WO2021179311A1 - 一种信道状态信息csi测量的指示方法和通信装置 - Google Patents

一种信道状态信息csi测量的指示方法和通信装置 Download PDF

Info

Publication number
WO2021179311A1
WO2021179311A1 PCT/CN2020/079317 CN2020079317W WO2021179311A1 WO 2021179311 A1 WO2021179311 A1 WO 2021179311A1 CN 2020079317 W CN2020079317 W CN 2020079317W WO 2021179311 A1 WO2021179311 A1 WO 2021179311A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain unit
indication information
group
reference signal
Prior art date
Application number
PCT/CN2020/079317
Other languages
English (en)
French (fr)
Inventor
葛士斌
种稚萌
王潇涵
金黄平
范利
毕晓艳
袁一凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20923965.6A priority Critical patent/EP4099783A4/en
Priority to CN202080097377.7A priority patent/CN115152298A/zh
Priority to PCT/CN2020/079317 priority patent/WO2021179311A1/zh
Publication of WO2021179311A1 publication Critical patent/WO2021179311A1/zh
Priority to US17/941,430 priority patent/US20230013510A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to the field of wireless communication, and more specifically, to an indication method and communication device for channel state information CSI measurement.
  • Massive MIMO massive multiple-input multiple output
  • network equipment can reduce the interference between multiple users and the interference between multiple signal streams of the same user through precoding technology. Thereby improving signal quality, realizing space division multiplexing, and improving spectrum utilization. Therefore, it is particularly important to obtain at least one type of channel state information (CSI), such as a precoding matrix indicator (PMI) and a channel quality indicator (CQI).
  • CSI channel state information
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • the terminal device may determine the precoding matrix based on downlink channel measurement, and hopes to make the network device obtain the same or similar precoding matrix as the precoding matrix determined by the terminal device through feedback. Specifically, the terminal device may, for example, instruct to construct the precoding matrix by feeding back one or more spatial vectors, one or more frequency domain vectors, and one or more weighting coefficients.
  • network equipment sends corresponding downlink reference signals to different user equipment (UE), for example, channel state information reference signal (CSI-RS).
  • UE user equipment
  • CSI-RS channel state information reference signal
  • CSI-RS channel state information reference signal
  • the base station needs to obtain the CSI of a large number of UEs, the communication overhead will be very large and cannot be flexibly controlled, which affects the performance of the CSI acquisition scheme.
  • This application provides a method and a communication device for indicating channel state information CSI measurement, in order to perform flexible control of CSI measurement.
  • a method for indicating channel state information CSI measurement is provided.
  • the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a chip system, etc.) configured in the terminal device.
  • the method includes: receiving first indication information, where the first indication information is used to indicate a frequency domain unit in a downlink reference signal resource for a terminal device to obtain the CSI; and based on the first indication information, The CSI measured on the frequency domain unit.
  • the network device can flexibly configure CSI measurement according to the system status (for example, reference signal port, system bandwidth, scheduling bandwidth, measurement bandwidth, resource usage rate, transmission power, etc.) to control the acquisition of CSI. Therefore, it is beneficial for the terminal device to acquire the CSI in a more targeted manner in different situations based on the instruction.
  • the system status for example, reference signal port, system bandwidth, scheduling bandwidth, measurement bandwidth, resource usage rate, transmission power, etc.
  • the CSI obtained by measuring the frequency domain unit may be obtained by the terminal device by accumulating the measurement result on the frequency domain unit for obtaining the CSI; it may also be obtained by the terminal device.
  • the frequency domain unit is subjected to Fast Fourier Transform (FFT) or Inverse Fast Fourier Transform (IFFT), and the DC component is taken to obtain CSI; specifically, the terminal equipment is based on
  • the network device instructs to perform channel estimation on the received CSI-RS, then perform IFFT/FFT on the channel estimation result corresponding to the frequency domain unit, and finally take the nth point after IFFT/FFT as the measurement result, for example, take the 0th point
  • the point ie, the DC component
  • this application is not limited, as long as the technical solution for obtaining CSI based on the indicated frequency domain unit measurement falls within the protection scope of this application.
  • a method for indicating channel state information CSI measurement is provided.
  • the method may be executed by, for example, a network device, or may also be executed by a component (such as a chip or a chip system, etc.) configured in the network device.
  • the method includes: generating first indication information, where the first indication information is used to indicate a frequency domain unit in a downlink reference signal resource for the terminal device to obtain the CSI; and sending the first indication information.
  • the network device can flexibly configure CSI measurement according to the system status (for example, reference signal port, system bandwidth, scheduling bandwidth, measurement bandwidth, resource usage rate, transmission power, etc.) to control the acquisition of CSI. Therefore, it is beneficial for the terminal device to acquire the CSI in a more targeted manner in different situations based on the instruction.
  • the system status for example, reference signal port, system bandwidth, scheduling bandwidth, measurement bandwidth, resource usage rate, transmission power, etc.
  • the first indication information includes: second indication information, which is used to indicate a starting frequency domain unit in the frequency domain unit. It can be understood that through the indication of the second indication information, the frequency domain unit of the starting position in the frequency domain unit for the terminal device to obtain the CSI can be determined, and the starting frequency domain unit can be indicated by its position or identification.
  • the position of the starting frequency domain unit can be its relative position in the downlink reference signal resource, or its absolute position in the system; the identity of the starting frequency domain unit can be its position in the downlink reference signal resource
  • the relative identification of the can also be its absolute identification in the system.
  • the distribution density of the frequency domain unit used for the terminal device to obtain CSI in the downlink reference signal resource is preset to P frequency domains per interval Unit distribution, P is an integer greater than or equal to 0. It can be understood that if the distribution density of frequency domain units used for terminal equipment to obtain CSI in the downlink reference signal resource is predetermined, then through the indication of the second indication information, not only can it be determined that the terminal equipment is used to obtain CSI.
  • the frequency domain unit at the start position in the frequency domain unit can also determine the remaining frequency domain units of the frequency domain unit.
  • the first indication information further includes: third indication information, which is used to indicate the distribution of the frequency domain unit in the downlink reference signal resource density. It can be understood that the distribution density can also be flexibly configured through indications. Through the indication of the third indication information, not only the frequency domain unit of the starting position in the frequency domain unit for the terminal device to obtain CSI can be determined, but also the frequency domain unit can be determined. Frequency domain unit The rest of the frequency domain unit.
  • the first indication information includes: fourth indication information used to indicate the number of groups by which the frequency domain unit is divided into frequency domain unit groups;
  • each of the frequency domain unit groups corresponds to a different downlink reference signal port. It can be understood that through the fourth indication information, it can be determined that there are several sets of frequency domain units in the downlink reference signal resource for the terminal device to obtain CSI. According to the different downlink reference signal ports corresponding to each of the frequency domain unit groups, the number of groups of downlink reference signal ports can be determined.
  • each of the frequency domain unit groups corresponds to the same downlink reference signal port.
  • each of the frequency domain unit groups corresponds to different downlink reference signal ports, and the correspondence between each of the frequency domain unit groups and different downlink reference signal ports Instructed by the fifth instruction information included in the first instruction information, or set in advance. It can be understood that the correspondence between each of the frequency domain unit groups and different downlink reference signal ports may be preset, such as predefined by the protocol, or may be flexibly configured.
  • the first indication information further includes: sixth indication information, which is used to indicate the starting frequency domain of the first group in the frequency domain unit group unit. It can be understood that if the division of the frequency domain unit group for the user to obtain the CSI is not fixed starting from the first frequency domain unit among all the frequency domain units of the downlink reference signal resource, then the sixth indication information can be flexibly configured for Acquire the frequency domain position of the frequency domain unit group of the CSI.
  • the distribution density of the frequency domain units in each of the frequency domain unit groups in the downlink reference signal resource is preset to be P per interval Frequency domain unit distribution, P is an integer greater than or equal to 0.
  • the distribution density of the frequency domain units used to obtain CSI in the downlink reference signal resources is preset to be non-interval distribution, and it can be determined that the frequency domain units in each group of frequency domain unit groups are in the downlink reference
  • the first indication information further includes seventh indication information, which is used to indicate the other groups except the first group in the frequency domain unit group.
  • the initial frequency domain unit; or the initial frequency domain units of the other groups except the first group in the frequency domain unit group are preset to meet a predetermined condition. It can be understood that the starting frequency domain units of the remaining groups may be indicated by signaling or may be predefined.
  • the predetermined condition is:
  • mod means (G i +R 0 ) divided by M to take the remainder.
  • indication overhead can be saved to a certain extent.
  • the first indication information indicates the frequency domain unit by indicating an identifier or a position of the frequency domain unit. It can be understood that if the indication overhead is not considered, the frequency domain unit used for the terminal device to obtain the CSI in the downlink reference signal resource can be directly indicated.
  • the first indication information includes at least one of the following: indication information used to indicate measurement bandwidth, indication information used to indicate the number of downlink reference signal ports , Used to indicate the CSI acquisition scheme based on reciprocal angle and delay.
  • the first indication information may be used to indicate at least one item of the information to implicitly indicate the frequency domain unit used for the terminal device to obtain the CSI in the downlink reference signal resource.
  • At least one of the following is preset or indicated by the ninth indication information: the measurement bandwidth and the number of groups of the frequency domain unit divided into frequency domain unit groups The corresponding relationship between the measurement bandwidth and the frequency domain unit distribution density; the corresponding relationship between the number of downlink reference signal ports and the number of groups of the frequency domain unit group; the number of downlink reference signal ports and the Correspondence between the distribution densities of frequency domain units; the initial frequency domain units of the first group; the initial frequency domain units of the other groups except the first group; the distribution density of each group of frequency domain units; the frequency domain unit The distribution density of the frequency domain unit; the starting frequency domain unit in the frequency domain unit.
  • the frequency domain unit is a resource block RB, a subband subband, a subcarrier, or a bandwidth part BWP. It can be understood that the definition of frequency domain units can be implemented in different angles or in different units.
  • the first indication information is carried in the subband reporting configuration CSI-ReportingBand. It can be understood that the first indication information can be sent through a newly defined field, or can be sent by multiplexing an existing field to redefine the interpretation of different values of the field.
  • first indication information may be issued through one piece of signaling or multiple pieces of signaling, that is, the second indication information, the third indication information, the fourth indication information, and the fifth indication information included in the first indication information.
  • the indication information, the sixth indication information, and the seventh indication information are carried in multiple pieces of signaling.
  • first indication information may be the same indication information or different indication information, That is, the indication of the information to be indicated may be a joint indication or an independent indication.
  • the first indication information may be carried in at least one of the following: radio resource control (radio resource control, RRC) message; medium access control (medium access control, MAC) control element (CE) and Downlink control information (DCI).
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • DCI Downlink control information
  • a communication device in the third aspect, includes various modules or units for executing the method in any one of the possible implementation manners of the first aspect, for example, a processing unit and a transceiver unit.
  • a communication device in a fourth aspect, includes a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit, a receiver, a receiving circuit, a transmitter, a transmitting circuit, and the like.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface, an input/output circuit, an input/output pin, etc.
  • the processor may be a processing circuit, a logic circuit, or the like.
  • a communication device in a fifth aspect, includes various modules or units for executing the method in any one of the possible implementation manners of the second aspect, for example, a processing unit and a transceiver unit.
  • a communication device in a sixth aspect, includes a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit, a receiver, a receiving circuit, a transmitter, a transmitting circuit, and the like.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface, an input/output circuit, an input/output pin, etc.
  • the processor may be a processing circuit, a logic circuit, or the like.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementation manners of the first aspect and the second aspect.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so as to execute the method in any one of the possible implementation manners of the first aspect and the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above eighth aspect may be one or more chips.
  • the processor in the processing device can be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect and the first aspect described above.
  • the method in any one of the two possible implementation modes.
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect and the first aspect described above.
  • the method in any one of the two possible implementation modes.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 is a schematic diagram of the architecture of a communication system applicable to the method for indicating channel state information CSI measurement provided by an embodiment of the present application;
  • Fig. 2 is a schematic flowchart of a method for indicating channel state information CSI measurement provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of frequency domain units of downlink reference signal resources provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • UMTS time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system may include non-standalone (NSA) and/or standalone (SA).
  • the technical solution provided in this application can also be applied to machine type communication (MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), and device-to-device (D2D) Network, machine to machine (M2M) network, Internet of things (IoT) network or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • V2X vehicle to other devices
  • V2X vehicle to other devices
  • V2X vehicle to other devices
  • V2X vehicle to other devices
  • the V2X may include: vehicle to vehicle (V2V) communication, and the vehicle communicates with Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian communication (V2P) or vehicle to network (V2N) communication, etc.
  • V2V vehicle to vehicle
  • V2I infrastructure
  • V2P vehicle to pedestrian communication
  • V2N vehicle to network
  • the technical solution provided in this application can also be applied to future communication systems, such as the 6th Generation (6G) mobile communication system. This application does not limit this.
  • 6G 6th Generation
  • the network device may be any device that has a wireless transceiver function.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc., can also be 5G, such as NR ,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB, and DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) The function of the layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment, and the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , It may also belong to the base station corresponding to the small cell, where the small cell may include: metro cell, micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage area and low transmit power, and are suitable for providing high-speed data transmission services.
  • a macro base station for example, a macro eNB or a macro gNB, etc.
  • the small cell may include: metro cell, micro cell, pico cell, femto cell, etc.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE user equipment
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminals can be: mobile phones (mobile phones), tablets (pads), computers with wireless transceiver functions (such as laptops, palmtop computers, etc.), mobile Internet devices (mobile internet devices, MID), virtual reality Virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), and wireless in remote medical (remote medical) Terminals, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless Telephone, session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication function, computing device or connection Other processing equipment to wireless modems, in-vehicle equipment, wearable equipment, terminal equipment in the 5G network, or
  • wearable devices can also be called wearable smart devices, which are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things. IoT technology can achieve massive connections, deep coverage, and power-saving terminals through, for example, narrowband NB technology.
  • terminal devices can also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (some terminal devices), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices. .
  • Precoding When the channel state is known, the network device can process the signal to be sent with the help of a precoding matrix that matches the channel state, so that the precoded signal to be sent is adapted to the channel, so that The complexity of the receiving device to eliminate the influence between channels is reduced. Therefore, through the precoding processing of the signal to be sent, the quality of the received signal (such as the signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, the use of precoding technology can realize the transmission on the same time-frequency resource between the sending device and multiple receiving devices, that is, realizing multiple user multiple input multiple output (MU-MIMO).
  • SINR signal to interference plus noise ratio
  • the sending device may also perform precoding in other ways. For example, when channel information (such as but not limited to a channel matrix) cannot be obtained, precoding is performed using a preset precoding matrix or a weighting processing method. For the sake of brevity, its specific content will not be repeated in this article.
  • Channel reciprocity In some communication modes, such as time division duplexing (TDD), uplink and downlink channels transmit signals on the same frequency domain resources and different time domain resources. In a relatively short time (for example, the coherence time of channel propagation), it can be considered that the channel fading experienced by the signals on the uplink and downlink channels is the same. This is the reciprocity of the uplink and downlink channels.
  • the network equipment Based on the reciprocity of the uplink and downlink channels, the network equipment can measure the uplink channel based on the uplink reference signal, such as a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the downlink channel can be estimated according to the uplink channel, so that the precoding matrix for downlink transmission can be determined.
  • the uplink and downlink channels do not have complete reciprocity, and the uplink channel is used to The precoding matrix determined for downlink transmission may not be able to adapt to the downlink channel.
  • the uplink and downlink channels in the FDD mode still have partial reciprocity, for example, the reciprocity of angle and the reciprocity of delay. Therefore, angle and delay can also be called reciprocity parameters.
  • Multipath time delay causes frequency selective fading, which is the change of frequency domain channel.
  • the time delay is the transmission time of the wireless signal on different transmission paths, which is determined by the distance and speed, and has nothing to do with the frequency domain of the wireless signal.
  • signals are transmitted on different transmission paths, there are different transmission delays due to different distances. Since the physical location between the network equipment and the terminal equipment is fixed, the multipath distribution of the uplink and downlink channels is the same in terms of delay. Therefore, the uplink and downlink channels in the FDD mode with delay can be considered the same, or in other words, reciprocal.
  • the angle may refer to the angle of arrival (AOA) at which the signal reaches the receiving antenna via the wireless channel, or may refer to the angle of departure (AOD) at which the signal is transmitted through the transmitting antenna.
  • AOA angle of arrival
  • AOD angle of departure
  • the angle may refer to the angle of arrival at which the uplink signal reaches the network device, and may also refer to the angle of departure at which the network device transmits the downlink signal. Due to the reciprocity of the transmission paths of the uplink and downlink channels on different frequencies, the arrival angle of the uplink reference signal and the departure angle of the downlink reference signal can be considered to be reciprocal.
  • each angle can be characterized by an angle vector.
  • Each delay can be characterized by a delay vector. Therefore, in the embodiment of the present application, an angle vector may represent an angle, and a delay vector may represent a time delay.
  • Reference signal reference signal
  • the reference signal may also be referred to as a pilot (pilot), reference sequence, and so on.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (CSI-RS) used for downlink channel measurement, a synchronization signal block (Synchronization Signal and Physical Broadcast Channel block, which may be expressed as ss/pbch block, Referred to as SSB).
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • SSB synchronization Signal and Physical Broadcast Channel block
  • the reference signal in the embodiment of the present application includes a precoding reference signal and a non-precoding reference signal, and the precoding reference signal may be a reference signal obtained after precoding.
  • the precoding may specifically include beamforming and/or phase rotation. Wherein, beamforming may be realized by precoding the downlink reference signal based on one or more angle vectors, and phase rotation may be realized by precoding the downlink reference signal by one or more delay vectors, for example.
  • precoding the downlink reference signal based on one or more angle vectors can also be referred to as loading one or more angle vectors on the downlink reference signal to achieve beamforming.
  • Precoding the downlink reference signal based on one or more delay vectors can also be referred to as loading one or more delay vectors on the downlink reference signal to achieve phase rotation.
  • Port may include a sending port (or called a transmitting port) and/or a receiving port.
  • the transmitting port can be understood as a virtual antenna recognized by the receiving device. It is a logical meaning.
  • One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to a reference signal port.
  • the antenna port is used to carry at least one of a specific physical channel and a physical signal. Signals sent through the same antenna port, no matter whether these signals are sent through the same or different physical antennas, the channels corresponding to the paths they experience in the space transmission can be regarded as the same or related (such as large-scale channel characteristics, such as channel Matrix H, the same).
  • the receiving end can consider their channels to be the same or related during demodulation.
  • the antenna port defines the channel on a certain symbol, and the antenna ports of two symbols mean that the channel on one symbol can be inferred from the channel on the other symbol.
  • the transmitting port is a port after beamforming and phase rotation.
  • the reference signal of each transmission port may be a precoding reference signal obtained by precoding the reference signal based on an angle vector and a delay vector.
  • the transmission port may also be referred to as the port of the precoding reference signal.
  • the reference signal of each transmission port can be transmitted through one or more frequency domain units.
  • the receiving port can be understood as the receiving antenna of the receiving device.
  • the receiving port may refer to the receiving antenna of the terminal device.
  • Channel state information can include at least one of the following information: channel quality indicator (CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CSI-RS resource indicator), synchronization signal block (SSB) resource indicator (SS/PBCH block resource indicator, SSBRI), layer indicator (layer indicator, LI), rank indicator (rank indicator, RI), reference signal received power (reference signal received power, RSRP).
  • RSRP may be layer 1 RSRP (L1-RSRP).
  • the channel state information may also include synchronization measurement results or indication information of synchronization measurement results.
  • Frequency domain unit occupies a section of bandwidth in the frequency domain.
  • Frequency domain units include different types and correspond to different division units.
  • Frequency domain units include but are not limited to resource block (RB), subband (subband), and subband.
  • Angle vector It can be understood as a precoding vector for beamforming the reference signal. Through beamforming, the reference signal emitted by the transmitting device can have a certain spatial directivity. Therefore, the process of precoding the reference signal based on the angle vector can also be regarded as the process of spatial domain (or simply, spatial domain) precoding. Therefore, the angle vector can also be called a spatial vector, a beam vector, and so on.
  • the number of ports of the precoding reference signal obtained by precoding the reference signal based on one or more angle vectors is the same as the number of angle vectors.
  • the antenna port dimension can be reduced by spatial precoding, thereby reducing pilot overhead.
  • the angle vector can be a vector of length T.
  • the angle vector is a Discrete Fourier Transform (DFT) vector.
  • the DFT vector may refer to the vector in the DFT matrix.
  • the angle vector is the conjugate transpose vector of the DFT vector.
  • the DFT conjugate transpose vector may refer to the column vector in the conjugate transpose matrix of the DFT matrix.
  • the angle vector is an oversampled DFT vector.
  • the oversampled DFT vector may refer to the vector in the oversampled DFT matrix.
  • the angle vector may be, for example, the two-dimensional (2dimensions, 2D)-DFT vector v l defined in the type II (type II) codebook in the NR protocol TS 38.214 version 15 (release 15, R15). ,m .
  • the angle vector can be a 2D-DFT vector or an oversampled 2D-DFT vector.
  • I 1 is the number of antenna ports in the same polarization direction included in each column (or row) of the antenna array
  • I 2 is the number of antenna ports in the same polarization direction included in each row (or column) of the antenna array.
  • T I 1 ⁇ I 2 .
  • O 1 and O 2 are oversampling factors. i 1 and i 2 satisfy 0 ⁇ i 1 ⁇ (O 1 ⁇ I 1 -1), and 0 ⁇ i 2 ⁇ (O 2 ⁇ I 2 -1).
  • the angle vector is the steering vector of a uniform linear array (ULA).
  • ULA uniform linear array
  • the steering vector can represent the phase difference between the response of different antennas for the angle of arrival of a path.
  • the steering vector a( ⁇ k ) and the vector in the DFT matrix satisfy:
  • the angle vector is a steering vector of a uniform plane array (UPA).
  • the steering vector may be, for example, a steering vector including horizontal angle and pitch angle information.
  • ⁇ k is the horizontal angle, Is the elevation angle
  • u k is the unit sphere basis vector corresponding to the k-th angle:
  • the angle vector is denoted as a( ⁇ k ).
  • the channel measured by the terminal device according to the received precoding reference signal is equivalent to the channel loaded with the angle vector.
  • loading the angle vector a( ⁇ k ) to the downlink channel V can be expressed as Va( ⁇ k ).
  • the transmitting device is configured with a single-polarized antenna
  • the number of transmitting antenna ports is T; the number of frequency domain units is N, N ⁇ 1, and N is an integer.
  • the channel estimated based on the received reference signal may be a matrix with a dimension of N ⁇ T. If the reference signal is spatially pre-coded based on an angle vector, the angle vector can be loaded on the reference signal respectively. Since the dimension of the angle vector is T ⁇ 1, for one receiving port of the receiving device, the dimension of the channel estimated based on the precoding reference signal may be N ⁇ 1. And on each receiving port and each frequency domain unit, the dimension of the channel estimated by the terminal device based on the received precoding reference signal may be 1 ⁇ 1.
  • angle vector is a form for representing the angle proposed in this application.
  • the angle vector is only named for the convenience of distinguishing from the time delay, and should not constitute any limitation in this application. This application does not exclude the possibility of defining other names in future agreements to represent the same or similar meanings.
  • Time delay vector It can also be called a frequency domain vector.
  • the delay vector can be used as a vector that represents the changing law of the channel in the frequency domain.
  • multipath delay causes frequency selective fading.
  • the time delay of the signal in the time domain can be equivalent to the phase gradual change in the frequency domain.
  • the Fourier transform can transform the signal into the frequency domain:
  • the signal can be transformed into the frequency domain by Fourier transform: Among them, ⁇ is the frequency variable, and the phase rotation corresponding to different frequencies is different; t and tt 0 represent the time delay.
  • the change law of the phase of the channel in each frequency domain unit can be represented by a time delay vector.
  • the delay vector can be used to represent the delay characteristics of the channel.
  • Precoding the reference signal based on the delay vector can essentially refer to the phase rotation of each frequency domain unit in the frequency domain based on the elements in the delay vector, so as to pre-encode the reference signal to pre-encode the frequency caused by the multipath delay.
  • Precoding the reference signal based on different delay vectors is equivalent to performing phase rotation on each frequency domain unit of the channel based on different delay vectors. Moreover, the angle of phase rotation of the same frequency domain unit can be different. In order to distinguish between different time delays, the network device may separately precode the reference signal based on each of the L time delay vectors.
  • the length of the delay vector is N, and N may refer to the number of frequency domain units used to carry the reference signal (for example, a reference signal that has not been precoded or a reference signal that has been precoded), N ⁇ 1, and N is an integer.
  • the delay vector is taken from the DFT matrix.
  • Each vector in the DFT matrix can be referred to as a DFT vector.
  • O f is the oversampling factor, O f ⁇ 1; k is the index of the DFT vector, and satisfies 0 ⁇ k ⁇ O f ⁇ N-1 or 1-O f ⁇ N ⁇ k ⁇ 0.
  • the delay vector is denoted as b( ⁇ l ).
  • a resource block is taken as an example of a frequency domain unit to illustrate a specific process of frequency domain precoding on a reference signal.
  • RB resource block
  • each frequency domain unit only includes one RB for carrying a reference signal (for example, it may be referred to as a reference signal RB for short).
  • each frequency domain unit may include one or more RBs for carrying reference signals.
  • the network device may load the delay vector on the multiple RBs for carrying reference signals in each frequency domain unit.
