WO2013020310A1 - 电动机转子及具有其的电动机 - Google Patents

电动机转子及具有其的电动机 Download PDF

Info

Publication number
WO2013020310A1
WO2013020310A1 PCT/CN2011/079059 CN2011079059W WO2013020310A1 WO 2013020310 A1 WO2013020310 A1 WO 2013020310A1 CN 2011079059 W CN2011079059 W CN 2011079059W WO 2013020310 A1 WO2013020310 A1 WO 2013020310A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core
motor
reinforcing
mounting grooves
Prior art date
Application number
PCT/CN2011/079059
Other languages
English (en)
French (fr)
Inventor
黄辉
胡余生
陈东锁
陈华杰
肖勇
曾学英
张文明
Original Assignee
珠海格力电器股份有限公司
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司, 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP11870544.1A priority Critical patent/EP2741399B1/en
Priority to US14/235,604 priority patent/US9502930B2/en
Priority to DK11870544.1T priority patent/DK2741399T3/da
Publication of WO2013020310A1 publication Critical patent/WO2013020310A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • BACKGROUND OF THE INVENTION 1.
  • the invention relates to the field of electric motors, and more particularly to an electric motor rotor and an electric motor therewith.
  • BACKGROUND OF THE INVENTION As a new type of permanent magnet motor, a permanent magnet auxiliary synchronous reluctance motor combines the advantages of a permanent magnet motor and a synchronous reluctance motor, and has the advantages of high power density, wide speed regulation range, high efficiency, small volume, and the like. Its application prospect in the field of variable speed drive is very prominent.
  • m is the number of phases of the stator conductor
  • the performance of the motor is improved mainly by improving the performance of the permanent magnet, that is, the value of the combined torque is increased by increasing the permanent magnet torque, thereby improving the efficiency of the motor.
  • a common practice is to have built-in rare earth permanent magnets. However, since rare earths are non-renewable resources and expensive, the wider application of such motors is limited. In addition, simply improving the performance of the permanent magnets to improve the performance of the motor does not meet the urgent need to further improve the efficiency of the motor.
  • a permanent magnet is inserted into the motor, and when the rotor is running at a high speed, the rotor edge may be pulled up and deformed, or even broken.
  • An object of the present invention is to provide a motor rotor and an electric motor therewith which improve the structural strength of a motor rotor.
  • a motor rotor comprising a core and a permanent magnet disposed inside the core, the core being provided with a plurality of sets of mounting grooves in a circumferential direction of the core, each set of mounting slots comprising two or two More than one mounting groove intermittently arranged in the radial direction of the core; the permanent magnets are a plurality of groups, and each of the permanent magnets in each group of permanent magnets is correspondingly embedded in each mounting groove of each set of mounting grooves; the outermost mounting groove and Between the outer circumference of the core In the island-shaped area, the island-shaped area has a reinforcing hole, and the reinforcing hole is provided with a reinforcing rod, and the ends of each reinforcing rod are connected by a reinforcing member.
  • the reinforcing hole is a through hole provided on the rotor, and the reinforcing rod is a rivet, and the rivet passes through the through hole and is riveted with the reinforcing member.
  • reinforcing holes are provided on the island-shaped regions of each set of mounting grooves.
  • the reinforcing member is a fixed baffle disposed at both ends of the core, and the reinforcing rod passes through the reinforcing hole and is connected to the fixed baffle. Further, from the outer circumferential direction of the core, the distance L between the edge of each of the mounting grooves of each group and the outer circumference of the core gradually increases.
  • each set of mounting slots has two mounting slots, the distance between the outermost mounting slot and the edge of the mounting slot adjacent thereto and the outer circumference of the core are La and Lb, respectively, from the outer circumferential direction of the core, where: 2La ⁇ Lb ⁇ l. lLa.
  • each set of mounting slots includes three or more mounting slots that are intermittently disposed in the radial direction of the core. Further, starting from the center of the core, from the inside to the outside, the distance between the edge of the three mounting grooves outward from the mounting groove closest to the center of the core and the outer circumference of the core are Lc, Lb, and La, respectively: 2Lb ⁇ Lc ⁇ 1.2 Lb, 2La ⁇ Lb ⁇ l. lLa.
  • an electric motor comprising a motor stator and the aforementioned motor rotor, the motor rotor being disposed inside the motor stator. Further, the motor further includes a fixed baffle through which the rivet passes and fixes the baffle and the rotor. Further, the distance between the inner circumference of the motor stator and the outer circumference of the motor rotor is n, where 0.35 mm ⁇ n ⁇ 0.55 mm.
  • an island-shaped region is formed between the outermost mounting groove of the rotor of the motor and the outer circumference of the core, a reinforcing hole is provided in the island-shaped region, and a reinforcing rod is provided in the reinforcing hole, thereby reinforcing
