以是基站配置或者预定义的,本实施例对此并不限定。
进一步的,本申请实施例还给出了假设场景是:终端设备支持在混合模式下测量并反馈CSI,以及支持在单点传输模式下测量并反馈CSI时,基于情况二,即网络设备确定需要终端设备在单点传输模式下测量并反馈CSI,网络设备向终端设备发送的配置信息所满足的条件。具体的,该配置信息满足如下条件1)至8)中的至少一项,终端设备根据满足如下条件1)至8)中的至少一项的配置信息可以获知如何执行CSI测量和反馈,即获知在单点传输模式执行CSI测量和反馈。可以理解的是,该部分可以与本申请实施例的其他部分结合应用,也可以单独应用。
条件1)至8)分别为:
1)、配置信息包括1个classA的NZPCSI-RS资源。
2)、配置信息包括M1个class B的NZP CSI-RS资源,M1大于等于1的整数,以及CSI测量行为指示信息和/或CSI反馈相关信息指示信息。
或者,配置信息包括M2个class B的NZP CSI-RS资源,M2大于等于1的整数。在不配置CSI测量行为指示信息、CSI反馈相关信息指示信息的时候,协议也可以预定义为单点传输模式下的测量和反馈。
3)、配置信息包括CSI测量行为指示信息和/或CSI反馈相关信息指示信息。
上述条件2)和3)中,CSI测量行为指示信息指示单点传输模式下的CSI测量行为,CSI反馈相关信息指示信息指示信息指示单点传输模式下的CSI反馈相关信息。例如CSI测量行为指示信息指示测量第一CSI、第二CSI和第三CSI中的至少一个,CSI反馈相关信息指示信息包括对CRI和RI采用联合编码。其中,第一CSI、第二CSI和第三CSI的相关解释已在前文描述过,此处不在赘述。
4)、配置信息包括天线端口的QCL的类型为类型A或类型B。
5)、配置信息包括PQI中指示的QCL个数等于1。
6)、配置信息包括PQI中指示parameter组数等于1。
7)、配置信息包括一个reporting setting关联1个信道link或者1个RS setting或1个RS set。
8)、配置信息包括指示信息,该指示信息会指示终端设备在单点传输模式下执行CSI 测量和反馈。比如该指示信息指示当前的CSI进程为单点传输模式下的CSI进程,终端设备根据该指示信息获知在单点传输模式下执行CSI测量和反馈。
确定的CSI测量行为包括:测量第一CSI、第二CSI和第三CSI中的至少一个。其中,第一CSI、第二CSI和第三CSI的相关解释已在前文描述过,此处不在赘述。
确定CSI反馈相关信息包括:对CRI和RI采用联合编码。
需要说明的是,基于情况二,即网络设备确定需要终端设备在单点传输模式下测量并反馈CSI,相关解释说明可结合基于情况一,即网络设备确定需要终端设备在混合模式下测量并反馈CSI,此处不再赘述。
进一步的,本申请实施例还给出了假设场景是:终端设备支持在多点协作传输模式下测量并反馈CSI,以及支持在单点传输模式下测量并反馈CSI时,基于情况三,即网络设备确定需要终端设备在多点协作传输模式下测量并反馈CSI,网络设备向终端设备发送的配置信息所需满足的条件。具体的,该配置信息满足如下条件1)至11)中的至少一项,终端设备根据满足如下条件1)至11)中的至少一项的配置信息可以获知如何执行CSI测量和反馈,即获知在多点协作传输模式执行CSI测量和反馈。可以理解的是,该部分可以与本申请实施例的其他部分结合应用,也可以单独应用。
条件1)至11)分别为:
1)、配置信息包括N11个类别(class)A的非零功率(non-zero power,NZP)CSI-RS资源,所述N11为大于或等于2的正整数。
2)、配置信息包括N21个class B的NZP CSI-RS资源,以及CSI测量行为指示信息和/或CSI反馈相关信息指示信息,N21为大于或等于2的正整数。
或者,配置信息包括N22个class B的NZP CSI-RS资源,N22大于等于1的整数。在不配置CSI测量行为指示信息、CSI反馈相关信息指示信息的时候,协议也可以预定义为多点协作传输模式下的测量和/或反馈。
3)、配置信息包括CSI测量行为指示信息和/或CSI反馈相关信息指示信息。
上述条件2)和3)中,CSI测量行为指示信息指示多点协作传输模式下的CSI测量行为,CSI反馈相关信息指示信息指示信息指示多点协作传输模式下的CSI反馈相关信息。例如CSI测量行为指示信息指示测量第四CSI,第四CSI是基于流间干扰或者码字间干扰获得的,CSI反馈相关信息指示信息包括对CRI和RI采用联合编码或独立编码。
4)、配置信息包括天线端口的QCL的类型为类型C。
5)、配置信息包括天线端口的QCL的类型为类型C且所包括的CSI进程的个数为1。
6)、配置信息包括PQI中指示QCL个数大于M3,所述M3为大于或等于1的正整数。
7)、配置信息包括PQI中指示参数parameter组数大于P1,所述P1为大于或等于1的正整数。
8)、配置信息包括CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个。
若网络设备需要终端设备在单点传输模式下执行CSI测量和反馈时CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息是预定义值,此时不需要配置信息包括CRI上报的比特信息、CRI和RI的上报的比特信息和RI上报的比特信息中的至少一个,则当配置信息满足条件8)时可以确定网络设备需要终端设备在多点协作传输模式下执行CSI测量和反馈,并且配置信息包括的比特信息为终端设备在多点协作传输模式下执 行CSI测量和反馈时的比特信息。否则,在配置信息满足条件8)时还需要结合配置信息中的其他信息来确定网络设备需要终端设备在多点协作传输模式下执行CSI测量和反馈。
9)、配置信息包括CRI上报的比特信息为L且NZP CSI-RS资源为K个时,
Figure PCTCN2018105094-appb-000024
10)、配置信息包括一个reporting setting关联Q个信道link、T个RS setting和S个RS set中的至少一个,所述Q为大于或等于2的正整数,T为大于或等于2的正整数,S为大于或等于2的正整数。
11)、配置信息包括指示信息,该指示信息会指示终端设备在多点协作传输模式下执行CSI测量和反馈。比如该指示信息指示当前的CSI进程为多点协作传输模式下的CSI进程,终端设备根据该指示信息获知在多点协作传输模式下执行CSI测量和反馈。
确定CSI测量行为包括:测量第四CSI。其中,第四CSI是基于流间干扰或者码字间干扰获得的。
确定CSI反馈相关信息包括:对CRI和RI采用联合编码或者独立编码,和/或,将CRI和RI映射到时频资源的映射方式。
需要说明的是,基于情况三,即网络设备确定需要终端设备在多点协作传输模式下测量并反馈CSI,相关解释说明可结合基于情况一,即网络设备确定需要终端设备在混合模式下测量并反馈CSI,此处不再赘述。
可以理解的是,以上几种假设场景,具体采用哪一种,可以由协议预定义,或者,依据系统实现确定。或者也可以是基站通过信令通知为终端设备的,具体的,在此不做限定。
本申请实施例还提供一种通信方法,图5-3示出一种该通信方法中终端设备与网络设备的交互流程,包括如下步骤:
步骤511、网络设备向终端设备发送第一指示信息,则终端设备接收第一指示信息;第一指示信息用于使能基于增强型多点协作(further enhancement coordinated multiple points,FeCoMP)的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能基于混合传输模式下的CSI反馈;
步骤512、终端设备根据所述第一指示信息确定CSI反馈相关信息,所述CSI反馈相关信息包括对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项。
本实施例中以网络设备为基站进行描述,所有方案也可以应用于为网络设备的情况,比如可以为其他网络设备,如无特别说明,网络设备和基站可以相互替代。终端设备、终端、UE如无特别说明,可以相互替代。本实施例可以是独立的实施例,也可以是和本申请中的其他实施例结合,具体的在此不做限定。需注意的是,本实施例中步骤的编号只是为了与图5-1中的步骤编号形成区分,并不代表本实施例的步骤是在图5-1中所示的步骤之后完成。
第一指示信息用于使能FeCoMP的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能混合传输模式下的CSI反馈,可以理解为,第一指示信息用于使能基于FeCoMP的CSI测量和/或反馈,或,使能基于多点协作传输的CSI测量和/或反馈,或,使能基于混合传输模式下的CSI测量和/或反馈。也可理解为,终端设备可根据第一指示信息确定CSI测量行为。
其中,使能基于FeCoMP的CSI反馈是指,至少支持FeCoMP的CSI测量反馈。比如,支 持只有FeCoMP下的CSI测量反馈,或者,既支持FeCoMP下的CSI测量反馈,也支持单小区下的CSI测量反馈。
使能基于多点协作传输的CSI测量和/或反馈可以是指非相干联合传输,相干传输或其他多点协作传输下的至少一项的CSI测量和/或反馈。或者也可以是指基于其他多点协作传输模式下的CSI测量和/或反馈。
使能基于混合传输模式下的CSI反馈是指,至少支持两种传输模式下的CSI测量和/或反馈。例如FeCoMP和单小区下的CSI测量和/或反馈,或者,单小区和多点协作下的CSI测量和/或反馈,或者基于其他任意两种传输模式下的CSI测量和/或反馈。
其中,CSI测量(也可称为CSI测量行为)和CSI反馈(也可称为CSI上报)可以是相关的。
具体的,可以根据CSI测量行为和CSI反馈相关信息确定CRI的比特数和/或RI的比特数。
其中,CSI测量行为可以是基于FeCoMP的CSI测量,其中FeCoMP的CSI测量可理解为非相干联合传输(joint transmission,JT)的测量。FeCoMP的测量例如包括测量流间干扰和常规测量(比如单小区测量),具体的举例如下:
针对一个CSI进程或者一次CSI测量,网络设备为终端设备配置2个NZP CSI-RS资源,1个干扰测量资源(比如ZP CSI-RS资源),基于FeCoMP的CSI反馈可以包括如下情况:
如果CRI=0,则代表CSI上报是针对第一个NZP CSI-RS资源,可以采用现有技术的上报方法进行CSI上报。
如果CRI=1,则代表CSI上报是针对第二个NZP CSI-RS资源,可以采用现有技术的上报方法进行CSI上报。
如果CRI=2,则代表CSI上报是针对两个NZP CSI-RS资源。
在CRI=2的情况下,针对该一个CSI进程或者一次CSI测量,终端设备可以针对两个NZP CSI-RS资源计算两组CSI集合。每组CSI集合对应一个码字。具体计算可采用如下方法,针对每个NZP CSI-RS资源或者码字,终端设备会确定RI和/或PMI,并且计算每个资源或者码字的CQI。在计算CQI的时候需要考虑码字间或者资源间的干扰。比如码字间或者资源间的干扰是通过两个NZP CSI-RS资源中的另一个资源或者码字的信道测量和预编码矩阵得到的。其中预编码矩阵可以为单位矩阵或者测量得到的PMI或者基站指示的PMI,具体的,在此不做限定。
例如CRI=2的情况下,一种计算方法为:
CQI1=|H1W1|/(|H2W2|+I1),CQI2=|H2W2|/(|H1W1|+I2),
其中H1是通过第一个NZP CSI-RS资源测量得到的信道,W1是通过第一个NZP CSI-RS资源测量得到的预编码矩阵,H2是通过第二个NZP CSI-RS资源测量得到的信道,W2是通过第二个NZP CSI-RS资源测量得到的预编码矩阵,I1,I2是通过干扰测量资源得到的干扰。其他的计算方法不做限制。
可选的,上述举例中基于FeCoMP的CSI的测量包括常规测量(比如单小区测量),比如CRI=0,1下的测量即为单小区测量。另外,基于FeCoMP下的CSI的测量行为还可以不包括常规测量(如单小区测量)。具体的,在此不做限定。
本申请中的常规测量如单小区测量,或现有技术的测量和/或反馈方法,可以是指没有考虑用NZP(non zero power,非零功率)CSI-RS资源测量干扰下的CSI测量和/或反馈。比如可以是仅考虑ZP(zero power,零功率)CSI-RS资源测量干扰下的CSI测量和/或反馈。
本申请实施例中,例如第一指示信息可通过参数FeCoMPCSIEnabled来实现,如果该参数存在(即,配置了该参数),或者该参数的取值为TRUE,则表明第一指示信息指示的CSI测量行为是基于FeCoMP的CSI测量,而如果该参数不存在(即,未配置该参数),或者该参数的取值为FALSE,则表明第一指示信息指示的CSI测量行为是常规的测量,即,不是基于FeCoMP的CSI测量。第一指示信息用于使能基于增强型多点协作(further enhancement CoMP,FeCoMP)的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能基于混合传输模式下的CSI反馈,具体可以是指如果配置了该参数,则表明使能基于增强型多点协作(further enhancement CoMP,FeCoMP)的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能基于混合传输模式下的CSI反馈。或者如果该参数的取值为TRUE,则使能基于增强型多点协作(further enhancement CoMP,FeCoMP)的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能基于混合传输模式下的CSI反馈。
本申请实施例中,CSI反馈相关信息可以包括CSI上报模式,例如周期上报或者非周期上报,或者半持续性上报,也可以是上报模式1-0,或1-1,或2-0,或2-1,或2-2,或3-0,或3-1,或3-2等等。
所述CSI上报模式可以是指CSI的上报方式,比如周期,非周期,半静态中的至少一项。CSI上报模式也可以是指CSI上报的内容,比如上报CQI,上报CQI和PMI,上报全带CQI,上报子带CQI,上报全带PMI,上报子带PMI,UE选择子带上报,基站配置的子带上报中的至少一项。CSI上报模式也可以是指CSI的上报方式和上报内容的集合。
可选的,针对非周期CSI上报模式下的CSI可以在PUSCH(物理上行共享信道)上反馈,针对周期CSI上报模式下的CSI可以在PUCCH上反馈,或者在PUCCH(物理上行控制信道)和PUSCH同时存在时可以在PUSCH上反馈。
上报模式可以是类似LTE中的上报模式,具体举例如下:
表1:对于PUSCH CSI上报模式下的CQI和PMI的反馈类型
Figure PCTCN2018105094-appb-000025
如上表所示:上报模式1-0是指全带CQI上报,不反馈PMI。上报模式1-1是指全带CQI上报,全带PMI上报。上报模式1-2是指全带CQI上报,子带PMI上报。上报模式2-0是指UE选择子带CQI上报下的的CQI上报,不反馈PMI。上报模式2-2是指UE选择子带CQI上报下的CQI上报,子带PMI上报。上报模式3-0是指高层配置子带CQI上报下的CQI上报,不反馈PMI。上报模式3-1是指高层配置子带CQI上报下的CQI上报,全带PMI上报。上报模式3-2是指高层配置子带CQI上报下的CQI上报,子带PMI上报。
在本申请实施例中,关于上报模式,有两种实现的可能性:
第一种可能性,结合上报模式的配置确定CSI测量行为。举例如下,如果配置了FeCoMPCSIEnabled,或者FeCoMPCSIEnabled的取值为TRUE,以及配置了非周期上报模式,采用基于FeCoMP的CSI的测量和/或反馈;而如果配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,以及配置了周期上报模式,或者,没有配置 FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为FALSE,按照现有技术的方式测量和/或反馈。
在这种可能性下,在配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,以及配置了非周期上报模式的情况下,可以按照本申请实施例如下将要提供的方式确定CRI的比特数,RI的比特数,CRI的比特含义,或RI的比特含义中的至少一项,也就是说,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与第一指示信息相关。进一步的,还可以与上报模式相关。
第二种可能性,无需结合上报模式的配置即可确定CSI测量行为。例如事先规定上报模式,如果配置了FeCoMPCSIEnable或FeCoMPCSIEnable的取值为TRUE,则限制仅能配置非周期上报模式。此时,可以根据是否配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值是否为TRUE来确定是否采用基于FeCoMP的测量和上报,即,如果配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,则确定采用基于FeCoMP的测量和/或反馈,而如果没有配置FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为FALSE,则确定时按照现有技术的方式测量和/或反馈。
在这种可能性下,在配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE的情况下,可以按照本申请实施例如下将要提供的方式确定CRI的比特数,RI的比特数,CRI的比特含义,或RI的比特含义中的至少一项,也就是说,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与第一指示信息相关。
在本申请实施例中,终端设备可以根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第一指示信息,确定CRI的比特数,或,RI的比特数中的至少一项。即,CRI的比特数,和/或,RI的比特数与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第一指示信息相关。或者,终端设备可以根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及第一指示信息,确定CRI的比特含义,和/或,RI的比特含义。即,CRI的比特含义,和/或,RI的比特含义与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及第一指示信息相关。
在本申请实施例中,比特含义可以是指比特所包含的信息特征。
例如,RI的比特含义可以是指单RI上报,也可以是指协作下的RI(也称为RI合并(RI Combination))上报,或者可以是指多个RI上报。另外,RI的比特含义也可以是指RI的取值到RI的比特的映射。
例如,RI的比特含义可以是指反馈的RI的个数,例如是反馈一个RI,或者两个RI,或者多个RI等。
可选的,单RI上报的一种比特含义可以是指,RI=1,或2,或3,….。例如RI=1是指RI的取值为1,其他同理。
可选的,RI合并上报的一种比特含义是指,RI Combination{RI1,RI2}={1,1},或{1,2},或{2,1},或{2,2},…。例如{RI1,RI2}={1,1},是指上报2个RI,取值均为1。
可选的,多个RI上报的一种比特含义可以是指,RI1=1,或2,或3,….;RI2=1,或2,或3,….。
下面介绍根据第一指示信息确定CSI反馈相关信息。分三种情况:
情况一:对于基于多点协作传输模式(或基于FeCoMP或基于混合传输模式)下的CSI反馈,CRI和RI联合编码。
情况二:对于基于多点协作传输模式(或基于FeCoMP或基于混合传输模式)下的CSI反馈,CRI和RI分别编码。
情况三:对于基于多点协作传输模式(或基于FeCoMP或基于混合传输模式)下的CSI反馈,如果CSI包括至少两个RI,则CRI和CSI包括的RI中的至少一个RI联合编码。CSI包括的剩余的RI可以不与CRI联合编码。
下面针对如何确定CRI和RI的编码方式进行说明,该实施例可以是独立的实施例,也可以与其他实施例结合,具体的,在此不做限定。
本申请实施例中CSI反馈相关信息可以包括如下至少一项:CRI和RI采用联合编码;CRI和RI分别编码;CRI包括至少两个RI,CRI和至少两个RI中的至少一个RI联合编码,可选的,在这种方式中,至少一个RI中剩余的RI不与CRI联合编码。比如当有两个RI时,可以是CRI和其中一个RI联合编码,另一个RI不与CRI联合编码。
那么,终端设备根据第一指示信息就可以确定对CRI和RI的编码方式,例如所确定的对CRI和RI的编码方式为:CRI包括至少两个RI,CRI和至少两个RI中的至少一个RI联合编码,或,所确定的对CRI和RI的编码方式为:CRI和RI分别编码。其中,具体是“CRI和至少两个RI中的至少一个RI联合编码”还是“CRI和RI分别编码”可以依据协议采用的情况进行确定。例如,根据第一指示信息确定的编码方式是从CRI和至少两个RI中的一个RI联合编码,其余RI不与CRI联合编码,和,CRI和RI联合编码两种选择中确定的,即如果终端收到了第一指示信息,则根据第一指示信息确定编码方式为CRI和至少两个RI中的一个RI联合编码,其余RI不与CRI联合编码,如果终端没有收到第一指示信息或是收到了其他指示信息,则终端确定编码方式为CRI和RI联合编码。或者,根据第一指示信息确定的编码方式是从CRI和RI分别编码,和,CRI和RI联合编码中确定,即当终端收到第一指示信息,则根据第一指示信息确定编码方式为CRI和RI分别编,如果终端没有收到第一指示信息或是收到了其他指示信息,则终端确定编码方式为CRI和RI联合编码。其中上述的编码方式仅是举例,其他的编码方式也可以,具体的,在此不做限定。
本申请实施例中的联合编码,也可以是指联合反馈。本申请实施例中的独立编码(指与X独立编码,也称为与X非联合编码(或,不与X联合编码),或是,与X分开编码,X为其他信息或其他信息的集合,比如绝对的独立编码,指不与任何其他信息联合编码),可以是联合反馈下的独立编码,也可以是指独立反馈(指与Y独立反馈,也称为与Y非联合反馈,或是,与Y分开反馈,Y为其他信息或其他信息的集合,比如绝对的独立反馈,指不与任何其他信息联合反馈)下的独立编码。
联合反馈可以是指在同一时间单元上反馈,也可以是指同一时间单元的同一信道资源上反馈。联合编码可以是指比特级联后一起进行信道编码。
独立反馈可以是指在不同时间单元上反馈,也可以是指在同一时间单元的不同信道资源上反馈。独立编码可以是指独立进行信道编码。
可选的,本申请实施例中的RI独立反馈和/或RI独立编码,也可以称为,RI与CRI独立反馈和/或编码,可以是指不与CRI联合反馈和/或联合编码,或,与CRI分别反馈和/或分别编码,但并不限制可以与其他CSI反馈的信息进行联合反馈和/或联合编码。例如RI独立反 馈和/或独立反馈可以是指RI和CRI独立编码和/或独立反馈,且RI不与任何CSI联合反馈和/或联合编码,或者也可以是指RI和CRI独立编码和/或独立反馈,而RI还可以和PMI,预编码类型指示信息(precoding type indicator,PTI),CQI等至少一项CSI联合反馈和/或联合编码,具体的,在此不做限定。
以下介绍五种确定CRI和/或RI的比特数的实现方式,其中,第一种实现方式(方法1)和第二种实现方式(方法2)可以是针对以上情况一下的方案,第三种实现方式(方法3)和第四种实现方式(方法4)可以是针对以上情况二下的方案。第五种实现方式(方法5)可以是针对以上情况三下的方案。进一步的,还介绍CRI和/或RI的比特含义的确定方法。
本申请实施例中的各种实现方式或者方法可以是独立的实施例,也可以是与其他实施例结合,具体在此不做限定。
可选的,本申请实施例中的根据第一指示信息确定..….的方案,可以替换为根据CSI测量行为确定……的方案。比如,在CSI测量行为不需要第一指示信息指示即可确定的情况下,本申请实施例中的根据第一指示信息确定..….的方案,可以替换为根据CSI测量行为确定……的方案,根据CSI测量行为确定……的方案在此不予赘述。
举例来说,在本申请实施例中的描述“第一指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE时”,也可以替换为“CSI测量行为是基于FeCoMP的CSI测量和/或反馈,或基于多点协作传输的CSI测量和/或反馈,或者基于混合传输模式下的CSI测量和/或反馈时”。即“第一指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE时”,替换为“CSI测量行为是基于FeCoMP的CSI测量和/或反馈,或基于多点协作传输的CSI测量和/或反馈,或者基于混合传输模式下的CSI测量和/或反馈时”,本申请实施例也同样适用,具体不予赘述。
可选的,本申请实施例中所述的,“配置了FeCoMPCSIEnabled”,“FeCoMPCSIEnabled的取值为TRUE”,以及,“配置了FeCoMPCSIEnabled和cqi-ReportModeAperiodic”,这三者可以表示相同的条件,可以互相替换。
本申请实施例中所述的基于多点协作传输的CSI测量和/或反馈也适用于基于FeCoMP的CSI测量和/或反馈,或者也适用于基于混合传输模式下的CSI测量和/或反馈,或者也适用于基于非相干传输下的CSI测量和/或反馈,具体的,在此不做限定。
第一种实现方式(即方法1):根据第一指示信息确定CRI的比特数,和/或,RI的比特数。
作为一种示例,在第一种实现方式中,可以根据第一指示信息确定CRI的比特数和/或RI的比特数。
RI的比特数可根据第一指示信息确定。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
具体的,例如当第一指示信息指示使能FeCoMP的CSI反馈时,则RI的比特数固定(例如通过协议规定),不区分CRI=0,1,2,…,也不区分天线端口数和/或终端设备的能力。
所述终端设备的能力可以是指终端(终端设备的简称)最大支持的层数,或者终端最大支持的天线端口数,或者终端最大支持的传输速率,或终端支持的传输方式(比如开环,闭环,单小区,协作)等中的至少一项。
例如,针对配置了2个NZP CSI-RS资源为例,当第一指示信息指示使能FeCoMP的CSI反馈时,RI比特可以固定为4比特。当然其他的数值也可以,在此不做限定。
在本申请实施例中,基站(网络设备以基站为例进行描述)确定使能基于FeCoMP的CSI反馈时,发送第一指示信息,并确定该终端的RI比特数为4比特,即RI的比特数与第一指示信息相关。当终端接收到第一指示信息,即可以根据第一指示信息确定RI的比特数,比如RI的比特数为4比特。