  • the reference signal loaded with the delay vector can be transmitted to the terminal device through the downlink channel, the channel measured by the terminal device according to the received precoding reference signal is equivalent to the channel loaded with the delay vector.
  • the N elements in the delay vector can be loaded into N resource blocks (resource blocks, RB) on the reference signal. Loading the nth element in the delay vector onto the channel V (n) on the nth RB can be expressed as
  • the frequency domain precoding of the reference signal based on the delay vector may be performed before or after the resource mapping, which is not limited in this application.
  • Space-frequency matrix In this embodiment of the application, the space-frequency matrix is an intermediate quantity used to determine the precoding matrix.
  • the space-frequency matrix can be determined based on the receiving port or the transmission layer. Therefore, the space-frequency matrix can be determined by the weighted sum of one or more angle delay pairs, so the dimension of the space-frequency matrix can also be determined. It is N ⁇ T.
  • the space-frequency matrix can be referred to as the space-frequency matrix corresponding to the receiving port.
  • the space-frequency matrix corresponding to the receiving port can be used to construct the downlink channel matrix of each frequency domain unit, and then the precoding matrix corresponding to each frequency domain unit can be determined.
  • the channel matrix corresponding to a certain frequency domain unit may be, for example, a conjugate transpose of a matrix constructed from column vectors corresponding to the same frequency domain unit in the space frequency matrix corresponding to each receiving port. For example, extracting the nth column vector in the space-frequency matrix corresponding to each receiving port, and arranging it from left to right according to the order of the receiving ports, a matrix of dimension T ⁇ R can be obtained.
  • R represents the number of receiving ports, R ⁇ 1 and is an integer.
  • the channel matrix V (n) of the nth frequency domain unit can be obtained.
  • the relationship between the channel matrix and the space-frequency matrix will be described in detail below, and the detailed description of the relationship between the two will be omitted here.
  • the space-frequency matrix can be referred to as the space-frequency matrix corresponding to the transmission layer.
  • the space-frequency matrix corresponding to the transmission layer can be directly used to determine the precoding matrix corresponding to each frequency domain unit.
  • the precoding matrix corresponding to a certain frequency domain unit may be constructed by, for example, column vectors corresponding to the same frequency domain unit in the space-frequency matrix corresponding to each transmission layer. For example, extract the nth column vector in the space-frequency matrix corresponding to each transmission layer, and arrange it from left to right according to the order of the transmission layer to obtain a matrix of dimension T ⁇ Z.
  • Z represents the number of transmission layers, Z ⁇ 1 and is an integer. This matrix can be used as the precoding matrix W (n) of the nth frequency domain unit.
  • the precoding matrix determined by the channel measurement method provided in the embodiments of the present application may be a precoding matrix directly used for downlink data transmission; it may also undergo some beamforming methods, such as zero forcing (ZF). ), minimum mean-squared error (MMSE), maximum signal-to-leakage-and-noise (SLNR), etc., to obtain the final precoding matrix for downlink data transmission.
  • ZF zero forcing
  • MMSE minimum mean-squared error
  • SLNR maximum signal-to-leakage-and-noise
  • the precoding matrix involved in the following may all refer to a precoding matrix determined based on the channel measurement method provided in this application.
  • the space-frequency matrix is an intermediate quantity proposed based on the frequency domain continuity of the channel that can be used to construct the precoding matrix.
  • C represents the angle vector with K
  • Each angle vector in and the weighting coefficient corresponding to each delay vector in the L delay vectors constitute a coefficient matrix.
  • Each element in C can represent the weighting coefficient of a corresponding angle vector pair.
  • F H is the conjugate transpose matrix of the F.
  • P the number of frequency-domain units of the interval
  • the two designated frequency domain units may be equivalent to the frequency domain units used for the terminal to obtain CSI in the downlink reference signal resource indicated by the first indication information described in the embodiment of the present application.
  • T the number of sending ports, T is a positive integer
  • M the number of frequency domain unit groups, the frequency domain units it contains are frequency domain units for the terminal to obtain CSI
  • R the number of receiving ports, R is a positive integer
  • N the number of frequency domain units used to carry the reference signal, N is a positive integer
  • K angle vector number, K is a positive integer
  • L the number of delay vectors, L is a positive integer
  • the frequency domain unit identifier can be the identification information of the frequency domain unit (for example, ID number, identification index, etc.), or the location information of the frequency domain unit ( For example, location ID, location index, etc.), as long as the frequency domain unit can be identified, all fall under the concept category.
  • the frequency domain unit identifier can start with the number 0, indicating the first frequency domain unit. Indicating the frequency domain unit identifier is also equivalent to indicating the location information or identification information of the frequency domain unit, that is, indicating the frequency domain unit. Similarly, the group number of the frequency domain unit group can also start from the number 0, indicating the first frequency domain unit group.
  • the "group” in this application includes the actual group concept, and may also include a virtual group that groups objects with common characteristics together for ease of description, which does not necessarily have an actual group concept. It should be understood that a "group” may include one object or multiple objects.
  • first, second, third, fourth, fifth, sixth, seventh, and various numerical numbers in the present application are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application.
  • the objects referred to by the first, second, third, fourth, fifth, sixth, and seventh may be the same object, part of the same object, or different objects, such as the second information and the third information, It can refer to the same information or different information.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the instruction information is called the information to be instructed.
  • the information to be indicated can be directly indicated, such as the information to be instructed itself or Indicating the index of the information, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the arrangement order of various information agreed in advance (for example, the agreement stipulated), thereby reducing the indication overhead to a certain extent.
  • the agreement stipulates the distribution density of frequency domain units, which can be directly indicated
  • the initial frequency domain unit can be used to indicate other frequency domain units under the distribution density.
  • it can also identify the common parts of each information and give unified instructions, so as to reduce the instruction overhead caused by separately indicating the same information.
  • the specific instruction manner may also be various existing instruction manners, such as but not limited to the foregoing instruction manners and various combinations thereof.
  • the required instruction method can be selected according to specific needs.
  • the embodiment of the application does not limit the selected instruction method.
  • the instruction method involved in the embodiment of the application should be understood as covering that can make the instruction to be instructed Various methods for obtaining information to be indicated.
  • the information to be indicated may have other equivalent forms.
  • the indication of the number of groups for grouping frequency domain units may be expressed as the number of groups for grouping downlink reference signal ports, and vice versa.
  • the distribution density can be expressed as a position or identification increment mode, rule, etc.
  • the indication information of the information to be indicated may be sent together as a whole, or divided into multiple sub-information to be sent separately, and the sending period and/or sending timing of these sub-information may be the same or different.
  • the indication information may be indicated separately or jointly, for example, may be indicated separately by different bits in the bitmap, or indicated jointly by several bits in the bitmap.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, one or a combination of at least two of radio resource control signaling, media access control (MAC) layer signaling, and physical layer signaling.
  • radio resource control signaling such as packet radio resource control (RRC) signaling
  • MAC layer signaling for example, includes MAC control element (CE)
  • CE MAC control element
  • DCI downlink control information
  • pre-stored in the device for example, including terminal equipment and network equipment
  • the device for example, including terminal equipment and network equipment
  • saving may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • the RB may be a physical resource block (PRB) or a common resource block (CRB).
  • PRB physical resource block
  • CRB common resource block
  • the PRB is numbered with the start position in the resource (eg, bandwidth (BWP)) scheduled by the terminal device as a reference point
  • BWP bandwidth
  • the CRB is numbered with the start position of the broadband as the reference point.
  • FIG. 1 shows a schematic diagram of a communication system 100 applicable to the method provided in the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in the 5G system shown in FIG. 1; the communication system 100 may also include at least one terminal device, as shown in FIG. Terminal equipment 102 to 107.
  • the terminal devices 102 to 107 may be mobile or fixed.
  • the network device 101 and one or more of the terminal devices 102 to 107 can communicate through a wireless link.
  • Each network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area. For example, the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the network device 101 and the terminal devices 102 to 107 in FIG. 1 constitute a communication system.
  • the terminal devices can communicate directly.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D technology can be used for direct communication.
  • the terminal device 106 and the terminal device 107 may communicate with the terminal device 105 individually or at the same time.
  • the terminal devices 105 to 107 may also communicate with the network device 101, respectively. For example, it can directly communicate with the network device 101, as shown in the figure, the terminal devices 105 and 106 can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, as the terminal device 107 in the figure communicates with the network device via the terminal device 106 101 communication.
  • FIG. 1 exemplarily shows a network device, multiple terminal devices, and communication links between each communication device.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, for example, more or fewer terminal devices. This application does not limit this.
  • Each of the aforementioned communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, etc.). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, and the embodiment of the present application is not limited thereto.
  • the processing procedure of the downlink signal at the physical layer before transmission may be executed by a network device, or may be executed by a chip configured in the network device.
  • the following are collectively referred to as network devices.
  • Network equipment can process code words on physical channels.
  • the codeword may be coded bits that have been coded (for example, including channel coding).
  • the codeword is scrambling to generate scrambled bits.
  • the scrambled bits undergo modulation mapping (modulation mapping) to obtain modulation symbols.
  • Modulation symbols are mapped to multiple layers, or transmission layers, through layer mapping.
  • the modulation symbols after the layer mapping are precoding (precoding) to obtain a precoded signal.
  • the precoded signal is mapped to multiple REs after resource element (resource element, RE) mapping. These REs are then modulated by orthogonal frequency division multiplexing (OFDM) and then transmitted through an antenna port (antenna port).
  • OFDM orthogonal frequency division multiplexing
  • the network device 101 may send downlink reference signals to each terminal device to perform channel measurement and interference measurement.
  • Each terminal device reports channel state information CSI, including, for example, precoding matrix indicator (precoding matrix indicator). , PMI), rank indicator (Rank Indication, RI) and channel quality indicator (channel quality indicator, CQI), etc.; among them, the terminal device can tell the network device 101 the best precoding matrix for the current downlink transmission through the PMI .
  • the RI is used to tell the network device 101 the best number of layers for the current downlink transmission.
  • CQI represents the available modulation and coding scheme to ensure that the bit error rate of downlink data reception does not exceed a predetermined value after the recommended RI and PMI are adopted.
  • the CSI report may be reported to the network device 101 in a periodic manner, or may be reported in a non-periodic manner. The difference between the two methods lies in the way of configuring or triggering the report.
  • the reported CSI can also be used by network equipment to reconstruct the downlink channel.
  • the network equipment 101 first receives the sounding reference signal sent by the terminal equipment (for example, the terminal equipment 102) ( sounding reference signal, SRS), and use uplink SRS to estimate uplink and downlink reciprocity information (for example, angle information, delay information, etc.).
  • the base station side needs to use the uplink channel, Project on a spatial base (S) or frequency domain (F), as shown below
  • the network device 101 According to the size of the elements in the C UL after the projection, select at least one column vector corresponding to the S and F matrices, denoted as s and f; the network device 101 then obtains the information (for example, s, which has reciprocity between the uplink and the downlink) It can be regarded as angle information, and f, which can be regarded as delay information) is loaded on the downlink reference signal to notify the terminal device to measure and feed back the supplementary information that the network device 101 needs to obtain; the terminal device uses the downlink reference signal to estimate and feed back as a supplement Information (for example, it may be the full-band or partial sub-band complex amplitude corresponding to each port) CSI (for example C DL ); the network device uses the uplink and downlink information (for example, s and f) and CSI ( For example, C DL), the network device according to s, f, and C DL, configured c DL.
  • the information for example, s, which has reciprocity between
  • the above FDD is only an example, and this application does not limit the applicable scenarios.
  • the terminal device shown in the following embodiments can be replaced with a component (such as a chip or a chip system) configured in the terminal device.
  • the network device shown in the following embodiments can also be replaced with components (such as a chip or a chip system) configured in the network device. This is by no means restricting the improvement in the system in that the steps of each side of the interaction must be performed together.
  • the technical solution proposed in this application has improvements on each side of the system.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program can be run and recorded with the code of the method provided in the embodiments of the application to provide the method according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • FIG. 2 is a schematic flowchart of a method 200 for indicating channel state information (CSI) measurement according to an embodiment of the present application, shown from the perspective of device interaction.
  • the method 200 shown in FIG. 2 may include step 210 to step 230. The steps in the method 200 are described in detail below.
  • the network device In step 210, the network device generates first indication information, where the first indication information is used to indicate a frequency domain unit in a downlink reference signal resource for the terminal device to obtain CSI.
  • the network equipment can flexibly configure the frequency domain unit for the terminal equipment to perform CSI measurement in the downlink reference signal resource configured for the terminal equipment.
  • the frequency domain unit can have different division units, such as RB as the frequency domain unit and subband as the frequency domain unit. , Use subcarriers as frequency domain units and BWP as frequency domain units.
  • the downlink reference signal resource configured by the network device for the terminal occupies 8 frequency domain units from the frequency domain, and the identification information (such as identification index) or location information (such as location index) of these 8 frequency domain units From 0 to 7.
  • Fig. 3 is only an example. The example given in Fig. 3 is based on the downlink reference signal resource, and the starting frequency domain unit (the first frequency domain unit) of the downlink reference signal resource is taken as frequency domain unit 0. In this way, other frequency domain units are sequentially numbered relative to frequency domain unit 0; optionally, in the embodiment of the present application, the frequency domain unit may also be determined based on the frequency domain position in the system where the actual frequency domain unit is located, such as the actual downlink reference signal.
  • the starting frequency domain unit (the first frequency domain unit) of the resource starts from the 4th frequency domain unit in the system (its position index is frequency domain unit 3), and other frequency domain units are also based on the frequency domain in the system where they are actually located.
  • the domain location is determined. It can be understood that in different scenarios, the location information can be replaced with the identification information, or mutually represent, that is, the location information can be represented by the identification information, or the identification information can be represented by the location information.
  • the network device considers the system status (for example, reference signal port, system bandwidth, scheduling bandwidth, measurement bandwidth, resource usage rate, transmission power, etc.) and other factors according to preset rules, and instructs the terminal device to use the first indication information to obtain the frequency of CSI.
  • the domain unit that is, the first indication information can indicate which frequency domain units in the downlink reference signal resource the terminal device performs CSI measurement and/or calculation based on.
  • the network device may instruct the terminal device to perform CSI measurement and/or calculation based on frequency domain units 2, 4, 6, 8, and 10 through the first indication information.
  • the indication of the frequency domain unit by the first indication information may include direct indication, indirect indication, display indication, implicit indication, etc., and it is not restricted that the first indication information must carry the identification information of the frequency domain unit , Location information, or all related information. This will be explained in detail below.
  • step 220 the network device sends the first instruction information to the terminal device; the terminal device receives the first instruction information sent by the network device.
  • the network device sends the first indication information to the terminal device to instruct the terminal device to perform CSI acquisition in a more targeted manner.
  • the form of the indication information is not limited, and the indication can be realized through different indication methods.
  • the first indication information may be carried in at least one of the following: radio resource control (RRC) message; medium access control (MAC) control element (CE) and downlink control information (DCI).
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • step 230 the terminal device measures CSI on the indicated frequency domain unit based on the first indication information.
  • the terminal device can determine the frequency domain unit used to obtain CSI in the downlink reference signal resource according to the indication of the first indication information, and the terminal device can obtain the frequency domain unit for all downlink reference signal ports based on the frequency domain unit used to obtain CSI.
  • CSI so as to obtain information such as PMI; the terminal device can also obtain CSI based on the frequency domain unit corresponding to each group for obtaining CSI for different downlink reference signal port groups.
  • the division of the downlink reference signal port group will be described together when the indication mode is introduced below, and will not be repeated here.
  • the terminal device may process the measurement result on the frequency domain unit used for CSI measurement in an accumulated manner to obtain CSI. Specifically, the terminal device is based on The base station instructs to perform channel estimation on the received CSI-RS, and then accumulate and sum the channel estimation results corresponding to the frequency domain unit to obtain the measurement result; it can also be that the terminal device performs FFT or IFFT on the frequency domain unit , Take the DC component to obtain the CSI; specifically, the terminal device performs channel estimation on the received CSI-RS based on the instructions of the network device, and then performs IFFT/FFT on the channel estimation result corresponding to the frequency domain unit, and finally takes The nth point after IFFT/FFT is used as the measurement result, for example, the 0th point (that is, the DC component) is taken as the measurement result. It may also be other processing, which is not limited in this application, as long as the technical solution for obtaining CSI based on the indicated frequency domain unit measurement falls
  • the terminal device may report the obtained CSI to the network device.
  • the first indication information includes: second indication information, which is used to indicate a starting frequency domain unit among the frequency domain units used for obtaining CSI. It can be understood that through the indication of the second indication information, the frequency domain unit of the starting position in the frequency domain unit for the terminal device to obtain CSI can be determined.
  • the starting frequency domain unit its position information or identification information can be used.
  • the position of the starting frequency domain unit can be its relative position in the downlink reference signal resource, or its absolute position in the system; the identification of the starting frequency domain unit can be its reference signal in the downlink
  • the relative identifier in the resource can also be its absolute identifier in the system.
  • the downlink reference signal resource occupies only 8 frequency domain units in Figure 3 from the frequency domain, and the identification information (such as identification index) or position information (such as position index) of these 8 frequency domain units ranges from 0 to 7.
  • the identification information such as identification index
  • position information such as position index
  • Table 1 the indication method shown in Table 1 is used as an example for illustration. It should be understood that the embodiments of the present application are not limited to the example manner in Table 1. It should be noted that in the first method and all the methods mentioned below, the index is used as an example of identification information or location information for description.
  • the above-mentioned interpretation of the indication of the starting frequency domain unit may indicate an indication of its index, as shown in Table 1.
  • 0 means a frequency domain unit with an index of
  • 1 means a frequency domain unit with an index of 1.
  • 1 means the order of the downlink reference signal resource.
  • a frequency domain unit is a frequency domain unit with an index of 0. This application does not limit the interpretation of the instructions.
  • the terminal device can at least determine the starting frequency domain unit among the frequency domain units used to obtain the CSI. If the frequency domain unit used to obtain CSI by default and pre-arranged is from its initial frequency domain unit to the last frequency domain unit occupied by the downlink reference signal resource, then if the second indication information takes the value 010, pass the second The indication information indicates that the frequency domain unit used to obtain the CSI can be determined as the frequency domain unit whose index is 2, 3, 4, 5, 6, and 7.
  • the distribution density of the frequency domain units used to obtain the CSI in the downlink reference signal resource can be preset through a pre-appointed manner such as protocol agreement, for example, the distribution density is P frequency domain units per interval Distribution, P is an integer greater than or equal to 0. It can be understood that if the distribution density of frequency domain units used for terminal equipment to obtain CSI in the downlink reference signal resource is predetermined, then through the indication of the second indication information, it is possible to determine all frequencies used for obtaining CSI. Domain unit.
  • the first indication information includes: second indication information, used to indicate the start frequency domain unit in the frequency domain unit used to obtain CSI; and, third indication information, used to indicate that the frequency domain unit is in the The distribution density of the downlink reference signal resources. It can be understood that, different from the first method, the distribution density in the second method is flexibly configured through the indication information. For ease of description, it is assumed that the downlink reference signal resource occupies only 8 frequency domain units in Figure 3 from the frequency domain, and the identification information (such as identification index) or position information (such as position index) of these 8 frequency domain units ranges from 0 to 7.
  • the indication method shown in Table 2 is used as an example for illustration. It should be understood that the embodiment of the present application is not limited to the example manner in Table 2. It should be noted that in Table 2, the joint indication mode in which the second indication information and the third indication information are the same indication information is taken as an example. The optional second indication information and the third indication information may also be different indication information, respectively. Independent instructions.
  • the distribution density can represent the distribution of P frequency domain units per interval, or the distribution density can be represented as the distribution of Q frequency domain units.
  • Other definitions are also possible, as long as it can represent Any technical solutions for the distribution of frequency domain units fall within the scope of the embodiments of the present application.
  • the distribution density of 1 means the distribution of every frequency domain unit, that is, every frequency domain unit has 1 frequency domain unit for obtaining CSI, which can also be interpreted as the distribution of 0 frequency domain units per interval.
  • the frequency domain unit used to obtain the start of CSI is frequency domain unit 2 with index 2
  • other frequency domain units used to obtain CSI are frequency domain units with indexes 3, 4, 5, 6, and 7
  • the frequency domain unit used to obtain the start of CSI is frequency domain unit 1 with index 1
  • other frequency domain units used to obtain CSI are frequency domain units with indexes 3, 5, and 7
  • the frequency domain unit used to obtain the start of CSI is frequency domain unit 0 with an index of 0, and other frequency domain units used to obtain CSI are frequency domain units with an index of
  • the above-mentioned interpretation of the indication of the initial frequency domain unit may indicate an indication of its index, such as the interpretation of the indication in Table 1, and optionally, it may be different from the interpretation of the indication in Table 1, such as the interpretation of the indication in Table 2.
  • 1 represents the first frequency domain unit in the downlink reference signal resource, which is the frequency domain unit with an index of 0.
  • Reserved represents the reserved indication value, which can be reserved for other indications. It is only an example. In the indication, the status value of the corresponding field can be used all, or part of it can be used, and the reserved part is used for other indications. This embodiment All the indication methods in can be considered reserved or not.
  • the frequency domain unit used to obtain CSI can be determined according to the indication as the first frequency domain unit in the downlink reference signal resource, that is, the frequency domain with index 0 Unit 0, and the distribution density is every 2 frequency domain units, that is, every 2 frequency domain units has 1 frequency domain unit for obtaining CSI, or in other words, every interval 1 frequency domain unit is distributed. Then all frequency domain units used for CSI acquisition in the finally determined downlink reference signal resources are frequency domain units with indexes 0, 2, 4, and 6.
  • the second indication method can also flexibly configure the distribution density of the frequency domain units used to obtain the CSI compared to the first indication method.
  • the first indication information includes: fourth indication information, which is used to indicate the number of frequency domain unit groups into which the frequency domain unit for obtaining CSI is divided into frequency domain unit groups; each of the frequency domain unit groups corresponds to a different downlink reference signal port .
  • fourth indication information which is used to indicate the number of frequency domain unit groups into which the frequency domain unit for obtaining CSI is divided into frequency domain unit groups; each of the frequency domain unit groups corresponds to a different downlink reference signal port .
  • the third method is equivalent to dividing the frequency domain units used to obtain CSI.
  • these frequency domain unit groups correspond to different downlink reference signal ports, so grouping frequency domain units is also equivalent to The downlink reference signal ports are divided into groups.
  • these frequency domain unit groups correspond to all the downlink reference signal ports, that is, the downlink reference signal ports are not grouped, and the lower reference signal port is 32 ports as an example (the 32ports downlink reference signal port identifier is 0-31), according to the situation that the fourth indication information is 01 as shown in Table 3 below, the frequency domain units 0-7 of the downlink reference signal resource are divided into 4 groups, group 0: [0 4]:, group 1: [ 1 5], Group 2: [2 6], Group 3: [3 7], where the number in "[]" is the index of the frequency domain unit. All of the 4 groups of frequency domain units correspond to downlink reference signal ports 0-31.
  • ports 0-31 measure CSI on the frequency domain units of the 4 frequency domain unit groups respectively.
  • the feature of this scheme is that the terminal device accumulates ports 0-31 on the frequency domain units of group 0 to obtain 32 measurement coefficients. , Accumulate on the frequency domain unit of group 1 to obtain another 32 measurement coefficients, and then obtain 32 measurement coefficients on group 2 and group 3 respectively. In this way, using 32 ports, 128 measurement coefficients are obtained.
  • Mode 1 and Mode 2 do not limit the division of downlink reference signal ports.
  • the frequency domain unit for obtaining CSI indicated by the first indication information can be used for all downlink reference signal ports.
  • the reference signal port in the lower row is a 32 port (port).
  • the terminal The device can perform CSI acquisition on frequency domain units with indexes 0, 2, 4, and 6 for the 32ports downlink reference signal port.
  • the frequency domain units used to obtain the CSI may also be divided into frequency domain unit groups, corresponding to different downlink reference signal ports.
  • the number of frequency-domain unit groups divided into frequency-domain unit groups or the number of downlink reference signal port groups used to obtain CSI can be indicated by protocol agreement or signaling, which can be determined according to corresponding rules (protocol agreement or signaling indication)
  • protocol agreement or signaling The association relationship between the frequency domain unit group and the downlink reference signal port group can optionally be implemented by combining mode one/mode two with mode three/mode four.
  • the downlink reference signal resource occupies only 8 frequency domain units in Figure 3 from the frequency domain, and the identification information (such as identification index) or position information (such as position index) of these 8 frequency domain units ranges from 0 to 7.
  • the indication method shown in Table 3 is used as an example.
  • the frequency domain unit grouping corresponds to all the downlink reference signal ports.
  • the text has been illustrated by examples, and the following description mainly focuses on the case where the frequency domain unit group corresponds to different downlink reference signal ports, which is equivalent to the case where the downlink reference signal ports are also divided into groups. It should be understood that the embodiment of the present application is not limited to the example manner in Table 3.
  • the fourth indication information it can be determined that there are several groups of frequency domain units used for terminal equipment to obtain CSI in the downlink reference signal resources, because the frequency domain unit groups correspond to different downlink reference signal ports, that is, the downlink reference signal ports are determined
  • the number of groups to be grouped For example, indicating 10, it can be determined that the 8 frequency domain units with indexes 0-7 are divided into 2 groups, which are respectively used for CSI acquisition of different downlink reference signal ports.