  • the structural strength of the entire rotor By setting the reinforcing hole and the reinforcing rod on the rotor without changing the rotor flux path, the strength of the rotor structure is greatly enhanced, and the deformation of the rotor under high-speed operation is reduced, thereby minimizing the stator-rotor clearance. Improve the performance of the motor.
  • FIG. 1 is a schematic structural view of a rotor of a motor according to the present invention
  • FIG. 2 is a view showing a stress distribution of a rotor of a motor according to the present invention at a high speed
  • FIG. 3 is a partial structural view of a rotor of a motor according to the present invention
  • 4 is a schematic view showing a reinforcing structure of a rotor of a motor according to the present invention
  • FIG. 5 is a view showing a deformation of a rotor of a motor according to the present invention at a high speed rotation
  • FIG. 1 is a schematic structural view of a rotor of a motor according to the present invention
  • FIG. 2 is a view showing a stress distribution of a rotor of a motor according to the present invention at a high speed
  • FIG. 3 is a partial structural view of a rotor of a motor according to the present invention
  • 4 is a schematic view showing a reinforcing structure of
  • the rotor of the motor according to the present invention comprises a core 10 and a permanent magnet 20 disposed inside the core 10.
  • the core 10 is provided with a plurality of sets of mounting grooves 30 in the circumferential direction of the core 10, and each set of mounting grooves 30 includes two or two layers.
  • the mounting groove 30 is intermittently disposed in the radial direction of the core 10, and the permanent magnets 20 are a plurality of groups, and each of the permanent magnets 20 of each group of permanent magnets 20 is correspondingly embedded in each of the mounting grooves 30 of each set of the mounting grooves 30,
  • the outermost mounting groove 30 and the outer periphery of the core 10 have an island-shaped region 12, and the island-shaped region 12 has a reinforcing hole 13 therein.
  • the reinforcing hole 13 is provided with a reinforcing rod 60, and the ends of the reinforcing rods 60 pass between Firmware connection. As shown in FIGS.
  • an island-shaped region 12 is formed between the outermost layer mounting groove 30 of the motor rotor and the outer periphery of the core 10. Since FIG. 5 shows that the motor rotor has the largest amount of deformation is the island-shaped region of the outermost groove, the symmetrical line of the permanent magnet mounting groove on the rotor is provided on the island-shaped region 12 as shown in FIG. 3 and FIG. 13, and a reinforcing rod 60 is disposed therein, and the ends of the reinforcing rods 60 are joined by a reinforcing member, thereby strengthening the structural strength of the entire rotor. Reinforcing holes 13 may be provided in the island-shaped region 12 of each set of mounting grooves 30 to further enhance the strength of the rotor structure.
  • the reinforcing member is a fixed baffle 70 disposed at both ends of the core 10, and the reinforcing rod 60 passes through the reinforcing hole 13 and is connected to the fixed baffle 70.
  • the reinforcing hole 13 is a through hole provided in the rotor, and the reinforcing rod 60 is a rivet, and the rivet passes through the through hole and is riveted to the reinforcing member.
  • a reinforcing hole 13 penetrating the rotor is provided in the direction of the symmetry of the mounting groove 30 of the rotor, and the rivet passing through the reinforcing hole 13 is riveted to the reinforcing member.
  • a fixed baffle 70 is added to both ends of the rotor core 10, the rivet passes through the fixed baffle 70 at both ends and the island-shaped region 12 on the rotor, and the fixed baffle 70 is riveted to the rotor.
  • the solid joints are integrated into one piece, and the deformation of the island-shaped area will be more severely restricted due to the limitation of the through rivets. Thereby the mechanical strength of the rotor is further improved.
  • the stiffener 60 can also be a bolt and threadedly coupled to the reinforcement aperture 13.
  • a rotor shaft hole 11 is disposed at the center of the rotor core. As shown in Fig.
  • each layer of permanent magnets 20 when the rotor rotates at a high speed, the centrifugal force generated by each layer of permanent magnets 20 is F1, F2, and F3, respectively, in the direction of the rotor radius, and the centrifugal force acts on the arc adjacent to each layer of permanent magnets 20, respectively.
  • the silicon steel sheet portion as indicated by the arrow in Figure 1.
  • 40a, 40b and 40c are respectively magnetic bridges at the intersection of each of the permanent magnet passage grooves and the outer peripheral surface of the rotor, and the magnetic isolation bridge functions to connect each of the installation slots 30, and is also responsible for blocking the end of each layer of permanent magnets 20 Magnetic leakage.
  • Fl, F2, F3 are finally balanced with the reverse pull forces experienced by 40a, 40b and 40c.