基站确定不使能基于FeCoMP的CSI反馈时,不发送第一指示信息,并确定按照现有技术确定RI的比特数。当终端没有接收到第一指示信息时,则可以按照现有技术确定RI的比特数。现有技术确定RI的比特数比如为:RI的比特数与天线端口数和终端设备的能力相关。具体的,比如天线端口数为4,终端设备的能力可以支持最大4层的传输,则RI的比特数为2。
针对终端和基站的实施方式的描述,本实施例中其他部分也可参考。以下均以终端的实施方式为例进行描述。
下面介绍如何确定CRI的比特数和/或CRI的比特含义。其中,CRI的比特数和/或CRI的比特含义的确定可以是独立的实施例,也可以是与其他实施例结合,具体的在此不做限制。
确定方法A、CRI的比特数和/或CRI的比特含义根据第一指示信息确定。
具体的,终端根据第一指示信息确定CRI的比特数。和/或终端根据第一指示信息确定CRI的比特含义。
比如当终端接收到第一指示信息,使能基于FeCoMP下的CSI反馈,比如当第一指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,终端可以确定CRI的比特数,比如CRI的比特数为2比特(bit)。基站确定使能终端基于FeCoMP的CSI反馈时,发送第一指示信息,并确定该终端的CRI比特数为2比特。此处CRI的比特数为2bit仅是举例,其他的数值也可以,具体的,不做限定。
比如当终端接收到第一指示信息,使能基于FeCoMP下的CSI反馈,比如当第一指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,终端可以确定CRI的比特含义,比如CRI的比特数为2比特(bit)下的比特含义具体如下,比如00代表CRI=0,表明上报的CSI是基于第一个NZP CSI-RS资源测量得到;01代表CRI=1,表明上报的CSI是基于第二个NZP CSI-RS资源测量得到的;11代表上报的CSI是基于第一个NZP CSI-RS资源和第二个NZP CSI-RS资源测量得到的。基站确定使能基于FeCoMP的CSI反馈时,发送第一指示信息,并确定该终端的CRI比特数为2比特和/或CRI的比特含义。此处CRI的比特数为2bit仅是举例,其他的数值也可以,具体的,不做限定。
可选的,而当终端没有接收到第一指示信息,比如当第一指示信息没有配置FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为FALSE,则CRI的比特数可以是根据现有技术确定,比如根据配置的NZP CSI-RS的资源个数K确定,例如为
Figure PCTCN2018105094-appb-000026
其中,K为正整数,
Figure PCTCN2018105094-appb-000027
表示向上取整。
确定方法B、CRI的比特数和/或CRI的比特含义根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及第一指示 信息确定。
作为一种示例,CRI的比特数和/或CRI的比特含义可根据第一指示信息和配置的NZP CSI-RS的资源个数K确定。
具体的,当第一指示信息配置了FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE,CRI的比特数是根据配置的NZP CSI-RS的资源个数确定,例如,配置的NZP CSI-RS的资源个数为2,则CRI的比特数为2。而当第一指示信息没有配置FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为FALSE,CRI的比特数是根据配置的NZP CSI-RS的资源个数K确定,例如为
Figure PCTCN2018105094-appb-000028
例如配置的NZP CSI-RS的资源个数K为2,则CRI的比特数为1。
本申请实施例中,CRI的比特数和/或CRI的比特含义与配置的NZP CSI-RS的资源个数的关系可以包括如下的至少一种:
1、在基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈(可简称为CSI测量反馈)下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000029
例如配置了4个NZP CSI-RS的资源,在基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈(可简称为CSI测量反馈)下,可以包括在单小区场景下有4种情况,在多点协作传输场景或FeCoMP下从这4个NZP CSI-RS的资源中任意选择2个资源,即可以存在
Figure PCTCN2018105094-appb-000030
种情况,因此CRI总共需要指示
Figure PCTCN2018105094-appb-000031
种情况,即CRI的比特数可以为
Figure PCTCN2018105094-appb-000032
其中,K为NZP CSI-RS的资源个数。
比如K=4,则此时总共需要4个比特指示CRI的取值。此时CRI的比特含义可以为下面至少一项,以下以十进制表示CRI的取值,可以理解的是CRI的取值也可以采用二进制,八进制或是十六进制进行表示,本申请实施例中的取值均以一种进制进行举例,但并不限于所举的进制:
CRI=0,表示上报的CSI是基于第一个NZP CSI-RS资源测量得到的。
CRI=1,表示上报的CSI是基于第二个NZP CSI-RS资源测量得到的。
CRI=2,表示上报的CSI是基于第三个NZP CSI-RS资源测量得到的。
CRI=3,表示上报的CSI是基于第四个NZP CSI-RS资源测量得到的。
CRI=4,表示上报的CSI是基于第一个和第二个NZP CSI-RS资源测量得到的。
CRI=5,表示上报的CSI是基于第一个和第三个NZP CSI-RS资源测量得到的。
CRI=6,表示上报的CSI是基于第一个和第四个NZP CSI-RS资源测量得到的。
CRI=7,表示上报的CSI是基于第二个和第三个NZP CSI-RS资源测量得到的。
CRI=8,表示上报的CSI是基于第二个和第四个NZP CSI-RS资源测量得到的。
CRI=9,表示上报的CSI是基于第三个和第四个NZP CSI-RS资源测量得到的。
可以用4个比特指示CRI的取值,具体的比特映射可以是下表中的任意一项。
表X21:
Figure PCTCN2018105094-appb-000033
to CRI mapping
Figure PCTCN2018105094-appb-000034
此处的CRI的比特数的取值仅是举例,CRI的比特含义也仅是举例,表格中的bit值与CRI的取值的对应关系也仅是举例,其他的取值或者对应关系,并不限制。
上述实施例中,CRI的取值或比特含义指示了CSI反馈的含义。可选的,CSI反馈的含义可以通过另一信息,比如第一反馈信息,指示,即,第一反馈信息用于指示CSI反馈的含义。其中CSI反馈的含义可以是指多点协作传输下的CSI测量结果,单小区传输下的测量结果,或,FeCoMP下的CSI测量结果中的至少一项。或者CSI反馈的含义可以是指第一CSI,第二CSI,第三CSI,或,第四CSI中的至少一项。其中所述第一CSI是基于干扰功率获得的,所述第二CSI是基于当用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,所述第三CSI是基于干扰功率和用于信道测量的资源与用于干扰测量的资源相同时通过预设算法得到的干扰获得的,所述第四CSI是基于流间干扰或者码字间干扰获得的;
比如终端可以反馈第一反馈信息,该第一反馈信息用于指示CSI反馈的含义,通过该方法,基站可以通过接收第一反馈信息确定接收的CSI对应的CSI反馈的含义。所述实现方式可以是独立的实施例,也可以是与其他实施例结合,具体的,在此不做限定。
本申请实施例中,当终端接收到第一指示信息,第一指示信息指示使能基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈时,终端根据第一指示信息和NZP CSI-RS资源的个数确定CRI的比特数为 类似的,针对基站侧,基站确定使能终端基于FeCoMP的CSI反馈时,发送第一指示信息,并确定该终端的CRI比特数为
Figure PCTCN2018105094-appb-000036
其中,K为NZP CSI-RS的资源个数。
当终端没有接收到第一指示信息,即没有使能基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈时,比如当常规测量或进行单小区的测量反馈下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000037
其中,K为正整数,
Figure PCTCN2018105094-appb-000038
2、在基于多点协作传输(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量反馈下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000039
或者其他规定的比特数,或者按照其他规定的计算公式来计算,具体的,在此不做限定;
比如K=4,则此时总共需要3个比特指示CRI的取值。此时CRI的比特含义可以为下面至少一项,以下以十进制表示CRI的取值,可以理解的是CRI的取值也可以采用二进制,八进制或是十六进制进行表示,本申请实施例中的取值均以一种进制进行举例,但并不限于所举的进制:
CRI=0,表示上报的CSI是基于第一个NZP CSI-RS资源测量得到的。
CRI=1,表示上报的CSI是基于第二个NZP CSI-RS资源测量得到的。
CRI=2,表示上报的CSI是基于第三个NZP CSI-RS资源测量得到的。
CRI=3,表示上报的CSI是基于第四个NZP CSI-RS资源测量得到的。
CRI=4,表示上报的CSI是基于第一个和第二个NZP CSI-RS资源测量得到的。
CRI=5,表示上报的CSI是基于第一个和第三个NZP CSI-RS资源测量得到的。
CRI=6,表示上报的CSI是基于第一个和第四个NZP CSI-RS资源测量得到的。
可以用3个比特指示CRI的取值,具体的比特映射可以是下表中的任意一项。
表X21:
Figure PCTCN2018105094-appb-000040
to CRI mapping
Figure PCTCN2018105094-appb-000041
此处的CRI的比特数的取值仅是举例,CRI的比特含义也仅是举例,表格中的bit值与CRI的取值的对应关系也仅是举例,其他的取值或者对应关系,并不限制。
在常规测量如单小区的测量反馈下,NZP CSI-RS的资源个数为K时,CRI的比特数可以为
Figure PCTCN2018105094-appb-000042
下面以配置了2个NZP CSI-RS资源为例,举例说明根据NZP CSI-RS资源的个数和第一指示信息确定CRI的比特数和/或RI的比特数。
具体的,配置了2个NZP CSI-RS资源,且,第一指示信息指示了CSI测量反馈为使能基于FeCoMP下的CSI反馈时,可以确定RI的比特数为4bit,CRI的比特数是2bit。
取值在此仅是举例,其他的数值也可以,具体的,不做限制。
具体的,终端确定CSI测量行为是基于FeCoMP下CSI的测量可以是通过上述实施例中的方法确定,比如通过配置第一指示信息,第一指示信息用于使能基于FeCoMP的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能基于混合传输模式下的CSI反馈。例如第一指示信息为高层参数FeCoMPCSIEnabled,通过配置了高层参数FeCoMPCSIEnabled或者通过配置FeCoMPCSIEnabled=TRUE确定(即通过第一指示信息确定),下面的实施例以配置了高层参数FeCoMPCSIEnabled来具体说明,通过配置FeCoMPCSIEnabled=TRUE的方案 与之类似,具体的,在此不赘述。
可选的,针对现有的三种上报模式中的至少一种,即全带CQI上报(即上报全带的CQI)、高层配置的子带CQI上报(即上报高层配置的子带的CQI)、以及UE选择的子带CQI上报(即上报终端选择的子带的CQI)中的至少一种,可以分别定义各自的CRI和/或RI的反馈的比特数,或者也可以统一描述CRI和/或RI的反馈的比特数。统一描述和分别描述可以是指终端和/或基站可以针对不同的上报模式,保存映射关系,如一张映射表或映射序列或映射公式,也可以分别保存各自的映射关系,如映射表或映射序列或映射公式。
具体的,本申请实施例中的上报模式也可以是在NR(New Radio,新无线通信技术)或5G或未来研究系统中的上报模式,具体的,在此不做限定。
本申请实施例中,表格举例中以传输模式10为例,即使能基于FeCoMP的CSI测量和/或反馈仅适用于LTE系统中的传输模式10的终端,而不适用于LTE系统中的其他传输模式。本申请实施例中也适用于NR或者5G或未来通信系统中的传输模式,并不限制在传输模式10,此时传输模式10仅是举例,其他传输模式,在此不做限定。或者也可以适用于任意传输模式,即使能基于FeCoMP的CSI测量和/或反馈与传输模式无关。
举例来说,针对三种上报模式下的至少一种,统一描述的方式参考表5.2.2.6.3-3F中的至少一项:
当终端配置了传输模式10以及高层参数FeCoMPCSIEnabled,则CRI和RI联合反馈下的bit数如表5.2.2.6.3-3F所示。终端和/或基站可以仅保存一张映射表或映射序列或映射公式。
表(table)5.2.2.6.3-3F:CRI和RI联合反馈场景(Fields for joint CRI and RI feedback)(传输模式10和高层参数FeCoMPCSIEnabled(transmission mode 10and higher layer parameter FeCoMPCSIEnabled))
场景/域(Field) 比特宽度(Bit width)
CRI 2
Rank indication 4
根据表5.2.2.6.3-3F可知,当终端配置了高层参数FeCoMPCSIEnabled时,针对三种上报模式下的至少一种,CRI的比特数(也称为比特宽度)是2,RI的比特数是4。
举例来说,针对三种上报模式下的至少一种,分别描述的方式可以是如下至少一种:
终端根据上报模式,比如针对三种上报模式下的至少一种,针对不同的传输模式分别保持各自对应的映射关系,如映射表或映射序列或映射公式。
A、当终端配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对全带CQI上报时,CRI和RI(或者RI合并)反馈的比特数固定,可参考表5.2.2.6.1-2F:比如针对全带CQI上报,终端可以保存表5.2.2.6.1-2F,即当配置了全带CQI上报以及第一指示信息时,终端可以采用表5.2.2.6.1-2F中的CRI和RI的比特数。
表5.2.2.6.1-2F:全带CQI上报时的CRI和RI联合反馈场景(Fields for joint CRI and RI feedback for wideband CQI reports)(传输模式10和高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication 4
B、当终端配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上 报模式)时,针对高层配置的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数固定,可参考表5.2.2.6.2-3F1:比如针对高层配置的子带CQI上报,终端可以保存表5.2.2.6.2-3F1,即当配置了高层配置的子带CQI上报以及第一指示信息时,终端可以采用表5.2.2.6.2-3F1中的CRI和RI的比特数。
表5.2.2.6.2-3F1:高层配置的子带CQI上报时的CRI和RI联合反馈场景(Fields for joint CRI and RI feedback for higher layer configured subband CQI reports)(传输模式10和高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication 4
C、当终端配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对UE选择的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数固定,具体可参考5.2.2.6.3-3F2:比如针对UE选择的子带CQI上报,终端可以保存表5.2.2.6.3-3F2,即当配置了UE选择的子带CQI上报以及第一指示信息时,终端可以采用表5.2.2.6.3-3F2中的CRI和RI的比特数。
表5.2.2.6.3-3F2:UE选择的子带CQI上报时的CRI和RI联合反馈场景(Fields for joint CRI and RI feedback for UE selected subband CQI reports)(传输模式10和高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication 4
通过如上介绍的第一种实现方式,可以使得RI和CRI联合反馈和/或联合编码时,RI的比特数不依赖于CRI的取值,即可以保证CRI和RI的比特数是固定的,可以使得基站正确接收和/或解码CRI和RI。当然,因为RI的比特数是固定的,RI的比特数开销可能相对会较大。
第二种实现方式(即方法2):根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特数,和/或,RI的比特数。作为一种示例,可根据天线端口数和/或终端设备的能力信息,以及第一指示信息确定RI的比特数。在第二种实现方式下,RI比特数根据第一指示信息和天线端口数,和/或,终端设备的能力信息,确定,而不考虑CRI的取值,比如不区分CRI=0,1,2。
可选的,本申请实施例中的在方法1至4中,确定RI的比特数可以是指确定单RI上报时的RI的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
下面以配置了大于1个NZP CSI-RS资源为例,举例说明根据天线端口数和/或终端设备的能力信息,以及第一指示信息确定RI的比特数。
方法2.1:根据第一指示信息以及天线端口数是否为1确定RI的比特数。
在下面的介绍过程中,涉及到天线端口数时,只是区分天线端口数为1和天线端口数大于1的两种情况。
本申请中当配置了大于1个NZP CSI-RS资源时,如果没有特殊说明天线端口数是哪个 NZP CSI-RS资源时,此时的天线端口数可以是指配置的大于1个NZP CSI-RS资源所对应的天线端口数中的最大值。
比如,如果说天线端口数为1,则表明配置的大于1个NZP CSI-RS资源的天线端口数最大值为1,即每个NZP CSI-RS资源的天线端口数都为1。如果说天线端口数大于1,则表明配置的大于1个NZP CSI-RS资源中的天线端口数最大值为大于1,即至少一个NZP CSI-RS资源的天线端口数大于1。
具体的,天线端口数为1的情况下,不反馈RI,天线端口数大于1的情况下,规定RI的比特数的取值,比如为4比特。
即本申请实施例中终端根据第一指示信息和天线端口数为1,则可以确定不反馈RI,仅反馈CRI。终端根据第一指示信息和天线端口数大于1,则可以确定RI的比特数,比如为4bit。其中比特数的取值为4仅是举例,其他的数值也可以,具体的,在此不做限定。
举例如下:
可选的,针对现有的三种上报模式(全带CQI上报,高层配置的子带CQI上报,UE选择的子带CQI上报)中的至少一种,可以分别定义CRI和/或RI的反馈的比特数,也可以是统一描述CRI和/或RI的反馈的比特数。统一描述和分别描述可以是指终端设备和/或基站可以针对不同的上报模式,保存一张或者多种映射表或映射序列或映射公式,也可以分别保存各自的映射表或映射序列或映射公式。
具体的,本申请实施例中的上报模式也可以是在NR或5G或未来研究系统中的上报模式,具体的,在此不做限定。
可选的,本申请实施例中的表格在描述时是以仅在配置了CLASS B的CSI-RS资源下的条件下才适用使能基于FeCoMP的CSI测量和/或反馈来举例说明,即在配置了高层参数eMIMO-Type为CLASS B且配置了K>1个NZP CS-RS资源的情况下才会配置第一指示信息,或者更进一步的,在配置了高层参数eMIMO-Type为CLASS B且配置了2个NZP CS-RS资源的情况下才会配置第一指示信息。此条件仅是举例,使能基于FeCoMP的CSI测量和/或反馈的适用条件也可以是其他的条件,比如配置CLASS A的CSI-RS资源下也可以适用,具体的,在此不作限定。其中,CLASS B的NZP CSI-RS资源可以是指进行预编码或者波束赋形的NZP CSI-RS资源,即在发送CSI-RS之前对CSI-RS进行预编码或者波束赋形的操作,CLASS A的NZP CSI-RS资源可以是指不进行预编码或者波束赋形的NZP CSI-RS资源,即在发送CSI-RS之前不进行预编码或者波束赋形的操作。
可选的,本申请实施例中的表格在描述时是以仅在传输模式10下且配置了PMI/RI反馈的条件下来举例说明CRI的比特数,和/或,RI的比特数。此条件仅是举例,也可以是其他的条件,比如没有配置反馈PMI等,具体的,在此不作限定。
举例来说,统一描述的方式可参考表5.2.2.6.1-2F1和表5.2.2.6.1-2G1中的至少一项,其中表5.2.2.6.1-2F1为天线端口数大于1的情况,表5.2.2.6.1-2G1为天线端口数为1的情况:
比如终端针对配置了第一指示信息以及天线端口数大于1,可以采用表5.2.2.6.1-2F1中的至少一项确定CRI和RI的比特数,针对配置了第一指示信息以及天线端口数为1,可以采用表5.2.2.6.1-2G1中的至少一项确定CRI和RI的比特数。
表5.2.2.6.1-2F1:CRI和RI联合反馈的场景(Fields for joint CRI and RI feedback)(传输模式10下配置了PMI/RI上报以及高层参数增强的多输入多输出(enhanced multiple-inputmultiple-output,eMIMO)-类型(Type),且eMIMO-Type配置为‘CLASS B’, 配置了K>1个CSI-RS资源,至少一个CSI-RS资源中的天线端口数为大于1和高层参数FeCoMPCSIEnabled(transmission mode 10configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication 4
表5.2.2.6.1-2G1:CRI场景(Fields for CRI)(传输模式10下配置了PMI/RI上报以及高层参数eMIMO-Type,且eMIMO-Type配置为‘CLASS B’,配置了K>1个CRI-RS资源,每个CRI-RS资源中天线端口数为1和配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
在表5.2.2.6.1-2G1的场景下,不反馈RI,因此可认为RI的比特数为0。
上面介绍的是统一描述的方式,举例来说,针对三种上报模式下的至少一种,分别描述的方式可以是如下至少一种:
A、当配置了FeCoMPCSIEnabled(或,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对全带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,具体如下:
比如针对全带CQI上报下,终端可以保存2张表,比如表5.2.2.6.1-2F2和表5.2.2.6.1-2G2中的至少一项,即当配置了全带CQI上报以及配置了第一指示信息且天线端口数大于1时,终端可以采用表5.2.2.6.1-2F2中的CRI和RI的比特数;当配置了全带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.1-2G2中的CRI和RI的比特数。
表5.2.2.6.1-2F2:全带CQI上报时的CRI和RI联合反馈场景(Fields for joint CRI and RI feedback for wideband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且至少一个CSI-RS资源的天线端口数为大于1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication 4
表5.2.2.6.1-2G2:全带CQI上报时的CRI反馈场景(Fields for CRI feedback for wideband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and  higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
B、当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对高层配置的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,具体如下:
比如针对高层配置的子带CQI上报,终端可以保存表5.2.2.6.2-3F1和表5.2.2.6.2-3G1中的至少一项,即当配置了高层配置的子带CQI上报以及第一指示信息且天线端口数为大于1时,终端可以采用表5.2.2.6.2-3F1中的CRI和RI的比特数;当配置了高层配置的子带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.2-3G1中的CRI和RI的比特数。
表5.2.2.6.2-3F1:高层配置的子带CQI上报时的CRI和RI联合反馈场景(Fields for joint CRI and RI feedback for higher layer configured subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且至少一个CSI-RS资源的天线端口数为大于1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication 4
