WO2016192582A1 - 永磁电机转子及永磁同步电机 - Google Patents

永磁电机转子及永磁同步电机 Download PDF

Info

Publication number
WO2016192582A1
WO2016192582A1 PCT/CN2016/083587 CN2016083587W WO2016192582A1 WO 2016192582 A1 WO2016192582 A1 WO 2016192582A1 CN 2016083587 W CN2016083587 W CN 2016083587W WO 2016192582 A1 WO2016192582 A1 WO 2016192582A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
main pole
rotor core
auxiliary
pole permanent
Prior art date
Application number
PCT/CN2016/083587
Other languages
English (en)
French (fr)
Inventor
肖勇
胡余生
陈彬
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2016192582A1 publication Critical patent/WO2016192582A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to the field of electrical equipment, and more particularly to a tangential permanent magnet motor rotor, and a permanent magnet synchronous motor including the above permanent magnet motor rotor.
  • the motor with the permanent magnet tangential magnetization structure has a "concentrating magnetic" effect, which can produce a higher air gap magnetic density than the permanent magnet radial magnetizing motor, so that the motor containing the permanent magnet tangential magnetization structure has a larger turn.
  • Moments/current ratios and torque/volume ratios, and thus motors containing permanent magnet tangential magnetization structures, are increasingly being used in servo systems, electric traction, office automation, household appliances, and the like.
  • the tangential permanent magnet motor provides air gap magnetic flux for both sides of a single permanent magnet, and the magnetic circuit is a parallel structure, so that the working point of the permanent magnet of the rotor is lower than that of the radial permanent magnet motor, which is easy to cause cutting.
  • the efficiency to the permanent magnet motor is degraded, and the risk of demagnetization of the tangential permanent magnet motor in a harsh environment makes the tangential permanent magnet motor inoperable.
  • a permanent magnet motor rotor, and a permanent magnet synchronous motor including the above permanent magnet motor rotor are necessary to aim at the problem that the main pole permanent magnet of the existing tangential permanent magnet motor has a low working point and is prone to the risk of demagnetization, and provides a working point capable of improving the main pole permanent magnet and improving the anti-demagnetization capability.
  • a permanent magnet motor rotor comprising:
  • a permanent magnet group disposed along a radial direction of the rotor core; and the permanent magnet group is evenly distributed along a circumferential direction of the rotor core;
  • the permanent magnet group comprises a tangentially magnetized main pole permanent magnet and a tangentially magnetized auxiliary permanent magnet, the main pole being permanent Magnets are disposed along a radial direction of the rotor core, and all of the auxiliary permanent magnets are disposed on the same side of the main pole permanent magnet; the sum of the number of the main pole permanent magnets and the permanent magnet The number of poles of the synchronous motor is equal, and the closest surface poles of any two adjacent main pole permanent magnets are the same.
  • the coercive force of the auxiliary permanent magnet is less than the coercive force of the main pole permanent magnet.
  • the width M of the auxiliary permanent magnet in the circumferential direction of the rotor core is smaller than the width L of the main pole permanent magnet in the circumferential direction of the rotor core.
  • the length B of the auxiliary permanent magnet in the radial direction of the rotor core is smaller than the length G of the main pole permanent magnet in the radial direction of the rotor core.
  • the number of the permanent magnet groups is four or more, and the number of the permanent magnet groups is an even number.
  • the permanent magnet motor rotor further includes a magnetic bridge group disposed at a circumferential edge position of the rotor core, the magnetic bridge group including two extension portions disposed opposite to each other;
  • extension of the rotor core on the front side of the main pole permanent magnet rotation direction is a first extension portion
  • extension of the rotor core on the rear side of the main pole permanent magnet rotation direction is a second extension portion
  • first extension portion and the second extension portion extend in opposite directions, and a gap is formed between the first extension portion and the second extension portion.
  • the first portion extending along the circumferential direction of the rotor core is smaller than the width D 1 of the second portion extending along the circumferential direction of the rotor core width D 2.
  • the length H of the radial direction of the rotor core 1 is greater than the first portion extending along a second radial direction of the rotor core 2 extending portion.
  • the magnetic isolation bridge group further includes a magnetic isolation portion located between the adjacent two of the main pole permanent magnets and adjacent to an inner side of the rotor core.
  • the cross-sectional shape of the magnetic isolation portion is triangular or trapezoidal, and the surface of the magnetic isolation portion where the triangular or the trapezoidal oblique side is located is parallel to the surface of the main pole permanent magnet.
  • a distance C 1 between the triangle of the magnetic isolation portion or the oblique side of the trapezoid and the surface of the front side of the main pole permanent magnet is larger than the triangle of the magnetic isolation portion Or the distance C 2 between the oblique side of the trapezoid and the surface of the rear side of the main pole permanent magnet.
  • the number of the auxiliary permanent magnets in each of the permanent magnet groups is one, and the auxiliary permanent magnets are located on a front side of the main pole permanent magnet rotation direction.
  • the width D 1 of the first extending portion in the circumferential direction of the rotor core is smaller than the width M of the auxiliary permanent magnet in the circumferential direction of the rotor core;
  • a width D 2 of the second extension portion in a circumferential direction of the rotor core is smaller than a width L of the main pole permanent magnet in a circumferential direction of the rotor core.
  • the number of the auxiliary permanent magnets in each of the permanent magnet groups is two, and two of the auxiliary permanent magnets are respectively located on both sides of the main pole permanent magnet.
  • the width D 1 of the first extending portion in the circumferential direction of the rotor core is smaller than the width M of the auxiliary permanent magnet on the front side of the main pole permanent magnet rotating direction;
  • the width D 2 of the second extension portion in the circumferential direction of the rotor core is larger than the width M of the auxiliary permanent magnet on the rear side of the main pole permanent magnet rotation direction.
  • any adjacent one of the main pole permanent magnets is disposed in parallel with the auxiliary permanent magnet.
  • any adjacent one of the main pole permanent magnets is in contact with a surface of the auxiliary permanent magnet having a different magnetic pole.
  • any adjacent one of the main pole permanent magnets is integral with the auxiliary permanent magnet.
  • a permanent magnet synchronous machine comprising a stator and a rotor, the rotor being a permanent magnet motor rotor according to any of the above technical features.
  • the permanent magnet motor rotor and the permanent magnet synchronous motor of the invention have simple and reasonable structural design, and a permanent magnet group is mounted on the rotor core, and a part of the magnetic lines of the main pole permanent magnet in the permanent magnet group and the permanent magnet group and the main pole can be permanently
  • the auxiliary permanent magnets arranged in parallel with the magnets are connected in series and then enter the air gap, which can significantly improve the working point of the main pole permanent magnet and improve the torque of the permanent magnet synchronous motor.
  • the anti-demagnetization capability of the main pole permanent magnet is improved, the risk of demagnetization is reduced, and the permanent magnet synchronous motor is guaranteed to operate normally.
  • FIG. 1 is a schematic structural view showing an embodiment in which an auxiliary permanent magnet is present on one side of a main pole permanent magnet of a permanent magnet motor rotor according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of another embodiment of the permanent magnet motor rotor shown in FIG. 1;
  • FIG. 3 is a schematic structural view showing a cross-sectional shape of a magnetic bridge group inside the rotor of the permanent magnet motor shown in FIG. 1 in a triangular shape;
  • FIG. 4 is a schematic structural view showing a cross-sectional shape of a magnetic bridge group inside the rotor of the permanent magnet motor shown in FIG. 1 in a trapezoidal shape;
  • FIG. 5 is a schematic structural view showing the auxiliary permanent magnets on both sides of the main pole permanent magnet of the permanent magnet motor rotor of the present invention
  • 140-magnetic bridge group 141-first extension; 142-second extension; 143-magnetic isolation.
  • a permanent magnet motor rotor 100 includes a rotor core 110 and a permanent magnet group, the permanent magnet group is disposed along a radial direction of the rotor core 110; and the permanent magnet group is along the rotor core 110.
  • the circumferential direction is evenly distributed.
  • the number of permanent magnet groups is equal to the number of poles of the permanent magnet synchronous motor.
  • the number of poles of the permanent magnet synchronous motor is an even number
  • the number of permanent magnet groups is also an even number
  • the number of even permanent magnet groups is along the circumference of the rotor core 110. Evenly distributed in the direction.
  • the permanent magnet group includes a tangentially magnetized main pole permanent magnet 120 and a tangentially magnetized auxiliary permanent magnet 130.
  • the sum of the number of main pole permanent magnets 120 is equal to the number of poles of the permanent magnet synchronous motor, that is, each permanent magnet
  • the set includes a main pole permanent magnet 120, and the number of main pole permanent magnets 120 in all permanent magnet groups is equal to the number of permanent magnet groups.
  • the main pole permanent magnet 120 is disposed along the radial direction of the rotor core 110, and the auxiliary permanent magnet 130 is disposed in parallel with the main pole permanent magnet 120.
  • the auxiliary permanent magnets 130 of all the permanent magnet groups are disposed on the same side of the main pole permanent magnets 120, and the closest surface magnetic poles of any two adjacent main pole permanent magnets 120 are the same, that is, the auxiliary in each permanent magnet group
  • the permanent magnet 130 has the same position as the main pole permanent magnet 120.
  • the permanent magnet group includes a main pole permanent magnet 120 such that both surfaces of the main pole permanent magnet 120 can simultaneously provide air gap magnetic flux, increase the air gap magnetic flux of the permanent magnet synchronous motor, and improve the utilization ratio of the air gap magnetic flux.
