WO2024022264A1 - 信号处理方法、装置、终端、网络侧设备及介质 - Google Patents

信号处理方法、装置、终端、网络侧设备及介质 Download PDF

Info

Publication number
WO2024022264A1
WO2024022264A1 PCT/CN2023/108784 CN2023108784W WO2024022264A1 WO 2024022264 A1 WO2024022264 A1 WO 2024022264A1 CN 2023108784 W CN2023108784 W CN 2023108784W WO 2024022264 A1 WO2024022264 A1 WO 2024022264A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
downlink reference
reference signal
resource
downlink
Prior art date
Application number
PCT/CN2023/108784
Other languages
English (en)
French (fr)
Inventor
陈晓航
曾超君
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024022264A1 publication Critical patent/WO2024022264A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a signal processing method, device, terminal, network side equipment and medium.
  • signals can be transmitted in both directions at the same time. There may be both downlink frequency domain resources and uplink frequency domain resources on the frequency domain resources at time t.
  • the downlink reference signal needs to be transmitted on continuous frequency domain resources.
  • one possible transmission method is Different downlink reference signals are transmitted in discontinuous downlink subbands. For example, in a certain time slot, there are two discontinuous downlink subbands, and different downlink reference signals are transmitted on these two downlink subbands.
  • This method requires more downlink reference signal resources, and the downlink reference signal resources allocated to the terminal are effective, but the normal transmission of the downlink reference signal may be affected due to insufficient downlink reference signal resources.
  • Embodiments of the present application provide a signal processing method, device, terminal, network side equipment and medium, which can effectively transmit downlink reference signals on multiple discontinuous downlink subbands, avoid excessive use of downlink reference signal resources, and ensure downlink Normal transmission of reference signals.
  • the first aspect provides a signal processing method, including:
  • the terminal obtains the downlink reference signal resources configured by the network side equipment;
  • the terminal performs channel or interference measurement based on the first downlink reference signal transmitted on the downlink reference signal resource at the first moment;
  • each of the first downlink reference signals is related to a second downlink reference signal
  • the second downlink reference signal corresponds to the downlink reference signal resource
  • each of the first downlink reference signals is based on a set of Transmitted by frequency domain unit.
  • a signal processing device including:
  • Obtaining module used to obtain downlink reference signal resources configured by network side equipment
  • a measurement module configured to perform channel or interference measurement based on the first downlink reference signal transmitted on the downlink reference signal resource at the first moment;
  • each of the first downlink reference signals is related to a second downlink reference signal, and the second downlink reference signal
  • the first downlink reference signal corresponds to the downlink reference signal resource, and each first downlink reference signal is transmitted based on a set of frequency domain units.
  • a signal processing method including:
  • the network side device configures downlink reference signal resources to the terminal
  • the network side device receives the channel state information corresponding to the channel or interference measurement reported by the terminal, and the channel or interference measurement is performed at the first moment based on the first downlink reference signal transmitted on the downlink reference signal resource. of;
  • each of the first downlink reference signals is related to a second downlink reference signal
  • the second downlink reference signal corresponds to the downlink reference signal resource
  • each of the first downlink reference signals is based on a set of Transmitted by frequency domain unit.
  • a signal processing device including:
  • Configuration module used to configure downlink reference signal resources to the terminal
  • a receiving module configured to receive channel state information corresponding to channel or interference measurement reported by the terminal, where the channel or interference measurement is performed at the first moment based on the first downlink reference signal transmitted on the downlink reference signal resource.
  • each of the first downlink reference signals is related to a second downlink reference signal
  • the second downlink reference signal corresponds to the downlink reference signal resource
  • each of the first downlink reference signals is based on a set of Transmitted by frequency domain unit.
  • a terminal including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the first aspect is implemented. The steps of the signal processing method.
  • a network-side device including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the signal processing method described in the three aspects.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the signal processing method as described in the first aspect is implemented, or the signal processing method is implemented as described in the first aspect. The steps of the signal processing method described in the third aspect.
  • An eighth aspect provides a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the signal processing method as described in the first aspect.
  • the network side device can be used to perform the steps of the signal processing method as described in the third aspect. The steps of the signal processing method.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method as described in the first aspect A signal processing method, or steps for implementing the signal processing method as described in the third aspect.
  • one or more first downlink reference signals are transmitted on the downlink reference signal resources, and each first downlink reference signal is related to the second downlink reference signal corresponding to the downlink reference signal resource, so that It can effectively transmit the first downlink reference signal related to the second downlink reference signal on multiple discontinuous downlink sub-bands. It does not require excessive configuration of downlink reference signal resources. It can save downlink reference signal resources and avoid excessive Use downlink reference signal resources to avoid insufficient downlink reference signal resources affecting the normal transmission of downlink reference signals.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of a network-side frequency division duplex symmetric spectrum in related technologies
  • Figure 3 is a schematic diagram of a network-side time division duplex asymmetric spectrum in related technologies
  • Figure 4 is a schematic diagram of the use of frequency division duplex symmetric spectrum on the terminal side in related technologies
  • Figure 5 is a schematic diagram of the use of time division duplex asymmetric spectrum on the terminal side in related technologies
  • Figure 6 is a schematic diagram of OFDM symbols included in a time slot in the related art
  • Figure 7 is an implementation flow chart of a signal processing method in an embodiment of the present application.
  • Figure 8 is a schematic diagram of CSI-RS transmission in an embodiment of the present application.
  • Figure 9 is another schematic diagram of CSI-RS transmission in the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of the signal processing device corresponding to Figure 7 in the embodiment of the present application.
  • Figure 11 is an implementation flow chart of another signal processing method in the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the signal processing device corresponding to Figure 11 in the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device in an embodiment of the present application.
  • Figure 14 is a schematic diagram of the hardware structure of a terminal in an embodiment of the present application.
  • Figure 15 is a schematic diagram of the hardware structure of a network-side device in an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA frequency division multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier frequency division multiple access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th generation Generation, 6G) communication system.
  • 6G 6th generation Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PC), teller machines or self-service Terminal devices
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, WLAN access points or WiFi nodes, etc.
  • the base station can be called Node B, Evolved Node B (eNB), access point, Base Transceiver Station (BTS), radio base station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or the above
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • ESS Extended Service Set
  • Home B-Node Home Evolved B-Node
  • TRP Transmitting Receiving Point
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the uplink or downlink spectrum on certain time slots/symbols can be semi-statically configured or dynamically indicated for downlink or uplink transmission, as shown in Figure 2, in the uplink
  • the spectrum corresponding to the semi-statically configured or dynamically indicated rectangular portion filled with vertical bars on the spectrum is downlink transmission (D)
  • the spectrum corresponding to the semi-statically configured or dynamically indicated rectangular portion filled with grids on the downlink spectrum is uplink transmission (U), where each A rectangular box represents X time slots or Y symbols.
  • different frequency domain resources on certain time slots/symbols can be semi-statically configured or dynamically indicated for both uplink and downlink transmission, as shown in Figure 3 shows that at the same time, different frequency resources can be semi-statically configured or dynamically indicated as downlink transmission (D) or uplink transmission (U).
  • D downlink transmission
  • U uplink transmission
  • the frequency domain resource corresponding to the filled vertical bar rectangular part is downlink transmission
  • the filled grid rectangular part corresponds to downlink transmission.
  • the corresponding frequency domain resource is uplink transmission.
  • the NR system configures the transmission direction of each symbol in a time slot through the slot format.
  • the network can modify the transmission direction of flexible time slots or symbols through dynamic signaling, such as dynamic slot format indicator (SFI).
  • SFI dynamic slot format indicator
  • a time slot can contain downlink, uplink and flexible Orthogonal Frequency Division Multiplexing (OFDM) symbols, and flexible symbols can be rewritten as downlink or uplink symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the filled vertical bar rectangle part is the downlink OFDM symbol
  • the filled grid rectangular part is the uplink OFDM symbol
  • the blank rectangular part is the flexible OFDM symbol.
  • the slot format indication may indicate the format of one or more slots.
  • the timeslot format indication is sent in the Group Common-Physical Downlink Control Channel (GC-PDCCH).
  • GC-PDCCH Group Common-Physical Downlink Control Channel
  • the time slot format indication can flexibly change the time slot format according to needs to meet business transmission requirements.
  • the terminal may decide whether to monitor the physical downlink control channel according to the indication of the time slot format indication.
  • Network-side equipment such as base stations, can semi-statically configure one or more cell-specific (cell-specific) time slot format.
  • Network-side equipment such as base stations, can also semi-statically configure one or more terminal-specific (UE-specific) time slot formats for the terminal through the high-layer parameter UL-DL-configuration-dedicated.
  • UE-specific terminal-specific
  • Network-side equipment such as base stations, can specify the time slot format carried in the public physical downlink control channel. Indicates rewriting flexible slots or symbols in a semi-static configuration.
  • the transmission directions implicitly indicated by the terminal-specific Radio Resource Control (RRC) configuration are collectively called measurements, including:
  • Terminal-specific RRC signaling configuration periodic or semi-persistent channel state information reference signal (Channel State Information-Reference Signal, CSI-RS) measurement, periodic channel state information (Channel State Information, CSI) reporting, periodic Or the uplink and downlink transmission directions implicitly indicated by the semi-persistent Sounding Reference Signal (SRS);
  • CSI-RS Channel State Information-Reference Signal
  • SRS semi-persistent Sounding Reference Signal
  • Terminal-specific RRC configured Physical Random Access Channel (PRACH) resources, type1 and type2 authorization-free uplink transmission;
  • PRACH Physical Random Access Channel
  • UE-specific data For type 2 authorization-free uplink transmission, only the transmission on the first activated resource is regarded as terminal-specific data (UE-specific data).
  • UE-specific transmission may include physical downlink control channel (Physical Downlink Control Channel, PDCCH), physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) A /N feedback, aperiodic measurement triggered by Downlink Control Information (DCI), etc.
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink shared channel
  • DCI Downlink Control Information
  • the terminal obtains the downlink reference signal resources configured by the network side device.
  • the network side device can configure the downlink reference signal resources according to the downlink reference signal transmission requirements, and transmit the downlink reference signal on the downlink reference signal resources. At the same time, the network side device can also transmit the configured multiple downlink frequency domain subbands ⁇ W 1 , W 2 ,..., W N ⁇ to the terminal.
  • the terminal After the terminal obtains the downlink reference signal resources configured by the network side device, it can continue to perform subsequent steps.
  • each first downlink reference signal is related to the second downlink reference signal
  • the second downlink reference signal is related to the second downlink reference signal.
  • the reference signal corresponds to a downlink reference signal resource, and each first downlink reference signal is transmitted based on a set of frequency domain units.
  • the terminal after the terminal obtains the downlink reference signal resource configured by the network side device, it can determine the first downlink reference signal transmitted on the downlink reference signal resource at the first moment, and then based on the first downlink reference signal, Make channel or interference measurements. Specifically, the terminal may perform channel or interference measurements on multiple cells including the serving cell and neighboring cells based on the first downlink reference signal.
  • the first time may be the transmission time of the first downlink reference signal, or the measurement time.
  • the first moment is not limited to one moment, but can be multiple moments. If the first time is the transmission time of the first downlink reference signal, the time at which the measurement is performed is not limited, as long as the measurement is based on the first downlink reference signal transmitted at the first time. Just number. If the first time is the measurement time, the time at which the first downlink reference signal is transmitted is not limited. As long as the measurement is performed at the first time, it can be performed based on the first downlink reference signal. In addition, the transmission time and the measurement time of the first downlink reference signal may be the same time, but are described from different angles.
  • Each first downlink reference signal transmitted on the downlink reference signal resource is related to the second downlink reference signal, and may be obtained by splitting the second downlink reference signal. Splitting here can specifically mean separation, division, segmentation, segmentation, etc.
  • the second downlink reference signal corresponds to the downlink reference signal resource, and each first downlink reference signal is transmitted based on a set of frequency domain units.
  • a group of frequency domain units can include one or more frequency domain units, which is a continuous frequency domain resource, such as Resource Block (RB), Resource Element (RE), Resource Block Group (Resource Block Group), RBG), subband, etc.
  • the transmission of the first downlink reference signal can be continuous or discontinuous in the frequency domain. For example, it is continuous on resource blocks and discontinuous on resource particles.
  • the transmission of a second downlink reference signal is split into the transmission of one or more actual first downlink reference signals.
  • Multiple first downlink reference signals may all belong to one second downlink reference signal, and each first downlink reference signal is a segment or part of the second downlink reference signal. If the downlink reference signal resource is a continuous frequency domain resource, only one actual first downlink reference signal is transmitted, and this first downlink reference signal is the second downlink reference signal corresponding to the downlink reference signal resource.
  • the first downlink reference signal may be a periodic, semi-persistent, or aperiodic downlink reference signal; or the first downlink reference signal may be a tracking reference signal (Tracking Reference Signal, TRS), or Channel state information reference signal (CSI-RS for beam management) used for beam management, or channel state information reference signal (CSI-RS for CSI acquisition) used to obtain channel state information; or, the first downlink reference signal is Non-zero power channel state information reference signal for channel/interference measurement (NZP-CSI-RS for channel/interference measurement), or channel state information interference measurement signal for interference measurement (CSI-IM for interference measurement).
  • TSS Track Reference Signal
  • CSI-RS Channel state information reference signal
  • CSI-RS channel state information reference signal
  • CSI-IM channel state information interference measurement signal for interference measurement
  • Each first downlink reference signal is related to the second downlink reference signal corresponding to the downlink reference signal resource.
  • the first downlink reference signal related to the second downlink reference signal can be effectively transmitted on multiple discontinuous downlink subbands. There is no need to configure too many downlink reference signal resources, which can save downlink reference signal resources and avoid Excessive use of downlink reference signal resources to avoid insufficient downlink reference signal resources affecting the normal transmission of downlink reference signals.
  • frequency domain resources for transmitting each first downlink reference signal are effective.
  • the frequency domain resources used to transmit downlink reference signals on the downlink reference signal resources need to be effective, and the frequency domain resources included in the downlink reference signal resources may not all be effective.
  • the downlink reference signal resources include The frequency domain resources indicating uplink transmission are ineffective frequency domain resources, and downlink reference signals cannot be transmitted, that is, each first downlink reference signal needs to be transmitted on valid frequency domain resources. This can ensure the normal transmission of downlink reference signals.
  • whether the frequency domain unit of the downlink reference signal resource is a valid frequency domain resource is determined according to at least one of the following rules:
  • the frequency domain unit indicated as uplink or flexible by the flexible duplex uplink and downlink configuration is not a valid frequency domain resource for transmitting downlink reference signals;
  • the flexible duplex uplink and downlink configuration indicates an uplink or flexible frequency domain unit. If the network side device indicates that it is used for downlink transmission, it is an effective frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the random access resource configuration as used for random access is not a valid frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the guard band configuration as being used for the guard band is not a valid frequency domain resource for transmitting downlink reference signals;
  • the invalid resource block pattern or rate matching pattern configured by the network side device indicates an unavailable frequency domain unit and is not a valid frequency domain resource for transmitting downlink reference signals.
  • Downlink reference signal resources may include multiple frequency domain units, and frequency domain units may be frequency domain resources with granularity such as subbands, resource particles, resource blocks, and bandwidth parts (BWP).
  • BWP bandwidth parts
  • the predefined rules may include at least one of the following:
  • Frequency domain units indicated as uplink or flexible by flexible duplex uplink and downlink configuration are not valid frequency domain resources for transmitting downlink reference signals. That is, a frequency domain unit that is indicated as uplink or flexible cannot be used as an effective frequency domain resource for transmitting downlink reference signals, and the frequency domain unit is an ineffective frequency domain resource.
  • Flexible duplex uplink and downlink configuration can be time division duplex uplink and downlink configuration (TDD-UL-DL-Configuration) or frequency division duplex uplink and downlink configuration (FDD-UL-DL-Configuration). It can be configured by the higher layer of the network, such as through terminal-specific signaling or through broadcast signaling.
  • TDD-UL-DL-Configuration time division duplex uplink and downlink configuration
  • FDD-UL-DL-Configuration frequency division duplex uplink and downlink configuration
  • It can be configured by the higher layer of the network, such as through terminal-specific signaling or through broadcast signaling.
  • the second rule If the flexible duplex uplink and downlink configuration indicates an uplink or flexible frequency domain unit, if the network side device indicates it is used for downlink transmission, it is a valid frequency domain resource for transmitting downlink reference signals. That is, for frequency domain units indicated as uplink or flexible, if used for downlink transmission, they can be used as effective frequency domain resources for downlink reference signal transmission.