表5.2.2.6.2-3G1:高层配置的子带CQI上报时的CRI反馈场景(Fields for CRI feedback for higher layer configured subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
C、当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对UE选择的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,具体如下:
比如针对UE选择的子带CQI上报,终端可以保存表5.2.2.6.3-3F2和表5.2.2.6.3-3G2中的至少一项,即当配置了UE选择的子带CQI上报以及第一指示信息且天线端口数为大于1时,终端可以采用表5.2.2.6.3-3F2中的CRI和RI的比特数;当配置了UE选择的子带CQI上报以及 配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.3-3G2中的CRI和RI的比特数。
表5.2.2.6.3-3F2:UE选择的子带CQI上报时的CRI和RI联合反馈场景(Fields for joint CRI and RI feedback for UE selected subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且至少一个CSI-RS资源的天线端口数为大于1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication 4
表5.2.2.6.3-3G2:UE选择的子带CQI上报时的CRI反馈场景(Fields for CRI feedback for UE selected subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
通过上述实现方式,可以针对天线端口数为1和天线端口数大于1两种情况分别确定RI的比特数,可以降低RI的比特开销,提高性能。
下面的实施例用于介绍RI的比特含义的确定方法,本申请实施例可以是独立的实施例,也可以是与其他实施例结合,具体的,在此不作限定。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
可选的,关于第二种实现方式,还提供更为详细的方案。
方法2.2:根据NZP CSI-RS资源的天线端口数和终端设备的能力信息(简称终端设备的能力)中的至少一项以及第一指示信息确定RI的比特数。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的RI的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
本实施例可以独立实施,也可以是跟其他实施例结合应用,具体的,在此不作限定。
具体的,例如NZP CSI-RS资源的天线端口数为1的情况下,不反馈RI;NZP CSI-RS资源的天线端口数大于1的情况下,可以根据天线端口数和终端设备的能力中的至少一项以 及第一指示信息确定RI的比特数,例如天线端口数为2和/或终端设备的能力为支持最大层数为2层(layer)的情况下且配置了第一指示信息,则RI的比特数为2,或者NZP CSI-RS资源的天线端口数为4和/或终端设备的能力为支持最大层数为4层的情况下,且配置了第一指示信息,则RI的比特数为4。
可选的,本申请实施例中在配置了多个CSI-RS资源的情况下,在确定RI的比特数时,根据的NZP CSI-RS资源的天线端口数可以是指配置的NZP CSI-RS资源所对应的天线端口数中的最大值。例如配置了2个NZP CSI-RS资源,其中一个NZP CSI-RS资源的天线端口数为2,另一个NZP CSI-RS资源的天线端口数为4,则RI的比特数是根据天线端口数是4确定的。其中,资源所对应的天线端口数可以理解为传输该资源所采用的天线端口的数量。
可选的,针对现有的三种上报模式(全带CQI上报,高层配置的子带CQI上报,UE选择的子带CQI上报)中的至少一项,可以分别定义CRI和/RI的反馈的比特数,也可以是统一描述CRI和/或RI的反馈的比特数。统一描述可以是指终端和/或基站可以针对不同的上报模式,保存一张或者多种映射表或映射序列或映射公式,分别描述可以是指终端和/或基站可以针对不同的上报模式,分别保存与上报模式相对应的的映射关系,如映射表或映射序列或映射公式。
具体的,本申请实施例中的上报模式也可以是在NR或5G或未来研究系统中的上报模式,具体的,在此不做限定。
举例来说,统一描述的方式可包括表5.2.2.6.3-3F3和表5.2.2.6.3-3G3中的至少一项,其中表5.2.2.6.3-3F3为天线端口数大于1的情况,表5.2.2.6.1-2G1为天线端口数为1的情况:
比如终端针对配置了第一指示信息以及天线端口数大于1,保存表5.2.2.6.3-3F3中的至少一项,针对配置了第一指示信息以及天线端口数为1,保存表5.2.2.6.3-3G3中的至少一项。终端总共可以保存2张表。
表5.2.2.6.3-3F3:CRI和RI/RI合并联合反馈场景(Fields for joint CRI and RI/RI Combination feedback)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且至少一个CSI-RS资源的天线端口数为大于1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000043
根据表5.2.2.6.3-3F3可知,例如天线端口数为2时,CRI的比特数为2,RI的比特数也为2。或者天线端口数为4,且终端设备的能力为支持最大层数为4层时,CRI的比特数为2,RI的比特数为4。
表5.2.2.6.3-3G3:CRI反馈场景(Fields for CRI feedback)(传输模式10配置了PMI/RI上 报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
表5.2.2.6.3-3G3表示天线端口数为1的情况,不反馈RI,可以认为RI的比特数为0。
如上介绍的是三种上报模式中的至少一种的统一描述的方式,分别描述的方式可以是如下至少一种,举例如下,:
A、当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对全带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,可以包括表5.2.2.6.3-3F4和表5.2.2.6.3-3G4中的至少一项:
比如针对全带CQI上报下,终端可以保存2张表,比如表5.2.2.6.3-3F4和表5.2.2.6.3-3G4中的至少一项,即当配置了全带CQI上报以及配置了第一指示信息且天线端口数大于1时,终端可以采用表5.2.2.6.3-3F4中的CRI和RI的比特数;当配置了全带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.3-3G4中的CRI和RI的比特数。表5.2.2.6.3-3F4:全带CQI上报时的CRI和RI/RI合并联合反馈场景(Fields for joint CRI and RI/RI Combination feedback for wideband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且至少一个CSI-RS资源的天线端口数为大于1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000044
表5.2.2.6.3-3F4中,凡是RI的比特数为2,可以替换为3或是增加为3的描述,获得另一对应关系。例如天线端口数是2的情况下,CRI的比特数为2,RI的比特数可以是2或3,同理,天线端口数是4的情况下,终端设备的能力为最大支持的层数为1层或2层,则RI的比特数可以是2或3,等等。具体的是取值为2还是3,可以是协议预定义的,也可以是基站通知终端的,具体的,在此不作限定。
表5.2.2.6.3-3G4:全带CQI上报时的CRI反馈场景(Fields for CRI feedback for wideband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
B、当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对高层配置的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,可包括表5.2.2.6.2-3F5和表5.2.2.6.3-3G5中的至少一项:
比如针对高层配置的子带CQI上报,终端可以保存表5.2.2.6.2-3F5和表5.2.2.6.3-3G5中的至少一项,即当配置了高层配置的子带CQI上报以及第一指示信息且天线端口数为大于1时,终端可以采用表5.2.2.6.2-3F5中的CRI和RI的比特数;当配置了高层配置的子带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.3-3G5中的CRI和RI的比特数。表5.2.2.6.2-3F5:高层配置的子带CQI上报时的CRI和RI/RI合并联合反馈场景(Fields for joint CRI and RI/RI Combination feedback for higher layer configured subband CQI reports)传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且至少一个CSI-RS资源的天线端口数为大于1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000045
表5.2.2.6.3-3G5:高层配置的子带CQI上报时的CRI反馈场景(Fields for CRI feedback for higher layer configured subband CQI reports)传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
C、当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对UE选择的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,可以包括表5.2.2.6.3-3F6和表5.2.2.6.3-3G6中的至少一项:
比如针对UE选择的子带CQI上报,终端可以保存表5.2.2.6.3-3F6和表5.2.2.6.3-3G6中的至少一项,即当配置了UE选择的子带CQI上报以及第一指示信息且天线端口数为大于1时,终端可以采用表5.2.2.6.3-3F6中的CRI和RI的比特数;当配置了UE选择的子带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.3-3G6中的CRI和RI的比特数。
表5.2.2.6.3-3F6:UE选择的子带CQI上报时的CRI和RI/RI合并联合反馈场景(Fields for joint CRI and RI/RI Combination feedback for UE selected subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且至少一个CSI-RS资源的天线端口数为大于1,并且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and more than one ports for at least one CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000046
可选的,表5.2.2.6.3-3F6中,RI的比特数为2,可以替换为3,或是新增为3的描述,获得另一对应关系。例如天线端口数是2的情况下,CRI的比特数为2,RI的比特数可以是2或3,同理,天线端口数是8的情况下,终端设备的能力为最大支持1层或2层,则RI的比特数可以是2或3,等等。具体的是取值为2还是3,可以是协议预定义的,也可以是基站通知终端的,具体的,在此不作限定。
表5.2.2.6.3-3G6:UE选择的子带CQI上报时的CRI反馈场景(Fields for CRI feedback for UE selected subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled((transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
第三种实现方式(即方法3):根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI 的比特数,和/或,RI的比特数。作为一种示例,可根据NZP CSI-RS的天线端口数和/或终端设备的能力信息,第一指示信息,以及CRI的取值,确定RI的比特数,即,此时会区分CRI的取值。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的RI的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
下面以配置了2个NZP CSI-RS资源为例,举例说明根据NZP CSI-RS的天线端口数和/或终端设备的能力信息,第一指示信息,以及CRI的取值,确定RI的比特数。此时CRI的比特数为2。
可选的,在配置了多个NZP CSI-RS资源的情况下,确定RI的天线端口数可以是指配置的NZP CSI-RS资源中的最大的天线端口数。
可选的,针对现有的三种上报模式(全带CQI上报,高层配置的子带CQI上报,UE选择的子带CQI上报)中的至少一种,可以分别定义各自的CRI和/RI的反馈的比特数,或者也可以是统一描述CRI和/或RI的反馈的比特数。统一描述可以是指终端和/或基站可以针对不同的上报模式,保存一张或多张映射表或映射序列或映射公式,分别描述可以是指终端和/或基站分别保存对应不同上报模式的映射关系,如映射表或映射序列或映射公式。
具体的,本申请实施例中的上报模式也可以是在NR或5G或未来研究系统中的上报模式,具体的,在此不做限定。
可选的,本申请实施例中的表格在描述时是以仅在传输模式10下且配置了PMI/RI反馈的条件下来举例说明CRI的比特数,和/或,RI的比特数。此条件仅是举例,也可以是其他的条件,比如没有配置反馈PMI等,具体的,在此不作限定。
举例来说,针对三种上报模式下的至少一种,统一描述的方式可包括表5.2.2.6.1-2F3和表5.2.2.6.3-3G7中的至少一项:其中表5.2.2.6.1-2F3为天线端口数大于1的情况,表5.2.2.6.1-3G7为天线端口数为1的情况:
比如终端针对配置了第一指示信息以及天线端口数大于1,可以采用表5.2.2.6.1-2F3中的至少一项确定CRI和RI的比特数,针对配置了第一指示信息以及天线端口数为1,可以采用表5.2.2.6.1-3G7中的至少一项确定CRI和RI的比特数。比如终端可以保存2张表中的至少一项。
表5.2.2.6.1-2F3:CRI和RI反馈场景(Fields for CRI and RI feedback)(传输模式10以及配置了高层参数FeCoMPCSIEnabled transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000047
根据表5.2.2.6.1-2F3可知,例如天线端口数为2时,CRI的比特数为2,当CRI=0或1时,RI的比特数为1,当CRI=2时,RI的比特数为2。或者天线端口数为4,且终端设备的能力为 支持最大层数为4层时,CRI的比特数为2,当CRI=0或1时,RI的比特数为2,当CRI=2时,RI的比特数为4。
表5.2.2.6.3-3G7:CRI反馈场景(Fields for CRI feedback)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled((transmission mode 10 configured with PMI/RI reporting and higher layer parametereMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
表5.2.2.6.3-3G7表示天线端口数为1的情况,不反馈RI,可以认为RI的比特数为0。
如上介绍的是三种上报模式中的至少一种的统一描述的方式,下面介绍分别描述的方式可以是如下至少一种,举例如下:
A、当配置了FeCoMPCSIEnabled(和非周期上报模式)时,针对全带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,可包括表5.2.2.6.1-2F4中的至少一项:
比如针对全带CQI上报下,终端可以保存表5.2.2.6.1-2F4和表5.2.2.6.3-3G7-1中的至少一项,即当配置了全带CQI上报以及配置了第一指示信息且天线端口数大于1时,终端可以采用表5.2.2.6.1-2F4中的CRI和RI的比特数;当配置了全带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.3-3G7-1中的CRI和RI的比特数。
表5.2.2.6.1-2F4:全带CQI上报时的CRI和RI反馈场景(Fields for CRI and RI feedback for wideband CQI reports)(传输模式10以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000048
根据表5.2.2.6.1-2F4可知,例如天线端口数为2时,CRI的比特数为2,当CRI=0或1时,RI的比特数为1,当CRI=2时,RI的比特数为2。或者天线端口数为4,且终端设备的能力为支持最大层数为4层时,CRI的比特数为2,当CRI=0或1时,RI的比特数为2,当CRI=2时,RI的比特数为4。
表5.2.2.6.3-3G7-1:全带CQI上报时的CRI反馈场景(Fields for CRI feedback for wideband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled((transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
表5.2.2.6.3-3G7-1表示天线端口数为1的情况,不反馈RI,可以认为RI的比特数为0。
在上述表格中,例如天线端口数是2,则当CRI的取值为0或1时,RI的取值为1或2,即可用1个比特指示RI。当CRI的取值为2时,RI的取值或RI合并的取值为{1,1},{1,2},{2,1},{2,2}。可以用2个bit指示RI。
例如天线端口数为4,且终端设备的能力为支持的最大层数为4层,则当CRI的取值为CRI=0或1时,RI的取值为1,2,3,4,即可用2个比特指示RI(RI的比特数为2)。当CRI的取值为2时,RI的取值或RI合并的取值为{1,1},{1,2},{2,1},{2,2},{2,3},{3,2},{3,3},{3,4},{4,3},{4,4}。可以用4个bit指示RI(RI的比特数为4)。
B、当配置了FeCoMPCSIEnabled(和非周期上报模式)时,针对高层配置的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,可包括表5.2.2.6.2-3F2中的至少一项:
比如针对高层配置的子带CQI上报,终端可以保存表5.2.2.6.2-3F2和表5.2.2.6.3-3G7-2中的至少一项,即当配置了高层配置的子带CQI上报以及第一指示信息且天线端口数为大于1时,终端可以采用表5.2.2.6.2-3F2中的CRI和RI的比特数;当配置了高层配置的子带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.2-3G7-2中的CRI和RI的比特数。表5.2.2.6.2-3F2:高层配置的子带CQI上报时的CRI和RI反馈场景(Fields for CRI and RI feedback for higher layer configured subband CQI reports)(传输模式10以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000049
根据表5.2.2.6.2-3F2可知,例如天线端口数为2时,CRI的比特数为2,当CRI=0或1时,RI的比特数为1,当CRI=2时,RI的比特数为2。或者天线端口数为4,且终端设备的能力为支持最大层数为4层时,CRI的比特数为2,当CRI=0或1时,RI的比特数为2,当CRI=2时,RI的比特数为4。
表5.2.2.6.3-3G7-2:高层配置的子带CQI上报时的CRI反馈场景(Fields for CRI feedback for higher layer configured subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为1,并且配置了高层参数FeCoMPCSIEnabled((transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
表5.2.2.6.3-3G7-2表示天线端口数为1的情况,不反馈RI,可以认为RI的比特数为0。
C、当配置了FeCoMPCSIEnabled(和非周期上报模式)时,针对UE选择的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数,可包括表5.2.2.6.3-3F7和表5.2.2.6.3-3G7-3中的至少一项:
比如针对UE选择的子带CQI上报下,终端可以保存表5.2.2.6.3-3F7和表5.2.2.6.3-3G7-3中的至少一项,即当配置了UE选择的子带CQI上报以及配置了第一指示信息且天线端口数大于1时,终端可以采用表5.2.2.6.3-3F7中的CRI和RI的比特数;当配置了UE选择的子带CQI上报以及配置了第一指示信息且天线端口数为1时,终端可以采用表5.2.2.6.3-3G7-3中的CRI和RI的比特数。
表5.2.2.6.3-3F7:UE选择的子带CQI上报时的CRI和RI反馈场景(Fields for CRI and RIfeedback for UE selected subband CQI reports)(传输模式10以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000050
根据表5.2.2.6.3-3F7可知,例如天线端口数为2时,CRI的比特数为2,当CRI=0或1时,RI的比特数为1,当CRI=2时,RI的比特数为2。或者天线端口数为4,且终端设备的能力为支持最大层数为4层时,CRI的比特数为2,当CRI=0或1时,RI的比特数为2,当CRI=2时,RI的比特数为4。
表5.2.2.6.3-3G7-3:高层配置的子带CQI上报时的CRI反馈场景(Fields for CRI feedbackfor higher layer configured subband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了K>1个CSI-RS资源,且每个CSI-RS资源的天线端口数为一个天线端口,并且配置了高层参数FeCoMPCSIEnabled((transmissionmode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,andeMIMO-Type is set to‘CLASS B’with K>1 CSI-RS resources and one port for each CSI-RSresource and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
表5.2.2.6.3-3G7-3表示天线端口数为1的情况,不反馈RI,可以认为RI的比特数为0。
第四种实现方式(即方法4):根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特数,或,RI的比特数的至少一项。作为一种示例,可根据第一指示信息和CRI的取值确定RI的比特数。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时RI的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
下面以配置了2个NZP CSI-RS资源为例,举例说明如何根据第一指示信息和CRI的取值 确定RI的比特数,此时CRI的比特数为2。
可选的,针对现有的三种上报模式(全带CQI上报,高层配置的子带CQI上报,UE选择的子带CQI上报)中的至少一种,可以分别定义各自的CRI和/RI的反馈的比特数,也可以是统一描述CRI和/或RI的反馈的比特数。统一描述和分别描述可以是指终端和/或基站可以针对不同的上报模式,保存一张或多张映射表或映射序列或映射公式,也可以分别保存各自的映射表或映射序列或映射公式。
具体的,本申请实施例中的上报模式也可以是在NR或5G或未来研究系统中的上报模式,具体的,在此不做限定。
本申请实施例中,表格举例中以传输模式10为例,即使能基于FeCoMP的CSI测量和/或反馈仅适用于LTE系统中的传输模式10的终端,而不适用于LTE系统中的其他传输模式。本申请实施例中也适用于NR或者5G或未来通信系统中的传输模式,并不限制在传输模式10,此时传输模式10仅是举例,其他传输模式,在此不做限定。或者也可以适用于任意传输模式,即使能基于FeCoMP的CSI测量和/或反馈与传输模式无关。
举例来说,针对三种上报模式下的至少一种,统一描述的方式包括表5.2.2.6.1-2F5中的至少一项:
当终端配置了传输模式10以及高层参数FeCoMPCSIEnabled,则CRI和RI反馈下的bit数如表5.2.2.6.3-3F所示。终端可以仅保存一张映射表或映射序列或映射公式。
表5.2.2.6.1-2F5:CRI和RI反馈场景(Fields for CRI and RI feedback)(传输模式10以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication for CRI=0,1 3