  • each of the frequency domain unit groups and different downlink reference signal ports may be indicated by the fifth indication information included in the first indication information, or may be preset. It can be understood that the corresponding relationship between each of the frequency domain unit groups and different downlink reference signal ports may be preset, such as predefined by a protocol, or may be flexibly configured.
  • the protocol stipulates that the downlink reference signal ports are grouped equally, and the sequence of each group corresponds to the sequence of frequency domain unit grouping (that is, the group number of the downlink reference signal port corresponds to the group number of the frequency domain unit from small to large. Large), the downlink reference signal port still uses 32ports as an example.
  • the protocol can also stipulate that the group number of the downlink reference signal port corresponds to the group number of the frequency domain unit from small to large.
  • 32ports are divided into 2 groups, where group number 0 represents the first group, including port numbers 0-15, group number 1 represents the second group, including port numbers 16-31, and group number 0 in the frequency domain unit group Represents the first group, including frequency domain units 0-3, group number 1 represents the second group, including frequency domain units 4-7, it can be determined that ports 0-15 obtain CSI based on frequency domain units 4-7, and ports 16-31 are based on Frequency domain units 0-3 acquire CSI.
  • the foregoing examples of corresponding relationships do not limit the embodiments of the present application, and the embodiments of the present application may also have other corresponding relationships.
  • Table 4 can be used for illustration.
  • Table 4 a joint indication manner in which the fourth indication information and the fifth indication information are the same indication information is taken as an example.
  • the optional fourth indication information and the fifth indication information may also be different indication information, which are independently indicated respectively.
  • relation 1 The corresponding relation in Table 4 is relation 1, which means that the group number of the downlink reference signal port from small to large corresponds to the group number of the frequency domain unit from small to large, and relation 2 represents the group number of the downlink reference signal port from small to large. Corresponding to the group number of the frequency domain unit in ascending order. It can be understood that these two correspondences are just examples. For example, there may also be a correspondence between the group number of the port and the group number of the frequency domain unit, or it may specifically indicate that the port group number x corresponds to the frequency domain unit group number i, etc. . It can be seen that the corresponding relationship can be flexibly configured through the fifth indication information.
  • the first indication information includes: fourth indication information, used to indicate the number of frequency domain unit groups that the frequency domain unit used to obtain CSI is divided into; and, sixth indication information, used to indicate the The first group of starting frequency domain units in the frequency domain unit group for obtaining the CSI; each of the frequency domain unit groups corresponds to a different downlink reference signal port. It can be understood that if the division of the frequency domain unit group for the user to obtain the CSI is not fixed starting from the first frequency domain unit among all the frequency domain units of the downlink reference signal resource, then the sixth indication information can be flexibly configured for Acquire the frequency domain position of the frequency domain unit group of the CSI.
  • Table 5 uses Table 5 to illustrate. In Table 5, the joint indication manner in which the fourth indication information and the sixth indication information are the same indication information is taken as an example.
  • the optional fourth indication information and the fifth indication information may also be different indication information, which are independently indicated respectively.
  • the above-mentioned group 0 starting point means that for the frequency domain unit starting from the frequency domain unit group with the group number of 0 (ie, the first group of frequency domain units) in the frequency domain unit group, interpretation of its indication can indicate an indication of its index Interpretation of the instructions as in Table 1, or interpretation of the instructions in Table 2.
  • Table 5 the same instruction interpretation as in Table 2 is taken as an example.
  • 1 represents the first frequency domain unit in the downlink reference signal resource, which is Frequency domain unit with index 0. This application does not limit the interpretation of the instructions.
  • the indication information in Table 5 it can be determined that there are several groups of frequency domain units used for terminal equipment to obtain CSI in the downlink reference signal resources, and the starting frequency domain units in the first frequency domain unit group with the group number of 0, because The frequency domain unit group corresponds to different downlink reference signal ports, that is, the number of groups of downlink reference signal ports is determined.
  • the 8 frequency domain units with indexes 0-7 are divided into 2 groups, which are respectively used for CSI acquisition of different downlink reference signal ports, and the frequency domain unit group with group number 0 is obtained from the downlink reference signal resource Start with the second frequency domain unit in the middle, that is, the index of the frequency domain unit included in the frequency domain unit group with group number 0 is 1, 2, 3, 4; the frequency domain included in the frequency domain unit group with group number 1
  • the index of the unit is 5, 6, 7, 0.
  • the correspondence between each of the frequency domain unit groups and different downlink reference signal ports is indicated by the fifth indication information included in the first indication information, or is preset.
  • the protocol stipulates that the downlink reference signal ports are grouped equally, and the sequence of each group corresponds to the sequence of frequency domain unit grouping, then the instruction 101, It can be determined that the indices of the frequency domain units included in the frequency domain unit group of group number 0 are 1, 2, 3, and 4, which are used to obtain the CSI of the downlink reference signal ports numbered 0-15; the frequency domain unit group number is 1 The indices of the frequency domain units included in the domain unit group are 5, 6, 7, and 0, which are used to obtain the CSI of the downlink reference signal ports numbered 16-31.
  • the first indication information may further include the above fifth indication information, and Table 6 is used for exemplary description.
  • the corresponding relationship can be flexibly configured through the fifth indication information. For example, still taking 32ports as an example, then indicate 101, you can determine that the frequency domain unit index of the frequency domain unit group with group number 0 is 1, 2, 3, 4, which are used for downlink references numbered 16-31 Signal port CSI acquisition; the frequency domain unit group with group number 1 includes frequency domain unit indexes 5, 6, 7, 0, which are used for CSI acquisition of downlink reference signal ports numbered 0-15.
  • the distribution density of frequency domain units in each frequency domain unit group in the downlink reference signal resource can be preset through a pre-appointed manner such as agreement agreement, for example, the distribution density is every The frequency domain units are distributed at intervals of P, and P is an integer greater than or equal to 0. It can be understood that if the distribution density is predetermined, the scenario in which frequency domain units in the downlink reference signal resource can be flexibly grouped is expanded. Take Table 5 as an example. For example, the agreement stipulates that the distribution density is 1 frequency domain unit per interval.
  • the 8 frequency domain units with indexes 0-7 are divided into 2 groups, which are used for different
  • the CSI of the downlink reference signal port is obtained, and the frequency domain unit group with the group number 0 starts from the second frequency domain unit in the downlink reference signal resource, then based on the preset distribution density, the group number 0 can be determined
  • the indexes of the frequency domain units included in the frequency domain unit group are 1, 3, 5, and 7; the indexes of the frequency domain units included in the frequency domain unit group whose group number is 1 are 2, 4, 6, and 0.
  • Mode 1 for the description of the distribution density, please refer to Mode 1, which will not be repeated here.
  • the distribution density may be indicated by indication information, which is recorded as eighth indication information, similar to the third indication information in Manner 2.
  • the first indication information is also based on the examples in Table 5 or Table 6 above.
  • the eighth indication information may be included, which is used to indicate the distribution density of the frequency domain units in each of the frequency domain unit groups in the downlink reference signal resource. You can refer to the description of the second method above, which will not be repeated here.
  • the first indication information further includes seventh indication information, which is used to indicate the start frequency domain units of the other groups except the first group in the frequency domain unit group; according to the indication of the seventh indication information,
  • the frequency domain units used to obtain CSI in the downlink reference signal resources may be divided into groups without uniformity. For example, it is indicated that the above 8 frequency domain units are divided into 2 groups, the index of the starting frequency domain unit of group 0 is 2, and the index of the starting frequency domain unit of group 1 is 5, then the frequency included in group 0 can be determined The indices of the domain units are 2, 3, and 4, and the indices of the frequency domain units included in the group 1 are 5, 6, 7, and 0.
  • the predetermined condition may be:
  • mod means (G i +R 0 ) divided by M to take the remainder.
  • the predetermined condition may be:
  • mod means (G i +R 0 ) divided by M to take the remainder.
  • the frequency domain unit identifiers of the frequency domain units starting from the remaining groups can be determined, thereby determining the frequency domain units starting from the remaining groups.
  • the frequency domain unit identifier here may be location information (such as a location index) of the frequency domain unit, or identification information (such as an identification index).
  • the first indication information indicates the frequency domain unit by indicating the identifier or location of the frequency domain unit. It can be understood that if the indication overhead is not considered, the frequency domain unit used for the terminal device to obtain the CSI in the downlink reference signal resource can be directly indicated. Taking the reference signal resources in the lower row occupies 8 frequency domain units with indexes 0-7 as an example, the following table 7 is used as an example to illustrate.
  • the fifth mode is in the form of a bitmap to indicate different frequency domain units.
  • the first indication information takes a value of 0, which can indicate that the frequency domain unit is not A frequency domain unit used to obtain CSI;
  • the first indication information has a value of 1, which can indicate that the frequency domain unit is a frequency domain unit used to obtain CSI, so according to the example in Table 7 It can be determined that the index of the frequency domain unit used to obtain the CSI is 0, 2, 3, 5, 6.
  • the first indication information may implicitly indicate the frequency domain unit used to obtain CSI by indicating the measurement bandwidth, optionally the first indication information is configuration information of the measurement bandwidth, or the first indication information is indirectly Indicates the measurement bandwidth.
  • the protocol stipulates the corresponding relationship between the measurement bandwidth and the number of frequency domain unit groups as shown in Table 8 below. It also stipulates the specific location of each group of frequency domain units and the distribution density of each group of frequency domain units. For example, it is stipulated that the frequency domain units starting from the first group of frequency domain units and the frequency domain units starting from the remaining groups meet predetermined conditions.
  • the start frequency domain unit of the first group of frequency domain units is the first frequency domain unit in the downlink reference signal resource (that is, frequency domain unit 0 with an index of 0), and the rest of the groups except the first group start
  • the initial frequency domain unit satisfies a predetermined condition.
  • the predetermined condition can be, for example, (G i +R 0 )mod M.
  • At least one of the starting frequency domain unit of the first group of frequency domain units, the starting frequency domain units of the other groups except the first group, and the distribution density of each group of frequency domain units may also be indicated by the indication information.
  • the relationship between the instruction information and the first instruction information is not limited in this application.
  • the measurement bandwidth indicated by the network device through the first indication information is 10 MHz
  • the first group frequency is pre-arranged based on the protocol.
  • the starting position of the domain unit is the first frequency domain unit (frequency domain unit 0) in the downlink reference signal resource.
  • the frequency domain units of the remaining groups agreed by the agreement satisfy (G i +R 0 ) mod M, and each group of frequency domain units If the distribution density of the units is 1/M, the terminal device can determine that there are 4 groups of frequency domain units for obtaining CSI, the first group occupies frequency domain units 0,4; the second group occupies frequency domain units 1,5; third The group occupies frequency domain units 2, 6; the fourth group occupies frequency domain units 3, 7.
  • the protocol stipulates the corresponding relationship between the measurement bandwidth and the frequency domain unit distribution density P used to obtain CSI (refer to the description of P in the other manners above), which can be exemplified as shown in Table 9 below. And agree on the starting frequency domain unit position of the frequency domain unit used to obtain the CSI. For example, if the measurement bandwidth configured by the network device is 10MHz, and the protocol stipulates that the starting frequency domain unit is the first frequency domain unit (ie, frequency domain unit 0), the frequency domain unit used by the terminal device to obtain CSI is 0,4 .
  • the above measurement bandwidth can be indicated by adding a new field or signaling, or can be achieved by the CSI-FrequencyOccupation configuration in CSI-RS-ResourceMapping of RRC signaling.
  • the corresponding relationship between the measurement bandwidth and the number of frequency domain unit groups or distribution density in the above table is only used as a possible implementation manner, and the present invention is not limited to this.
  • the number of frequency domain unit groups or the distribution density may also be indicated by indication information, and the relationship between the indication information and the first indication information is not limited in this application.
  • the first indication information may implicitly indicate the frequency domain unit used to obtain CSI by indicating the number of CSI-RS ports.
  • the first indication information may be configuration information of the CSI-RS port, or
  • the first indication information indirectly indicates the number of CSI-RS ports.
  • the protocol stipulates the corresponding relationship between the number of CSI-RS ports and the number of frequency domain unit groups as shown in Table 10 below. It also stipulates the specific location of each group of frequency domain units and the distribution density of each group of frequency domain units. For example, it is stipulated that the frequency domain units starting from the first group of frequency domain units and the frequency domain units starting from the remaining groups meet predetermined conditions.
  • the starting frequency domain unit of the first group of frequency domain units is the first frequency domain unit in the downlink reference signal resource (that is, frequency domain unit 0 with an index of 0), and the rest of the groups except the first group start
  • the initial frequency domain unit satisfies a predetermined condition.
  • the predetermined condition can be, for example, (G i +R 0 )mod M.
  • At least one of the starting frequency domain unit of the first group of frequency domain units, the starting frequency domain units of the other groups except the first group, and the distribution density of each group of frequency domain units may also be indicated by the indication information.
  • the relationship between the instruction information and the first instruction information is not limited in this application.
  • the number of CSI-RS ports indicated by the network device through the first indication information is 16, and the number of CSI-RS ports indicated by the protocol is the first
  • the starting position of the group frequency domain unit is the first frequency domain unit (frequency domain unit 0), and the initial frequency domain units of the remaining groups agreed by the agreement satisfy (G i +R 0 ) mod M, the distribution of each group of frequency domain units If the density is 1/M, the terminal device can determine that there are 4 groups of frequency domain units used to obtain CSI.
  • the first group occupies frequency domain units 0 and 4; the second group occupies frequency domain units 1, 5; and the third group occupies frequency domain units. Domain units 2,6;
  • the fourth group occupies frequency domain units 3,7.
  • the corresponding relationship between the number of CSI-RS ports and the number of frequency domain unit groups can be as shown in Table 10, the more the number of ports, the greater the number of frequency domain unit groups, and the corresponding relationship as shown in Table 10' below. As shown, the more the number of ports, the less the number of frequency domain unit groups.
  • this application is not limited to the rules of these two correspondence relations, and these are only examples.
  • the protocol stipulates the correspondence between the number of CSI-RS ports and the frequency domain unit distribution density P used to obtain CSI (refer to the description of P in the other manners above), which can be exemplified as shown in Table 11 below. . And agree on the starting position of the frequency domain unit used to obtain the CSI.
  • the number of CSI-RS ports configured by the network device is 16 ports, and the protocol stipulates that the starting frequency domain unit is the first frequency domain unit (that is, frequency domain unit 0), and the frequency domain unit used for terminal equipment to obtain CSI is 0,4.
  • the corresponding relationship between the number of CSI-RS ports and the distribution density (P) can be as shown in Table 11, the more the number of ports, the sparser the distribution density (that is, the greater the number of frequency domain units P in the interval). It can also be the corresponding relationship as shown in the following Table 11', the more the number of ports, the more compact the distribution density (that is, the smaller the number of frequency domain units P of the interval).
  • Table 11 the more the number of ports, the more compact the distribution density (that is, the smaller the number of frequency domain units P of the interval).
  • the number of CSI-RS ports mentioned above can be indicated by adding a new field or signaling, or can be realized by configuring nrofPorts in CSI-RS-ResourceMapping of RRC signaling.
  • the corresponding relationship between the CSI-RS port and the number of frequency domain unit groups or distribution density in the above table is only used as a possible implementation manner, and the present invention is not limited to this.
  • the number of frequency domain unit groups or the distribution density may also be indicated by indication information, and the relationship between the indication information and the first indication information is not limited in this application.
  • the first indication information may implicitly indicate the frequency domain unit for obtaining CSI by indicating a CSI acquisition scheme based on the reciprocity of angle and time delay.
  • the first indication information is the CSI-RS port
  • the configuration information or the first indication information indirectly indicates the number of CSI-RS ports.
  • the protocol stipulates that when the first indication information indicates that the current CSI acquisition scheme is a CSI acquisition scheme based on reciprocal angle and delay, the frequency domain units are fixedly divided into M groups, and each group of frequency domain units is agreed upon The specific location of and the distribution density of each group of frequency domain units, for example, it is agreed that the start position of the first group of frequency domain units is the first frequency domain unit in the downlink reference signal resource (that is, frequency domain unit 0 with index 0), except for the first frequency domain unit.
  • the initial frequency domain units of the remaining groups outside one group satisfy a predetermined condition, and the predetermined condition may be, for example, (G i +R 0 ) mod M.
  • the terminal device can determine that the start position of the first group of frequency domain units is the first frequency domain unit (frequency domain unit 0) in the downlink reference signal resource.
  • the first group occupies Frequency domain units 0, 4; the second group occupies frequency domain units 1, 5; the third group occupies frequency domain units 2, 6; the fourth group occupies frequency domain units 3, 7.
  • the protocol stipulates that the first indication information configures the current CSI acquisition scheme to be a CSI acquisition scheme based on reciprocal angle and delay, the distribution density of frequency domain units (assumed to be denoted as P, for specific meaning, see the other above) Method description), and agree on the starting frequency domain unit used to obtain the CSI.
  • P the distribution density of frequency domain units
  • the starting position of the frequency domain unit is agreed based on the agreement as the first frequency in the downlink reference signal resource.
  • Domain unit frequency domain unit 0
  • the terminal device determines that the frequency domain unit used to obtain CSI is 0,4.
  • the content agreed in the foregoing agreement may also indicate at least one item through instruction information, and the relationship between the instruction information and the first instruction information is not limited in this application.
  • the eighth method mentioned above can be used in combination with the CSI-RS port and/or the measurement bandwidth.
  • the protocol stipulates that the frequency domain units are fixedly divided into M groups. And agree on the specific location and distribution density of each group of frequency domain units.
  • the starting frequency domain unit of the first group of frequency domain units is the first frequency domain unit in the downlink reference signal resource (that is, frequency domain unit 0 with index 0).
  • the initial frequency domain units of the other groups except the first group satisfy a predetermined condition, for example, it may be: (G i +R 0 ) mod M; the distribution density of each group of frequency domain units is 1/M.
  • a predetermined condition for example, it may be: (G i +R 0 ) mod M; the distribution density of each group of frequency domain units is 1/M.
  • the protocol stipulates the distribution density of frequency domain units used to acquire CSI (for example, denoted as P), and agree on the starting position of the frequency domain unit used to obtain the CSI.
  • the protocol stipulates that the frequency domain unit is fixedly divided into M groups of numbers, and agree on the specific location and distribution density of each group of frequency domain units.
  • the starting frequency domain unit of the first group of frequency domain units is the first frequency domain unit in the downlink reference signal resource (that is, the frequency domain unit with an index of 0).
  • Domain unit 0 the starting frequency domain units of the remaining groups except the first group meet a predetermined condition, for example: (G i +R 0 ) mod M; the distribution density of each group of frequency domain units is 1/M.
  • the protocol stipulates the distribution density of frequency domain units for acquiring CSI (for example, , Denoted as P), and agree on the starting position of the frequency domain unit used to obtain the CSI.
  • the network device instructs a CSI acquisition scheme based on reciprocal angle and delay
  • the measurement bandwidth is greater than, equal to, or less than a certain predetermined value
  • the number of CSI-RS ports is greater than or less than a certain
  • the agreement stipulates that the frequency domain units are fixedly divided into M groups, and the specific positions of each group of frequency domain units and the distribution density of each group of frequency domain units are stipulated.
  • the starting position of the first group of frequency domain units is the 0th frequency Domain units, the starting frequency domain units of the remaining groups except the first group meet the following predetermined condition: (G i +R 0 ) mod M; the distribution density of each group of frequency domain units is 1/M.
  • the protocol agrees to use
  • the distribution density of the frequency domain units for obtaining CSI is P, and the starting position of the frequency domain units for obtaining CSI is agreed upon.
  • the first indication information includes at least one of the following: indication information used to indicate the measurement bandwidth, indication information used to indicate the number of CSI-RS ports, and indication information based on angle and delay Huyi's CSI acquisition program. These are just information that can be delivered through a single signaling or multiple signaling; it can be the same indication information or different indication information, that is, the indication to be indicated can be a joint indication or an independent indication. Way; these indication information may be the first indication information, or part of the first indication information.
  • the CSI-RS is only an example of the downlink reference signal, and the present application is not limited to the CSI-RS, which may be other reference signals in the downlink reference signal.
  • the first indication information can be sent through a newly defined field, or it can be sent by multiplexing existing fields.
  • the first indication information is carried in the subband reporting configuration CSI-ReportingBand. It can be understood that the field has different values. Interpret to redefine, or use the first few bits of an existing field.
  • first indication information may be issued through one piece of signaling or multiple pieces of signaling, that is, the second indication information, the third indication information, the fourth indication information, and the fifth indication information included in the first indication information.
  • the indication information, the sixth indication information, the seventh indication information, and the eighth indication information are carried in multiple pieces of signaling.
  • first indication information, second indication information, third indication information, fourth indication information, fifth indication information, sixth indication information, seventh indication information, and eighth indication information may be the same indication information, Or different indication information, that is, the indication of the to-be-indicated information may be a joint indication or an independent indication.
  • the network device can flexibly configure CSI measurement according to the system status (for example, resource usage rate, transmission power, etc.) to control the acquisition of CSI. Therefore, it is beneficial for the terminal device to acquire the CSI in a more targeted manner in different situations based on the instruction.
  • the system status for example, resource usage rate, transmission power, etc.
  • the terminal device and/or the network device may perform part or all of the steps in the embodiments. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations.
  • each step may be performed in a different order presented in each embodiment, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the size of the sequence number of each step does not mean the order of execution.
  • the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present application.
  • Fig. 4 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a processing unit 1100 and a transceiving unit 1200.
  • the communication device 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device, or a component (such as a chip or a chip system, etc.) configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication device 1000 may include a unit for executing the method executed by the terminal device in the method 200 in FIG. 2.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 200 in FIG. 2.
  • the processing unit 1100 can be used to execute step 230 in the method 200
  • the transceiver unit 1200 can be used to execute step 220 in the method 200. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1200 in the communication device 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG.
  • the processing unit 1100 in 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the terminal device 2000 shown in FIG. 5.
  • the transceiver unit 1200 in the communication device 1000 can be implemented through an input/output interface, and the processing unit 1100 in the communication device 1000 can be implemented through the chip or chip.
  • the processor, microprocessor or integrated circuit integrated in the system is implemented.
  • the communication device 1000 may correspond to the network device in the above method embodiment, for example, it may be a network device, or a component (such as a chip or a chip system, etc.) configured in the network device.
  • the communication device 1000 may correspond to the network device in the method 200 according to the embodiment of the present application, and the communication device 1000 may include a unit for executing the method executed by the network device in the method 200 in FIG. 2.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 200 in FIG. 2.
  • the processing unit 1100 may be used to execute step 210 in the method 200
  • the transceiver unit 1200 may be used to execute step 220 in the method 200. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit in the communication device 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 3100 in the network device 3000 shown in FIG.
  • the processing unit 1100 in may be implemented by at least one processor, for example, may correspond to the processor 3200 in the network device 3000 shown in FIG. 6.
  • the transceiver unit 1200 in the communication device 1000 can be implemented through an input/output interface, and the processing unit 1100 in the communication device 1000 can be implemented through the chip or chip.
  • the processor, microprocessor or integrated circuit integrated in the system is implemented.
  • FIG. 5 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit 1100 in FIG. 4.
  • the aforementioned transceiver 2020 may correspond to the transceiver unit 1200 in FIG. 4.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 5 can implement various processes related to the terminal device in the method embodiment shown in FIG. 2.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, such as the terminal device's control of other components (for example, the control of the transceiver 2020); and the transceiver 2020 may be used to execute
  • the actions described in the foregoing method embodiments are the terminal device receiving from the network device or sending it to the network device.
  • the description in the previous method embodiment please refer to the description in the previous method embodiment, which will not be repeated here.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • Fig. 6 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 3200.
  • RRU 3100 may be referred to as a transceiver unit, which corresponds to the transceiver unit 1200 in FIG. 4.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 3200 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1100 in FIG. 4, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 6 can implement various processes involving network devices in the method embodiment shown in FIG. 2.
  • the operations and/or functions of the various modules in the base station 3000 are to implement the corresponding procedures in the foregoing method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the base station 3000 shown in FIG. 6 is only a possible form of network equipment, and should not constitute any limitation to this application.
  • the method provided in this application can be applied to other types of network equipment.
  • it may include AAU, it may also include CU and/or DU, or it may include BBU and adaptive radio unit (ARU), or BBU; it may also be customer premises equipment (CPE), or it may be
  • AAU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the CU and/or DU can be used to perform the actions described in the previous method embodiment implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiment to send to or receive from the terminal device Actions.
  • the AAU can be used to perform the network device described in the previous method embodiment to send to or receive from the terminal device Actions.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the aforementioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 2
  • the terminal equipment and network equipment respectively execute the method.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the embodiment shown in FIG. 2
  • the terminal equipment and network equipment respectively execute the method.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk, SSD
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道状态信息CSI测量的指示方法和通信装置。网络设备通过第一指示信息向终端设备指示下行参考信号资源中用于终端设备获得所述CSI的频域单元,基于所述第一指示信息,终端设备能够确定下行参考信号资源中哪些频域单元用于获得CSI,并基于所述频域单元进行测量,在所述频域单元上测量得到的CSI。网络设备可以根据系统状态灵活配置CSI测量,以控制CSI的获取。从而有利于终端设备基于指示,在不同情况下更有针对性的进行CSI获取。