  • the closest surface magnetic poles of any two adjacent main pole permanent magnets 120 are the same, that is, the N pole of one of the main pole permanent magnets 120 is opposite to the N pole of another adjacent main pole permanent magnet 120, the main The S pole of the pole permanent magnet 120 is opposite to the S pole of the further adjacent pole permanent magnet 120, ensuring that the number of poles of the permanent magnet synchronous motor is equal to the number of the main pole permanent magnets 120.
  • the main pole permanent magnet 120 By uniformly mounting the main pole permanent magnet 120 on the rotor core 110, it is possible to ensure that the main pole permanent magnet 120 maintains a force balance under the repulsive force, so that the number of poles of the permanent magnet synchronous motor is equal to the number of the main pole permanent magnets 120.
  • the auxiliary permanent magnet 130 is disposed in parallel with the main pole permanent magnet 120, and the main pole permanent magnet 120 and the auxiliary permanent magnet 130 are both cut.
  • the magnetization causes the permanent magnet synchronous motor to generate a higher air gap flux, thereby ensuring a larger torque/current ratio and a torque/volume ratio of the permanent magnet synchronous motor.
  • the main pole permanent magnet 120 is placed in parallel with the auxiliary permanent magnet 130, and a portion of the magnetic field lines of the main pole permanent magnet 120 and the auxiliary permanent magnet 130 are disposed by arranging the auxiliary magnets 130 that are tangentially magnetized between any adjacent main pole permanent magnets 120.
  • the working point of the main pole permanent magnet 120 can be significantly improved, so that the permanent magnet motor rotor 100 generates more magnetic flux chains on the stator side, improves the utilization of the air gap magnetic flux, and improves the permanent magnet synchronous motor.
  • the output torque increases the efficiency of the permanent magnet synchronous motor.
  • the existing tangential permanent magnet motor provides air gap magnetic flux at the same time because the two faces of the single permanent magnet are provided, and the magnetic circuit is a parallel structure, so that the working point of the permanent magnet of the rotor is lower than the working point of the radial permanent magnet motor, which is easy to cause
  • the efficiency of the tangential permanent magnet motor is degraded and there is a risk of demagnetization, making the tangential permanent magnet motor inoperable.
  • the permanent magnet motor rotor 100 of the present invention will mount the auxiliary permanent magnet 130 in any two adjacent main pole permanent magnets 120 such that a part of the magnetic lines of the main pole permanent magnet 120 are connected in series with the auxiliary permanent magnet 130 and then enter the air gap.
  • the working point of the main pole permanent magnet 120 can be significantly improved, and the torque of the permanent magnet synchronous motor can be improved. Due to the improvement of the working point of the main pole permanent magnet 120, the anti-demagnetization capability of the main pole permanent magnet 120 is improved, the risk of demagnetization of the permanent magnet synchronous motor running under severe working conditions is reduced, and the permanent magnet synchronous motor is guaranteed to operate normally. .
  • the number of permanent magnet groups is greater than or equal to four.
  • Each permanent magnet group includes a main pole permanent magnet 120, and the number of permanent magnet groups is greater than or equal to four, that is, the number of main pole permanent magnets 120 is set to four or more, so that the permanent magnet synchronous motor can be better Converging magnetic effect for higher torque output.
  • the number of main pole permanent magnets 120 is six, and the six main pole permanent magnets 120 are opposed to the N poles according to the N poles, and the S poles are opposite to the S poles.
  • the auxiliary permanent magnets 130 are located on one side and two sides of the main pole permanent magnets 120, and the N poles and the S poles of the auxiliary permanent magnets 130 respectively correspond to the S poles or the N poles of any two adjacent main pole permanent magnets 120.
  • the auxiliary permanent magnet 130 is located on the front side of the rotor core 110 in the direction in which the main pole permanent magnet 120 rotates.
  • the main pole permanent magnet 120 is located on the rear side in the rotational direction of the rotor core 110, that is, the front side of the rotor core 110 in the rotational direction is the front side of the main pole permanent magnet 120, and the rear side of the rotor core 110 is rotated. The rear side of the main pole permanent magnet 120.
  • the corresponding magnetic poles of the main pole permanent magnet 120 are arranged in the clockwise direction as N-S-S-N-N-S-S-N-N-S-S-N.
  • the main pole permanent magnet 120 at this position is NS in the clockwise direction, and when the rotor core 110 is rotated clockwise, as shown in FIG.
  • the S of the main pole permanent magnet 120 is the front side of the rotation direction of the rotor core 110
  • the N of the main pole permanent magnet 120 is the rear side of the rotation direction of the rotor core 110; when the rotor core 110 rotates counterclockwise At the time of the arrow direction shown in FIG. 3, the N of the main pole permanent magnet 120 is the front side in the rotation direction of the rotor core 110, and the S of the main pole permanent magnet 120 is extremely rotated.
  • the rear side of the rotation direction of the sub-iron core 110 can make the permanent magnet synchronous motor with a load running, the magnetic field line of the permanent magnet motor rotor is smoother, and a larger torque output is realized under a unit current.
  • the coercive force of the auxiliary permanent magnet 130 is smaller than the coercive force of the main pole permanent magnet 120. It is found that the working point of the auxiliary permanent magnet 130 is always higher than the working point of the main pole permanent magnet 120, which makes the anti-demagnetization capability of the auxiliary permanent magnet 130 and the main pole permanent magnet 120 inconsistent, and reduces the anti-demagnetization of the permanent magnet synchronous motor. ability.
  • the coercive force of the auxiliary permanent magnet 130 being smaller than the coercive force of the main pole permanent magnet 120, the working point of the auxiliary permanent magnet 130 can be made close to the working point of the main pole permanent magnet 120, so as to improve the overall resistance of the permanent magnet synchronous motor. Demagnetization ability.
  • the width M of the auxiliary permanent magnet 130 in the circumferential direction of the rotor core is smaller than the width L of the main pole permanent magnet 120 in the circumferential direction of the rotor core 110 such that the working point of the auxiliary permanent magnet 130 and the main pole are permanent.
  • the working points of the magnets 120 are close to each other to improve the overall anti-demagnetization capability of the permanent magnet synchronous motor.
  • the length B of the auxiliary permanent magnet 130 in the radial direction of the rotor core 110 is smaller than the length G of the main pole permanent magnet 120 in the radial direction of the rotor core 110.
  • the main pole permanent magnet 120 has a part of the flux linkage in series with the auxiliary permanent magnet 130 and enters the air gap, and the other part of the flux linkage is adjacent to the front side of the main pole permanent magnet 120 in the rotational direction.
  • the end of the permanent magnet 130 enters the air gap, and the length B of the auxiliary permanent magnet 130 in the radial direction of the rotor core 110 can be made smaller than the length G of the main pole permanent magnet 120 in the radial direction of the rotor core 110.
  • the magnetic flux of the other part of the flux linkage does not fall due to saturation of the magnetic circuit.
  • the permanent magnet motor rotor 100 further includes a magnetic bridge group 140 disposed at a circumferential edge position of the rotor core 110, the number of the magnetic bridge groups 140 and the permanent magnet group The quantity is consistent.
  • the magnetic bridge assembly 140 includes two extensions that are disposed opposite each other.
  • the extending portion of the rotor core 110 on the front side in the rotation direction of the main pole permanent magnet 120 is the first extension portion 141; the extension portion of the rotor core 110 on the rear side in the rotation direction of the main pole permanent magnet 120 is the second extension portion. 142.
  • the extending direction of the first extending portion 141 and the second extending portion 142 are opposite, and there is a gap between the first extending portion 141 and the second extending portion 142.
  • the magnetic bridge group 140 is added to the rotor core 110, and the principle is to make the magnetic bridge group 140 as narrow as possible, so that the rotor core 110 is prone to magnetic saturation.
  • magnetic clogging occurs after magnetic saturation, and the remaining magnetic lines of force cannot pass through the magnetic bridge group 140, but can only pass through the air gap of the rotor core 110, and the magnetic lines pass through the teeth and yoke portions of the stator core. Then, after passing through the tooth, and finally returning from the air gap, in this process, the magnetic line and the stator winding are interlinked to realize electromagnetic induction.
  • the magnetic isolation bridge group 140 with the notch serves to prevent the magnetic flux leakage at the end of the rotor core 110, so that the permanent magnet motor rotor of the permanent magnet synchronous motor can generate a larger magnetic flux on the stator and improve the rotation. The output of the moment.
  • the notch is formed by the first bridge portion 141 of the magnetic bridge group 140 on the front side of the main pole permanent magnet 120 and the magnetic bridge group 140 at the main pole
  • the second extension portion 142 of the rear side of the permanent magnet 120 is formed, and the width of the notch is smaller than the width of the main pole permanent magnet 120 and the auxiliary permanent magnet 130 in the circumferential direction of the rotor core 110.
  • the width D 1 of the first extension portion 141 of the magnetic isolation bridge group 140 on the front side of the main pole permanent magnet 120 in the circumferential direction of the rotor core 110 is smaller than the magnetic isolation bridge group 140 on the rear side of the main pole permanent magnet 120
  • the second extension portion 142 has a width D 2 along the circumferential direction of the rotor core 110.
  • the length H 1 of the first extension portion 141 of the magnetic bridge group 140 on the front side of the main pole permanent magnet 120 in the radial direction of the rotor core 110 is larger than the length of the magnetic bridge assembly 140 behind the main pole permanent magnet 120
  • the second extension portion 142 of the side has a length H 2 along the circumferential direction of the rotor core 110.