  • the third rule the frequency domain unit indicated by the random access resource configuration as being used for random access is not a valid frequency domain resource for transmitting downlink reference signals. That is, if the frequency domain unit is indicated to be used for random access, it can no longer be used to transmit downlink reference signals and cannot be used as an effective frequency domain resource for transmitting downlink reference signals.
  • the frequency domain unit is an ineffective frequency domain resource.
  • the frequency domain unit indicated by the guardband configuration as being used for the guardband is not a valid frequency domain resource for transmitting downlink reference signals. That is, if the frequency domain unit is indicated to be used for the guard band, it can no longer be used to transmit downlink reference signals and cannot be used as an effective frequency domain resource for transmitting downlink reference signals.
  • the frequency domain unit is an ineffective frequency domain resource.
  • the rate match pattern indicates an unavailable frequency domain unit and is not a valid frequency domain resource for transmitting downlink reference signals. That is, if a frequency domain unit is indicated as unavailable by an invalid resource block pattern or a rate matching pattern, it can no longer be used to transmit downlink reference signals and cannot be used as a valid frequency domain resource for transmitting downlink reference signals.
  • the frequency domain unit is an ineffective frequency domain unit. domain resources.
  • the rate matching pattern is used to instruct the physical downlink shared channel to perform rate matching.
  • the above custom rules can be used alone or in combination. According to at least one of the above rules, the terminal can accurately determine whether the frequency domain unit of the downlink reference signal resource is a valid frequency domain resource, and then can accurately determine the frequency domain unit transmitted on the downlink reference signal resource.
  • the first downlink reference signal is used to perform channel or interference measurement based on the first downlink reference signal.
  • the effective frequency domain resources in the downlink reference signal resources can be directly determined based on the above predefined rules, and the non-valid frequency domain resources in the downlink reference signal resources can also be determined based on the above predefined rules, and then the non-valid frequency resources are eliminated. After removing the frequency domain resources, the remaining frequency domain resources are determined as effective frequency domain resources.
  • the number of first downlink reference signals is M, M is a positive integer, and M is determined according to at least one of the following methods:
  • the first downlink reference signal is related to the second downlink reference signal corresponding to the downlink reference signal resource.
  • the first downlink reference signal is a signal actually transmitted on the downlink reference signal resource.
  • the first downlink reference signal The number can be M. That is, one second downlink reference signal transmission can be split into M actual first downlink reference signal transmissions, and each actual first downlink reference signal transmission includes a set of frequency domain units.
  • the number of first downlink reference signals may be determined according to the configuration of the network side device. Specifically, the number of network side device configurations may be determined as the number of first downlink reference signals.
  • the network side device can configure the maximum transmission number of the first downlink reference signal included in the second downlink reference signal. According to the maximum transmission number, the number of the first downlink reference signal can be determined. The number of the first downlink reference signal is less than or equal to the maximum number of transfers.
  • Downlink frequency domain subbands may be used to transmit downlink reference signals, and the number of first downlink reference signals is less than or equal to the number of downlink frequency domain subbands.
  • the number of first downlink reference signals can be effectively determined based on the first downlink reference signal.
  • Reference signals are used for channel or interference measurements.
  • the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal is greater than or equal to a preset first quantity threshold
  • the ratio of the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal to the number of frequency domain units included in the downlink reference signal resource is greater than or equal to a preset ratio threshold.
  • the number of frequency domain units included in the frequency domain resource for transmitting the first downlink reference signal may be limited. Specifically, for each first downlink reference signal, the number of frequency domain units included in the frequency domain resource for transmitting the first downlink reference signal needs to be greater than or equal to a preset first number threshold, or the first downlink reference signal must be transmitted.
  • the ratio of the number of frequency domain units included in the frequency domain resource of the row reference signal to the number of frequency domain units included in the downlink reference signal resource needs to be greater than or equal to a preset ratio threshold. Both the first quantity threshold and the proportion threshold can be set and adjusted according to the actual situation.
  • Limiting the number of frequency domain units included in the frequency domain resources for transmitting each first downlink reference signal can avoid the number of frequency domain units included in the frequency domain resources for transmitting each first downlink reference signal being too small, resulting in transmission errors.
  • the amount of information of the first downlink reference signal is too small, so that accurate channel state information cannot be obtained by performing channel or interference measurement based on such a first downlink reference signal.
  • At least one of the code division multiplexing type, frequency domain density, and port number corresponding to each first downlink reference signal transmitted on the downlink reference signal resource is the same.
  • the code division multiplexing type (CDM-type), frequency domain density (density), and number of ports (Number of ports) corresponding to each first downlink reference signal transmitted on the downlink reference signal resource
  • At least one of the items is the same, and at least one of the code division multiplexing type, frequency domain density, and port number corresponding to each first downlink reference signal is the same as the parameter corresponding to the second downlink reference signal.
  • the time-frequency domain resources configured by the network side equipment are shown in Figure 8.
  • D represents the downlink resources
  • U represents the uplink resources
  • GB represents the guard band
  • GP represents the guard interval
  • area A represents the unavailable resource blocks (Invalid RBs) of CSI-RS. .
  • the network side device is configured with 1 CSI-RS resource configuration, including CSI-RS 1 resources and CSI-RS 2 resources respectively, and the corresponding frequency domain resources are f0 ⁇ f5.
  • the CSI-RS resources may be periodic CSI-RS resources or aperiodic CSI-RS resources.
  • Slot t0, slot t1 and slot t2 are the measurement times of CSI.
  • all frequency domain resources are DL frequency domain resources.
  • the terminal can determine that all frequency domain resources are valid frequency domain resources of CSI-RS 1 resources and CSI-RS 2 resources, that is, frequency domain resource f0 ⁇ f5. Therefore, in slot t0, there is CSI-RS 1 transmission on the CSI-RS 1 resource, and CSI-RS 2 transmission on the CSI-RS 2 resource.
  • the terminal can determine the uplink frequency domain resources and guard band frequency domain resources as transmission channels based on predefined rules.
  • Ineffective frequency domain resources for transmitting CSI-RS that is, frequency domain resources f2 to f3 are ineffective frequency domain resources for transmitting CSI-RS. Therefore, in slot t1, the CSI-RS transmission on the CSI-RS 1 resource is split into two actual CSI-RS transmissions, namely the CSI-RS 1'-1 transmission on f0 ⁇ f2 and the CSI-RS 1'-1 transmission on f3 ⁇ f5.
  • the terminal can determine that the uplink frequency domain resources and guard band frequency domain resources are ineffective frequency domain resources for transmitting CSI-RS according to predefined rules, that is, frequency domain resources f1 to f4 are ineffective frequency domain resources for transmitting CSI-RS. domain resources. Therefore, in slot t1, the CSI-RS transmission on the CSI-RS 1 resource is split into two actual CSI-RS transmissions, namely the CSI-RS 1"-1 transmission at f0 ⁇ f1 and the CSI-RS 1"-1 transmission at f4 ⁇ f5.
  • the terminal when it needs to perform CSI measurements on the downlink frequency domain bandwidth corresponding to each time.
  • the actual CSI-RS can be determined based on the effective frequency domain resources for transmitting CSI-RS.
  • RS transmission does not need to configure different CSI-RS resources in each downlink frequency domain subband, which can save overhead.
  • the above is based on the predefined rules to determine the first downlink reference signal transmitted on the downlink reference signal resource.
  • the first downlink reference signal transmitted on the downlink reference signal resource is determined from the perspective of another network side device configuration.
  • the frequency domain resources for transmitting each first downlink reference signal are determined based on the resource configuration information of the network side device.
  • the network side device can configure the frequency domain resources included in the downlink reference signal resources and send the resource configuration information to the terminal.
  • the terminal may determine the frequency domain resource for transmitting each first downlink reference signal according to the resource configuration information of the network side device.
  • the terminal According to the resource configuration information of the network side device, it is helpful for the terminal to accurately determine the frequency domain resource for transmitting each first downlink reference signal, and then determine the first downlink reference signal actually transmitted on the downlink reference signal resource.
  • the resource configuration information may include a frequency domain resource set corresponding to the downlink reference signal resource, and the frequency domain resource set may include one or more frequency domain resource subsets.
  • the resource configuration information may include a frequency domain resource set corresponding to the downlink reference signal resource, and the frequency domain resource set may include one or more frequency domain resource subsets.
  • the downlink reference signal resource as the channel state information reference signal resource, that is, the CSI-RS resource
  • a frequency domain resource set ⁇ F CSI-RS ⁇ can be configured, and the frequency domain resource set ⁇ F CSI- RS ⁇ contains one or more frequency domain resource subsets, such as ⁇ F D , F X ⁇ .
  • the frequency domain resource for transmitting each first downlink reference signal can be accurately determined, and then the first downlink reference signal transmitted on the downlink reference signal resource can be determined to perform channel or interference based on the first downlink reference signal. Measurement.
  • the frequency domain resource set may include a first frequency domain resource subset, and the first frequency domain resource subset The resource subset corresponds to the first time domain unit;
  • the first time domain unit satisfies at least one of the following:
  • time domain format is downlink/flexible time domain resources
  • the frequency domain resource set may include a first frequency domain resource subset, and the first frequency domain resource subset corresponds to the first time domain unit. That is, in the first time domain unit, the frequency domain resource set corresponding to the downlink reference signal resource includes the first frequency domain resource subset, such as ⁇ F D ⁇ .
  • the first time domain unit can correspond to a time domain resource whose time domain format is downlink/flexible (DL/Flexible); the first time domain unit can also correspond to a time domain resource with a given number in the resource configuration information, and the given number
  • the time domain resources may be time domain resources in a downlink/flexible time domain format, or time domain resources in other time domain formats; the first time domain unit may also only include downlink frequency domain resources.
  • the first time domain unit corresponding to the first frequency domain resource subset included in the frequency domain resource set can be accurately determined, and further the first time domain unit can be determined based on the first frequency domain resource subset to transmit the first time domain unit.
  • the frequency domain resource of the downlink reference signal is used to further determine the first downlink reference signal actually transmitted on the downlink reference signal resource, and channel or interference measurement is performed based on the first downlink reference signal.
  • the frequency domain resource set includes a second frequency domain resource subset, and the second frequency domain resource subset corresponds to the second time domain unit;
  • the second time domain unit satisfies at least one of the following:
  • time domain resources whose time domain format is downlink/flexible/uplink;
  • the frequency domain resource set may include a second frequency domain resource subset, and the second frequency domain resource subset corresponds to the second time domain unit. That is, for the second time domain unit, the frequency domain resource set corresponding to the downlink reference signal resource includes the second frequency domain resource subset, such as ⁇ F X ⁇ .
  • the second time domain unit may correspond to a time domain resource whose time domain format is downlink/flexible/uplink (DL/Flexible/UL); the second time domain unit may also correspond to a time domain number given by the resource configuration information.
  • Resources, the time domain resource with a given number can be a time domain resource with a time domain format of downlink/flexible/uplink, or a time domain resource with other time domain formats; the second time domain unit can also contain downlink frequency domain resources at the same time and uplink frequency domain resources.
  • the second time domain unit corresponding to the second frequency domain resource subset included in the frequency domain resource set can be accurately determined, and further the second time domain unit can be determined based on the second frequency domain resource subset to transmit the second time domain unit.
  • the frequency domain resource of the downlink reference signal is used to further determine the first downlink reference signal actually transmitted on the downlink reference signal resource, and channel or interference measurement is performed based on the first downlink reference signal.
  • the frequency domain resource set may include a third frequency domain resource subset
  • the third frequency domain resource subset includes a starting frequency domain unit, a length, and a starting offset value set;
  • the third frequency domain resource subset includes a starting frequency domain unit set and length
  • the third frequency domain resource subset includes a starting frequency domain unit and a length of each frequency domain resource allocation.
  • the frequency domain resource set may include a third frequency domain resource subset, and the third frequency domain resource subset may be the first frequency domain resource subset or the second frequency domain resource subset.
  • the third frequency domain resource subset is the second frequency domain resource subset.
  • the frequency domain resource subset ⁇ F X ⁇ of the downlink reference signal resource in the second time domain unit may include one or more frequency domain resource allocations. ⁇ F X,1 ,F X,2 ,...,F X,M ⁇ .
  • the third frequency domain resource subset may include a starting frequency domain unit, a length, and a starting offset value set.
  • the starting offset value set is such as ⁇ starting offset value 1, starting offset value 2,..., starting Offset value M ⁇ .
  • the first frequency domain resource allocation can be determined based on the starting frequency domain unit and length. According to the starting frequency domain unit, length, and starting offset value set, each frequency domain resource after the first frequency domain resource allocation can be determined. distribute.
  • the starting frequency domain unit is f0
  • the length is f
  • the starting offset value set is ⁇ f1, f2 ⁇
  • the allocation of each frequency domain resource is: f0 ⁇ f0+f, f0+f1 ⁇ f0+ f1+f, f0+f2 ⁇ f0+f2+f.
  • the third frequency domain resource subset may also include a starting frequency domain unit set and a length.
  • the starting frequency domain unit set is such as ⁇ starting frequency domain unit 1, starting frequency domain unit 2,..., starting frequency domain unit M ⁇ .
  • each frequency domain resource allocation can be determined.
  • the starting frequency domain unit set is ⁇ f1, f2, f3 ⁇
  • the length is f
  • each frequency domain resource allocation is: f1 ⁇ f1+f, f2 ⁇ f2+f, f3 ⁇ f3+f.
  • the third frequency domain resource subset may also include the starting frequency domain unit and length of each frequency domain resource allocation, such as ⁇ (starting frequency domain unit 1, length 1), (starting frequency domain unit 2, length 2) ,..., (starting frequency domain unit M, length M) ⁇ .
  • each frequency domain resource allocation can be determined.
  • the first frequency domain resource allocation is starting frequency domain unit 1 ⁇ starting frequency domain unit 1 + length 1
  • the second frequency domain resource allocation is starting frequency domain unit 2 ⁇ starting frequency domain unit 2 + length 2, the following are similar and will not be described again.
  • the frequency domain resource allocation included in the downlink reference signal resource in the first time domain unit or the second time domain unit can be quickly determined.
  • the above method of determining the frequency domain resource subset may be configured by the network side device or agreed upon by the protocol.
  • whether the frequency domain resource allocation included in the second frequency domain resource subset of the downlink reference signal resource is transmitted may be determined by at least one of the following:
  • the downlink reference signal resource is on the current frequency domain resource allocation. Not transmitted;
  • the current frequency domain resource allocation For each frequency domain resource allocation included in the second frequency domain resource subset, if the current frequency domain resource allocation conflicts with the uplink frequency domain resource, it is determined that the downlink reference signal resource is not transmitted on the current frequency domain resource allocation.
  • the second frequency domain resource subset may include one or more frequency domain resource allocations, and whether the downlink reference signal resource transmits the downlink reference signal on each frequency domain resource allocation may be determined by at least one of the following :
  • the current frequency domain resource allocation refers to the frequency domain resource allocation targeted by the current operation, such as ⁇ F X,K ⁇ .
  • Time domain resources with a time domain format of flexible/uplink may be used for uplink transmission. If the current frequency domain resource allocation conflicts with time domain resources with a time domain format of flexible/uplink, it can be determined that the downlink reference signal resources are in the current frequency domain. Downlink reference signals are not transmitted on the resource.
  • the current frequency domain resource allocation refers to the frequency domain resource allocation targeted by the current operation, such as ⁇ F X,K ⁇ . Uplink frequency domain resources need to be used for uplink transmission. If the current frequency domain resource allocation conflicts with the uplink frequency domain resource, it can be determined that the downlink reference signal resource does not transmit the downlink reference signal on the current frequency domain resource.
  • the current frequency domain resource allocation if the current frequency domain resource allocation conflicts with the uplink frequency domain resource on the time domain resource whose time domain format is downlink/flexible/uplink, then It is determined that the downlink reference signal resource is not transmitted on the current frequency domain resource.
  • the downlink reference signal resource transmits the downlink reference signal on each frequency domain resource allocation included in the second frequency domain resource subset.
  • the time-frequency domain resources configured by the network side equipment are shown in Figure 9.
  • D represents the downlink resources
  • U represents the uplink resources
  • GB represents the guard band
  • GP represents the guard interval.
  • the network side device is configured with three CSI-RS resource configurations, namely CSI-RS resource configuration 1, CSI-RS resource configuration 2 and CSI-RS resource configuration 3, among which:
  • CSI-RS resource configuration 1 includes CSI-RS 1 resources and CSI-RS 2 resources respectively, and the frequency domain resources are f0 ⁇ f5;
  • CSI-RS resource configuration 2 includes CSI-RS 3 resources and CSI-RS 4 resources respectively.