  • FIG. 2 is a stress cloud diagram when the rotor rotates at a high speed. It can be seen that the portion of the magnetic bridge 40c is much more stressed than 40a and 40b, and is the most prone to deformation and fracture. The amount of deformation of the rotor edge depends on the width of the outer peripheral magnetic bridge 40 of the rotor. The magnetic bridge 40 is wide and the mechanical strength is high, so that the motor can work at a higher rotational speed, but the negative effect is that the magnetic leakage at the end of the permanent magnet 20 increases. This reduces the effective magnetic flux in the stator and rotor, resulting in reduced motor performance.
  • the invention optimizes the design of the magnetic isolation bridge formed by the installation groove 30 and the outer circumference of the rotor, and specifically has a multi-layer structure for each set of installation grooves, and the width of the magnetic isolation bridge 40 is designed differently, and the width of the magnetic isolation bridge is set to Gradient, as shown in Fig. 6, the distance L from the outer circumferential direction of the core 10 toward the rotation axis thereof gradually increases from the edge of each of the mounting grooves 30 of each group to the outer circumference of the core 10.
  • the mounting grooves 30 has two layers of permanent magnets 20
  • the distance between the outermost mounting groove 30 and the edge of the mounting groove 30 adjacent thereto and the outer circumference of the core 10 from the outer circumferential direction of the core 10 are La and Lb, respectively.
  • each of the mounting grooves 30 includes three or more mounting grooves 30 intermittently disposed in the radial direction of the core 10, from the outer circumferential direction of the core 10, from the outermost mounting groove
  • the distance between the edge of the three inwardly facing mounting slots 30 and the outer circumference of the core 10 is La, Lb and Lc, respectively: 2Lb ⁇ Lc ⁇ 1.2 Lb, 2La ⁇ Lb ⁇ l.lLa.
  • Fig. 5 is a deformation form of the rotor under high-speed rotation.
  • the deformation of the island in the outermost magnetic steel is the largest, that is, the rotor is in the installation groove.
  • Tensile deformation occurs in the direction of the axis of symmetry of 30, but the L value satisfies the above relationship, and the amount of deformation can be controlled to be 20 ⁇ m or less, and the stress of the magnetic bridge 40c is also controlled within a safe range.
  • each of the mounting grooves 30 includes three or more layers of the mounting grooves 30 which are intermittently disposed in the radial direction of the core 10, the distance between the edge of the mounting groove 30 and the outer circumference of the core 10 is also applicable to the foregoing. 2La ⁇ Lb ⁇ l.lLa (At this time, the distance between the edge of the first two mounting grooves 30 outward from the mounting groove 30 closest to the center and the outer circumference of the core 10 is Lb, La, respectively).
  • the two numerical range limits can be implemented separately or in combination, which can effectively improve the mechanical strength of the rotor and reduce the deformation of the rotor during high-speed operation.
  • the present invention also provides an electric motor including a motor stator 50 and the aforementioned motor rotor, the motor rotor being disposed inside the motor stator 50.
  • the motor also includes a fixed baffle 70 that passes through the fixed baffle 70 and the core 10 and connects the fixed baffle 70 and the rotor.
  • the distance between the inner circumference of the motor stator 50 and the outer circumference of the motor rotor is n, where 0.35 mm ⁇ n ⁇ 0.55 mm.
  • the deformation of the rotor edge depends on the width of the outer peripheral magnetic bridge of the rotor. The magnetic bridge is wide and the mechanical strength is high.
  • the motor can work at a higher speed, but the negative effect is that the magnetic leakage at the end of the permanent magnet increases, and the motor efficiency decreases.
  • the invention optimizes and designs the magnetic bridge formed by the magnetic steel groove and the outer circumference of the rotor, especially for the multi-layer structure, the width of the magnetic bridge is gradient, effectively improving the mechanical strength of the rotor and reducing the deformation of the rotor during high-speed operation.
  • reinforcing holes are provided at the island-shaped region 12 of the outermost layer of the mounting groove 30, and the fixed baffle 70 is added to both ends of the core 10 of the rotor, and the bolts or rivets are passed through the fixed baffles 70 and the island-shaped regions at both ends, The core 10 and the fixed baffle 70 are fastened together.
  • the invention greatly enhances the structural strength of the rotor without changing the magnetic flux path of the rotor, and reduces the deformation of the rotor under high-speed operation, thereby minimizing the stator-rotor clearance and improving the performance of the motor.
  • the pitch n of the rotor having the multilayer embedded permanent magnet structure and the stator 50 is designed to be smaller, so that the loss of the magnetic flux is reduced and the performance of the motor is improved. According to the actual test results, when 0.35mm ⁇ n ⁇ 0.55mm, the performance and deformation of the motor can meet the reliability requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种电动机转子,包括铁芯(10)和设于铁芯(10)内部的永磁体(20)。铁芯(10)上沿铁芯的周向方向上设置有多组安装槽(30),每组安装槽(30)包括两个或者两个以上在铁芯(10)的径向方向上间断设置的安装槽(30)。永磁体(20)为多组,每组永磁体(20)中的各个永磁体(20)对应地嵌入每组安装槽的各个安装槽(30)中;最外层的安装槽(30)与铁芯(10)的外周之间具有岛形区域(12),岛形区域(12)上具有加强孔(13),加强孔(13)内设置有加强杆(60)。一种电动机,包括电动机定子(50)和前述电动机转子,电动机转子设置在电动机定子(50)的内侧。这种电动机转子,强化了整个转子的结构强度,提升了电机的性能。