  • the stress of the magnetic bridge group 140 on which the rotor core 110 is located on both sides of the main pole permanent magnet 120 is different.
  • the stress of the magnetic bridge group 140 on the front side of the main pole permanent magnet 120 is always greater than the stress of the magnetic bridge group 140 on the rear side of the main pole permanent magnet 120.
  • the main pole permanent magnet 120 is The width D 1 of the front side magnetic bridge group 140 (first extension portion 141) in the circumferential direction of the rotor core 110 is larger than the magnetic bridge group 140 (second extension portion 142) along the rear side of the main pole permanent magnet 120
  • the width D 2 of the rotor core 110 in the circumferential direction; the width H 1 of the magnetic bridge group 140 (first extension portion 141) on the front side of the main pole permanent magnet 120 in the radial direction of the rotor core 110 is smaller than the main pole permanent magnet
  • the width H 2 of the magnetic isolation bridge group 140 (second extension portion 142) on the rear side of the 120 in the radial direction of the rotor core 110 can reduce the front side of the rotation direction of the rotor core 110 without increasing the magnetic flux leakage.
  • the stress concentration of the magnetic bridge group 140 enhances the mechanical strength of the rotor core 110.
  • the magnetic isolation bridge group 140 further includes a magnetic isolation portion 143, and the magnetic isolation portion 143 is located at an inner side of the adjacent two main pole permanent magnets 120 near the rotor core 110. Further, the cross-sectional shape of the magnetic isolation portion 143 is triangular or trapezoidal, and the surface of the magnetic isolation portion 143 where the triangular or trapezoidal oblique sides are located is parallel to the surface of the main pole permanent magnet 120.
  • the magnetic isolation portion 143 having a triangular or trapezoidal cross-sectional shape such that any two adjacent main pole permanent magnets 120 have a magnetic isolation structure near the inner side of the rotor core 110, so that silicon steel between any two adjacent main pole permanent magnets 120
  • the magnetic isolation bridge group 140 of the sheet structure has better strength and is not easily inclined to both sides, and it is easier to ensure the placement size of the main pole permanent magnet 120 on the rotor core 110.
  • the distance C 1 between the triangular or trapezoidal oblique sides of the magnetic isolation portion 143 and the surface of the rear side of the main pole permanent magnet 120 is larger than the triangular or trapezoidal oblique side of the magnetic isolation portion 143 and the adjacent main pole
  • the distance C 2 between the surfaces of the front side of the permanent magnet 120 can reduce the stress concentration of the front side magnetic bridge group 140 of the main pole permanent magnet 120 and enhance the mechanical strength of the rotor core 110.
  • the triangular or trapezoidal oblique side of the magnetic flux barrier portion 143 and the rear side of the main pole permanent magnet 120 The distance C 1 between the surfaces refers to the distance between the triangular or trapezoidal oblique side of the magnetic isolation portion 143 and the surface of the rear side of the main pole permanent magnet 120 at the b position; the triangular or trapezoidal shape of the magnetic isolation portion 143
  • the distance C 2 between the hypotenuse and the surface of the front side of the adjacent main pole permanent magnet 120 means the triangular or trapezoidal oblique side of the magnetic isolation portion 143 and the front surface of the main pole permanent magnet 120 at the c position. the distance between.
  • each permanent magnet group includes one auxiliary permanent magnet 130 and one main pole permanent magnet 120. It has been found that when the permanent magnet synchronous motor load is operated, the magnetic field line generating the torque is always on the front side of the main pole permanent magnet 120, and the auxiliary permanent magnet 130 is placed on the front side of the main pole permanent magnet 120 along the rotation direction of the rotor core 110.
  • the auxiliary permanent magnet 130 can be made to better complement the magnetic lines of force generated by the main pole permanent magnet 120, and a larger torque output can be realized.
  • the auxiliary permanent magnet 130 is located on the front side of the main pole permanent magnet 120, and the surface of the auxiliary permanent magnet 130 and the main pole permanent magnet 120 are close to each other or exist.
  • the preset distance improves the efficiency of the permanent magnet synchronous motor by the auxiliary permanent magnet 130, and ensures the efficiency and anti-demagnetization effect of the permanent magnet synchronous motor.
  • the width D 1 of the first extending portion 141 in the circumferential direction of the rotor core 110 is smaller than the width M of the auxiliary permanent magnet 130 in the circumferential direction of the rotor core 110; the second extending portion 142 is along the rotor iron
  • the width D 2 of the core 110 in the circumferential direction is smaller than the width L of the main pole permanent magnet 120 in the circumferential direction of the rotor core 110.
  • the auxiliary permanent magnet 130 is always located on the front side of the main pole permanent magnet 120, that is, the auxiliary permanent magnet 130 corresponds to the first extension portion 141, and the main pole permanent magnet 120 corresponds to the second extension portion 142.
  • the first extension portion 141 corresponds to the auxiliary permanent magnet 130
  • the second extension portion 142 corresponds to the main pole permanent magnet 120.
  • the first extension portion 141 is along the rotor core.
  • the width D 1 of the 110 circumferential direction is smaller than the width M of the auxiliary permanent magnet 130 in the circumferential direction of the rotor core 110; the width D 2 of the second extension portion 142 in the circumferential direction of the rotor core 110 is smaller than that of the main pole permanent magnet 120
  • each permanent magnet group may also be two, and the two auxiliary permanent magnets 130 are respectively located on both sides of the main pole permanent magnet 120. That is, each permanent magnet group includes two composite group magnets 120 and one main pole permanent magnet 120. The auxiliary permanent magnet 130 is different from the main pole permanent magnet 120. If the main pole permanent magnet 120 is increased, the number of poles of the permanent magnet synchronous motor is increased, and the auxiliary permanent magnet 130 is also a tangentially magnetized permanent magnet, but the auxiliary permanent magnet 130 is not added. Affecting the number of poles of a permanent magnet synchronous motor is only helpful for the efficiency and demagnetization of a permanent magnet synchronous motor.
  • the efficiency of the permanent magnet synchronous motor and the anti-demagnetization effect are remarkable. Therefore, when the number of the auxiliary permanent magnets 130 is two, the efficiency of the permanent magnet synchronous motor and the anti-demagnetization effect are more remarkable.
  • the magnetic bridge spacer group 140 before the rotation direction of the rotor core 110 side of the first extending portion 141 of the rotor core 110 along the circumferential direction D 1 is smaller than the width of the front of the main pole permanent magnet 120 side of the rotational direction
  • the width M of the auxiliary permanent magnet (130); the width D 2 of the second extension portion 142 of the magnetic bridge group 140 on the rear side in the rotation direction of the main pole permanent magnet 120 in the circumferential direction of the rotor core 110 is larger than that in the main pole permanent magnet 120
  • the first extension portion 141 and the second extension portion 142 respectively correspond to the auxiliary permanent magnets 130 on both sides of the main pole permanent magnet 120.
  • the first extension portion 141 is required to be smaller than The width M of the auxiliary permanent magnet 130 corresponding to the position
  • the second extension portion 142 is greater than the width M of the auxiliary permanent magnet 130 at the corresponding position. This defines the width of the gap of the magnetic bridge group 140, and ensures that the main pole permanent magnet 120 and the auxiliary permanent magnet 130 are well fixed inside the rotor core 110, and the main pole permanent magnet 120 and the auxiliary permanent magnet 130 can be reduced. Magnetic leakage phenomenon outside the rotor core 110.
  • the width D 1 of the first extension portion 141 in the circumferential direction of the rotor core 110 is smaller than the width M of the auxiliary permanent magnet 130, and the width D 2 of the second extension portion 142 in the circumferential direction of the rotor core 110 is larger than the width of the auxiliary permanent magnet 130.
  • any adjacent main pole permanent magnets 120 are placed in parallel with the auxiliary permanent magnets 130, and the surface phases of any adjacent main pole permanent magnets 120 and the auxiliary permanent magnets 130 are different.
  • the main pole permanent magnet 120 has the same magnetic pole as the auxiliary permanent magnet 130.
  • the direction of the arrow shown in FIG. 2 is the rotation direction of the rotor core 110, and the magnetic poles on the front side and the rear side of the main pole permanent magnet 120 are the S pole and the N pole, respectively.
  • the magnetic poles of the auxiliary permanent magnet 130 on the front side of the main pole permanent magnet 120 are an N pole and an S pole, respectively.
  • the S pole of the main pole permanent magnet 120 is in contact with the N pole of the auxiliary permanent magnet 130, and the magnetic poles on the front side and the rear side of the permanent magnet group at the a position are the S pole and the N pole, respectively.
  • any adjacent auxiliary permanent magnet 130 and the main pole permanent magnet 120 may be placed together, in order to simplify the production process, it may also assist the Yong.
  • the magnet 130 is integrated with the main pole permanent magnet 120.
  • a permanent magnet synchronous motor includes at least a permanent magnet motor rotor 100 having a main pole permanent magnet 120 and an auxiliary permanent magnet 130 and a stator outside the permanent magnet motor rotor 100; and the permanent magnet motor rotor 100 is any of the above implementations.
  • the permanent magnet motor rotor 100 in the example.
  • the stator includes a stator core and stator windings, and the stator windings are mounted on the stator core. Mounting the auxiliary permanent magnet 130 between any two adjacent main pole permanent magnets 120 of the permanent magnet motor rotor 100 can significantly increase the operating point of the main pole permanent magnet 120, so that the permanent magnet motor rotor 100 produces more on the stator side.
  • the magnetic flux chain improves the utilization of the air gap flux, improves the output torque of the permanent magnet synchronous motor, and improves the efficiency of the permanent magnet synchronous motor.
  • the anti-demagnetization capability of the main pole permanent magnet 120 is improved, and the permanent magnet synchronous motor is reduced. The risk of demagnetization under inferior conditions.