  • CSI-RS resource configuration 3 includes CSI-RS 5 resources and CSI-RS 6 resources respectively.
  • the CSI-RS resources may be periodic CSI-RS resources or aperiodic CSI-RS resources.
  • Slot t0, slot t1 and slot t2 are the measurement times of CSI.
  • the terminal when it has different frequency domain resource formats at different times, it needs to perform CSI measurements on the downlink frequency domain bandwidth corresponding to each time.
  • the actual CSI-RS transmission can be determined based on multiple frequency domain resource allocations. There is no need to configure independent CSI-RS resources in each downlink frequency domain subband, which can save overhead.
  • downlink reference signal resources need to be reconfigured when the downlink subband changes, resulting in additional signaling overhead.
  • the embodiments of this application are based on predefined rules or resource configuration of network side devices. Information and the determination of the first downlink reference signal for actual transmission have a certain degree of flexibility. When the downlink subband changes, there is no need to reconfigure the downlink reference signal resources, thus saving signaling overhead.
  • the method may further include the following steps:
  • the terminal reports channel status information corresponding to channel or interference measurement to the network side device.
  • the terminal can obtain channel state information corresponding to the channel or interference measurement, and the terminal can report the channel or interference to the network side device. Measure the corresponding channel state information.
  • network-side equipment can perform operations such as beam management and terminal scheduling based on channel status information.
  • the reporting method of the terminal is broadband-based reporting
  • the number of first downlink reference signals is M, and the channel state information corresponding to the channel or interference measurement includes K pieces of first channel state information, K ⁇ M;
  • each first channel state information includes first broadband channel state information, and/or each first channel state information corresponds to one or more first downlink reference signals respectively.
  • the reporting method may be broadband-based reporting.
  • the first downlink reference signal transmitted on the downlink reference signal resource is the actual downlink reference signal transmission, and the number of the first downlink reference signal may be M.
  • the terminal may perform channel or interference measurement based on each first downlink reference signal or multiple first downlink reference signals to obtain corresponding channel state information.
  • each first channel state information may include first broadband channel state information, and each first channel state information may respectively correspond to one or more first downlink reference signals.
  • the terminal performs channel or interference measurements based on multiple first downlink reference signals, obtains corresponding channel status information, and reports broadband channel status information respectively, which enables network-side equipment to obtain more accurate channel status.
  • the reporting method of the terminal is subband-based reporting
  • Each second channel state information includes second wideband channel state information and subband channel state information
  • Each second wideband channel status information corresponds to one or more first downlink reference signals
  • Each subband channel state information corresponds to a subband in the channel state information reporting frequency band, and each subband corresponds to one or more first downlink reference signals; wherein, the channel state information reporting frequency band corresponds to the channel or the channel state information corresponding to the interference measurement .
  • the reporting method may be subband-based reporting.
  • the first downlink reference signal transmitted on the downlink reference signal resource is the actual downlink reference signal transmission, and the number of the first downlink reference signal may be M.
  • the terminal may perform channel or interference measurements based on each first downlink reference signal or multiple first downlink reference signals to obtain corresponding channel state information.
  • Each second channel state information may include second wideband channel state information and subband channel state information.
  • Each second wideband channel status information corresponds to one or more first downlink reference signals.
  • Each subband channel status information may correspond to a subband in the channel status information reporting frequency band.
  • Each subband corresponds to one or more first downlink reference signals.
  • the channel state information here reports the channel state information corresponding to the frequency band or interference measurement.
  • the channel state information reporting frequency band may be determined based on the downlink frequency domain resources, or may be configured by the network side device within the downlink frequency domain resources.
  • the second wideband channel state information included in the second channel state information corresponds to one or more subbands in the channel state information reporting frequency band, and the subband channel state information included in the second channel state information is based on the second channel state information.
  • the status information includes the second wideband channel status information obtained.
  • the terminal is configured to report subband channel state information (subband CSI).
  • subband CSI subband channel state information
  • DL subband 1 the terminal performs channel or interference measurement based on CSI-RS transmission 1-1, and reports the subband CSI on broadband CSI 1+DL subband 1; in DL subband 2, the terminal performs channel or interference measurement based on CSI-RS transmission 1-2 Interference measurement, reporting subband CSI on broadband CSI 2+DL subband 2.
  • the terminal reports the channel status information corresponding to the channel or interference measurement based on the subband reporting method, which can improve the reporting accuracy.
  • the reporting method of the terminal is subband-based reporting, the number of first downlink reference signals is M, and the terminal reports channel state information corresponding to the channel or interference measurement to the network side device, which may include the following step:
  • the more total frequency domain units included in the frequency domain resources for transmitting the M first downlink reference signals the more accurate the measurement of the channel or interference will be. Therefore, when the total number of frequency domain units included in the frequency domain resources for transmitting the M first downlink reference signals is less than the second quantity threshold, a single broadband channel status information can be reported to the network side device, and the entire channel status information can be reported corresponding to the frequency band. bandwidth. Alternatively, in the above situation, the terminal may also report P broadband channel status information to the network side device without reporting subband channel status information.
  • the method before the terminal reports the channel state information corresponding to the channel or interference measurement to the network side device, the method further includes:
  • the terminal determines the reporting frequency band based on the frequency domain resources for transmitting each first downlink reference signal
  • the terminal reports channel status information corresponding to channel or interference measurement to the network side device, including:
  • the terminal reports channel status information corresponding to the channel or interference measurement to the network side device based on the reported frequency band.
  • the terminal may determine the reporting frequency band based on the frequency domain resource for transmitting each first downlink reference signal.
  • each frequency domain resource transmitting the first downlink reference signal may be determined as a reporting frequency band, or multiple frequency domain resources transmitting the first downlink reference signal may be determined as a reporting frequency band. Then, based on the reported frequency band, the channel state information corresponding to the channel or interference measurement is reported to the network side device.
  • the terminal can report the broadband channel status information corresponding to the reporting frequency band to the network side device, and the broadband channel status information corresponds to M a first downlink reference signal;
  • the terminal may report M pieces of broadband channel status information corresponding to the reported frequency band to the network side device, and each broadband channel status information corresponds to a first downlink reference signal.
  • the embodiment of the present application can also perform power control (power control) on the downlink reference signal.
  • power control power control
  • the power offset of the actual CSI-RS resource element (Resource element, RE) relative to the secondary synchronization signal (Secondary Synchronization Signals, SSS) RE (Power offset)Offset B can be determined based on at least one of:
  • the bandwidth occupied by this CSI-RS transmission is Wx;
  • the total number of actual CSI-RS transmissions is M.
  • Offset B Offset A ;
  • OffsetB Wx*Offset A /W;
  • Offset B W*Offset A /M/Wx.
  • Offset A is the power offset of CSI-RS RE relative to SSS RE when CSI-RS transmission is not split.
  • the power offset Offset D of the PDSCH RE relative to the actual CSI-RS RE can be determined based on at least one of the following:
  • the bandwidth occupied by this CSI-RS transmission is Wx;
  • the total number of actual CSI-RS transmissions is M.
  • Offset D Offset C ;
  • Offset D Wx*Offset C /W
  • Offset D W*Offset C /M/Wx.
  • Offset C is the power offset of PDSCH RE relative to CSI-RS RE when CSI-RS transmission is not split.
  • the first moment is determined based on measurement reference resources.
  • the measurement reference resources may specifically be CSI reference resources. Because it takes time for the terminal to measure the channel or interference, the first downlink reference signal based on the measurement of the channel or interference at the first moment needs to be transmitted on or before the measurement reference resource. The first moment is based on the measurement reference signal. Determining the resources can ensure that the terminal has sufficient time to measure the channel or interference.
  • the frequency domain resource of the measurement reference resource is determined based on the frequency domain resource of transmitting each first downlink reference signal
  • the time domain resource of the measurement reference resource is determined according to at least one of the following:
  • the flexible duplex uplink and downlink configuration indicates the downlink/flexible (DL/flexible) frequency domain unit
  • it is a valid time domain resource for the measurement reference resource
  • UL time domain unit For an uplink (UL) time domain unit that has a frequency domain unit with a flexible duplex uplink and downlink configuration indicated as downlink/flexible (DL/flexible), it is a valid time domain resource of the measurement reference resource.
  • DL/flexible downlink/flexible
  • the measurement reference resources may include frequency domain resources and time domain resources.
  • the frequency domain resources of the measurement reference resources can be determined based on the frequency domain resources for transmitting each first downlink reference signal. If the number of first downlink reference signals is M, the measurement reference resources can also be divided into M actual measurement reference resources. .
  • the frequency domain resources and time domain resources of the measurement reference resources can be accurately determined, and then the first time can be accurately determined based on the measurement reference resources to conduct channel or interference based on the first downlink reference signal transmitted on the downlink reference signal resources. Measurement.
  • the terminal performs channel or interference measurements based on the first downlink reference signal transmitted on the downlink reference signal resource, including:
  • the terminal performs channel or interference measurement based on the measurement reference resources and the first downlink reference signal transmitted by the frequency domain resources corresponding to the reported frequency band;
  • the terminal performs channel or interference measurement based on each first downlink reference signal based on the measurement reference resources.
  • the terminal may perform channel or interference measurement based on the first downlink reference signal transmitted by the frequency domain resource corresponding to the reported frequency band on or before the measurement reference resource. or Channel or interference measurements may be performed based on each first downlink reference signal.
  • the execution subject may be a signal processing device.
  • a signal processing device executing a signal processing method is used as an example to illustrate the signal processing device provided by the embodiments of the present application.
  • the signal processing device 1000 may include the following modules:
  • Obtain module 1010 used to obtain downlink reference signal resources configured by network side equipment
  • the measurement module 1020 is configured to perform channel or interference measurement based on the first downlink reference signal transmitted on the downlink reference signal resource at the first moment;
  • each first downlink reference signal is related to a second downlink reference signal
  • the second downlink reference signal corresponds to a downlink reference signal resource
  • each first downlink reference signal is transmitted based on a set of frequency domain units.
  • Each first downlink reference signal is related to the second downlink reference signal corresponding to the downlink reference signal resource.
  • the first downlink reference signal related to the second downlink reference signal can be effectively transmitted on multiple discontinuous downlink sub-bands. There is no need to configure too many downlink reference signal resources, which can save downlink reference signal resources and avoid Excessive use of downlink reference signal resources to avoid insufficient downlink reference signal resources affecting the normal transmission of downlink reference signals.
  • frequency domain resources for transmitting each first downlink reference signal are effective.
  • whether the frequency domain unit of the downlink reference signal resource is a valid frequency domain resource is determined according to at least one of the following rules:
  • Frequency domain units configured as uplink or flexible duplex uplink and downlink are not effective frequency domain resources for transmitting downlink reference signals;
  • the flexible duplex uplink and downlink configuration indicates an uplink or flexible frequency domain unit. If the network side device indicates that it is used for downlink transmission, it is an effective frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the random access resource configuration as used for random access is not a valid frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the guard band configuration as being used for the guard band is not a valid frequency domain resource for transmitting downlink reference signals;
  • the invalid resource block pattern or rate matching pattern configured by the network side device indicates an unavailable frequency domain unit and is not a valid frequency domain resource for transmitting downlink reference signals.
  • the number of first downlink reference signals is M, M is a positive integer, and M is determined according to at least one of the following methods:
  • the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal is greater than or equal to a preset first quantity threshold
  • the ratio of the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal to the number of frequency domain units included in the downlink reference signal resource is greater than or equal to a preset ratio threshold.
  • At least one of the code division multiplexing type, frequency domain density, and port number corresponding to each first downlink reference signal transmitted on the downlink reference signal resource is the same.
  • the frequency domain resources for transmitting each first downlink reference signal are determined based on the resource configuration information of the network side device.
  • the resource configuration information includes a frequency domain resource set corresponding to the downlink reference signal resource, and the frequency domain resource set includes one or more frequency domain resource subsets.
  • the frequency domain resource set includes a first frequency domain resource subset, and the first frequency domain resource subset corresponds to the first time domain unit;
  • the first time domain unit satisfies at least one of the following:
  • time domain format is downlink/flexible time domain resources
  • the frequency domain resource set includes a second frequency domain resource subset, and the second frequency domain resource subset corresponds to the second time domain unit;
  • the second time domain unit satisfies at least one of the following:
  • time domain resources whose time domain format is downlink/flexible/uplink;
  • the frequency domain resource set includes a third frequency domain resource subset
  • the third frequency domain resource subset includes a starting frequency domain unit, a length, and a starting offset value set;
  • the third frequency domain resource subset includes a starting frequency domain unit set and length
  • the third frequency domain resource subset includes a starting frequency domain unit and a length of each frequency domain resource allocation.
  • the first downlink reference signal is a periodic, semi-persistent, or aperiodic downlink reference signal
  • the first downlink reference signal is a tracking reference signal, or a channel state information reference signal used for beam management, or a channel state information reference signal used for obtaining channel state information;
  • the first downlink reference signal is a non-zero power channel state information reference signal used for channel/interference measurement, or a channel state information interference measurement signal used for interference measurement.
  • the signal processing device 1000 further includes:
  • the reporting module is used to report the channel status information corresponding to the channel or interference measurement to the network side device.
  • the reporting method of the terminal is broadband-based reporting
  • the number of first downlink reference signals is M, and the channel state information corresponding to the channel or interference measurement includes K pieces of first channel state information, K ⁇ M;
  • each first channel state information includes first broadband channel state information, and/or each first channel state information corresponds to one or more first downlink reference signals respectively.
  • the reporting method of the terminal is subband-based reporting
  • Each second channel state information includes second wideband channel state information and subband channel state information
  • Each second wideband channel status information corresponds to one or more first downlink reference signals respectively;
  • Each subband channel state information corresponds to a subband in the channel state information reporting frequency band, and each subband corresponds to one or more first downlink reference signals; wherein, the channel state information reporting frequency band corresponds to the channel or the channel state information corresponding to the interference measurement .
  • the first moment is determined based on the measurement reference resource.
  • the frequency domain resources of the measurement reference resources are determined based on the frequency domain resources of transmitting each first downlink reference signal
  • the time domain resource of the measurement reference resource is determined based on at least one of the following:
  • downlink/flexible time domain units with flexible duplex uplink and downlink configurations indicating downlink/flexible frequency domain units, they are valid time domain resources for measurement reference resources;
  • uplink time domain units with flexible duplex uplink and downlink configurations indicating downlink/flexible frequency domain units, they are valid time domain resources for measurement reference resources.
  • the signal processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 7 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the embodiment of the present application also provides a signal processing method, as shown in Figure 11, the method may include the following steps:
  • the network side device configures downlink reference signal resources to the terminal;
  • the network side device receives the channel state information corresponding to the channel or interference measurement reported by the terminal.
  • the channel or interference measurement is performed based on the first downlink reference signal transmitted on the downlink reference signal resource at the first moment;
  • each first downlink reference signal is related to a second downlink reference signal
  • the second downlink reference signal corresponds to a downlink reference signal resource
  • each first downlink reference signal is transmitted based on a set of frequency domain units.
  • Each first downlink reference signal is related to the second downlink reference signal corresponding to the downlink reference signal resource.
  • the first downlink reference signal related to the second downlink reference signal can be effectively transmitted on multiple discontinuous downlink subbands.
  • whether the frequency domain unit of the downlink reference signal resource is a valid frequency domain resource is determined according to at least one of the following rules:
  • the frequency domain unit indicated as uplink or flexible by the flexible duplex uplink and downlink configuration is not a valid frequency domain resource for transmitting downlink reference signals;
  • the flexible duplex uplink and downlink configuration indicates an uplink or flexible frequency domain unit. If the network side device indicates that it is used for downlink transmission, it is an effective frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the random access resource configuration as used for random access is not a valid frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the guard band configuration as being used for the guard band is not a valid frequency domain resource for transmitting downlink reference signals;
  • the invalid resource block pattern or rate matching pattern configured by the network side device indicates an unavailable frequency domain unit and is not a valid frequency domain resource for transmitting downlink reference signals.
  • the number of first downlink reference signals is M, M is a positive integer, and M is determined according to at least one of the following methods:
  • the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal is greater than or equal to a preset first quantity threshold
  • the ratio of the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal to the number of frequency domain units included in the downlink reference signal resource is greater than or equal to a preset ratio threshold.
  • At least one of the code division multiplexing type, frequency domain density, and port number corresponding to each first downlink reference signal transmitted on the downlink reference signal resource is the same.
  • the frequency domain resources for transmitting each first downlink reference signal are determined based on the resource configuration information of the network side device.