Rank indication for CRI=2 4
根据表5.2.2.6.1-2F5可知,当终端配置了高层参数FeCoMPCSIEnabled时,针对三种上报模式下的至少一种,CRI的比特数(也称为比特宽度)是2比特,当CRI=0or 1时,RI的比特数是3比特;当CRI=2时,RI的比特数为4比特。其中CRI的取值以及RI的比特数取值在此仅是举例,也可以是其他的数值,具体的,在此不作限定。
举例来说,针对三种上报模式下的至少一种,分别描述的方式可以是如下至少一种:
A、当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,针对全带CQI上报时,CRI和RI(或者RI合并)反馈的比特数固定,可包括表5.2.2.6.1-2F6中的至少一项:比如针对全带CQI上报,终端可以保存表5.2.2.6.1-2F6,即当配置了全带CQI上报以及第一指示信息时,终端可以采用表5.2.2.6.1-2F6中的CRI和RI的比特数。
表5.2.2.6.1-2F6:全带CQI上报时的CRI和RI反馈场景(Fields for CRI and RI feedback for wideband CQI reports)(传输模式10以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication for CRI=0,1 3
Rank indication for CRI=2 4
根据表5.2.2.6.1-2F6可知,当终端配置了高层参数FeCoMPCSIEnabled时,针对全带CQI上报模式,CRI的比特数(也称为比特宽度或比特长度)是2比特,当CRI=0或1时,RI的比特 数是3比特;当CRI=2时,RI的比特数为4比特。其中CRI的取值以及RI的比特数取值在此仅是举例,也可以是其他的数值,具体的,在此不作限定。
B、当配置了FeCoMPCSIEnabled(和非周期上报模式)时,针对子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数固定,可包括表5.2.2.6.2-3F3中的至少一项:比如针对高层配置的子带CQI上报,终端可以保存表5.2.2.6.2-3F3,即当配置了高层配置的子带CQI上报以及第一指示信息时,终端可以采用表5.2.2.6.2-3F3中的CRI和RI的比特数。
表5.2.2.6.2-3F3:高层配置的子带CQI上报时的CRI和RI反馈场景(Fields for CRI and RI feedback for higher layer configured subband CQI reports)(传输模式10以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
Rank indication for CRI=0,1 3
Rank indication for CRI=2 4
根据表5.2.2.6.2-3F3可知,当终端配置了高层参数FeCoMPCSIEnabled时,针对高层配置的子带CQI上报模式,CRI的比特数(也称为比特宽度)是2比特,当CRI=0或1时,RI的比特数是3比特;当CRI=2时,RI的比特数为4比特。其中CRI的取值以及RI的比特数取值在此仅是举例,也可以是其他的数值,具体的,在此不作限定。
C、当配置了FeCoMPCSIEnabled(和非周期上报模式)时,针对UE选择的子带CQI上报时,CRI和RI(或者RI合并)反馈的比特数固定,可包括表5.2.2.6.3-3F8中的至少一项:比如针对UE选择的子带CQI上报,终端可以保存表5.2.2.6.3-3F8,即当配置了UE选择的子带CQI上报以及第一指示信息时,终端可以采用表5.2.2.6.3-3F8中的CRI和RI的比特数。
表5.2.2.6.3-3F8:UE选择的子带CQI上报时的CRI和RI反馈场景(Fields for CRI and RI feedback for UE selected subband CQI reports)(传输模式10以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 and higher layer parameter FeCoMPCSIEnabled))
Field Bit width
CRI 2
RI indication for CRI=0,1 3
RI indication for CRI=2 4
根据表5.2.2.6.3-3F8可知,当终端配置了高层参数FeCoMPCSIEnabled时,针对高层配置的子带CQI上报模式,CRI的比特数(也称为比特宽度)是2比特,当CRI=0 or 1时,RI的比特数是3比特;当CRI=2时,RI的比特数为4比特。其中CRI的取值以及RI的比特数取值在此仅是举例,也可以是其他的数值,具体的,在此不作限定。
如前的实现方式中,是CRI和RI联合编码,或,CRI和RI独立编码。
下面提供第五种实现方式,在这种实现方式中,如果CSI包括至少2个RI,则CRI和其中的至少一个RI联合编码,而剩余的RI不与CRI联合编码。
本实施例可以是独立的实施例,也可以是与其他实施例结合,具体的在此不做限定。
本申请实施例,根据第一指示信息确定CSI反馈相关信息,CSI反馈相关信息包括对CRI和RI的编码方式,在第五种实现方式下,对CRI和RI的编码方式为CSI包括至少两个RI,CRI和所述RI中的至少一个RI联合编码,剩余的RI独立编码。
可选的,CSI包括至少两个RI,CRI和所述RI中的至少一个RI联合编码,剩余的RI独立编码可以是指CRI和所述RI中的一个RI联合编码,其余的RI独立变化,也可以是指CRI和所述RI中的两个RI联合编码,其余的RI独立变化。其他的情况也适用,在此不作限定。
进一步可选的,本申请实施例针对剩余的RI,可以是根据CRI的取值确定是否存在除至少一个RI(即与CRI联合编码的RI)之外的其余RI。
具体的,以配置了2个NZP CSI-RS资源为例,即CRI为2比特为例,举例说明如何根据CRI的取值确定是否存在除至少一个RI之外的其余RI。
配置了2个NZP CSI-RS资源,此时CRI的含义可以如下所示:
CRI=0代表基于第一个NZP CSI-RS资源下的CSI测量和反馈;
CRI=1代表基于第二个NZP CSI-RS资源下的CSI测量和反馈;
CRI=2代表基于第一个NZP CSI-RS资源和第二个NZP CSI-RS下的CSI测量和反馈。
当CRI=0或1时,可以是现有技术下的CSI测量和反馈,例如反馈一组CSI,其中CSI可以包括RI、PMI、及CQI中的至少一项。
当CRI=2时,需要反馈两组CSI,第一组CSI可以是对应第一个NZP CSI-RS资源下的CSI,第二组CSI可以是对应第二个NZP CSI-RS资源下的CSI。
可选的,第一组CSI对应第一个码字(例如码字0)的CSI,第二组CSI对应第二个码字的CSI。
可选的,每组CSI中可以包括RI、PMI、及CQI中的至少一项。
可选的,在CRI=2的时候,在计算CQI时需要考虑两个NZP CSI-RS资源下的流间干扰或者码字间干扰。
具体的,根据CRI的取值确定是否存在除至少一个RI之外的其余RI,举例如下:
例如,当CRI=0或1时,仅存在至少一个RI,至少一个RI是根据CRI的取值对应的NZP CSI-RS资源进行测量得到的RI。当CRI=2时,还存在除至少一个RI之外的剩余的RI。
此时网络设备和/或终端设备可以根据CRI的取值接收RI,包括是否接收除至少一个RI之外的剩余的RI。
进一步可选的,还可以根据CRI的取值确定除至少一个RI之外的剩余RI的个数,其中,剩余的RI的个数可以是大于等于0的整数,例如0个,1个,2个等等,具体的在此不做限定。
本申请实施例中,当RI的个数为2个或者RI反馈为合并RI反馈时,则此时,至少一个RI是对应第一个NZP CSI-RS资源进行测量得到的RI,剩余的RI为对应第二个NZP CSI-RS资源进行测量得到的RI。或者也可以说至少一个RI是对应第一个码字的CSI的RI,剩余的RI是对应第二个码字的CSI。或者也可以说至少一个RI是对应第一组CSI的RI,剩余的RI是对应第二组CSI的RI。
相应的,确定CRI的比特数和/或RI的比特数的第五种实现方式(即方法5)可以为:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特数和/或RI的比特数。
对于基于多点协作传输模式(或基于FeCoMP或基于混合传输模式或基于非相关传输模式)下的CSI测量和/或反馈的CSI中的CRI和至少一个RI联合编码,根据CRI的取值可以确定是否有剩余的RI。可选的,如果存在剩余的RI,则剩余的RI不与CRI联合编码。
举例来说,如果反馈/接收到的CRI=0或1,则确定此时没有剩余的RI,而如果反馈/接收到的CRI=2,则确定有剩余的RI。
本申请实施例中,CRI和至少一个RI联合编码时,RI的比特数的确定方法包括如下至少一种:
可选的,RI的比特数可以是指和CRI联合编码的RI的比特数。
具体的,比如当CRI取值为0时,可以对应第一个NZP CSI-RS资源的RI;当CRI取值为1时,可以对应第二个NZP CSI-RS资源的RI;当CRI取值为2时,可以对应第一个NZP CSI-RS资源的RI。
具体的,可以通过以下方法A-G进行确定。
方法A:RI的比特数可以是根据两个NZP CSI-RS资源的最大的天线端口数和/或终端设备的能力信息确定。例如可以采用现有技术中方案确定RI的比特数,其他的方式也不做限制,在此不再赘述。
而如果两个NZP CSI-RS资源中最大的天线端口数为1,则不需要反馈RI。
方法B:RI的比特数可以根据第一指示信息确定。比如当终端接收到该第一指示信息,根据第一指示信息可以确定RI的比特数是固定的,例如固定为3。RI的取值范围可以为[1,8]。例如固定为2比特,RI的取值范围为[1,4]。具体的取值在此仅是举例,取值可以是协议预定义的,或基站通知终端的,具体的,在此不做限定。
本申请实施例中,独立编码的RI的比特数的确定方法可包括如下至少一种:
可选的,独立编码的RI的比特数可以是指第二个NZP CSI-RS资源对应的RI的比特数,或者也可以是指多个RI中第二个RI的比特数,或者也可以是指RI合并中的第二个RI的比特数。其中,独立编码的含义在其他部分已给出了相应解释,在此不予赘述。
方法C:根据两个NZP CSI-RS资源对应的天线端口数中的的最大值和/或终端设备的能力信息确定。
方法D:根据第二个NZP CSI-RS资源(即,与剩余的RI对应的NZP CSI-RS资源)的天线端口数确定。
方法E:RI的比特数可以是根据第一指示信息确定。比如当终端接收到该第一指示信息,根据第一指示信息可以确定RI的比特数固定,例如固定为2比特。
可选的,针对基于协作多点传输或基于FeCoMP或基于混合传输模式下CSI测量和/或反馈时,当反馈两个RI时,两个RI的合并的组合是有限制的,一种限制例如为:{RI1,RI2}={1,1},{1,2},{2,1},{2,2},{2,3},{3,2},{3,3},{3,4},{4,3},{4,4}
即,两个RI的取值相等或者相差1,因此可以用2个比特表示3种状态,例如状态0表示至少一个RI中每个RI的取值和剩余的RI的取值相等,即差值为0;状态1表示剩余的RI的取值比至少一个RI的取值小1,即差值为-1;状态2表示剩余的RI的取值比至少一个RI的取值大1,即差值为1。例如,比特00代表状态0,比特01代表状态1,比特10代表状态2。当然,这里的状态含义和状态编号仅是举例,可以有其他的对应关系。比特含义和状态的对应方式也仅是举例,也可以有其他的对应关系。此时,可以用2个bit指示独立编码的RI的比特。可选的,2比特的比特含义可以如下表所示的至少一项:
表5.2.2.6-6A1-3:
Figure PCTCN2018105094-appb-000051
to RI mapping
Figure PCTCN2018105094-appb-000052
根据表格中所示的可以反馈ΔRI的取值。如果ΔRI=0,表明第二个RI与第一个RI的取值相等,如果ΔRI=-1,表明第二个RI的取值比第一个RI的取值小1,比如如果第一 个RI的取值为2,则根据第一个RI的取值以及ΔRI取值可以确定第二个RI的取值为1。相等,如果ΔRI=1,表明第二个RI的取值比第一个RI的取值大1,比如如果第一个RI的取值为2,则根据第一个RI的取值以及ΔRI取值可以确定第二个RI的取值为3。其中,本申请实施例中的表格的取值仅是举例,bit取值和反馈变量取值的对应关系也仅是举例,其他的取值或对应关系也可以,具体的,在此不做限定。
方法F:根据第二个NZP CSI-RS资源的天线端口数以及RI的比特数最大为2比特的规则来确定,即2比特和根据第二个NZP CSI-RS资源的天线端口数确定的RI的比特数中取较大值。
方法G:RI的比特数固定,例如固定为3比特。RI的取值范围可以为[1,8]。
前面提到了多个RI,即,涉及了RI的顺序。例如,如果确定反馈2个RI,则可以由协议预定义RI的顺序,或者由网络设备配置RI的顺序。
例如,预定义的RI的顺序为至少一个RI对应第一个NZP CSI-RS资源,剩余的RI对应第二个NZP CSI-RS资源,或者根据NZP CSI-RS资源的标识或者资源集合的标识确定。
RI的比特含义的确定
本实施例提供一种RI的比特含义的确定方法,该方法可以与前述第一种实现方式(方法1)或第二种实现方式(方法2)中的方法2.1或第四种实现方式(方法4)中RI比特数的确定方法相结合。RI的比特映射,即RI的比特含义的确定方式可以包括如下实现方式中的一种。
实现方式1(或称为方法1.1)、根据第一指示信息确定RI的比特含义。
本申请实施例中,当终端接收到第一指示信息,即可根据第一指示信息确定RI的比特含义,比如具体的比特含义可以如表5.2.2.6-8-1中的至少一项。
当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,RI(或者RI合并)反馈的比特含义可包括表5.2.2.6-8-1中的至少一项:
表5.2.2.6-8-1:
Figure PCTCN2018105094-appb-000053
进行RI映射(to RI mapping)
Figure PCTCN2018105094-appb-000054
其中,表5.2.2.6-8-1是以RI的比特数为4为例,
Figure PCTCN2018105094-appb-000055
Figure PCTCN2018105094-appb-000056
代表RI的4个比特。例如,RI的4个比特为0000时,对应1个RI,且该RI的取值为1,或者例如,RI的4个比特为1000时,对应2个RI或1个RI合并,这2个RI的取值分别为2和1,或,1个RI合并的取值为{2,1}, 即RI1=2,RI2=1。其他的RI的比特数的情况类似,具体的,在此不做限定。
实现方式2(或称为方法1.2)、根据第一指示信息和CRI的取值确定RI的比特含义。
当第一指示信息配置为FeCoMPCSIEnabled或FeCoMPCSIEnabled的取值为TRUE时,RI的比特数可以确定,比如为4比特。
鉴于此,实现方式2(即方法1.2)也可以理解为:根据RI的比特数和CRI的取值确定RI的比特含义。也就是说,根据第一指示信息和CRI的取值确定RI的比特含义包括:根据第一指示信息确定RI的比特数,进一步根据RI的比特数和CRI的取值确定RI的比特含义。
那么当配置了FeCoMPCSIEnabled(或者,配置了FeCoMPCSIEnabled和非周期上报模式)时,或,当RI的比特数为特定值,如4比特时,RI(或者RI合并)反馈的比特含义介绍如下,这里以RI的比特数为4进行说明,RI的比特数为其他值时,也可以有类似的设计:
如果CRI=0或1,则映射方式可包括表X21中的至少一项:
表X21:
Figure PCTCN2018105094-appb-000057
to RI mapping
Figure PCTCN2018105094-appb-000058
其中,CRI=0表明CRI的取值为0,以下都类似。根据表X21可知,如果CRI的取值为0或1,且RI占据的4个比特为0000,则对应1个RI,且该RI的取值为1。或者也可以对应一个RI合并,且该RI合并的取值为{1,0},即第一个RI的取值为1,第二个RI的取值为0,或者认为没有第二个RI。其他行有类似的解释,在其他部分有类似情况,也可以适用。
如果CRI=2,映射方式可包括表X31中的至少一项:
Table X31:
Figure PCTCN2018105094-appb-000059
to RI/RI combination mapping
Figure PCTCN2018105094-appb-000060
根据表X31可知,如果CRI的取值为2,且RI占据的4个比特为0000,则对应2个RI,且这2个RI的取值均为1。其他行具有类似的解释。
或者,CRI=0,1,2可以用一张表格指示,映射方式可包括表X31-1中的至少一项:
表X31-1:
Figure PCTCN2018105094-appb-000061
to RI/RI combination mapping
Figure PCTCN2018105094-appb-000062
或者,
CRI=0或1,此时只反馈一个RI,则映射方式可包括表X22中的至少一项:
表X22:
Figure PCTCN2018105094-appb-000063
to RI mapping
Figure PCTCN2018105094-appb-000064
CRI=2,此时反馈两个RI,映射方式可包括表X33中的至少一项:
表X33:
Figure PCTCN2018105094-appb-000065
to RI mapping
Figure PCTCN2018105094-appb-000066
其中,RI1和RI2分别代表反馈的两个RI。
在如前的表X21,表X31,表X31-1,表X22,表X33中,都是用4个比特指示1个RI或2个RI的取值,均为联合指示的方式。下面介绍另一种方式,即,可以将RI的4个比特拆分成2比特加2比特,相当于用2个比特来指示1个RI。
例如,针对CRI=2,则RI的4比特中的2比特的映射方式可包括表5.2.2.6-6A中的至少一项,通过组合2个2比特的映射方式,可以得到4比特的RI的映射方式:
表5.2.2.6-6A:
Figure PCTCN2018105094-appb-000067
to RI mapping
Figure PCTCN2018105094-appb-000068
本申请实施例中的比特
Figure PCTCN2018105094-appb-000069
中至少一项的取值与RI的取值的对应关系仅是举例,其他的对应关系也适用,具体的,在此不做限定。
本实施例提供RI的比特含义的另一种确定方法。该确定方法可以与本实施例中其他确定RI的比特数的方法相结合,比如方法2.2,或,方法3中确定RI的比特数的方法相结合,也可以与其他确定RI的比特数的方法相结合,在此不予赘述。
可选的,本申请实施例中的确定RI的比特数可以是指确定单RI上报时的RI的比特数和/或确定多个RI(或RI合并)上报时多个RI(或RI合并)所占的总比特数,具体的,在此不做限定。
本实施例可以独立实施,或者也可以与其他实施例结合应用,具体的,在此不作限定。
A、RI的比特数为2比特的情况:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特含义和/或RI的比特含义。作为一种示例,可根据NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数中的至少一项、以及CRI的取值和第一指示信息,确定RI的比特含义。
可选的,终端根据NZP CSI-RS资源的天线端口数以及CRI的取值和第一指示信息,确定RI的比特含义。比如终端根据NZP CSI-RS资源的天线端口数可以确定RI的比特数,进而根据RI的比特数以及CRI的取值和第一指示信息,确定RI的比特含义。
可选的,终端根据NZP CSI-RS资源的天线端口数,终端设备的能力信息以及CRI的取值和第一指示信息,确定RI的比特含义。比如终端根据NZP CSI-RS资源的天线端口数和终端设备的能力信息可以确定RI的比特数,进而根据RI的比特数以及CRI的取值和第一指示信息,确定RI的比特含义。
可选的,终端根据RI的比特数以及CRI的取值和第一指示信息,确定RI的比特含义。
比如终端根据NZP CSI-RS资源的天线端口数,终端设备的能力信息中的至少一项以及第一指示信息确定RI的比特数,比如为2比特,的情况下,根据CRI的取值以及第一指示信息确定RI的比特含义,举例如下:
例如,当配置了FeCoMPCSIEnabled(和非周期上报模式)时,RI(或者RI合并)反馈的比特含义为:
CRI=0或1,则映射方式可包括表5.2.2.6-6A1中的至少一项:
其中,CRI=0或1,RI的比特含义可以是指反馈一个RI。
表5.2.2.6-6A1:
Figure PCTCN2018105094-appb-000070
to RI mapping for CRI=0,1
Figure PCTCN2018105094-appb-000071
或者,CRI=2,则映射方式可包括表5.2.2.6-6A2中的至少一项:
其中,CRI=2,则RI的比特含义可以是指反馈2个RI或者反馈RI合并。
表5.2.2.6-6A2:
Figure PCTCN2018105094-appb-000072
to RI mapping for CRI=2
Figure PCTCN2018105094-appb-000073
或者,CRI=0,1,2可以用一张表格表示,如下表5.2.2.6-6A2-1中的至少一项:
其中,CRI=0或1,则RI的比特含义可以是指反馈一个RI。
CRI=2,则RI的比特含义可以是指反馈2个RI或者反馈RI合并。
表5.2.2.6-6A2-1:
Figure PCTCN2018105094-appb-000074
to RI mapping for CRI=2
Figure PCTCN2018105094-appb-000075
或者,CRI=2,映射方式可包括表5.2.2.6-6A3中的至少一项:
其中,CRI=2,则RI的比特含义可以是指反馈2个RI或者反馈RI合并。
表5.2.2.6-6A3:
Figure PCTCN2018105094-appb-000076
to RI mapping for CRI=2
Figure PCTCN2018105094-appb-000077
或者,CRI=2,映射方式可包括表5.2.2.6-6A4中的至少一项,其中,表5.2.2.6-6A4是将RI的2个比特拆分为1比特加1比特,其中每个比特的映射方式可包括表5.2.2.6-6A4中的至少一项:
表5.2.2.6-6A4:
Figure PCTCN2018105094-appb-000078
Figure PCTCN2018105094-appb-000079
to RI mapping for CRI=2
Figure PCTCN2018105094-appb-000080
可选的,终端可以保存如上表格中的至少一项,根据NZP CSI-RS资源的天线端口数,终端设备的能力信息中的至少一项以及第一指示信息确定RI的比特数,比如为2比特,的情况下,根据CRI的取值以及第一指示信息从上述表格中确定RI的比特含义。可以理解的是,根据其他方式确定RI的比特数为2比特时,上述RI的比特含义也可适用。
B、RI的比特数为3比特的情况:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI 的比特数,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特含义或RI的比特含义的至少一项。作为一种示例,可根据第一指示信息和RI的比特数确定RI的比特含义。
可选的,当配置了FeCoMPCSIEnabled(或者配置了FeCoMPCSIEnabled和非周期上报模式)时,RI的比特数为3比特的情况下,RI(或者RI合并)反馈的比特含义可包括表5.2.2.6-8-2中的至少一项:
表5.2.2.6-8-2:
Figure PCTCN2018105094-appb-000081
to RI mapping
Figure PCTCN2018105094-appb-000082
可选的,终端可以保存如上表格中的至少一项,根据NZP CSI-RS资源的天线端口数,终端设备的能力信息中的至少一项以及第一指示信息确定RI的比特数,比如为3比特,的情况下,根据RI的比特数以及第一指示信息从上述表格中确定RI的比特含义。可以理解的是,根据其他方式确定RI的比特数为3比特时,上述RI的比特含义也可适用。
C、RI的比特数为4比特的情况:
可能的方式1:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特含义或RI的比特含义的至少一项。作为一种示例,可根据NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数中的至少一项、以及CRI的取值和第一指示信息,确定RI的比特含义。例如,当配置了FeCoMPCSIEnabled(或者配置了FeCoMPCSIEnabled和非周期上报模式)时,RI(或者RI合并)反馈的比特含义为:
CRI=0或1,则映射方式包括表X24中的至少一项:
其中,CRI=0或1,RI的比特含义可以是指反馈一个RI。表X24:
Figure PCTCN2018105094-appb-000083
to RI mapping for CRI=0,1
Figure PCTCN2018105094-appb-000084
或者,CRI=2,映射方式包括表X34中的至少一项:
其中,CRI=2,RI的比特含义可以是指反馈2个RI或者反馈RI合并。表X34:
Figure PCTCN2018105094-appb-000085
Figure PCTCN2018105094-appb-000086
to RI mapping for CRI=2
Figure PCTCN2018105094-appb-000087
或者,CRI=0,1,2可以采用一张表格指示,映射方式可以包括表X34-1中的至少一项:
此时可选的,终端根据RI的比特数和CRI的取值确定RI的比特含义。具体的,比如终端确定了RI的比特数为4比特,进而可以根据CRI的取值确定RI的比特含义,比如可以为下表X34-1中的至少一项。
CRI=0或1,RI的比特含义可以是指反馈一个RI。
CRI=2,则RI的比特含义可以是指反馈2个RI或者反馈RI合并。