Abstract

一种永磁电机转子(100)及永磁同步电机。该永磁电机转子包括:转子铁芯(110);以及永磁体组,永磁体组沿转子铁芯的径向方向设置;且永磁体组沿转子铁芯的周向方向均匀分布;其中,永磁体组包括切向磁化的主极永磁体(120)和切向磁化的辅助永磁体(130),主极永磁体沿转子铁芯的径向方向设置,所有永磁体组中辅助永磁体均设置在主极永磁体的同一侧;主极永磁体的数量总和与永磁同步电机的极数相等,且任意相邻的两个主极永磁体最接近的表面磁极相同,以达到提高永磁同步电机效率、提升永磁同步电机抗退磁能力的目的。

Description

永磁电机转子及永磁同步电机
相关申请
本发明申请要求2015年05月29日申请的,申请号为201510291140.3,名称为“永磁电机转子及永磁同步电机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及电机设备领域,特别是涉及一种切向式的永磁电机转子,以及含有上述永磁电机转子的永磁同步电机。
背景技术
含有永磁体切向磁化结构的电机由于具有“聚磁”效果,较永磁体径向磁化电机,能够产生更高的气隙磁密,使得含有永磁体切向磁化结构的电机具有较大的转矩/电流比和转矩/体积比,进而含有永磁体切向磁化结构的电机越来越多地被应用于伺服系统、电力牵引、办公自动化、家用电器等场合。
目前,切向永磁电机由于是单个永磁体的两个面同时提供气隙磁通,磁路为并联结构,使得转子永磁体的工作点较径向永磁电机的工作点低,容易引起切向永磁电机的效率下降,并且在恶劣环境下切向永磁电机存在退磁的风险,使得切向永磁电机无法运转。
发明内容
基于此,有必要针对现有的切向永磁电机中主极永磁体的工作点较低,易存在退磁风险的问题,提供一种能够提高主极永磁体的工作点、提升抗退磁能力的永磁电机转子,以及含有上述永磁电机转子的永磁同步电机。
上述目的通过下述技术方案实现:
一种永磁电机转子,包括:
转子铁芯;以及
永磁体组,所述永磁体组沿所述转子铁芯的径向方向设置;且所述永磁体组沿所述转子铁芯的周向方向均匀分布;
其中,所述永磁体组包括切向磁化的主极永磁体和切向磁化的辅助永磁体,所述主极永 磁体沿所述转子铁芯的径向方向设置,所有所述永磁体组中所述辅助永磁体均设置在所述主极永磁体的同一侧;所述主极永磁体的数量总和与永磁同步电机的极数相等,且任意相邻的两个所述主极永磁体最接近的表面磁极相同。
在其中一个实施例中,所述辅助永磁体的矫顽力小于所述主极永磁体的矫顽力。
在其中一个实施例中,所述辅助永磁体沿所述转子铁芯周向方向上的宽度M小于所述主极永磁体沿所述转子铁芯周向方向上的宽度L。
在其中一个实施例中,所述辅助永磁体沿所述转子铁芯径向方向上的长度B小于所述主极永磁体沿所述转子铁芯径向方向上的长度G。
在其中一个实施例中,其特征在于,所述永磁体组的数量大于等于四个,且所述永磁体组的数量为偶数个。
在其中一个实施例中,所述永磁电机转子还包括设置在所述转子铁芯的周向边缘位置上隔磁桥组,所述隔磁桥组包括相对设置的两个延伸部;
其中,所述转子铁芯在所述主极永磁体旋转方向的前侧的延伸部为第一延伸部,所述转子铁芯在所述主极永磁体旋转方向的后侧的延伸部为第二延伸部,所述第一延伸部和所述第二延伸部向相对的方向延伸,且所述第一延伸部和所述第二延伸部之间存在缺口。
在其中一个实施例中,所述第一延伸部沿所述转子铁芯周向方向的宽度D1小于所述第二延伸部沿所述转子铁芯周向方向的宽度D2
在其中一个实施例中,所述第一延伸部沿所述转子铁芯径向方向的长度H1大于所述第二延伸部沿所述转子铁芯径向方向的长度H2
在其中一个实施例中,所述隔磁桥组还包括隔磁部,所述隔磁部位于相邻的两个所述主极永磁体之间且靠近所述转子铁芯的内侧。
在其中一个实施例中,所述隔磁部的截面形状为三角形或者梯形,且所述三角形或者所述梯形的斜边所在的隔磁部的表面均与所述主极永磁体的表面相平行。
在其中一个实施例中,所述隔磁部的所述三角形或者所述梯形的斜边与所述主极永磁体前侧的表面之间的距离C1大于所述隔磁部的所述三角形或者所述梯形的斜边与所述主极永磁体后侧的表面之间的距离C2
在其中一个实施例中,每个所述永磁体组中所述辅助永磁体的数量为一个,且所述辅助永磁体位于所述主极永磁体旋转方向的前侧。
在其中一个实施例中,所述第一延伸部沿所述转子铁芯周向方向的宽度D1小于所述辅助 永磁体沿所述转子铁芯周向方向上的宽度M;
所述第二延伸部沿所述转子铁芯周向方向的宽度D2小于所述主极永磁体沿所述转子铁芯周向方向的宽度L。
在其中一个实施例中,每个所述永磁体组中所述辅助永磁体的数量为两个,且两个所述辅助永磁体分别位于所述主极永磁体的两侧。
在其中一个实施例中,所述第一延伸部沿所述转子铁芯周向方向的宽度D1小于所述主极永磁体旋转方向前侧的所述辅助永磁体的宽度M;
所述第二延伸部沿所述转子铁芯周向方向的宽度D2大于所述主极永磁体旋转方向后侧的所述辅助永磁体的宽度M。
在其中一个实施例中,任意相邻的所述主极永磁体与所述辅助永磁体平行设置。
在其中一个实施例中,任意相邻的所述主极永磁体与所述辅助永磁体的磁极相异的表面相贴合。
在其中一个实施例中,任意相邻的所述主极永磁体与所述辅助永磁体为一体。
还涉及一种永磁同步电机,包括定子和转子,所述转子为上述任一技术特征所述的永磁电机转子。
本发明的有益效果是:
本发明的永磁电机转子及永磁同步电机,结构设计简单合理,在转子铁芯上安装永磁体组,可以将永磁体组中主极永磁体的一部分磁力线与永磁体组中与主极永磁体平行设置的辅助永磁体串联后再进入气隙,这样能够显著提高主极永磁体的工作点,提高永磁同步电机的转矩。同时,由于主极永磁体的工作点的提高,使得主极永磁体的抗退磁能力得到了提高,减小退磁的风险,保证永磁同步电机正常运转。
附图说明
图1为本发明一实施例的永磁电机转子的主极永磁体的一侧存在辅助永磁体的一实施方式的结构示意图;
图2图1所示的永磁电机转子的另一实施方式的结构示意图;
图3为图1所示的永磁电机转子内侧的隔磁桥组的截面形状为三角形的结构示意图;
图4为图1所示的永磁电机转子内侧的隔磁桥组的截面形状为梯形的结构示意图;
图5为本发明的永磁电机转子的主极永磁体的两侧存在辅助永磁体的结构示意图;
其中:
100-永磁电机转子;
110-转子铁芯;
120-主极永磁体;
130-辅助永磁体;
140-隔磁桥组;141-第一延伸部;142-第二延伸部;143-隔磁部。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明的永磁电机转子及永磁同步电机进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