Description

一种信道状态信息CSI测量的指示方法和通信装置 技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种信道状态信息CSI测量的指示方法和通信装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple output,Massive MIMO)技术中,例如网络设备可以通过预编码技术减小多用户之间的干扰以及同一用户的多个信号流之间的干扰,从而提高信号质量,实现空分复用,提高频谱利用率。因此,如预编码矩阵指示(precoding matrix indicator,PMI)、信道质量指示(channel quality indicator,CQI)等至少一种信道状态信息(channel state information,CSI)的获取尤为重要。
终端设备例如可以基于下行信道测量来确定预编码矩阵,并希望通过反馈,使得网络设备获得与终端设备确定的预编码矩阵相同或相近的预编码矩阵。具体地,终端设备例如可以通过反馈一个或多个空域向量、一个或多个频域向量以及一个或多个加权系数的方式来指示构建预编码矩阵。
在波束赋形(beamforming)技术下,网络设备对不同的用户设备(user equipment,UE)发送对应的下行参考信号,例如,信道状态信息参考信号(channel state information–reference signal,CSI-RS)来进行信道测量,并获得UE测量得到的CSI,来重构下行信道或预编码。然而,当基站需要获得众多UE的CSI时,通信开销会非常大,无法灵活进行控制,影响CSI获取方案的性能。
发明内容
本申请提供一种信道状态信息CSI测量的指示方法和通信装置,以期对CSI测量进行灵活控制。
第一方面,提供了一种信道状态信息CSI测量的指示方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的部件(如芯片或芯片系统等)执行。
具体地,该方法包括:接收来第一指示信息,所述第一指示信息用于指示下行参考信号资源中用于终端设备获得所述CSI的频域单元;基于所述第一指示信息,在所述频域单元上测量得到的所述CSI。
基于上述技术方案,网络设备可以根据系统状态(例如,参考信号端口、系统带宽、调度带宽、测量带宽、资源使用率、传输功率等)灵活配置CSI测量,以控制CSI的获取。从而有利于终端设备基于指示,在不同情况下更有针对性的进行CSI获取。
应理解,在所述频域单元上测量得到CSI,可以是终端设备通过累加的方式,处理所述用于获得CSI的所述频域单元上的测量结果,得到CSI;还可以是终端设备通过把所述频域单元做快速傅里叶变换(Fast Fourier Transform,FFT)或快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT),取直流分量,来得到CSI;具体来说,终端设备基 于网络设备指示,对接收到的CSI-RS进行信道估计,然后对所述频域单元对应的信道估计结果做IFFT/FFT,最后取IFFT/FFT后的第n点作为测量结果,例如取第0点(即直流分量)作为测量结果;还可以是其他处理,本申请并不做限制,只要基于所指示的频域单元进行测量获得CSI的技术方案皆落在本申请的保护范围。
第二方面,提供了一种信道状态信息CSI测量的指示方法。该方法例如可以由网络设备执行,或者,也可以由配置于网络设备中的部件(如芯片或芯片系统等)执行。
具体地,该方法包括:生成第一指示信息,所述第一指示信息用于指示下行参考信号资源中用于终端设备获得所述CSI的频域单元;发送所述第一指示信息。
基于上述技术方案,网络设备可以根据系统状态(例如,参考信号端口、系统带宽、调度带宽、测量带宽、资源使用率、传输功率等)灵活配置CSI测量,以控制CSI的获取。从而有利于终端设备基于指示,在不同情况下更有针对性的进行CSI获取。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息包括:第二指示信息,用于指示所述频域单元中起始的频域单元。可以理解,通过第二指示信息的指示,用于终端设备获得CSI的频域单元中起始位置的频域单元就可以被确定,对于起始的频域单元,可以通过其位置或标识进行指示,起始的频域单元的位置可以是其在下行参考信号资源中的相对位置,也可以是其在系统中的绝对位置;起始的频域单元的标识可以是其在下行参考信号资源中的相对标识,也可以是其在系统中的绝对标识。
结合第一方面或第二方面,在某些可能的实现方式中,所述用于终端设备获得CSI的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。可以理解,如果预先定好了用于终端设备获得CSI的频域单元在所述下行参考信号资源中的分布密度,那么通过所述第二指示信息的指示,不但可以确定用于终端设备获得CSI的频域单元中起始位置的频域单元,还能确定所述频域单元其余的频域单元。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息还包括:第三指示信息,用于指示所述频域单元在所述下行参考信号资源中的分布密度。可以理解,分布密度也可以通过指示来灵活配置,通过所述第三指示信息的指示,不但可以确定用于终端设备获得CSI的频域单元中起始位置的频域单元,还能确定所述频域单元其余的频域单元。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息包括:第四指示信息,用于指示所述频域单元被划分频域单元组的组数;
结合第一方面或第二方面,在某些可能的实现方式中,各所述频域单元组对应不同的下行参考信号端口。可以理解,通过第四指示信息,可以确定下行参考信号资源中有几组用于终端设备获得CSI的频域单元。根据各所述频域单元组对应不同的下行参考信号端口,就可以确定下行参考信号端口分组的组数。
结合第一方面或第二方面,在某些可能的实现方式中,各所述频域单元组对应相同的下行参考信号端口。
结合第一方面或第二方面,在某些可能的实现方式中,各所述频域单元组对应不同的下行参考信号端口,各所述频域单元组与不同的下行参考信号端口的对应关系通过所述第一指示信息包括的第五指示信息指示,或者预先设置。可以理解,各所述频域单元组与不 同的下行参考信号端口的对应关系可以是预先设置的,比如协议预定义的,也可以灵活配置。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息还包括:第六指示信息,用于指示所述频域单元组中第一组起始的频域单元。可以理解,如果用户获取CSI的频域单元组的划分并非是固定从下行参考信号资源的所有频域单元中第一个频域单元开始,那么通过第六指示信息的指示,可以灵活配置用于获取CSI的频域单元组的频域位置。
结合第一方面或第二方面,在某些可能的实现方式中,所述各所述频域单元组中的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。可以理解,如果P=0,用于获取CSI的所述频域单元在下行参考信号资源中的分布密度预设为无间隔分布,可以确定每组频域单元组中的频域单元在下行参考信号资源中就是相互邻接的;如果分布密度预设为每间隔P个频域单元分布,假设P=1,那么可以确定在每组频域单元组中的频域单元在下行参考信号资源中两两之间隔了1频域单元。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息还包括第七指示信息,用于指示所述频域单元组中除第一组外的其余组起始的频域单元;或所述频域单元组中除第一组外的其余组起始的频域单元预设为满足预定条件。可以理解,其余组的起始频域单元可以通过信令指示也可以预定义。
结合第一方面或第二方面,在某些可能的实现方式中,所述预定条件为:
(G i+R 0)mod M,
其中,G i为所述频域单元组的组号,i=0,1,2,……,M;R 0为所述频域单元组中第一组起始的频域单元的频域单元标识;M为所述频域单元组的组数。mod表示(G i+R 0)除以M取余。可以理解,通过上述预定条件,可以确定其余组其实的频域单元的单元标识,从而确定了其余组起始的频域单元。
应理解通过上述所有的指示方式,相比于对每一频域单元通过相应字段不同取值去直接指示,可以一定程度的节省指示开销。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息通过指示所述频域单元的标识或位置指示所述频域单元。可以理解,如果不考虑指示开销,可以直接指示下行参考信号资源中用于终端设备获得所述CSI的频域单元。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息包括以下至少一项:用于指示测量带宽的指示信息、用于指示下行参考信号端口数目的指示信息、用于指示基于角度和时延互易的CSI获取方案。可以通过第一指示信息这些信息中至少一项的指示,从而隐性指示下行参考信号资源中用于终端设备获得所述CSI的频域单元。
结合第一方面或第二方面,在某些可能的实现方式中,以下至少一项预先设置或通过第九指示信息指示:测量带宽与所述频域单元被划分频域单元组的组数之间的对应关系;测量带宽与所述频域单元分布密度之间的对应关系;下行参考信号端口数目与所述频域单元组的组数之间的对应关系;下行参考信号端口数与所述频域单元分布密度之间的对应关系;第一组起始的频域单元;除第一组外的其余组起始的频域单元;各组频域单元的分布密度;所述频域单元的分布密度;所述频域单元中起始的频域单元。
结合第一方面或第二方面,在某些可能的实现方式中,所述频域单元为资源块RB、 子带subband、子载波或带宽部分BWP。可以理解,对频域单元的定义,可以是以不同角度或不同单位来实现。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息承载在子带上报配置CSI-ReportingBand中。可以理解,第一指示信息可以通过新定义字段发送,也可以复用已有字段发送,对字段不同取值的解读进行重新定义。
应理解,上述第一指示信息可以是通过一条信令下发,或通过多条信令下发,即第一指示信息包括的第二指示信息、第三指示信息、第四指示信息、第五指示信息、第六指示信息、第七指示信息,承载在多条信令中。
应理解,上述第一指示信息、第二指示信息、第三指示信息、第四指示信息、第五指示信息、第六指示信息、第七指示信息,可以是同一指示信息,或不同指示信息,即,对待指示信息的指示可以是联合指示的方式,或者分别独立指示的方式。
应理解,所述第一指示信息可以承载在以下至少一项中:无线资源控制(radio resource control,RRC)消息;媒体接入控制(medium access control,MAC)控制元素(control element,CE)和下行控制信息(downlink control information,DCI)。所列举的信令仅为示例,不应对本申请构成任何限定。本申请对用于承载第一指示信息的具体信令不作限定。
第三方面,提供了一种通信装置。该通信装置包括用于执行第一方面任一种可能实现方式中的方法的各个模块或单元,例如,处理单元、收发单元。
第四方面,提供了一种通信装置。该通信装置包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。可选地,该收发器可以为收发电路、接收器、接收电路、发送器、发送电路等。可选地,该输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口、输入/输出电路、输入/输出管脚等,所述处理器可以是处理电路、逻辑电路等。
第五方面,提供了一种通信装置。该通信装置包括用于执行第二方面任一种可能实现方式中的方法的各个模块或单元,例如,处理单元、收发单元。
第六方面,提供了一种通信装置。该通信装置包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。可选地,该收发器可以为收发电路、接收器、接收电路、发送器、发送电路等。可选地,该输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口、输入/输出电路、输入/输出管脚等,所述处理器可以是处理电路、逻辑电路等。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面和第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面和第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例提供的信道状态信息CSI测量的指示方法的通信系统的架构示意图;
图2是本申请实施例提供的信道状态信息CSI测量的指示方法的示意性流程图
图3是本申请实施例提供的下行参考信号资源的频域单元示意图;
图4是本申请实施例提供的通信装置的示意性框图;
图5是本申请实施例提供的终端设备的结构示意图;
图6是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio Access Technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th Generation,6G)移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等,或者下一代通信6G系统中的基站等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU 划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,下面对本申请实施例中涉及到的术语做简单介绍。
1、预编码:网络设备可以在已知信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信 号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
应理解,本文中有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、信道互易性:在某些通信模式中,如时分双工(time division duplexing,TDD)中,上下行信道在相同的频域资源上不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道衰落是相同的。这就是上下行信道的互易性。基于上下行信道的互易性,网络设备可以根据上行参考信号,如探测参考信号(sounding reference signal,SRS),测量上行信道。并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵。
然而,在另一些通信模式中,如频分双工(frequency division duplexing,FDD)中,由于上下行信道的频带间隔远大于相干带宽,上下行信道不具有完整的互易性,利用上行信道来确定用于下行传输的预编码矩阵可能并不能够与下行信道相适配。但是,FDD模式下的上下行信道仍然具有部分的互易性,例如,角度的互易性和时延的互易性。因此,角度和时延也可以称为互易性参数。
信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。时延是无线信号在不同传输路径上的传输时间,由距离和速度决定,与无线信号的频域没有关系。信号在不同的传输路径上传输时,由于距离不同,存在不同的传输时延。由于网络设备与终端设备之间的物理位置是固定的,因而上下行信道的多径分布在时延上是相同的。因此,时延在FDD模式下的上下行信道可以认为是相同的,或者说,互易的。
此外,角度可以是指信号经由无线信道到达接收天线的到达角(angle of arrival,AOA),也可以是指通过发射天线发射信号的离开角(angle of departure,AOD)。在本申请实施例中,该角度可以是指上行信号到达网络设备的到达角,也可以是指网络设备发射下行信号的离开角。由于上下行信道在不同频率上的传输路径的互易,该上行参考信号的到达角和下行参考信号的离开角可以认为是互易的。
可选的,每个角度可以通过一个角度向量来表征。每个时延可通过一个时延向量来表征。因此,在本申请实施例中,一个角度向量可以表示一个角度,一个时延向量可以表示一个时延。
3、参考信号(reference signal,RS):参考信号也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是用于下行信道测量的信道状态信息参考信号(channel state information reference signal,CSI-RS),同步信号块(Synchronization Signal and Physical Broadcast Channel block,可表示为ss/pbch block,简称SSB)。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
本申请实施例中参考信号包括预编码参考信号和非预编码参考信号,预编码参考信号可以是进行预编码后得到的参考信号。其中,预编码具体可以包括波束赋形(beamforming)和/或相位旋转。其中,波束赋形例如可以通过基于一个或多个角度向量对下行参考信号进行预编码来实现,相位旋转例如可以通过将一个或多个时延向量对下行参考信号进行预编码来实现。
在本申请实施例中,基于一个或多个角度向量对下行参考信号进行预编码,也可以称为,将一个或多个角度向量加载到下行参考信号上,以实现波束赋形。基于一个或多个时延向量对下行参考信号进行预编码,也可以称为将一个或多个时延向量加载到下行参考信号上,以实现相位旋转。
4、端口(port):可以包括发送端口(或者称,发射端口)和/或接收端口。
其中,发送端口可以理解为被接收设备所识别的虚拟天线。是一种逻辑上的含义,针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。天线端口用于承载具体的物理信道和物理信号中至少一种。通过相同天线端口所发送的信号,无论这些信号是否是通过相同或不同的物理天线发送,他们在空间传输所经历的路径所对应的信道可视为相同或者相关(比如大尺度信道特性,如信道矩阵H,相同)。也就是说,在相同的天线端口所发送的信号,接收端在解调时可以认为其信道相同或者相关。也就是说,天线端口定义了在某个符号上的信道,两个符号的天线端口一样是说在一个符号上的信道可以通过另一个符号上的信道推知。
可选地,发送端口是经过波束赋形和相位旋转后的端口。例如,每个发送端口的参考信号可以是基于一个角度向量和一个时延向量对参考信号进行预编码得到的预编码参考信号。该发送端口也可以称为预编码参考信号的端口。
每个发送端口的参考信号可以通过一个或者多个频域单元传输。
接收端口可以理解为接收设备的接收天线。例如在下行传输中,接收端口可以是指终端设备的接收天线。
5、信道状态信息(channel state information,CSI):可以包括以下至少一项信息:信道质量指示(channel quality indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI),CSI-RS资源指示(CSI-RS resource indicator),同步信号块(SSB)资源指示(SS/PBCH block resource indicator,SSBRI),层指示(layer indicator,LI),秩指示(rank indicator,RI),参考信号接收功率(reference signal received power,RSRP)。RSRP可以是层1的RSRP(L1-RSRP)。在本申请中,信道状态信息还可以包括同步测量结果或同步测量结果的指示信息。
6、频域单元:在频域上占据一段带宽,频域单元包括不同类型,对应不同的划分单位,频域单元包括但不限于资源块(resource block,RB)、子带(subband)、子载波、带宽部分(bandwith part,BWP)。
7、角度向量:可以理解为用于对参考信号进行波束赋形的预编码向量。通过波束赋形,可以使得发送设备发射出来的参考信号具有一定的空间指向性。因此,基于角度向量对参考信号进行预编码的过程也可以视为是空间域(或简称,空域)预编码的过程。因此角度向量也可以称为空域向量、波束(beam)向量等。
基于一个或多个角度向量对参考信号进行预编码后得到的预编码参考信号的端口数 与角度向量的个数相同。当角度向量的个数K小于一个极化方向上的发射天线端口数T时,可以通过空域预编码来实现天线端口的降维,从而减小导频开销。其中K≥1,T≥1,且K、T均为整数。
角度向量可以是一长度为T的向量。
可选地,角度向量是离散傅里叶变换(Discrete Fourier Transform,DFT)向量。DFT向量可以是指DFT矩阵中的向量。
可选地,角度向量是DFT向量的共轭转置向量。DFT共轭转置向量可以是指DFT矩阵的共轭转置矩阵中的列向量。
可选地,角度向量是过采样DFT向量。过采样DFT向量可以是指过采样DFT矩阵中的向量。
在一种可能的设计中,该角度向量例如可以是NR协议TS 38.214版本15(release 15,R15)中类型II(type II)码本中定义的二维(2dimensions,2D)-DFT向量v l,m。换句话说,角度向量可以是2D-DFT向量或过采样2D-DFT向量。
下文示出了2D-DFT向量的一例。
Figure PCTCN2020079317-appb-000001
Figure PCTCN2020079317-appb-000002
其中,I 1为天线阵列中每一列(或行)中包含的同一极化方向的天线端口数,I 2为天线阵列中每一行(或列)包含的同一极化方向的天线端口数。在本实施例中,T=I 1×I 2。O 1和O 2为过采样因子。i 1和i 2满足0≤i 1≤(O 1×I 1-1),0≤i 2≤(O 2×I 2-1)。
可选地,角度向量是均匀线阵(uniform linear array,ULA)的导向矢量。如,
Figure PCTCN2020079317-appb-000003
其中,θ k为角度,k=1,2,……,K。K表示角度向量的个数;λ为波长,d为天线间距。
其中,导向矢量可以表示一条径的到达角在不同天线的响应存在的相位差。导向矢量a(θ k)与DFT矩阵中的向量
Figure PCTCN2020079317-appb-000004
满足:
Figure PCTCN2020079317-appb-000005
可选地,该角度向量是均匀面阵(uniform plane array,UPA)的导向矢量。该导向矢量例如可以是包含水平角和俯仰角信息的导向矢量。如,
Figure PCTCN2020079317-appb-000006
其中,θ k为水平角,
Figure PCTCN2020079317-appb-000007
为俯仰角;ρ t为第t个发射天线端口的三维坐标,t=1,2,……,T;u k为 第k个角度对应的单位球基矢量:
Figure PCTCN2020079317-appb-000008
下文中为方便说明,将角度向量记作a(θ k)。
在下行传输中,由于加载了角度向量的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了角度向量的信道。例如,将角度向量a(θ k)加载到下行信道V,可以表示为Va(θ k)。
假设发送设备配置有单极化天线,发射天线端口数为T;频域单元数为N,N≥1,且N为整数。则对于接收设备的一个接收端口来说,基于接收到的参考信号估计的信道可以是一个维度为N×T的矩阵。若基于一个角度向量对参考信号进行空域预编码,则可以将角度向量分别加载到参考信号上。由于角度向量的维度为T×1,故,对于接收设备的一个接收端口来说,基于预编码参考信号估计的信道的维度可以为N×1。并且在每个接收端口、每个频域单元上,终端设备基于接收到的预编码参考信号估计的信道的维度可以是1×1。
应理解,角度向量是本申请提出的用于表示角度的一种形式。角度向量仅为便于与时延区分而命名,而不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
8、时延向量:也可以称为频域向量。时延向量可用于表示信道在频域的变化规律的向量。如前所述,多径时延导致频率选择性衰落。由傅里叶变换可知,信号在时域上的时间延迟,可以等效到频域的相位渐变。
例如,对于信号g(t),由傅里叶变换可以将该信号变换到频域上:
Figure PCTCN2020079317-appb-000009
对于信号g(t-t 0),由傅里叶变换可将该信号变换到频域上:
Figure PCTCN2020079317-appb-000010
其中,ω为频率变量,不同频率对应的相位旋转不同;t和t-t 0表示时延。
该两个时延的信号可以表示为x(t)=g(t)+g(t-t 0),由此可以得到频率变量的函数
Figure PCTCN2020079317-appb-000011
令g(ω)≡1,可以得到
Figure PCTCN2020079317-appb-000012
因此,两个不同时延的信号造成了频域选择性衰落。
由于信道在各频域单元的相位变化与时延相关,故可将信道在各频域单元的相位的变化规律通过时延向量来表示。换句话说,该时延向量可用于表示信道的时延特性。
基于时延向量对参考信号进行预编码,实质上可以是指基于时延向量中的元素对频域上各个频域单元进行相位旋转,以通过预编码参考信号来对多径时延造成的频选特性进行预补偿。因此,基于时延向量对参考信号进行预编码的过程可以视为频域预编码的过程。
基于不同的时延向量对参考信号进行预编码,就相当于基于不同的时延向量对信道各个频域单元进行相位旋转。且,同一个频域单元相位旋转的角度可以不同。为了区分不同的时延,网络设备可以基于L个时延向量中的每个时延向量分别对参考信号进行预编码。
可选地,时延向量的长度为N,N可以是指用于承载参考信号(如,未经过预编码的参考信号或经过预编码的参考信号)的频域单元数,N≥1,且N为整数。
可选地,L个时延向量中的第l个时延向量可以表示为b(τ l),