表X34-1:
Figure PCTCN2018105094-appb-000088
to RI mapping
Figure PCTCN2018105094-appb-000089
可能的方式2:
根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息,确定RI的比特含义。作为一种示例,可根据第一指示信息和RI的比特数确定RI的比特含义。
可选的,终端可以根据第一指示信息和RI的比特数确定RI的比特含义。例如,当配置了FeCoMPCSIEnabled(或者配置了FeCoMPCSIEnabled和非周期上报模式)时,当RI的比 特数为4比特时,RI(或者RI合并)反馈的比特含义可包括表5.2.2.6-8-3中的至少一项:
表5.2.2.6-8-3:
Figure PCTCN2018105094-appb-000090
to RI mapping
Figure PCTCN2018105094-appb-000091
可选的,终端可以根据RI的比特数确定RI的比特含义。
比如当终端确定RI的比特数为4bit,即可确定RI的比特含义为上表5.2.2.6-8-3中的至少一项。可以理解的是,确定RI的比特数为4比特时,上述RI的比特含义可适用,而无需考虑其他因素,比如CRI的取值。
本申请实施例中的比特
Figure PCTCN2018105094-appb-000092
中至少一项的取值与RI的取值的对应关系仅是举例,其他的对应关系也适用,具体的,在此不做限定。
可能的方式2,可以使得RI和CRI联合反馈或者联合编码时,RI的比特数不依赖于CRI的取值,即可以保证CRI和RI的比特数是网络设备和终端设备共同知道的,可以使得网络设备可以正确接收或者解码CRI和RI。而且因为RI的比特数是与天线端口的个数和/或终端设备的能力相关的,RI的比特数开销相对较小。
在如前介绍的方案中,如果有多个CSI-RS资源,那么是将这些资源所对应的天线端口数中的最大值作为确定RI的天线端口数。下面介绍另一种确定RI的天线端口数的确定方法。本实施例可以作为独立实施,也可以与其他实施例相结合,具体的,在此不做限定。可理解为,下面介绍的是更细节的确定方法:
针对基于多点协作传输模式(或基于FeCoMP或基于混合传输模式或基于非相干传输模式)下的CSI测量和/或反馈,根据每个CSI-RS资源的天线端口数,确定RI的比特数。
可选的,当一个CSI-RS资源的天线端口数为1,一个CSI-RS资源的天线端口数为M时,RI的比特数可以为1或者
Figure PCTCN2018105094-appb-000093
具体的RI的比特数为1还是
Figure PCTCN2018105094-appb-000094
可以是协议预定义的,或者基站通过信令通知的,具体的,在此不做限定。
例如两个CSI-RS资源,一个CSI-RS资源的天线端口数为1,另一个CSI-RS资源的天线端口数为M,M大于1。则RI的比特数可以为1,或者为
Figure PCTCN2018105094-appb-000095
RI的比特数为1时,用该1比特可以分别指示CRI=0,1,2下的RI(或RI合并)的2个取值。比如支持CRI=0,1下的RI=1或2,CRI=2下的RI={1,1}或{1,2}。
RI的比特数为
Figure PCTCN2018105094-appb-000096
时,用该
Figure PCTCN2018105094-appb-000097
比特可以分别指示CRI=0,1,2下的RI(或RI合并)的M个取值。比如支持CRI=0下的RI=1,2,…M,支持CRI=1下的,RI=1,2,…M,支持CRI=2下的RI={1,1},{1,2},…,{1,M}。
可选的,当一个CSI-RS资源的天线端口数为M1,至少一个CSI-RS资源的天线端口数为M2时,RI的比特数可以是考虑各种CRI取值下的最大的RI的比特数。
具体的,终端和/或基站可以根据每个CSI-RS资源对应的RI的比特数,确定CRI的各种取值下的最大的RI的比特数,进而确定反馈的RI的比特数。
例如,两个CSI-RS资源,一个CSI-RS资源的天线端口数为2,另一个CSI-RS资源的天线端口数为4。此时,可以有RI的比特数为2bit或3bit两种情况,均满足CRI的各种取值下的最大的RI的比特数。具体的RI的比特数为2还是3,可以是协议预定义的,或者基站通过信令通知的,具体的,在此不做限定。
RI的比特数为2bit的情况:
第一个CSI-RS资源的天线端口数为2,反馈第一个CSI-RS资源对应的CSI时(比如CRI=0),此时对应的RI需要1比特反馈,通过该1比特可以指示RI=1或2。以第二个CSI-RS资源的天线端口数为4为例,反馈第二个CSI-RS资源对应的CSI时(比如CRI=1),此时对应的RI需要2比特反馈,通过该2比特可以指示RI=1或2或3或4。以反馈第一CSI-RS资源和第二CSI-RS资源对应的CSI时(比如CRI=2),此时对应的RI需要2比特反馈,通过该2比特可以指示RI={1,1}或{1,2}或{2,1}或{2,3}。因此考虑各CRI取值下的最大的RI的比特数,可以确定RI的反馈比特数为2比特,比如支持CRI=0下的RI=1或2,CRI=1下的RI=1或2或3或4,CRI=2下的{1,1}或{1,2}或{2,1}或{2,3}。
RI的比特数为3bit的情况:
以第一个CSI-RS资源的天线端口数为2,反馈第一个CSI-RS资源对应的CSI时(比如CRI=0),此时对应的RI需要1比特反馈,通过该1比特可以指示RI=1或2。以第二个CSI-RS资源的天线端口数为4为例,反馈第二个CSI-RS资源对应的CSI时(比如CRI=1),此时对应的RI需要2比特反馈,通过该2比特可以指示RI=1或2或3或4。以反馈第一CSI-RS资源和第二CSI-RS资源对应的CSI时(比如CRI=2),此时对应的RI需要3比特反馈,通过该3比特可以指示RI={1,1}或{1,2}或{2,1}或{2,3}或{1,3}或{1,4}或{2,4}。因此考虑各CRI取值下的最大的RI的比特数,可以确定可以支持RI的反馈比特数为3比特,比如支持CRI=0下的RI-1或2,,CRI=1下的RI=1或2或3或4,CRI=2下的{1,1}或{1,2}或{2,1}或{2,3}或{1,3}或{1,4}或{2,4}。
可选的,在本申请实施例中,如无特殊说明,则资源、CRI-RS资源、以及NZP CSI-RS资源,这三种描述均是指NZP CSI-RS资源。天线端口数、NZP CSI-RS的天线端口数、CSI-RS资源的天线端口数等凡是涉及到天线端口数的描述,均是指NZP CSI-RS资源的天线端口数。
如前介绍的是如何确定CSI测量和反馈的方案,CSI可以包括PMI,RI,或CQI中的至少一种,那么上报CSI,就涉及到上报PMI,RI,或CQI中的至少一种,则PMI,RI, 或CQI中的至少一种在上报时就会有上报顺序。接下来介绍PMI和CQI的上报顺序的实施例以及CSI所包括的内容,如PMI,CQI等的比特数的确定方法,其中,该实施例中的确定CSI所包括内容的上报顺序及比特数的方法可以是各自独立实施,也可以相互结合应用,也可以是分别和本申请中的其他实施例结合,具体的在此不做限定。
可选的,本申请实施例中的第一set(first set)可以是指第一个NZP CSI-RS资源对应的CSI,第二set(second set)可以是指第二NZP CSI-RS资源对应的CSI。
可选的,本申请实施例中的第一set(或first set)可以是指第一个码字(例如码字0)对应的CSI,第二set(second set)可以是指第二个码字(例如码字1)对应的CSI。
可选的,本申请实施例中的第一set,第一个set,第一个CSI set,first set,first CSI set可以是指相同的含义,也可以相互替换。另外,也可以替换成第一个码字(例如码字0)的CSI,或者替换成第一个NZP CSI-RS资源对应的CSI等,具体的在此不做限定。
可选的,本申请实施例中的第二set,第二个set,第二个CSI set,second set,second CSI set可以是指相同的含义,也可以相互替换。另外,也可以替换成第二个码字(例如码字1)的CSI,或者替换成第二个NZP CSI-RS资源对应的CSI等,具体的在此不做限定。
针对一个CSI process(或者CSI reporting)中的first set和second set中的PMI和CQI,可以有不同的上报顺序(在本申请实施例中,上报顺序也可称为反馈顺序)。例如终端设备根据第一指示信息确定反馈至少两个CSI集合,至少两个CSI集合包括第一集合(即第一set)的CSI和第二集合(即第二set)的CSI,第一集合的CSI包括第一集合的CQI和/或第一集合的PMI,第二集合的CSI包括第二集合的CQI和/或第二集合的PMI。上报方法的方法1:先上报CQI(包括第一set的CQI和/或第二set的CQI),然后再上报PMI(包括第一set的PMI和/或第二set的PMI)。在方法1下面又包括以下几种方法中的至少一种:
方法1.1:如果第一set只包括CQI,第二set也只包括CQI,则上报顺序依次为第一set的CQI和第二set的CQI;
方法1.2:如果第一set包括CQI和PMI,第二set只包括CQI,则上报顺序依次为第一set的CQI、第二set的CQI,和,第一set的PMI;
方法1.3:如果第一set包括CQI和PMI,第二set包括CQI和PMI,则上报顺序依次为第一set的CQI、第二set的CQI,第一set的PMI,和,第二set的PMI;
方法1.4:如果每个集合的PMI中都有第一PMI和第二PMI,则先上报第一PMI(包括第一set的第一PMI和/或第二set的第一PMI),然后再上报第二PMI(包括第一set的第二PMI和/或第二set的第二PMI)。
方法1.5:如果每个集合的PMI中都有第一PMI和第二PMI,则先上报第一set的第一PMI和/或第二PMI,然后再上报第二set的第一PMI和/或第二PMI。
针对非周期的上报模式的举例说明:
Figure PCTCN2018105094-appb-000098
例如,在全带CQI上报模式下,如果无PMI反馈,则对应的模式为模式1-0。
具体采用哪种模式,可以通过协议预定义,或者,基站和终端之间交互确定,比如,基站通过信令告知终端。
下面针对上报方法的方法1介绍三种上报模式下的情况,三种上报模式即:全带CQI上报模式、高层配置的子带CQI的上报模式、UE选择的子带CQI的上报模式。可选的,三种上报模式下的至少一种上报模式可以采用如下的方法中的至少一种。
具体的,本申请实施例中的上报模式也可以是在NR或5G或未来研究系统中的上报模式,具体的,在此不做限定。
可选的,本申请实施例中的表格用于确定CSI反馈内容的比特数,比如可以是CQI和/或PMI反馈的比特数。
可选的,PMI和/或CQI在表格中的顺序也可以是CSI的上报顺序。比如终端可以根据表格中指示的比特数按照从上往下的顺序进行反馈。基站也可以根据表格中指示的比特数的顺序确定CSI接收的信息。具体的,表格中的顺序与上报顺序之间的对应关系可以由协议进行预定义,在基站和/或终端进行预配置,在此不予限定。
A、全带CQI上报模式。
针对全带CQI上报,当有2个CSI sets需要上报时,下面是以先CQI上报(包括第一个set的CQI和/或第二个set的CQI)再PMI上报(包括第一个set的PMI和/或第二个set的PMI)的上报顺序为例,举例说明,具体的,可以是采用如下方式中的至少一项:(A1)、针对mode1-2,上报方式可包括(A1)下所示的全部表格中的至少一项。
可选的,针对全带CQI上报模式下的mode 1-2可以是指全带CQI和子带PMI的反馈模式。
举例说明,如下表格5.2.2.6.1-1L-1可以用于表示mode 1-2且配置了第一指示信息,以及天线端口数为2或者4下的没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-2-1和表5.2.2.6.1-1L-2-2中的至少一个表格可以用于表示mode 1-2且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-3-1和表5.2.2.6.1-1L-3-2的至少一个表格可以用于表示mode 1-2且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.1-1L-1:全带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI and subband PMI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了2或4个天线端口的K>1个CSI-RS资源,且配置了高层参数FeCoMPCSIEnabled并且没有配置R12码本增强(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4 antenna ports with K>1 and higher layer parameter FeCoMPCSIEnabledexcept with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000099
其中,在“ CSI所包括的内容的比特数和/或上报顺序”这一部分,表格中的N是指子带的个数。以下表格中的含义类似,具体的,不再赘述。
通过上述表格,终端可以根据天线端口数,CRI的取值,Rank取值确定CQI和/或PMI反馈的比特数,如CRI=0或1下的对应码字0的全带CQI的比特数,对应码字1的全带CQI的比特数,PMI的比特数,如CRI=2下的对应第一个CSI集合的全带CQI的比特数,对应第二个CSI集合的全带CQI的比特数,对应第一个CSI集合的PMI的比特数,对应第二个CSI集合的PMI的比特数。
可选的,终端可以按照表格中CSI的内容确定CSI的反馈顺序。比如通过上述表格,当CRI=2时,2组CSI集合的反馈顺序为:第一个集合的全带CQI,第二个集合的全带CQI,第一个集合的PMI,第二个集合的PMI。其他表格中的解释类似,具体的,不再赘述。
表5.2.2.6.1-1L-2-1:全带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI and subband PMI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了8个天线端口的K>1个CSI-RS资源,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 8 antenna ports with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000100
其中,PMI i1即为如前介绍的第一PMI,PMI i2即为如前介绍的第二PMI。以下表格中的含义类似,具体的,不再赘述。
或者,表5.2.2.6.1-1L-2-1也可替换为如下的表5.2.2.6.1-1L-2-2:
Figure PCTCN2018105094-appb-000101
表5.2.2.6.1-1L-2-1与表5.2.2.6.1-1L-2-2的区别在于,表5.2.2.6.1-1L-2-1是先上报第一set中的第一PMI和第二set中的第一PMI,再上报第一set中的第二PMI和第二set中的第二PMI,而表5.2.2.6.1-1L-2-2是先上报第一set中的第一PMI和第二PMI,再上报第二set中的第一PMI和第二PMI。
表5.2.2.6.1-1L-3-1:4个天线端口下的全带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI and subband PMI reports with 4 antenna ports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了4个天线端口的K>1个CSI-RS资源,且配置了高层参数FeCoMPCSIEnabled和配置了R12码本增强(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 4 antenna ports with K>1,and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000102
或者,表5.2.2.6.1-1L-3-1也可替换为如下的表5.2.2.6.1-1L-3-2:
Figure PCTCN2018105094-appb-000103
表5.2.2.6.1-1L-3-1与表5.2.2.6.1-1L-3-2的区别在于,表5.2.2.6.1-1L-3-1是先上报第一set中的第一PMI和第二set中的第一PMI,再上报第一set中的第二PMI和第二set中的第二PMI,而表5.2.2.6.1-1L-3-2是先上报第一set中的第一PMI和第二PMI,再上报第二set中的第一PMI和第二PMI。
(A2)、针对mode 1-0,上报方式可包括表5.2.2.6.1-1L-6和表5.2.2.6.1-1L-7中的至少一项。
可选的,针对全带CQI上报模式下的mode 1-0可以是指反馈全带CQI而不反馈PMI的反馈模式。
举例说明,如下表格5.2.2.6.1-1L-6可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为1下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-7可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为2/4/8下没有配置PMI反馈的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.1-1L-6:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10没有配置PMI/RI上报,配置 了1个天线端口,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameterFeCoMPCSIEnabled))
Field Bit width for CRI=0 or 1
Wide-band CQI 4
Field Bit width for CRI=2
Wide-band CQI of first set 4
Wide-band CQI of second set 4
表5.2.2.6.1-1L-7:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10没有配置PMI上报及配置了高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了2/4/8个天线端口,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4/8 antenna ports and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000104
(A3)、针对mode 1-1,上报方式可包括(A3)下所示的全部表格中的至少一项。
可选的,针对全带CQI上报模式下的mode 1-1可以是指全带CQI和全带PMI的反馈模式。
举例说明,如下表格5.2.2.6.1-1L-7可以用于表示mode 1-1且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-8-1和表5.2.2.6.1-1L-8-2中的至少一个表格可以用于表示mode1-1且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-9-1和表5.2.2.6.1-1L-9-2的至少一个表格可以用于表示mode 1-1且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.1-1L-7:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,配置了2/4个天线端口,且配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强(transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000105
表5.2.2.6.1-1L-8-1:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,配置了8个天线端口,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000106
或者,表5.2.2.6.1-1L-8-1也可替换为如下的表5.2.2.6.1-1L-8-2:
Figure PCTCN2018105094-appb-000107
Figure PCTCN2018105094-appb-000108
其中,表5.2.2.6.1-1L-8-1与表5.2.2.6.1-1L-8-2的区别在于,表5.2.2.6.1-1L-8-1是先上报第一set中的第一PMI和第二PMI,再上报第二set中的第一PMI和第二PMI,而表5.2.2.6.1-1L-8-2是先上报第一set中的第一PMI和第二set中的第一PMI,再上报第一set中的第二PMI和第二set中的第二PMI。
表5.2.2.6.1-1L-9-1:4个天线端口下全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports with 4 antenna ports)(传输模式10配置了4个天线端口的PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强((transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000109
或者,表5.2.2.6.1-1L-9-1也可替换为如下的表5.2.2.6.1-1L-9-2:
Figure PCTCN2018105094-appb-000110
其中,表5.2.2.6.1-1L-9-1与表5.2.2.6.1-1L-9-2的区别在于,表5.2.2.6.1-1L-9-1是先上报第一set中的第一PMI和第二PMI,再上报第二set中的第一PMI和第二PMI,而表5.2.2.6.1-1L-9-2是先上报第一set中的第一PMI和第二set中的第一PMI,再上报第一set中的第二PMI和第二set中的第二PMI。
B、高层配置的子带CQI上报模式。
针对高层配置的子带CQI上报,当有2个CSI sets需要上报时,下面是以先CQI上报(包括第一个set的CQI和/或第二个set的CQI)再PMI上报(包括第一个set的PMI和/或第二个set的PMI)的上报顺序为例,举例说明,具体的,可以是采用如下方式中的至少一项:(B1)、针对mode3-0,上报方式可包括表5.2.2.6.2-1B-1和表5.2.2.6.2-1B-2中的至少一项。
可选的,针对高层配置的子带CQI上报模式下的mode 3-0可以是指反馈高层配置的子带CQI而不反馈PMI的反馈模式。
举例说明,如下表格5.2.2.6.2-1B-1可以用于表示mode 3-0下且配置了第一指示信息,以及天线端口数为1下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-1B-2可以用于表示mode 3-0下且配置了第一指示信息,以及天线端口数为2/4/8下没有配置PMI反馈的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
表5.2.2.6.2-1B-1:高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports)(传输模式10配置了PMI/RI上报或配置了1个天线端口,以及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter FeCoMPCSIEnabled))
Field Bit width for CRI=0 or 1
Wide-band CQI codeword 4
Subband differential CQI 2N
Field Bit width for CRI=2
Wide-band CQI of first set 4
Subband differential CQI of first set 2N
Wide-band CQI of second set 4
Subband differential CQI of second set 2N
表5.2.2.6.2-1B-2:高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports)(传输模式10配置了无PMI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,配置了2/4/8个天线端口,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4/8 antenna ports and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000111
(B2)、针对mode3-1,上报方式可包括(B2)下所示的全部表格中的至少一项。
可选的,针对高层配置的子带CQI上报模式下的mode 3-1可以是指高层配置的子带CQI和全带PMI的反馈模式。
举例说明,如下表格5.2.2.6.2-2F-1可以用于表示mode 3-1且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2F-2-1和表5.2.2.6.2-2F-2-2中的至少一个表格可以用于表示mode 3-1且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2F-3-1和表5.2.2.6.2-2F-3-2的至少一个表格可以用于表示mode 3-1且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.2-2F-1:高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports)(传输模式10配置了2/4天线端口的PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强(transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000112