参见图1,本发明一实施例的永磁电机转子100,包括转子铁芯110和永磁体组,永磁体组沿转子铁芯110的径向方向设置;且永磁体组沿转子铁芯110的周向方向均匀分布。永磁体组的数量等于永磁同步电机的极数,相应的,永磁同步电机的极数为偶数级,永磁体组的数量也为偶数个,偶数个永磁体组沿转子铁芯110的周向方向均匀分布。其中,永磁体组包括切向磁化的主极永磁体120和切向磁化的辅助永磁体130,主极永磁体120的数量总和与永磁同步电机的极数相等,也就是说每个永磁体组包括一个主极永磁体120,所有永磁体组中的主极永磁体120的数量等于永磁体组的数量。主极永磁体120沿转子铁芯110的径向方向设置,辅助永磁体130与主极永磁体120平行设置。所有永磁体组中辅助永磁体130均设置在主极永磁体120的同一侧,且任意相邻的两个主极永磁体120最接近的表面磁极相同,也就是说每个永磁体组中辅助永磁体130相对主极永磁体120的位置相同。永磁体组包括一个主极永磁体120,使得主极永磁体120的两个表面同时能够提供气隙磁通,增加永磁同步电机的气隙磁通量,提高气隙磁通的利用率。同时,任意相邻的两个主极永磁体120最接近的表面磁极相同,也就是其中一个主极永磁体120的N极与另一相邻的主极永磁体120的N极相对,该主极永磁体120的S极与再一相邻的主极永磁体120的S极相对,保证永磁同步电机的极数等于主极永磁体120的数量。通过主极永磁体120均匀安装在转子铁芯110上,能够保证主极永磁体120在排斥力作用下保持受力平衡,使得永磁同步电机的极数等于主极永磁体120的数量。
辅助永磁体130与主极永磁体120平行设置,主极永磁体120与辅助永磁体130都为切 向充磁,使得永磁同步电机能够产生更高的气隙磁通,进而保证永磁同步电机具有较大的转矩/电流比和转矩/体积比。主极永磁体120与辅助永磁体130平行放置,通过将切向磁化的辅助永磁体130布置在任意相邻的主极永磁体120之间,主极永磁体120的一部分磁力线与辅助永磁体130串连后再进入气隙,可以显著提高主极永磁体120的工作点,使得永磁电机转子100在定子侧产生更多的磁链,提高气隙磁通的利用率,提升永磁同步电机的输出转矩,提高永磁同步电机的效率。
现有的切向永磁电机由于是单个永磁体的两个面同时提供气隙磁通,磁路为并联结构,使得转子永磁体的工作点较径向永磁电机的工作点低,容易引起切向永磁电机的效率下降,并且存在退磁的风险,使得切向永磁电机无法运转。本发明的永磁电机转子100在任意相邻的两个主极永磁体120会将安装辅助永磁体130,使得主极永磁体120的一部分磁力线与辅助永磁体130串联后再进入气隙,这样能够显著提高主极永磁体120的工作点,提高永磁同步电机的转矩。由于主极永磁体120的工作点的提高,使得主极永磁体120的抗退磁能力得到了提高,减小了永磁同步电机在恶劣工况下运行的退磁风险,保证永磁同步电机正常运转。
作为一种可实施方式,永磁体组的数量大于等于四个。每个永磁体组中包括一个主极永磁体120,永磁体组的数量大于等于四个,即将主极永磁体120的个数设置成四个以上,这样可以更好的使得永磁同步电机具有聚磁效果,实现更高的转矩输出。在本实施例中,主极永磁体120的数量为六个,且六个主极永磁体120按照N极与N极相对,S极与S极相对设置。辅助永磁体130位于主极永磁体120的一侧和两侧,辅助永磁体130的N极和S极分别对应任意相邻的两个主极永磁体120的S极或者N极。
参见图2和图3,转子铁芯110转动时,对于同一个永磁体组而言,转子铁芯110转动时,辅助永磁体130位于转子铁芯110上主极永磁体120旋转方向的前侧,相对的,主极永磁体120位于转子铁芯110上旋转方向的后侧,即转子铁芯110旋转方向的前侧为主极永磁体120的前侧,转子铁芯110旋转方向的后侧为主极永磁体120的后侧。转子铁芯110转动时,在转子铁芯110的a-b-c-d-e-f位置处,主极永磁体120的相应磁极按照顺时针方向排布为N-S-S-N-N-S-S-N-N-S-S-N。以转子铁芯110的a位置处的主极永磁体120为例,该位置处的主极永磁体120的沿顺时针方向为N-S,当转子铁芯110顺时针方向转动时,如图2所示的箭头方向,主极永磁体120的S极为转子铁芯110旋转方向的前侧,主极永磁体120的N极为转子铁芯110旋转方向的后侧;当转子铁芯110逆时针方向转动时,如图3所示的箭头方向,主极永磁体120的N极为转子铁芯110旋转方向的前侧,主极永磁体120的S极为转 子铁芯110旋转方向的后侧,可以使得永磁同步电机带负载运行时,永磁电机转子磁力线更加顺畅,单位电流下实现更大的转矩输出。
作为一种可实施方式,辅助永磁体130的矫顽力小于主极永磁体120的矫顽力。研究发现,辅助永磁体130的工作点总是高于主极永磁体120的工作点,这使得辅助永磁体130与主极永磁体120的抗退磁能力不一致,降低了永磁同步电机的抗退磁能力。通过辅助永磁体130的矫顽力小于主极永磁体120的矫顽力,可以使得辅助永磁体130的工作点与主极永磁体120的工作点相接近,以提升永磁同步电机整体的抗退磁能力。当然,还可以通过辅助永磁体130沿转子铁芯周向方向上的宽度M小于主极永磁体120沿转子铁芯110周向方向上的宽度L使得辅助永磁体130的工作点与主极永磁体120的工作点相接近,以提升永磁同步电机整体的抗退磁能力。
作为一种可实施方式,辅助永磁体130沿转子铁芯110径向方向上的长度B小于主极永磁体120沿转子铁芯110径向方向上的长度G。在永磁同步电机的运行过程中,主极永磁体120有一部分磁链与辅助永磁体130串联后进入气隙,另一部分磁链从位于主极永磁体120的旋转方向前侧的相邻辅助永磁体130的末端进入气隙,通过将辅助永磁体130沿转子铁芯110径向方向上的长度B小于主极永磁体120沿转子铁芯110径向方向上的长度G,可以使这部分另一部分磁链的磁通不会因为磁路饱和而下降。
参见图3至图5,永磁电机转子100还包括隔磁桥组140,隔磁桥组140设置在转子铁芯110的周向边缘位置上,隔磁桥组140的数量与永磁体组的数量相一致。隔磁桥组140包括相对设置在的两个延伸部。其中,转子铁芯110在主极永磁体120旋转方向的前侧的延伸部为第一延伸部141;转子铁芯110在主极永磁体120旋转方向的后侧的延伸部为第二延伸部142。第一延伸部141和第二延伸部142的延伸方向相反,且第一延伸部141和第二延伸部142之间存在缺口。在转子铁芯110上增加隔磁桥组140,采用的原理就是让隔磁桥组140尽可能的窄,使得转子铁芯110易出现磁饱和的现象。一般发生磁饱和后会出现磁堵塞现象,剩下的磁力线将无法从隔磁桥组140上通过,只能从转子铁芯110的气隙中通过,磁力线经过定子铁芯的齿部、轭部、再经过齿部,最后从气隙归来,在这过程中实现了磁力线与定子绕组交链,实现电磁感应。通过带有缺口的隔磁桥组140起到防止转子铁芯110的端部出现漏磁的问题,使得永磁同步电机的永磁电机转子可以在定子上产生更大的磁通,提升了转矩的输出。
缺口由隔磁桥组140在主极永磁体120的前侧的第一延伸部141和隔磁桥组140在主极 永磁体120的后侧的第二延伸部142形成,且缺口的宽度小于主极永磁体120与辅助永磁体130沿转子铁芯110周向方向的宽度和。通过此设置,可以保证主极永磁体120和辅助永磁体130充分固定,不会由于转子铁芯110高速旋转时,主极永磁体120和辅助永磁体130承受较大的离心力脱离转子铁芯110,也可以使得永磁体在隔磁桥组140的第一延伸部141和第二延伸部142处的漏磁较小,提高了永磁同步电机的效率。