  • the resource configuration information includes a frequency domain resource set corresponding to the downlink reference signal resource, and the frequency domain resource set includes one or more frequency domain resource subsets.
  • the frequency domain resource set includes a first frequency domain resource subset, and the first frequency domain resource subset corresponds to the first time domain unit;
  • the first time domain unit satisfies at least one of the following:
  • time domain format is downlink/flexible time domain resources
  • the frequency domain resource set includes a second frequency domain resource subset, and the second frequency domain resource subset corresponds to the second time domain unit;
  • the second time domain unit satisfies at least one of the following:
  • time domain resources whose time domain format is downlink/flexible/uplink;
  • the frequency domain resource set includes a third frequency domain resource subset
  • the third frequency domain resource subset includes a starting frequency domain unit, a length, and a starting offset value set;
  • the third frequency domain resource subset includes a starting frequency domain unit set and length
  • the third frequency domain resource subset includes a starting frequency domain unit and a length of each frequency domain resource allocation.
  • the reporting method of the terminal is broadband-based reporting
  • the number of first downlink reference signals is M, and the channel state information corresponding to the channel or interference measurement includes K pieces of first channel state information, K ⁇ M;
  • each first channel state information includes first broadband channel state information, and/or each first channel state information corresponds to one or more first downlink reference signals respectively.
  • the reporting method of the terminal is subband-based reporting
  • Each second channel state information includes second wideband channel state information and subband channel state information
  • Each second wideband channel status information corresponds to one or more first downlink reference signals respectively;
  • Each subband channel state information corresponds to a subband in the channel state information reporting frequency band, and each subband corresponds to one or more first downlink reference signals; wherein, the channel state information reporting frequency band corresponds to the channel or the channel state information corresponding to the interference measurement .
  • the first moment is determined based on the measurement reference resource.
  • the frequency domain resources of the measurement reference resources are determined based on the frequency domain resources of transmitting each first downlink reference signal
  • the time domain resource of the measurement reference resource is determined based on at least one of the following:
  • downlink/flexible time domain units with flexible duplex uplink and downlink configurations indicating downlink/flexible frequency domain units, they are valid time domain resources for measurement reference resources;
  • uplink time domain units with flexible duplex uplink and downlink configurations indicating downlink/flexible frequency domain units, they are valid time domain resources for measurement reference resources.
  • the execution subject may be a signal processing device.
  • This application actually In the embodiment, a signal processing device executing a signal processing method is taken as an example to illustrate the signal processing device provided by the embodiments of the present application.
  • the signal processing device 1200 may include the following modules:
  • Configuration module 1210 used to configure downlink reference signal resources to the terminal
  • the receiving module 1220 is configured to receive channel state information corresponding to the channel or interference measurement reported by the terminal.
  • the channel or interference measurement is performed at the first moment based on the first downlink reference signal transmitted on the downlink reference signal resource;
  • each first downlink reference signal is related to a second downlink reference signal
  • the second downlink reference signal corresponds to a downlink reference signal resource
  • each first downlink reference signal is transmitted based on a set of frequency domain units.
  • Each first downlink reference signal is related to the second downlink reference signal corresponding to the downlink reference signal resource.
  • the first downlink reference signal related to the second downlink reference signal can be effectively transmitted on multiple discontinuous downlink subbands. There is no need to configure too many downlink reference signal resources, which can save downlink reference signal resources and avoid Excessive use of downlink reference signal resources to avoid insufficient downlink reference signal resources affecting the normal transmission of downlink reference signals.
  • whether the frequency domain unit of the downlink reference signal resource is a valid frequency domain resource is determined according to at least one of the following rules:
  • the frequency domain unit indicated as uplink or flexible by the flexible duplex uplink and downlink configuration is not a valid frequency domain resource for transmitting downlink reference signals;
  • the flexible duplex uplink and downlink configuration indicates an uplink or flexible frequency domain unit. If the network side device indicates that it is used for downlink transmission, it is an effective frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the random access resource configuration as used for random access is not a valid frequency domain resource for transmitting downlink reference signals;
  • the frequency domain unit indicated by the guard band configuration as being used for the guard band is not a valid frequency domain resource for transmitting downlink reference signals;
  • the invalid resource block pattern or rate matching pattern configured by the network side device indicates an unavailable frequency domain unit and is not a valid frequency domain resource for transmitting downlink reference signals.
  • the number of first downlink reference signals is M, M is a positive integer, and M is determined according to at least one of the following methods:
  • the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal is greater than or equal to a preset first quantity threshold
  • the ratio of the number of frequency domain units included in the frequency domain resource for transmitting each first downlink reference signal to the number of frequency domain units included in the downlink reference signal resource is greater than or equal to a preset ratio threshold.
  • At least one of the code division multiplexing type, frequency domain density, and port number corresponding to each first downlink reference signal transmitted on the downlink reference signal resource is the same.
  • the frequency domain resources for transmitting each first downlink reference signal are determined based on the resource configuration information of the network side device.
  • the resource configuration information includes a frequency domain resource set corresponding to the downlink reference signal resource, and the frequency domain resource set includes one or more frequency domain resource subsets.
  • the frequency domain resource set includes a first frequency domain resource subset, and the first frequency domain resource subset corresponds to the first time domain unit;
  • the first time domain unit satisfies at least one of the following:
  • time domain format is downlink/flexible time domain resources
  • the frequency domain resource set includes a second frequency domain resource subset, and the second frequency domain resource subset corresponds to the second time domain unit;
  • the second time domain unit satisfies at least one of the following:
  • time domain resources whose time domain format is downlink/flexible/uplink;
  • the frequency domain resource set includes a third frequency domain resource subset
  • the third frequency domain resource subset includes a starting frequency domain unit, a length, and a starting offset value set;
  • the third frequency domain resource subset includes a starting frequency domain unit set and length
  • the third frequency domain resource subset includes a starting frequency domain unit and a length of each frequency domain resource allocation.
  • the reporting method of the terminal is broadband-based reporting
  • the number of first downlink reference signals is M, and the channel state information corresponding to the channel or interference measurement includes K pieces of first channel state information, K ⁇ M;
  • each first channel state information includes first broadband channel state information, and/or each first channel state information corresponds to one or more first downlink reference signals respectively.
  • the reporting method of the terminal is subband-based reporting
  • Each second channel state information includes second wideband channel state information and subband channel state information
  • Each second wideband channel status information corresponds to one or more first downlink reference signals respectively;
  • Each subband channel status information corresponds to a subband in the channel status information reporting frequency band, and each subband One or more first downlink reference signals should be used; wherein the channel state information reports the channel state information corresponding to the frequency band or the channel state information corresponding to the interference measurement.