表5.2.2.6.2-2F-2-1:高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports)(传输模 式10配置了8天线端口的PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000113
或者,表5.2.2.6.2-2F-2-1也可替换为如下的表5.2.2.6.2-2F-2-2:
Figure PCTCN2018105094-appb-000114
表5.2.2.6.2-2F-3-1:4个天线端口下的高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports with 4 antenna ports)(传输模式10配置了4天线端口的PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强(transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000115
或者,表5.2.2.6.2-2F-3-1也可替换为如下的表5.2.2.6.2-2F-3-2:
Figure PCTCN2018105094-appb-000116
其中,表5.2.2.6.2-2F-3-2与表5.2.2.6.2-2F-3-1的区别在于,表5.2.2.6.2-2F-3-2是先上报 第一set中的第一PMI和第二PMI,再上报第二set中的第一PMI和第二PMI,而表5.2.2.6.2-2F-3-1是先上报第一set中的第一PMI和第二set中的第一PMI,再上报第一set中的第二PMI和第二set中的第二PMI。
(B3)、针对mode3-2,上报方式可包括(B3)下所示的全部表格中的至少一项。
可选的,针对高层配置的子带CQI上报模式下的mode 3-2可以是指高层配置的子带CQI和子带PMI的反馈模式。
举例说明,如下表格5.2.2.6.2-2G可以用于表示mode 3-2且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2G-1-1和表5.2.2.6.2-2G-1-2中的至少一个表格可以用于表示mode 3-2且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2G-2-1和表5.2.2.6.2-2G-2-2的至少一个表格可以用于表示mode 3-2且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.2-2G:高层配置的子带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports)(传输模式10配置了2/4天线端口的子带PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,及配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强(transmission mode 10 configured with subband PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000117
表5.2.2.6.2-2G-1-1:8天线端口下高层配置的子带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 8 antenna ports)(传输模式10配置了子带PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,及配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with subband PMI/RI reporting  and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000118
或者,表5.2.2.6.2-2G-1-1也可替换为如下的表5.2.2.6.2-2G-1-2:
Figure PCTCN2018105094-appb-000119
表5.2.2.6.2-2G-2-1:4天线端口下高层配置的子带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 4 antenna ports)(传输模式10配置了4天线端口的子带PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,K>1,及配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强(transmission mode 10 configured with subband PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000120
或者,表5.2.2.6.2-2G-2-1也可替换为如下的表5.2.2.6.2-2G-2-2:
Figure PCTCN2018105094-appb-000121
C、UE选择的子带CQI上报模式。
针对UE选择的子带CQI上报,例如UE选择了M个子带,则M个选择的子带的位置的反馈可以放在最后,即放在UE选择的子带CQI上报模式下的CQI和/或PMI都反馈之后,也可以放在UE选择的子带CQI上报模式下的CQI反馈之后以及PMI反馈之前,或者也可以是UE选择的子带CQI上报模式下的CSI的最前面,即放在UE选择的子带CQI上报模式下的CQI和或PMI反馈之前,具体的不做限定。
可选的,M个选择的子带的位置可以两个CSI sets仅反馈一个上报参量,该参量用于表示M个选择的子带的位置。或也可以每个CSI sets中包括一个上报参量,该上报参量用于反馈M个选择的子带的位置,具体的,在此不作限定。
下面是以上报CQI(包括第一个set的CQI和第二个set的CQI)、M个选择子带的位置、上报PMI(包括第一个set的PMI和第二个set的PMI),这样的上报顺序为例,举例说明:
(C1)、针对mode 2-0,上报方式可包括表5.2.2.6.3-1B-1和表5.2.2.6.3-1B-2中的至少一项。
可选的,针对UE选择的子带CQI上报模式下的mode 2-0可以是指反馈UE选择的子带CQI而不反馈PMI的反馈模式。
举例说明,如下表格5.2.2.6.3-1B-1可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为1下的CSI的反馈比特数和/或CSI反馈顺序。表表5.2.2.6.3-1B-2可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为2/4/8下没有配置PMI反馈的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。表5.2.2.6.3-1B-1:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了1天线端口的子带PMI/RI上报,配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter FeCoMPCSIEnabled))
Field Bit width for CRI=0 or 1
Wide-band CQI codeword 4
Subband differential CQI 2
Position of the M selected subbands L
Field Bit width for CRI=2
Wide-band CQI of first set 4
Subband differential CQI of first set 2
Wide-band CQI of second set 4
Subband differential CQI of second set 2
Position of the M selected subbands L
其中,L表示M个子带反馈所占据的比特数。以下表格中的含义类似,具体的,不再赘述。
表5.2.2.6.3-1B-2:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了无PMI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,具有2/4/8个天线端口,配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4/8 antenna ports and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000122
(C2)、针对mode2-2,上报方式可包括(C2)下所示的全部表格中的至少一项。
可选的,针对UE选择的子带CQI上报模式下的mode 2-2可以是指全带CQI和子带PMI的反馈模式。
举例说明,如下表格5.2.2.6.3-2K可以用于表示mode 2-2且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.3-2K-1-1,表5.2.2.6.3-2K-1-2和表5.2.2.6.3-2K-1-3中的至少一个表格可以用于表示mode 2-2且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.3-2K-2-1,表5.2.2.6.3-2K-2-2和表5.2.2.6.3-2K-2-3的至少一个表格可以用于表示mode 2-2且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.3-2K:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了2/4天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强时(transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1,and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000123
表5.2.2.6.3-2K-1-1:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了8天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1,and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000124
Figure PCTCN2018105094-appb-000125
或者,表5.2.2.6.3-2K-1-1也可替换为如下的表5.2.2.6.3-2K-1-2:
Figure PCTCN2018105094-appb-000126
Figure PCTCN2018105094-appb-000127
或者,表5.2.2.6.3-2K-1-1或表5.2.2.6.3-2K-1-2也可替换为如下的表5.2.2.6.3-2K-1-3:
Figure PCTCN2018105094-appb-000128
Figure PCTCN2018105094-appb-000129
Figure PCTCN2018105094-appb-000130
表5.2.2.6.3-2K-2-1:4天线端口下的UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports with 4 antenna ports)(传输模式10配置了4天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强(transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1,and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000131
或者,表5.2.2.6.3-2K-2-1也可替换为如下的表5.2.2.6.3-2K-2-2:
Figure PCTCN2018105094-appb-000132
Figure PCTCN2018105094-appb-000133
或者,表5.2.2.6.3-2K-2-1或表5.2.2.6.3-2K-2-2也可替换为如下的表5.2.2.6.3-2K-2-3:
Figure PCTCN2018105094-appb-000134
关于PMI和CQI的上报顺序,如前介绍的是上报方法的方法1,即,先上报CQI(包括第一set的CQI和第二set的CQI),然后再上报PMI(包括第一set的PMI和第二set的PMI)。下面介绍上报方法的方法2。
上报方法的方法2:先第一set(包括第一set的CQI和/或PMI),然后再第二set(包括第二set的CQI和/或PMI)。在方法2下面,又包括以下几种具体的方法中的至少一种:
方法2.1:如果第一set包括CQI和PMI,第二set只包括CQI,则上报顺序依次为第一set的CQI,第一set的PMI,和,第二set的CQI;
方法2.2:如果第一set包括CQI,第二set包括CQI和PMI,则上报顺序依次为第一set的 CQI,第二set的CQI,和,第二set的PMI;
方法2.3:如果第一set包括CQI和PMI,第二set包括CQI和PMI,则上报顺序依次为第一set的CQI,第一set的PMI,第二set的CQI,和,第二set的PMI。
下面针对上报方法的方法2介绍三种上报模式下的情况,三种上报模式即:全带CQI上报模式、高层配置的子带CQI的上报模式、UE选择的子带CQI的上报模式。可选的,三种上报模式下的至少一种上报模式可以采用如下的至少一种方法。
D、全带CQI上报模式。
针对全带CQI上报,当有2个CSI sets需要上报时,下面是以先上报第一个set(包括CQI/PMI),后上报第二个set(包括CQI/PMI)的上报顺序为例,举例说明,具体的,可以是采用如下方式中的至少一项:
(D1)、针对mode 1-2,上报方式可包括(D1)下所示的全部表格中的至少一项。
可选的,针对全带CQI上报模式下的mode 1-2可以是指全带CQI和子带PMI的反馈模式。
举例说明,如下表格表5.2.2.6.1-1L-1-1可以用于表示mode 1-2且配置了第一指示信息,以及天线端口数为2或者4下没有配置R12码本增强时的CSI的反馈比特数/或CSI反馈顺序。表5.2.2.6.1-1L-2-3可以用于表示mode 1-2且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数/或CSI反馈顺序。表5.2.2.6.1-1L-3-3可以用于表示mode 1-2且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.1-1L-1-1:全带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI and subband PMI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,天线端口为2/4,K>1,且配置了高层参数FeCoMPCSIEnabled并且没有配置R12码本增强(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4 antenna ports with K>1 and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000135
表5.2.2.6.1-1L-2-3:全带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI and subband PMI reports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,天线端口为8, K>1,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with8 antenna ports with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000136
表5.2.2.6.1-1L-3-3:4天线端口下全带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI and subband PMI reports with 4 antenna ports)(传输模式10配置了PMI/RI上报及高层参数eMIMO-Type,eMIMO-Type配置为‘CLASS B’,天线端口为4,K>1,且配置了高层参数FeCoMPCSIEnabled并且配置了R12码本增强(transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 4 antenna ports with K>1,and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000137
(D2)、针对mode 1-0,上报方式可包括表5.2.2.6.1-1L-6-1和表5.2.2.6.1-1L-7-1中的至少一项。
可选的,针对全带CQI上报模式下的mode 1-0可以是指反馈全带CQI而不反馈PMI的反馈模式。
举例说明,如下表格5.2.2.6.1-1L-6-1可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为1下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-7-1可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为2/4/8下没有配置PMI/RI反馈的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.1-1L-6-1:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10配置了1天线端口的无PMI/RI上报,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter FeCoMPCSIEnabled))
Field Bit width for CRI=0 or 1
Wide-band CQI 4
Field Bit width for CRO=2
Wide-band CQI of first set 4
Wide-band CQI of second set 4
表5.2.2.6.1-1L-7-1:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10配置了无PMI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,2/4/8个天线端口,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4/8 antenna ports and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000138
(D3)、针对mode 1-1,上报方式可包括(D3)下所示的全部表格中的至少一项。
可选的,针对全带CQI上报模式下的mode 1-1可以是指全带CQI和全带PMI的反馈模式。
举例说明,如下表格5.2.2.6.1-1L-8可以用于表示mode 1-1且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-9可以用于表示mode 1-1且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.1-1L-10可以用于表示mode 1-1且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.1-1L-8:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10配置了2/4天线端口的PMI/RI上 报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,,且配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强(transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000139
Table 5.2.2.6.1-1L-9:全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports)(传输模式10配置了8天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000140
表5.2.2.6.1-1L-10:4天线端口下全带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for wideband CQI reports with 4 antenna ports)(传输模式10配置了4天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强(transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer  parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000141
E、高层配置的子带CQI上报模式。
针对高层配置的子带CQI上报,当有2个CSI sets需要上报时,下面是以先上报第一个set(包括CQI/PMI),后上报第二个set(包括CQI/PMI)的上报顺序为例,举例说明,具体的,可以是采用如下方式中的至少一项:
(E1)、针对mode 3-0,上报方式可包括表5.2.2.6.2-1B-1-1和表5.2.2.6.2-1B-2-1中的至少一项。
可选的,针对高层配置的子带CQI上报模式下的mode 3-0可以是指反馈高层配置的子带CQI而不反馈PMI的反馈模式。
举例说明,如下表格5.2.2.6.2-1B-1-1可以用于表示mode 3-0下且配置了第一指示信息,以及天线端口数为1下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-1B-2-1可以用于表示mode 3-0下且配置了第一指示信息,以及天线端口数为2/4/8下没有配置PMI/RI反馈的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
表5.2.2.6.2-1B-1-1:高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports)(传输模式10配置了1天线端口无PMI/RI上报,配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter FeCoMPCSIEnabled))
Field Bit width for CRI=0 or 1
Wide-band CQI codeword 4
Subband differential CQI 2N
Field Bit width for CRI=2
Wide-band CQI of first set 4
Subband differential CQI of first set 2N
Wide-band CQI of second set 4
Subband differential CQI of second set 2N
表5.2.2.6.2-1B-2-1:高层配置的子带CQI上报时的信道质量信息反馈场景(Fieldsfor channel quality information feedback for higher layer configured subband CQI reports)(传输模式10配置了无PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为 ‘CLASS B’,2/4/8个天线端口,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4/8 antenna ports and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000142
(E2)、针对mode 3-1,上报方式可包括(E2)下所示的全部表格中的至少一项。
可选的,针对高层配置的子带CQI上报模式下的mode 3-1可以是指高层配置的子带CQI和全带PMI的反馈模式。
举例说明,如下表格5.2.2.6.2-2F-2可以用于表示mode 3-1且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2F-2-3可以用于表示mode 3-1且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2F-2-4可以用于表示mode 3-1且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.2-2F-2:高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports)(传输模式10配置了2/4天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,且配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强(transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000143