进一步地,隔磁桥组140在主极永磁体120的前侧的第一延伸部141沿转子铁芯110周向方向的宽度D1小于隔磁桥组140在主极永磁体120的后侧的第二延伸部142沿转子铁芯110周向方向的宽度D2。更进一步的,隔磁桥组140在主极永磁体120的前侧的第一延伸部141沿转子铁芯110径向方向的长度H1大于隔磁桥组140在主极永磁体120的后侧的第二延伸部142沿转子铁芯110周向方向的长度H2。研究发现,永磁同步电机旋转时,转子铁芯110位于主极永磁体120两边的隔磁桥组140所承受的应力是不相同的。转子铁芯110转动时,主极永磁体120的前侧的隔磁桥组140应力始终大于主极永磁体120的后侧的隔磁桥组140应力,为此,将主极永磁体120的前侧的隔磁桥组140(第一延伸部141)沿转子铁芯110周向方向的宽度D1大于主极永磁体120的后侧的隔磁桥组140(第二延伸部142)沿转子铁芯110周向方向的宽度D2;主极永磁体120的前侧的隔磁桥组140(第一延伸部141)沿转子铁芯110径向方向的宽度H1小于主极永磁体120的后侧的隔磁桥组140(第二延伸部142)沿转子铁芯110径向方向的宽度H2,可以在不增加漏磁的条件下,减少转子铁芯110旋转方向的前侧隔磁桥组140的应力集中,增强转子铁芯110的机械强度。
作为一种可实施方式,隔磁桥组140还包括隔磁部143,隔磁部143位于相邻的两个主极永磁体120靠近转子铁芯110的内侧。进一步地,隔磁部143的截面形状为三角形或者梯形,三角形或者梯形的斜边所在的隔磁部143的表面均与主极永磁体120的表面相平行。截面形状为三角形或者梯形的隔磁部143使得任意相邻的两个主极永磁体120靠近转子铁芯110内侧具有隔磁结构,使得任意相邻的两个主极永磁体120之间的硅钢片结构的隔磁桥组140强度更好,不容易往两侧倾斜,更容易保证转子铁芯110上主极永磁体120的放置尺寸。更进一步地,隔磁部143的三角形或者梯形的斜边与主极永磁体120的后侧的表面之间的距离C1大于隔磁部143的三角形或者梯形的斜边与相邻的主极永磁体120的前侧的表面之间的距离C2,这样能够降低主极永磁体120前侧隔磁桥组140的应力集中,增强转子铁芯110的机械强度。
以b位置处的主极永磁体120和c位置处的主极永磁体120之间的隔磁部143为例,隔 磁部143的三角形或者梯形的斜边与主极永磁体120的后侧的表面之间的距离C1是指隔磁部143的三角形或者梯形的斜边与b位置处的主极永磁体120的后侧的表面之间的距离;隔磁部143的三角形或者梯形的斜边与相邻的主极永磁体120的前侧的表面之间的距离C2是指隔磁部143的三角形或者梯形的斜边与c位置处的主极永磁体120的前侧的表面之间的距离。
参见图2和图3,作为一种可实施方式,每个永磁体组中辅助永磁体130的数量为一个,辅助永磁体130位于主极永磁体120的前侧。即每个永磁体组包括一个辅助永磁体130和一个主极永磁体120。研究发现永磁同步电机负载运行时,产生转矩的磁力线总是在主极永磁体120的前侧,通过将辅助永磁体130放置在主极永磁体120沿转子铁芯110旋转方向的前侧,可以使得辅助永磁体130更好的补充主极永磁体120产生的磁力线,可以实现更大的转矩输出。当每个永磁体组中辅助永磁体130的数量为一个时,辅助永磁体130位于主极永磁体120的前侧,辅助永磁体130与主极永磁体120相互靠近的表面相贴合或者存在预设距离,通过辅助永磁体130提高永磁同步电机的效率,保证永磁同步电机的效率和抗退磁效果。
参见图4,进一步地,第一延伸部141沿转子铁芯110周向方向的宽度D1小于辅助永磁体130沿转子铁芯110周向方向上的宽度M;第二延伸部142沿转子铁芯110周向方向的宽度D2小于主极永磁体120沿转子铁芯110周向方向的宽度L。辅助永磁体130始终位于主极永磁体120的前侧,也就是说,辅助永磁体130对应第一延伸部141,主极永磁体120对应第二延伸部142。参见图3,当转子铁芯110逆时针方向转动时,第一延伸部141对应辅助永磁体130,第二延伸部142对应主极永磁体120,此时,第一延伸部141沿转子铁芯110周向方向的宽度D1小于辅助永磁体130沿转子铁芯110周向方向上的宽度M;第二延伸部142沿转子铁芯110周向方向的宽度D2小于主极永磁体120沿转子铁芯110周向方向上的宽度L。
参见图5,当然,每个永磁体组中辅助永磁体130的数量也可以为两个,两个辅助永磁体130分别位于主极永磁体120的两侧。即每个永磁体组包括两个复合组用磁铁120和一个主极永磁体120。辅助永磁体130与主极永磁体120不同,如果增加主极永磁体120会使得永磁同步电机的极数增加,辅助永磁体130虽然也是切向磁化的永磁体,但增加辅助永磁体130不影响永磁同步电机极数,只对永磁同步电机的效率和退磁有帮助。辅助永磁体130的数量为一个时,永磁同步电机的效率的提高和抗退磁效果明显。因此,当辅助永磁体130的数量为两个时,永磁同步电机的效率的提高和抗退磁效果更加明显。
参见图5,进一步地,隔磁桥组140在转子铁芯110旋转方向前侧的第一延伸部141沿转子铁芯110周向方向的宽度D1小于主极永磁体120旋转方向前侧的辅助永磁体(130)的 宽度M;隔磁桥组140在主极永磁体120旋转方向后侧的第二延伸部142沿转子铁芯110周向方向的宽度D2大于在主极永磁体120旋转方向后侧的辅助永磁体130的宽度M。也就是说,第一延伸部141和第二延伸部142分别对应主极永磁体120两侧的辅助永磁体130,当转子铁芯110顺时针或者逆时针转动时,要求第一延伸部141小于对应位置的辅助永磁体130的宽度M,第二延伸部142大于对应位置的辅助永磁体130的宽度M。这样就限定了隔磁桥组140缺口处的宽度,可以保证主极永磁体120和辅助永磁体130很好固定在转子铁芯110的内部,同时可以减少主极永磁体120和辅助永磁体130在转子铁芯110外侧的漏磁现象。
通过将辅助永磁体130布置在主极永磁体120的两侧,可以提高主极永磁体120的工作点,提高永磁同步电机的效率,提高主极永磁体120的抗退磁能力。第一延伸部141沿转子铁芯110周向方向的宽度D1小于辅助永磁体130的宽度M,第二延伸部142沿转子铁芯110周向方向的宽度D2大于辅助永磁体130的宽度M,这样能够保证在不增加漏磁的条件下,提高主极永磁体120的工作点,提高永磁同步电机的效率,减少转子铁芯110旋转前侧的隔磁桥组140的应力集中,增强转子铁芯110的机械强度。
参见图2,作为一种可实施方式,任意相邻的主极永磁体120与辅助永磁体130平行放置,且任意相邻的主极永磁体120与辅助永磁体130的磁极相异的表面相贴合,主极永磁体120与辅助永磁体130具有相同的磁极。以a位置处的主极永磁体120为例,图2所示的箭头方向为转子铁芯110的旋转方向,主极永磁体120的前侧和后侧的磁极分别为S极和N极,主极永磁体120的前侧的辅助永磁体130的磁极分别为N极和S极。此时,主极永磁体120的S极与辅助永磁体130的N极相贴合,进而a位置处的永磁体组的前侧和后侧的磁极分别为S极和N极。当然,为了进一步扩大磁力线较多区域的面积,提升永磁同步电机的效率,也可以将任意相邻的辅助永磁体130与主极永磁体120放置在一起,为了简化生产工艺,也可以辅助永磁体130与主极永磁体120合并成一体。
本发明一实施例的永磁同步电机至少包括具有主极永磁体120和辅助永磁体130的永磁电机转子100和在永磁电机转子100外侧的定子;永磁电机转子100为上述任一实施例中的永磁电机转子100。定子包括定子铁芯和定子绕组,定子绕组安装在定子铁芯上。在永磁电机转子100的任意相邻的两个主极永磁体120之间安装辅助永磁体130,可以显著提高主极永磁体120的工作点,使得永磁电机转子100在定子侧产生更多的磁链,提高气隙磁通的利用率,提升永磁同步电机的输出转矩,提高永磁同步电机的效率。同时,由于主极永磁体120的工作点的提高,使得主极永磁体120的抗退磁能力得到了提高,减小了永磁同步电机在恶 劣工况下运行的退磁风险。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种永磁电机转子,其特征在于,包括:
    转子铁芯(110);以及
    永磁体组,所述永磁体组沿所述转子铁芯(110)的径向方向设置;且所述永磁体组沿所述转子铁芯(110)的周向方向均匀分布;
    其中,所述永磁体组包括切向磁化的主极永磁体(120)和切向磁化的辅助永磁体(130),所述主极永磁体(120)沿所述转子铁芯(110)的径向方向设置,所有所述永磁体组中所述辅助永磁体(130)均设置在所述主极永磁体(120)的同一侧;所述主极永磁体(120)的数量总和与永磁同步电机的极数相等,且任意相邻的两个所述主极永磁体(120)最接近的表面磁极相同。
  2. 根据权利要求1所述的永磁电机转子,其特征在于,所述辅助永磁体(130)的矫顽力小于所述主极永磁体(120)的矫顽力。
  3. 根据权利要求1所述的永磁电机转子,其特征在于,所述辅助永磁体(130)沿所述转子铁芯(110)周向方向上的宽度M小于所述主极永磁体(120)沿所述转子铁芯(110)周向方向上的宽度L。
  4. 根据权利要求1所述的永磁电机转子,其特征在于,所述辅助永磁体(130)沿所述转子铁芯(110)径向方向上的长度B小于所述主极永磁体(120)沿所述转子铁芯(110)径向方向上的长度G。
  5. 根据权利要求1所述的永磁电机转子,其特征在于,所述永磁体组的数量大于等于四个,且所述永磁体组的数量为偶数个。
  6. 根据权利要求1所述的永磁电机转子,其特征在于,所述永磁电机转子还包括设置在所述转子铁芯(110)的周向边缘位置上隔磁桥组(140),所述隔磁桥组(140)包括相对设置的两个延伸部;
    其中,所述转子铁芯(110)在所述主极永磁体(120)旋转方向的前侧的延伸部为第一延伸部(141),所述转子铁芯(110)在所述主极永磁体(120)旋转方向的后侧的延伸部为第二延伸部(142),所述第一延伸部(141)和所述第二延伸部(142)向相对的方向延伸,且所述第一延伸部(141)和所述第二延伸部(142)之间存在缺口。
  7. 根据权利要求6所述的永磁电机转子,其特征在于,所述第一延伸部(141)沿所述转子铁芯(110)周向方向的宽度D1小于所述第二延伸部(142)沿所述转子铁芯(110)周向方向的宽度D2
  8. 根据权利要求6所述的永磁电机转子,其特征在于,所述第一延伸部(141)沿所述转子铁芯(110)径向方向的长度H1大于所述第二延伸部(142)沿所述转子铁芯(110)径向方向的长度H2
  9. 根据权利要求6所述的永磁电机转子,其特征在于,所述隔磁桥组(140)还包括隔磁部(143),所述隔磁部(143)位于相邻的两个所述主极永磁体(120)之间且靠近所述转子铁芯(110)的内侧。
  10. 根据权利要求9所述的永磁电机转子,其特征在于,所述隔磁部(143)的截面形状为三角形或者梯形,且所述三角形或者所述梯形的斜边所在的所述隔磁部(143)的表面均与所述主极永磁体(120)的表面相平行。
  11. 根据权利要求10所述的永磁电机转子,其特征在于,所述隔磁部(143)的所述三角形或者所述梯形的斜边与所述主极永磁体(120)前侧的表面之间的距离C1大于所述隔磁部(143)的所述三角形或者所述梯形的斜边与所述主极永磁体(120)后侧的表面之间的距离C2
  12. 根据权利要求6至11任一项所述的永磁电机转子,其特征在于,每个所述永磁体组中所述辅助永磁体(130)的数量为一个,且所述辅助永磁体(130)位于所述主极永磁体(120)旋转方向的前侧。
  13. 根据权利要求12所述的永磁电机转子,其特征在于,所述第一延伸部(141)沿所述转子铁芯(110)周向方向的宽度D1小于所述辅助永磁体(130)沿所述转子铁芯(110)周向方向上的宽度M;
    所述第二延伸部(142)沿所述转子铁芯(110)周向方向的宽度D2小于所述主极永磁体(120)沿所述转子铁芯(110)周向方向的宽度L。
  14. 根据权利要求6至11任一项所述的永磁电机转子,其特征在于,每个所述永磁体组中所述辅助永磁体(130)的数量为两个,且两个所述辅助永磁体(130)分别位于所述主极永磁体(120)的两侧。
  15. 根据权利要求14所述的永磁电机转子,其特征在于,所述第一延伸部(141)沿所述转子铁芯(110)周向方向的宽度D1小于所述主极永磁体(120)旋转方向前侧的所述辅助 永磁体(130)的宽度M;
    所述第二延伸部(142)沿所述转子铁芯(110)周向方向的宽度D2大于所述主极永磁体(120)旋转方向后侧的所述辅助永磁体(130)的宽度M。
  16. 根据权利要求1所述的永磁电机转子,其特征在于,任意相邻的所述主极永磁体(120)与所述辅助永磁体(130)平行设置。
  17. 根据权利要求1所述的永磁电机转子,其特征在于,任意相邻的所述主极永磁体(120)与所述辅助永磁体(130)的磁极相异的表面相贴合。
  18. 根据权利要求1所述的永磁电机转子,其特征在于,任意相邻的所述主极永磁体(120)与所述辅助永磁体(130)为一体。
  19. 一种永磁同步电机,包括定子和转子,其特征在于,所述转子为权利要求1至18任一项所述的永磁电机转子(100)。
PCT/CN2016/083587 2015-05-29 2016-05-27 永磁电机转子及永磁同步电机 WO2016192582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510291140.3A CN106300729B (zh) 2015-05-29 2015-05-29 永磁电机转子及永磁同步电机
CN201510291140.3 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016192582A1 true WO2016192582A1 (zh) 2016-12-08