Description

电动机转子及具有其的电动机 技术领域 本发明涉及电动机领域, 更具体地, 涉及一种电动机转子及具有其的电动机。 背景技术 永磁辅助式同步磁阻电动机作为一种新型的永磁电机, 其结合了永磁电机和同步 磁阻电机的优点, 具有功率密度高、 调速范围宽、 效率高、 体积小等优点, 其在调速 驱 动 领 域 的 应 用 前 景 十 分 突 出 , 其 电 磁 转 矩 的 公 式 如 下 : = mp (Lq - Ld )diq + mp ψΡΜ iq。 上述公式中, τ为电机输出转矩, 提高 T的值, 可以提高电机性能; T后等式中 的第一项为磁阻转矩, 第二项为永磁转矩; ΨΡΜ为电机永磁体产生的定转子耦合磁通 的最大值, m为定子导体的相数, Ld、 Lq分别为 d轴和 q轴电感, 其中 d轴指与主磁 极轴线重合的轴, q轴指与主磁极轴线垂直的轴, 其中的垂直指的是电角度; id、 iq分 别是电枢电流在 d轴、 q轴方向上的分量。 现有技术中主要通过提高永磁体的性能来提高电机性能, 即通过提高永磁转矩的 做法来提高合成转矩的值,进而提高电动机效率。常见的做法就是内置稀土类永磁体。 但是, 由于稀土是不可再生资源, 且价格昂贵, 因此该种电机更广泛的应用受到了限 制。 另外, 仅仅靠提高永磁体性能来提高电机性能, 也无法满足进一步提高电动机效 率的迫切要求。 此外, 在电机中插入永磁体, 转子在高速运转时, 转子边缘会发生拉 升变形、 甚至发生断裂。 发明内容 本发明目的在于提供一种提高电动机转子的结构强度的电动机转子及具有其的电 动机。 根据本发明的一个方面, 提供了一种电动机转子, 包括铁心和设于铁心内部的永 磁体, 铁心上沿铁心的周向方向上设置有多组安装槽, 每组安装槽包括两个或者两个 以上在铁心的径向方向上间断设置的安装槽; 永磁体为多组, 每组永磁体中的各个永 磁体对应地嵌入每组安装槽的各个安装槽中; 最外层的安装槽与铁心的外周之间具有 岛形区域, 岛形区域上具有加强孔, 加强孔内设置有加强杆, 各加强杆的端部之间通 过加固件连接。 进一步地, 加强孔为设置在转子上的贯通孔, 加强杆为铆钉, 铆钉穿过贯通孔并 与加固件相铆接。 进一步地, 每组安装槽的岛形区域上都设置有加强孔。 进一步地, 加固件为设置在铁心两端的固定挡板, 加强杆穿过加强孔并与固定挡 板相连接。 进一步地, 从铁心的外周方向起, 每组的各个安装槽的边缘与铁心的外周的距离 L逐渐增大。 进一步地, 每组安装槽具有两层安装槽时, 从铁心的外周方向起, 最外侧的安装 槽和与其相邻的安装槽的边缘与铁心的外周的距离分别为 La 和 Lb, 其中: 2La≥Lb≥l. lLa。 进一步地, 每组安装槽包括三个或者三个以上的在铁心的径向方向上间断设置的 安装槽。 进一步地, 从铁心的圆心开始由内向外方向起, 从最靠近圆心的安装槽起向外的 三个安装槽的边缘与铁心的外周的距离分别为 Lc、 Lb和 La, 其中: 2Lb≥Lc≥1.2 Lb, 2La≥Lb≥l. lLa。 根据本发明的一个方面, 还提供了一种电动机, 包括电动机定子和前述的电动机 转子, 电动机转子设置在电动机定子的内侧。 进一步地, 电动机还包括固定挡板, 铆钉穿过固定挡板和铁心并连接固定挡板和 转子。 进一步地, 电动机定子的内周与电动机转子的外周之间的间距为 n, 其中, 0.35 mm<n<0.55 mm。 采用本发明的电动机转子及具有其的电动机, 电动机转子的最外层安装槽和铁心 外周之间形成岛形区域, 在岛形区域上设置加强孔, 并在加强孔中设置加强杆, 从而 强化整个转子的结构强度。 在不改变转子磁通路径的情况下, 通过在转子上设置加强 孔和加强杆, 极大地加强了转子结构强度, 减小了高速运转下转子的形变量, 从而实 现定转子间隙的最小化, 提升电机的性能。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明的电动机转子的结构示意图; 图 2是根据本发明的电动机转子在高速旋转时的应力分布情况; 图 3是根据本发明的电动机转子的局部结构示意图; 图 4是根据本发明的电动机转子的加强结构示意图; 图 5是根据本发明的电动机转子在高速旋转时候的变形情况; 图 6是根据本发明的电动机的定转子结构示意图。 具体实施方式 下面将参考附图并结合实施例来详细说明本发明。 根据本发明的电动机转子,包括铁心 10和设于铁心 10内部的永磁体 20,铁心 10 上沿铁心 10的周向方向上设置有多组安装槽 30, 每组安装槽 30包括两层或者两层以 上在铁心 10的径向方向上间断设置的安装槽 30, 永磁体 20为多组, 每组永磁体 20 中的各个永磁体 20对应地嵌入每组安装槽 30的各个安装槽 30中, 最外层的安装槽 30与铁心 10的外周之间具有岛形区域 12, 岛形区域 12上具有加强孔 13, 加强孔 13 内设置有加强杆 60, 各加强杆 60的端部之间通过加固件连接。 如图 1和图 3所示, 电动机转子的最外层安装槽 30和铁心 10外周之间形成岛形 区域 12。 