Figure PCTCN2020079317-appb-000013
其中,l=0,1,……,L-1;L可以表示时延向量的个数;f 0,f 1,……,f N-1分别表示第0个、第1个至第N-1个频域单元的载波频率。
可选地,时延向量取自DFT矩阵。如
Figure PCTCN2020079317-appb-000014
该DFT矩阵中的每个向量可以称为DFT向量。
其中,O f为过采样因子,O f≥1;k为DFT向量的索引,并满足0≤k≤O f×N-1或者1-O f×N≤k≤0。
例如,当k<0时,b(τ l)与DFT矩阵中的向量u k可以满足:
b(τ l)=u kβ l
Figure PCTCN2020079317-appb-000015
其中
Figure PCTCN2020079317-appb-000016
Δf=f n-f n+1,1≤n≤N-1。
下文中为方便说明,将时延向量记作b(τ l)。
在本申请实施例中,为便于理解,以资源块(resource block,RB)作为频域单元的一例来说明对参考信号进行频域预编码的具体过程。当将RB作为频域单元的一例时,可以认为每个频域单元仅包括一个用于承载参考信号的RB(例如可以简称为参考信号RB)。事实上,每个频域单元可以包括一个或多个用于承载参考信号的RB。当每个频域单元中包括多个用于承载参考信号的RB时,网络设备可以将时延向量加载到每个频域单元中用于承载参考信号的多个RB上。
在下行传输中,由于加载了时延向量的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了时延向量的信道。在一种实现方式中,若基于长度为N的时延向量对参考信号进行频域预编码,则可以将该时延向量中的N个元素分别加载到承载于N个资源块(resource block,RB)上的参考信号上。将时延向量中的第n个元素加载到第n个RB上的信道V (n)上例如可以表示为
Figure PCTCN2020079317-appb-000017
需要说明的是,基于时延向量对参考信号进行频域预编码可以是在资源映射之前执行,也可以是在资源映射之后执行,本申请对此不作限定。
9、空频矩阵:在本申请实施例中,空频矩阵是用于确定预编码矩阵的一个中间量。
在本申请实施例中,空频矩阵可以基于接收端口确定,也可以基于传输层确定,所以空频矩阵可以由一个或多个角度时延对的加权和确定,故空频矩阵的维度也可以是N×T。
若空频矩阵基于接收端口确定,则该空频矩阵可以称为与接收端口对应的空频矩阵。与接收端口对应的空频矩阵可用于构建各频域单元的下行信道矩阵,进而可确定与各频域单元对应的预编码矩阵。与某一频域单元对应的信道矩阵例如可以是由各个接收端口对应的空频矩阵中对应于同一频域单元的列向量构造而成的矩阵的共轭转置。如,将各接收端口对应的空频矩阵中的第n个列向量抽取出来,按照接收端口的顺序由左向右排布可得到维度为T×R的矩阵,R表示接收端口数,R≥1且为整数。该矩阵经过共轭转置后可以得到第n个频域单元的信道矩阵V (n)。下文中会详细说明信道矩阵与空频矩阵的关系,这里暂且省略对二者关系的详细说明。
若空频矩阵基于传输层确定,则该空频矩阵可以称为与与传输层对应的空频矩阵。与传输层对应的空频矩阵可直接用于确定与各频域单元对应的预编码矩阵。与某一频域单元对应的预编码矩阵例如可以是由各个传输层对应的空频矩阵中对应于同一频域单元的列向量构造而成。如,将各传输层对应的空频矩阵中的第n个列向量抽取出来,按照传输层的顺序由左到右排布可得到维度为T×Z的矩阵,Z表示传输层数,Z≥1且为整数。该矩 阵可以作为第n个频域单元的预编码矩阵W (n)
需要说明的是,由本申请实施例提供的信道测量方法所确定的预编码矩阵可以是直接用于下行数据传输的预编码矩阵;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。下文中所涉及的预编码矩阵均可以是指基于本申请提供的信道测量方法确定的预编码矩阵。
对空频矩阵与下行信道矩阵、预编码矩阵的关系做简单说明。
空频矩阵是基于信道的频域连续性而提出的一种可用于构建预编码矩阵的中间量。空频矩阵H可满足:H=SCF H。其中,S表示一个或多个(例如,K个,K为正整数)角度向量构造的矩阵,例如S=[a(θ 1) a(θ 2) … a(θ K)],F表示一个或多个(例如,L个,L为正整数)时延向量构造的矩阵,例如F=[b(τ 1) b(τ 2) … b(τ L)],C表示与K个角度向量中的每个角度向量和L个时延向量中的每个时延向量对应的加权系数所构成的系数矩阵。C中的每一个元素可以表示所对应的一个角度向量对的加权系数。
在FDD模式下,由于时延和角度的上下行信道互易性,由上行信道测量得到的空频矩阵H UL可以表示为H UL=SC ULF H,由下行信道测量得到的空频矩阵H DL可以表示为H DL=SC DLF H。因此,在本申请实施例中,通过下行信道测量来确定和反馈下行信道对应的系数矩阵C DL,便可以确定与下行信道相适配的预编码矩阵。
统一说明,F H为所述F的共轭转置矩阵。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,为方便理解,下面对本申请中涉及到的主要参数做简单说明:
P:间隔的频域单元数,P为大于或等于0的整数,例如P=3,表示被指定的两个频域单元中间,隔着有3个频域单元。其中,被指定的两个频域单元,可以相当于本申请实施例中所描述的通过第一指示信息指示的下行参考信号资源中用于终端获得CSI的频域单元。
T:发送端口数,T为正整数;
M:频域单元组的组数,其包含的频域单元是用于终端获得CSI的频域单元
R:接收端口数,R为正整数;
N:用于承载参考信号的频域单元数,N为正整数;
K:角度向量数,K为正整数;
L:时延向量数,L为正整数;
第二,在本申请实施例中,为便于描述,对于频域单元标识,其可以是频域单元的标识信息(例如,ID号、标识索引等),也可以是频域单元的位置信息(例如,位置ID、位置索引等),只要能够标识频域单元的都落在该概念范畴下。频域单元标识可以从编号0开始,表示第一个频域单元。指示了频域单元标识,也相当于指示了频域单元的位置信息或标识信息,也就是指示了该频域单元。同样,频域单元组的组号,也可以从编号0开始,表示第一个频域单元组。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第三,本申请中的“组”包括实际存在的组概念,还可以包括为了便于描述将具有共 同特征的对象归在一起的虚拟组,其并不一定存在实际的组概念。应理解,“组”中可以包括一个对象或多个对象。
第四,本申请中第一、第二、第三、第四、第五、第六、第七以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,第一、第二、第三、第四、第五、第六、第七所指代的对象可以为同一对象、部分相同的对象、或不同对象,比如,第二信息和三信息,可以是指代同一信息,也可以是指代不同信息。
第五,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销,比如协议规定了频域单元的分布密度,通过直接指示起始频域单元,就能实现对该分布密度下其他频域单元的指示。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如对频域单元分组的组数指示可以表示为下行参考信号端口分组的组数,反之亦然。再例如分布密度可以表示为位置或标识递增方式、规则等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息的指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。此外,指示信息可以分别指示也可以联合指示,例如可以在bitmap中通过不同比特位分别指示,或者通过bitmap中的若干个比特位联合指示。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
第六,本申请对很多特性(例如CSI、RB、subband、子载波、BWP、角度以及时延等)所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
第七,“预设”、“预设置”、“预定”、“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第八,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第九,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第十,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第十一,在本申请实施例中,RB可以是物理资源块(PRB),也可以是公共资源块(common resource block,CRB)。本申请对此不作限定。其中PRB是以为终端设备调度的资源(如,带宽部分(bandwidth,BWP))中的起始位置为参考点进行编号的,CRB是以宽带的起始位置为参考点进行编号的。关于PRB和CRB的具体定义可以参考现有技术,为了简洁,这里不作详述。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的5G系统中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101 通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备106与网络设备101通信。
应理解,图1示例性地示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
上述各个通信设备,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
为了获得下行信道的信道状态信息,网络设备101可向各终端设备分别发送下行参考信号,进行信道测量和干扰测量,各终端设备上报信道状态信息CSI,包括例如:预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(Rank Indication,RI)和信道质量指示(channel quality indicator,CQI)等中的任意一项;其中,终端设备通过PMI可以告诉网络设备101当前下行传输的最佳预编码矩阵。通过RI告诉网络设备101当前下行传输的最佳层数。CQI表示在采用了建议的RI和PMI之后,为确保下行数据接收的误码率不超过预定值,可用的调制编码方案。CSI上报既可以以周期的方式上报给网络设备101,也可以以非周期的形式上报,两种方式的区别在于配置或触发报告的方式不同。
上报的CSI还可用于网络设备进行下行信道重构,例如,在一些通信模式中,如频分双工FDD中,网络设备101先接收终端设备(例如,终端设备102)发送的探测参考信号(sounding reference signal,SRS),并利用上行SRS估计出上下行具有互易性的信息(例如,角度信息、时延信息等),为了基于上行信道获取信道互易信息,基站侧需要将上行信道,在某个空域基底(S)或频域基底(F)上投影,如下所示
H UL=SC ULF H
根据投影后C UL中元素的大小,从S和F矩阵中选择对应至少一个列向量,记为s和f;网络设备101再将得到的上下行具有互易性的信息(例如,s,其可以看作角度信息,和f,其可以看作时延信息)加载到下行参考信号上,通知终端设备测量并反馈网络设备101需要获取的补充信息;终端设备利用下行参考信号估计并反馈作为补充信息(例如, 可以是每个端口对应的全带或部分子带复幅度)的CSI(例如C DL);网络设备利用所述上下行具有互易性的信息(例如s和f)和CSI(例如,C DL),网络设备根据s、f以及C DL,构造c DL。其中,c DL中非零元素来自C DL,具体位置由s和f确定。进而网络侧可根据H DL=Sc DLF H重建下行信道。以上FDD仅为示例,本申请对于适用的场景不做限定。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
下面将结合附图详细说明本申请实施例提供的信道状态信息(CSI)测量的指示方法。
应理解,下文仅为便于理解和说明,实施例均以终端设备与网络设备之间的交互为例详细说明本申请实施例提供的方法。但这不应对本申请提供的方法的执行主体构成任何限定。例如,下文实施例示出的终端设备可以替换为配置于终端设备中的部件(如芯片或芯片系统)等。下文实施例示出的网络设备也可以替换为配置于网络设备中的部件(如芯片或芯片系统)等。这也绝非限定系统中改进在于交互各侧的步骤必须合在一起执行,本申请提出的技术方案,在系统中每一侧均有改进。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
下面结合图2详细说明本申请实施例提供的信道状态信息测量的指示方法。图2是从设备交互的角度示出的本申请实施例提供的信道状态信息(CSI)测量的指示方法200的示意性流程图。图2示出的方法200可以包括步骤210至步骤230。下面详细说明方法200中的各步骤。
在步骤210中,网络设备生成第一指示信息,该第一指示信息用于指示下行参考信号资源中用于终端设备获得CSI的频域单元。
网络设备在给终端设备配置的下行参考信号资源中能够灵活配置终端设备进行CSI测量的频域单元,频域单元可以有不同的划分单位,比如以RB作为频域单元、以subband作为频域单元、以子载波作为频域单元、以BWP作为频域单元。
如图3所示,网络设备给终端配置的下行参考信号资源从频域上看占据8个频域单元,这8个频域单元的标识信息(如标识索引)或者位置信息(如位置索引)从0到7。可以理解,图3中仅为示例,图3给出的示例是以下行参考信号资源为参考,将下行参考信号资源的起始频域单元(第一个频域单元)作为频域单元0,这样其他频域单元相对于频域单元0顺序编号;可选的,本申请实施例中还可以以实际的频域单元所在系统中的频域位置来确定频域单元,例如实际的下行参考信号资源的起始频域单元(第一个频域单元)是从系统中第4个频域单元开始(其位置索引是频域单元3),其他频域单元也是根据其实际所在系统中的频域位置来确定。可以理解,在不同场景下,位置信息可以与标识信息相替换,或相互表示,即位置信息可以由标识信息表示,或者标识信息可以由位置信息表示。
网络设备根据预设规则考虑系统状态(例如,参考信号端口、系统带宽、调度带宽、测量带宽、资源使用率、传输功率等)等因素,通过第一指示信息指示终端设备用于获得CSI的频域单元,也就是说第一指示信息能够指示终端设备基于下行参考信号资源中哪些频域单元,进行CSI的测量和/或计算。比如,网络设备可以通过第一指示信息指示终端 设备基于频域单元2,4,6,8,10进行CSI的测量和/或计算。
第一指示信息对所述频域单元的指示,可以包括直接指示、间接指示、显示指示、隐含指示等不同的方式,并不限制第一指示信息中一定携带所述频域单元的标识信息、位置信息或全部相关信息。下文将具体说明。
在步骤220中,网络设备向终端设备发送所述第一指示信息;终端设备接收网络设备发送的所述第一指示信息。
网络设备向终端设备发送所述第一指示信息,以指示终端设备更有针对性的进行CSI获取。本申请实施例中,对于指示信息的形式不进行限制,其可以通过不同的指示方式实现指示。应理解,所述第一指示信息可以承载在以下至少一项中:无线资源控制(RRC)消息;媒体接入控制(MAC)控制元素(CE)和下行控制信息(DCI)。所列举的信令仅为示例,不应对本申请构成任何限定。
在步骤230中,终端设备基于所述第一指示信息,在所指示的频域单元上测量得到的CSI。
终端设备根据所述第一指示信息的指示,能够确定下行参考信号资源中用于获得CSI的频域单元,终端设备可以针对所有下行参考信号端口,基于用于获得CSI的频域单元,来获得CSI,从而可以获得PMI等信息;终端设备也可以针对不同的下行参考信号端口组,基于各组所对应的用于获得CSI的频域单元,来获得CSI。下行参考信号端口组的划分在下文介绍指示方式时会一并说明,在此不再赘述。
在用于获得CSI的频域单元上测量得到CSI,可以是终端设备通过累加的方式,处理所述用于CSI测量的所述频域单元上的测量结果,得到CSI,具体地,终端设备基于基站指示,对接收到的CSI-RS进行信道估计,然后对所述频域单元对应的信道估计结果累加求和,得到测量结果;还可以是终端设备通过把所述频域单元做FFT或IFFT,取直流分量,来得到CSI;具体来说,终端设备基于网络设备指示,对接收到的CSI-RS进行信道估计,然后对所述频域单元对应的信道估计结果做IFFT/FFT,最后取IFFT/FFT后的第n点作为测量结果,例如取第0点(即直流分量)作为测量结果。还可以是其他处理,本申请并不做限制,只要基于所指示的频域单元进行测量获得CSI的技术方案皆落在本申请的保护范围。
应理解,获得CSI后,终端设备可以将获得的CSI上报给网络设备。
下面对于上述第一指示信息的指示方式,给出集中示例性的介绍:
方式一:
所述第一指示信息包括:第二指示信息,用于指示所述用于获得CSI的频域单元中起始的频域单元。可以理解,通过第二指示信息的指示,用于终端设备获得CSI的频域单元中起始位置的频域单元就可以被确定,对于起始的频域单元,可以通过其位置信息或标识信息进行指示,起始的频域单元的位置可以是其在下行参考信号资源中的相对位置,也可以是其在系统中的绝对位置;起始的频域单元的标识可以是其在下行参考信号资源中的相对标识,也可以是其在系统中的绝对标识。为了便于描述,假设下行参考信号资源从频域上只占据图3中8个频域单元,这8个频域单元的标识信息(如标识索引)或者位置信息(如位置索引)从0到7,以频域单元的位置/标识是其在下行参考信号资源中的相对位置/标识为例,通过表1示出的指示方式举例说明。应理解,本申请实施例不限于表1的示例方式。需要说明的是,方式一及下文所提及的所有方式中,皆以索引作为标识信息或者 位置信息为例来进行描述。
表1
Figure PCTCN2020079317-appb-000018
应理解,上述对于起始频域单元的指示解读,可以表示对其索引的指示,如表1中的指示解读,举例来说,0表示索引为0的频域单元,1表示索引为1的频域单元,以此类推;可选的,还可以不同于表1中的指示解读,也可以表示对频域单元在下行参考信号资源中的排位指示,例如1表示下行参考信号资源中第一个频域单元,其即是索引为0的频域单元。本申请对指示解读不做限制。
可见,通过第二指示信息的指示,终端设备至少可以确定用于获得CSI的频域单元中起始的频域单元。如果默认、预先约定用于获得CSI的频域单元是从其起始的频域单元到下行参考信号资源所占据的最后一个频域单元,那么假如第二指示信息取值为010,通过第二指示信息的指示,可以确定用于获得CSI的频域单元为索引是2,3,4,5,6,7的频域单元。
进一步可选的,可以通过协议约定等预先约定的方式,预设所述用于获得CSI的频域单元在所述下行参考信号资源中的分布密度,例如分布密度是每间隔P个频域单元分布,P为大于或等于0的整数。可以理解,如果预先定好了用于终端设备获得CSI的频域单元在所述下行参考信号资源中的分布密度,那么通过所述第二指示信息的指示,就能够确定所有用于获得CSI的频域单元。例如,第二指示信息取值为010,协议规定用于获得CSI的频域单元,要么是其标识信息或位置信息对应奇数编号的频域单元,要么是对应偶数编号的频域单元,相当于约定了所述分布密度是每间隔1个频域单元分布,即P=1。可以理解这里的奇数编号和偶数编号,可以是基于相对索引而言,也可以是基于绝对索引而言,其只是一种规则的示例;那么通过第二指示信息010的指示,可以确定用于获得CSI的频域单元为索引是2,4,6的频域单元。再例如,第二指示信息取值为001,协议规定所述P=2,那么通过第二指示信息001的指示,可以确定用于获得CSI的频域单元为索引是1,4,7的频域单元。
应理解,上述分布密度的定义方式可以不同,例如分布密度可以表示每间隔P个频域单元分布,即两个用于获得CSI的频域单元之间有P个频域单元;再例如分布密度可以表示为每Q个频域单元分布,Q为大于或等于1的整数,即Q=P+1,例如用于获得CSI的起始的频域单元为频域单元2,如果Q=2,那么其他用于获得CSI的频域单元就为索引是4,6的频域单元;以上仅为示例,分布密度还可以有其他定义,只要能够表示频域单元的分布情况的任何技术方案皆落在本申请实施例的范围内。
需要说明的是以上示例不作为对本申请的限制。
方式二:
所述第一指示信息包括:第二指示信息,用于指示所述用于获得CSI的频域单元中起始的频域单元;和,第三指示信息,用于指示所述频域单元在所述下行参考信号资源中的分布密度。可以理解,不同于方式一,方式二中分布密度通过指示信息来灵活配置。为了便于描述,假设下行参考信号资源从频域上只占据图3中8个频域单元,这8个频域单元 的标识信息(如标识索引)或者位置信息(如位置索引)从0到7,以频域单元的位置/标识是其在下行参考信号资源中的相对位置/标识为例,通过表2示出的指示方式举例说明。应理解,本申请实施例不限于表2的示例方式。需要说明的是,表2中以第二指示信息和第三指示信息为同一指示信息的联合指示方式为例,可选的第二指示信息和第三指示信息也可以是不同的指示信息,分别独立指示。
表2
Figure PCTCN2020079317-appb-000019
同方式一,上述分布密度的定义方式可以不同,例如分布密度可以表示每间隔P个频域单元分布,或分布密度可以表示为每Q个频域单元分布,还可以有其他定义,只要能够表示频域单元的分布情况的任何技术方案皆落在本申请实施例的范围内。例如表2中,分布密度1,表示每1个频域单元分布,即每1个频域单元就有1个用于获得CSI的频域单元,也可以解读为每间隔0个频域单元分布,如用于获得CSI起始的频域单元为索引是2的频域单元2,那么其他用于获得CSI的频域单元为索引是3,4,5,6,7的频域单元;分布密度0.5表示每2个频域单元分布,即每2个频域单元就有1个用于获得CSI的频域单元,密度为1/2=0.5,也可以解读为每间隔1个频域单元分布,如用于获得CSI起始的频域单元为索引是1的频域单元1,那么其他用于获得CSI的频域单元为索引是3,5,7的频域单元;分布密度0.25表示每4个频域单元分布,即每4个频域单元就有1个用于获得CSI的频域单元,密度为1/4=0.25,也可以解读为每间隔3个频域单元分布,如用于获得CSI起始的频域单元为索引是0的频域单元0,那么其他用于获得CSI的频域单元为索引是4的频域单元。
上述对于起始的频域单元的指示解读,可以表示对其索引的指示,如表1中的指示解读,可选的,还可以不同于表1中的指示解读,如表2中的指示解读,例如1表示下行参考信号资源中第一个频域单元,其即是索引为0的频域单元。本申请对指示解读不做限制。其中Reserved表示被保留的指示值,可留给其他指示用,仅为一种示例,在指示中,相应字段的状态值可以全部使用,也可以使用部分,保留部分给其他指示用,本实施例中的所有指示方式皆可考虑Reserved的情况或不考虑。
以表2为例,举例说明,如果指示信息取值为110,那么根据指示可以确定用于获得CSI的频域单元为下行参考信号资源中第一个频域单元,即索引为0的频域单元0,并且分布密度为每2个频域单元分布,即每2个频域单元就有1个用于获得CSI的频域单元,或者说每间隔1个频域单元分布。那么最终确定的下行参考信号资源中所有用于CSI获得 的频域单位为索引是0,2,4,6的频域单元。
可见,指示方式二相对于指示方式一还能够灵活配置用于获得CSI的频域单元的分布密度。
方式三:
所述第一指示信息包括:第四指示信息,用于指示所述用于获得CSI的频域单元被划分频域单元组的组数;各所述频域单元组对应不同的下行参考信号端口。应理解方式三中相当于对用于获得CSI的频域单元进行了分组划分,作为一种可能实现方式,这些频域单元分组对应不同的下行参考信号端口,所以对频域单元分组也相当于对下行参考信号端口进行了分组划分。作为另一种可能实现方式,这些频域单元分组对应所有的下行参考信号端口,即不对下行参考信号端口分组,以下行参考信号端口为32端口(port)为例(32ports下行参考信号端口标识为0-31),通过下表3所示第四指示信息为01的情况,下行参考信号资源的频域单元0-7,被分4组,组0:[0 4]:,组1:[1 5],组2:[2 6],组3:[3 7],其中“[]”内的数字为频域单元的索引。在4组频域单元上均对应下行参考信号端口0-31。这样ports 0-31分别在4个频域单元组的频域单元上测量CSI,这种方案的特点是,终端设备对ports 0-31在组0的频域单元上累加,获得32个测量系数,在组1的频域单元上累加,获得另外32个测量系数,再在组2和组3上分别获得32个测量系数,这样利用32个ports,获得了128个测量系数,这种情况类似方式一和方式二,并不限制其要对下行参考信号端口进行划分,对于方式一和方式二例如其中第一指示信息指示的用于获得CSI的频域单元可以是用于所有下行参考信号端口的,以下行参考信号端口为32端口(port)为例,假如方式一或方式二下指示了用于获得CSI的频域单元为索引是0,2,4,6的频域单元,那么终端设备可以针对32ports的下行参考信号端口在索引是0,2,4,6的频域单元上进行CSI获取。当然,方式一和方式二中也可以对用于获得CSI的频域单元进行频域单元组的划分,对应不同的下行参考信号端口。例如,可以协议约定或信令指示用于获得CSI的频域单元被划分频域单元组的组数或者下行参考信号端口组的组数,根据对应规则(可协议约定或信令指示)可以确定频域单元组和下行参考信号端口组的关联关系,可选的,也可以将方式一/方式二,与方式三/方式四结合实现。下面同样,假设下行参考信号资源从频域上只占据图3中8个频域单元,这8个频域单元的标识信息(如标识索引)或者位置信息(如位置索引)从0到7,以频域单元的位置/标识是其在下行参考信号资源中的相对位置/标识为例,通过表3示出的指示方式举例说明,由于频域单元分组对应所有的下行参考信号端口的情况上文已示例说明,下文主要针对频域单元分组对应不同的下行参考信号端口,即相当于对下行参考信号端口也进行了分组划分的情况进行说明。应理解,本申请实施例不限于表3的示例方式。
表3