Family

ID=57440178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083587 WO2016192582A1 (zh) 2015-05-29 2016-05-27 永磁电机转子及永磁同步电机

Country Status (2)

Country Link
CN (1) CN106300729B (zh)
WO (1) WO2016192582A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565786A (zh) * 2017-10-17 2018-01-09 河南全新机电设备有限公司 一种永磁同步电机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124051B (zh) * 2017-06-08 2019-08-13 南京航空航天大学 一种永磁同步电机转子结构
CN107394923B (zh) * 2017-08-30 2020-03-06 广东威灵电机制造有限公司 转子铁芯和转子
CN108777522B (zh) * 2018-08-09 2020-09-01 珠海格力电器股份有限公司 电机转子和永磁电机
CN109347229A (zh) * 2018-11-14 2019-02-15 珠海格力电器股份有限公司 电机转子结构及永磁电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201146439Y (zh) * 2008-01-25 2008-11-05 东南大学 可变磁通永磁同步电动机
US20120013206A1 (en) * 2010-07-19 2012-01-19 Andrew Meyer Cooling System and Method for an Electric Machine Module
CN202679099U (zh) * 2011-07-05 2013-01-16 赵强 一种稀土永磁发电机的转子
CN103779988A (zh) * 2012-10-18 2014-05-07 罗伯特·博世有限公司 用于永磁激励的电机的转子装置
CN204669114U (zh) * 2015-05-29 2015-09-23 珠海格力节能环保制冷技术研究中心有限公司 永磁电机转子及永磁同步电机
CN204696827U (zh) * 2015-05-29 2015-10-07 珠海格力节能环保制冷技术研究中心有限公司 永磁电机转子及永磁同步电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101586A (ja) * 2000-09-25 2002-04-05 Toshiba Kyaria Kk 電動機の回転子
JP2003199273A (ja) * 2001-12-27 2003-07-11 Toshiba Corp 永久磁石式リラクタンス型回転電機
EP2568578A3 (en) * 2011-09-07 2017-12-06 Samsung Electronics Co., Ltd. Motor and washing machine having the same
FR2984628B1 (fr) * 2011-12-14 2014-11-21 Valeo Equip Electr Moteur Rotor de machine electrique tournante et machine electrique tournante comportant un tel rotor
JP6055189B2 (ja) * 2012-03-01 2016-12-27 株式会社日立産機システム 永久磁石式回転電機
JP6083059B2 (ja) * 2012-03-21 2017-02-22 株式会社明電舎 永久磁石式回転機の回転子構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201146439Y (zh) * 2008-01-25 2008-11-05 东南大学 可变磁通永磁同步电动机
US20120013206A1 (en) * 2010-07-19 2012-01-19 Andrew Meyer Cooling System and Method for an Electric Machine Module
CN202679099U (zh) * 2011-07-05 2013-01-16 赵强 一种稀土永磁发电机的转子
CN103779988A (zh) * 2012-10-18 2014-05-07 罗伯特·博世有限公司 用于永磁激励的电机的转子装置
CN204669114U (zh) * 2015-05-29 2015-09-23 珠海格力节能环保制冷技术研究中心有限公司 永磁电机转子及永磁同步电机
CN204696827U (zh) * 2015-05-29 2015-10-07 珠海格力节能环保制冷技术研究中心有限公司 永磁电机转子及永磁同步电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565786A (zh) * 2017-10-17 2018-01-09 河南全新机电设备有限公司 一种永磁同步电机
CN107565786B (zh) * 2017-10-17 2023-08-11 河南全新机电设备有限公司 一种永磁同步电机

Also Published As

Publication number Publication date
CN106300729A (zh) 2017-01-04
CN106300729B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2016192581A1 (zh) 永磁电机转子及永磁同步电机
WO2016192582A1 (zh) 永磁电机转子及永磁同步电机
JP6620097B2 (ja) 永久磁石モータ
CN104485762A (zh) 一种永磁同步电机转子及永磁同步电机
WO2017118090A1 (zh) 永磁转子及永磁电机
US20150340915A1 (en) Variable magnetic flux-type rotary electric machine
WO2013020310A1 (zh) 电动机转子及具有其的电动机
CN104467333B (zh) 转子励磁多相磁阻电机及其控制方法
Xu et al. Cost-effective Vernier permanent-magnet machine with high torque performance
CN204669114U (zh) 永磁电机转子及永磁同步电机
WO2024078117A1 (zh) 具有磁障的电机转子、电机及压缩机
CN204696827U (zh) 永磁电机转子及永磁同步电机
US9106115B2 (en) Rotating electrical machine
WO2017049954A1 (zh) 电机及其切向式永磁转子
US9502933B2 (en) Permanent magnet synchronous electric machine
CN105490414A (zh) 永磁转子及永磁电机
CN103915921A (zh) 永磁电机
CN107994699A (zh) 一种提高永磁电机永磁体抗不可逆去磁能力的转子结构
CN106100272B (zh) 一种少稀土齿轭互补的双凸极磁通可控电机
JP7304411B2 (ja) モータのロータ構造及び永久磁石モータ
WO2020088085A1 (zh) 电机转子及永磁电机
CN202997723U (zh) 永磁电机
Zhang et al. Torque ripple suppression of consequent-pole permanent magnet machine by magnet shifting
CN205725213U (zh) 电动汽车电机的低波动槽孔结合式永磁转子
CN114157063A (zh) 一种非对称永磁辅助同步磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802505

Country of ref document: EP

Kind code of ref document: A1