由于图 5显示电机转子变形量最大的地方是最外层通槽的岛型区域, 在岛形 区域 12上沿转子上永磁体安装槽的对称线设置如图 3和图 4所示的加强孔 13, 并在 其中设置加强杆 60, 并通过加固件连接各加强杆 60的端部, 从而强化整个转子的结 构强度。 每组安装槽 30的岛形区域 12上都可以设置加强孔 13, 以进一步加强转子结 构强度。 因此, 不改变转子磁通路径的情况下, 通过在转子上设置加强孔 13和加强杆 60, 极大地加强了转子结构强度, 减小了高速运转下转子的形变量, 从而实现定转子 间隙的最小化, 提升了电机的性能。优选地, 加固件为设置在铁心 10两端的固定挡板 70, 加强杆 60穿过所述加强孔 13并与固定挡板 70相连接。 为了进一步加强转子的机械强度, 加强孔 13 为设置在转子上的贯通孔, 加强杆 60为铆钉, 铆钉穿过贯通孔并与加固件相铆接。 在转子的安装槽 30的对称线方向上设置贯通转子的加强孔 13, 通过穿过加强孔 13的铆钉与加固件相铆接。 优选地, 如图 4所示, 在转子铁心 10的两端部增加固定 挡板 70,铆钉穿过两端的固定挡板 70和转子上的岛形区域 12,将固定挡板 70与转子 铆紧固连接成一个整体, 由于贯通的铆钉的限制, 岛形区域的变形将受到更加严格的 限制。从而进一步提高了转子的机械强度。在其他实施例中,加强杆 60也可以为螺栓, 并与加强孔 13螺纹连接。 其中, 转子铁心中心处设置有转子轴孔 11。 如图 1所示, 当转子高速旋转时, 每层永磁体 20所产生的离心力分别为 Fl、 F2、 和 F3, 方向为沿转子半径方向, 离心力分别作用在每层永磁体 20紧邻的弧形硅钢片 部分, 如图 1中箭头所指区域。 其中, 40a、 40b和 40c分别为每层永磁体通槽与转子 外周面相交处的隔磁桥, 隔磁桥起到连接每层安装槽 30的作用, 同时又负责阻隔每层 永磁体 20端部的漏磁。 Fl、 F2、 F3最终与 40a、 40b和 40c承受的反向拉力相平衡。 图 2为转子高速旋转时候的应力云图, 可以看到隔磁桥 40c部分承受了较 40a和 40b 大的多的应力, 是变形及断裂最容易发生的地方。 转子边缘的变形量取决于转子外周隔磁桥 40的宽度,隔磁桥 40宽则机械强度高, 从而电机可以在更高转速下工作,但负面影响是永磁体 20端部的磁漏增加, 从而会减 少定子和转子中的有效磁通, 导致电机性能下降。 本发明通过优化设计了安装槽 30与转子外周形成的隔磁桥,特别针对每组安装槽 具有多层的结构,对隔磁桥 40的宽度进行了不同的设计,将隔磁桥宽度设置成梯度化, 如图 6所示, 从铁心 10的外周方向朝其转动轴心的方向起, 每组的各个安装槽 30的 边缘与铁心 10的外周的距离 L逐渐增大。 当每组安装槽 30有两层永磁体 20时, 从铁心 10的外周方向起,最外侧的安装槽 30和与其相邻的安装槽 30的边缘与铁心 10的外周的距离分别为 La和 Lb, 其中: 2La≥Lb≥l. lLa。 如图 6所示, 当每组安装槽 30包括三个或者三个以上的在铁心 10的径向方向上 间断设置的安装槽 30时, 从铁心 10的外周方向起, 从最外侧的安装槽 30起向内的三 个安装槽 30的边缘与铁心 10的外周的距离分别为 La、Lb和 Lc,其中: 2Lb≥Lc≥1.2 Lb, 2La≥Lb≥l. lLa。 图 5为转子高速转动下的变形形态, 如图显示 (虚线为转子静止状态下的结构, 实线为变形后结构)在最外层磁钢的岛形区域变形量最大, 即转子在安装槽 30的对称 轴线方向发生了拉伸变形,但是 L值满足上述关系后能够使变形量控制在 20μιη以下, 而隔磁桥 40c的应力也被控制在安全的范围内。 由上可知, 当每组安装槽 30包括三层或者三层以上的在铁心 10的径向方向上间 断设置的安装槽 30时, 安装槽 30的边缘与铁心 10的外周的距离也同样适用前述的 2La≥Lb≥l . lLa (此时从最靠近圆心的安装槽 30起向外的前两个安装槽 30的边缘与铁 心 10的外周的距离分别为 Lb、 La)。 此情况下两个数值范围限定可以分开实施, 也可 以联合实施, 都可以有效的提高转子的机械强度, 降低转子在高速运行时的变形量。 本发明还提供了一种电动机,包括电动机定子 50和前述的电动机转子, 电动机转 子设置在电动机定子 50的内侧。 电动机还包括固定挡板 70, 铆钉穿过固定挡板 70和 铁心 10并连接固定挡板 70和转子。电动机定子 50的内周与电动机转子的外周之间的 间距为 n, 其中, 0.35mm≤n≤0.55mm。 转子边缘的变形量取决于转子外周隔磁桥的宽度, 隔磁桥宽则机械强度高电机可 以工作在更高转速, 但负面影响是永磁体端部漏磁增加, 电机效率下降。 本发明优化 设计了磁钢槽与转子外周形成的磁桥, 特别针对多层结构, 磁桥宽度呈梯度化, 有效 的提高转子的机械强度, 降低转子在高速运行时的变形量。 另外,在安装槽 30最外层的岛形区域 12处设置加强孔,转子的铁心 10两端部增 加固定挡板 70, 适用螺栓或者铆钉穿过两端的固定挡板 70和岛形区域, 将铁心 10和 固定挡板 70紧固成一体。本发明在不改变转子磁通路径的情况下, 极大地加强了转子 结构强度, 减小了高速运转下转子的形变量, 从而实现定转子间隙的最小化, 提升了 电机的性能。 