Figure PCTCN2020079317-appb-000020
可见,通过第四指示信息,可以确定下行参考信号资源中有几组用于终端设备获得CSI的频域单元,因为频域单元组对应不同的下行参考信号端口,也即确定了下行参考信号端口分组的组数。比如,指示10,可以确定索引0-7这8个频域单元被分为2组,分别 用于不同下行参考信号端口的CSI获取。
可选的,各所述频域单元组与不同的下行参考信号端口的对应关系可以通过所述第一指示信息包括的第五指示信息指示,或者预先设置。可以理解,各所述频域单元组与不同的下行参考信号端口的对应关系可以是预先设置的,比如协议预定义的,也可以灵活配置。例如,协议约定下行参考信号端口平均分组,每组先后顺序与频域单元分组的先后顺序对应(即,下行参考信号端口的组号由小到大分别对应频域单元的组号的由小到大),下行参考信号端口仍以32ports为例,如果指示10,那么可以确定索引0-7这8个频域单元被分为2组,32ports被分为2组,前16ports基于索引0-3的频域单元进行CSI获取,后16ports基于索引4-7的频域单元进行CSI获取;当然协议也可以约定下行参考信号端口的组号由小到大分别对应频域单元的组号的由大到小,例如32ports被分为2组,其中组号0表示第一组,包括端口编号0-15,组号1表示第二组,包括端口编号16-31,频域单元组中组号0表示第一组,包括频域单元0-3,组号1表示第二组,包括频域单元4-7,可以确定端口0-15基于频域单元4-7获取CSI,端口16-31基于频域单元0-3获取CSI。上述对应关系的举例,不对本申请实施例进行限制,本申请实施例还可以有其他对应关系。
结合第五指示信息指示,可以通过表4举例说明。表4中以第四指示信息和第五指示信息为同一指示信息的联合指示方式为例,可选的第四指示信息和第五指示信息也可以是不同的指示信息,分别独立指示。
表4
Figure PCTCN2020079317-appb-000021
表4中对应关系为关系1,表示下行参考信号端口的组号由小到大分别对应频域单元的组号的由小到大,关系2表示下行参考信号端口的组号由小到大分别对应频域单元的组号的由大到小。可以理解,这两种对应关系仅是示例,比如还可以有端口的组号奇偶与频域单元的组号奇偶的对应关系,或者是具体指示端口组号x对应频域单元组号i等等。可见通过第五指示信息能够灵活配置对应关系。
方式四:
所述第一指示信息包括:第四指示信息,用于指示所述用于获得CSI的频域单元被划分频域单元组的组数;和,第六指示信息,用于指示所述用于获得CSI的频域单元组中第一组起始的频域单元;各所述频域单元组对应不同的下行参考信号端口。可以理解,如果用户获取CSI的频域单元组的划分并非是固定从下行参考信号资源的所有频域单元中第一个频域单元开始,那么通过第六指示信息的指示,可以灵活配置用于获取CSI的频域单元组的频域位置。以下通过表5举例说明。表5中以第四指示信息和六指示信息为同一指示信息的联合指示方式为例,可选的第四指示信息和第五指示信息也可以是不同的指示信 息,分别独立指示。
表5
Figure PCTCN2020079317-appb-000022
上述组0起点,表示对频域单元组中组号为0的频域单元组(即,第一组频域单元)起始的频域单元,对其指示解读,可以表示对其索引的指示,如表1中的指示解读,或者如表2中的指示解读,表5中以与表2一样的指示解读为例,例如1表示下行参考信号资源中第一个频域单元,其即是索引为0的频域单元。本申请对指示解读不做限制。
通过表5的指示信息,可以确定下行参考信号资源中有几组用于终端设备获得CSI的频域单元,以及组号为0的第一个频域单元组中起始的频域单元,因为频域单元组对应不同的下行参考信号端口,也即确定了下行参考信号端口分组的组数。比如,指示101,可以确定索引0-7这8个频域单元被分为2组,分别用于不同下行参考信号端口的CSI获取,且组号为0的频域单元组从下行参考信号资源中第二个频域单元起始,也就是组号为0的频域单元组包括的频域单元的索引为1,2,3,4;组号为1的频域单元组包括的频域单元的索引为5,6,7,0。
可选的,各所述频域单元组与不同的下行参考信号端口的对应关系通过所述第一指示信息包括的第五指示信息指示,或者预先设置。具体可参见上述方式三的描述,此处简单举例说明,例如,仍以32ports为例,协议约定下行参考信号端口平均分组,每组先后顺序与频域单元分组的先后顺序对应,那么指示101,就可以确定组号为0的频域单元组包括的频域单元的索引为1,2,3,4,用于编号为0-15的下行参考信号端口的CSI获取;组号为1的频域单元组包括的频域单元的索引为5,6,7,0,用于编号为16-31的下行参考信号端口的CSI获取。
方式四下,第一指示信息还可以包括上述第五指示信息,以表6进行示例性说明。
表6
Figure PCTCN2020079317-appb-000023
表6中对应关系解读可参见表4的描述,此处不再赘述。可见通过第五指示信息能够灵活配置对应关系。例如,仍以32ports为例,那么指示101,就可以确定组号为0的频域单元组包括的频域单元的索引为1,2,3,4,用于编号为16-31的下行参考信号端口的CSI获取;组号为1的频域单元组包括的频域单元的索引为5,6,7,0,用于编号为0-15的下行参考信号端口的CSI获取。
可选的,与方式一类似,可以通过协议约定等预先约定的方式,预设各所述频域单元组中的频域单元在所述下行参考信号资源中的分布密度,例如分布密度是每间隔P个频域单元分布,P为大于或等于0的整数。可以理解,如果预先定了该分布密度,就扩展了下行参考信号资源中的频域单元可以灵活分组这种场景。以表5为例,例如,协议规定所述分布密度是每间隔1个频域单元分布,若指示101,可以确定索引0-7这8个频域单元被分为2组,分别用于不同下行参考信号端口的CSI获取,且组号为0的频域单元组从下行参考信号资源中第二个频域单元起始,那么基于预设的所述分布密度,可以确定组号为0的频域单元组包括的频域单元的索引为1,3,5,7;组号为1的频域单元组包括的频域单元的索引为2,4,6,0。对于分布密度的说明可参见方式一,此处不再赘述。
可选的,所述分布密度可以通过指示信息进行指示,记为第八指示信息,类似方式二中的第三指示信息,所述第一指示信息在上述表5或表6示例的基础上还可以包括第八指示信息,用于指示各所述频域单元组中的频域单元在所述下行参考信号资源中的分布密度。可参考上述方式二的描述,此处不再赘述。
可选的,所述第一指示信息还包括第七指示信息,用于指示所述频域单元组中除第一组外的其余组起始的频域单元;通过第七指示信息的指示,下行参考信号资源中的用于获得CSI的频域单元进行分组划分就可以是非均匀的。例如,指示了上述8个频域单元被分为2组,组0的起始频域单元的索引为2,组1的起始频域单元的索引为5,那么可以确定组0包括的频域单元的索引为2,3,4,组1包括的频域单元的索引为5,6,7,0。
可选的,还可以通过协议预先定义,所述频域单元组中除第一组外的其余组起始的频域单元满足预定条件。下面示例性的说明,例如所述预定条件可以为:
(G i+R 0)mod M,
其中,G i为所述频域单元组的组号,i=0,1,2,……,M;R 0为所述频域单元组中第一组起始的频域单元的频域单元标识;M为所述频域单元组的组数。mod表示(G i+R 0)除以M取余。
再如所述预定条件可以为:
(M i+R 0-G i)mod M,
其中,G i为所述频域单元组的组号,i=0,1,2,……,M;R 0为所述频域单元组中第一组起始的频域单元的频域单元标识;M为所述频域单元组的组数。mod表示(G i+R 0)除以M取余。可以理解,下文其他方式中示例的预定条件也可以替换为该条件,或者是其他条件,本申请不对预定条件进行限制。
可以理解,通过上述预定条件,根据指示信息确定第一组起始的频域单元,就可以确定其余组起始的频域单元的频域单元标识,从而确定了其余组起始的频域单元。可以理解,这里频域单元标识,可以是频域单位的位置信息(如位置索引),或标识信息(如标识索引)。
应理解通过上述方式一到方式四,相比于对每一频域单元通过相应字段不同取值去直 接指示的方式五,可以一定程度的节省指示开销。下面介绍方式五。
方式五:
所述第一指示信息通过指示所述频域单元的标识或位置指示所述频域单元。可以理解,如果不考虑指示开销,可以直接指示下行参考信号资源中用于终端设备获得所述CSI的频域单元。仍以下行参考信号资源占据索引0-7的8个频域单元为例,通过以下表7示例说明。
表7
Figure PCTCN2020079317-appb-000024
可见,方式五以比特图(bitmap)的形式,针对不同的频域单元分别指示,例如对于频域单元索引为1的频域单元,第一指示信息取值0,可以表示该频域单元不是用于获得CSI的频域单元;对于频域单元索引为3的频域单元,第一指示信息取值1,可以表示该频域单元是用于获得CSI的频域单元,所以根据表7示例的指示,可以确定用于获得CSI的频域单元的索引是0,2,3,5,6。
可见通过方式五的手段,虽然可能会增加指示开销,但是指示灵活度更高。
方式六:
所述第一指示信息可以通过指示测量带宽,隐性指示所述用于获得CSI的频域单元,可选的所述第一指示信息是测量带宽的配置信息,或者所述第一指示信息间接指示测量带宽。作为一种可实现方式,协议约定测量带宽与频域单元组数的对应关系如下表8所示的举例关系。并约定各组频域单元的具体位置以及各组频域单元的分布密度,例如约定第一组频域单元起始的频域单元和其余组起始的频域单元满足预定条件。举例来说,例如第一组频域单元的起始频域单元为下行参考信号资源中第一个频域单元(即索引为0的频域单元0),除第一组外的其余组起始的频域单元满足预定条件,预定条件例如可以是:(G i+R 0)mod M,其定义参见上述方式四中的描述;各组频域单元的分布密度类似以上方式的举例,可以表示为每Q个频域单元分布,可选的Q=M,可记为密度等于1/M。可以理解,第一组频域单元的起始频域单元、除第一组外的其余组起始的频域单元、各组频域单元的分布密度中的至少一项也可以通过指示信息来指示,该指示信息与第一指示信息的关系本申请不做限制。
仍以下行参考信号资源占据索引0-7的8个频域单元为例,基于表8的对应关系,网络设备通过第一指示信息指示的测量带宽为10MHz,以及基于协议预先约定第一组频域单元起始位置为下行参考信号资源中第一个频域单元(频域单元0),协议约定的其余组起始的频域单元满足(G i+R 0)mod M,各组频域单元的分布密度为1/M,则终端设备可以确定用于获得CSI的频域单元有4组,第一组占据频域单元0,4;第二组占据频域单元1,5;第三组占据频域单元2,6;第四组占据频域单元3,7。
表8
测量带宽 <5MHz ≥5MHz&<10MHz ≥10MHz&<20MHz ≥20MHz
频域单元组数(M) 1 2 4 8
作为另一种可能实现方式,协议约定测量带宽与用于获得CSI的频域单元分布密度P(参考上述其他方式中P的描述)的对应关系,示例性的可以如下表9所示。并约定用于获得CSI的频域单元的起始频域单元位置。例如,网络设备配置的测量带宽为10MHz,协议约定起始频域单元的位置为第一个频域单元(即频域单元0),则用于终端设备获得CSI的频域单元为0,4。
表9
测量带宽 <5MHz ≥5MHz&<10MHz ≥10MHz&<20MHz ≥20MHz
分布密度(P) 0 1 3 7
作为一种可实现方式,上述测量带宽可以通过新增字段或信令进行指示,也可以通过RRC信令的CSI-RS-ResourceMapping中的CSI-FrequencyOccupation配置实现。
应理解,上述表格中测量带宽与频域单元组数或分布密度的对应关系,仅作为一种可能实现方式,本发明并不限于此。此外,上述频域单元组数或分布密度也可以通过指示信息来指示,该指示信息与第一指示信息的关系本申请不做限制。
方式七:
所述第一指示信息可以通过指示CSI-RS端口数目,隐性指示所述用于获得CSI的频域单元,可选的所述第一指示信息是CSI-RS端口的配置信息,或者所述第一指示信息间接指示CSI-RS端口数目。作为一种可实现方式,协议约定CSI-RS端口数目与频域单元组数的对应关系如下表10所示的举例关系。并约定各组频域单元的具体位置以及各组频域单元的分布密度,例如约定第一组频域单元起始的频域单元和其余组起始的频域单元满足预定条件。举例来说,例如第一组频域单元的起始频域单元为下行参考信号资源中第一个频域单元(即索引为0的频域单元0),除第一组外的其余组起始的频域单元满足预定条件,预定条件例如可以是:(G i+R 0)mod M,其定义参见上述方式四中的描述;各组频域单元的分布密度类似以上方式的举例,可以表示为每Q个频域单元分布,可选的Q=M,可记为密度等于1/M。可以理解,第一组频域单元的起始频域单元、除第一组外的其余组起始的频域单元、各组频域单元的分布密度中的至少一项也可以通过指示信息来指示,该指示信息与第一指示信息的关系本申请不做限制。
仍以下行参考信号资源占据索引0-7的8个频域单元为例,基于表10的对应关系,网络设备通过第一指示信息指示的CSI-RS ports数目为16,以及基于协议约定第一组频域单元起始位置为第一个频域单元(频域单元0),协议约定的其余组起始的频域单元满足(G i+R 0)mod M,各组频域单元的分布密度为1/M,则终端设备可以确定用于获得CSI的频域单元有4组,第一组占据频域单元0,4;第二组占据频域单元1,5;第三组占据频域单元2,6;第四组占据频域单元3,7。
表10
CSI-RS端口数 [1,2,4] [8,12] [16,24] 32
频域单元组数(M) 1 2 4 8
可以理解,CSI-RS端口数与频域单元组数的对应关系,可以是如表10所示的端口数越多,频域单元组数越多的对应关系,还可以是如下表10’所示的,端口数越多,频域单元组数越少的对应关系。当然本申请也不限于这两种对应关系的规则,这些仅为示例。
表10’
CSI-RS端口数 [1,2,4] [8,12] [16,24] 32
频域单元组数(M) 8 4 2 1
作为另一种可能实现方式,协议约定CSI-RS端口数与用于获得CSI的频域单元分布密度P(参考上述其他方式中P的描述)的对应关系,示例性的可以如下表11所示。并约定用于获得CSI的频域单元的起始位置。例如,网络设备配置的CSI-RS端口数为16ports,协议约定起始频域单元的位置为第一个频域单元(即频域单元0),则用于终端设备获得CSI的频域单元为0,4。
表11
CSI-RS端口数 [1,2,4] [8,12] [16,24] 32
分布密度(P) 0 1 3 7
可以理解,CSI-RS端口数与分布密度(P)的对应关系,可以是如表11所示的端口数越多,分布密度越稀疏(即间隔的频域单元数P越大)的对应关系,还可以是如下表11’所示的,端口数越多,分布密度越紧凑(即间隔的频域单元数P越小)的对应关系。当然本申请也不限于这两种对应关系的规则,这些仅为示例。
表11’
CSI-RS端口数 [1,2,4] [8,12] [16,24] 32
分布密度(P) 7 3 1 0
作为一种可实现方式,上述CSI-RS端口数可以通过新增字段或信令进行指示,也可以通过RRC信令的CSI-RS-ResourceMapping中的nrofPorts配置实现。
应理解,上述表格中CSI-RS端口与频域单元组数或分布密度的对应关系,仅作为一种可能实现方式,本发明并不限于此。此外,上述频域单元组数或分布密度也可以通过指示信息来指示,该指示信息与第一指示信息的关系本申请不做限制。
方式八:
所述第一指示信息可以通过指示基于角度和时延互易的CSI获取方案,隐性指示所述用于获得CSI的频域单元,可选的所述第一指示信息是CSI-RS端口的配置信息,或者所述第一指示信息间接指示CSI-RS端口数目。作为一种可实现方式,协议约定当第一指示信息指示当前CSI获取方案为基于角度和时延互易的CSI获取方案时,频域单元固定划分为M组数,并约定各组频域单元的具体位置以及各组频域单元的分布密度,例如约定第一组频域单元起始位置为下行参考信号资源中第一个频域单元(即索引为0的频域单元0),除第一组外的其余组起始的频域单元满足预定条件,预定条件例如可以是:(G i+R 0)mod M,其定义参见上述方式四中的描述。各组频域单元的分布密度类似以上方式的举例,可以表示为每Q个频域单元分布,可选的Q=M,可记为密度等于1/M。
仍以下行参考信号资源占据索引0-7的8个频域单元为例,假设,M=4,当网络设备配置基于角度和时延互易的CSI获取方案时,基于如上示例给出的协议约定,终端设备可以确定第一组频域单元起始位置为下行参考信号资源中第一个频域单元(频域单元0),用于获得CSI的频域单元为4组,第一组占据频域单元0,4;第二组占据频域单元1,5;第三组占据频域单元2,6;第四组占据频域单元3,7。
作为另一种可能实现方式,协议约定第一指示信息配置当前CSI获取方案为基于角度 和时延互易的CSI获取方案时,频域单元的分布密度(假设记为P,具体含义参见上述其他方式说明),并约定用于获得CSI的频域单元的起始频域单元。以协议约定P=3为例,当网络设备通过第一指示信息指示基于角度和时延互易的CSI获取方案时,基于协议约定频域单元起始位置为下行参考信号资源中第一个频域单元(频域单元0),则终端设备确定用于获得CSI的频域单元为0,4。可以理解,上述协议约定的内容也可以通过指示信息来指示其中至少一项,该指示信息与第一指示信息的关系,本申请不做限制。
应理解,上述方式八可以与CSI-RS端口和/或测量带宽组合使用。作为一种可实现方式,当网络设备指示基于角度和时延互易的CSI获取方案时,且测量带宽大于、等于或小于某个预定值时,协议约定频域单元固定划分为M组数,并约定各组频域单元的具体位置和分布密度,例如第一组频域单元的起始频域单元为下行参考信号资源中第一个频域单元(即索引为0的频域单元0),除第一组外的其余组起始的频域单元满足预定条件,例如可以是:(G i+R 0)mod M;各组频域单元的分布密度为1/M。或当网络设备指示基于角度和时延互易的CSI获取方案时,且测量带宽大于、等于或小于某个预定值时,协议约定用于获取CSI的频域单元的分布密度(例如,记为P),并约定用于获取CSI的频域单元的起始位置。
作为另一种可实现方式,当网络设备指示基于角度和时延互易的CSI获取方案时,且CSI-RS端口数目大于、等于或小于某个预定值时,协议约定频域单元固定划分为M组数,并约定各组频域单元的具体位置和分布密度,例如第一组频域单元的起始频域单元为下行参考信号资源中第一个频域单元(即索引为0的频域单元0),除第一组外的其余组起始的频域单元满足预定条件,例如可以是:(G i+R 0)mod M;各组频域单元的分布密度为1/M。或当网络设备指示基于角度和时延互易的CSI获取方案时,且CSI-RS端口数目大于、等于或小于某个预定值时,协议约定用于获取CSI的频域单元的分布密度(例如,记为P),并约定用于获取CSI的频域单元的起始位置。
作为另一种可实现方式,当网络设备指示基于角度和时延互易的CSI获取方案时,且测量带宽大于、等于或小于某个预定值时,且CSI-RS端口数目大于或小于某个预定值时,协议约定频域单元固定划分为M组数,并约定各组频域单元的具体位置以及各组频域单元的分布密度,例如第一组频域单元起始位置为第0频域单元,除第一组外的其余组起始的频域单元满足如下预定条件:(G i+R 0)mod M;各组频域单元的分布密度为1/M。或当网络设备指示基于角度和时延互易的CSI获取方案时,且测量带宽大于、等于或小于某个预定值时,且CSI-RS端口数目大于或小于某个预定值时,协议约定用于获取CSI的频域单元的分布密度为P,并约定用于获取CSI的频域单元的起始位置。
可见,对于上述方式六至八,所述第一指示信息包括以下至少一项:用于指示测量带宽的指示信息、用于指示CSI-RS端口数目的指示信息、用于指示基于角度和时延互易的CSI获取方案。这些只是信息可以通过一条信令下发,或通过多条信令下发;可以是同一指示信息,或不同指示信息,即,对待指示信息的指示可以是联合指示的方式,或者分别独立指示的方式;这些指示信息可以就是第一指示信息,或是第一指示信息中的部分。
对于上述方式六至八中,CSI-RS仅为下行参考信号的示例,本申请不限于CSI-RS,其可以是下行参考信号中的其他参考信号。
对于上述方式一至方式五:
可选的,第一指示信息可以通过新定义字段发送,也可以复用已有字段发送,例如所 述第一指示信息承载在子带上报配置CSI-ReportingBand中,可以理解对字段不同取值的解读进行重新定义,或者利用已有字段的前几个比特。
应理解,上述第一指示信息可以是通过一条信令下发,或通过多条信令下发,即第一指示信息包括的第二指示信息、第三指示信息、第四指示信息、第五指示信息、第六指示信息、第七指示信息、第八指示信息,承载在多条信令中。
应理解,上述第一指示信息、第二指示信息、第三指示信息、第四指示信息、第五指示信息、第六指示信息、第七指示信息、第八指示信息,可以是同一指示信息,或不同指示信息,即,对待指示信息的指示可以是联合指示的方式,或者分别独立指示的方式。
通过本申请的实施例,网络设备可以根据系统状态(例如,资源使用率、传输功率等)灵活配置CSI测量,以控制CSI的获取。从而有利于终端设备基于指示,在不同情况下更有针对性的进行CSI获取。
应理解,在上文各实施例中,终端设备和/或网络设备可以执行各实施例中的部分或全部步骤。这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照各实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。且,各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图4是本申请实施例提供的通信装置的示意性框图。如图4所示,该通信装置1000可以包括处理单元1100和收发单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如芯片或芯片系统等)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200中的终端设备,该通信装置1000可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,处理单元1100可用于执行方法200中的步骤230,收发单元1200可用于执行方法200中的步骤220。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图5中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图5中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的收发单元1200可以通过输入/输出接口实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如芯片或芯片系统等)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200中的网络设备,该通信装置1000可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且, 该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,处理单元1100可用于执行方法200中的步骤210,收发单元1200可用于执行方法200中的步骤220。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元可通过收发器实现,例如可对应于图6中示出的网络设备3000中的收发器3100,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图6中示出的网络设备3000中的处理器3200。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的收发单元1200可以通过输入/输出接口实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图5是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图4中的处理单元1100对应。
上述收发器2020可以与图4中的收发单元1200对应。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图5所示的终端设备2000能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,如终端设备对其他部件的控制(例如,对收发器2020的控制);而收发器2020可以用于执行前面方法实施例中描述的终端设备从网络设备接收或向网络设备发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个, 所述音频电路还可以包括扬声器2082、麦克风2084等。
图6是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图4中的收发单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图4中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图6所示的基站3000能够实现图2所示方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图6所示出的基站3000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述 任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中终端设备和网络设备分别执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中终端设备和网络设备分别执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述 计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (66)

  1. 一种信道状态信息CSI测量的指示方法,其特征在于,所述方法包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示下行参考信号资源中用于终端设备获得所述CSI的频域单元;
    基于所述第一指示信息,在所述频域单元上测量得到的所述CSI。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括:
    第二指示信息,用于指示所述频域单元中起始的频域单元。
  3. 根据权利要求2所述的方法,其特征在于,所述用于终端设备获得CSI的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  4. 根据权利要求2所述的方法,其特征在于,所述第一指示信息还包括:
    第三指示信息,用于指示所述频域单元在所述下行参考信号资源中的分布密度。
  5. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括:
    第四指示信息,用于指示所述频域单元被划分频域单元组的组数。
  6. 根据权利要求5所述的方法,其特征在于,各所述频域单元组对应不同的下行参考信号端口,各所述频域单元组与不同的下行参考信号端口的对应关系通过所述第一指示信息包括的第五指示信息指示,或者预先设置。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一指示信息还包括:
    第六指示信息,用于指示所述频域单元组中第一组起始的频域单元。
  8. 根据权利要求6或7所述的方法,其特征在于,所述各所述频域单元组中的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  9. 根据权利要求7所述的方法,其特征在于,
    所述第一指示信息还包括第七指示信息,用于指示所述频域单元组中除第一组外的其余组起始的频域单元;或
    所述频域单元组中除第一组外的其余组起始的频域单元预设为满足预定条件。
  10. 根据权利要求8所述的方法,其特征在于,所述预定条件为:
    (G i+R 0)mod M,
    其中,G i为所述频域单元组的组号,i=0,1,2,……,M;R 0为所述频域单元组中第一组起始的频域单元的频域单元标识;M为所述频域单元组的组数。mod表示(G i+R 0)除以M取余。
  11. 根据权利要求1所述的方法,其特征在于,所述第一指示信息通过指示所述频域单元的标识或位置指示所述频域单元。
  12. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括以下至少一项:
    用于指示测量带宽的指示信息、用于指示下行参考信号端口数目的指示信息、用于指示基于角度和时延互易的CSI获取方案。
  13. 根据权利要求12所述的方法,其特征在于,以下至少一项预先设置或通过第九指示信息指示:
    测量带宽与所述频域单元被划分频域单元组的组数之间的对应关系;
    测量带宽与所述频域单元分布密度之间的对应关系;
    下行参考信号端口数目与所述频域单元组的组数之间的对应关系;
    下行参考信号端口数与所述频域单元分布密度之间的对应关系;
    第一组起始的频域单元;
    除第一组外的其余组起始的频域单元;
    各组频域单元的分布密度;
    所述频域单元的分布密度;
    所述频域单元中起始的频域单元。
  14. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一指示信息承载在子带上报配置CSI-ReportingBand中。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,所述频域单元为资源块RB、子带subband、子载波或带宽部分BWP。
  16. 一种信道状态信息CSI测量的指示方法,其特征在于,所述方法包括:
    生成第一指示信息,所述第一指示信息用于指示下行参考信号资源中用于终端设备获得所述CSI的频域单元;
    发送所述第一指示信息。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息包括:
    第二指示信息,用于指示所述频域单元中起始的频域单元。
  18. 根据权利要求17所述的方法,其特征在于,所述用于终端设备获得CSI的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  19. 根据权利要求17所述的方法,其特征在于,所述第一指示信息还包括:
    第三指示信息,用于指示所述频域单元在所述下行参考信号资源中的分布密度。
  20. 根据权利要求16所述的方法,其特征在于,所述第一指示信息包括:
    第四指示信息,用于指示所述频域单元被划分频域单元组的组数。
  21. 根据权利要求20所述的方法,其特征在于,各所述频域单元组对应不同的下行参考信号端口,各所述频域单元组与不同的下行参考信号端口的对应关系通过所述第一指示信息包括的第五指示信息指示,或者预先设置。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第一指示信息还包括:
    第六指示信息,用于指示所述频域单元组中第一组起始的频域单元。
  23. 根据权利要求21或22所述的方法,其特征在于,所述各所述频域单元组中的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  24. 根据权利要求22所述的方法,其特征在于,
    所述第一指示信息还包括第七指示信息,用于指示所述频域单元组中除第一组外的其余组起始的频域单元;或
    所述频域单元组中除第一组外的其余组起始的频域单元预设为满足预定条件。
  25. 根据权利要求23所述的方法,其特征在于,所述预定条件为:
    (G i+R 0)mod M,
    其中,G i为所述频域单元组的组号,i=0,1,2,……,M;R 0为所述频域单元组中第一组起始的频域单元的频域单元标识;M为所述频域单元组的组数。mod表示(G i+R 0)除以M取余。
  26. 根据权利要求16所述的方法,其特征在于,所述第一指示信息通过指示所述频域单元的标识或位置指示所述频域单元。
  27. 根据权利要求16所述的方法,其特征在于,所述第一指示信息包括以下至少一项:
    用于指示测量带宽的指示信息、用于指示下行参考信号端口数目的指示信息、用于指示基于角度和时延互易的CSI获取方案。
  28. 根据权利要求27所述的方法,其特征在于,以下至少一项预先设置或通过第九指示信息指示:
    测量带宽与所述频域单元被划分频域单元组的组数之间的对应关系;
    测量带宽与所述频域单元分布密度之间的对应关系;
    下行参考信号端口数目与所述频域单元组的组数之间的对应关系;
    下行参考信号端口数与所述频域单元分布密度之间的对应关系;
    第一组起始的频域单元;
    除第一组外的其余组起始的频域单元;
    各组频域单元的分布密度;
    所述频域单元的分布密度;
    所述频域单元中起始的频域单元。
  29. 根据权利要求16-26任一项所述的方法,其特征在于,所述第一指示信息承载在子带上报配置CSI-ReportingBand中。
  30. 根据权利要求16-28任一项所述的方法,其特征在于,所述频域单元为资源块RB、子带subband、子载波或带宽部分BWP。
  31. 一种信道状态信息CSI测量的指示装置,其特征在于,所述装置包括:
    收发单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示下行参考信号资源中用于终端设备获得所述CSI的频域单元;
    处理单元,用于基于所述第一指示信息,在所述频域单元上测量得到的所述CSI。
  32. 根据权利要求31所述的装置,其特征在于,所述第一指示信息包括:
    第二指示信息,用于指示所述频域单元中起始的频域单元。
  33. 根据权利要求32所述的装置,其特征在于,所述用于终端设备获得CSI的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  34. 根据权利要求32所述的装置,其特征在于,所述第一指示信息还包括:
    第三指示信息,用于指示所述频域单元在所述下行参考信号资源中的分布密度。
  35. 根据权利要求31所述的装置,其特征在于,所述第一指示信息包括:
    第四指示信息,用于指示所述频域单元被划分频域单元组的组数。
  36. 根据权利要求35所述的装置,其特征在于,各所述频域单元组对应不同的下行参考信号端口,各所述频域单元组与不同的下行参考信号端口的对应关系通过所述第一指示信息包括的第五指示信息指示,或者预先设置。
  37. 根据权利要求35或36所述的装置,其特征在于,所述第一指示信息还包括:
    第六指示信息,用于指示所述频域单元组中第一组起始的频域单元。
  38. 根据权利要求36或37所述的装置,其特征在于,所述各所述频域单元组中的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  39. 根据权利要求37所述的装置,其特征在于,
    所述第一指示信息还包括第七指示信息,用于指示所述频域单元组中除第一组外的其余组起始的频域单元;或
    所述频域单元组中除第一组外的其余组起始的频域单元预设为满足预定条件。
  40. 根据权利要求38所述的装置,其特征在于,所述预定条件为:
    (G i+R 0)mod M,
    其中,G i为所述频域单元组的组号,i=0,1,2,……,M;R 0为所述频域单元组中第一组起始的频域单元的频域单元标识;M为所述频域单元组的组数。mod表示(G i+R 0)除以M取余。
  41. 根据权利要求31所述的装置,其特征在于,所述第一指示信息通过指示所述频域单元的标识或位置指示所述频域单元。
  42. 根据权利要求31所述的装置,其特征在于,所述第一指示信息包括以下至少一项:
    用于指示测量带宽的指示信息、用于指示下行参考信号端口数目的指示信息、用于指示基于角度和时延互易的CSI获取方案。
  43. 根据权利要求42所述的装置,其特征在于,以下至少一项预先设置或通过第九指示信息指示:
    测量带宽与所述频域单元被划分频域单元组的组数之间的对应关系;
    测量带宽与所述频域单元分布密度之间的对应关系;
    下行参考信号端口数目与所述频域单元组的组数之间的对应关系;
    下行参考信号端口数与所述频域单元分布密度之间的对应关系;
    第一组起始的频域单元;
    除第一组外的其余组起始的频域单元;
    各组频域单元的分布密度;
    所述频域单元的分布密度;
    所述频域单元中起始的频域单元。
  44. 根据权利要求31-41任一项所述的装置,其特征在于,所述第一指示信息承载在子带上报配置CSI-ReportingBand中。
  45. 根据权利要求31-43任一项所述的装置,其特征在于,所述频域单元为资源块RB、子带subband、子载波或带宽部分BWP。
  46. 一种信道状态信息CSI测量的指示装置,其特征在于,所述装置包括:
    处理单元,用于生成第一指示信息,所述第一指示信息用于指示下行参考信号资源中用于终端设备获得所述CSI的频域单元;
    收发单元,用于发送所述第一指示信息。
  47. 根据权利要求46所述的装置,其特征在于,所述第一指示信息包括:
    第二指示信息,用于指示所述频域单元中起始的频域单元。
  48. 根据权利要求47所述的装置,其特征在于,所述用于终端设备获得CSI的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  49. 根据权利要求47所述的装置,其特征在于,所述第一指示信息还包括:
    第三指示信息,用于指示所述频域单元在所述下行参考信号资源中的分布密度。
  50. 根据权利要求46所述的装置,其特征在于,所述第一指示信息包括:
    第四指示信息,用于指示所述频域单元被划分频域单元组的组数。
  51. 根据权利要求50所述的装置,其特征在于,各所述频域单元组对应不同的下行参考信号端口,各所述频域单元组与不同的下行参考信号端口的对应关系通过所述第一指示信息包括的第五指示信息指示,或者预先设置。
  52. 根据权利要求50或51所述的装置,其特征在于,所述第一指示信息还包括:
    第六指示信息,用于指示所述频域单元组中第一组起始的频域单元。
  53. 根据权利要求51或52所述的装置,其特征在于,所述各所述频域单元组中的频域单元在所述下行参考信号资源中的分布密度预设为每间隔P个频域单元分布,P为大于或等于0的整数。
  54. 根据权利要求52所述的装置,其特征在于,
    所述第一指示信息还包括第七指示信息,用于指示所述频域单元组中除第一组外的其余组起始的频域单元;或
    所述频域单元组中除第一组外的其余组起始的频域单元预设为满足预定条件。
  55. 根据权利要求53所述的装置,其特征在于,所述预定条件为:
    (G i+R 0)mod M,
    其中,G i为所述频域单元组的组号,i=0,1,2,……,M;R 0为所述频域单元组中第一组起始的频域单元的频域单元标识;M为所述频域单元组的组数。mod表示(G i+R 0)除以M取余。
  56. 根据权利要求46所述的装置,其特征在于,所述第一指示信息通过指示所述频域单元的标识或位置指示所述频域单元。
  57. 根据权利要求46所述的装置,其特征在于,所述第一指示信息包括以下至少一项:
    用于指示测量带宽的指示信息、用于指示下行参考信号端口数目的指示信息、用于指示基于角度和时延互易的CSI获取方案。
  58. 根据权利要求57所述的装置,其特征在于,以下至少一项预先设置或通过第九指示信息指示:
    测量带宽与所述频域单元被划分频域单元组的组数之间的对应关系;
    测量带宽与所述频域单元分布密度之间的对应关系;
    下行参考信号端口数目与所述频域单元组的组数之间的对应关系;
    下行参考信号端口数与所述频域单元分布密度之间的对应关系;
    第一组起始的频域单元;
    除第一组外的其余组起始的频域单元;
    各组频域单元的分布密度;
    所述频域单元的分布密度;
    所述频域单元中起始的频域单元。
  59. 根据权利要求46-56任一项所述的装置,其特征在于,所述第一指示信息承载在子带上报配置CSI-ReportingBand中。
  60. 根据权利要求46-58任一项所述的装置,其特征在于,所述频域单元为资源块RB、子带subband、子载波或带宽部分BWP。
  61. 根据权利要求31-60任一项所述的装置,其特征在于,所述处理单元为处理器,所述收发单元为收发器。
  62. 一种处理装置,其特征在于,包括至少一个处理器和通信接口,所述通信接口用于输入和/或输出信号,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述通信装置实现如权利要求1至30中任一项所述的方法。
  63. 一种处理装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至30中任一项所述的方法。
  64. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至30中任一项所述的方法。
  65. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至30中任一项所述的方法。
  66. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至30中任一项所述的方法。
PCT/CN2020/079317 2020-03-13 2020-03-13 一种信道状态信息csi测量的指示方法和通信装置 WO2021179311A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20923965.6A EP4099783A4 (en) 2020-03-13 2020-03-13 MEASUREMENT INDICATION METHOD FOR CHANNEL STATE INFORMATION (CSI) AND COMMUNICATION DEVICE
CN202080097377.7A CN115152298A (zh) 2020-03-13 2020-03-13 一种信道状态信息csi测量的指示方法和通信装置
PCT/CN2020/079317 WO2021179311A1 (zh) 2020-03-13 2020-03-13 一种信道状态信息csi测量的指示方法和通信装置
US17/941,430 US20230013510A1 (en) 2020-03-13 2022-09-09 Method for indicating channel state information csi measurement and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079317 WO2021179311A1 (zh) 2020-03-13 2020-03-13 一种信道状态信息csi测量的指示方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/941,430 Continuation US20230013510A1 (en) 2020-03-13 2022-09-09 Method for indicating channel state information csi measurement and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021179311A1 true WO2021179311A1 (zh) 2021-09-16