表5.2.2.6.2-2F-2-3:高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports)(传输模式10配置了8天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000144
表5.2.2.6.2-2F-2-4:4天线端口下高层配置的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI reports with 4 antenna ports)(传输模式10配置了4天线端口的PMI/RI上报,配置了高层参数 eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强(transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000145
(E3)、针对mode 3-2,上报方式可包括(E3)下所示的全部表格中的至少一项。
可选的,针对高层配置的子带CQI上报模式下的mode 3-2可以是指高层配置的子带CQI和子带PMI的反馈模式。
举例说明,如下表格5.2.2.6.2-2G-1-3可以用于表示mode 3-2且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2G-2-3可以用于表示mode 3-2且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.2-2G-3-3可以用于表示mode 3-2且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.2-2G-1-3:高层配置的子带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports)(传输模式10配置了2/4天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强(transmission mode 10 configured with subband PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000146
表5.2.2.6.2-2G-2-3:8天线端口下高层配置的子带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 8antenna ports)(传输模式10配置了PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with subband PMI/RI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000147
表5.2.2.6.2-2G-3-3:4天线端口下高层配置的子带CQI和子带PMI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 4 antenna ports)(传输模式10配置了2/4天线端口的PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1, 且配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强(transmission mode 10 configured with subband PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1 and higher layer parameter FeCoMPCSIEnabled with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000148
F、UE选择的子带CQI上报模式。
针对UE选择的子带CQI上报,例如UE选择了M个子带,其中M个选择的子带的位置的反馈可以放在2个CSI sets的最后,也可以放在第1个CSI set之后以及第2个CSI set之前,或者也可以是放在2个CSI sets之前,具体的不做限定。
可选的,M个选择的子带的位置可以两个CSI sets仅反馈一个上报参量,该参量用于表示M个选择的子带的位置。或也可以每个CSI sets中包括一个上报参量,该上报参量用于反馈M个选择的子带的位置,具体的,在此不作限定。
下面是以第一个set(包括CQI/PMI),第二个set(包括CQI/PMI),M个选择子带的位置,这样的上报顺序为例,举例说明:
(F1)、针对mode 2-0,上报方式可包括表5.2.2.6.3-1B-1-1和表5.2.2.6.3-1B-2-1中的至少一项。
可选的,针对UE选择的子带CQI上报模式下的mode 2-0可以是指反馈UE选择的子带CQI而不反馈PMI的反馈模式。
举例说明,如下表格5.2.2.6.3-1B-1-1可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为1下的CSI的反馈比特数和/或CSI反馈顺序。表表5.2.2.6.3-1B-2-1可以用于表示mode 1-0下且配置了第一指示信息,以及天线端口数为2/4/8下没有配置PMI/RI反馈的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.3-1B-1-1:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了1天线端口无PMI/RI上报,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10  configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter FeCoMPCSIEnabled))
Field Bit width for CRI=0 or 1
Wide-band CQI codeword 4
Subband differential CQI 2
Position of the M selected subbands L
Field Bit width for CRI=2
Wide-band CQI of first set 4
Subband differential CQI of first set 2
Wide-band CQI of second set 4
Subband differential CQI of second set 2
Position of the M selected subbands L
表5.2.2.6.3-1B-2-1:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了1天线端口无PMI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,2/4/8个天线端口,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with 2/4/8 antenna ports and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000149
(F2)、针对mode 2-2,上报方式可包括(F2)下所示的全部表格中的至少一项。
可选的,针对UE选择的子带CQI上报模式下的mode 2-2可以是指全带CQI和子带PMI的反馈模式。
举例说明,如下表格5.2.2.6.3-2K-1-4可以用于表示mode 2-2且配置了第一指示信息,以及天线端口数为2或者4下且没有配置R12码本增强时的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.3-2K-2-4中的至少一个表格可以用于表示mode 2-2且配置了第一指示信息,以及天线端口数为8下的CSI的反馈比特数和/或CSI反馈顺序。表5.2.2.6.3-2K-3-4的至少一个表格可以用于表示mode 2-2且配置了第一指示信息,以及天线端口数为4下且配置了R12码本增强时的的CSI的反馈比特数和/或CSI反馈顺序。其他配置下的CSI反馈也可适用,具体的,在此不作限定。
可选的,终端可以保存如下表格中的至少一项,当终端配置了对应的参数时即可根据该参数对应的表格确定CSI的反馈比特数和/或CSI的反馈顺序。
表5.2.2.6.3-2K-1-4:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了2/4天线端口PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS  B’,K>1,且配置了高层参数FeCoMPCSIEnabled且没有配置R12码本增强时(transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1,and higher layer parameter FeCoMPCSIEnabled except with alternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000150
表5.2.2.6.3-2K-2-4:UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports)(传输模式10配置了8天线端口PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled(transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1,and higher layer parameter FeCoMPCSIEnabled))
Figure PCTCN2018105094-appb-000151
Figure PCTCN2018105094-appb-000152
Figure PCTCN2018105094-appb-000153
表5.2.2.6.3-2K-3-4:4天线端口下UE选择的子带CQI上报时的信道质量信息反馈场景(Fields for channel quality information feedback for UE selected subband CQI reports with 4 antenna ports)(传输模式10配置了4天线端口PMI/RI上报,配置了高层参数eMIMO-Type,eMIMO-Type被设置为‘CLASS B’,K>1,且配置了高层参数FeCoMPCSIEnabled且配置了R12码本增强(transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type,and eMIMO-Type is set to‘CLASS B’with K>1,and higher layer parameter FeCoMPCSIEnabled withalternativeCodeBookEnabledFor4TX-r12=TRUE))
Figure PCTCN2018105094-appb-000154
另外,本申请实施例所述的CSI测量行为,包括基于FeCoMP(或者说非相干传输,如非相干联合传输NCJT)的CSI的测量。在协议版本R15中引入了FeCoMP(或者说非相干传输)特性,那么对于支持R15协议版本的终端设备,由于终端设备的能力不同,有些终端设备由于硬件存储或处理能力等能力的限制,可能不支持FeCoMP(或者说非相干传输),有的终端设备能力强,可以支持FeCoMP(或者说非相干传输)。因此本申请实施例提供一种方案:终端设备在入网时,可以将是否支持FeCoMP(或者说非相干传输)的CSI的测量和/或反馈作为终端设备的一种能力上报给网络设备,从而使得网络设备能够得知该终端设备是否支持FeCoMP(或者说非相干传输)的CSI的测量和/或反馈,或支持 FeCoMP(或者说非相干传输)传输。该实施例可以与本申请提供的其他实施例结合实施,或者也可以单独实施,具体不作限制。
此外,本申请实施例还提供另外一种方案:终端设备在入网时,可以将终端设备支持的QCL类型作为终端设备的一种能力,上报给网络设备,从而使得网络设备能够得知该终端设备是否支持FeCoMP(或者说非相干传输)传输。例如,在协议R15版本中,除了QCL类型A,B以外,还引入了QCL类型C,终端设备可以通过RRC信令上报本终端设备所支持的QCL类型,如果该终端设备上报支持QCL类型C,则表示该终端设备支持FeCoMP传输(或者,非相干传输),如果终端上报支持QCL类型A或者B,则表示该终端设备支持单小区传输或者CoMP动态点选择/静默(dynamci point selection/blanking,DPS/DPB)单点传输。该实施例可以与本申请提供的其他实施例结合实施,或者也可以单独实施,具体不作限制。
请参见图10B,为上报终端设备的能力的方法的流程图。
步骤1001、终端设备向网络设备发送第三指示信息,则网络设备接收来自终端设备的第三指示信息。所述第三指示信息用于指示所述终端设备是否支持FeCoMP的CSI的测量和/或反馈。
例如,终端设备在入网时可以向网络设备发送第三指示信息。作为一种实施方式,终端设备可通过RRC信令来发送第三指示信息。
步骤1002、网络设备根据第三指示信息确定终端设备支持的QCL类型,和/或,确定终端设备是否支持FeCoMP的CSI的测量和/或反馈。如果终端设备支持FeCoMP的CSI的测量和/或反馈,则执行步骤1003,否则结束本流程。
例如第三指示信息中用于指示终端设备是否支持FeCoMP的CSI的测量和/或反馈的信息是承载在RRC信令中的1比特,如果这1比特的取值为“1”或者为“TRUE”,则表明终端设备支持FeCoMP的CSI的测量和/或反馈,而如果该1比特的取值为“0”或者为“FALSE”,则表明终端设备不支持FeCoMP的CSI的测量和/或反馈。或者,如果RRC信令中携带了这1比特的第三指示信息,则表明终端设备支持FeCoMP的CSI的测量和/或反馈,而如果RRC信令中未携带第三指示信息,或者携带的第三指示信息中不包括用于指示终端设备是否支持FeCoMP的CSI的测量和/或反馈的信息,则表明终端设备不支持FeCoMP的CSI的测量和/或反馈。当然,这里的1比特只是举例,本申请实施例不限制用于能力指示信息的比特数。
再例如,第三指示信息中用于指示终端设备支持的QCL类型的信息是承载在RRC信令中的2比特,如果这2比特取值为“00”,则表明终端设备支持的QCL类型为QCL类型A,如果这2比特取值为“01”,则表明终端设备支持的QCL类型为QCL类型B,如果这2比特取值为“10”,则表明终端设备支持的QCL类型为QCL类型C。这里的比特取值和所指示的QCL类型之间的映射关系只是示例,用于指示终端设备支持的QCL类型的信息是2比特也只是示例,本申请实施例对这些不做限制。
步骤1003、在网络设备确定终端设备支持FeCoMP的CSI的测量和/或反馈的情况下,或者确定终端设备支持的QCL类型为QCL类型C的情况下(同样表明终端设备支持FeCoMP的CSI的测量和/或反馈),网络设备向终端设备发送支持FeCoMP的CSI测量反馈的指示信息,则终端设备接收来自网络设备的FeCoMP的CSI测量反馈的指示信息。例如该指示信息为如前的实施例所述的第一指示信息。
进一步的,还可以包括:
步骤1004、网络设备向终端设备发送调度FeCoMP的DCI,则终端设备接收该DCI,该DCI中指示信息包含至少两组QCL参数或者DCI中指示的QCL个数大于1。
步骤1005、网络设备和终端设备之间进行NCJT传输。
通过本申请实施例提供的技术方案,网络设备可以获知终端设备是否支持FeCoMP(或非相干传输,如NCJT)的CSI的测量,从而网络设备可以与支持FeCoMP的CSI的测量的终端设备进行NCJT传输,提高传输的成功率。
根据前述方法,图11为本申请实施例提供的设备的示意图一,如图11所示,该设备可以为终端设备10,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。该终端设备10可以对应上述方法中的终端设备。
该设备可以包括处理器110和存储器120。该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以实现上述方法,比如上图5-1,图5-3,图10B中的至少一个对应的方法中的步骤。
进一步的,该设备还可以包括、输入口140和输出口150。进一步的,该设备还可以进一步包括总线系统130,其中,处理器110、存储器120、输入口140和输出口150可以通过总线系统130相连。
处理器110用于执行该存储器120存储的指令,以控制输入口140接收信号,并控制输出口150发送信号,完成上述方法中终端设备的步骤。其中,输入口140和输出口150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,输入口140和输出口150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器110,输入口140和输出口150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,输入口140和输出口150的功能。
该设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图12为本申请提供的一种终端设备的结构示意图。该终端设备可适用于本申请实施例适用的通信系统,例如图3或图4所示的5G通信系统中,又例如LTE通信系统中。为了便于说明,图12仅示出了终端设备的主要部件。如图12所示,终端设备10包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述通信方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的预定义的相关信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基 带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备10的收发单元101,将具有处理功能的处理器视为终端设备10的处理单元102。如图12所示,终端设备10包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
根据前述方法,图13为本申请实施例提供的设备的示意图二,如图13所示,该设备可以为网络设备20,也可以为芯片或电路,如可设置于网络设备内的芯片或电路。该网络设备20对应上述方法中的网络设备。该设备可以包括处理器210和存储器220。该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以使所述设备实现前述方法,如图5-1,图5-3,图10B中至少一个所对应的方法。
进一步的,该网络设备还可以包括输入口240和输出口250。再进一步的,该网络还可以包括总线系统230。
其中,处理器210、存储器220、输入口240和输出口250通过总线系统230相连,处理器210用于执行该存储器220存储的指令,以控制输入口240接收信号,并控制输出口250发送信号,完成上述方法中至少一项方法中网络设备的步骤。其中,输入口240和输出口250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,输入口240和输出口250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网 络设备。即将实现处理器210,输入口240和输出口250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,输入口240和输出口250的功能。
所述设备所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图14为本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图14所示,该基站可应用于本申请实施例适用的通信系统,例如图3或图4所示的5G通信系统中,又例如LTE通信系统中。基站20包括一个或多个射频单元,如RRU201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU202部分主要用于进行基带处理,对网络设备进行控制等。所述RRU201与BBU202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述BBU202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。例如存储器2021存储上述实施例中的预定义的相关信息等。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,在本申请实施例中,处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一指示信息;
    根据所述第一指示信息确定CSI反馈相关信息,所述CSI反馈相关信息包括对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项;
    所述第一指示信息用于使能基于增强型多点协作(FeCoMP,further enhancement CoMP)的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能基于混合传输模式下的CSI反馈。
  2. 如权利要求1所述的通信方法,其特征在于,所确定的对CRI和RI的编码方式为:
    CSI包括至少两个RI,CRI和所述RI中的至少一个RI联合编码;或者,
    CRI和RI分别编码。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述第一指示信息确定CSI反馈相关信息,包括:
    根据所述第一指示信息确定CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项;或者,
    根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特数,或,RI的比特数中的至少一项;或者,
    根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特含义,或,RI的比特含义中的至少一项。
  4. 如权利要求3所述的方法,其特征在于,根据所述第一指示信息确定CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项,包括以下情况中的至少一种:
    根据所述第一指示信息确定CRI的比特数和/或RI的比特数;或,
    根据所述第一指示信息确定CRI的比特含义和/或RI的比特含义。
  5. 如权利要求3或4所述的方法,其特征在于,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特数,或,RI的比特数的至少一项,包括以下情况中的至少一种:
    根据NZP CSI-RS资源的个数和所述第一指示信息确定CRI的比特数;或,
    根据NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第一指示信息,确定RI的比特数;或,
    根据NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第一指示信息,以及CRI的取值,确定RI的比特数;或,
    根据所述第一指示信息以及CRI的取值,确定RI的比特数。
  6. 如权利要求3-5中任一项所述的方法,其特征在于,根据NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息,确定CRI的比特含义或RI的比特含义的至少一项,包括以下情况中的至少一种:
    根据所述第一指示信息和CRI的取值确定RI的比特含义;或,
    根据NZP CSI-RS的天线端口数,所述终端设备的能力信息,所述RI的比特数中的至少一项、以及CRI的取值和所述第一指示信息,确定RI的比特含义;或,
    根据所述第一指示信息及RI的比特数确定RI的比特含义;或,
    根据所述第一指示信息和CRI的取值确定所述RI的比特含义;或,
    根据所述第一指示信息和NZP CSI-RS资源的个数确定CRI的比特含义。
  7. 如权利要求3-6中任一项所述的方法,其特征在于,还包括:
    根据所述第一指示信息确定反馈至少两个CSI集合,所述至少两个CSI集合包括第一集合的CSI和第二集合的CSI,CSI包括CQI和/或PMI;
    所述至少两个CSI集合的反馈顺序包括以下情况中的一种:
    反馈顺序依次为第一集合的CQI,和,第二集合的CQI;或,
    反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第一集合的PMI;或,
    反馈顺序依次为第一集合的CQI,第二集合的CQI,第一集合的PMI,和,第二集合的PMI;或,
    反馈顺序依次为第一集合的CQI,第一集合的PMI,和,第二集合的CQI;或,
    反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第二集合的PMI;或,
    反馈顺序依次为第一集合的CQI,第一集合的PMI,第二集合的CQI,和,第二集合的PMI;
    其中第一集合的CSI对应第一个NZP CSI-RS资源的CSI,第二集合的CSI对应第二个NZP CSI-RS资源的CSI;或者,第一集合的CSI对应第一个码字的CSI,第二集合的CSI对应第二个码字的CSI。
  8. 如权利要求3-7中任一项所述的方法,其特征在于,所述方法还包括:
    向网络设备发送第三指示信息,所述第三指示信息指示终端设备支持的准共址QCL类型,或者,支持FeCoMP的CSI测量和/或反馈。
  9. 一种通信方法,其特征在于,包括:
    发送第一指示信息;
    确定CSI反馈相关信息并基于所述CSI反馈相关信息接收来自终端设备的CSI反馈,所述CSI反馈相关信息与所述第一指示信息相关;