因此, 前述设计具有多层内嵌永磁体结构的转子与定子 50的间距 n设计得更小, 如此一来磁通量的损失便减少, 电机的性能会得到提升。 根据实际的测试结果当 0.35mm≤n≤0.55mm时, 电机的性能与变形量是可以满足可靠性要求。 从以上的描述中, 可以看出, 本发明上述的实施例实现了如下技术效果: 本发明的电动机转子及具有其的电动机, 明确了转子隔磁桥宽度合适值以及多层 情况下各磁桥宽度的特征, 以及采用两端固定挡板与转子铁心最外层岛形区域贯穿连 接一体的方式, 增强了转子结构强度, 提高了转子的可靠性, 使得电机的定转子气隙 可以做得更小, 提高了电机的性能。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电动机转子, 包括铁心 (10) 和设于所述铁心 (10) 内部的永磁体 (20), 其特征在于,
所述铁心(10)上沿所述铁心(10)的周向方向上设置有多组安装槽(30), 每组所述安装槽 (30) 包括两个或者两个以上在所述铁心 (10) 的径向方向上 间断设置的安装槽 (30);
所述永磁体 (20) 为多组, 每组所述永磁体 (20) 中的各个永磁体 (20) 对应地嵌入每组安装槽 (30) 的各个所述安装槽 (30) 中;
最外层的所述安装槽(30)与所述铁心(10)的外周之间具有岛形区域(12), 所述岛形区域(12)上具有加强孔(13 ),所述加强孔(13 )内设置有加强杆(60), 各所述加强杆 (60) 的端部之间通过加固件连接。
2. 根据权利要求 1所述的电动机转子, 其特征在于, 所述加强孔 (13 ) 为设置在 所述转子上的贯通孔, 所述加强杆 (60) 为铆钉, 所述铆钉穿过所述贯通孔并 与所述加固件相铆接。
3. 根据权利要求 1所述的电动机转子, 其特征在于, 每组所述安装槽 (30) 的岛 形区域 (12) 上都设置有加强孔 (13 )。
4. 根据权利要求 1所述的电动机转子, 其特征在于, 所述加固件为设置在所述铁 心 (10)两端的固定挡板(70), 所述加强杆 (60) 穿过所述加强孔(13 ) 并与 所述固定挡板 (70) 相连接。
5. 根据权利要求 1所述的电动机转子, 其特征在于, 从所述铁心 (10) 的外周方 向起, 每组的各个所述安装槽 (30) 的边缘与所述铁心 (10) 的外周的距离 L 逐渐增大。
6. 根据权利要求 5所述的电动机转子, 其特征在于, 每组所述安装槽 (30) 具有 两层安装槽时, 从所述铁心 (10) 的外周方向起, 最外侧的安装槽 (30) 和与 其相邻的所述安装槽 (30) 的边缘与所述铁心 (10) 的外周的距离分别为 La 禾口: Lb, 其中: 2La≥Lb≥l. lLa。
7. 根据权利要求 5所述的电动机转子, 其特征在于, 每组所述安装槽 (30) 包括 三个或者三个以上的在所述铁心 (10) 的径向方向上间断设置的安装槽 (30)。
8. 根据权利要求 7所述的电动机转子, 其特征在于, 从所述铁心 (10) 的圆心开 始由内向外方向起,从最靠近圆心的安装槽(30)起向外的三个所述安装槽(30) 的边缘与所述铁心(10)的外周的距离分别为 Lc、 Lb和 La, 其中: 2Lb≥Lc≥1.2 Lb, 2La≥Lb≥l. lLa。
9. 一种电动机, 其特征在于, 包括电动机定子 (50) 和权利要求 2至 8中任一项 所述的电动机转子, 所述电动机转子设置在所述电动机定子 (50) 的内侧。
10. 根据权利要求 9所述的电动机, 其特征在于, 还包括固定挡板(70), 所述铆钉 穿过所述固定挡板 (70) 和所述铁心 (10) 并连接所述固定挡板 (70) 和所述 转子。
11. 根据权利要求 9所述的电动机, 其特征在于, 所述电动机定子 (50) 的内周与 所述电动机转子的外周之间的间距为 n, 其中, 0.35mm≤n≤0.55mm。
PCT/CN2011/079059 2011-08-05 2011-08-29 电动机转子及具有其的电动机 WO2013020310A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11870544.1A EP2741399B1 (en) 2011-08-05 2011-08-29 Motor rotor and motor having same
US14/235,604 US9502930B2 (en) 2011-08-05 2011-08-29 Motor rotor and motor having same
DK11870544.1T DK2741399T3 (da) 2011-08-05 2011-08-29 Motorrotor og motor med en sådan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110224391.1 2011-08-05
CN2011102243911A CN102801235B (zh) 2011-08-05 2011-08-05 电动机转子及具有其的电动机