  • the first moment is determined based on the measurement reference resource.
  • the frequency domain resources of the measurement reference resources are determined based on the frequency domain resources of transmitting each first downlink reference signal
  • the time domain resource of the measurement reference resource is determined based on at least one of the following:
  • downlink/flexible time domain units with flexible duplex uplink and downlink configurations indicating downlink/flexible frequency domain units, they are valid time domain resources for measurement reference resources;
  • the uplink time domain unit with a flexible duplex uplink and downlink configuration indicated as a downlink/flexible frequency domain unit it is a valid time domain resource of the measurement reference resource.
  • the signal processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 11 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1300, which includes a processor 1301 and a memory 1302.
  • the memory 1302 stores programs or instructions that can be run on the processor 1301.
  • the communication device 1300 is a terminal, when the program or instruction is executed by the processor 1301, each step of the method embodiment shown in Figure 7 is implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a network-side device, when the program or instruction is executed by the processor 1301, each step of the method embodiment shown in FIG. 11 is implemented and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • the terminal 1400 includes but is not limited to: radio frequency unit 1401, network module 1402, audio output unit 1403, input unit 1404, sensor 1405, display unit 1406, user input unit 1407, interface unit 1408, memory 1409 and At least some components of processor 1410 and the like.
  • the terminal 1400 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1410 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1404 may include a graphics processing unit (GPU) 14041 and a microphone 14042.
  • the graphics processor 14041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1406 may include a display panel 14061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1407 includes a touch panel 14071 and at least one of other input devices 14072. Touch panel 14071, also known as touch screen.
  • the touch panel 14071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, I won’t go into details here.
  • the radio frequency unit 1401 after receiving downlink data from the network side device, the radio frequency unit 1401 can transmit it to the processor 1410 for processing; in addition, the radio frequency unit 1401 can send uplink data to the network side device.
  • the radio frequency unit 1401 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1409 may be used to store software programs or instructions as well as various data.
  • the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1409 may include volatile memory or nonvolatile memory, or memory 1409 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1410.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1500 includes: an antenna 1501, a radio frequency device 1502, a baseband device 1503, a processor 1504 and a memory 1505.
  • Antenna 1501 is connected to radio frequency device 1502.
  • the radio frequency device 1502 receives information through the antenna 1501 and sends the received information to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502.
  • the radio frequency device 1502 processes the received information and then sends it out through the antenna 1501.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 1503, which includes a baseband processor.
  • Embodiments of the present application also provide a readable storage medium, with programs or instructions stored on the readable storage medium.
  • the program or instructions are executed by a processor, the method embodiment shown in Figure 7 or the method shown in Figure 11 can be implemented.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the method shown in Figure 7 above.
  • Embodiments of the present application also provide a communication system, including: a terminal and a network-side device.
  • the terminal can be used to perform the steps of the method shown in Figure 7 as described above.
  • the network-side device can be used to perform the above-mentioned steps.
  • Figure 11 shows the steps of the method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号处理方法、装置、终端、网络侧设备及介质,属于通信技术领域,本申请实施例的一种信号处理方法包括:终端获得网络侧设备配置的下行参考信号资源;在第一时刻,基于下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量;其中,每个第一下行参考信号与第二下行参考信号相关,第二下行参考信号对应于下行参考信号资源,每个第一下行参考信号是基于一组频域单元传输的;本申请实施例的另一种信号处理方法包括:网络侧设备向终端配置下行参考信号资源;接收终端上报的信道或干扰测量对应的信道状态信息,信道或干扰测量为在第一时刻,基于下行参考信号资源上传输的第一下行参考信号进行的。

Description

信号处理方法、装置、终端、网络侧设备及介质
相关申请的交叉引用
本申请要求在2022年07月28日提交中国专利局、申请号为202210900061.8、名称为“信号处理方法、装置、终端、网络侧设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种信号处理方法、装置、终端、网络侧设备及介质。
背景技术
当网络工作在全双工(Full duplex)模式时,可以同时进行信号的双向传输,在时刻t的频域资源上可能同时存在下行频域资源和上行频域资源。
在同时存在下行频域资源和上行频域资源的时隙上,可能有多个不连续的下行子带,而下行参考信号需要在连续的频域资源上传输,目前一种可能的传输方式是在不连续的下行子带传输不同的下行参考信号。举例而言,在某时隙上,不连续的下行子带有两个,在这两个下行子带上分别传输不同的下行参考信号。
这种方式需要较多的下行参考信号资源,而分配给终端的下行参考信号资源是有效的,可能会因为下行参考信号资源的不足影响下行参考信号的正常传输。
发明内容
本申请实施例提供一种信号处理方法、装置、终端、网络侧设备及介质,能够有效地在多个不连续的下行子带上传输下行参考信号,避免过多使用下行参考信号资源,保障下行参考信号的正常传输。
第一方面,提供了一种信号处理方法,包括:
终端获得网络侧设备配置的下行参考信号资源;
所述终端在第一时刻,基于所述下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量;
其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
第二方面,提供了一种信号处理装置,包括:
获得模块,用于获得网络侧设备配置的下行参考信号资源;
测量模块,用于在第一时刻,基于下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量;
其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参 考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
第三方面,提供了一种信号处理方法,包括:
网络侧设备向终端配置下行参考信号资源;
所述网络侧设备接收所述终端上报的信道或干扰测量对应的信道状态信息,所述信道或干扰测量为在第一时刻,基于所述下行参考信号资源上传输的第一下行参考信号进行的;
其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
第四方面,提供了一种信号处理装置,包括:
配置模块,用于向终端配置下行参考信号资源;
接收模块,用于接收所述终端上报的信道或干扰测量对应的信道状态信息,所述信道或干扰测量为在第一时刻,基于所述下行参考信号资源上传输的第一下行参考信号进行的;
其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
第五方面,提供了一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的信号处理方法的步骤。
第六方面,提供了一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的信号处理方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的信号处理方法,或者实现如第三方面所述的信号处理方法的步骤。
第八方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的信号处理方法的步骤,所述网络侧设备可用于执行如第三方面所述的信号处理方法的步骤。
第九方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的信号处理方法,或者实现如第三方面所述的信号处理方法的步骤。
在本申请实施例中,在下行参考信号资源上传输一个或多个第一下行参考信号,每个第一下行参考信号均与下行参考信号资源对应的第二下行参考信号相关,这样 能够有效地在多个不连续的下行子带上传输与第二下行参考信号相关的第一下行参考信号,不需要过多的配置下行参考信号资源,可以节省下行参考信号资源,避免过多使用下行参考信号资源,避免因下行参考信号资源不足影响下行参考信号的正常传输。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是相关技术中网络侧频分双工对称频谱的示意图;
图3是相关技术中网络侧时分双工非对称频谱的示意图;
图4是相关技术中终端侧频分双工对称频谱使用的示意图;
图5是相关技术中终端侧时分双工非对称频谱使用的示意图;
图6是相关技术中一个时隙包含的OFDM符号的示意图;
图7是本申请实施例中一种信号处理方法的实施流程图;
图8是本申请实施例中CSI-RS传输的一种示意图;
图9是本申请实施例中CSI-RS传输的另一种示意图;
图10是本申请实施例中与图7对应的信号处理装置的结构示意图;
图11是本申请实施例中另一种信号处理方法的实施流程图;
图12是本申请实施例中与图11对应的信号处理装置的结构示意图;
图13是本申请实施例中一种通信设备的结构示意图;
图14是本申请实施例中一种终端的硬件结构示意图;
图15是本申请实施例中一种网络侧设备的硬件结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time  Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为便于理解,先对本申请实施例的应用场景和一些相关技术、概念进行说明。
本申请实施例所提供的技术方案可以应用于频分双工(Frequency Division Duplexing,FDD)和/或时分双工(Time Division Duplexing,TDD)频谱、授权频段和/或非授权频段,单载波和/或多载波等多种场景。
在Rel-18标准中,网络侧灵活/全双工(flexible/full duplex)以及用户/终端侧半双工操作的特点如下:
对于频分双工的对称频谱,也可称为成对频谱,可以半静态配置或动态指示某些时隙/符号上的上行或下行频谱为下行或上行传输,如图2所示,在上行频谱上半静态配置或动态指示填充竖条矩形部分对应的频谱为下行传输(D),在下行频谱上半静态配置或动态指示填充网格矩形部分对应的频谱为上行传输(U),其中每个矩形框表示X个时隙或者Y个符号。
对于时分双工的非对称频谱,也可称为非成对频谱,可以半静态配置或动态指示某些时隙/符号上的不同频域资源既有上行传输又有下行传输,如图3所示,在同一时刻,不同频率资源上可以半静态配置或动态指示为下行传输(D)或上行传输(U),如填充竖条矩形部分对应的频域资源为下行传输,填充网格矩形部分对应的频域资源为上行传输。
对于半双工的终端,在同一时刻只能进行上行发送或者下行接收,即在同一时刻终端不能既接收信号又发送信号,如图4和图5所示,分别对应网络侧的图2和图3。
为了实现灵活的网络部署,NR系统中通过时隙格式(slot format)配置一个时隙中各个符号的传输方向。
NR系统中时隙的传输方向有三种定义:下行(DL)、上行(UL)、灵活(flexible)。当网络配置了一个时隙或符号是DL或UL,则该时刻的传输方向是明确的;当网络配置了一个时隙或符号是flexible,则该时刻的传输方向是待定的。网络可以通过动态信令,如动态的时隙格式指示(slot format indicator,SFI)来对灵活的时隙或符号的传输方向进行修改。
一个时隙可以包含下行、上行和灵活的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,灵活符号可以被改写为下行或者上行符号。如图6所示,填充竖条矩形部分为下行OFDM符号,填充网格矩形部分为上行OFDM符号,空白矩形部分为灵活OFDM符号。
时隙格式指示可以指示一个或者多个时隙的格式。时隙格式指示在组公共物理下行控制信道(Group Common-Physical Downlink Control Channel,GC-PDCCH)中发送。
时隙格式指示可以灵活地根据需求改变时隙的格式,以满足业务传输需求。
终端可以根据时隙格式指示的指示决定是否监测物理下行控制信道。
网络侧设备,如基站,可以通过高层参数,如UL-DL-configuration-common和UL-DL-configuration-common-Set2(可选的)半静态地给终端配置一个或者多个小区专属(cell-specific)的时隙格式。
网络侧设备,如基站,也可以通过高层参数UL-DL-configuration-dedicated半静态地给终端配置一个或者多个终端专属(UE-specific)的时隙格式。
网络侧设备,如基站,可以通过组公共物理下行控制信道中承载的时隙格式指 示改写半静态配置中的灵活时隙或符号。
由终端专属无线资源控制(Radio Resource Control,RRC)配置隐式指示的传输方向被统称为测量(measurement),包括:
终端专属的RRC信令配置的周期性或者半持续的信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)测量,周期性的信道状态信息(Channel State Information,CSI)上报,周期性或者半持续的探测参考信号(Sounding Reference Signal,SRS)所隐式指示的上下行传输方向;
终端专属的RRC配置的物理随机接入信道(Physical Random Access Channel,PRACH)资源,type1和type2免授权上行传输;
对type2的免授权上行传输,只有第一个激活的资源上的传输被看做终端专属的数据(UE-specific data)。
终端专属(UE-specific)传输可以包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的A/N反馈,下行控制信息(Downlink Control Information,DCI)触发的非周期测量等。
上面对本申请实施例的应用场景和一些相关技术、概念进行了说明,下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号处理方法进行详细地说明。
S710:终端获得网络侧设备配置的下行参考信号资源。
网络侧设备可以根据下行参考信号传输需求配置下行参考信号资源,在下行参考信号资源上传输下行参考信号。同时,网络侧设备还可以将配置的多个下行频域子带{W1,W2,…,WN}传送给终端。
终端获得网络侧设备配置的下行参考信号资源后,可以继续执行后续步骤的操作。
S720:终端在第一时刻,基于下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量;其中,每个第一下行参考信号与第二下行参考信号相关,第二下行参考信号对应于下行参考信号资源,每个第一下行参考信号是基于一组频域单元传输的。
在本申请实施例中,终端获得网络侧设备配置的下行参考信号资源后,可以在第一时刻,确定下行参考信号资源上传输的第一下行参考信号,然后基于第一下行参考信号,进行信道或干扰测量。具体的,终端可以基于第一下行参考信号,对包括服务小区和邻区的多个小区进行信道或干扰测量。
第一时刻可以是第一下行参考信号的传输时刻,或者是测量时刻。第一时刻不限于一个时刻,可以是多个时刻。如果第一时刻是第一下行参考信号的传输时刻,则不限定测量是在什么时刻进行,只要测量时基于第一时刻传输的第一下行参考信 号即可。如果第一时刻是测量时刻,则不限定第一下行参考信号的传输是什么时刻,只要是在第一时刻进行的测量,就可以基于第一下行参考信号进行。另外,第一下行参考信号的传输时刻和测量时刻可以是同一时刻,只是从不同角度进行的描述。
下行参考信号资源上传输的每个第一下行参考信号与第二下行参考信号相关,可以是对第二下行参考信号进行拆分得到的。这里的拆分具体可以是分开、划分、分割、分段等。第二下行参考信号对应于下行参考信号资源,每个第一下行参考信号是基于一组频域单元传输的。一组频域单元可以包括一个或多个频域单元,是一段连续的频域资源,比如资源块(Resource Block,RB)、资源粒子(Resource Element,RE)、资源块组(Resource Block Group,RBG)、子带(subband)等。从不同的频域粒度来看,第一下行参考信号的传输在频域上可以是连续的,也可以是不连续的。例如,在资源块上是连续的,在资源粒子上是不连续的。
即将一个第二下行参考信号的传输拆分为一个或多个实际的第一下行参考信号的传输。多个第一下行参考信号可以都属于一个第二下行参考信号,每个第一下行参考信号是第二下行参考信号的一个分段或部分。如果下行参考信号资源是一段连续的频域资源,则只有一个实际的第一下行参考信号传输,且这个第一下行参考信号即为下行参考信号资源对应的第二下行参考信号。
本申请实施例中,第一下行参考信号可以为周期、或半持续、或非周期的下行参考信号;或者,第一下行参考信号可以为跟踪参考信号(Tracking Reference Signal,TRS)、或用于波束管理的信道状态信息参考信号(CSI-RS for beam management)、或用于获取信道状态信息的信道状态信息参考信号(CSI-RS for CSI acquisition);或者,第一下行参考信号为用于信道/干扰测量的非零功率信道状态信息参考信号(NZP-CSI-RS for channel/interference measurement)、或用于干扰测量的信道状态信息干扰测量信号(CSI-IM for interference measurement)。
应用本申请实施例所提供的方法,在下行参考信号资源上传输一个或多个第一下行参考信号,每个第一下行参考信号均与下行参考信号资源对应的第二下行参考信号相关,这样能够有效地在多个不连续的下行子带上传输与第二下行参考信号相关的第一下行参考信号,不需要过多的配置下行参考信号资源,可以节省下行参考信号资源,避免过多使用下行参考信号资源,避免因下行参考信号资源不足影响下行参考信号的正常传输。
在本申请的一个实施例中,传输每个第一下行参考信号的频域资源是有效的。
可以理解的是,在下行参考信号资源上用于传输下行参考信号的频域资源需要是有效的,而下行参考信号资源包括的频域资源可能并不都是有效的,比如下行参考信号资源包括的指示为上行传输的频域资源就是非有效频域资源,无法进行下行参考信号的传输,即需要在有效的频域资源上传输每个第一下行参考信号。这样可以保证下行参考信号的正常传输。
在本申请的一个实施例中,下行参考信号资源的频域单元是否为有效频域资源是按照以下至少一项规则确定的:
由灵活双工上下行配置指示为上行或灵活的频域单元,不是传输下行参考信号的有效频域资源;
由灵活双工上下行配置指示为上行或灵活的频域单元,如果网络侧设备指示为用于下行传输,则是传输下行参考信号的有效频域资源;
由随机接入资源配置指示为用于随机接入的频域单元,不是传输下行参考信号的有效频域资源;
由保护带配置指示为用于保护带的频域单元,不是传输下行参考信号的有效频域资源;
由网络侧设备配置的无效资源块样式或速率匹配样式指示为非可用的频域单元,不是传输下行参考信号的有效频域资源。
在本申请实施例中,可以预定义规则,用于确定下行参考信号资源的频域单元是否有效。下行参考信号资源可以包括多个频域单元,频域单元可以是子带、资源粒子、资源块、带宽部分(bandwidth part,BWP)等粒度的频域资源。
具体的,该预定义规则可以包括以下至少一项:
第一规则:由灵活双工上下行配置指示为上行或灵活的频域单元,不是传输下行参考信号的有效频域资源。即对于被指示为上行或灵活的频域单元,不能作为传输下行参考信号的有效频域资源,该频域单元为非有效频域资源。
灵活双工上下行配置可以是时分双工上下行配置(TDD-UL-DL-Configuration)或者频分双工上下行配置(FDD-UL-DL-Configuration)。可以是网络高层配置的,例如通过终端专属信令配置的,或者通过广播信令配置的。
第二规则:由灵活双工上下行配置指示为上行或灵活的频域单元,如果网络侧设备指示为用于下行传输,则是传输下行参考信号的有效频域资源。即对于被指示为上行或灵活的频域单元,如果用于下行传输,则可以作为下行参考信号传输的有效频域资源。
第三规则:由随机接入资源配置指示为用于随机接入的频域单元,不是传输下行参考信号的有效频域资源。即如果频域单元被指示为用于随机接入,则其不能再用于传输下行参考信号,不能作为传输下行参考信号的有效频域资源,该频域单元为非有效频域资源。
第四规则:由保护带(Guardband)配置指示为用于保护带的频域单元,不是传输下行参考信号的有效频域资源。即如果频域单元被指示为用于保护带,则其不能再用于传输下行参考信号,不能作为传输下行参考信号的有效频域资源,该频域单元为非有效频域资源。
第五规则:由网络侧设备配置的无效资源块样式(invalid RB pattern)或速率匹 配样式(Rate Match Pattern)指示为非可用的频域单元,不是传输下行参考信号的有效频域资源。即如果频域单元被无效资源块样式或者速率匹配样式指示为非可用,则其不能再用于传输下行参考信号,不能作为传输下行参考信号的有效频域资源,该频域单元为非有效频域资源。速率匹配样式用于指示物理下行共享信道进行速率匹配。
以上自定义规则可以单独使用,还可以联合使用,根据以上至少一项规则方便终端准确确定下行参考信号资源的频域单元是否为有效频域资源,进而可以准确确定出下行参考信号资源上传输的第一下行参考信号,以基于第一下行参考信号进行信道或干扰测量。
另外,还有一个预定义规则,即对于单端口的下行参考信号资源,不期望存在非有效的频域单元。也就是说,如果下行参考信号资源配置为单端口,则其包括的频域单元应该均为有效频域资源。
根据以上预定义规则可以准确确定下行参考信号资源的频域单元是否为有效频域资源。具体的,可以直接基于以上预定义规则确定出下行参考信号资源中的有效频域资源,还可以基于以上预定义规则确定出下行参考信号资源中的非有效频域资源,然后排除掉非有效频域资源后将剩余的频域资源确定为有效频域资源。
在本申请的一个实施例中,第一下行参考信号的数量为M,M为正整数,M是根据以下至少一种方式确定的:
根据网络侧设备的配置确定;
根据网络侧设备配置的第二下行参考信号包含的第一下行参考信号的最大传输数量确定;
根据下行频域子带的数量确定。
在本申请实施例中,第一下行参考信号与下行参考信号资源对应的第二下行参考信号相关,第一下行参考信号是下行参考信号资源上实际传输的信号,第一下行参考信号的数量可以为M。即一个第二下行参考信号传输可以被拆分成M个实际的第一下行参考信号传输,每个实际的第一下行参考信号传输包括一组频域单元。
可以根据网络侧设备的配置确定第一下行参考信号的数量。具体的,可以将网络侧设备配置的数量确定为第一下行参考信号的数量。
或者,可以根据网络侧设备配置的第二下行参考信号包含的第一下行参考信号的最大传输数量确定。即网络侧设备可以配置第二下行参考信号包含的第一下行参考信号的最大传输数量,根据该最大传输数量可以确定第一下行参考信号的数量,第一下行参考信号的数量小于或等于该最大传输数量。
或者,可以根据下行频域子带的数量确定。下行频域子带可用于传输下行参考信号,第一下行参考信号的数量小于或等于下行频域子带的数量。
根据以上至少一种方式可以有效确定第一下行参考信号的数量,以基于第一下 行参考信号进行信道或干扰测量。
在本申请的一个实施例中,传输每个第一下行参考信号的频域资源包括的频域单元数大于或等于预设的第一数量阈值;
或者,传输每个第一下行参考信号的频域资源包括的频域单元数与下行参考信号资源包括的频域单元数的比例大于或等于预设的比例阈值。
在本申请实施例中,可以对传输第一下行参考信号的频域资源包括的频域单元数进行限定。具体的,针对每个第一下行参考信号,传输该第一下行参考信号的频域资源包括的频域单元数需大于或等于预设的第一数量阈值,或者,传输该第一下行参考信号的频域资源包括的频域单元数与下行参考信号资源包括的频域单元数的比例需大于或等于预设的比例阈值。第一数量阈值和比例阈值均可根据实际情况进行设定和调整。
对传输每个第一下行参考信号的频域资源包括的频域单元数进行限定,可以避免传输每个第一下行参考信号的频域资源包括的频域单元数过少,导致传输的第一下行参考信号信息量太少,使得基于这样的第一下行参考信号进行信道或干扰测量无法获得准确的信道状态信息。
在本申请的一个实施例中,下行参考信号资源上传输的每个第一下行参考信号对应的码分复用类型、频域密度、端口数中至少一项相同。
在本申请实施例中,下行参考信号资源上传输的每个第一下行参考信号对应的码分复用类型(CDM-type)、频域密度(density)、端口数(Number of ports)中至少一项相同,且每个第一下行参考信号对应的码分复用类型、频域密度、端口数中至少之一与第二下行参考信号对应的参数相同。以保证第一下行参考信号与第二下行参考信号的相关性。
为方便理解,以图8所示的CSI-RS传输为例,对本申请实施例进行说明。
网络侧设备配置的时频域资源如图8所示,D代表下行资源,U代表上行资源,GB代表保护带,GP代表保护间隔,区域A代表CSI-RS的不可用资源块(Invalid RBs)。
网络侧设备配置1个CSI-RS资源配置,分别包括CSI-RS 1资源和CSI-RS 2资源,对应的频域资源都为f0~f5。CSI-RS资源可以是周期CSI-RS资源或非周期CSI-RS资源。
slot t0、slot t1和slot t2是CSI的测量时刻。
在slot t0,所有频域资源均为DL频域资源,终端根据预定义规则,可以确定所有频域资源是CSI-RS 1资源和CSI-RS 2资源的有效频域资源,即频域资源f0~f5。所以,在slot t0,CSI-RS 1资源上有CSI-RS 1传输,CSI-RS 2资源上有CSI-RS 2传输。
在slot t1,终端根据预定义规则,可以确定上行频域资源和保护带频域资源为传 输CSI-RS的非有效频域资源,即频域资源f2~f3为传输CSI-RS的非有效频域资源。所以,在slot t1,CSI-RS 1资源上的CSI-RS传输拆分成两个实际的CSI-RS传输,分别为在f0~f2的CSI-RS 1’-1传输和在f3~f5的CSI-RS 1’-2传输;CSI-RS 2资源上的CSI-RS传输拆分成两个实际的CSI-RS传输,分别为在f0~f2的CSI-RS 2’-1传输和在f3~f5的CSI-RS 2’-2传输。
在slot t2,终端根据预定义规则,可以确定上行频域资源和保护带频域资源为传输CSI-RS的非有效频域资源,即频域资源f1~f4为传输CSI-RS的非有效频域资源。所以,在slot t1,CSI-RS 1资源上的CSI-RS传输拆分成两个实际的CSI-RS传输,分别为在f0~f1的CSI-RS 1”-1传输和在f4~f5的CSI-RS 1”-2传输;CSI-RS 2资源上的CSI-RS传输拆分成两个实际的CSI-RS传输,分别为在f0~f1的CSI-RS 2”-1传输和在f4~f5的CSI-RS 2”-2传输。
本申请实施例中,当终端在不同时刻有不同的频域资源格式,需要对每个时刻对应的下行频域带宽进行CSI测量,可以根据传输CSI-RS的有效频域资源确定实际的CSI-RS传输,不需要在每个下行频域子带配置不同的CSI-RS资源,能够节省开销。
上面是基于预定义规则确定下行参考信号资源上传输的第一下行参考信号,下面从另一种网络侧设备配置角度考虑对下行参考信号资源上传输的第一下行参考信号进行确定。
在本申请的一个实施例中,传输每个第一下行参考信号的频域资源是根据网络侧设备的资源配置信息确定的。
在本申请实施例中,网络侧设备可以对下行参考信号资源包括的频域资源进行配置,将资源配置信息发送给终端。终端根据网络侧设备的资源配置信息可以确定传输每个第一下行参考信号的频域资源。
根据网络侧设备的资源配置信息,有助于终端准确确定传输每个第一下行参考信号的频域资源,进而确定下行参考信号资源上实际传输的第一下行参考信号。
在本申请的一个实施例中,资源配置信息可以包括下行参考信号资源对应的频域资源集,频域资源集可以包括一个或多个频域资源子集。
在本申请实施例中,资源配置信息可以包括下行参考信号资源对应的频域资源集,频域资源集可以包括一个或多个频域资源子集。以下行参考信号资源为信道状态信息参考信号资源,即CSI-RS资源为例,对于一个CSI-RS资源,可以配置频域资源集{FCSI-RS},该频域资源集{FCSI-RS}包含一个或多个频域资源子集,如{FD,FX}。
根据资源配置信息可以准确确定传输每个第一下行参考信号的频域资源,进而可以确定下行参考信号资源上传输的第一下行参考信号,以基于第一下行参考信号进行信道或干扰测量。
在本申请的一个实施例中,频域资源集可以包括第一频域资源子集,第一频域 资源子集对应于第一时域单元;
其中,第一时域单元满足以下至少一项:
对应于时域格式为下行/灵活的时域资源;
对应于资源配置信息给定编号的时域资源;
仅包含下行频域资源。
在本申请实施例中,频域资源集可以包括第一频域资源子集,第一频域资源子集对应于第一时域单元。即在第一时域单元,下行参考信号资源对应的频域资源集包括第一频域资源子集,如{FD}。
具体的,第一时域单元可以对应时域格式为下行/灵活(DL/Flexible)的时域资源;第一时域单元还可以对应于资源配置信息给定编号的时域资源,给定编号的时域资源可以是时域格式为下行/灵活的时域资源,还可以是其他时域格式的时域资源;第一时域单元还可以仅包含下行频域资源。
根据以上至少一项,可以准确确定出频域资源集包括的第一频域资源子集对应的第一时域单元,进而可以在第一时域单元基于第一频域资源子集确定传输第一下行参考信号的频域资源,以进一步确定下行参考信号资源上实际传输的第一下行参考信号,基于第一下行参考信号进行信道或干扰测量。
在本申请的一个实施例中,频域资源集包括第二频域资源子集,第二频域资源子集对应于第二时域单元;
其中,第二时域单元满足以下至少一项:
对应于时域格式为下行/灵活/上行的时域资源;
对应于资源配置信息给定编号的时域资源;
包含下行频域资源和上行频域资源。
在本申请实施例中,频域资源集可以包括第二频域资源子集,第二频域资源子集对应于第二时域单元。即对于第二时域单元,下行参考信号资源对应的频域资源集包括第二频域资源子集,如表示为{FX}。
具体的,第二时域单元可以对应于时域格式为下行/灵活/上行(DL/Flexible/UL)的时域资源;第二时域单元还可以对应于资源配置信息给定编号的时域资源,给定编号的时域资源可以是时域格式为下行/灵活/上行的时域资源,还可以是其他时域格式的时域资源;第二时域单元还可以同时包含下行频域资源和上行频域资源。
根据以上至少一项,可以准确确定出频域资源集包括的第二频域资源子集对应的第二时域单元,进而可以在第二时域单元基于第二频域资源子集确定传输第一下行参考信号的频域资源,以进一步确定下行参考信号资源上实际传输的第一下行参考信号,基于第一下行参考信号进行信道或干扰测量。
在本申请的一个实施例中,频域资源集可以包括第三频域资源子集;
其中,第三频域资源子集包括起始频域单元、长度、起始偏移值集合;
或者,第三频域资源子集包括起始频域单元集合、长度;
或者,第三频域资源子集包括每个频域资源分配的起始频域单元和长度。
在本申请实施例中,频域资源集可以包括第三频域资源子集,第三频域资源子集可以是第一频域资源子集或者第二频域资源子集。比如,第三频域资源子集是第二频域资源子集,对于下行参考信号资源在第二时域单元的频域资源子集{FX},可以包含一个或多个频域资源分配{FX,1,FX,2,…,FX,M}。
第三频域资源子集可以包括起始频域单元、长度、起始偏移值集合,起始偏移值集合如{起始偏移值1,起始偏移值2,…,起始偏移值M}。根据起始频域单元和长度可以确定第一个频域资源分配,根据起始频域单元、长度、起始偏移值集合,可以确定第一个频域资源分配后的每个频域资源分配。举例而言,起始频域单元为f0,长度为f,起始偏移值集合为{f1,f2},每个频域资源分配分别为:f0~f0+f、f0+f1~f0+f1+f、f0+f2~f0+f2+f。
第三频域资源子集还可以包括起始频域单元集合、长度,起始频域单元集合如{起始频域单元1,起始频域单元2,…,起始频域单元M}。根据起始频域单元集合、长度,可以确定每个频域资源分配。举例而言,起始频域单元集合为{f1,f2,f3},长度为f,每个频域资源分配分别为:f1~f1+f、f2~f2+f、f3~f3+f。
第三频域资源子集还可以包括每个频域资源分配的起始频域单元和长度,如{(起始频域单元1,长度1),(起始频域单元2,长度2),…,(起始频域单元M,长度M)}。根据每个频域资源分配的起始频域单元和长度,可以确定每个频域资源分配,如第一个频域资源分配为起始频域单元1~起始频域单元1+长度1,第二个频域资源分配为起始频域单元2~起始频域单元2+长度2,以下类同,不再赘述。
根据第三频域资源子集的上述形式,可以快速确定在第一时域单元或第二时域单元下行参考信号资源包括的频域资源分配。
以上确定频域资源子集的方式可以是网络侧设备配置的,还可以是协议约定的。
在本申请的一个实施例中,可以通过以下至少之一确定下行参考信号资源在第二频域资源子集包含的频域资源分配是否传输:
针对第二频域资源子集包含的每个频域资源分配,如果当前频域资源分配与时域格式为灵活/上行的时域资源冲突,则确定下行参考信号资源在当前频域资源分配上不传输;
针对第二频域资源子集包含的每个频域资源分配,如果当前频域资源分配与上行频域资源冲突,则确定下行参考信号资源在当前频域资源分配上不传输。
在本申请实施例中,第二频域资源子集可以包括一个或多个频域资源分配,下行参考信号资源在每个频域资源分配上是否传输下行参考信号可以通过以下至少一项进行确定:
针对第二频域资源子集包含的每个频域资源分配,如果当前频域资源分配与时 域格式为灵活/上行(Flexible/UL)的时域资源冲突,则确定下行参考信号资源在当前频域资源分配上不传输。当前频域资源分配是指当前操作所针对的频域资源分配,如表示为{FX,K}。时域格式为灵活/上行的时域资源可能用于进行上行传输,如果当前频域资源分配与时域格式为灵活/上行的时域资源冲突,则可以确定下行参考信号资源在该当前频域资源上不传输下行参考信号。
针对第二频域资源子集包含的每个频域资源分配,如果当前频域资源分配与上行频域资源冲突,则确定下行参考信号资源在当前频域资源分配上不传输。当前频域资源分配是指当前操作所针对的频域资源分配,如表示为{FX,K}。上行频域资源需用于进行上行传输,如果当前频域资源分配与上行频域资源冲突,则可以确定下行参考信号资源在该当前频域资源上不传输下行参考信号。
进一步的,针对第二频域资源子集包含的每个频域资源分配,如果当前频域资源分配与时域格式为下行/灵活/上行的时域资源上的上行频域资源冲突,则可以确定下行参考信号资源在该当前频域资源上不传输。
通过以上至少一项可以准确确定出下行参考信号资源在第二频域资源子集包括的每个频域资源分配上是否传输下行参考信号。
为方便理解,以图9所示的CSI-RS传输为例,对本申请实施例进行说明。
网络侧设备配置的时频域资源如图9所示,D代表下行资源,U代表上行资源,GB代表保护带,GP代表保护间隔。
网络侧设备配置三个CSI-RS资源配置,分别为CSI-RS资源配置1、CSI-RS资源配置2和CSI-RS资源配置3,其中:
CSI-RS资源配置1分别包括CSI-RS 1资源和CSI-RS 2资源,频域资源都为f0~f5;
CSI-RS资源配置2分别包括CSI-RS 3资源和CSI-RS 4资源。CSI-RS 3资源包含两个频域资源分配{F3-1,F3-2},分别为:{F3-1}=f0~f2和{F3-2}=f3~f5;CSI-RS 4资源包含两个频域资源分配{F4-1,F4-2},分别为:{F4-1}=f0~f2和{F4-2}=f3~f5。
CSI-RS资源配置3分别包括CSI-RS 5资源和CSI-RS 6资源。CSI-RS 5资源包含两个频域资源分配{F5-1,F5-2},分别为:{F5-1}=f0~f1和{F5-2}=f4~f5;CSI-RS 6资源包含两个频域资源分配{F6-1,F6-2},分别为:{F6-1}=f0~f1和{F6-2}=f4~f5。
CSI-RS资源可以是周期CSI-RS资源或非周期CSI-RS资源。slot t0、slot t1和slot t2是CSI的测量时刻。
在slot t0,CSI-RS 1资源上有CSI-RS 1传输,CSI-RS 2资源上有CSI-RS 2传输。
在slot t1,CSI-RS 3资源的频域资源f0~f2上有CSI-RS 3-1’传输,频域资源f3~f5上有CSI-RS 3-2’传输;CSI-RS 4资源的频域资源f0~f2上有CSI-RS 4-1’传输,频域资源f3~f5上有CSI-RS 4-2’传输。
在slot t2,CSI-RS 5资源的频域资源f0~f1上有CSI-RS 5-1’传输,频域资源f4~f5 上有CSI-RS 5-2’传输;CSI-RS 6资源的频域资源f0~f1上有CSI-RS 6-1’传输,频域资源f4~f5上有CSI-RS 6-2’传输。
本申请实施例中,当终端在不同时刻有不同的频域资源格式,需要对每个时刻对应的下行频域带宽进行CSI测量,可以根据多个频域资源分配确定实际的CSI-RS传输,不需要在每个下行频域子带配置独立的CSI-RS资源,能够节省开销。
需要说明的是,在相关技术中,在下行子带发生变化时需要重新配置下行参考信号资源,造成额外的信令开销,本申请实施例无论是基于预定义规则还是基于网络侧设备的资源配置信息,进行实际传输的第一下行参考信号的确定,都具有一定的灵活性,在下行子带发生变化时不需要重新配置下行参考信号资源,节省了信令开销。
在本申请的一个实施例中,该方法还可以包括以下步骤:
终端向网络侧设备上报信道或干扰测量对应的信道状态信息。
终端在第一时刻,基于下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量后,可以获得信道或干扰测量对应的信道状态信息,终端可以向网络侧设备上报信道或干扰测量对应的信道状态信息。