Family

ID=77671104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079317 WO2021179311A1 (zh) 2020-03-13 2020-03-13 一种信道状态信息csi测量的指示方法和通信装置

Country Status (4)

Country Link
US (1) US20230013510A1 (zh)
EP (1) EP4099783A4 (zh)
CN (1) CN115152298A (zh)
WO (1) WO2021179311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022264A1 (zh) * 2022-07-28 2024-02-01 维沃移动通信有限公司 信号处理方法、装置、终端、网络侧设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559879A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
CN107911203A (zh) * 2017-08-11 2018-04-13 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
EP3579480A1 (en) * 2017-02-02 2019-12-11 LG Electronics Inc. -1- Method for reporting channel state information in wireless communication system and apparatus for same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116388898A (zh) * 2016-04-01 2023-07-04 瑞典爱立信有限公司 用于灵活的信道状态信息-参考信号传送的系统和方法
JP6912589B2 (ja) * 2017-08-11 2021-08-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて参照信号を送受信する方法及びそのための装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559879A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
EP3579480A1 (en) * 2017-02-02 2019-12-11 LG Electronics Inc. -1- Method for reporting channel state information in wireless communication system and apparatus for same
CN107911203A (zh) * 2017-08-11 2018-04-13 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining Issues on CSI-RS #2", 3GPP DRAFT; R1-1805685, vol. RAN WG1, 19 April 2018 (2018-04-19), Sanya, China, pages 1 - 10, XP051427810 *
See also references of EP4099783A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022264A1 (zh) * 2022-07-28 2024-02-01 维沃移动通信有限公司 信号处理方法、装置、终端、网络侧设备及介质

Also Published As

Publication number Publication date
EP4099783A4 (en) 2023-04-12
US20230013510A1 (en) 2023-01-19
EP4099783A1 (en) 2022-12-07
CN115152298A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP7283705B2 (ja) 端末デバイスの能力を報告する方法および通信装置
WO2021254506A1 (zh) 上行传输方法及相关装置
WO2020125422A1 (zh) 一种信道状态信息csi上报的配置方法和通信装置
CN111342873A (zh) 一种信道测量方法和通信装置
CN112751592B (zh) 上报信道状态信息的方法和通信装置
WO2020207369A1 (zh) 一种信道测量方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
CN114600384B (zh) 一种信道测量方法和通信装置
WO2021203373A1 (zh) 一种信道测量方法和通信装置
WO2020244496A1 (zh) 一种信道测量方法和通信装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2021189302A1 (zh) 更新的方法和通信装置
WO2020073788A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN115088224A (zh) 一种信道状态信息反馈方法及通信装置
WO2022227976A1 (zh) 通信方法和通信装置
WO2021207895A1 (zh) 一种用于传输上行信号的方法和通信装置
WO2022165668A1 (zh) 一种进行预编码的方法和装置
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2023160692A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020923965

Country of ref document: EP

Effective date: 20220902

NENP Non-entry into the national phase

Ref country code: DE