Publications (1)

Publication Number Publication Date
WO2013020310A1 true WO2013020310A1 (zh) 2013-02-14

Family

ID=47200245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079059 WO2013020310A1 (zh) 2011-08-05 2011-08-29 电动机转子及具有其的电动机

Country Status (5)

Country Link
US (1) US9502930B2 (zh)
EP (1) EP2741399B1 (zh)
CN (1) CN102801235B (zh)
DK (1) DK2741399T3 (zh)
WO (1) WO2013020310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123577A (zh) * 2021-11-05 2022-03-01 珠海格力电器股份有限公司 磁钢组件、转子组件和电机

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6215041B2 (ja) * 2013-12-20 2017-10-18 U−Mhiプラテック株式会社 モータ
KR101819848B1 (ko) * 2014-03-05 2018-01-17 미쓰비시덴키 가부시키가이샤 싱크로너스 리럭턴스 모터
ITUB20150608A1 (it) * 2015-04-14 2016-10-14 Ge Avio Srl Metodo di realizzazione di una struttura di rotore di una macchina elettrica sincrona a riluttanza, e relativa macchina elettrica sincrona a riluttanza
JP6571050B2 (ja) * 2016-06-29 2019-09-04 株式会社東芝 同期リラクタンス型回転電機
US10211692B2 (en) * 2016-08-11 2019-02-19 Hiwin Mikrosystems Corp. Permanent magnet motor
CN106329771B (zh) * 2016-08-31 2019-01-25 恒大法拉第未来智能汽车(广东)有限公司 电机的转子、电机及车辆
JP7005131B2 (ja) * 2016-09-16 2022-02-04 株式会社東芝 回転子の設計方法
JP6630690B2 (ja) * 2017-02-22 2020-01-15 本田技研工業株式会社 回転電機のロータ
TWM576750U (zh) 2017-07-25 2019-04-11 美商米沃奇電子工具公司 電氣組合物、電動化裝置系統、電池組、電馬達、馬達總成及電馬達總成
US11780061B2 (en) 2019-02-18 2023-10-10 Milwaukee Electric Tool Corporation Impact tool
US11916435B2 (en) * 2020-05-22 2024-02-27 Duxion Motors, Inc. Split electric machine for retrofit hybrid propulsion systems
WO2022051778A1 (en) * 2020-09-07 2022-03-10 ElectromagnetiX LLC Electric submersible pump motor stabilized by electromagnetics
US11955843B2 (en) * 2021-12-22 2024-04-09 Abb Schweiz Ag Synchronous reluctance motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358697A (en) * 1981-08-19 1982-11-09 Siemens-Allis, Inc. Two-pole permanent magnet synchronous motor rotor
CN1243351A (zh) * 1998-07-24 2000-02-02 松下电器产业株式会社 使用内永久磁铁转子的电动机以及采用该电动机的设备驱动单元
CN2681433Y (zh) * 2003-12-03 2005-02-23 浙江中源电气有限公司 伺服永磁电动机转子
CN101359847A (zh) * 2008-09-27 2009-02-04 沈阳工业大学 永磁风力发电机的组合转子结构
CN202142925U (zh) * 2011-08-05 2012-02-08 珠海格力电器股份有限公司 电动机转子及具有其的电动机