    所述CSI反馈相关信息包括对CRI和RI的编码方式,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项;
    所述第一指示信息用于使能基于增强型多点协作(FeCoMP,further enhancement CoMP)的CSI反馈,或,使能基于多点协作传输的CSI反馈,或,使能混合传输模式下的CSI反馈。
  10. 如权利要求9所述的方法,其特征在于,对CRI和RI的编码方式为:
    CSI包括至少两个RI,CRI和所述RI中的至少一个RI联合编码;或者,
    CRI和RI分别编码。
  11. 如权利要求9或10所述的方法,其特征在于,所述CSI反馈相关信息与所述第一指示信息相关包括:
    CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第一指示信息相关;或者,
    CRI的比特数,或,RI的比特数中的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息相关;或者,
    CRI的比特含义,或,RI的比特含义中的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息相关。
  12. 如权利要求11所述的方法,其特征在于,CRI的比特数,RI的比特数,CRI的比特含义,或,RI的比特含义中的至少一项与所述第一指示信息相关,包括以下情况中的至少一种:
    CRI的比特数和/或RI的比特数与所述第一指示信息相关;或,
    CRI的比特含义和/或RI的比特含义与所述第一指示信息相关。
  13. 如权利要求11或12所述的方法,其特征在于,CRI的比特数,或,RI的比特数的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,或,CRI的取值中的至少一项以及所述第一指示信息相关,包括以下情况中的至少一种:
    CRI的比特数与NZP CSI-RS资源的个数和所述第一指示信息相关;或,
    RI的比特数与NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第一指示信息相关;或,
    RI的比特数与NZP CSI-RS的天线端口数和/或所述终端设备的能力信息,以及所述第一指示信息,以及CRI的取值相关;或,
    RI的比特数与所述第一指示信息以及CRI的取值相关。
  14. 如权利要求11-13中任一项所述的方法,其特征在于,CRI的比特含义或RI的比特含义的至少一项与NZP CSI-RS资源的个数,NZP CSI-RS的天线端口数,终端设备的能力信息,RI的比特数,或,CRI的取值中的至少一项以及所述第一指示信息相关,包括以下情况中的至少一种:
    RI的比特含义与所述第一指示信息和CRI的取值相关;或,
    RI的比特含义与NZP CSI-RS的天线端口数,所述终端设备的能力信息,所述RI的比特数中的至少一项、以及CRI的取值和所述第一指示信息相关;或,
    RI的比特含义与所述第一指示信息及RI的比特数相关;或,
    RI的比特含义与所述第一指示信息和CRI的取值相关;或,
    CRI的比特含义与所述第一指示信息和NZP CSI-RS资源的个数相关。
  15. 如权利要求9-14中任一项所述的方法,其特征在于,还包括:
    确定终端设备反馈的至少两个CSI集合与所述第一指示信息相关,所述至少两个CSI集合包括第一集合的CSI和第二集合的CSI,CSI包括CQI和/或PMI;
    所述至少两个CSI集合的反馈顺序包括以下情况中的一种:
    反馈顺序依次为第一集合的CQI,和,第二集合的CQI;或,
    反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第一集合的PMI;或,
    反馈顺序依次为第一集合的CQI,第二集合的CQI,第一集合的PMI,和,第二集合的PMI;或,
    反馈顺序依次为第一集合的CQI,第一集合的PMI,和,第二集合的CQI;或,
    反馈顺序依次为第一集合的CQI,第二集合的CQI,和,第二集合的PMI;或,
    反馈顺序依次为第一集合的CQI,第一集合的PMI,第二集合的CQI,和,第二集合的PMI;
    其中第一集合的CSI对应第一个NZP CSI-RS资源的CSI,第二集合的CSI对应第二个NZP CSI-RS资源的CSI;或者,第一集合的CSI对应第一个码字的CSI,第二集合的CSI对应第二个码字的CSI。
  16. 如权利要求9-15中任一项所述的方法,其特征在于,还包括:
    接收来自终端设备的第三指示信息,所述第三指示信息指示所述终端设备支持的准共址QCL类型,或者,支持FeCoMP的CSI测量和/或反馈。
  17. 一种通信装置,其特征在于,用于执行如权利要求1至16任一所述的方法。
  18. 一种通信装置,其特征在于,包括至少一个处理器和至少一个存储器,
    所述至少一个存储器存储程序或指令,所述至少一个处理器用于执行所述程序或指令,使得所述通信装置实现如权利要求1至16任一所述的方法。
  19. 一种可读存储介质,其特征在于,所述可读存储介质存储程序或指令,当所述程序或指令被运行时,如权利要求1至16任一所述的方法被实现。
PCT/CN2018/105094 2017-09-11 2018-09-11 一种通信方法及设备 WO2019047979A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18853744.3A EP3678403A4 (en) 2017-09-11 2018-09-11 COMMUNICATION METHOD AND DEVICE
US16/814,463 US11290156B2 (en) 2017-09-11 2020-03-10 Communications method and device
US17/692,736 US11750250B2 (en) 2017-09-11 2022-03-11 Communications method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710812735.8 2017-09-11
CN201710812735 2017-09-11
CN201711125639.2 2017-11-14
CN201711125639.2A CN108039903B (zh) 2017-09-11 2017-11-14 一种通信方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/814,463 Continuation US11290156B2 (en) 2017-09-11 2020-03-10 Communications method and device

Publications (1)

Publication Number Publication Date
WO2019047979A1 true WO2019047979A1 (zh) 2019-03-14

Family

ID=62093493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105094 WO2019047979A1 (zh) 2017-09-11 2018-09-11 一种通信方法及设备

Country Status (4)

Country Link
US (2) US11290156B2 (zh)
EP (1) EP3678403A4 (zh)
CN (1) CN108039903B (zh)
WO (1) WO2019047979A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979513A4 (en) * 2019-07-26 2022-07-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. INFORMATION PROCESSING METHOD, NETWORK DEVICE AND USER EQUIPMENT

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562098B (en) 2017-05-05 2022-02-02 Samsung Electronics Co Ltd Improvements in and relating to channel state feedback in a telecommunication system
CN108039903B (zh) * 2017-09-11 2021-06-01 华为技术有限公司 一种通信方法及设备
US11510213B2 (en) * 2018-05-29 2022-11-22 Ntt Docomo, Inc. Method for signal transmission, and corresponding user terminals and base stations
CN108614577B (zh) * 2018-05-30 2021-02-09 中国联合网络通信集团有限公司 无人机的信息传输方法与装置
CN110769456B (zh) * 2018-07-27 2021-08-03 成都华为技术有限公司 通信方法及装置
WO2020029176A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Channel state information feedback for non-coherent joint transmissions
CN114222324A (zh) * 2018-08-10 2022-03-22 成都华为技术有限公司 波束测量的方法和装置
CN110831196B (zh) 2018-08-14 2022-01-04 维沃移动通信有限公司 Csi报告配置方法、终端设备和网络设备
GB2577055B (en) * 2018-09-11 2021-09-01 Samsung Electronics Co Ltd Improvements in and relating to telecommunication networks
US20210328644A1 (en) * 2018-09-21 2021-10-21 Chenxi HAO Csi report configuration for multi-trp transmission
WO2020061781A1 (zh) * 2018-09-25 2020-04-02 华为技术有限公司 通信方法、装置及系统
WO2020061938A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Channel state information reporting
CN110972184B (zh) * 2018-09-28 2021-04-02 北京紫光展锐通信技术有限公司 Csi计算方法、用户终端及计算机可读存储介质
US11516882B2 (en) * 2018-09-28 2022-11-29 Apple Inc. Downlink control for non coherent joint transmission
WO2020087451A1 (en) * 2018-11-01 2020-05-07 Lenovo (Beijing) Limited Channel state information calculation
CN111148126B (zh) * 2018-11-02 2022-04-05 华为技术有限公司 一种分组方法、装置及系统
US11463144B2 (en) * 2018-11-02 2022-10-04 Qualcomm Incorporated Techniques for reporting channel quality indicators in wireless communications
US11051234B2 (en) * 2018-11-14 2021-06-29 Qualcomm Incorporated Control search space overlap indication
CN111355566B (zh) * 2018-12-24 2023-03-28 成都华为技术有限公司 信道状态信息获取方法及相关设备
WO2020145676A1 (ko) * 2019-01-10 2020-07-16 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
WO2020147025A1 (en) * 2019-01-16 2020-07-23 Qualcomm Incorporated User equipment override for enhanced type-ii channel state information
CN111614389A (zh) * 2019-04-30 2020-09-01 维沃移动通信有限公司 信道状态信息的报告方法、接收方法、终端及网络设备
US10979151B2 (en) * 2019-05-22 2021-04-13 At&T Intellectual Property I, L.P. Multidimensional grid sampling for radio frequency power feedback
US10886991B2 (en) * 2019-05-22 2021-01-05 At&T Intellectual Property I, L.P. Facilitating sparsity adaptive feedback in the delay doppler domain in advanced networks
US11824637B2 (en) 2019-05-22 2023-11-21 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission
US11050530B2 (en) 2019-06-27 2021-06-29 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission with a collapsed time-frequency grid
CN112350806B (zh) * 2019-08-08 2023-07-21 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20220330068A1 (en) * 2019-08-15 2022-10-13 Nec Corporation Methods, devices and computer storage media for csi feedback
CN112491456A (zh) * 2019-09-11 2021-03-12 索尼公司 电子设备、无线通信方法和计算机可读存储介质
JP7311039B2 (ja) * 2019-09-29 2023-07-19 富士通株式会社 位相追跡参照信号の伝送方法及び装置
CN113131978B (zh) * 2019-12-30 2022-04-19 大唐移动通信设备有限公司 一种基于信道互易性的预编码矩阵配置方法及装置
US20230087003A1 (en) * 2020-02-14 2023-03-23 Qualcomm Incorporated Correlation of multiple channel state information reports for multi-layer communication
CN112564757A (zh) * 2020-12-03 2021-03-26 西华大学 一种深度学习1-bit压缩叠加信道状态信息反馈方法
WO2022153264A1 (en) * 2021-01-15 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Csi feedback for single dci based multi-trp transmission
CN115119258A (zh) * 2021-03-23 2022-09-27 维沃移动通信有限公司 Csi反馈方法、装置、设备及可读存储介质
CN115150042A (zh) * 2021-03-31 2022-10-04 中兴通讯股份有限公司 Csi上报方法、装置、节点和存储介质
BR112023019339A2 (pt) 2021-03-31 2023-10-31 Qualcomm Inc Sinalização de indicador de classificação e indicador de camada em informações de estado de canal de transmissão conjunta não coerente
CN116131993A (zh) * 2021-11-10 2023-05-16 中国移动通信有限公司研究院 信道状态信息反馈的方法、装置、通信设备和存储介质
CN116419307A (zh) * 2021-12-30 2023-07-11 华为技术有限公司 一种信道质量指示的上报方法和装置
US20230300658A1 (en) * 2022-03-17 2023-09-21 Huawei Technologies Co., Ltd. Resource unit allocation for trigger based sensing measurement instances and channel state information feedback support identifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789849A (zh) * 2010-01-08 2010-07-28 中兴通讯股份有限公司 信道状态信息的反馈传输方法及用户终端
CN102281128A (zh) * 2011-08-08 2011-12-14 电信科学技术研究院 信道状态信息反馈触发及反馈方法和设备
US20150236801A1 (en) * 2012-09-26 2015-08-20 Zte Corporation Method, system, and apparatus for notifying and determining antenna port position relationship
CN108039903A (zh) * 2017-09-11 2018-05-15 华为技术有限公司 一种通信方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101715939B1 (ko) * 2009-06-18 2017-03-14 엘지전자 주식회사 채널 상태 정보 피드백 방법 및 장치
CN101867447B (zh) 2010-04-30 2015-09-16 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
CN103036655B (zh) * 2011-09-30 2018-06-19 中兴通讯股份有限公司 一种实现csi反馈的方法和装置
CN102546110A (zh) * 2011-12-31 2012-07-04 电信科学技术研究院 一种传输信道状态信息的方法及装置
WO2017048049A1 (en) * 2015-09-16 2017-03-23 Samsung Electronics Co., Ltd. Signaling methods and apparatus for advanced mimo communication systems
WO2017078785A1 (en) 2015-11-05 2017-05-11 Intel Corporation Full dimension multiple input multiple output communication systems and methods
JP2019004194A (ja) * 2015-11-05 2019-01-10 シャープ株式会社 端末装置、基地局装置および方法
GB2562098B (en) 2017-05-05 2022-02-02 Samsung Electronics Co Ltd Improvements in and relating to channel state feedback in a telecommunication system
WO2019068211A1 (en) * 2017-10-02 2019-04-11 Qualcomm Incorporated CHANNEL STATE CODING INFORMATION (CSI) WITH SINGLE PACKET ENCODING FOR MULTIPLE INPUT MULTIPLE (MIMO) OUTPUT OF NEW RADIO (NR)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789849A (zh) * 2010-01-08 2010-07-28 中兴通讯股份有限公司 信道状态信息的反馈传输方法及用户终端
CN102281128A (zh) * 2011-08-08 2011-12-14 电信科学技术研究院 信道状态信息反馈触发及反馈方法和设备
US20150236801A1 (en) * 2012-09-26 2015-08-20 Zte Corporation Method, system, and apparatus for notifying and determining antenna port position relationship
CN108039903A (zh) * 2017-09-11 2018-05-15 华为技术有限公司 一种通信方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979513A4 (en) * 2019-07-26 2022-07-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. INFORMATION PROCESSING METHOD, NETWORK DEVICE AND USER EQUIPMENT

Also Published As

Publication number Publication date
EP3678403A4 (en) 2020-11-04
EP3678403A1 (en) 2020-07-08
US11750250B2 (en) 2023-09-05
US20220200668A1 (en) 2022-06-23
CN108039903B (zh) 2021-06-01
US11290156B2 (en) 2022-03-29
US20200244320A1 (en) 2020-07-30
CN108039903A (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
US11290156B2 (en) Communications method and device
US11283503B2 (en) Communication method and communications apparatus
JP6599376B2 (ja) ワイヤレス通信における階層的コードブック設計のための方法および装置
RU2600533C1 (ru) Способ и терминал для определения информации о состоянии канала
US9712214B2 (en) Channel state information feedback method for coordinated multi-point system and associated user equipment
WO2017167238A1 (zh) 一种信道状态测量方法及装置
CN111432479B (zh) 传输信道状态信息的方法和装置
WO2014019445A1 (zh) 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
CN111817798B (zh) 一种信道测量方法和通信装置
CN103391124A (zh) 信道状态信息的配置方法、反馈方法、基站和终端
WO2020029233A1 (zh) 上报信道状态信息的方法和装置
CN109120313A (zh) 一种秩指示上报方法和装置、指示方法和装置
US20240120978A1 (en) Channel state information transmission method, channel state information reception method, signaling information transmission method, node, and medium
WO2015184915A1 (zh) 多输入多输出系统信令传输方法和装置
CN111586741A (zh) 一种信息上报方法及终端
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
US11290906B2 (en) Channel measurement method
CN103368697B (zh) 协作cqi和/或节点间的pci的反馈方法及装置
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2019219022A1 (zh) 通信方法、终端设备和网络设备
CN114788184A (zh) 一种信道信息确定方法及装置
JP2024519341A (ja) プリコーディング情報
WO2021179311A1 (zh) 一种信道状态信息csi测量的指示方法和通信装置
WO2023208045A1 (zh) Csi上报的方法、终端、网络设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853744

Country of ref document: EP

Effective date: 20200403