这样网络侧设备可以基于信道状态信息进行波束管理、终端调度等操作。
在本申请的一个实施例中,终端的上报方式为基于宽带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括K个第一信道状态信息,K<=M;
其中,每个第一信道状态信息包括第一宽带信道状态信息,和/或每个第一信道状态信息分别对应一个或多个第一下行参考信号。
在本申请实施例中,终端向网络侧设备上报信道或干扰测量对应的信道状态信息时,其上报方式可以是基于宽带的上报。下行参考信号资源上传输的第一下行参考信号是实际的下行参考信号传输,第一下行参考信号的数量可以为M。终端可以基于每个第一下行参考信号或者多个第一下行参考信号进行信道或干扰测量,得到相应的信道状态信息。
信道或干扰测量对应的信道状态信息可以包括K个第一信道状态信息,K<=M。
因为终端的上报方式为基于宽带的上报,所以每个第一信道状态信息可以包括第一宽带信道状态信息,每个第一信道状态信息可以分别对应一个或多个第一下行参考信号。
终端基于多个第一下行参考信号进行信道或干扰测量,得到相应的信道状态信息,并分别上报宽带信道状态信息,可以使得网络侧设备能够得到更准确的信道状态。
在本申请的一个实施例中,终端的上报方式为基于子带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括L个 第二信道状态信息,L<=M;
每个第二信道状态信息包括第二宽带信道状态信息和子带信道状态信息;
每个第二宽带信道状态信息对应一个或多个第一下行参考信号;
每个子带信道状态信息对应信道状态信息上报频带中的一个子带,每个子带对应一个或多个第一下行参考信号;其中,信道状态信息上报频带对应信道或干扰测量对应的信道状态信息。
在本申请实施例中,终端向网络侧设备上报信道或干扰测量对应的信道状态信息时,其上报方式可以是基于子带的上报。下行参考信号资源上传输的第一下行参考信号是实际的下行参考信号传输,第一下行参考信号的数量可以为M。终端可以基于每个第一下行参考信号或者多个第一下行参考信号进行信道或干扰测量,得到相应的信道状态信息。
信道或干扰测量对应的信道状态信息可以包括L个第二信道状态信息,L<=M。每个第二信道状态信息可以包括第二宽带信道状态信息和子带信道状态信息。每个第二宽带信道状态信息对应一个或多个第一下行参考信号,每个子带信道状态信息可以与信道状态信息上报频带中的一个子带相对应,每个子带对应于一个或多个第一下行参考信号。这里的信道状态信息上报频带对应信道或干扰测量对应的信道状态信息。信道状态信息上报频带可以是根据下行频域资源确定的,也可以是网络侧设备配置在下行频域资源内的。
需要说明的是,第二信道状态信息包括的第二宽带信道状态信息对应信道状态信息上报频带中的一个或多个子带,第二信道状态信息包括的子带信道状态信息是根据该第二信道状态信息包括的第二宽带信道状态信息得到的。
举例而言,终端配置了子带信道状态信息(subband CSI)上报。下行子带(DL subband)数为2,下行参考信号资源对应的第二下行参考信号拆分成M=2个实际的第一下行参考信号传输,如CSI-RS传输1-1和CSI-RS传输1-2。在DL subband 1,终端基于CSI-RS传输1-1进行信道或干扰测量,上报宽带CSI 1+DL subband 1上的subband CSI;在DL subband 2,终端基于CSI-RS传输1-2进行信道或干扰测量,上报宽带CSI 2+DL subband 2上的subband CSI。
终端基于子带上报方式上报信道或干扰测量对应的信道状态信息,可以提高上报精准度。
在本申请的一个实施例中,终端的上报方式为基于子带的上报,第一下行参考信号的数量为M,终端向网络侧设备上报信道或干扰测量对应的信道状态信息,可以包括以下步骤:
终端在传输M个第一下行参考信号的频域资源包括的频域单元总数小于预设的第二数量阈值的情况下,向网络侧设备上报单个宽带信道状态信息,或者向网络侧设备上报P个宽带信道状态信息,不上报子带信道状态信息,P<=M。
可以理解的是,传输M个第一下行参考信号的频域资源包括的频域单元总数越多,对信道或干扰的测量越准确。所以,在传输M个第一下行参考信号的频域资源包括的频域单元总数小于第二数量阈值时,可以向网络侧设备上报单个宽带信道状态信息,可以对应整个信道状态信息上报频带的带宽。或者,在上述情况下,终端还可以向网络侧设备上报P个宽带信道状态信息,不上报子带信道状态信息。
这样可以有效保证上报的信道状态信息的准确性。
在本申请的一个实施例中,在终端向网络侧设备上报信道或干扰测量对应的信道状态信息之前,该方法还包括:
终端根据传输每个第一下行参考信号的频域资源,确定上报频带;
终端向网络侧设备上报信道或干扰测量对应的信道状态信息,包括:
终端基于上报频带,向网络侧设备上报信道或干扰测量对应的信道状态信息。
在本申请实施例中,终端可以根据传输每个第一下行参考信号的频域资源,确定上报频带。具体的,可以分别将每个传输第一下行参考信号的频域资源确定为上报频带,或者将多个传输第一下行参考信号的频域资源确定为上报频带。然后基于该上报频带,向网络侧设备上报信道或干扰测量对应的信道状态信息。
具体的,如果终端的上报方式为基于宽带的上报,第一下行参考信号的数量为M,则终端可以向网络侧设备上报该上报频带对应的宽带信道状态信息,宽带信道状态信息对应于M个第一下行参考信号;
或者,终端可以向网络侧设备上报该上报频带对应的M个宽带信道状态信息,每个宽带信道状态信息分别对应一个第一下行参考信号。
本申请实施例还可以对下行参考信号进行功率控制(power control)。以下行参考信号为CSI-RS为例,对于一个实际的CSI-RS传输,实际的CSI-RS资源粒子(Resource element,RE)相对于辅同步信号(Secondary Synchronization Signals,SSS)RE的功率偏移(Power offset)OffsetB可以根据至少一项来确定:
该CSI-RS传输所占带宽Wx;
CSI-RS资源的总带宽W;
实际CSI-RS传输的总数量M。
如,
OffsetB=OffsetA
或,OffsetB=Wx*OffsetA/W;
或,OffsetB=W*OffsetA/M/Wx。
其中,OffsetA是在CSI-RS传输不拆分时,CSI-RS RE相对于SSS RE的功率偏移。
对于一个实际的CSI-RS传输,PDSCH RE相对于实际的CSI-RS RE的功率偏移OffsetD可以根据以下至少一项来确定:
该CSI-RS传输所占带宽Wx;
CSI-RS资源的总带宽W;
实际CSI-RS传输的总数量M。
如,
OffsetD=OffsetC
或,OffsetD=Wx*OffsetC/W;
或,OffsetD=W*OffsetC/M/Wx。
其中,OffsetC是在CSI-RS传输不拆分时,PDSCH RE相对于CSI-RS RE的功率偏移。
在本申请的一个实施例中,第一时刻是基于测量参考资源确定的。
测量参考资源具体可以为CSI参考资源。因为终端对信道或干扰的测量需要时间,所以在第一时刻对信道或干扰的测量所基于的第一下行参考信号需要是在测量参考资源之上或之前传输的,第一时刻基于测量参考资源确定,可以保证终端有充足的时间进行信道或干扰的测量。
在本申请的一个实施例中,测量参考资源的频域资源是根据传输每个第一下行参考信号的频域资源确定的;
和/或,测量参考资源的时域资源根据以下至少之一确定:
对于存在灵活双工上下行配置指示为下行/灵活(DL/flexible)的频域单元的下行/灵活(DL/flexible)时域单元,是测量参考资源的有效时域资源;
对于存在灵活双工上下行配置指示为下行/灵活(DL/flexible)的频域单元的上行(UL)时域单元,是测量参考资源的有效时域资源。
在本申请实施例中,测量参考资源可以包括频域资源和时域资源。测量参考资源的频域资源可以根据传输每个第一下行参考信号的频域资源确定,如果第一下行参考信号的数量为M,则测量参考资源也可以分成M个实际的测量参考资源。
基于上述规则可以准确确定出测量参考资源的频域资源和时域资源,进而可以基于测量参考资源准确确定第一时刻,以基于下行参考信号资源上传输的第一下行参考信号进行信道或干扰测量。
在本申请的一个实施例中,终端基于下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量,包括:
终端基于测量参考资源,根据上报频带对应的频域资源传输的第一下行参考信号进行信道或干扰测量;
或者,
终端基于测量参考资源,根据每个第一下行参考信号进行信道或干扰测量。
在本申请实施例中,终端可以基于测量参考资源,在测量参考资源之上或之前,根据上报频带对应的频域资源传输的第一下行参考信号进行信道或干扰测量。或者 可以根据每个第一下行参考信号进行信道或干扰测量。
本申请实施例提供的信号处理方法,执行主体可以为信号处理装置。本申请实施例中以信号处理装置执行信号处理方法为例,说明本申请实施例提供信号处理装置。
参见图10所示,信号处理装置1000可以包括以下模块:
获得模块1010,用于获得网络侧设备配置的下行参考信号资源;
测量模块1020,用于在第一时刻,基于下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量;
其中,每个第一下行参考信号与第二下行参考信号相关,第二下行参考信号对应于下行参考信号资源,每个第一下行参考信号是基于一组频域单元传输的。
应用本申请实施例所提供的装置,在下行参考信号资源上传输一个或多个第一下行参考信号,每个第一下行参考信号均与下行参考信号资源对应的第二下行参考信号相关,这样能够有效地在多个不连续的下行子带上传输与第二下行参考信号相关的第一下行参考信号,不需要过多的配置下行参考信号资源,可以节省下行参考信号资源,避免过多使用下行参考信号资源,避免因下行参考信号资源不足影响下行参考信号的正常传输。
在本申请的一种具体实施方式中,传输每个第一下行参考信号的频域资源是有效的。
在本申请的一种具体实施方式中,下行参考信号资源的频域单元是否为有效频域资源是按照以下至少一项规则确定的:
由灵活双工上下行配置为上行或灵活的频域单元,不是传输下行参考信号的有效频域资源;
由灵活双工上下行配置指示为上行或灵活的频域单元,如果网络侧设备指示为用于下行传输,则是传输下行参考信号的有效频域资源;
由随机接入资源配置指示为用于随机接入的频域单元,不是传输下行参考信号的有效频域资源;
由保护带配置指示为用于保护带的频域单元,不是传输下行参考信号的有效频域资源;
由网络侧设备配置的无效资源块样式或速率匹配样式指示为非可用的频域单元,不是传输下行参考信号的有效频域资源。
在本申请的一种具体实施方式中,第一下行参考信号的数量为M,M为正整数,M是根据以下至少一种方式确定的:
根据网络侧设备的配置确定;
根据网络侧设备配置的第二下行参考信号包含的第一下行参考信号的最大传输数量确定;
根据下行频域子带的数量确定。
在本申请的一种具体实施方式中,传输每个第一下行参考信号的频域资源包括的频域单元数大于或等于预设的第一数量阈值;
或者,传输每个第一下行参考信号的频域资源包括的频域单元数与下行参考信号资源包括的频域单元数的比例大于或等于预设的比例阈值。
在本申请的一种具体实施方式中,下行参考信号资源上传输的每个第一下行参考信号对应的码分复用类型、频域密度、端口数中至少一项相同。
在本申请的一种具体实施方式中,传输每个第一下行参考信号的频域资源是根据网络侧设备的资源配置信息确定的。
在本申请的一种具体实施方式中,资源配置信息包括下行参考信号资源对应的频域资源集,频域资源集包括一个或多个频域资源子集。
在本申请的一种具体实施方式中,频域资源集包括第一频域资源子集,第一频域资源子集对应于第一时域单元;
其中,第一时域单元满足以下至少一项:
对应于时域格式为下行/灵活的时域资源;
对应于资源配置信息给定编号的时域资源;
仅包含下行频域资源;
和/或,频域资源集包括第二频域资源子集,第二频域资源子集对应于第二时域单元;
其中,第二时域单元满足以下至少一项:
对应于时域格式为下行/灵活/上行的时域资源;
对应于资源配置信息给定编号的时域资源;
包含下行频域资源和上行频域资源。
在本申请的一种具体实施方式中,频域资源集包括第三频域资源子集;
其中,第三频域资源子集包括起始频域单元、长度、起始偏移值集合;
或者,第三频域资源子集包括起始频域单元集合、长度;
或者,第三频域资源子集包括每个频域资源分配的起始频域单元和长度。
在本申请的一种具体实施方式中,第一下行参考信号为周期、或半持续、或非周期的下行参考信号;
或者,第一下行参考信号为跟踪参考信号、或用于波束管理的信道状态信息参考信号、或用于获取信道状态信息的信道状态信息参考信号;
或者,第一下行参考信号为用于信道/干扰测量的非零功率信道状态信息参考信号、或用于干扰测量的信道状态信息干扰测量信号。
在本申请的一种具体实施方式中,信号处理装置1000还包括:
上报模块,用于向网络侧设备上报信道或干扰测量对应的信道状态信息。
在本申请的一种具体实施方式中,终端的上报方式为基于宽带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括K个第一信道状态信息,K<=M;
其中,每个第一信道状态信息包括第一宽带信道状态信息,和/或每个第一信道状态信息分别对应一个或多个第一下行参考信号。
在本申请的一种具体实施方式中,终端的上报方式为基于子带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括L个第二信道状态信息,L<=M;
每个第二信道状态信息包括第二宽带信道状态信息和子带信道状态信息;
每个第二宽带信道状态信息分别对应一个或多个第一下行参考信号;
每个子带信道状态信息对应信道状态信息上报频带中的一个子带,每个子带对应一个或多个第一下行参考信号;其中,信道状态信息上报频带对应信道或干扰测量对应的信道状态信息。
在本申请的一种具体实施方式中,第一时刻是基于测量参考资源确定的。
在本申请的一种具体实施方式中,测量参考资源的频域资源是根据传输每个第一下行参考信号的频域资源确定的;
和/或,测量参考资源的时域资源是根据以下至少之一确定的:
对于存在灵活双工上下行配置指示为下行/灵活的频域单元的下行/灵活时域单元,是测量参考资源的有效时域资源;
对于存在灵活双工上下行配置指示为下行/灵活的频域单元的上行时域单元,是测量参考资源的有效时域资源。
本申请实施例提供的信号处理装置能够实现图7所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
相应于图7所示方法实施例,本申请实施例还提供了一种信号处理方法,如图11所示,该方法可以包括以下步骤:
S1110:网络侧设备向终端配置下行参考信号资源;
S1120:网络侧设备接收终端上报的信道或干扰测量对应的信道状态信息,信道或干扰测量为在第一时刻,基于下行参考信号资源上传输的第一下行参考信号进行的;
其中,每个第一下行参考信号与第二下行参考信号相关,第二下行参考信号对应于下行参考信号资源,每个第一下行参考信号是基于一组频域单元传输的。
应用本申请实施例所提供的方法,在下行参考信号资源上传输一个或多个第一下行参考信号,每个第一下行参考信号均与下行参考信号资源对应的第二下行参考信号相关,这样能够有效地在多个不连续的下行子带上传输与第二下行参考信号相关的第一下行参考信号,不需要过多的配置下行参考信号资源,可以节省下行参考 信号资源,避免过多使用下行参考信号资源,避免因下行参考信号资源不足影响下行参考信号的正常传输。
在本申请的一种具体实施方式中,下行参考信号资源的频域单元是否为有效频域资源是按照以下至少一项规则确定的:
由灵活双工上下行配置指示为上行或灵活的频域单元,不是传输下行参考信号的有效频域资源;
由灵活双工上下行配置指示为上行或灵活的频域单元,如果网络侧设备指示为用于下行传输,则是传输下行参考信号的有效频域资源;
由随机接入资源配置指示为用于随机接入的频域单元,不是传输下行参考信号的有效频域资源;
由保护带配置指示为用于保护带的频域单元,不是传输下行参考信号的有效频域资源;
由网络侧设备配置的无效资源块样式或速率匹配样式指示为非可用的频域单元,不是传输下行参考信号的有效频域资源。
在本申请的一种具体实施方式中,第一下行参考信号的数量为M,M为正整数,M是根据以下至少一种方式确定的:
根据网络侧设备的配置确定;
根据网络侧设备配置的第二下行参考信号包含的第一下行参考信号的最大传输数量确定;
根据下行频域子带的数量确定。
在本申请的一种具体实施方式中,传输每个第一下行参考信号的频域资源包括的频域单元数大于或等于预设的第一数量阈值;
或者,传输每个第一下行参考信号的频域资源包括的频域单元数与下行参考信号资源包括的频域单元数的比例大于或等于预设的比例阈值。
在本申请的一种具体实施方式中,下行参考信号资源上传输的每个第一下行参考信号对应的码分复用类型、频域密度、端口数中至少一项相同。
在本申请的一种具体实施方式中,传输每个第一下行参考信号的频域资源是根据网络侧设备的资源配置信息确定的。
在本申请的一种具体实施方式中,资源配置信息包括下行参考信号资源对应的频域资源集,频域资源集包括一个或多个频域资源子集。
在本申请的一种具体实施方式中,频域资源集包括第一频域资源子集,第一频域资源子集对应于第一时域单元;
其中,第一时域单元满足以下至少一项:
对应于时域格式为下行/灵活的时域资源;
对应于资源配置信息给定编号的时域资源;
仅包含下行频域资源;
和/或,频域资源集包括第二频域资源子集,第二频域资源子集对应于第二时域单元;
其中,第二时域单元满足以下至少一项:
对应于时域格式为下行/灵活/上行的时域资源;
对应于资源配置信息给定编号的时域资源;
包含下行频域资源和上行频域资源。
在本申请的一种具体实施方式中,频域资源集包括第三频域资源子集;
其中,第三频域资源子集包括起始频域单元、长度、起始偏移值集合;
或者,第三频域资源子集包括起始频域单元集合、长度;
或者,第三频域资源子集包括每个频域资源分配的起始频域单元和长度。
在本申请的一种具体实施方式中,终端的上报方式为基于宽带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括K个第一信道状态信息,K<=M;
其中,每个第一信道状态信息包括第一宽带信道状态信息,和/或每个第一信道状态信息分别对应一个或多个第一下行参考信号。
在本申请的一种具体实施方式中,终端的上报方式为基于子带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括L个第二信道状态信息,L<=M;
每个第二信道状态信息包括第二宽带信道状态信息和子带信道状态信息;
每个第二宽带信道状态信息分别对应一个或多个第一下行参考信号;
每个子带信道状态信息对应信道状态信息上报频带中的一个子带,每个子带对应一个或多个第一下行参考信号;其中,信道状态信息上报频带对应信道或干扰测量对应的信道状态信息。
在本申请的一种具体实施方式中,第一时刻是基于测量参考资源确定的。
在本申请的一种具体实施方式中,测量参考资源的频域资源是根据传输每个第一下行参考信号的频域资源确定的;
和/或,测量参考资源的时域资源是根据以下至少之一确定的:
对于存在灵活双工上下行配置指示为下行/灵活的频域单元的下行/灵活时域单元,是测量参考资源的有效时域资源;
对于存在灵活双工上下行配置指示为下行/灵活的频域单元的上行时域单元,是测量参考资源的有效时域资源。
图11所示方法实施例的各步骤描述可以参见图7所示方式实施例的各步骤描述,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例提供的信号处理方法,执行主体可以为信号处理装置。本申请实 施例中以信号处理装置执行信号处理方法为例,说明本申请实施例提供信号处理装置。
参见图12所示,信号处理装置1200可以包括以下模块:
配置模块1210,用于向终端配置下行参考信号资源;
接收模块1220,用于接收终端上报的信道或干扰测量对应的信道状态信息,信道或干扰测量为在第一时刻,基于下行参考信号资源上传输的第一下行参考信号进行的;
其中,每个第一下行参考信号与第二下行参考信号相关,第二下行参考信号对应于下行参考信号资源,每个第一下行参考信号是基于一组频域单元传输的。
应用本申请实施例所提供的装置,在下行参考信号资源上传输一个或多个第一下行参考信号,每个第一下行参考信号均与下行参考信号资源对应的第二下行参考信号相关,这样能够有效地在多个不连续的下行子带上传输与第二下行参考信号相关的第一下行参考信号,不需要过多的配置下行参考信号资源,可以节省下行参考信号资源,避免过多使用下行参考信号资源,避免因下行参考信号资源不足影响下行参考信号的正常传输。
在本申请的一种具体实施方式中,下行参考信号资源的频域单元是否为有效频域资源是按照以下至少一项规则确定的:
由灵活双工上下行配置指示为上行或灵活的频域单元,不是传输下行参考信号的有效频域资源;
由灵活双工上下行配置指示为上行或灵活的频域单元,如果网络侧设备指示为用于下行传输,则是传输下行参考信号的有效频域资源;
由随机接入资源配置指示为用于随机接入的频域单元,不是传输下行参考信号的有效频域资源;
由保护带配置指示为用于保护带的频域单元,不是传输下行参考信号的有效频域资源;
由网络侧设备配置的无效资源块样式或速率匹配样式指示为非可用的频域单元,不是传输下行参考信号的有效频域资源。
在本申请的一种具体实施方式中,第一下行参考信号的数量为M,M为正整数,M是根据以下至少一种方式确定的:
根据网络侧设备的配置确定;
根据网络侧设备配置的第二下行参考信号包含的第一下行参考信号的最大传输数量确定;
根据下行频域子带的数量确定。
在本申请的一种具体实施方式中,传输每个第一下行参考信号的频域资源包括的频域单元数大于或等于预设的第一数量阈值;
或者,传输每个第一下行参考信号的频域资源包括的频域单元数与下行参考信号资源包括的频域单元数的比例大于或等于预设的比例阈值。
在本申请的一种具体实施方式中,下行参考信号资源上传输的每个第一下行参考信号对应的码分复用类型、频域密度、端口数中至少一项相同。
在本申请的一种具体实施方式中,传输每个第一下行参考信号的频域资源是根据网络侧设备的资源配置信息确定的。
在本申请的一种具体实施方式中,资源配置信息包括下行参考信号资源对应的频域资源集,频域资源集包括一个或多个频域资源子集。
在本申请的一种具体实施方式中,频域资源集包括第一频域资源子集,第一频域资源子集对应于第一时域单元;
其中,第一时域单元满足以下至少一项:
对应于时域格式为下行/灵活的时域资源;
对应于资源配置信息给定编号的时域资源;
仅包含下行频域资源;
和/或,频域资源集包括第二频域资源子集,第二频域资源子集对应于第二时域单元;
其中,第二时域单元满足以下至少一项:
对应于时域格式为下行/灵活/上行的时域资源;
对应于资源配置信息给定编号的时域资源;
包含下行频域资源和上行频域资源。
在本申请的一种具体实施方式中,频域资源集包括第三频域资源子集;
其中,第三频域资源子集包括起始频域单元、长度、起始偏移值集合;
或者,第三频域资源子集包括起始频域单元集合、长度;
或者,第三频域资源子集包括每个频域资源分配的起始频域单元和长度。
在本申请的一种具体实施方式中,终端的上报方式为基于宽带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括K个第一信道状态信息,K<=M;
其中,每个第一信道状态信息包括第一宽带信道状态信息,和/或每个第一信道状态信息分别对应一个或多个第一下行参考信号。
在本申请的一种具体实施方式中,终端的上报方式为基于子带的上报;
第一下行参考信号的数量为M,信道或干扰测量对应的信道状态信息包括L个第二信道状态信息,L<=M;
每个第二信道状态信息包括第二宽带信道状态信息和子带信道状态信息;
每个第二宽带信道状态信息分别对应一个或多个第一下行参考信号;
每个子带信道状态信息对应信道状态信息上报频带中的一个子带,每个子带对 应一个或多个第一下行参考信号;其中,信道状态信息上报频带对应信道或干扰测量对应的信道状态信息。
在本申请的一种具体实施方式中,第一时刻是基于测量参考资源确定的。
在本申请的一种具体实施方式中,测量参考资源的频域资源是根据传输每个第一下行参考信号的频域资源确定的;
和/或,测量参考资源的时域资源是根据以下至少之一确定的:
对于存在灵活双工上下行配置指示为下行/灵活的频域单元的下行/灵活时域单元,是测量参考资源的有效时域资源;
对于存在灵活双工上下行配置指示为下行/灵活的频域单元的上行时域单元,是测量参考资源的有效时域资源。
本申请实施例提供的信号处理装置能够实现图11所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述图7所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述图11所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供一种终端。如图14所示,该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆, 在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选的,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
具体地,本申请实施例还提供了一种网络侧设备。如图15所示,该网络侧设备1500包括:天线1501、射频装置1502、基带装置1503、处理器1504和存储器1505。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1503中实现,该基带装置1503包括基带处理器。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图7所示方法实施例或者上述图11所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述图7所示方法实施例或者上述图11所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的图7所示方法的步骤,所述网络侧设备可用于执行如上所述的图11所示方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (37)

  1. 一种信号处理方法,其中,包括:
    终端获得网络侧设备配置的下行参考信号资源;
    所述终端在第一时刻,基于所述下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量;
    其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
  2. 根据权利要求1所述的方法,其中,传输每个所述第一下行参考信号的频域资源是有效的。
  3. 根据权利要求1所述的方法,其中,所述下行参考信号资源的频域单元是否为有效频域资源是按照以下至少一项规则确定的:
    由灵活双工上下行配置指示为上行或灵活的频域单元,不是传输下行参考信号的有效频域资源;
    由灵活双工上下行配置指示为上行或灵活的频域单元,如果所述网络侧设备指示为用于下行传输,则是传输下行参考信号的有效频域资源;
    由随机接入资源配置指示为用于随机接入的频域单元,不是传输下行参考信号的有效频域资源;
    由保护带配置指示为用于保护带的频域单元,不是传输下行参考信号的有效频域资源;
    由所述网络侧设备配置的无效资源块样式或速率匹配样式指示为非可用的频域单元,不是传输下行参考信号的有效频域资源。
  4. 根据权利要求1所述的方法,其中,所述第一下行参考信号的数量为M,M为正整数,M是根据以下至少一种方式确定的:
    根据所述网络侧设备的配置确定;
    根据所述网络侧设备配置的所述第二下行参考信号包含的所述第一下行参考信号的最大传输数量确定;
    根据下行频域子带的数量确定。
  5. 根据权利要求1所述的方法,其中,传输每个所述第一下行参考信号的频域资源包括的频域单元数大于或等于预设的第一数量阈值;
    或者,传输每个所述第一下行参考信号的频域资源包括的频域单元数与所述下行参考信号资源包括的频域单元数的比例大于或等于预设的比例阈值。
  6. 根据权利要求1所述的方法,其中,所述下行参考信号资源上传输的每个所述第一下行参考信号对应的码分复用类型、频域密度、端口数中至少一项相同。
  7. 根据权利要求1所述的方法,其中,传输每个所述第一下行参考信号的频域 资源是根据所述网络侧设备的资源配置信息确定的。
  8. 根据权利要求7所述的方法,其中,所述资源配置信息包括所述下行参考信号资源对应的频域资源集,所述频域资源集包括一个或多个频域资源子集。
  9. 根据权利要求8所述的方法,其中,所述频域资源集包括第一频域资源子集,所述第一频域资源子集对应于第一时域单元;
    其中,所述第一时域单元满足以下至少一项:
    对应于时域格式为下行/灵活的时域资源;
    对应于所述资源配置信息给定编号的时域资源;
    仅包含下行频域资源;
    和/或,所述频域资源集包括第二频域资源子集,所述第二频域资源子集对应于第二时域单元;
    其中,所述第二时域单元满足以下至少一项:
    对应于时域格式为下行/灵活/上行的时域资源;
    对应于所述资源配置信息给定编号的时域资源;
    包含下行频域资源和上行频域资源。
  10. 根据权利要求8所述的方法,其中,所述频域资源集包括第三频域资源子集;
    其中,所述第三频域资源子集包括起始频域单元、长度、起始偏移值集合;
    或者,所述第三频域资源子集包括起始频域单元集合、长度;
    或者,所述第三频域资源子集包括每个频域资源分配的起始频域单元和长度。
  11. 根据权利要求1所述的方法,其中,所述第一下行参考信号为周期、或半持续、或非周期的下行参考信号;
    或者,所述第一下行参考信号为跟踪参考信号、或用于波束管理的信道状态信息参考信号、或用于获取信道状态信息的信道状态信息参考信号;
    或者,所述第一下行参考信号为用于信道/干扰测量的非零功率信道状态信息参考信号、或用于干扰测量的信道状态信息干扰测量信号。
  12. 根据权利要求1至11之中任一项所述的方法,其中,还包括:
    所述终端向所述网络侧设备上报所述信道或干扰测量对应的信道状态信息。
  13. 根据权利要求12所述的方法,其中,所述终端的上报方式为基于宽带的上报;
    所述第一下行参考信号的数量为M,所述信道或干扰测量对应的信道状态信息包括K个第一信道状态信息,K<=M;
    其中,每个所述第一信道状态信息包括第一宽带信道状态信息,和/或每个所述第一信道状态信息分别对应一个或多个所述第一下行参考信号。
  14. 根据权利要求12所述的方法,其中,所述终端的上报方式为基于子带的上 报;
    所述第一下行参考信号的数量为M,所述信道或干扰测量对应的信道状态信息包括L个第二信道状态信息,L<=M;
    每个所述第二信道状态信息包括第二宽带信道状态信息和子带信道状态信息;
    每个所述第二宽带信道状态信息分别对应一个或多个所述第一下行参考信号;
    每个所述子带信道状态信息对应信道状态信息上报频带中的一个子带,每个子带对应一个或多个所述第一下行参考信号;其中,所述信道状态信息上报频带对应所述信道或干扰测量对应的信道状态信息。
  15. 根据权利要求12所述的方法,其中,所述第一时刻是基于测量参考资源确定的。
  16. 根据权利要求15所述的方法,其中,
    所述测量参考资源的频域资源是根据传输每个所述第一下行参考信号的频域资源确定的;
    和/或,所述测量参考资源的时域资源是根据以下至少之一确定的:
    对于存在灵活双工上下行配置指示为下行/灵活的频域单元的下行/灵活时域单元,是所述测量参考资源的有效时域资源;
    对于存在灵活双工上下行配置指示为下行/灵活的频域单元的上行时域单元,是所述测量参考资源的有效时域资源。
  17. 一种信号处理装置,其中,包括:
    获得模块,用于获得网络侧设备配置的下行参考信号资源;
    测量模块,用于在第一时刻,基于下行参考信号资源上传输的第一下行参考信号,进行信道或干扰测量;
    其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
  18. 一种信号处理方法,其中,包括:
    网络侧设备向终端配置下行参考信号资源;
    所述网络侧设备接收所述终端上报的信道或干扰测量对应的信道状态信息,所述信道或干扰测量为在第一时刻,基于所述下行参考信号资源上传输的第一下行参考信号进行的;
    其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
  19. 根据权利要求18所述的方法,其中,所述下行参考信号资源的频域单元是否为有效频域资源是按照以下至少一项规则确定的:
    由灵活双工上下行配置指示为上行或灵活的频域单元,不是传输下行参考信号的有效频域资源;
    由灵活双工上下行配置指示为上行或灵活的频域单元,如果所述网络侧设备指示为用于下行传输,则是传输下行参考信号的有效频域资源;
    由随机接入资源配置指示为用于随机接入的频域单元,不是传输下行参考信号的有效频域资源;
    由保护带配置指示为用于保护带的频域单元,不是传输下行参考信号的有效频域资源;
    由所述网络侧设备配置的无效资源块样式或速率匹配样式指示为非可用的频域单元,不是传输下行参考信号的有效频域资源。
  20. 根据权利要求18所述的方法,其中,所述第一下行参考信号的数量为M,M为正整数,M是根据以下至少一种方式确定的:
    根据所述网络侧设备的配置确定;
    根据所述网络侧设备配置的所述第二下行参考信号包含的所述第一下行参考信号的最大传输数量确定;
    根据下行频域子带的数量确定。
  21. 根据权利要求18所述的方法,其中,传输每个所述第一下行参考信号的频域资源包括的频域单元数大于或等于预设的第一数量阈值;
    或者,传输每个所述第一下行参考信号的频域资源包括的频域单元数与所述下行参考信号资源包括的频域单元数的比例大于或等于预设的比例阈值。
  22. 根据权利要求18所述的方法,其中,所述下行参考信号资源上传输的每个所述第一下行参考信号对应的码分复用类型、频域密度、端口数中至少一项相同。
  23. 根据权利要求18所述的方法,其中,传输每个所述第一下行参考信号的频域资源是根据所述网络侧设备的资源配置信息确定的。
  24. 根据权利要求23所述的方法,其中,所述资源配置信息包括所述下行参考信号资源对应的频域资源集,所述频域资源集包括一个或多个频域资源子集。
  25. 根据权利要求24所述的方法,其中,所述频域资源集包括第一频域资源子集,所述第一频域资源子集对应于第一时域单元;
    其中,所述第一时域单元满足以下至少一项:
    对应于时域格式为下行/灵活的时域资源;
    对应于所述资源配置信息给定编号的时域资源;
    仅包含下行频域资源;
    和/或,所述频域资源集包括第二频域资源子集,所述第二频域资源子集对应于第二时域单元;
    其中,所述第二时域单元满足以下至少一项:
    对应于时域格式为下行/灵活/上行的时域资源;
    对应于所述资源配置信息给定编号的时域资源;
    包含下行频域资源和上行频域资源。
  26. 根据权利要求24所述的方法,其中,所述频域资源集包括第三频域资源子集;
    其中,所述第三频域资源子集包括起始频域单元、长度、起始偏移值集合;
    或者,所述第三频域资源子集包括起始频域单元集合、长度;
    或者,所述第三频域资源子集包括每个频域资源分配的起始频域单元和长度。
  27. 根据权利要求18所述的方法,其中,所述终端的上报方式为基于宽带的上报;
    所述第一下行参考信号的数量为M,所述信道或干扰测量对应的信道状态信息包括K个第一信道状态信息,K<=M;
    其中,每个所述第一信道状态信息包括第一宽带信道状态信息,和/或每个所述第一信道状态信息分别对应一个或多个所述第一下行参考信号。
  28. 根据权利要求18所述的方法,其中,所述终端的上报方式为基于子带的上报;
    所述第一下行参考信号的数量为M,所述信道或干扰测量对应的信道状态信息包括L个第二信道状态信息,L<=M;
    每个所述第二信道状态信息包括第二宽带信道状态信息和子带信道状态信息;
    每个所述第二宽带信道状态信息分别对应一个或多个所述第一下行参考信号;
    每个所述子带信道状态信息对应信道状态信息上报频带中的一个子带,每个子带对应一个或多个所述第一下行参考信号;其中,所述信道状态信息上报频带对应所述信道或干扰测量对应的信道状态信息。
  29. 根据权利要求18至28之中任一项所述的方法,其中,所述第一时刻是基于测量参考资源确定的。
  30. 根据权利要求29所述的方法,其中,
    所述测量参考资源的频域资源是根据传输每个所述第一下行参考信号的频域资源确定的;
    和/或,所述测量参考资源的时域资源是根据以下至少之一确定的:
    对于存在灵活双工上下行配置指示为下行/灵活的频域单元的下行/灵活时域单元,是所述测量参考资源的有效时域资源;
    对于存在灵活双工上下行配置指示为下行/灵活的频域单元的上行时域单元,是所述测量参考资源的有效时域资源。
  31. 一种信号处理装置,其中,包括:
    配置模块,用于向终端配置下行参考信号资源;
    接收模块,用于接收所述终端上报的信道或干扰测量对应的信道状态信息,所述信道或干扰测量为在第一时刻,基于所述下行参考信号资源上传输的第一下行参考信号进行的;
    其中,每个所述第一下行参考信号与第二下行参考信号相关,所述第二下行参考信号对应于所述下行参考信号资源,每个所述第一下行参考信号是基于一组频域单元传输的。
  32. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16之中任一项所述的信号处理方法的步骤。
  33. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求18至30之中任一项所述的信号处理方法的步骤。
  34. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16之中任一项所述的信号处理方法,或者实现如权利要求18至30之中任一项所述的信号处理方法的步骤。
  35. 一种芯片,其中,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至16之中任一项所述的信号处理方法,或者实现如权利要求18至30之中任一项所述的信号处理方法的步骤。
  36. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至16之中任一项所述的信号处理方法,或者实现如权利要求18至30之中任一项所述的信号处理方法的步骤。
  37. 一种电子设备,其中,所述设备被配置成用于执行如权利要求1至16之中任一项所述的信号处理方法,或者实现如权利要求18至30之中任一项所述的信号处理方法。
PCT/CN2023/108784 2022-07-28 2023-07-24 信号处理方法、装置、终端、网络侧设备及介质 WO2024022264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210900061.8A CN117527164A (zh) 2022-07-28 2022-07-28 信号处理方法、装置、终端、网络侧设备及介质
CN202210900061.8 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024022264A1 true WO2024022264A1 (zh) 2024-02-01

Family

ID=89705497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108784 WO2024022264A1 (zh) 2022-07-28 2023-07-24 信号处理方法、装置、终端、网络侧设备及介质

Country Status (2)

Country Link
CN (1) CN117527164A (zh)
WO (1) WO2024022264A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327292A (zh) * 2017-07-31 2019-02-12 普天信息技术有限公司 下行参考信号资源分配方法及装置
CN110167163A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 参考信号发送和接收方法及装置
WO2021179311A1 (zh) * 2020-03-13 2021-09-16 华为技术有限公司 一种信道状态信息csi测量的指示方法和通信装置
WO2022152072A1 (zh) * 2021-01-13 2022-07-21 维沃移动通信有限公司 信道信息发送方法、信道信息接收方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327292A (zh) * 2017-07-31 2019-02-12 普天信息技术有限公司 下行参考信号资源分配方法及装置
CN110167163A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 参考信号发送和接收方法及装置
WO2021179311A1 (zh) * 2020-03-13 2021-09-16 华为技术有限公司 一种信道状态信息csi测量的指示方法和通信装置
WO2022152072A1 (zh) * 2021-01-13 2022-07-21 维沃移动通信有限公司 信道信息发送方法、信道信息接收方法及相关设备

Also Published As

Publication number Publication date
CN117527164A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2019001135A1 (zh) 一种资源信息传输方法、相关设备和系统
CN114765798A (zh) 信道信息发送方法、信道信息接收方法及相关设备
CN115209436A (zh) 监听pdcch的方法、装置及终端
WO2024022264A1 (zh) 信号处理方法、装置、终端、网络侧设备及介质
WO2023198146A1 (zh) 资源配置方法、装置、设备及介质
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2024114490A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2022214071A1 (zh) 信号传输方法、装置及终端
WO2024104152A1 (zh) 频域资源确定方法、终端及网络侧设备
WO2024008006A1 (zh) 信息处理方法、装置及终端
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、系统及存储介质
WO2024027747A1 (zh) 数据传输处理方法、装置、终端及网络侧设备
WO2024022160A1 (zh) 信息配置方法、装置、终端、网络侧设备及可读存储介质
EP4422249A1 (en) Channel state information (csi) measurement method, terminal, and network side device
WO2024099157A1 (zh) 上行子带处理方法、配置方法、装置、终端及网络侧设备
WO2024114491A1 (zh) 上行参考信号资源传输方法、装置、终端及网络侧设备
WO2024114515A2 (zh) 上行传输的发射功率确定方法、装置、终端及网络侧设备
WO2024169890A1 (zh) 信道状态信息的获取方法、终端及网络侧设备
WO2024104151A1 (zh) 预编码资源块组prg的确定、指示方法、装置和终端
WO2024140522A1 (zh) 通信方法、终端及网络侧设备
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备
WO2024017196A1 (zh) 交叉链路干扰测量及报告方法、设备及可读存储介质
WO2023193762A1 (zh) 定位参考信号prs的传输方法、装置及终端
WO2024032459A1 (zh) 传输处理方法、装置及终端
WO2024027537A1 (zh) 感知方法、装置、通信设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845474

Country of ref document: EP

Kind code of ref document: A1