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1219228B (it) 1988-04-21 1990-05-03 Antonino Fratta Macchina elettrica sincrona a riluttanza dotata di mezzi di rifasamento intrinseco
MY155225A (en) 1995-05-31 2015-09-30 Panasonic Corp Motor with built-in permanent magnets
IT1276487B1 (it) 1995-07-11 1997-10-31 Alfredo Vagati Motore elettrico sincrono a riluttanza con bassa ondulazione di coppia
JP3681459B2 (ja) * 1996-02-23 2005-08-10 松下電器産業株式会社 同期電動機
JPH09308198A (ja) 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd 永久磁石モータ
JP3051340B2 (ja) 1996-06-18 2000-06-12 オークマ株式会社 同期電動機
CN1158741A (zh) 1996-10-22 1997-09-10 李宝满 一种用于降低嘌呤的中药组合物
JPH11262205A (ja) * 1998-03-12 1999-09-24 Fujitsu General Ltd 永久磁石電動機
JPH11275783A (ja) * 1998-03-20 1999-10-08 Matsushita Electric Ind Co Ltd 永久磁石埋め込みロータ
US6452302B1 (en) * 1998-09-28 2002-09-17 Hitachi, Ltd. Rotary electric machine and electric vehicle using the same
KR100371159B1 (ko) 1999-09-22 2003-02-05 엘지전자 주식회사 싱크로너스 리럭턴스 모터의 토오크 리플 저감구조
JP3602392B2 (ja) * 1999-12-21 2004-12-15 アイチエレック株式会社 永久磁石埋め込みモータ
JP2002010547A (ja) 2000-06-16 2002-01-11 Yamaha Motor Co Ltd 永久磁石回転子及びその製造方法
WO2002031947A1 (fr) 2000-10-12 2002-04-18 Matsushita Electric Industrial Co., Ltd. Moteur electrique
JP2002272031A (ja) 2001-03-07 2002-09-20 Aisin Seiki Co Ltd シンクロナスリラクタンスモータ
US6815859B2 (en) 2001-03-07 2004-11-09 Aisin Seiki Kabushiki Kaisha Synchronous reluctance motor
JP2002320363A (ja) 2001-04-20 2002-10-31 Denso Corp 車両用発電電動機
JP2002354729A (ja) 2001-05-25 2002-12-06 Hitachi Ltd 永久磁石式回転電機およびそれを用いた空気調和機
JP4680442B2 (ja) 2001-08-10 2011-05-11 ヤマハ発動機株式会社 モータの回転子
US6867526B2 (en) 2001-09-05 2005-03-15 Koyo Seiko Co., Ltd. Brushless DC motor
JP4139608B2 (ja) 2002-03-11 2008-08-27 株式会社タムラ製作所 精密加工用ステージ装置
JP4016341B2 (ja) 2003-06-19 2007-12-05 アイシン精機株式会社 三相シンクロナスリラクタンスモータ
KR20050069055A (ko) * 2003-12-30 2005-07-05 현대자동차주식회사 다층 매립형 영구자석 모터의 로터 구조
WO2005101614A1 (ja) 2004-04-06 2005-10-27 Hitachi Metals, Ltd. 回転子及びその製造方法
US20060103254A1 (en) * 2004-11-16 2006-05-18 Horst Gary E Permanent magnet rotor
US7436095B2 (en) 2005-10-31 2008-10-14 Caterpillar Inc. Rotary electric machine
JP4815204B2 (ja) * 2005-12-01 2011-11-16 アイチエレック株式会社 永久磁石回転機及び圧縮機
US20070159021A1 (en) 2005-12-19 2007-07-12 Emerson Electric Co. Composite magnet structure for rotor
JP2008136298A (ja) * 2006-11-28 2008-06-12 Toyota Industries Corp 回転電機の回転子及び回転電機
JP5221057B2 (ja) 2007-05-08 2013-06-26 アイチエレック株式会社 永久磁石回転機
US7598645B2 (en) * 2007-05-09 2009-10-06 Uqm Technologies, Inc. Stress distributing permanent magnet rotor geometry for electric machines
JP4900132B2 (ja) 2007-08-08 2012-03-21 株式会社豊田自動織機 回転子及び回転電機
JP5506151B2 (ja) * 2007-12-21 2014-05-28 アイチエレック株式会社 永久磁石回転機
CN201204529Y (zh) 2008-08-28 2009-03-04 无锡东元电机有限公司 永磁同步电机
US7902710B2 (en) 2008-10-01 2011-03-08 Caterpillar Inc. Electric machine
US7939982B2 (en) 2008-10-02 2011-05-10 Nidec Motor Corporation Motor with lobed rotor having uniform and non-uniform air gaps
US7902711B2 (en) 2008-12-09 2011-03-08 GM Global Technology Operations LLC Methods and apparatus for a permanent magnet machine with segmented ferrite magnets
JP2010213553A (ja) * 2009-03-12 2010-09-24 Panasonic Corp 電動機及び電気機器
JP2010226784A (ja) 2009-03-19 2010-10-07 Minebea Co Ltd モーター用磁石組立体及びこれを用いたローター並びにモーター
JP2011083066A (ja) 2009-10-02 2011-04-21 Osaka Prefecture Univ 永久磁石補助形同期リラクタンスモータ
CN102111051B (zh) 2011-02-25 2012-11-21 华北电力大学 一种具有复合材料起动导条的自起动永磁电机
CN102769365A (zh) 2011-07-28 2012-11-07 珠海格力电器股份有限公司 永磁同步电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358697A (en) * 1981-08-19 1982-11-09 Siemens-Allis, Inc. Two-pole permanent magnet synchronous motor rotor
CN1243351A (zh) * 1998-07-24 2000-02-02 松下电器产业株式会社 使用内永久磁铁转子的电动机以及采用该电动机的设备驱动单元
CN2681433Y (zh) * 2003-12-03 2005-02-23 浙江中源电气有限公司 伺服永磁电动机转子
CN101359847A (zh) * 2008-09-27 2009-02-04 沈阳工业大学 永磁风力发电机的组合转子结构
CN202142925U (zh) * 2011-08-05 2012-02-08 珠海格力电器股份有限公司 电动机转子及具有其的电动机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2741399A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123577A (zh) * 2021-11-05 2022-03-01 珠海格力电器股份有限公司 磁钢组件、转子组件和电机

Also Published As

Publication number Publication date
EP2741399A1 (en) 2014-06-11
EP2741399B1 (en) 2020-05-20
US9502930B2 (en) 2016-11-22
EP2741399A4 (en) 2016-01-06
CN102801235A (zh) 2012-11-28
CN102801235B (zh) 2013-09-18
DK2741399T3 (da) 2020-08-03
US20140191607A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
WO2013020310A1 (zh) 电动机转子及具有其的电动机
JP7337973B2 (ja) 同期リラクタンス機械及び、同期リラクタンス機械を製造する方法
JP6620097B2 (ja) 永久磁石モータ
JP5260563B2 (ja) 永久磁石式発電機またはモータ
JP5353962B2 (ja) 永久磁石型電動機
US20130270955A1 (en) Electromagnetic machine
CN202142925U (zh) 电动机转子及具有其的电动机
US11699930B2 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle
US11799333B2 (en) Permanent magnet auxiliary synchronous reluctance motor and electric vehicle provided with same
WO2016192582A1 (zh) 永磁电机转子及永磁同步电机
CN110729868B (zh) 一种磁钢内置式双u型分数槽集中绕组永磁电机
JP4588255B2 (ja) 自己始動リラクタンスモータの回転子
TWI676335B (zh) 轉子裝置及具有該轉子裝置的磁阻馬達
JP5679695B2 (ja) 永久磁石式回転電機
JP6664890B2 (ja) 界磁巻線型駆動モータの回転子
JP5793948B2 (ja) 同期電動機
JP2010045872A (ja) 永久磁石式回転機
JP7190019B2 (ja) 回転電機及びこれを備えた電動機車両
JP2014082836A (ja) ロータと、それを備える回転電機
TWI676336B (zh) 六極之轉子裝置及具有該六極之轉子裝置的磁阻馬達
JP2021166448A (ja) モーターローター及びこのローターを備えたリラクタンスモーター
CN114744795A (zh) 永磁同步电机及其转子
CN117424371A (zh) 一种永磁辅助磁阻同步电机及其电机转子
EP2662953A1 (en) Reinforced permanent magnet synchronous motor rotor for starting on line
JP2008048584A (ja) 同期リラクタンス型発電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14235604

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE