WO2015074262A1 - 一种信道状态信息的反馈方法及装置 - Google Patents

一种信道状态信息的反馈方法及装置 Download PDF

Info

Publication number
WO2015074262A1
WO2015074262A1 PCT/CN2013/087728 CN2013087728W WO2015074262A1 WO 2015074262 A1 WO2015074262 A1 WO 2015074262A1 CN 2013087728 W CN2013087728 W CN 2013087728W WO 2015074262 A1 WO2015074262 A1 WO 2015074262A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel state
state information
feedback
precoding matrix
cqi
Prior art date
Application number
PCT/CN2013/087728
Other languages
English (en)
French (fr)
Inventor
刘建琴
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003739.1A priority Critical patent/CN105009494B/zh
Priority to EP13897692.3A priority patent/EP3073662B1/en
Priority to PCT/CN2013/087728 priority patent/WO2015074262A1/zh
Priority to KR1020167016715A priority patent/KR101852914B1/ko
Publication of WO2015074262A1 publication Critical patent/WO2015074262A1/zh
Priority to US15/160,919 priority patent/US9838106B2/en
Priority to US15/829,206 priority patent/US10567061B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a method and apparatus for feeding back channel state information.
  • a transmitting end and a receiving end use a plurality of antennas to obtain a higher rate in a spatial multiplexing manner.
  • an enhanced technology is that the receiving end feeds channel information to the transmitting end, and the transmitting end uses some transmitting precoding techniques according to the obtained channel information, which greatly improves the transmission performance.
  • the UE In the Long Term Evolution (LTE) system, in order to implement effective control and scheduling of different user equipments (User Equipments, UEs) by the base station, the UE needs to feed back some Channel State Information (CSI) information through the uplink channel.
  • CSI Channel State Information
  • the channel state information may include a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • antenna scale extends from horizontal line array to horizontal and vertical 2D area arrays (ie, the usual active antenna system) (Active Antenna System, AAS ) ), the number of antennas is further increased from the maximum of 3 of 3GPP Rel-11 to 16, 32, 64. As the size of the antenna increases, the corresponding CSI measurement and feedback complexity also increases accordingly. There is no specific technical solution applicable to the above-mentioned large-scale antenna array in the prior art. If only the CSI measurement and feedback method in 3GPP Rel-11 is extended, the measurement and feedback overhead will be severe, resulting in waste of uplink channel resources. Summary of the invention
  • the embodiment of the invention provides a method and a device for feeding back channel state information to save the overhead of channel state information feedback.
  • a method for feeding back channel state information includes: a user equipment acquires first channel state information based on a first channel state information measurement resource configured by a base station; and second channel state information configured based on the base station Measuring the resource, acquiring the second channel state information; wherein, the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to a first antenna port that represents a horizontal dimension and a second antenna port that represents a vertical dimension ;
  • the user equipment feeds back channel state information to the base station, including:
  • the user equipment feeds back the first channel state information to the base station according to the first feedback mode, and feeds back the second channel state information to the base station according to the second feedback mode, where the second feedback mode is different from the First feedback mode; or
  • the user equipment feeds back third channel state information according to the third feedback mode, where the third channel state information is obtained by the user equipment based on the first channel state information and the second channel state information.
  • the first channel state information includes first precoding matrix indication information
  • the second channel state information includes second precoding matrix indication information
  • the second feedback mode is different from the first feedback mode including:
  • the frequency domain feedback granularity of the first precoding matrix indication information is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information.
  • the second feedback mode is different from the first feedback mode, including:
  • the feedback period of the first channel state information is less than the feedback period of the second channel state information.
  • the first channel state information includes a first precoding matrix indication Information and first rank indication information RI1;
  • the second channel state information includes second precoding matrix indication information and second rank indication information RI2;
  • the first precoding matrix indication information further includes a first type precoding matrix indication PMI1 and second type precoding matrix indicator PMI2
  • the second precoding matrix indication information further includes a first type precoding matrix indicator PMI3 and a second type precoding matrix indicator PMI4;
  • the user equipment obtains a channel quality indicator CQI, and the channel state information that is sent back by the user equipment to the base station includes:
  • the user equipment feeds back channel state information to the base station by using a physical uplink control channel (PUCCH), and the user equipment sends the channel state information to the base station.
  • the channel state information fed back includes:
  • the channel state information is fed back in a feedback period of a channel state information of the physical uplink control channel PUCCH, where the feedback period of the one channel state information includes three feedback slots, and the first feedback slot feedbacks RI1 And RI2; the second feedback time slot feeds back PMI1, PMI3 and CQI; the third feedback time slot feeds back CQI and PMI2; or
  • the user equipment feeds back channel state information to the base station by using a physical uplink control channel (PUCCH), and the user equipment sends the channel state information to the base station.
  • the channel state information fed back includes:
  • the channel state information is fed back in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes three feedback time slots, and the first feedback time slot feeds back RI1 and RI2; The second feedback time slot feeds back PMI1, PMI3 and CQI; the third feedback time slot feeds back CQI and PMI2; or
  • the CSI feedback period includes three feedback slots, the first feedback slot feedbacks RI1 and RI2; the second feedback slot feedbacks PMI1, PMI2, PMI3, and CQI; and the third feedback slot feedbacks PMI1, PMI2, PMI3, and CQI .
  • the channel state information further includes a precoding matrix type indication indicating a precoding matrix type, where the precoding matrix is the first
  • the user equipment feeds back channel state information to the base station by using a physical uplink control channel (PUCCH), including:
  • the channel state information is fed back in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes five feedback time slots, and the contents of the feedback in each time slot are as follows: Show
  • the time slot corresponds to each feedback moment within one CSI feedback period.
  • the channel state information further includes a precoding matrix type indication indicating a precoding matrix type, where the precoding matrix is the second
  • the user equipment feeds back channel state information to the base station by using a physical uplink control channel (PUCCH), including:
  • the channel state information is fed back in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes five feedback time slots, and the contents of the feedback in each time slot are as follows: Shown
  • the time slot corresponds to each feedback moment within a CSI feedback period.
  • a user equipment including:
  • the processor is configured to: acquire, according to the first channel state information measurement resource configured by the base station, the first channel state information; and acquire the second channel state information according to the second channel state information configured by the base station; a channel state information measurement resource and the second channel state information measurement resource respectively corresponding to a first antenna port characterizing a horizontal dimension and a second antenna port characterizing a vertical dimension;
  • a transmitter configured to feed back channel state information to the base station, including:
  • the transmitter is configured to feed back the first channel state information to the base station according to a first feedback mode, and feed back the second channel state information to the base station according to a second feedback mode, where the second feedback mode is different from Describe the first feedback mode; or, The transmitter is configured to feed back third channel state information according to the third feedback mode, where the third channel state information is obtained by the processor based on the first channel state information and the second channel state information.
  • the first channel state information includes first precoding matrix indication information
  • the second channel state information includes second precoding matrix indication information
  • the frequency domain feedback granularity of the first precoding matrix indication information is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information
  • the feedback period of the first channel state information is smaller than the The feedback period of the second channel state information.
  • the first channel state information includes a first precoding matrix indication Information and first rank indication information RI1;
  • the second channel state information includes second precoding matrix indication information and second rank indication information RI2;
  • the first precoding matrix indication information further includes a first type precoding matrix indication a PMI1 and a second type precoding matrix indicator PMI2, the second precoding matrix indication information further comprising a first type precoding matrix indicator PMI3 and a second type precoding matrix indicator PMI4;
  • the processor obtains a channel quality indicator CQI based on the first channel state information and the second channel state information;
  • the channel state information that the transmitter feeds back to the base station includes the first channel state information, the second channel state information, and the CQI; or, the third precoding matrix indication information, the third rank indication information, and The CQI; wherein the third precoding matrix indication information is obtained based on at least three of the PMI1, PMI2, PMI3, and PMI4, and the third rank indication information is obtained based on the RI1 and the RI2.
  • the user equipment feeds back channel state information to the base station by using a physical uplink control channel (PUCCH), and the transmitter is physically uplinking.
  • PUCCH physical uplink control channel
  • One channel state information CSI feedback of the link control channel PUCCH The channel state information is fed back in the cycle, where the CSI feedback period includes three feedback slots, the first feedback slot feeds back RI 1 and RI2; the second feedback slot feedbacks PMI 1, PMI3, and CQI; Feedback time slot feedback CQI and PMI2; or
  • the user equipment feeds back channel state information to the base station by using a physical uplink control channel (PUCCH), and the transmitter is physically uplinking.
  • the channel state information of the link control channel PUCCH is fed back to the channel state information in the CSI feedback period, where the CSI feedback period includes three feedback slots, and the first feedback slot feeds back RI1 and RI2; Time slot feedback PMI1, PMI3 and CQI; third feedback time slot feedback CQI and PMI2; or
  • the CSI feedback period includes three feedback slots, the first feedback slot feedbacks RI1 and RI2; the second feedback slot feedbacks PMI1, PMI2, PMI3, and CQI; and the third feedback slot feedbacks PMI1, PMI2, PMI3, and CQI .
  • the channel state information further includes a precoding matrix type indicating PTI indicating a precoding matrix type, where the precoding matrix is In one type, the user equipment feeds back channel state information to the base station through a physical uplink control channel PUCCH, and the transmitter feeds back the channel state information in a channel state information CSI feedback period of the physical uplink control channel PUCCH.
  • the CSI feedback period includes five feedback slots, and the contents of the feedback in each slot are as shown in the following table;
  • the time slot corresponds to each feedback moment within a CSI feedback period.
  • the channel state information further includes a precoding matrix type indication indicating a precoding matrix type, where the precoding matrix is In the second type, the user equipment feeds back the channel state information to the base station through the physical uplink control channel PUCCH, and the transmitter feeds back the channel state information in a channel state information CSI feedback period of the physical uplink control channel PUCCH.
  • the CSI feedback period includes five feedback slots, and the contents of the feedback in each slot are as shown in the following table; d3
  • a method for measuring channel state information comprising:
  • the base station configures the first channel state information measurement resource and the second channel state information measurement resource, and sends the information to the user equipment, so that the user equipment acquires the first channel state information according to the first channel state information measurement resource, according to the second
  • the channel state information measurement resource acquires the second channel state information; wherein, the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to a first antenna port that represents a horizontal dimension and a second antenna port that represents a vertical dimension Antenna port
  • Receiving channel state information fed back by the user equipment including:
  • the second feedback mode is different from the first feedback mode
  • the first channel state information includes first precoding matrix indication information
  • the second channel state information includes second precoding matrix indication information
  • the second feedback mode is different from the first feedback mode including:
  • the frequency domain feedback granularity of the first precoding matrix indication information is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information.
  • the second feedback mode is different from the first feedback mode, including:
  • the feedback period of the first channel state information is less than the feedback period of the second channel state information.
  • the first channel state information includes a first precoding matrix indication Information and first rank indication information RI1;
  • the second channel state information includes second pre- Encoding matrix indication information and second rank indication information RI2;
  • the first precoding matrix indication information further comprising a first type precoding matrix indicator PMI1 and a second type precoding matrix indicator PMI2, the second precoding matrix
  • the indication information further includes a first type precoding matrix indicator PMI3 and a second type precoding matrix indicator PMI4;
  • the receiving channel state information fed back by the user equipment includes:
  • the first channel state information, the second channel state information, and the channel quality indicator CQI are the first channel state information, the second channel state information, and the channel quality indicator CQI.
  • a base station where the base station includes:
  • a base station processor configured to configure a first channel state information measurement resource and a second channel state information measurement resource, and send the information to the user equipment, so that the user equipment acquires the first channel state information according to the first channel state information measurement resource, according to the The second channel state information measurement resource acquires the second channel state information, where the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to the first antenna port that represents the horizontal dimension and characterize the vertical dimension Second antenna port;
  • a receiver configured to receive channel state information fed back by the user equipment, including:
  • the receiver is configured to receive the first channel state information that is fed back by the user equipment according to the first feedback mode, and the second feedback mode is different from the first feedback mode according to the second channel state information that is fed back by the second feedback mode.
  • Feedback mode or,
  • the receiver is configured to receive third channel state information that is fed back by the user equipment according to the third feedback mode, where the third channel state information is obtained by the user equipment based on the first channel state information and the second channel state information. .
  • the first channel state information is The first precoding matrix indication information is included in the second channel state information, and the second precoding matrix indication information is included in the second channel state information, and the frequency domain feedback of the first precoding matrix indication information is received in the channel state information received by the receiver.
  • the granularity is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information.
  • the receiver is further configured to use the feedback period of the first channel state information is smaller than the second The principle of the feedback period of the channel state information receives channel state information.
  • the first channel state information includes a first precoding matrix indication Information and first rank indication information RI1;
  • the second channel state information includes second precoding matrix indication information and second rank indication information RI2;
  • the first precoding matrix indication information further includes a first type precoding matrix indication a PMI1 and a second type precoding matrix indicator PMI2, the second precoding matrix indication information further comprising a first type precoding matrix indicator PMI3 and a second type precoding matrix indicator PMI4;
  • the receiver is configured to receive the first channel state information, second channel state information, and a channel quality indicator CQI; or
  • FIG. 1 is a schematic flowchart of a method for measuring channel state information according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for measuring channel state information according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a device for feeding back channel state information according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • a user equipment may be referred to as a terminal (Terminal), a mobile station (Mobile Station, a cartridge is referred to as "MS”), and a mobile terminal ( Mobile Terminal), etc.
  • the user equipment can communicate with one or more core networks via a Radio Access Network (“RAN"), for example, the user equipment can be a mobile telephone (or “cellular”"telephone", a computer having a mobile terminal, etc., for example, the user device may also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device
  • the base station may be a GSM base station (Base Transceiver Station, referred to as "BTS”), or may be a base station (NodeB, called “NB”) in WCDMA, or may be in LTE.
  • An evolved base station (Evolutional Node B, referred to as "eNB or e-NodeB”) is not
  • the closed-loop precoding technique is introduced in LTE Rel-8 and Rel-8 (including Rel-9, 10, 11, 12 and even higher versions) systems.
  • the closed-loop precoding first requires the same base station and terminal to be saved.
  • a collection of precoding matrices called a codebook.
  • the terminal selects a precoding matrix from the codebook according to a certain criterion.
  • the terminal feeds the index of the selected precoding matrix in the codebook to the base station through the uplink channel, and the index is recorded as PMI.
  • the base station can determine the precoding matrix to be used for the terminal from the received index value.
  • the terminal needs to report the channel quality indication information CQI according to the channel condition.
  • the PMI and CQI calculated by the terminal are transmitted to the base station through the uplink channel.
  • the base station performs pre-processing on the transmitting end by using the PMI reported by the terminal, and performs link adaptation (including modulation mode and coding rate selection, etc.) by using the CQI reported by the terminal.
  • the antenna scale is extended from a horizontal line array to a horizontal and vertical two-dimensional area array, and the number of antennas is further increased from the maximum 8 of Rel-10 to 16, 32, 64.
  • the corresponding CSI measurement and feedback complexity increases accordingly.
  • the base station (BS) transmits one or more sets of CSI-RS resources to the user equipment (UE), and the UE is in each set.
  • CSI measurements are made on the ports of the transmit array independently on the CSI-RS resources.
  • the corresponding CSI measurement and feedback complexity increases accordingly.
  • the present invention provides a channel state information feedback method, which can be applied to horizontal and vertical two-dimensional antenna arrays.
  • the method includes:
  • Step 101 The user equipment measures resources according to the first channel state information configured by the base station, and obtains the first a channel state information; acquiring, according to the second channel state information measurement resource configured by the base station, the second channel state information; wherein, the first channel state information measurement resource and the second channel state information measurement resource respectively corresponding to the characterization a first antenna port of a horizontal dimension and a second antenna port characterizing a vertical dimension;
  • Step 102 The user equipment feeds back channel state information to the base station.
  • the specific feedback manner when the channel state information is fed back may be:
  • the user equipment feeds back the first channel state information to the base station according to the first feedback mode, and feeds back the second channel state information to the base station according to the second feedback mode, where the second feedback mode is different from the First feedback mode; or
  • the user equipment feeds back third channel state information according to the third feedback mode, where the third channel state information is obtained by the user equipment based on the first channel state information and the second channel state information.
  • an antenna port may be a physical transmit antenna or a combination of multiple physical transmit antennas.
  • the receiver of the user equipment does not decompose the signal from one antenna port, since from the perspective of the user equipment, whether the channel is formed by a single physical transmit antenna or by multiple physical transmissions
  • the antenna port is combined with a reference signal (referred to as a reference signal), and the user equipment can obtain the channel estimation of the antenna port according to the reference signal.
  • the specific reference signal is not limited, and may be, for example, a channel state information reference signal (CSI-RS).
  • the antenna ports may be defined separately for the horizontal and vertical dimensions.
  • the horizontal and vertical two-dimensional array is a two-dimensional antenna array of 8 rows and 4 columns, and there are 32 physical transmitting antennas. If the CSI measurement and feedback mechanism in the prior art is directly extended, a possible technical solution is to define 32 antenna ports for 32 physical transmit antennas. Accordingly, the user equipment needs to perform CSI measurement and feedback for 32 antenna ports.
  • the antenna ports are separately defined for the horizontal dimension and the vertical dimension, for example, four first antenna ports are defined for the horizontal dimension, and each of the first antenna ports corresponds to 8 physical transmit antennas, and the vertical dimension defines 8 The second antenna port, each of the second antenna ports corresponding to four physical transmit antennas, for a total of 12 antenna ports, the user equipment only needs to perform CSI measurement and feedback for 12 antenna ports, and approximate channel states corresponding to 32 antenna ports. Information, thus reducing CSI measurement and feedback overhead.
  • the user equipment may also change the channel characteristics for the vertical direction and the horizontal direction, and the first channel state information. Different feedback modes are adopted for the second channel state information to achieve the purpose of further reducing the CSI feedback overhead.
  • the content included in the first feedback mode, the second feedback mode, and the third feedback mode includes feedback granularity and feedback period of the user terminal feedback channel state information.
  • the user equipment adopts different feedback modes for the first channel state information and the second channel state information, including: the feedback period of the first channel state information is smaller than the feedback period of the second channel state information.
  • the first channel state information includes first precoding matrix indication information; the second channel state information includes second precoding matrix indication information, where the second feedback mode is different from the first feedback mode.
  • the first channel state information includes first precoding matrix indication information; the second channel state information includes second precoding matrix indication information, where the second feedback mode is different from the first feedback mode.
  • the frequency domain feedback granularity of the first precoding matrix indication information is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information.
  • the manner in which the user equipment feeds back the channel state information to the base station may be any one of the following manners.
  • the user equipment feeds back the first channel state information to the base station according to the first feedback mode, and feeds back the second channel state information to the base station according to the second feedback mode, where the second feedback mode is different.
  • the specific implementation may be:
  • the channel state information of the feedback in the example includes the first precoding matrix indication information, first rank indication information RI1, the second precoding matrix indication information, and second rank indication information.
  • RI2 and channel quality indication information CQI wherein the channel quality indication information CQI is obtained according to the first channel state information and the second channel state information.
  • the CQI corresponds to a quantized value of the channel quality (ie, Signal Interference Noise Ratio (SINR)) experienced by the pilot estimated service data transmission, and the signal power S in the SINR is calculated based on the local cell.
  • SINR Signal Interference Noise Ratio
  • Manner 2 The user equipment feeds back third channel state information according to the third feedback mode, where the third channel state information is obtained by the user equipment based on the first channel state information and the second channel state information.
  • the specific implementation can be:
  • third channel state information includes third precoding matrix indication information, channel quality indication information CQI, and the RI1 And RI2; or the third channel state information includes third precoding matrix indication information, channel quality indication information CQI, and third rank indication information RI obtained based on the RI1 and RI2, and the third precoding matrix indication
  • the information is further formed according to at least three of the PMI 1, PMI 2, PMI 3, and PMI 4.
  • the third rank indication information RI may be a product of the RI1 and RI2.
  • the third precoding matrix indication information may be generated according to any of the following manners:
  • ⁇ 1(8)( ⁇ 3 ⁇ ⁇ 4), where ® denotes Kronecker product; mode 2):
  • the relationship between the third precoding matrix PMI and the PMI1, PMI2, PMI3 and PMI4 is:
  • the physical uplink control channel is available (Physical Uplink)
  • PUSCH performs feedback of channel state information. So the following follows PUSCH feedback and Embodiment 1: Feedback of channel state information by using the PUSCH:
  • the frequency domain or the time domain feedback granularity of the vertical channel state information is independent of the horizontal direction, thereby implementing the feature that the vertical channel changes slowly.
  • independent and different designs can be made according to the characteristics that the vertical channel change is smaller than the horizontal direction, that is, it is independent and different according to the characteristics of vertical and horizontal channel changes.
  • Specific implementations of the design can include:
  • the vertical subband CQI or PMI corresponds The division and size of the subbands are different from the division and size of the subbands corresponding to the horizontal subband CQI or PMI.
  • the vertical subband size may be the horizontal subband size N (N is greater than or equal to 1) Real number) times.
  • each of the bandwidth blocks in Table 1 the entire system bandwidth is divided into a plurality of subband groups to be measured, that is, a bandwidth block (Bandwidth Part), each of the bandwidth blocks includes at least one subband, and the horizontal and vertical subband sizes are respectively Represents the frequency domain feedback granularity of horizontal and vertical sub-band PMI, CQI.
  • b feedback period of CQI or PMI in the feedback content: Further feedback to CQI (wideband or subband) or vertical PMI (wideband or subband) in each PUCCH period feedback mode
  • the period can be different from the horizontal direction, the vertical CQI (wideband or subband) or vertical PMI (wideband or subband) feedback period is horizontal to the corresponding CQI (wideband or subband) or PMI (wideband or subband) feedback period M (M is a positive real number greater than or equal to 1) times.
  • the frequency domain or time domain difference of the CQI in the feedback content the frequency domain and time domain differential CQI quantized value of the vertical CQI is different from the horizontal direction, such as the slower vertical channel change, the vertical CQI in the frequency domain or the time domain
  • the differential CQI quantized value is different from the horizontal CQI frequency domain or the time domain differential CQI quantized value.
  • the number of bits required for the differential CQI quantized value in the frequency domain or the time domain of the vertical CQI is smaller than the horizontal direction; or, the range of the differential CQI quantized value of the vertical CQI in the frequency domain or the spatial domain is smaller than the horizontal direction.
  • the design of the precoding matrix type indication ( ⁇ ) field in the feedback content the horizontal direction has a PTI field, and the PTI is used to distinguish different precoding matrix types (long-term broadband PMI or short-term sub-band PMI) reported;
  • the vertical direction has no ⁇ field, because the vertical direction may only have a long-term broadband PMI-pre-coding matrix type.
  • Any of the above implementations a, b, c, and d can achieve the beneficial effects of reducing signaling overhead and saving bandwidth.
  • Each of the 3D new feedback modes is a combination of horizontal and vertical channel state information, and any of the 3D new feedback modes is defined as a horizontal PMI feedback type and a vertical PMI corresponding to a certain PUSCH CQI feedback type.
  • a combination of feedback types is defined as a horizontal PMI feedback type and a vertical PMI corresponding to a certain PUSCH CQI feedback type.
  • the horizontal PMI feedback type and the vertical PMI feedback type respectively include three types of frequency domain feedback granularity: no precoding matrix indicator No PMI, a single precoding matrix indicator Single PMI, and multiple precoding matrix indicators. Multiple PMI;
  • the PUSCH CQI feedback type includes the following three types of frequency domain feedback granularity: a wideband CQI, a user selected subband CQI, and a high layer configured subband CQI;
  • the feedback of performing channel state information includes:
  • the channel state information is fed back according to the PUSCH CQI feedback type, the horizontal PMI feedback type, and the vertical PMI feedback type corresponding to each 3D new feedback mode.
  • a combination manner of the frequency domain feedback granularity of the CQI, the vertical PMI, and the horizontal PMI may be implemented in a tabular manner.
  • the combination of the frequency domain feedback granularity of the CQI, the vertical PMI, and the horizontal PMI in this embodiment may be various cases as shown in Table 2 below:
  • NP indicates: No PMI, that is, no precoding matrix indicator
  • SP indicates: Single PMI, that is, a single precoding matrix indicator
  • MP indicates: Multiple PMI, that is, multiple precoding matrix indicators.
  • Each of the 3D PUSCH new feedback modes may be represented as Mode xyz, x represents a PUSCH CQI feedback type (corresponding to a certain frequency domain feedback granularity level), and y represents a horizontal PUSCH PMI feedback type (corresponding to a certain frequency domain) Feedback granularity level), z represents the vertical PUSCH PMI feedback type (corresponding to a certain frequency domain feedback granularity level).
  • Mode 1-1-0 represents a wideband CQI reporting mode that is vertical to PMI-free, based on the horizontal direction being a single precoding matrix indicator SP (also known as wideband PMI).
  • the specific reporting mode (which can be any of the options in Table 2) is semi-statically configured and notified by higher layer signaling. For example, based on the mode 1-2-2 shown in Table 2 (representing the wideband CQI - based on the horizontal to MP multiple precoding matrix PMI, the vertical to the MP multiple precoding matrix PMI in the upper 4 ⁇ mode) CQI and PMI calculations and reports are obtained as follows:
  • the user reports a wideband CQI value per codeword, and the CQI value is calculated based on the horizontal PMI value and the vertical PMI value of each subband on the S subbands;
  • the user reports the horizontal PMI indication and the vertical PMI indication for each sub-band.
  • the horizontal and vertical directions on the S sub-bands are reported to the first pre-coding matrix, and the horizontal and vertical sub-bands of each sub-band indicate to the second pre-coding matrix. 2 was reported.
  • the description of the 3D new feedback mode Mode xyz ( y>z ) or Mode xyz ( z>y ) in Table 2 is based on the feedback mode Mode xy ( y>z ) or Mode xz (z) in the 3GPP Rel-10 of the Long Term Evolution (LTE) system.
  • >y that is, the place where PMI is selected and reported in Mode xy
  • the vertical PMI selection and the upper 4 of the PMI frequency domain granularity type corresponding to z are added.
  • the calculation of CQI in Mode xyz is based on the above-mentioned extended horizontal PMI and vertical PMI.
  • the vertical PMI frequency domain granularity is greater than the horizontal PMI frequency domain granularity when y>z, which is equivalent to the vertical vertical precoding of the horizontal frequency domain granularity in multiple horizontal directions.
  • each of the subbands respectively selects an optimal horizontal PMI, and is selected based on an optimal vertical wideband PMI on the S subbands (ie, S subbands, Corresponding to the same vertical broadband PMI);
  • a wideband CQI value for each codeword on the user is calculated based on the horizontal PMI value and the vertical wideband PMI value for each subband on the S subbands of the data transmission; except for the transmission of the 8-port CSI-RS configuration Outside mode 9, the user reports the horizontal PMI indication for each subband and the vertical PMI indication for the S subbands.
  • the horizontal and vertical directions on the S sub-bands are reported to the first pre-coding matrix, and the horizontal direction of each sub-band is indicated to the second pre-coding matrix and the vertical broadband.
  • the second precoding matrix indicates that i 2 is reported.
  • the horizontal, vertical PMI and CQI calculations are based on the upper horizontal RI and the vertical RI. In other modes, the upper horizontal PMI and the vertical PMI and CQI values are based on rank 1.
  • Embodiment 2 Feedback of channel state information through the PUSCH: Considering that the horizontal channel variation characteristic of the channel is different from the vertical channel variation feature, the vertical angle expansion is smaller than the horizontal direction, and the user's vertical PMI time domain change is smaller than the horizontal direction. The PMI time domain changes, so that the user's frequency domain correlation in the vertical PMI is greater than the user's PMI frequency domain correlation in the horizontal direction.
  • the above-mentioned features in the horizontal direction and the vertical direction are considered when performing feedback of channel state information:
  • the frequency domain feedback granularity of the first precoding matrix indication information PMI is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information PMI.
  • the first precoding matrix indication information corresponds to horizontal PMI indication information
  • the second precoding matrix indication information corresponds to vertical PMI indication information.
  • NP No PMI means no precoding matrix indicator
  • SP indicates: Single PMI single precoding matrix indicator
  • MP indication Multiple precoding matrix indicator
  • Various types listed in Table 3 above the vertical feedback granularity and the horizontal feedback granularity are not completely the same.
  • the preferred combination in the various situations described in Table 3 may be the combination of the vertical feedback granularity greater than or equal to the horizontal feedback granularity: Mode 1-1-0 /2-1-0/3-1-0 (Horizontal to Single PMI + Vertical to No PMI), Mode 1-2-0/ 2-2-0/ 3-2-0 (Horizontal to Multiple PMI + Vertical) No PMI), Mode 1-2-1/
  • mode Mode 1-1-0/2-1-0/3-1-0 horizontal to Single PMI + vertical to PMI
  • Mode 1-2-0/ 2-2-0/ The vertical PMI in 3-2-0 horizontal to Multiple PMI + Vertical to PMI
  • each new feedback mode in Table 3 is the same as that provided in Embodiment 1, and optionally, in each feedback mode that supports sub-band CQI or sub-band PMI, vertical sub-band division And the size is different from the horizontal direction, and the vertical sub-band size is N (N is a positive real number greater than or equal to 1) times the horizontal sub-band size.
  • the feedback period of vertical CQI or vertical PMI is different from horizontal direction, vertical to CQI (wideband or subband) or vertical to PMI (wideband or subband) feedback period is horizontal
  • the corresponding CQI (wideband or subband) or PMI (wideband or subband) feedback period M (M is a positive real number greater than or equal to 1) times.
  • the frequency-domain and spatial-domain differential CQI of the vertical CQI is different from the horizontal direction.
  • the quantized differential CQI value of the vertical CQI in the frequency domain or the spatial domain is different from the horizontal CQI frequency domain or the time domain. Quantize the differential CQI value.
  • the time domain change of the user vertical PMI is smaller than the time domain change of the horizontal PMI, so that the frequency domain correlation of the user in the vertical PMI is greater than that of the user in the horizontal PMI.
  • the frequency domain correlation is designed to reduce the frequency domain feedback granularity of the vertical precoding matrix indication information PMI to be greater than or equal to the frequency domain feedback granularity of the horizontal precoding matrix indication information PMI, thereby reducing the feedback mode design complexity and The beneficial effects of saving feedback signaling overhead.
  • Embodiment 3 Feedback of channel state information through PUCCH:
  • the combination of the frequency domain feedback granularity of CQI, vertical PMI and horizontal PMI in this embodiment may be various cases as shown in Table 4:
  • NP No PMI means no precoding matrix indicator
  • SP indicates: Single PMI single precoding matrix indicator
  • MP indication Multiple precoding matrix indicator Multiple PMI.
  • the vertical feedback granularity and the horizontal feedback granularity are not completely the same. Considering the slow change of the vertical channel, it is preferable to have the following combinations of the vertical feedback granularity larger than the horizontal direction: Mode 1-1-0/2-1-0 (horizontal to Single PMI + vertical to No) PMI), Mode 1-2-0/ 2-2-0 (Horizontal to Multiple PMI + Vertical to No PMI), Mode 1-2-1/ 2-2-1 (Horizontal to Multiple PMI + Vertical to Single PMI) .
  • the vertical No PMI in the above table refers to the vertical non-feedback PMI, but only the horizontal orientation precoding matrix indicator PML.
  • the vertical channel state information corresponds to the second channel state information.
  • the second precoding matrix indication information includes only the third type precoding matrix indicator PMI3.
  • the specific timing design under various new feedback modes can be as follows: Timing design 1. In PUCCH 1-1 sub-mode 1, when the channel state information is fed back through the physical uplink control channel PUCCH, the feedback period and feedback timing of the channel state information CSI according to the Long Term Evolution (LTE) system 3GPP Rel-10 Feedback for channel state information includes:
  • the channel state information is fed back in a CSI feedback period of the physical uplink control channel PUCCH 1-1 sub-mode 1, wherein the CSI feedback period includes three feedback slots, and the RI1 is fed back in the first feedback slot.
  • RI2 feeding back PMI1, PMI3 and CQI in the second feedback time slot; the third feedback time slot feeding back CQI and PMI2; or
  • RI1, RI2, PMI1, and PMI3 are fed back in the first feedback slot; the second feedback slot feeds back PMI2, PMI4, and CQI; and the third feedback slot feeds back PMI2, PMI4, and CQI.
  • the feedback contents of the above three feedback slots are all newly introduced PUCCH report types (PUCCH report types).
  • the new 3D feedback timing design of the PUCCH 1-1 sub-mode 1 described above, and the connector "+,” can be applied to feed back a plurality of parameters in a feedback slot, for example: the first feedback slot feedback RI1 And RI2, can be labeled as RI1 + RI2, wherein the new 3D feedback timing (corresponding to the Rel-12 line in the table) and Rel-8 and Rel-10 pairs are shown in Table 5:
  • Table 5 is a CSI feedback design of the physical uplink control channel PUCCH1-1 sub-mode 1, wherein Rel-12 Option 1 is an implementable manner of the 3D feedback timing of the PUCCH1-1 sub-mode 1 provided by the present invention.
  • the CSI feedback period includes three feedback slots, which feed back RI 1 and RI2 in the first feedback slot; the second feedback slot feeds back PMI 1, PMI3 and CQI; and the third feedback slot feeds back CQI and PMI2;
  • the feedback of the channel state information is periodic, so the feedback of the fourth feedback slot is the same as the first feedback slot.
  • the 3D new feedback timing design of PUCCH 1-1 sub-mode 1 in Table 5 above maintains the feedback moments of Rel-8 and Rel-10, and changes the feedback content of each feedback moment, in this embodiment,
  • the first precoding matrix indication information (corresponding horizontal direction) further includes a first type precoding matrix indicator PMI1 (or long-term PMI) and a second type precoding matrix indicator PMI2 (or short-term PMI),
  • the second precoding matrix indication information (corresponding to the vertical direction) further includes a first type precoding matrix indicator PMI3 and a second type precoding matrix indicator PMI4.
  • the 3GPP Rel-10 reports the feedback timing of the RI and the broadband PMI1 to the horizontally-ranked Rank (ie, RI1) and the vertical to the vertical (ie, RI2); and the 3GPP Rel-10 reports the CQI and PMI2.
  • the CQI and the level on which it is based indicate the PMI1 to the first type precoding matrix indicator PMI1 and the vertical to the first type precoding matrix indicator precoding matrix; the CQI and the CQI and the PMI2 feedback timing are reported at the next time of the Rel-10 Horizontally to the second type precoding matrix indicator PMI2.
  • the above new feedback mode follows the feedback timing of 3GPP Re-10 in the same feedback mode, and the type of CSI content can also be used in the PUCCH type of 3GPP Rel-8 or Rel-10.
  • the joint coding of RI1 and RI2 reported at the first time in the above example may follow the PUCCH report type 3 or 5 of the Long Term Evolution (LTE) systems 3GPP Rel-8 and Rel-10, and the CQI and the first type of the first time reported at the second time.
  • LTE Long Term Evolution
  • the precoding matrix indicator, the vertical first type precoding matrix indicator may follow the PUCCH report type 2c of the Long Term Evolution (LTE) systems 3GPP Rel-8 and Rel-10; the CQI and the horizontal to the second type precoding performed at the third time
  • the matrix indicator PMI may inherit the PUCCH report type 2b of the Long Term Evolution LTE systems 3GPP Rel-8 and Rel-10.
  • the 3D new feedback timing design of the above PUCCH 1-1 sub-mode 1 maintains the feedback moments under 3GPP Rel-8 and Rel-10, and changes the feedback content of each feedback moment.
  • Table 6 The new 3D feedback timing design shown in Table 6 Rel-12 Option 1 and Rel-12 Option 2 introduce new feedback moments based on the same feedback mode timing relationship of 3GPP Rel-10 (see feedback time 2 in Table 6).
  • the feedback period of the channel state information CSI according to the Long Term Evolution (LTE) system 3GPP Rel-10 And feedback of the channel state information by the feedback timing includes:
  • the channel state information is fed back in a CSI feedback period of the physical uplink control channel PUCCH 1-1 sub-mode 2, where the CSI feedback period includes three feedback slots, and the first feedback slots feed back RI1 and RI2 ; the second feedback time slot feeds back PMI1, PMI3 and CQI; the third feedback time slot feeds back CQI and PMI2; or
  • the frame includes three feedback slots, and RI1 and RI2 are fed back in the first feedback slot; the second feedback slot feedbacks ⁇ , ⁇ 2, ⁇ 3, and CQI; and the third feedback slot feedbacks ⁇ , ⁇ 2, ⁇ 3, and CQI.
  • a new 3D feedback timing design of the above PUCCH 1-1 sub-mode 2 is described in detail below, in which a new 3D feedback timing (corresponding to the Rel-12 line in the table) and a pair of Rel-8 and Rel-10 are as follows. Table 7 shows:
  • the 3D new feedback timing design of PUCCH 1-1 sub-mode 2 shown in Table 7 maintains the feedback moments of Rel-8 and Rel-10, and changes the feedback content of each feedback moment, in this embodiment,
  • the first precoding matrix indication information (corresponding horizontal direction) further includes a first type precoding matrix indicator PMI1 and a second type precoding matrix indicator PMI2, the second precoding matrix indication information (corresponding to a vertical direction) further including A first type of precoding matrix indicator PMI3 and a second type of precoding matrix indicator PMI4.
  • the horizontally-ranked Rank (ie, RI1) and the vertical-to-Rank (ie, RI2) of the joint coding are reported at the feedback time of reporting the RI on the 3GPP Rel-10; and the CQI and the PMI1 are reported in the 3GPP Rel-10, and the CQI is reported at the time of the PMI2.
  • the level is based on the first type precoding matrix indicator PMI1 and the vertical type first precoding matrix indicator PMI3; the next time the Rel-10 reports CQI and PMI1, the PMI2 feedback time reports the CQI and the horizontal to the second Type precoding matrix indicator PMI2.
  • the above 3D new feedback timing design follows the feedback timing design of the previous 3GPP Re-10, and the reporting type of CSI content can also follow the PUCCH type of 3GPP Rel-8 or Rel-10.
  • the joint encoding of RI1 and RI2 at the first moment in the above example can be followed by the PUCCH report type 3 or 5 of the Long Term Evolution LTE system 3GPP Rel-8 and Rel-10, and the CQI and level reported at the second time.
  • the vertical first type precoding matrix indicator PMI may inherit the PUCCH report type 2c of the Long Term Evolution (LTE) systems 3GPP Rel-8 and Rel-10; the CQI reported at the third time and the horizontal type to the second type precoding matrix indicator PMI
  • the PUCCH report type 2b of the Long Term Evolution LTE systems 3GPP Rel-8 and Rel-10 can be used.
  • the 3D new feedback timing design of the above PUCCH 1-1 sub-mode 2 maintains the feedback moments under Rel-8 and Rel-10, and changes the feedback content of each feedback moment, as shown in Table 8 below:
  • the timing design is a new feedback timing design in the PUCCH 2-1 mode, where the channel state information further includes a precoding matrix type indication indicating a precoding matrix type, and indicating a PTI different according to the precoding matrix type.
  • the embodiment provides feedback timing of multiple channel state information, specifically:
  • the feedback period and the feedback timing of the channel state information CSI according to the Long Term Evolution (LTE) system 3GPP Rel-10 The feedback of performing the channel state information includes:
  • the channel state information is fed back in a CSI feedback period of the physical uplink control channel PUCCH 2-1 mode, where the CSI feedback period includes five feedback slots, and the contents of the feedback in each slot are as shown in Table 9. As shown in the item;
  • the parameters pMI and sb appended to the parameter PMI and CQI in Table 9 above indicate that the channel state information of the corresponding PMI and CQI feedback is broadband or subband, where wb corresponds to the wideband; sb corresponds to the subband, and wb and sb are not indicated in the above parameters.
  • the default is wb.
  • the feeding back the channel state information according to the feedback mode of the high layer configuration includes:
  • the channel state information is fed back in one CSI feedback period in the 2-1 mode in the physical uplink control channel PUCCH, where the CSI feedback period includes five feedback slots, and the content of the feedback in each slot is as follows.
  • Table 10 shows the items;
  • Wb and sb respectively indicate that the channel state information fed back by the corresponding PMI and CQI is a corresponding broadband or subband, where wb corresponds to a wideband; sb corresponds to a subband, and none of the above parameters indicating wb and sb is wb by default.
  • the 3D new feedback timing design of PUCCH 2-1 shown in Table 12 maintains the feedback timing of Rel-10, and the feedback content of each feedback moment is changed, specifically in 3GPP Rel.
  • the combined horizontal RI and vertical RI+PTI are reported, and the reporting level is reported at the time of reporting the broadband short-term PMI2+ wideband CQI, and the vertical first type precoding matrix indicator PMI1 and PMI3+the wideband CQI are reported in the short-term sub-band
  • the new feedback mode shown in Table 11 above uses the feedback timing design of the previous Re-10, and the reporting type of the CSI content can also follow the PUCCH reporting type under 3GPP Rel-8 or Rel-10.
  • the reporting type of the CSI content can also follow the PUCCH reporting type under 3GPP Rel-8 or Rel-10.
  • PTI 0
  • the joint encoding of the RI1+RI2+PTI reported at the first time can be followed by the PUCCH report type 5 or 6 of the Long Term Evolution (LTE) system 3GPP Rel-8 or Rel-10, and the second time is reported.
  • LTE Long Term Evolution
  • the horizontal and vertical broadband, long-term PMI can be used in the long-term evolution LTE system 3GPP Rel-8 or Rel-10 PUCCH report type 2c
  • the third time reported broadband CQI and horizontal short-term / wideband PMI can be used in the long-term evolution LTE system 3GPP PUCCH report type 2b of Rel-8 or Rel-10.
  • the joint coding of the RI 1 + RI2 + PTI reported at the first time can be followed by the PUCCH report type 5 or 6 of the Long Term Evolution (LTE) system 3GPP Rel-8 or Rel-10, and the second time is 4 ⁇ level, vertical broadband, long-term PMI + wideband CQI can be used in the long-term evolution LTE system 3GPP Rel-8 or Rel-10 PUCCH report type 2c, the third time reported sub-band CQI and horizontal short-term / sub-band PMI can be used Long Term Evolution LTE System 3GPP Rel-8 or Rel-10 PUCCH report type 2b.
  • LTE Long Term Evolution
  • the fourth embodiment of the present invention further provides a method for measuring channel state information, where the method includes:
  • Step 201 The base station configures the first channel state information measurement resource and the second channel state information measurement resource, and sends the information to the user equipment, so that the user equipment acquires the first channel state information according to the first channel state information measurement resource, according to the The second channel state information measurement resource acquires the second channel state information, where the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to the first antenna port that represents the horizontal dimension and the first characterized vertical dimension Two antenna ports;
  • Step 202 Receive channel state information fed back by the user equipment, including:
  • the second feedback mode is different from the first feedback mode
  • the base station sends the corresponding channel state information measurement resource to the terminal according to the measurement requirements of different dimensions. Therefore, the base station configured by the embodiment of the present invention and the first channel state information measurement resource and The second channel state information measurement resource.
  • the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to a first antenna port that represents a horizontal dimension and a second antenna port that represents a vertical dimension.
  • the first channel state information includes first precoding matrix indication information; the second channel state information includes second precoding matrix indication information, and the second feedback mode is different from the first feedback mode, where:
  • the frequency domain feedback granularity of the first precoding matrix indication information is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information.
  • the feedback period of the first channel state information is less than the feedback period of the second channel state information.
  • the vertical and horizontal dimensions of the channel state information antenna fed back in the embodiment of the present invention are independent, so the channel state information is included with respect to the channel state information fed back in the prior art.
  • the content may change, so the channel state information in the embodiment of the invention may be:
  • the first channel state information includes first precoding matrix indication information and first rank indication information RI1;
  • the second channel state information includes second precoding matrix indication information and second rank indication information RI2;
  • the precoding matrix indication information further includes a first type precoding matrix indicator PMI1 and a second type precoding matrix indicator PMI2, the second precoding matrix indication information further including a first type precoding matrix indicator PMI3 and a second Type precoding matrix indicator PMI4;
  • Receiving the channel fed back by the user equipment for the change of the channel information fed back by the user equipment Status information including:
  • the first channel state information, the second channel state information, and the channel quality indicator CQI are the first channel state information, the second channel state information, and the channel quality indicator CQI.
  • the receiver on the base station side receives the channel state information corresponding to the new 3D feedback mode, and the corresponding specific implementation includes:
  • the user equipment feeds back the channel state information to the base station by using the physical uplink control channel PUCCH, and then receives the channel state information that is fed back by the user equipment, including:
  • the feedback period of the one channel state information includes three feedback slots, and the first feedback slot receives the RI1 And RI2; the second feedback slot receives ⁇ , ⁇ 3, and CQI; the third feedback slot receives CQI and PMI2; or
  • the first feedback slot receives RI 1, RI2 and PMI 1; the second feedback slot receives PMI2, PMI3 and CQI; the third feedback slot receives PMI2, PMI3 and CQI;
  • the first feedback slot receives RI1, RI2, PMI1, and PMI3; the second feedback slot receives PMI2, PMI4, and CQI; and the third feedback slot receives PMI2, PMI4, and CQI.
  • Manner 2 The user equipment, by using the physical uplink control channel, the PUCCH, to feed back the channel state information to the base station, and then receiving the channel state information that is fed back by the user equipment, including:
  • the channel state information in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes three feedback slots, first Receiving RI1 and RI2 in the feedback slot; receiving the PMI1, PMI3, and CQI in the second feedback slot; receiving the CQI and PMI2 in the third feedback slot; or
  • the CSI feedback period includes three feedback slots, the first feedback slot receives RI1 and RI2; the second feedback slot receives PMI1, PMI2, PMI3, and CQI; and the third feedback slot receives PMI1, PMI2, PMI3, and CQI .
  • the channel state information further includes a precoding matrix type indication indicating a precoding matrix type.
  • the precoding matrix is of the first type
  • the user equipment feeds back to the base station by using a physical uplink control channel PUCCH.
  • the channel state information the base station receives the channel state information fed back by the user equipment, including:
  • the base station receives the channel state information in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes five feedback time slots, and the contents received in each time slot are as follows: Shown
  • the time slot corresponds to each feedback moment within one CSI feedback period.
  • the channel state information further includes a precoding matrix type indicator indicating a precoding matrix type.
  • the precoding matrix is the second type
  • the user equipment is controlled by physical uplink.
  • the channel-based PUCCH feeds back the channel state information to the base station, and the base station receives the channel state information that is fed back by the user equipment, including:
  • the base station receives the channel state information in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes five feedback time slots, and the contents received in each time slot are as follows: As shown in the item;
  • the time slot corresponds to each feedback moment within a CSI feedback period.
  • the present invention further provides a user equipment according to the foregoing method, where the user equipment includes:
  • the processor 301 is configured to: acquire, according to the first channel state information measurement resource configured by the base station, the first channel state information; and acquire the second channel state information according to the second channel state information configuration resource configured by the base station;
  • the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to a first antenna port characterizing a horizontal dimension and a second antenna port characterizing a vertical dimension;
  • the transmitter 302 is configured to feed back channel state information to the base station, including: And feeding back the first channel state information to the base station according to the first feedback mode, and feeding back the second channel state information to the base station according to the second feedback mode, where the second feedback mode is different from the first feedback mode Or,
  • the third channel state information is fed back according to the third feedback mode, and the third channel state information is obtained by the processor based on the first channel state information and the second channel state information.
  • the first channel state information includes first precoding matrix indication information; the second channel state information includes second precoding matrix indication information, and when the transmitter 302 feeds back channel state information,
  • the frequency domain feedback granularity of the first precoding matrix indication information is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information.
  • the feedback period of the first channel state information is smaller than the second channel. The feedback period of the status information.
  • the first channel state information includes first precoding matrix indication information and first rank indication information Rii; and the second channel state information includes second precoding matrix indication information and a second rank.
  • the first precoding matrix indication information further includes a first type precoding matrix indicator PMI1 and a second type precoding matrix indicator PMI2,
  • the second precoding matrix indication information further including a first type pre a coding matrix indicator PMI3 and a second type precoding matrix indicator PMI4;
  • the processor 301 obtains a channel quality indicator CQI based on the first channel state information and the second channel state information;
  • the channel state information that the transmitter 302 feeds back to the base station includes the first channel state information, the second channel state information, and the CQI; or, the third precoding matrix indication information, the third rank indication information, And the CQI; wherein the third precoding matrix indication information is obtained based on at least three of the PMI1, PMI2, PMI3, and PMI4, and the third rank indication information is obtained based on the RI1 and the RI2.
  • Manner 1 The user equipment feeds back channel state information to the base station through a physical uplink control channel PUCCH, and the transmitter 302 feeds back the channel state in a channel state information CSI feedback period of the physical uplink control channel PUCCH.
  • Information where the CSI feedback period includes three feedback slots, the first feedback slot feedbacks RI1 and RI2; the second feedback slot feedbacks PMI1, PMI3, and CQI; and the third feedback slot feedbacks CQI and PMI2;
  • Manner 2 The user equipment feeds back channel state information to the base station through a physical uplink control channel PUCCH, and the transmitter 302 feeds back the channel state in a channel state information CSI feedback period of the physical uplink control channel PUCCH.
  • Information where the CSI feedback period includes three feedback slots, the first feedback slot is fed back RI1 and RI2; the second feedback slot feedbacks PMI1, PMI3 and CQI; the third feedback slot feedbacks CQI and PMI2; Or
  • the CSI feedback period includes three feedback slots, the first feedback slot feedbacks RI1 and RI2; the second feedback slot feedbacks PMI1, PMI2, PMI3, and CQI; and the third feedback slot feedbacks PMI1, PMI2, PMI3, and CQI .
  • the channel state information further includes a precoding matrix type indication indicating a precoding matrix type.
  • the precoding matrix is the first type
  • the user equipment feeds back the channel state to the base station by using a physical uplink control channel PUCCH.
  • the transmitter 302 feeds back the channel state information in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes five feedback slots, in each slot
  • the contents of the feedback are as shown in the following table;
  • the time slot corresponds to each feedback moment within a CSI feedback period.
  • the channel state information further includes a precoding matrix type indication indicating a precoding matrix type.
  • the precoding matrix is the second type
  • the user equipment feeds back the channel state to the base station by using a physical uplink control channel PUCCH.
  • the transmitter 302 feeds back the channel state information in a channel state information CSI feedback period of the physical uplink control channel PUCCH, where the CSI feedback period includes five feedback slots, each time slot The content of the feedback is d3
  • the time slot corresponds to each feedback moment within a CSI feedback period.
  • an embodiment of the present invention further provides a base station, where the base station includes:
  • the base station processor 401 is configured to configure the first channel state information measurement resource and the second channel state information measurement resource, and send the information to the user equipment, so that the user equipment acquires the first channel state information according to the first channel state information measurement resource, according to The second channel state information measurement resource acquires second channel state information; wherein the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to a first antenna port that characterizes a horizontal dimension and characterizes a vertical a second antenna port of the dimension;
  • the receiver 402 is configured to receive channel state information that is fed back by the user equipment, including:
  • the receiver 402 is configured to receive the first channel state information that is fed back by the user equipment according to the first feedback mode, and the second feedback mode is different from the second channel state information that is fed back according to the second feedback mode.
  • the receiver 402 is configured to receive third channel state information that is fed back by the user equipment according to a third feedback mode, where the third channel state information is used by the user equipment based on the first channel state information and a second channel state. Information is obtained.
  • the first channel state information includes first precoding matrix indication information; the second channel state information includes second precoding matrix indication information, and the channel state information received by the receiver 402 is
  • the frequency domain feedback granularity of the first precoding matrix indication information is less than or equal to the frequency domain feedback granularity of the second precoding matrix indication information.
  • the receiver 402 is further configured to receive channel state information according to a principle that a feedback period of the first channel state information is less than a feedback period of the second channel state information.
  • the first channel state information includes first precoding matrix indication information and first rank indication information RI1;
  • the second channel state information includes second precoding matrix indication information and second rank indication information RI2;
  • the precoding matrix indication information further includes a first type of precoding matrix indicator a PMI1 and a second type precoding matrix indicator PMI2, the second precoding matrix indication information further comprising a first type precoding matrix indicator PMI3 and a second type precoding matrix indicator PMI4;
  • the receiver 402 is further configured to receive the first channel state information, the second channel state information, and the channel quality indicator CQI; or
  • the present invention further provides another feedback device for channel state information, where the feedback device may be a user equipment in the foregoing embodiment, and is used to perform a feedback method for channel state information in the foregoing various embodiments.
  • the apparatus includes at least one processor 501 (e.g., a CPU), at least one network interface 502 or other communication interface, memory 503, and at least one communication bus 504 for enabling connection communication between the devices.
  • the processor 501 is operative to execute executable modules, such as computer programs, stored in the memory 503.
  • the memory 503 may include a random access memory (RAM), and may also include a non-volatile memory such as at least one disk.
  • the communication connection between the system gateway and at least one other network element is implemented by at least one network interface 502 (which may be wired or wireless), and may use an Internet, a wide area network, a local area network, a metropolitan area network, or the like.
  • the memory in the apparatus provided by the present invention stores a program 5031, and the program may be executed by the processor.
  • the program includes: the user equipment measures the resource based on the first channel state information configured by the base station, and acquires the first channel state. And acquiring, according to the second channel state information measurement resource configured by the base station, the second channel state information, where the first channel state information measurement resource and the second channel state information measurement resource respectively correspond to the horizontal dimension a first antenna port and a second antenna port characterizing a vertical dimension;
  • the user equipment feeds back channel state information to the base station; wherein, the channel shape is fed back
  • the specific feedback method when the information is available can be:
  • the user equipment feeds back the first channel state information to the base station according to the first feedback mode, and feeds back the second channel state information to the base station according to the second feedback mode, where the second feedback mode is different from the First feedback mode; or
  • the user equipment feeds back third channel state information according to the third feedback mode, where the third channel state information is obtained by the user equipment based on the first channel state information and the second channel state information.

Abstract

本发明涉及移动通信技术领域,尤其涉及一种信道状态信息反馈方法及装置。该方法包括:用户设备基于基站配置的对应表征水平维度的第一天线端口的第一信道状态信息测量资源,获取第一信道状态信息;基于所述基站配置的表征垂直维度的第二天线端口的第二信道状态信息测量资源,获取第二信道状态信息;向所述基站反馈信道状态信息,包括:根据第一反馈模式向所述基站反馈所述第一信道状态信息,根据第二反馈模式向所述基站反馈所述第二信道状态信息,所述第二反馈模式不同于所述第一反馈模式;或者,根据第三反馈模式反馈第三信道状态信息,所述第三信道状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态信息得到。

Description

一种信道状态信息的反馈方法及装置 技术领域
本发明涉及移动通信技术领域, 尤其涉及一种信道状态信息的反馈方法 及装置。
背景技术
无线通信系统中, 发送端和接收端采取空间复用的方式使用多根天线来 获取更高的速率。 相对于一般的空间复用方法, 一种增强的技术是接收端反 馈信道信息给发送端, 发送端根据获得的信道信息使用一些发射预编码技术, 极大的提高传输性能。
在长期演进系统( Long Term Evolution, LTE ) 中, 为了实现基站对不同 用户设备(User Equipment, UE )有效的控制和调度, UE需要通过上行信道 反馈一些信道状态信息 (Channel State Information, CSI )信息给基站, 这些 信道状态信息可以包括信道质量指示(Channel Quality Indicator, CQI )、 预编 码巨阵指示 ( Precoding matrix indicator, PMI )、 秩指示 ( Rank Indicator, RI )。
在 LTE 的第三代合作伙伴计划版本号 12 ( 3rd Generation Partnership Project Release -12, 3GPP Rel-12 )下, 天线规模从水平线阵扩展到水平、 垂 直二维面阵(即通常的有源天线系统(Active Antenna System, AAS ) ), 天线 根数也从 3GPP Rel-11的最大 8进一步增大为 16, 32, 64。 随着天线规模的 增大, 相应的 CSI测量和反馈复杂度也相应增大, 现有技术中尚无适用于上 述大规模天线面阵的具体技术方案。 若仅仅筒单扩展 3GPP Rel-11 中的 CSI 测量和反馈方法, 测量和反馈开销会很严重, 造成上行信道资源的浪费。 发明内容
本发明实施例提供信道状态信息的反馈方法及装置, 以节省信道状态信 息反馈的开销。 第一方面, 提供一种信道状态信息的反馈方法, 该方法包括: 用户设备基于基站配置的第一信道状态信息测量资源, 获取第一信道状 态信息; 基于所述基站配置的第二信道状态信息测量资源, 获取第二信道状 态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态信息测 量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二天线端 口;
所述用户设备向所述基站反馈信道状态信息, 包括:
所述用户设备根据第一反馈模式向所述基站反馈所述第一信道状态信 息, 根据第二反馈模式向所述基站反馈所述第二信道状态信息, 所述第二反 馈模式不同于所述第一反馈模式; 或者,
所述用户设备根据第三反馈模式反馈第三信道状态信息, 所述第三信道 状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态信息得 到。
结合第一方面, 在第一种可能的实现方式中, 所述第一信道状态信息中 包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码矩阵指 示信息, 则所述第二反馈模式不同于所述第一反馈模式包括:
所述第一预编码矩阵指示信息的频域反馈粒度小于或等于所述第二预编 码矩阵指示信息的频域反馈粒度。
结合第一方面或者第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述第二反馈模式不同于所述第一反馈模式包括:
所述第一信道状态信息的反馈周期小于所述第二信道状态信息的反馈周 期。
结合第一方面至第一方面的第二种可能的实现方式中的任意一种可能实 现的方式, 在第三种可能的实现方式中, 所述第一信道状态信息包括第一预 编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二信道状态信息包括第二预 编码矩阵指示信息和第二秩指示信息 RI2;所述第一预编码矩阵指示信息进一 步包括第一类型预编码矩阵指示符 PMI1 和第二类型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4;
所述用户设备基于所述第一信道状态信息和所述第二信道状态信息, 得 到信道质量指示 CQI; 所述用户设备向所述基站反馈的所述信道状态信息, 包括:
所述第一信道状态信息、 第二信道状态信息以及所述 CQI; 或者, 第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到。
结合第一方面的第三种可能的实现, 在第四种可能的实现方式中, 用户 设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状态信息,则所 述用户设备向所述基站反馈的所述信道状态信息包括:
在物理上行链路控制信道 PUCCH 的一个信道状态信息的反馈周期中反 馈所述信道状态信息, 其中, 所述一个信道状态信息的反馈周期中包括三个 反馈时隙, 第一反馈时隙反馈 RI1 和 RI2; 第二反馈时隙反馈 PMI1、 PMI3 和 CQI; 第三反馈时隙反馈 CQI和 PMI2; 或者
第一反馈时隙反馈 RI1、 RI2和 PMI1 ; 第二反馈时隙反馈 PMI2、 PMI3 和 CQI; 第三反馈时隙反馈 PMI2、 PMI3和 CQI; 或者
第一反馈时隙反馈 RI 1、 RI2、 PMI 1和 PMI3; 第二反馈时隙反馈 PMI2、 PMI4和 CQI; 第三反馈时隙反馈 PMI2、 PMI4和 CQI。
结合第一方面的第三种可能的实现, 在第五种可能的实现方式中, 用户 设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状态信息,则所 述用户设备向所述基站反馈的所述信道状态信息包括:
在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反 馈所述信道状态信息, 其中, 所述 CSI反馈周期中包括三个反馈时隙, 第一 反馈时隙中反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI3和 CQI; 第三反 馈时隙反馈 CQI和 PMI2; 或者, 所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI;第三反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI。
结合第一方面的第三种可能的实现, 在第六种可能的实现方式中, 所述 信道状态信息中还包括指示预编码矩阵类型的预编码矩阵类型指示 ΡΉ,当预 编码矩阵为第一类型,所述用户设备通过物理上行链路控制信道 PUCCH向所 述基站反馈信道状态信息, 包括:
在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反 馈所述信道状态信息, 其中, 所述 CSI反馈周期包括五个反馈时隙, 各时隙 中反馈的内容如下表各项所示;
Figure imgf000006_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=0标示预编码矩阵的类型为第 一类型, 所述反馈时隙对应一个 CSI反馈周期内的各个反馈时刻。
结合第一方面的第三种可能的实现, 在第七种可能的实现方式中, 所述 信道状态信息中还包括指示预编码矩阵类型的预编码矩阵类型指示 ΡΉ,当预 编码矩阵为第二类型,所述用户设备通过物理上行链路控制信道 PUCCH向所 述基站反馈信道状态信息, 包括: 在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反 馈所述信道状态信息, 其中, 所述 CSI反馈周期中包括五个反馈时隙, 各时 隙中反馈的内容如下表各项所示;
Figure imgf000007_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=1标示预编码矩阵的类型为第 二类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
第二方面, 提供一种用户设备, 包括:
处理器, 用于基于基站配置的第一信道状态信息测量资源, 获取第一信 道状态信息; 基于所述基站配置的第二信道状态信息测量资源, 获取第二信 道状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态信 息测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二天 线端口;
发送器, 用于向所述基站反馈信道状态信息, 包括:
所述发送器用于根据第一反馈模式向所述基站反馈所述第一信道状态信 息, 根据第二反馈模式向所述基站反馈所述第二信道状态信息, 所述第二反 馈模式不同于所述第一反馈模式; 或者, 所述发送器用于根据第三反馈模式反馈第三信道状态信息, 所述第三信 道状态信息由所述处理器基于所述第一信道状态信息和第二信道状态信息得 到。
结合第二方面, 在第一种可能的实现方式中, 所述第一信道状态信息中 包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码矩阵指 示信息, 则所述发送器反馈信道状态信息时, 所述第一预编码矩阵指示信息 的频域反馈粒度小于或等于所述第二预编码矩阵指示信息的频域反馈粒度。
结合第二方面或者第二方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述发送器反馈信道状态信息时, 所述第一信道状态信息的反 馈周期小于所述第二信道状态信息的反馈周期。
结合第二方面至第二方面的第二种可能的实现方式中的任意一种可能实 现的方式, 在第三种可能的实现方式中, 所述第一信道状态信息包括第一预 编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二信道状态信息包括第二预 编码矩阵指示信息和第二秩指示信息 RI2;所述第一预编码矩阵指示信息进一 步包括第一类型预编码矩阵指示符 PMI1 和第二类型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4;
所述处理器基于所述第一信道状态信息和所述第二信道状态信息, 得到 信道质量指示 CQI;
则所述发送器向所述基站反馈的信道状态信息包括所述第一信道状态信 息、 第二信道状态信息以及所述 CQI; 或者, 第三预编码矩阵指示信息、 第 三秩指示信息, 以及所述 CQI; 其中, 所述第三预编码矩阵指示信息基于所 述 PMI1、 PMI2、 PMI3和 PMI4中的至少三个得到, 所述第三秩指示信息基 于所述 RI1和所述 RI2得到。
结合第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状态信息, 则所述发射器在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈 周期中反馈所述信道状态信息, 其中, 所述 CSI反馈周期中包括三个反馈时 隙, 第一反馈时隙反馈 RI 1和 RI2; 第二反馈时隙反馈 PMI 1、 PMI3和 CQI; 第三反馈时隙反馈 CQI和 PMI2; 或者
第一反馈时隙反馈 RI1、 RI2和 PMI1 ; 第二反馈时隙反馈 PMI2、 PMI3 和 CQI; 第三反馈时隙反馈 PMI2、 PMI3和 CQI; 或者
第一反馈时隙反馈 RI 1、 RI2、 PMI 1和 PMI3; 第二反馈时隙反馈 PMI2、 PMI4和 CQI; 第三反馈时隙反馈 PMI2、 PMI4和 CQI。
结合第二方面的第三种可能的实现方式, 在第五种可能的实现方式中, 用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状态信息, 则所述发射器在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈 周期中反馈所述信道状态信息, 其中, 所述 CSI反馈周期中包括三个反馈时 隙,第一反馈时隙中反馈 RI1和 RI2;第二反馈时隙反馈 PMI1、 PMI3和 CQI; 第三反馈时隙反馈 CQI和 PMI2; 或者
所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI;第三反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI。
结合第二方面的第三种可能的实现方式, 在第六种可能的实现方式中, 所述信道状态信息中还包括指示预编码矩阵类型的预编码矩阵类型指示 PTI, 当预编码矩阵为第一类型,用户设备通过物理上行链路控制信道 PUCCH向所 述基站反馈信道状态信息,则所述发射器在物理上行链路控制信道 PUCCH的 一个信道状态信息 CSI反馈周期中反馈所述信道状态信息, 其中, 所述 CSI 反馈周期包括五个反馈时隙, 各时隙中反馈的内容如下表各项所示;
第一反馈 第二反馈 第三反馈时 第四反馈时 第五反馈时 第六反馈 时隙 时隙 隙 隙 隙 时隙
选项一 RI1+RI2 PMI1+ PMBwb PMBwb PMBwb RI1+RI2
PTI = 0 + CQIwb +CQIwb +CQIwb PTI = 0
PMI2
选项二 RI1+RI2 PMI1 PMI2+ PMI2+ PMI2+ RI1+RI2
PTI = 0 PTI = 0
PMI3wb+ PMI3wb+ PMI3wb+ CQIwb CQIwb CQIwb
选项三 PMI1 +RI2 PMI2+ PMI2+ PMI2+
PMI3wb+ PMI3wb+ PMI3wb+
CQIwb CQIwb CQIwb
选项四 PMI1 +RI1 PMI2+ PMI2+ PMI2+
d F3 PMI3wb+ PMI3wb+ PMI3wb+
II II
〇 〇 CQIwb CQIwb CQIwb
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=0标示预编码矩阵的类型为第 一类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
结合第二方面的第三种可能的实现方式, 在第七种可能的实现方式中, 所述信道状态信息中还包括指示预编码矩阵类型的预编码矩阵类型指示 ΡΤΙ, 当预编码矩阵为第二类型,用户设备通过物理上行链路控制信道 PUCCH向所 述基站反馈信道状态信息,则所述发射器在物理上行链路控制信道 PUCCH的 一个信道状态信息 CSI反馈周期中反馈所述信道状态信息, 其中, 所述 CSI 反馈周期中包括五个反馈时隙, 各时隙中反馈的内容如下表各项所示; d3
II II
〇 〇
Figure imgf000010_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=1标示预编码矩阵的类型为第 二类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
第三方面, 提供一种信道状态信息的测量方法, 该方法包括:
基站配置第一信道状态信息测量资源和第二信道状态信息测量资源并发 送到用户设备, 使得所述用户设备根据所述第一信道状态信息测量资源获取 第一信道状态信息, 根据所述第二信道状态信息测量资源获取第二信道状态 信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态信息测量 资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二天线端 口;
接收所述用户设备反馈的信道状态信息, 包括:
接收所述用户设备根据第一反馈模式反馈的所述第一信道状态信息, 根 据第二反馈模式反馈的所述第二信道状态信息, 所述第二反馈模式不同于所 述第一反馈模式; 或者,
接收所述用户设备根据第三反馈模式反馈的第三信道状态信息, 所述第 三信道状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态 信息得到。
结合第三方面, 在第三种可能的实现方式中, 所述第一信道状态信息中 包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码矩阵指 示信息, 则所述第二反馈模式不同于所述第一反馈模式包括:
所述第一预编码矩阵指示信息的频域反馈粒度小于或等于所述第二预编 码矩阵指示信息的频域反馈粒度。
结合第三方面或者第三方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述第二反馈模式不同于所述第一反馈模式包括:
所述第一信道状态信息的反馈周期小于所述第二信道状态信息的反馈周 期。
结合第三方面至第三方面的第二种可能的实现方式中的任意一种可能实 现的方式, 在第三种可能的实现方式中, 所述第一信道状态信息包括第一预 编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二信道状态信息包括第二预 编码矩阵指示信息和第二秩指示信息 RI2;所述第一预编码矩阵指示信息进一 步包括第一类型预编码矩阵指示符 PMI1 和第二类型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4;
所述接收用户设备反馈的信道状态信息, 包括:
所述第一信道状态信息、 第二信道状态信息以及信道质量指示 CQI; 或 者,
第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到, 其中, 所述 信道质量指示 CQI为用户设备基于所述第一信道状态信息和所述第二信道状 态信息得到。
第四方面, 提供一种基站, 该基站包括:
基站处理器, 用于配置第一信道状态信息测量资源和第二信道状态信息 测量资源并发送到用户设备, 使得用户设备根据所述第一信道状态信息测量 资源获取第一信道状态信息, 根据所述第二信道状态信息测量资源获取第二 信道状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态 信息测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二 天线端口;
接收器, 用于接收用户设备反馈的信道状态信息, 包括:
所述接收器用于接收用户设备根据第一反馈模式反馈的所述第一信道状 态信息, 根据第二反馈模式反馈的所述第二信道状态信息, 所述第二反馈模 式不同于所述第一反馈模式; 或者,
所述接收器用于接收所述用户设备根据第三反馈模式反馈的第三信道状 态信息, 所述第三信道状态信息由所述用户设备基于所述第一信道状态信息 和第二信道状态信息得到。
结合第四方面, 在第一种可能的实现方式中, 所述第一信道状态信息中 包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码矩阵指 示信息, 则所述接收器接收到的信道状态信息中, 所述第一预编码矩阵指示 信息的频域反馈粒度小于或等于所述第二预编码矩阵指示信息的频域反馈粒 度。
结合第四方面或者第四方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述接收器还用于按照所述第一信道状态信息的反馈周期小于 所述第二信道状态信息的反馈周期的原则接收信道状态信息。
结合第四方面至第四方面的第二种可能的实现方式中的任意一种可能实 现的方式, 在第三种可能的实现方式中, 所述第一信道状态信息包括第一预 编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二信道状态信息包括第二预 编码矩阵指示信息和第二秩指示信息 RI2;所述第一预编码矩阵指示信息进一 步包括第一类型预编码矩阵指示符 PMI1 和第二类型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4;
所述接收器用于接收所述第一信道状态信息、 第二信道状态信息以及信 道质量指示 CQI; 或者,
第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到, 其中, 所述 信道质量指示 CQI为用户设备基于所述第一信道状态信息和所述第二信道状 态信息得到。
采用本发明提供的信道状态信息的反馈方法及装置, 根据垂直向信道变 化特征不同于水平向的特点, 在频域或时域维度对垂直向的信道状态信息进 行不同于水平向的筒化设计和反馈, 从而达到在频域或时域上减小反馈开销 的目的。 附图说明 图 1为本发明实施例提供的一种信道状态信息反馈方法的流程示意图; 图 2本发明实施例提供的一种信道状态信息的测量方法的流程示意图; 图 3为本发明实施例提供的一种用户设备的结构示意图;
图 4为本发明实施例提供的一种基站的结构示意图;
图 5为本发明实施例提供的一种信道状态信息的反馈装置的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
应理解, 本发明实施例的技术方案可以应用于各种通信系统, 例如: 全 球移动通讯( Global System of Mobile communication, 筒称为 "GSM" )系统、 宽带码分多址(Wideband Code Division Multiple Access , 筒称为 "WCDMA" ) 系统、 通用分组无线业务( General Packet Radio Service , 筒称为 "GPRS" )、 长期演进( Long Term Evolution,筒称为 "LTE" )系统、 LTE频分双工( Frequency Division Duplex,筒称为 "FDD" )系统、 LTE 时分双工( Time Division Duplex, 筒称为 "TDD" )、 通用移动通信系统 ( Universal Mobile Telecommunication System, 筒称为 "UMTS" )等。
还应理解,在本发明实施例中,用户设备 ( User Equipment,筒称为 "UE" ) 可称之为终端 (Terminal ), 移动台 ( Mobile Station , 筒称为 "MS" )、 移动终 端( Mobile Terminal )等,该用户设备可以经无线接入网( Radio Access Network, 筒称为 "RAN" )与一个或多个核心网进行通信, 例如, 用户设备可以是移动 电话(或称为 "蜂窝" 电话)、 具有移动终端的计算机等, 例如, 用户设备还 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们 在本发明实施例中, 基站可以是 GSM的基站( Base Transceiver Station, 筒称为 "BTS" ), 也可以是 WCDMA中的基站(NodeB, 筒称为 "NB" ), 还 可以是 LTE中的演进型基站( Evolutional Node B ,筒称为 "eNB或 e-NodeB" ), 本发明并不限定。
LTE Rel-8及 Rel-8以后的(包括 Rel-9, 10, 11 , 12甚至更高的版本)系 统中引入了闭环预编码技术, 该闭环预编码首先要求在基站和终端都保存同 一个预编码矩阵的集合, 称为码本。 终端根据小区公共导频或用户特定的导 频估计出信道信息后, 按一定准则从码本中选出一个预编码矩阵。 终端将选 出的预编码矩阵在码本中的索引通过上行信道反馈到基站, 该索引记为 PMI。 基站由收到的索引值就可以确定对该终端应使用的预编码矩阵。 另外, 为了 帮助基站实现链路自适应, 终端需要根据信道条件上报信道质量指示信息 CQI。
终端计算得到的 PMI和 CQI通过上行信道传输给基站。 基站利用终端上 报的 PMI进行发射端的预处理, 利用终端上报的 CQI进行链路自适应 (包括 调制方式和编码速率的选择等)。
LTE的 3GPP Rel-12下,天线规模从水平线阵扩展到水平、垂直二维面阵, 且天线根数也从 Rel-10的最大 8进一步增大为 16, 32, 64。 随着天线规模的 增大, 相应的 CSI测量和反馈复杂度也相应增大。 在双工模式下, 尤其是频 分双工 ( Frequency Division Duplex, FDD ) 时, 基站 ( Base Station, BS ) 向 用户设备( User Equipment, UE )发送一至多套 CSI-RS资源, UE在各套 CSI-RS 资源上独立对发射阵列的端口进行 CSI测量。 随着天线规模的增大, 相应的 CSI测量和反馈复杂度也相应增大。大天线根数下的 CSI测量和反馈的时域和 频域开销也成倍增长, 从而造成了上行信道资源的开销剧增和浪费。 现有技 术中尚无适用于上述大规模天线面阵的具体并能节省开销的新反馈模式。
如图 1所示, 本发明提供一种信道状态信息反馈方法, 可以适用于水平、 垂直二维天线面阵。 所述方法包括:
步骤 101 , 用户设备基于基站配置的第一信道状态信息测量资源, 获取第 一信道状态信息; 基于所述基站配置的第二信道状态信息测量资源, 获取第 二信道状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状 态信息测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第 二天线端口;
步骤 102, 所述用户设备向所述基站反馈信道状态信息; 其中, 在反馈所 述信道状态信息时的具体反馈方式可以是:
所述用户设备根据第一反馈模式向所述基站反馈所述第一信道状态信 息, 根据第二反馈模式向所述基站反馈所述第二信道状态信息, 所述第二反 馈模式不同于所述第一反馈模式; 或者,
所述用户设备根据第三反馈模式反馈第三信道状态信息, 所述第三信道 状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态信息得 到。
需要说明的是, 一个天线端口 (antenna port )可以是一个物理发射天线, 也可以是多个物理发射天线的合并。 在这两种情况下, 用户设备的接收机都 不会去分解来自一个天线端口的信号, 因为从用户设备的角度来看, 不管信 道是由单个物理发射天线形成的, 还是由多个物理发射天线合并而成的, 这 个天线端口对应的参考信号 ( Reference Signal, 筒称为 RS )就定义了这个天 线端口, 用户设备都可以根据这个参考信号得到这个天线端口的信道估计。 具体的参考信号并不限制, 例如可以是信道状态信息参考信号 (channel state information reference signal,筒称为 CSI-RS )。
在本发明实施例中, 对于水平、 垂直二维面阵, 可以针对水平维度和垂 直维度分开定义天线端口。 例如, 假设所述水平、 垂直二维面阵为 8行 4列 的二维天线面阵, 共有 32个物理发射天线。 若直接扩展现有技术中的 CSI测 量和反馈机制, 可能的技术方案为针对 32个物理发射天线定义 32个天线端 口, 相应地, 用户设备需要针对 32个天线端口进行 CSI测量和反馈。 若针对 针对水平维度和垂直维度分开定义天线端口, 例如针对水平维度定义 4个第 一天线端口, 每个第一天线端口对应 8个物理发射天线, 垂直维度定义 8个 第二天线端口, 每个第二天线端口对应 4个物理发射天线, 共计 12个天线端 口, 则用户设备仅需要针对 12个天线端口进行 CSI测量和反馈, 近似得到 32 个天线端口对应的信道状态信息, 因而可以降低 CSI测量和反馈开销。
此外, 由于水平向信道的变化特征通常不同于垂直向信道的变化特征, 用户设备在向基站反馈信道状态信息时, 还可以针对垂直向和水平向不同的 信道变化特征, 对第一信道状态信息和第二信道状态信息采用不同的反馈模 式, 以达到进一步降低 CSI反馈开销的目的。
在本发明实施例中, 第一反馈模式、 第二反馈模式和第三反馈模式所包 含的内容包括用户终端反馈信道状态信息的反馈粒度和反馈周期等。 用户设 备对第一信道状态信息和第二信道状态信息采用不同的反馈模式, 包括: 所述第一信道状态信息的反馈周期小于所述第二信道状态信息的反馈周 期。
可选地, 所述第一信道状态信息中包括第一预编码矩阵指示信息; 第二 信道状态信息中包括第二预编码矩阵指示信息, 所述第二反馈模式不同于所 述第一反馈模式, 还可以包括:
所述第一预编码矩阵指示信息的频域反馈粒度小于或等于所述第二预编 码矩阵指示信息的频域反馈粒度。
在本发明实施例中, 因为用户设备反馈的信道状态信息中垂直维度和水 平维度是独立测量的, 所以会得到分别针对这两个维度的信道状态信息。 所 以用户设备在具体反馈信道状态信息时, 可以通过各种组合方式将两个维度 的信道信息反馈到基站, 所以所述用户设备向所述基站反馈信道状态信息方 式可以是以下方式中的任意一种:
方式一、 所述用户设备根据第一反馈模式向所述基站反馈所述第一信道 状态信息, 根据第二反馈模式向所述基站反馈所述第二信道状态信息, 所述 第二反馈模式不同于所述第一反馈模式, 具体实现可以是:
在该实例中所述反馈的信道状态信息包括所述第一预编码矩阵指示信 息、 第一秩指示信息 RI1、 所述第二预编码矩阵指示信息和第二秩指示信息 RI2和信道质量指示信息 CQI, 其中, 所述信道质量指示信息 CQI根据第一 信道状态信息和第二信道状态信息得到。 CQI 所对应的为导频估计的业务数 据传输时经历的信道质量(即 CRS估计的信噪比 (Signal Interference Noise Ratio, SINR ) )的量化值, 所述 SINR中的信号功率 S计算基于本小区的第一 信道状态信息和第二信道状态信息得到。
方式二、 所述用户设备根据第三反馈模式反馈第三信道状态信息, 所述 第三信道状态信息由所述用户设备基于所述第一信道状态信息和第二信道状 态信息得到。 具体实现可以是:
基于所述第一信道状态信息和所述第二信道状态信息得到第三信道状态 信息; 其中, 所述第三信道状态信息包括第三预编码矩阵指示信息、 信道质 量指示信息 CQI和所述 RI1和 RI2; 或所述第三信道状态信息包括第三预编 码矩阵指示信息、 信道质量指示信息 CQI和基于所述 RI1和 RI2得到的第三 秩指示信息 RI,且所述第三预编码矩阵指示信息进一步根据所述 PMI1、PMI2、 PMI3和 PMI4中的至少三个形成。
所述第三秩指示信息 RI可以是所述 RI1与 RI2的乘积。 所述第三预编码 矩阵指示信息可根据如下任一种方式生成:
方式一): 所述第三预编码矩阵 PMI与所述 PMI1、 PMI2、 PMI3和 PMI4 的关系为. PMI = (ΡΜΙ1χ ΡΜΙ2) (¾ (ΡΜΙ3χ ΡΜΙ4)或 ΡΜΙ = (ΡΜΠχ ΡΜ2) (¾ΡΜΙ3或
ΡΜΙ = ΡΜΙ1(8)(ΡΜΙ3χ ΡΜΙ4) , 其中 ®表示克罗内克积 ( Kronecker product ); 方式二): 所述第三预编码矩阵 PMI与所述 PMI1、 PMI2、 PMI3和 PMI4 的关系为: PMI为所述 PMI1、 PMI2、 PMI3和 PMI4中至少三个的随机组合; 如, PMI = (PMI1 , PMI2, PMI3 )。
在本发明实施例中, 可通过物理上行链路控制信道 ( Physical Uplink
Control CHannel, PUCCH )或物理上行链路共享信道 ( Physical Uplink Shared
Channel, PUSCH )进行信道状态信息的反馈。 所以以下按照 PUSCH反馈和 实施例一、 通过 PUSCH进行信道状态信息的反馈: 在本发明实施例中, 垂直向信道状态信息的频域或时域反馈粒度独立于水平向, 从而可实现根据 垂直向信道变化慢的特点进行不同于水平向的信道状态信息反馈, 具体应用 时, 可根据垂直向信道变化小于水平向的特点进行独立且不同的设计, 即垂 其中, 根据垂直向与水平向信道变化的特点进行独立且不同设计的具体 实现可以包括:
a, 确定反馈内容中 CQI或 PMI对应的子带划分和大小: 在每一种支持 水平和垂直子带 CQI或水平和垂直子带 PMI反馈的反馈模式中, 垂直向子带 CQI或 PMI所对应的子带的划分和大小不同于水平向子带 CQI或 PMI所对应 的子带的划分和大小, 如垂直向子带大小可以是水平向子带大小的 N ( N为 大于或等于 1的正实数)倍。
一个 3D反馈模式下水平向和垂直向子带大小划分的具体实例如表 1 所 示:
Figure imgf000019_0001
表 1
上述表 1 中每个系统带宽配置下, 整个系统带宽被分成多个待测量的子 带组即带宽块(Bandwidth Part ), 每个带宽块包括至少一个子带, 而水平, 垂 直子带大小分别代表了水平向和垂直向子带 PMI, CQI的频域反馈粒度。
b,反馈内容中 CQI或 PMI的反馈周期: 进一步在每一种 PUCCH周期反 馈模式下, 垂直向 CQI (宽带或子带)或垂直向 PMI (宽带或子带) 的反馈 周期可以不同于水平向, 垂直向 CQI (宽带或子带)或垂直向 PMI (宽带或 子带 )反馈周期为水平向相应的 CQI (宽带或子带 )或 PMI (宽带或子带 ) 反馈周期的 M ( M为大于或等于 1的正实数)倍。
c, 反馈内容中 CQI的频域或时域差分: 垂直向 CQI的频域和时域差分 CQI量化值不同于水平向, 如由于垂直向信道变化较慢, 垂直向 CQI在频域 或时域的差分 CQI量化值不同于水平向 CQI频域或时域的差分 CQI量化值。 如垂直向 CQI在频域或时域的差分 CQI量化值所需比特数小于水平向; 或, 垂直向 CQI在频域或空域的差分 CQI量化值的取值范围小于水平向。
d, 反馈内容中预编码矩阵类型指示 (ΡΉ ) 字段的设计: 水平向有 PTI 字段, 该 PTI用来区分上报的不同预编码矩阵类型 (长期宽带 PMI或短期子 带 PMI ); 在本发明实施例中垂直向没有 ΡΉ字段, 因为垂直向可能只有长期 宽带 PMI—种预编码矩阵类型。
上述实现方式 a, b, c和 d中的任一种都能达到减小信令开销以及节约带 宽的有益效果。
每一种 3D新反馈模式为水平向和垂直向信道状态信息的结合,而所述任 一种 3D新反馈模式则定义为对应于某个 PUSCH CQI反馈类型下水平向 PMI 反馈类型和垂直向 PMI反馈类型的结合。
所述水平向 PMI反馈类型和垂直向 PMI反馈类型分别都包括如下三种频 域反馈粒度类型:无预编码矩阵指示符 No PMI、单个预编码矩阵指示符 Single PMI和多个预编码矩阵指示符 Multiple PMI;
所述 PUSCH CQI反馈类型包括如下三种频域反馈粒度类型: 宽带 CQI、 用户选择的子带 CQI和高层配置的子带 CQI;
所述进行信道状态信息的反馈包括:
按照每一种 3D新反馈模式所对应的 PUSCH CQI反馈类型、 水平向 PMI 反馈类型和垂直向 PMI反馈类型进行信道状态信息的反馈。
在本实施例中为了方便说明所述 3D新反馈模式,可以利用表格方式体现 所述 CQI、 垂直向 PMI和水平向 PMI的频域反馈粒度的组合方式, 具体地, 本实施例中 CQI、 垂直向 PMI和水平向 PMI的频域反馈粒度的组合方式可以 是如下表 2所示的各种情况:
Figure imgf000021_0001
表 2
上述表 2中, NP标示: No PMI,即无预编码矩阵指示符; SP标示: Single PMI, 即单个预编码矩阵指示符; MP标示: Multiple PMI, 即多个预编码矩 阵指示符。 其中, 每种 3D PUSCH新反馈模式可表示为 Mode x-y-z, x代表 了 PUSCH CQI反馈类型 (对应于某个频域反馈粒度等级), y代表了水平向 PUSCH PMI反馈类型 (对应于某个频域反馈粒度等级), z 代表了垂直向 PUSCH PMI反馈类型 (对应于某个频域反馈粒度等级)。 如 Mode 1-1-0代表 了基于水平向为单个预编码矩阵指示符 SP (也可以称为宽带 PMI), 垂直向无 PMI的宽带 CQI上报模式。
用户检测到上行控制信息或随机接入响应准许中的 CSI请求域字段值对 应一个非周期 CSI上报时, 触发用户向服务小区的非周期 CSI上报。 具体的 上报模式(可以为表 2中的任一选项) 由高层信令半静态配置和通知。 例如, 基于表 2所示的模式 1-2-2 (代表了宽带 CQI-基于水平向 MP多 个预编码矩阵符 PMI, 垂直向 MP多个预编码矩阵符 PMI的上 4艮模式) 中的 CQI和 PMI计算和上报由如下方式得到:
假定数据在至少一个子带上传输时, 所述每个子带在水平向和垂直向分 别选一个对应的最优 PMI。 即当整个带宽被分成 S ( S > 1 )个子带, 针对每 个子带在水平向和垂直向分别选出一个最优的 PMI; 例如: H没整个带宽共 有 3个子带时, 则共有 3*2=6个 PMI (每个子带都对应一个垂直向 PMI和水 平向 PMI )。
用户上报每码字的一个宽带 CQI值, 此 CQI值的计算基于 S个子带上每 个子带的水平向 PMI值和垂直向 PMI值;
除 8端口 CSI-RS配置的传输模式 9夕卜, 用户上报每子带的水平向 PMI 指示和垂直向 PMI指示。 而 8 端口 CSI-RS配置的传输模式 9下, S个子带 上的水平向和垂直向第一预编码矩阵指示 ^被上报, 同时每子带的水平向和 垂直向第二预编码矩阵指示 i2被上报。
传输模式 4, 8和 9下, 水平向 PMI, 垂直向 PMI和 CQI的计算基于上报 的水平向 RI和垂直向 RI。 其他模式下, 上 ^艮的水平向 PMI、 垂直向 PMI和 CQI值基于秩 1。
表 2中的 3D新反馈模式 Mode x-y-z ( y>z )或 Mode x-y-z ( z>y )的描述 为基于长期演进 LTE系统 3GPP Rel-10中反馈模式 Mode x-y ( y>z )或 Mode x-z ( z>y ) 的扩展, 即将 Mode x-y中涉及 PMI选择和上报的地方, 增加 z对 应的 PMI频域粒度类型的垂直向 PMI选择和上 4艮。 而 Mode x-y-z中 CQI的 计算基于上述扩展后的水平向 PMI和垂直向 PMI。 其中, Mode x-y-z模式中, 当 y>z时垂直向的 PMI频域粒度大于水平向的 PMI频域粒度, 相当于垂直向 在多个水平向的频域粒度上采用了相同的垂直向预编码矩阵; 当 y<z 时水平 向的 PMI频域粒度可以大于垂直向的 PMI频域粒度, 相当于水平向在多个垂 例如, 基于表 2所示的模式 1-2-1 (代表了宽带 CQI-基于水平向 MP多 个预编码矩阵符 PMI, 垂直向 SP单个预编码矩阵符 PMI的上 ^艮模式) 中的 CQI和 PMI计算和上报由如下方式得到:
假定数据在至少一个子带上传输时, 所述每个子带, 分别选择一个最优 的水平向 PMI, 同时基于 S个子带上的一个最优垂直向宽带 PMI被选择(即 S个子带上, 对应同一个垂直向宽带 PMI );
用户上 4艮每码字的一个宽带 CQI值, 此 CQI值的计算基于数据传输的 S 个子带上每子带的水平向 PMI值和垂直向宽带 PMI值; 除 8端口 CSI-RS配 置的传输模式 9外, 用户上报每子带的水平向 PMI指示和 S个子带上的垂直 向 PMI指示。 而 8 端口 CSI-RS配置的传输模式 9下, S个子带上的水平向 和垂直向第一预编码矩阵指示 ^被上报, 同时每子带的水平向第二预编码矩 阵指示和垂直向宽带第二预编码矩阵指示 i2被上报。
传输模式 4, 8和 9下, 水平向, 垂直向 PMI和 CQI的计算基于上 4艮的 水平向 RI和垂直向 RI。其他模式下,上 4艮的水平向 PMI,垂直向 PMI和 CQI 值基于秩 1。
实施例二、 通过 PUSCH进行信道状态信息的反馈: 考虑到信道的水平向 信道变化特征不同于垂直向信道变化特征, 垂直向角度扩展小于水平向, 用 户在垂直向的 PMI时域变化小于水平向的 PMI时域变化, 从而用户在垂直向 的 PMI频域相关性大于用户在水平向的 PMI频域相关性。 本实施例中考虑到 水平向和垂直向的上述特征在进行信道状态信息的反馈时:
所述第一预编码矩阵指示信息 PMI的频域反馈粒度小于或等于所述第二 预编码矩阵指示信息 PMI的频域反馈粒度。 同上, 所述第一预编码矩阵指示 信息对应水平向的 PMI指示信息, 而所述第二预编码矩阵指示信息对应垂直 向的 PMI指示信息。
本实施例中 CQI、 垂直向 PMI和水平向 PMI的频域反馈粒度的组合方式 可以是表 3所示的各种情况:
Figure imgf000024_0001
上述表 3中, NP标示: No PMI即无预编码矩阵指示符; SP标示: Single PMI单个预编码矩阵指示符; MP标示: 多个预编码矩阵指示符 Multiple PMI 上述表 3所列的各种 3D新反馈模式中,垂直向反馈粒度和水平向反馈粒 度不完全相同。 考虑到垂直向信道变化速度较慢的特点, 表 3所述的各种情 况中优选的组合方式可以是垂直向反馈粒度大于或等于水平向反馈粒度的如 下几种组合: Mode 1-1-0/2-1-0/3-1-0 (水平向 Single PMI + 垂直向 No PMI), Mode 1-2-0/ 2-2-0/ 3-2-0(水平向 Multiple PMI + 垂直向 No PMI), Mode 1-2-1/
2- 2-1/ 3-2-1 (水平向 Multiple PMI + 垂直向 Single PMI), 和 Mode 1-2-2/ 2-2-2/
3- 2-2(水平向 Multiple PMI + 垂直向 Multiple PMI)。 其中, 模式 Mode 1-1-0/2-1-0/3-1-0 (水平向 Single PMI + 垂直向 No PMI)和 Mode 1-2-0/ 2-2-0/ 3-2-0(水平向 Multiple PMI + 垂直向 No PMI)中的垂直向 PMI可以是预先定 义的。
表 3 中的每种新反馈模式的具体实现与实施例一中所提供的实现方式相 同, 可选地, 在每一种支持子带 CQI或子带 PMI的反馈模式中, 垂直向子带 划分和大小不同于水平向, 垂直向子带大小为水平向子带大小的 N ( N 为大 于或等于 1的正实数)倍。 进一步在每一种 PUCCH周期反馈模式下, 垂直向 CQI或垂直向 PMI的反馈周期不同于水平向, 垂直向 CQI (宽带或子带)或 垂直向 PMI (宽带或子带)反馈周期为水平向相应的 CQI (宽带或子带)或 PMI (宽带或子带)反馈周期的 M ( M为大于或等于 1的正实数)倍。 甚至, 垂直向 CQI的频域和空域差分 CQI不同于水平向, 如由于垂直向信道变化较 慢,垂直向 CQI在频域或空域的量化差分 CQI值不同于水平向 CQI频域或时 域的量化差分 CQI值。 垂直向没有 PTI (预编码类型指示)字段。 从而达到 减 、信令开销以及节约带宽的有益效果。
在该实施例中, 针对垂直向角度扩展小于水平向, 用户垂直向 PMI的时 域变化小于水平向 PMI的时域变化, 从而用户在垂直向 PMI的频域相关性大 于用户在水平向 PMI的频域相关性的特性, 设计垂直向预编码矩阵指示信息 PMI的频域反馈粒度大于或等于所述水平向预编码矩阵指示信息 PMI的频域 反馈粒度, 从而能够达到降低反馈模式设计复杂度和节约反馈信令开销的有 益效果。
实施例三、 通过 PUCCH进行信道状态信息的反馈:
通过 PUCCH进行信道状态信息反馈时,既要考虑垂直向和水平向的频域 反馈粒度又要考虑各个反馈量的时序设计, 下表给出具体的 PUCCH 3D新反 馈模式的设计和描述:
本实施例中 CQI、 垂直向 PMI和水平向 PMI的频域反馈粒度的组合方式 可以是表 4所示的各种情况:
表 4中, NP标示: No PMI即无预编码矩阵指示符; SP标示: Single PMI 单个预编码矩阵指示符; MP标示: 多个预编码矩阵指示符 Multiple PMI。 表 4提供的各种情况中, 垂直向反馈粒度和水平向反馈粒度不完全相同。 考虑到垂直向信道变化速度较慢的特点, 优选的可以是垂直向反馈粒度大于 水平向的如下几种组合: Mode 1-1-0/2-1-0 (水平向 Single PMI + 垂直向 No PMI), Mode 1-2-0/ 2-2-0 (水平向 Multiple PMI + 垂直向 No PMI), Mode 1-2-1/ 2-2-1 (水平向 Multiple PMI + 垂直向 Single PMI)。其中,上述表格中的 垂直向 No PMI指的是垂直向不反馈 PMI, 只是反馈水平向的预编码矩阵指 示符 PML
Figure imgf000026_0001
表 4
以垂直向 PMI频域颗粒度大于水平向为例, 考虑垂直向只有一个预编码 矩阵指示符, 具体地, 如一个宽带 PMI, 根据上述情况中垂直向信道状态信 息对应第二信道状态信息的情况, 则该实例中, 具体可以是第二预编码矩阵 指示信息仅包括第三类型预编码矩阵指示符 PMI3。 各种新反馈模式下的具体 时序设计有如下多种方式: 时序设计一、 PUCCH 1-1 子模式 1 中, 当通过物理上行链路控制信道 PUCCH反馈所述信道状态信息时,根据长期演进 LTE系统 3GPP Rel-10的信 道状态信息 CSI的反馈周期和反馈时序进行信道状态信息的反馈包括:
在物理上行链路控制信道 PUCCH 1-1 子模式 1的一个 CSI反馈周期中 反馈所述信道状态信息, 其中, 所述 CSI反馈周期包括三个反馈时隙, 在第 一反馈时隙反馈 RI1和 RI2; 在第二反馈时隙反馈 PMI1、 PMI3和 CQI; 第三 反馈时隙反馈 CQI和 PMI2; 或者
在第一反馈时隙反馈 RI 1、 RI2和 PMI 1; 第二反馈时隙反馈 PMI2、 PMI3 和 CQI; 第三反馈时隙反馈 PMI2、 PMI3和 CQI; 或者
在第一反馈时隙反馈 RI1、 RI2、 PMI1和 PMI3;第二反馈时隙反馈 PMI2、 PMI4和 CQI; 第三反馈时隙反馈 PMI2、 PMI4和 CQI。
上述三种反馈时隙的反馈内容中, 均为新引入的 PUCCH report type ( PUCCH新上报类型)。
以下对上述 PUCCH 1-1 子模式 1的新 3D反馈时序设计进行详细的说明, 可以应用连接符 "+,, 标示在一个反馈时隙中反馈多个参数, 例如: 第一反馈 时隙反馈 RI1和 RI2, 则可标示为 RI1+RI2, 其中新 3D反馈时序 (对应表格 中的 Rel-12行)与 Rel-8和 Rel-10的对比如表 5所示:
Figure imgf000027_0001
表 5 表 5为物理上行链路控制信道 PUCCH1-1 子模式 1 的一个 CSI反馈设 计,其中, Rel-12 Option 1为本发明所提供的 PUCCH1-1 子模式 1的 3D反馈 时序的一种可实现方式: 所述 CSI反馈周期包括三个反馈时隙, 在第一反馈 时隙反馈 RI 1和 RI2; 第二反馈时隙反馈 PMI 1、 PMI3和 CQI; 第三反馈时隙 反馈 CQI和 PMI2; 因为所述信道状态信息的反馈是周期性的, 所以第四反馈 时隙的反馈与第一反馈时隙相同。
上述表 5中的 PUCCH 1-1 子模式 1的 3D新反馈时序设计保持了 Rel-8 和 Rel-10的反馈时刻, 而改变的是每个反馈时刻的反馈内容, 在该实施例中, 所述第一预编码矩阵指示信息 (对应水平向) 进一步包括第一类型预编码矩 阵指示符 PMI1 (或称为长期 PMI )和第二类型预编码矩阵指示符 PMI2 (或 称为短期 PMI ), 所述第二预编码矩阵指示信息(对应垂直向)进一步包括第 一类型预编码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4。 具体在 3GPP Rel-10上报 RI和宽带 PMI1的反馈时刻上报联合编码后的水平向 Rank (即 RI1 )和垂直向 Rank (即 RI2 ); 而在 3GPP Rel-10上报 CQI和 PMI2的 时刻上 4艮 CQI和其所基于的水平向第一类型预编码矩阵指示符 PMI1和垂直 向第一类型预编码矩阵指示符预编码矩阵指示 PMI3; 在 Rel-10 下一个上报 CQI和 PMI2的反馈时刻上报 CQI和水平向第二类型预编码矩阵指示符 PMI2。 上述新反馈模式沿用了相同反馈模式下 3GPP Re-10的反馈时序, 同时 CSI内 容的上 ·^艮类型同样可沿用 3GPP Rel-8或 Rel-10的 PUCCH上 ·^艮类型。如上例 中第一个时刻上报的 RI1和 RI2的联合编码可沿用长期演进 LTE系统 3GPP Rel-8和 Rel-10的 PUCCH report type 3或 5 ,而第二个时刻上报的 CQI和水平 第一类型预编码矩阵指示符, 垂直第一类型预编码矩阵指示符可沿用长期演 进 LTE系统 3GPP Rel-8和 Rel-10的 PUCCH report type 2c; 第三个时刻上报 的 CQI和水平向第二类型预编码矩阵指示符 PMI可沿用长期演进 LTE系统 3GPP Rel-8和 Rel-10的 PUCCH report type 2b。
上述 PUCCH 1-1 子模式 1的 3D新反馈时序设计保持了 3GPP Rel-8和 Rel-10下的反馈时刻, 而改变的是每个反馈时刻的反馈内容。 如下表 6所示, 表 6所示的新 3D反馈时序设计 Rel-12 Option 1和 Rel-12 Option 2在 3GPP Rel-10相同反馈模式时序关系的基础上引入新的反馈时刻 (见表 6中的反馈 时刻 2 )。
Figure imgf000029_0001
时序设计二、 在 PUCCH l-1 子模式 2中, 当通过物理上行链路控制信道 PUCCH反馈所述信道状态信息时, 所述根据长期演进 LTE系统 3GPP Rel-10 的信道状态信息 CSI的反馈周期和反馈时序进行所述信道状态信息的反馈包 括:
在物理上行链路控制信道 PUCCH1-1 子模式 2的一个 CSI反馈周期中反 馈所述信道状态信息, 其中, 所述 CSI反馈周期包括三个反馈时隙, 第一反 馈时隙中反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI3和 CQI; 第三反馈 时隙反馈 CQI和 PMI2; 或者
所述帧中包括三个反馈时隙, 在第一反馈时隙反馈 RI1和 RI2; 第二反馈 时隙反馈 ΡΜΠ、 ΡΜΙ2、 ΡΜΙ3和 CQI; 第三反馈时隙反馈 ΡΜΠ、 ΡΜΙ2、 ΡΜΙ3 和 CQI。 以下对上述 PUCCH 1-1 子模式 2的一种新 3D反馈时序设计进行详细的 说明, 其中新的 3D反馈时序 (对应表格中的 Rel-12行) 与 Rel-8和 Rel-10 的对比如表 7所示:
第一反 第二反馈时 第三反馈 第四反馈
馈时隙 隙 时隙 时隙
Rel-8 RI CQI+PMI CQI+PMI RI
Rel-10 RI CQI+PMI 1 CQI+PM I1 PMI1
+PMI2
+PM I2 Rel-12 RI1+RI2 CQI+PMI1 CQI+PMI2 RI1+RI2
Option 1 +PMI3
Rel-12 RI1+RI2 PMI1+PMI2 PM I1+PMI2 RI1+RI2
Option2 + PMI3 + PM I3
+ CQI + CQI
表 7
表 7所示的 PUCCH 1-1 子模式 2的 3D新反馈时序设计保持了 Rel-8和 Rel-10 的反馈时刻, 改变的是每个反馈时刻的反馈内容, 在该实施例中, 所 述第一预编码矩阵指示信息 (对应水平向)进一步包括第一类型预编码矩阵 指示符 PMI1和第二类型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示 信息(对应垂直向)进一步包括第一类型预编码矩阵指示符 PMI3和第二类型 预编码矩阵指示符 PMI4。具体为在 3GPP Rel-10上报 RI的反馈时刻上报联合 编码后的水平向 Rank (即 RI1 )和垂直向 Rank (即 RI2 ); 而在 3GPP Rel-10 上报 CQI和 PMI1 , PMI2的时刻上报 CQI和其所基于的水平向第一类型预编 码矩阵指示符 PMI1和垂直向第一类型预编码矩阵指示符 PMI3; 在 Rel-10下 一个上报 CQI和 PMI1 , PMI2的反馈时刻上报 CQI和水平向第二类型预编码 矩阵指示符 PMI2。上述 3D新反馈时序设计沿用了之前 3GPP Re-10的反馈时 序设计,而 CSI内容的上报类型同样可沿用 3GPP Rel-8或 Rel-10的 PUCCH上 艮类型。 如上例中第一个时刻上 ·^艮的 RI1和 RI2的联合编码可沿用长期演进 LTE系统 3GPP Rel-8和 Rel-10的 PUCCH report type 3或 5 , 而第二个时刻上 报的 CQI和水平, 垂直第一类型预编码矩阵指示符 PMI可沿用长期演进 LTE 系统 3GPP Rel-8和 Rel-10的 PUCCH report type 2c; 第三个时刻上报的 CQI 和水平向第二类型预编码矩阵指示符 PMI 可沿用长期演进 LTE 系统 3GPP Rel-8和 Rel-10的 PUCCH report type 2b。
上述 PUCCH 1-1 子模式 2的 3D新反馈时序设计保持了 Rel-8和 Rel-10 下的反馈时刻, 而改变的是每个反馈时刻的反馈内容, 具体如下表 8所示:
Subframe 1 2 3 4-7 8 9-10 11
Rel-8 RI CQI+PMI CQI+PMI RI
Rel-10 RI CQI+PMI1 CQI+PMI1 RI +PMI2 +PMI2
Rel-12 RI1 RI2 CQI+PMIl CQI+PMIl RI1
Option 1 +PMI3 +PMI3
Rel-12 RI1 RI2 CQI+PMIl RI1
Option 2 +PMI2
+PMI3
Rel-12 PMI CQI+PMIl CQI+PMIl RI1
Option 3 Pi Pi 3 +PMI2 +PMI2
+ 表 8
表 8所示的反馈时序设计 Optionl、 Option2和 Option 3在 3GPP Rel-10 时序关系的基础上引入新的 u + +反馈时刻 (为表 8中所示的反馈时刻 2 )。
; ¾ ¾
时序设计三、 PUCCH 2-1模式下的新反馈时序设计, 其中, 所述信道状 态信息中还包括指示预编码矩阵类型的预编码矩阵类型指示 ΡΉ,根据所述预 编码矩阵类型指示 PTI的不同, 实施例提供了多种信道状态信息的反馈时序, 具体为:
A, 当预编码矩阵为第一类型, 且通过物理上行链路控制信道 PUCCH反 馈所述信道状态信息时, 所述根据长期演进 LTE系统 3GPP Rel-10的信道状 态信息 CSI的反馈周期和反馈时序进行所述信道状态信息的反馈包括:
在物理上行链路控制信道 PUCCH 2-1模式的一个 CSI反馈周期中反馈所 述信道状态信息, 其中, 所述 CSI反馈周期包括五个反馈时隙, 各时隙中反 馈的内容如表 9各项所示;
第一反馈 第二反馈 第三反馈时 第四反馈时 第五反馈时 第六反馈 时隙 时隙 隙 隙 隙 时隙
选项一 RI1+RI2 PMI1+ PMBwb PMBwb PMBwb RI1+RI2
PTI = 0 + CQIwb +CQIwb +CQIwb PTI = 0
PMI2
选项二 RI1+RI2 PMI1 PMI2+ PMI2+ PMI2+ RI1+RI2
PTI = 0 PTI = 0
PMI3wb+ PMI3wb+ PMI3wb+
CQIwb CQIwb CQIwb
选项三 Rll PMI1 +RI2 PMI2+ PMI2+ PMI2+ Rll
PTI = 0 PTI = 0
PMI3wb+ PMI3wb+ PMI3wb+
CQIwb CQIwb CQIwb
选项四 RI2 PMI1 +RI1 PMI2+ PMI2+ PMI2+ RI2
PTI = 0 PTI = 0
PMI3wb+ PMI3wb+ PMI3wb+
CQIwb CQIwb CQIwb 表 9
上述表 9中参数 PMI和 CQI后附加的 wb和 sb分别标示对应的 PMI和 CQI反馈的信道状态信息是宽带或子带, 其中 wb对应宽带; sb对应子带, 上 述参数中没有标示 wb和 sb的都默认是 wb。 PTI=0标示预编码矩阵的类型为 第一类型, 所述反馈时隙分别代表了长期演进 LTE系统 3GPP Rel-10 PUCCH 2-1模式的一个反馈周期内的多个反馈时刻。
B, 当预编码矩阵为第二类型, 且通过物理上行链路控制信道 PUCCH反 馈所述信道状态信息时, 所述按照高层配置的反馈模式反馈所述信道状态信 息包括:
在物理上行链路控制信道 PUCCH中的 2-1模式中的一个 CSI反馈周期反 馈所述信道状态信息, 其中, 所述 CSI反馈周期中包括五个反馈时隙, 各时 隙中反馈的内容如表 10各项所示;
Figure imgf000032_0001
表 10
wb和 sb分别标示对应的 PMI和 CQI所反馈的信道状态信息是对应宽带 或子带, 其中 wb对应宽带; sb对应子带, 上述参数中没有标示 wb和 sb的 都默认是 wb。 PTI=1标示预编码矩阵的类型为第二类型, 所述反馈时隙分别 代表了长期演进 LTE系统 3GPP Rel-10 PUCCH 2-1模式的一个反馈周期内的 个反馈时刻。
PUCCH 2-1模式下的新反馈时序设计设计如表 11所示:
Figure imgf000033_0001
表 11
如表 12所示的反馈时序, 表 12所示的 PUCCH 2-1的 3D新反馈时序设 计保持了 Rel-10的反馈时刻, 而改变的是每个反馈时刻的反馈内容, 具体为 在 3GPP Rel-10上报 RI+PTI的反馈时刻上报联合编码后的水平向 RI和垂直向 RI+PTI; 在 3GPP Rel-10, PTI=0时上报 PMIl的时刻上报水平和垂直第一类 型预编码矩阵指示符 PMI1+PMI2, 上 ·^艮宽带 PMI2和宽带 CQI的时刻上 ·^艮水 平向第二类型预编码矩阵指示符 ΡΜΙ3和宽带 CQI; 在 3GPP Rel-10, PTI=1 时上报 RI加 ΡΤΙ的时刻上报联合编码后的水平向 RI和垂直向 RI+PTI , 而在 上报宽带短期 PMI2+宽带 CQI的时刻上报水平, 垂直第一类型预编码矩阵指 示符 PMI1和 PMI3+宽带 CQI,在上报短期子带 PMI+子带 CQI的时刻上报水 平向第二类型预编码矩阵指示符 PMI2+子带 CQI。
上述表 11所示的新反馈模式沿用了之前 Re-10的反馈时序设计,同时 CSI 内容的上报类型同样可沿用 3GPP Rel-8或 Rel-10下的 PUCCH上报类型。如 上例中 PTI = 0时,第一个时刻上报的 RI1+RI2+PTI的联合编码可沿用长期演 进 LTE系统 3GPP Rel-8或 Rel-10的 PUCCH report type 5或 6,而第二个时刻 上报的水平和垂直宽带、 长期 PMI可沿用长期演进 LTE系统 3GPP Rel-8或 Rel-10的 PUCCH report type 2c, 第三个时刻上报的宽带 CQI和水平向短期 / 宽带 PMI可沿用长期演进 LTE系统 3GPP Rel-8或 Rel-10的 PUCCH report type 2b。 当 PTI = 1时, 第一个时刻上报的 RI 1 +RI2+PTI的联合编码可沿用长期演 进 LTE系统 3GPP Rel-8或 Rel-10的 PUCCH report type 5或 6,而第二个时刻 上 4艮的水平, 垂直宽带、 长期 PMI+宽带 CQI可沿用长期演进 LTE系统 3GPP Rel-8或 Rel-10的 PUCCH report type 2c, 第三个时刻上报的子带 CQI和水平 向短期 /子带 PMI可沿用长期演进 LTE系统 3GPP Rel-8或 Rel-10的 PUCCH report type 2b。
如图 2所示, 实施例四、 本发明还提供一种信道状态信息的测量方法, 该方法包括:
步骤 201 ,基站配置第一信道状态信息测量资源和第二信道状态信息测量 资源并发送到用户设备, 使得用户设备根据所述第一信道状态信息测量资源 获取第一信道状态信息, 根据所述第二信道状态信息测量资源获取第二信道 状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态信息 测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二天线 端口;
步骤 202, 接收用户设备反馈的信道状态信息, 包括:
接收用户设备根据第一反馈模式反馈的所述第一信道状态信息, 根据第 二反馈模式反馈的所述第二信道状态信息, 所述第二反馈模式不同于所述第 一反馈模式; 或者,
接收所述用户设备根据第三反馈模式反馈的第三信道状态信息, 所述第 三信道状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态 信息得到。
为了指示终端(即用户设备)进行信道状态信息测量时的具体测量信息, 在本发明实施例中所述基站会根据不同维度的测量需要, 向所述终端发送对 应的信道状态信息测量资源, 所以本发明实施例所提供的基站配置和发送第 一信道状态信息测量资源和第二信道状态信息测量资源。 例如, 所述第一信 道状态信息测量资源和所述第二信道状态信息测量资源分别对应表征水平维 度的第一天线端口和表征垂直维度的第二天线端口。
通过 PUSCH进行信道状态信息的反馈:考虑到信道的水平向信道变化特 征不同于垂直向信道变化特征, 垂直向角度扩展小于水平向, 用户在垂直向 的 PMI时域变化小于水平向的 PMI时域变化,从而用户在垂直向的 PMI频域 相关性大于用户在水平向的 PMI频域相关性。
所述第一信道状态信息中包括第一预编码矩阵指示信息; 第二信道状态 信息中包括第二预编码矩阵指示信息, 则所述第二反馈模式不同于所述第一 反馈模式包括:
所述第一预编码矩阵指示信息的频域反馈粒度小于或等于所述第二预编 码矩阵指示信息的频域反馈粒度。 或者
所述第一信道状态信息的反馈周期小于所述第二信道状态信息的反馈周 期。
针对前述信道状态信息反馈方法, 本发明实施例中反馈的信道状态信息 天线的垂直维度和水平维度是独立的, 所以相对于现有技术中反馈的信道状 态信息来说, 信道状态信息所包括的内容会出现变化, 所以发明实施例中的 信道状态信息可以是:
所述第一信道状态信息包括第一预编码矩阵指示信息和第一秩指示信息 RI1 ; 所述第二信道状态信息包括第二预编码矩阵指示信息和第二秩指示信息 RI2; 所述第一预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI1 和第二类型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进 一步包括第一类型预编码矩阵指示符 PMI3 和第二类型预编码矩阵指示符 PMI4;
针对用户设备反馈的信道信息的变化, 则所述接收用户设备反馈的信道 状态信息, 包括:
所述第一信道状态信息、 第二信道状态信息以及信道质量指示 CQI; 或 者,
第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到, 其中, 所述 信道质量指示 CQI为用户设备基于所述第一信道状态信息和所述第二信道状 态信息得到。
上述信道状态信息的反馈方法中, 因为用户设备在反馈信道状态信息时, 根据信道状态信息的特性提供一些新的 3D反馈模式, 在新的 3D反馈模式中 可以是: 在现有信道状态信息的反馈周期中反馈不同的内容或者是设置新的 反馈时隙反馈信道状态信息。所以基站侧的接收器会针对这些新的 3D反馈模 式对应接收信道状态信息, 则对应的具体实现包括:
方式一、用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信 道状态信息, 则接收用户设备反馈的信道状态信息, 包括:
在物理上行链路控制信道 PUCCH 的一个信道状态信息的反馈周期中接 收所述信道状态信息, 其中, 所述一个信道状态信息的反馈周期中包括三个 反馈时隙, 第一反馈时隙接收 RI1 和 RI2; 第二反馈时隙接收 ΡΜΠ、 ΡΜΙ3 和 CQI; 第三反馈时隙接收 CQI和 PMI2; 或者
第一反馈时隙接收 RI 1、 RI2和 PMI 1; 第二反馈时隙接收 PMI2、 PMI3 和 CQI; 第三反馈时隙接收 PMI2、 PMI3和 CQI; 或者
第一反馈时隙接收 RIl、 RI2、 PMI1和 PMI3; 第二反馈时隙接收 PMI2、 PMI4和 CQI; 第三反馈时隙接收 PMI2、 PMI4和 CQI。
方式二、用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信 道状态信息, 则接收用户设备反馈的信道状态信息, 包括:
在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中接 收所述信道状态信息, 其中, 所述 CSI反馈周期中包括三个反馈时隙, 第一 反馈时隙中接收 RI1和 RI2; 第二反馈时隙接收 PMIl、 PMI3和 CQI; 第三反 馈时隙接收 CQI和 PMI2; 或者,
所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙接收 RI1和 RI2; 第二反馈时隙接收 PMIl、 PMI2、 PMI3和 CQI;第三反馈时隙接收 PMIl、 PMI2、 PMI3和 CQI。
方式三、 所述信道状态信息中还包括指示预编码矩阵类型的预编码矩阵 类型指示 ΡΉ, 当预编码矩阵为第一类型, 所述用户设备通过物理上行链路控 制信道 PUCCH向所述基站反馈信道状态信息,则基站接收用户设备反馈的信 道状态信息, 包括:
基站在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期 中接收所述信道状态信息, 其中, 所述 CSI反馈周期包括五个反馈时隙, 各 时隙中接收的内容如下表各项所示;
Figure imgf000037_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=0标示预编码矩阵的类型为第 一类型, 所述反馈时隙对应一个 CSI反馈周期内的各个反馈时刻。
方式四、 所述信道状态信息中还包括指示预编码矩阵类型的预编码矩阵 类型指示 ΡΉ, 当预编码矩阵为第二类型, 所述用户设备通过物理上行链路控 制信道 PUCCH向所述基站反馈信道状态信息,则基站接收用户设备反馈的信 道状态信息, 包括:
基站在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期 中接收所述信道状态信息, 其中, 所述 CSI反馈周期中包括五个反馈时隙, 各时隙中接收的内容如下表各项所示;
Figure imgf000038_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=1标示预编码矩阵的类型为第 二类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
如图 3所示, 根据上述方法本发明还提供一种用户设备, 该用户设备包 括:
处理器 301 , 用于基于基站配置的第一信道状态信息测量资源, 获取第一 信道状态信息; 基于所述基站配置的第二信道状态信息测量资源, 获取第二 信道状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态 信息测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二 天线端口;
发送器 302, 用于向所述基站反馈信道状态信息, 包括: 根据第一反馈模式向所述基站反馈所述第一信道状态信息, 根据第二反 馈模式向所述基站反馈所述第二信道状态信息, 所述第二反馈模式不同于所 述第一反馈模式; 或者,
根据第三反馈模式反馈第三信道状态信息, 所述第三信道状态信息由所 述处理器基于所述第一信道状态信息和第二信道状态信息得到。
在本发明实施例中, 所述第一信道状态信息中包括第一预编码矩阵指示 信息; 第二信道状态信息中包括第二预编码矩阵指示信息, 则所述发送器 302 反馈信道状态信息时, 所述第一预编码矩阵指示信息的频域反馈粒度小于或 等于所述第二预编码矩阵指示信息的频域反馈粒度。
另外, 为了根据垂直向信道变化慢的特点进行不同于水平向的信道状态 信息反馈, 则所述发送器 302反馈信道状态信息时, 所述第一信道状态信息 的反馈周期小于所述第二信道状态信息的反馈周期。
在具体反馈信道状态信息时, 所述第一信道状态信息包括第一预编码矩 阵指示信息和第一秩指示信息 Rii ;所述第二信道状态信息包括第二预编码矩 阵指示信息和第二秩指示信息 RI2;所述第一预编码矩阵指示信息进一步包括 第一类型预编码矩阵指示符 PMI1和第二类型预编码矩阵指示符 PMI2, 所述 第二预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI3 和第 二类型预编码矩阵指示符 PMI4;
则所述处理器 301基于所述第一信道状态信息和所述第二信道状态信息, 得到信道质量指示 CQI;
则所述发送器 302 向所述基站反馈的信道状态信息包括所述第一信道状 态信息、 第二信道状态信息以及所述 CQI; 或者, 第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所述第三预编码矩阵指示信息基于 所述 PMI1、 PMI2、 PMI3和 PMI4中的至少三个得到, 所述第三秩指示信息 基于所述 RI1和所述 RI2得到。
另外, 因为物理上行链路控制信道 PUCCH的资源有限,所以通过物理上 行链路控制信道 PUCCH进行信道状态信息反馈时,需要考虑通过怎样的方式 反馈信道状态信息中的各部分, 具体包括:
方式一、用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信 道状态信息,则所述发射器 302在物理上行链路控制信道 PUCCH的一个信道 状态信息 CSI反馈周期中反馈所述信道状态信息, 其中, 所述 CSI反馈周期 中包括三个反馈时隙,第一反馈时隙反馈 RI1和 RI2;第二反馈时隙反馈 PMI1、 PMI3和 CQI; 第三反馈时隙反馈 CQI和 PMI2; 或者
第一反馈时隙反馈 RI1、 RI2和 PMI1 ; 第二反馈时隙反馈 PMI2、 PMI3 和 CQI; 第三反馈时隙反馈 PMI2、 PMI3和 CQI; 或者
第一反馈时隙反馈 RI 1、 RI2、 PMI 1和 PMI3; 第二反馈时隙反馈 PMI2、 PMI4和 CQI; 第三反馈时隙反馈 PMI2、 PMI4和 CQI。
方式二、用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信 道状态信息,则所述发射器 302在物理上行链路控制信道 PUCCH的一个信道 状态信息 CSI反馈周期中反馈所述信道状态信息, 其中, 所述 CSI反馈周期 中包括三个反馈时隙, 第一反馈时隙中反馈 RI1 和 RI2; 第二反馈时隙反馈 PMI1、 PMI3和 CQI; 第三反馈时隙反馈 CQI和 PMI2; 或者
所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI;第三反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI。
方式三、 所述信道状态信息中还包括指示预编码矩阵类型的预编码矩阵 类型指示 ΡΉ, 当预编码矩阵为第一类型, 用户设备通过物理上行链路控制信 道 PUCCH向所述基站反馈信道状态信息,则所述发射器 302在物理上行链路 控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反馈所述信道状态信 息, 其中, 所述 CSI反馈周期包括五个反馈时隙, 各时隙中反馈的内容如下 表各项所示;
第一反馈 第二反馈 第三反馈时 第四反馈时 第五反馈时 第六反馈 时隙 时隙 隙 隙 隙 时隙
选项一 RI1+RI2 PMI1+ PMBwb PMBwb PMBwb RI1+RI2
PTI = 0 + CQIwb +CQIwb +CQIwb PTI = 0 PMI2
选项二 RI1+RI2 PMI1 PMI2+ PMI2+ PMI2+ RI1+RI2
PTI = 0 PTI = 0
PMI3wb+ PMI3wb+ PMI3wb+
CQIwb CQIwb CQIwb
选项三 PMI1 +RI2 PMI2+ PMI2+ PMI2+
d F3 PMI3wb+ PMI3wb+ PMI3wb+
II II
〇 〇 CQIwb CQIwb CQIwb 选项四 PMI1 +RI1 PM I2+ PMI2+ PMI2+
PMI3wb+ PMI3wb+ PMI3wb+
CQIwb CQIwb CQIwb
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=0标示预编码矩阵的类型为第 一类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
方式四, 所述信道状态信息中还包括指示预编码矩阵类型的预编码矩阵 类型指示 ΡΉ, 当预编码矩阵为第二类型, 用户设备通过物理上行链路控制信 道 PUCCH向所述基站反馈信道状态信息,则所述发射器 302在物理上行链路 控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反馈所述信道状态信 息, 其中, 所述 CSI反馈周期中包括五个反馈时隙, 各时隙中反馈的内容如 d3
下表各项所示; II II
〇 〇
第一反馈 第二反馈 第三反馈时 第四反馈 第五反馈时 第六反馈 时隙 时隙 隙 时隙 隙 时隙 选项一 RI1+RI2 PMI1+ PMI3sb PMBsb PMBsb RI1+RI2
PTI = 1 + CQIsb + CQIsb + CQIsb PTI = 1
PMI2+
CQIwb
选项二 RI2+PMI2 PMI1 + Rll PMI3sb PMBsb PMBsb RI2+PMI2
PTI = 1 CQIwb + CQIsb + CQIsb + CQIsb PTI = 1 选项三 RI2 +PMI2 PMI1 + Rll PMI3sb+ PMI3sb+ PMI3sb+ RI2 +PMI2
PTI = 1 PMI4sb PMI4sb PMI4sb PTI = 1
CQIwb
+ CQIsb + CQIsb + CQIsb
选项四 RI2 PMI1 + Rll PM I3sb+ PMI3sb+ PMI3sb+ RI2
PTI =1 CQIwb PTI =1
PMI2+ PMI2+ PMI2+
CQIsb CQIsb CQIsb
选项五 RI2 + Rll PMI1 PMI3sb+ PMI3sb+ PMI3sb+ RI2 + Rll
PTI =1 PTI =1
+CQIwb PMI2+ PMI2+ PMI2+ CQIsb CQIsb CQIsb
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=1标示预编码矩阵的类型为第 二类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
如图 4所示, 本发明实施例还提供一种基站, 该基站包括:
基站处理器 401 ,用于配置第一信道状态信息测量资源和第二信道状态信 息测量资源并发送到用户设备, 使得用户设备根据所述第一信道状态信息测 量资源获取第一信道状态信息, 根据所述第二信道状态信息测量资源获取第 二信道状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状 态信息测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第 二天线端口;
接收器 402, 用于接收用户设备反馈的信道状态信息, 包括:
所述接收器 402用于接收用户设备根据第一反馈模式反馈的所述第一信 道状态信息, 根据第二反馈模式反馈的所述第二信道状态信息, 所述第二反 馈模式不同于所述第一反馈模式; 或者,
所述接收器 402用于接收所述用户设备根据第三反馈模式反馈的第三信 道状态信息, 所述第三信道状态信息由所述用户设备基于所述第一信道状态 信息和第二信道状态信息得到。
其中, 所述第一信道状态信息中包括第一预编码矩阵指示信息; 第二信 道状态信息中包括第二预编码矩阵指示信息, 则所述接收器 402接收到的信 道状态信息中, 所述第一预编码矩阵指示信息的频域反馈粒度小于或等于所 述第二预编码矩阵指示信息的频域反馈粒度。
另外, 所述接收器 402还用于按照所述第一信道状态信息的反馈周期小 于所述第二信道状态信息的反馈周期的原则接收信道状态信息。
所述第一信道状态信息包括第一预编码矩阵指示信息和第一秩指示信息 RI1 ; 所述第二信道状态信息包括第二预编码矩阵指示信息和第二秩指示信息 RI2; 所述第一预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMIl 和第二类型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进 一步包括第一类型预编码矩阵指示符 PMI3 和第二类型预编码矩阵指示符 PMI4;
则所述接收器 402还用于接收所述第一信道状态信息、 第二信道状态信 息以及信道质量指示 CQI; 或者,
第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到, 其中, 所述 信道质量指示 CQI为用户设备基于所述第一信道状态信息和所述第二信道状 态信息得到。
如图 5 所示, 本发明还提供另一种信道状态信息的反馈装置, 所述反馈 装置可以为前述实施例中的用户设备, 用于执行前述各个实施例中的信道状 态信息的反馈方法, 该装置包括至少一个处理器 501 (例如 CPU ), 至少一个 网络接口 502或者其他通信接口, 存储器 503 , 和至少一个通信总线 504, 用 于实现这些装置之间的连接通信。 处理器 501用于执行存储器 503中存储的 可执行模块, 例如计算机程序。 存储器 503 可能包含高速随机存取存储器 ( RAM: Random Access Memory ) , 也可能还包括非不稳定的存储器 ( non- volatile memory ), 例如至少一个磁盘存 4诸器。 通过至少一个网络接口 502 (可以是有线或者无线)实现该系统网关与至少一个其他网元之间的通信 连接, 可以使用互联网, 广域网, 本地网, 城域网等。
在一些实施方式中, 本发明所提供的装置中的存储器存储了程序 5031 , 程序可以被处理器执行, 这个程序包括: 用户设备基于基站配置的第一信道 状态信息测量资源, 获取第一信道状态信息; 基于所述基站配置的第二信道 状态信息测量资源, 获取第二信道状态信息; 其中, 所述第一信道状态信息 测量资源和所述第二信道状态信息测量资源分别对应表征水平维度的第一天 线端口和表征垂直维度的第二天线端口;
所述用户设备向所述基站反馈信道状态信息; 其中, 在反馈所述信道状 态信息时的具体反馈方式可以是:
所述用户设备根据第一反馈模式向所述基站反馈所述第一信道状态信 息, 根据第二反馈模式向所述基站反馈所述第二信道状态信息, 所述第二反 馈模式不同于所述第一反馈模式; 或者,
所述用户设备根据第三反馈模式反馈第三信道状态信息, 所述第三信道 状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态信息得 到。
需要说明的是, 在上述实施例中, 对各个实施例的描述都各有侧重, 某 个实施例中没有详述的部分, 可以参见其他实施例的相关描述。 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实 体或操作区分开来, 而不一定要求或者暗示这些实体或操作之间存在任何这 种实际的关系或者顺序。 而且, 术语"包括"、 "包含 "或者其任何其他变体意在 涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设 备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括 为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多限制的情况下, 由语句 "包括一个 ...... "限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
以上所述, 以上实施例仅用以对本申请的技术方案进行了详细介绍, 但 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想, 不应理解 为对本发明的限制。 本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种信道状态信息的反馈方法, 其特征在于, 该方法包括: 用户设备基于基站配置的第一信道状态信息测量资源, 获取第一信道状 态信息; 基于所述基站配置的第二信道状态信息测量资源, 获取第二信道状 态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态信息测 量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二天线端 口;
所述用户设备向所述基站反馈信道状态信息, 包括:
所述用户设备根据第一反馈模式向所述基站反馈所述第一信道状态信 息, 根据第二反馈模式向所述基站反馈所述第二信道状态信息, 所述第二反 馈模式不同于所述第一反馈模式; 或者,
所述用户设备根据第三反馈模式反馈第三信道状态信息, 所述第三信道 状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态信息得 到。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一信道状态信息中 包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码矩阵指 示信息, 则所述第二反馈模式不同于所述第一反馈模式包括:
所述第一预编码矩阵指示信息的频域反馈粒度小于或等于所述第二预编 码矩阵指示信息的频域反馈粒度。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述第二反馈模式不 同于所述第一反馈模式包括:
所述第一信道状态信息的反馈周期小于所述第二信道状态信息的反馈周 期。
4、 根据权利要求 1~3任一所述的方法, 其特征在于, 所述第一信道状态 信息包括第一预编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二信道状态 信息包括第二预编码矩阵指示信息和第二秩指示信息 RI2;所述第一预编码矩 阵指示信息进一步包括第一类型预编码矩阵指示符 PMii 和第二类型预编码 矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类型预编码 矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4;
所述用户设备基于所述第一信道状态信息和所述第二信道状态信息, 得 到信道质量指示 CQI; 所述用户设备向所述基站反馈的所述信道状态信息, 包括:
所述第一信道状态信息、 第二信道状态信息以及所述 CQI; 或者, 第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到。
5、 根据权利要求 4所述的方法, 其特征在于, 用户设备通过物理上行链 路控制信道 PUCCH向所述基站反馈信道状态信息,则所述用户设备向所述基 站反馈的所述信道状态信息包括:
在物理上行链路控制信道 PUCCH 的一个信道状态信息的反馈周期中反 馈所述信道状态信息, 其中, 所述一个信道状态信息的反馈周期中包括三个 反馈时隙, 第一反馈时隙反馈 RI1 和 RI2; 第二反馈时隙反馈 PMI1、 PMI3 和 CQI; 第三反馈时隙反馈 CQI和 PMI2; 或者
第一反馈时隙反馈 RI1、 RI2和 PMI1 ; 第二反馈时隙反馈 PMI2、 PMI3 和 CQI; 第三反馈时隙反馈 PMI2、 PMI3和 CQI; 或者
第一反馈时隙反馈 RI 1、 RI2、 PMI 1和 PMI3; 第二反馈时隙反馈 PMI2、 PMI4和 CQI; 第三反馈时隙反馈 PMI2、 PMI4和 CQI。
6、 根据权利要求 4所述的方法, 其特征在于, 用户设备通过物理上行链 路控制信道 PUCCH向所述基站反馈信道状态信息,则所述用户设备向所述基 站反馈的所述信道状态信息包括:
在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反 馈所述信道状态信息, 其中, 所述 CSI反馈周期中包括三个反馈时隙, 第一 反馈时隙中反馈 RI1和 RI2; 第二反馈时隙反馈 PMII、 PMI3和 CQI; 第三反 馈时隙反馈 CQI和 PMI2; 或者,
所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI;第三反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI。
7、 根据权利要求 4所述的方法, 其特征在于, 所述信道状态信息中还包 括指示预编码矩阵类型的预编码矩阵类型指示 PTI, 当预编码矩阵为第一类 型,所述用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状 态信息, 包括:
在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反 馈所述信道状态信息, 其中, 所述 CSI反馈周期包括五个反馈时隙, 各时隙 中反馈的内容如下表各项所示;
Figure imgf000047_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=0标示预编码矩阵的类型为第 一类型, 所述反馈时隙对应一个 CSI反馈周期内的各个反馈时刻。
8、 根据权利要求 4所述的方法, 其特征在于, 所述信道状态信息中还包 括指示预编码矩阵类型的预编码矩阵类型指示 ΡΤΙ, 当预编码矩阵为第二类 型,所述用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状 态信息, 包括:
在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反 馈所述信道状态信息, 其中, 所述 CSI反馈周期中包括五个反馈时隙, 各时 隙中反馈的内容如下表各项所示;
Figure imgf000048_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=1标示预编码矩阵的类型为第 二类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
9、 一种信道状态信息的测量方法, 其特征在于, 该方法包括: 基站配置第一信道状态信息测量资源和第二信道状态信息测量资源并发 送到用户设备, 使得所述用户设备根据所述第一信道状态信息测量资源获取 第一信道状态信息, 根据所述第二信道状态信息测量资源获取第二信道状态 信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态信息测量 资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二天线端 口;
接收用户设备反馈的信道状态信息, 包括:
接收用户设备根据第一反馈模式反馈的所述第一信道状态信息, 根据第 二反馈模式反馈的所述第二信道状态信息, 所述第二反馈模式不同于所述第 一反馈模式; 或者,
接收所述用户设备根据第三反馈模式反馈的第三信道状态信息, 所述第 三信道状态信息由所述用户设备基于所述第一信道状态信息和第二信道状态 信息得到。
10、 根据权利要求 9所述的方法, 其特征在于, 所述第一信道状态信息 中包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码矩阵 指示信息, 则所述第二反馈模式不同于所述第一反馈模式包括:
所述第一预编码矩阵指示信息的频域反馈粒度小于或等于所述第二预编 码矩阵指示信息的频域反馈粒度。
11、 根据权利要求 9或 10所述的方法, 其特征在于, 所述第二反馈模式 不同于所述第一反馈模式包括:
所述第一信道状态信息的反馈周期小于所述第二信道状态信息的反馈周 期。
12、 根据权利要求 9~11任一所述的方法, 其特征在于, 所述第一信道状 态信息包括第一预编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二信道状 态信息包括第二预编码矩阵指示信息和第二秩指示信息 RI2;所述第一预编码 矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI1 和第二类型预编 码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类型预编 码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4;
所述接收用户设备反馈的信道状态信息, 包括:
所述第一信道状态信息、 第二信道状态信息以及信道质量指示 CQI; 或 者,
第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到, 其中, 所述 信道质量指示 CQI为用户设备基于所述第一信道状态信息和所述第二信道状 态信息得到。
13、 一种用户设备, 其特征在于, 包括:
处理器, 用于基于基站配置的第一信道状态信息测量资源, 获取第一信 道状态信息; 基于所述基站配置的第二信道状态信息测量资源, 获取第二信 道状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态信 息测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二天 线端口;
发送器, 用于向所述基站反馈信道状态信息, 包括:
所述发送器用于根据第一反馈模式向所述基站反馈所述第一信道状态信 息, 根据第二反馈模式向所述基站反馈所述第二信道状态信息, 所述第二反 馈模式不同于所述第一反馈模式; 或者,
所述发送器用于根据第三反馈模式反馈第三信道状态信息, 所述第三信 道状态信息由所述处理器基于所述第一信道状态信息和第二信道状态信息得 到。
14、 根据权利要求 13所述的用户设备, 其特征在于, 所述第一信道状态 信息中包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码 矩阵指示信息, 则所述发送器反馈信道状态信息时, 所述第一预编码矩阵指 示信息的频域反馈粒度小于或等于所述第二预编码矩阵指示信息的频域反馈 粒度。
15、 根据权利要求 13或 14任一所述的用户设备, 其特征在于, 所述发 送器反馈信道状态信息时, 所述第一信道状态信息的反馈周期小于所述第二 信道状态信息的反馈周期。
16、 根据权利要求 13~15任一所述的用户设备, 其特征在于, 所述第一 信道状态信息包括第一预编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二 信道状态信息包括第二预编码矩阵指示信息和第二秩指示信息 RI2;所述第一 预编码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMI1 和第二类 型预编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类 型预编码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4; 所述处理器基于所述第一信道状态信息和所述第二信道状态信息, 得到 信道质量指示 CQI;
则所述发送器向所述基站反馈的信道状态信息包括所述第一信道状态信 息、 第二信道状态信息以及所述 CQI; 或者, 第三预编码矩阵指示信息、 第 三秩指示信息, 以及所述 CQI; 其中, 所述第三预编码矩阵指示信息基于所 述 PMI1、 PMI2、 PMI3和 PMI4中的至少三个得到, 所述第三秩指示信息基 于所述 RI1和所述 RI2得到。
17、 根据权利要求 16所述的用户设备, 其特征在于, 用户设备通过物理 上行链路控制信道 PUCCH向所述基站反馈信道状态信息,则所述发射器在物 理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反馈所述信 道状态信息, 其中, 所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙 反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI3和 CQI; 第三反馈时隙反馈 CQI和 PMI2; 或者
第一反馈时隙反馈 RI1、 RI2和 PMI1 ; 第二反馈时隙反馈 PMI2、 PMI3 和 CQI; 第三反馈时隙反馈 PMI2、 PMI3和 CQI; 或者
第一反馈时隙反馈 RI 1、 RI2、 PMI 1和 PMI3; 第二反馈时隙反馈 PMI2、 PMI4和 CQI; 第三反馈时隙反馈 PMI2、 PMI4和 CQI。
18、 根据权利要求 16所述的用户设备, 其特征在于, 用户设备通过物理 上行链路控制信道 PUCCH向所述基站反馈信道状态信息,则所述发射器在物 理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反馈所述信 道状态信息, 其中, 所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙 中反馈 RI 1和 RI2; 第二反馈时隙反馈 PMI 1、 PMI3和 CQI; 第三反馈时隙反 馈 CQI和 PMI2; 或者
所述 CSI反馈周期中包括三个反馈时隙, 第一反馈时隙反馈 RI1和 RI2; 第二反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI;第三反馈时隙反馈 PMI1、 PMI2、 PMI3和 CQI。
19、 根据权利要求 16所述的用户设备, 其特征在于, 所述信道状态信息 中还包括指示预编码矩阵类型的预编码矩阵类型指示 ΡΉ,当预编码矩阵为第 一类型,用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状 态信息,则所述发射器在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反馈所述信道状态信息,其中,所述 CSI反馈周期包括五个反 馈时隙, 各时隙中反馈的内容如下表各项所示;
Figure imgf000052_0001
wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=0标示预编码矩阵的类型为第 一类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
20、 根据权利要求 16所述的用户设备, 其特征在于, 所述信道状态信息 中还包括指示预编码矩阵类型的预编码矩阵类型指示 ΡΉ,当预编码矩阵为第 二类型,用户设备通过物理上行链路控制信道 PUCCH向所述基站反馈信道状 态信息,则所述发射器在物理上行链路控制信道 PUCCH的一个信道状态信息 CSI反馈周期中反馈所述信道状态信息,其中,所述 CSI反馈周期中包括五个 反馈时隙, 各时隙中反馈的内容如下表各项所示;
第一反馈 第二反馈 第三反馈时 第四反馈 第五反馈时 第六反馈 时隙 时隙 隙 时隙 隙 时隙 选项一 RI1+RI2 PMI1+ PMI3sb PMBsb PMBsb RI1+RI2 wb和 sb分别标示所反馈的信道状态信息 PMI和 CQI的频域粒度为宽带 和子带, 其中 wb对应宽带; sb对应子带, PTI=1标示预编码矩阵的类型为第 二类型, 所述反馈时隙对应了一个 CSI反馈周期内的各个反馈时刻。
21、 一种基站, 其特征在于, 该基站包括:
基站处理器, 用于配置第一信道状态信息测量资源和第二信道状态信息 测量资源并发送到用户设备, 使得用户设备根据所述第一信道状态信息测量 资源获取第一信道状态信息, 根据所述第二信道状态信息测量资源获取第二 信道状态信息; 其中, 所述第一信道状态信息测量资源和所述第二信道状态 信息测量资源分别对应表征水平维度的第一天线端口和表征垂直维度的第二 天线端口;
接收器, 用于接收用户设备反馈的信道状态信息, 包括:
所述接收器用于接收用户设备根据第一反馈模式反馈的所述第一信道状 态信息, 根据第二反馈模式反馈的所述第二信道状态信息, 所述第二反馈模 式不同于所述第一反馈模式; 或者,
所述接收器用于接收所述用户设备根据第三反馈模式反馈的第三信道状 态信息, 所述第三信道状态信息由所述用户设备基于所述第一信道状态信息 和第二信道状态信息得到。
22、 根据权利要求 21所述的基站, 其特征在于, 所述第一信道状态信息 中包括第一预编码矩阵指示信息; 第二信道状态信息中包括第二预编码矩阵 指示信息, 则所述接收器接收到的信道状态信息中, 所述第一预编码矩阵指 示信息的频域反馈粒度小于或等于所述第二预编码矩阵指示信息的频域反馈 粒度。
23、 根据权利要求 21或 22所述的基站, 其特征在于, 所述接收器还用 于按照所述第一信道状态信息的反馈周期小于所述第二信道状态信息的反馈 周期的原则接收信道状态信息。
24、 根据权利要求 21~23任一所述的基站, 其特征在于, 所述第一信道 状态信息包括第一预编码矩阵指示信息和第一秩指示信息 RI1 ;所述第二信道 状态信息包括第二预编码矩阵指示信息和第二秩指示信息 RI2;所述第一预编 码矩阵指示信息进一步包括第一类型预编码矩阵指示符 PMii 和第二类型预 编码矩阵指示符 PMI2, 所述第二预编码矩阵指示信息进一步包括第一类型预 编码矩阵指示符 PMI3和第二类型预编码矩阵指示符 PMI4;
所述接收器用于接收所述第一信道状态信息、 第二信道状态信息以及信 道质量指示 CQI; 或者,
第三预编码矩阵指示信息、 第三秩指示信息, 以及所述 CQI; 其中, 所 述第三预编码矩阵指示信息基于所述 PMI1、 PMI2、 PMI3和 PMI4中的至少 三个得到, 所述第三秩指示信息基于所述 RI1和所述 RI2得到, 其中, 所述 信道质量指示 CQI为用户设备基于所述第一信道状态信息和所述第二信道状 态信息得到。
PCT/CN2013/087728 2013-11-22 2013-11-22 一种信道状态信息的反馈方法及装置 WO2015074262A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380003739.1A CN105009494B (zh) 2013-11-22 2013-11-22 一种信道状态信息的反馈方法及装置
EP13897692.3A EP3073662B1 (en) 2013-11-22 2013-11-22 Feedback method and apparatus of channel state information
PCT/CN2013/087728 WO2015074262A1 (zh) 2013-11-22 2013-11-22 一种信道状态信息的反馈方法及装置
KR1020167016715A KR101852914B1 (ko) 2013-11-22 2013-11-22 채널 상태 정보의 피드백 방법 및 장치
US15/160,919 US9838106B2 (en) 2013-11-22 2016-05-20 Method for feeding back channel state information and an apparatus
US15/829,206 US10567061B2 (en) 2013-11-22 2017-12-01 Method for feeding back channel state information and an apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087728 WO2015074262A1 (zh) 2013-11-22 2013-11-22 一种信道状态信息的反馈方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/160,919 Continuation US9838106B2 (en) 2013-11-22 2016-05-20 Method for feeding back channel state information and an apparatus

Publications (1)

Publication Number Publication Date
WO2015074262A1 true WO2015074262A1 (zh) 2015-05-28

Family

ID=53178831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087728 WO2015074262A1 (zh) 2013-11-22 2013-11-22 一种信道状态信息的反馈方法及装置

Country Status (5)

Country Link
US (2) US9838106B2 (zh)
EP (1) EP3073662B1 (zh)
KR (1) KR101852914B1 (zh)
CN (1) CN105009494B (zh)
WO (1) WO2015074262A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167161A1 (zh) * 2016-03-31 2017-10-05 中兴通讯股份有限公司 一种实现信道状态信息反馈的方法、装置及计算机存储介质
CN110351824A (zh) * 2018-04-04 2019-10-18 电信科学技术研究院有限公司 一种进行竞争随机接入的方法及设备
WO2020151741A1 (en) * 2019-01-23 2020-07-30 Qualcomm Incorporated Precoder matrix quantization for compressed csi feedback
WO2023173245A1 (en) * 2022-03-14 2023-09-21 Zte Corporation Channel state information reporting

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009075B2 (en) * 2013-11-27 2018-06-26 Lg Electronics Inc. Operation for 3D beam forming in a wireless communication system
WO2016074119A1 (en) * 2014-11-10 2016-05-19 Qualcomm Incorporated Elevation pmi reporting on pucch
CN105991483B (zh) 2015-01-28 2020-08-07 索尼公司 无线通信设备和无线通信方法
WO2016137061A1 (ko) * 2015-02-26 2016-09-01 엘지전자 주식회사 무선 통신 시스템에서 csi 정보를 피드백하는 방법 및 그 장치
EP3282629B1 (en) * 2015-04-08 2020-09-09 LG Electronics Inc. Method for reporting channel state and apparatus therefor
CN106160928A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 生成预编码矩阵的方法、无线基站和装置以及移动台
CN108352938B (zh) * 2015-11-06 2021-03-23 华为技术有限公司 一种信道状态信息的测量与反馈方法、用户设备及基站
US10159087B2 (en) * 2015-12-11 2018-12-18 Qualcomm Incorporated Channel state information framework for advanced receivers
CN105871435B (zh) * 2016-04-01 2019-04-02 北京北方烽火科技有限公司 信道状态信息反馈方法、装置及用户设备
NZ747711A (en) * 2016-05-13 2020-03-27 Ericsson Telefon Ab L M Multi-resolution csi feedback
KR102414697B1 (ko) 2016-07-29 2022-06-29 삼성전자 주식회사 다수의 배열 안테나를 사용하는 이동통신 시스템에서 csi-rs 포트 공유를 위한 기준신호 설정 방법 및 장치
WO2018029644A2 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Progressive advanced csi feedback
US10484064B2 (en) * 2016-09-01 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink CSI acquisition
CN108155968B (zh) * 2016-12-05 2020-06-05 大唐移动通信设备有限公司 一种基站下行正交振幅调制256qam的配置方法和装置
CN108288989B (zh) 2017-01-09 2020-12-08 华为技术有限公司 信道状态信息反馈方法、用户设备及基站
KR102364954B1 (ko) 2017-05-04 2022-02-18 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향 제어 채널의 자원 지시 방법 및 장치
CN109150267B (zh) 2017-06-16 2023-12-08 华为技术有限公司 一种信道状态信息发送、接收方法及设备
CN108683487B (zh) 2018-01-12 2019-06-11 华为技术有限公司 一种用于终端设备能力传输的方法、装置及系统
CN116827396A (zh) * 2022-03-22 2023-09-29 中兴通讯股份有限公司 信道状态信息的处理方法、终端、基站、介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938688A (zh) * 2011-08-15 2013-02-20 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN103178888A (zh) * 2011-12-23 2013-06-26 华为技术有限公司 一种反馈信道状态信息的方法及装置
CN103209012A (zh) * 2012-01-12 2013-07-17 上海贝尔股份有限公司 用于辅助多维天线阵列的信道测量的方法
US20130258964A1 (en) * 2012-03-30 2013-10-03 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478362B1 (ko) * 2007-08-10 2015-01-28 엘지전자 주식회사 다중안테나 시스템에서 귀환데이터 전송방법
US8781005B2 (en) * 2009-10-01 2014-07-15 Qualcomm Incorporated Scalable quantization of channel state information for MIMO transmission
US9961579B2 (en) * 2009-10-01 2018-05-01 Qualcomm Incorporated Scalable channel feedback for wireless communication
EP3737000B1 (en) * 2010-04-01 2023-10-25 LG Electronics Inc. Method for transmitting channel state information in wireless access system
US8848817B2 (en) * 2010-04-30 2014-09-30 Texas Instruments Incorporated Transmission modes and signaling for uplink MIMO support or single TB dual-layer transmission in LTE uplink
KR101790505B1 (ko) * 2010-06-01 2017-11-21 주식회사 골드피크이노베이션즈 서브프레임 구성에 따른 채널상태정보-기준신호 할당 장치 및 방법
CN102291218B (zh) 2010-06-21 2016-06-15 夏普株式会社 信道状态信息反馈资源分配方法和信道状态信息反馈方法
US8639198B2 (en) * 2010-06-30 2014-01-28 Samsung Electronics Co., Ltd. Systems and methods for 8-TX codebook and feedback signaling in 3GPP wireless networks
CN103229578B (zh) * 2010-09-15 2017-04-12 华为技术有限公司 用于无线通信系统中信道状态信息反馈的系统和方法
KR101835326B1 (ko) * 2010-09-26 2018-03-07 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치
WO2012044088A2 (ko) * 2010-09-29 2012-04-05 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치
US9986444B2 (en) * 2011-10-27 2018-05-29 Lg Electronics Inc. Method and apparatus for feeding back aggregated channel state information in cooperative multipoint communication system
KR101979400B1 (ko) * 2012-01-27 2019-05-16 닛뽕덴끼 가부시끼가이샤 협력 다지점 송수신
US9397738B2 (en) 2012-05-17 2016-07-19 Qualcomm Incorporated Codebook and feedback design for high order MIMO
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
JP6072258B2 (ja) * 2012-08-28 2017-02-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報をフィードバックする方法及びそのための装置
KR101972945B1 (ko) * 2012-09-18 2019-04-29 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
KR101988285B1 (ko) * 2012-09-20 2019-06-12 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
US9178583B2 (en) * 2013-01-08 2015-11-03 Samsung Electronics Co., Ltd. Channel state information feedback design in advanced wireless communication systems
GB2509958B (en) * 2013-01-18 2016-02-03 Broadcom Corp Methods, apparatus and computer programs for controlling feedbck about channel conditions
WO2014129858A1 (ko) * 2013-02-24 2014-08-28 엘지전자 주식회사 무선 통신 시스템에서 3-차원 빔포밍을 위한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
KR20150143421A (ko) * 2013-04-10 2015-12-23 엘지전자 주식회사 무선 통신 시스템에서 다중 레이어 3차원 빔포밍을 위한 레이어 정합 방법 및 이를 위한 장치
KR101832633B1 (ko) * 2013-09-30 2018-02-26 후지쯔 가부시끼가이샤 정보 피드백 방법, 코드북 결정 방법, ue 및 기지국

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938688A (zh) * 2011-08-15 2013-02-20 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN103178888A (zh) * 2011-12-23 2013-06-26 华为技术有限公司 一种反馈信道状态信息的方法及装置
CN103209012A (zh) * 2012-01-12 2013-07-17 上海贝尔股份有限公司 用于辅助多维天线阵列的信道测量的方法
US20130258964A1 (en) * 2012-03-30 2013-10-03 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3073662A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167161A1 (zh) * 2016-03-31 2017-10-05 中兴通讯股份有限公司 一种实现信道状态信息反馈的方法、装置及计算机存储介质
CN110351824A (zh) * 2018-04-04 2019-10-18 电信科学技术研究院有限公司 一种进行竞争随机接入的方法及设备
CN110351824B (zh) * 2018-04-04 2021-10-12 大唐移动通信设备有限公司 一种进行竞争随机接入的方法及设备
WO2020151741A1 (en) * 2019-01-23 2020-07-30 Qualcomm Incorporated Precoder matrix quantization for compressed csi feedback
WO2023173245A1 (en) * 2022-03-14 2023-09-21 Zte Corporation Channel state information reporting

Also Published As

Publication number Publication date
EP3073662A4 (en) 2016-12-07
EP3073662A1 (en) 2016-09-28
CN105009494B (zh) 2019-07-09
US20160269089A1 (en) 2016-09-15
CN105009494A (zh) 2015-10-28
KR20160086948A (ko) 2016-07-20
US9838106B2 (en) 2017-12-05
US10567061B2 (en) 2020-02-18
EP3073662B1 (en) 2020-10-07
US20180091209A1 (en) 2018-03-29
KR101852914B1 (ko) 2018-04-27

Similar Documents

Publication Publication Date Title
US10567061B2 (en) Method for feeding back channel state information and an apparatus
EP3637838B1 (en) Communication method and communication apparatus
US9577724B2 (en) Precoding matrix indicator feedback method, receive end, and transmit end
EP3337053B1 (en) Communication technique using csi-rs in mobile communication system
CN107005293B (zh) 用于部分预编码的信道状态信息参考信号和信道状态信息反馈的下行链路信令的方法和装置
KR101867392B1 (ko) 채널 상태 정보의 피드백 방법 및 단말
US9258048B2 (en) Method and terminal for feeding back channel state information
EP3497809A2 (en) Progressive advanced csi feedback
JP2019520732A (ja) マルチ解像度csiフィードバック
CN110545134A (zh) 信道状态信息汇报的方法及装置
WO2012059000A1 (zh) 一种信道质量信息的上报方法及其装置
WO2012041107A1 (zh) 信道状态信息反馈方法及终端
WO2011122919A2 (en) User equipment apparatus and method for feeding back channel state information in a wireless communication system
TWI789363B (zh) 傳輸信道狀態資訊的方法和裝置
TWI771365B (zh) 無線通信方法、終端設備和網絡設備
WO2012068880A1 (zh) 一种信道状态信息反馈方法及装置
WO2011085679A1 (zh) 一种额外的预编码矩阵索引的指示方法和系统
WO2012062197A1 (zh) 一种信道质量信息的上报方法及其装置
WO2020221118A1 (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2015054879A1 (zh) 信道状态信息的测量和反馈方法、终端及基站
US10659130B2 (en) Terminal, base station, and channel information obtaining method
WO2015135157A1 (zh) 信道质量指示反馈方法、资源调度信息发送方法和装置
US11290906B2 (en) Channel measurement method
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2018039860A1 (zh) 信道质量的测量和反馈方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167016715

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013897692

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897692

Country of ref document: EP