WO2017049954A1 - 电机及其切向式永磁转子 - Google Patents

电机及其切向式永磁转子 Download PDF

Info

Publication number
WO2017049954A1
WO2017049954A1 PCT/CN2016/084524 CN2016084524W WO2017049954A1 WO 2017049954 A1 WO2017049954 A1 WO 2017049954A1 CN 2016084524 W CN2016084524 W CN 2016084524W WO 2017049954 A1 WO2017049954 A1 WO 2017049954A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
tangential
magnet rotor
rotor core
Prior art date
Application number
PCT/CN2016/084524
Other languages
English (en)
French (fr)
Inventor
肖勇
胡余生
陈彬
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to KR1020187009600A priority Critical patent/KR102021710B1/ko
Priority to US15/762,714 priority patent/US10630124B2/en
Priority to EP16847836.0A priority patent/EP3355441B1/en
Publication of WO2017049954A1 publication Critical patent/WO2017049954A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the technical field of electrical equipment, and in particular to a motor and a tangential permanent magnet rotor thereof.
  • the motor of the permanent magnet tangential magnetization structure has a "concentrating magnetic" effect, which can generate a higher air gap magnetic density than the permanent magnet radial magnetizing motor, so that the motor has a larger torque/current ratio and torque/volume ratio. More and more, it is used in servo systems, electric traction, office automation and household appliances.
  • the tangential permanent magnet motor uses a magnetic circuit structure in which a single permanent magnet is connected in parallel, and the operating point of the permanent magnet is lower than that of the magnetic motor.
  • the permanent magnets are mostly rectangular, and their widths in the radial direction of the rotor are substantially the same.
  • the working point of the same permanent magnet in different parts is different, and the working points of different parts of the same permanent magnet are different, resulting in the overall anti-demagnetization ability of the motor. Decline.
  • the closer the permanent magnet is to the outside of the rotor the stronger the demagnetizing field, which in turn causes the motor efficiency to drop.
  • the present invention also provides an electric machine having the above-described tangential permanent magnet rotor.
  • the present invention provides a tangential permanent magnet rotor including a rotor core and a permanent magnet disposed on the rotor core.
  • the width of the permanent magnet adjacent to the outer edge of the rotor core is H2, and the width of the permanent magnet near the center of the rotor core is H1, H2>H1.
  • the maximum angle between the adjacent two permanent magnets is A2, the minimum angle of the permanent magnet is A1; A2 ⁇ A1;
  • A1 is the angle between the two ends of the surface of the permanent magnet adjacent to the outer edge of the rotor core and the center of the rotor core; A2 is adjacent to the two The magnetic flux path between the magnets is close to the line between the two ends of the side of the outer edge of the rotor core and the line between the centers of the rotor cores.
  • the cross-sectional shape of the permanent magnet along an axis perpendicular to the tangential permanent magnet rotor is an isosceles trapezoid, and the upper bottom is located near the center of the rotor core.
  • One side isosceles trapezoid
  • the permanent magnet has a cross-sectional shape that is perpendicular to the axis of the tangential permanent magnet rotor, and the upper bottom is located near the center of the rotor core.
  • a side of the waist including a first waist on a front side in a rotational direction of the tangential permanent magnet rotor and a second waist on a rear side in a rotational direction of the tangential permanent magnet rotor; the first waist The length is greater than the length of the second waist.
  • the rotor core has an outer magnetic bridge located on a side of the permanent magnet adjacent to an outer edge of the rotor core;
  • the outer magnetic isolation bridge includes a first outer magnetic isolation bridge on a front side of the tangential permanent magnet rotor rotation direction and a second outer magnetic isolation bridge on a rear side of the tangential permanent magnet rotor rotation direction;
  • the thickness B1 of the first outer magnetic isolation bridge is greater than the thickness B2 of the second outer magnetic isolation bridge, and the length D1 of the first outer magnetic isolation bridge is smaller than the length D2 of the second outer magnetic isolation bridge.
  • the rotor core further has an inner magnetic isolation structure between two adjacent permanent magnets near a center of the rotor core;
  • the cross-sectional shape of the inner magnetic isolation structure along an axis perpendicular to the tangential permanent magnet rotor is a triangular or trapezoidal structure with a small end facing the center of the rotor core.
  • the first inner magnetic isolation bridge formed between the inner magnetic isolation structure and the permanent magnet located on the front side of the tangential permanent magnet rotor rotation direction a second inner magnetic bridge formed between the inner magnetic isolation structure and the permanent magnet located at a rear side of the tangential permanent magnet rotor rotation direction;
  • the thickness C1 of the first inner magnetic isolation bridge is greater than the thickness C2 of the second inner magnetic isolation bridge.
  • the center line of the permanent magnet is located on the front side of the tangential permanent magnet rotor in the direction of rotation of the diameter line thereof;
  • the diameter line is a straight line perpendicular to a diameter of the rotor core perpendicular to a side of the permanent magnet close to a center of the rotor core.
  • the present invention also provides an electric machine comprising a tangential permanent magnet rotor, the tangential permanent magnet rotor being a tangential permanent magnet rotor according to any of the above.
  • the present invention provides a tangential permanent magnet rotor such that a permanent magnet portion near the outer edge of the rotor core
  • the width H2 is large, and the width H1 of the permanent magnet portion near the center of the rotor core is small, so that the permanent magnets are on both sides (the side near the center of the rotor core and the side close to the outer edge of the rotor core)
  • the working point is consistent with the working point of the prior art medium-width permanent magnet, which reduces the effect of local demagnetization of the permanent magnet and ensures the efficiency of the motor.
  • the present invention also provides an electric machine having the above-described tangential permanent magnet rotor. Since the above-described tangential permanent magnet rotor has the above technical effects, the motor having the above-described tangential permanent magnet rotor should also have the same technical effect, and will not be described in detail herein.
  • FIG. 1 is a first structural schematic view of a tangential permanent magnet rotor according to the present invention
  • FIG. 2 is a schematic view showing the relationship between the ratio of the permanent magnet width of the tangential permanent magnet rotor and the flux linkage according to the present invention
  • FIG. 3 is a schematic diagram showing the relationship between the angle ratio of the tangential permanent magnet rotor and the demagnetization current and the output torque according to the present invention
  • FIG. 4 is a schematic view showing a second structure of a tangential permanent magnet rotor according to the present invention.
  • FIG. 5 is a schematic view showing a third structure of a tangential permanent magnet rotor according to the present invention.
  • FIG. 6 is a fourth structural schematic view of a tangential permanent magnet rotor according to the present invention.
  • Fig. 7 is a fifth structural schematic view of a tangential permanent magnet rotor according to the present invention.
  • the core of the invention is to provide a tangential permanent magnet rotor to reduce the local demagnetization effect of the permanent magnet, Ensure motor efficiency.
  • the present invention also provides an electric machine having the above-described tangential permanent magnet rotor.
  • FIG. 1 is a first structural schematic view of a tangential permanent magnet rotor according to the present invention
  • FIG. 2 is a permanent magnet width ratio and magnetic of a tangential permanent magnet rotor according to the present invention. Schematic diagram of the chain relationship.
  • the tangential permanent magnet rotor includes a rotor core 2 and a permanent magnet 1 disposed on the rotor core 2, wherein the number of the permanent magnets 1 is an even number and is uniformly disposed on the rotor core 2 Upper, the same poles of two adjacent permanent magnets 1 oppose each other.
  • the width of the side of the permanent magnet 1 near the outer edge of the rotor core 2 is H2, and the width of the side of the permanent magnet 1 near the center of the rotor core 2 is H1, H2 > H1.
  • the tangential permanent magnet rotor provided by the embodiment of the present invention has such that the width H2 of the permanent magnet portion near the outer edge of the rotor core 2 is larger, and the width H1 of the permanent magnet portion near the center of the rotor core 2 is smaller.
  • the working point of the permanent magnet 1 on both sides is consistent with the working point of the prior art medium-width permanent magnet. In turn, the effect of local demagnetization of the permanent magnet is reduced, and the efficiency of the motor is ensured.
  • the width of the two sides of the permanent magnet 1 ranges from 2.2 ⁇ H2 / H1 ⁇ 1.2.
  • the working point of the permanent magnet 1 near the outer side of the rotor is lower than the part near the inner side, and the part of the permanent magnet generating the stator magnetic flux is mainly concentrated on the outer side of the rotor, by the width of the permanent magnet close to the outer side.
  • H2 is set to be larger than the width H1 near the inner side of the rotor, which can effectively improve
  • the permanent magnet 1 is close to the working point of the outer portion of the rotor, and further, due to the increase of the outer thickness, the reverse magnetic field applied to the rotor by the stator is more applied to the position of the permanent magnet near the inner side of the rotor, so that the permanent magnet 1 is at the working point.
  • the high position is subject to large demagnetizing magnetic field, and the position with low working point is subject to small demagnetizing magnetic field, so that the magnetic field of the whole permanent magnet is more uniform, and the air gap of the permanent magnet of the motor has lower magnetic flux harmonic content.
  • the value of H2/H1 is not as high as possible.
  • H2/H1>2.2 the stator flux linkage is not increased substantially, and the stator flux is no longer increased. Therefore, in order to secure the utilization of the permanent magnet 1, and to reduce the cost, in the permanent magnet 1, 2.2 ⁇ H2 / H1.
  • A1 is an angle between the two ends of the surface of the permanent magnet 1 near the outer edge of the rotor core 2 and the center of the rotor core 2; A2 is adjacent to the two
  • the magnetic flux path between the permanent magnets 1 is close to the line between the two ends of the side of the outer edge of the rotor core 2 and the center of the rotor core 2, respectively. As shown in FIG. 3, the magnetic flux path between the adjacent two permanent magnets 1 does not significantly saturate under heavy load, ensuring that the output torque of the motor does not decrease.
  • A2 is less than or equal to 1.6 times A1. Therefore, in the present embodiment, 1 ⁇ A2 / A1 ⁇ 1.6.
  • the permanent magnet 1 is perpendicular to the axis of the tangential permanent magnet rotor.
  • the cross-sectional shape is an isosceles trapezoid whose upper bottom is located on the side close to the center of the rotor core 2.
  • the permanent magnet 1 has a center symmetrical structure, and the center line is the center line of the isosceles trapezoid. Through the above arrangement, the processing and assembly of the permanent magnet 1 is facilitated.
  • the cross-sectional shape of the permanent magnet 1 along the axis perpendicular to the tangential permanent magnet rotor is an isosceles trapezoid, and the upper bottom is located on the side close to the center of the rotor core 2,
  • the waist includes a first waist on the front side in the rotational direction of the tangential permanent magnet rotor and a second waist on the rear side in the rotational direction of the tangential permanent magnet rotor; the length of the first waist is greater than the length of the second waist.
  • the area of the surface of the permanent magnet 1 on the front side in the rotational direction of the tangential permanent magnet rotor is larger than the area of the surface of the permanent magnet 1 on the rear side in the rotational direction of the tangential permanent magnet rotor, so as to make the permanent magnet 1 produces a larger stator flux.
  • the rotor core 2 has an outer magnetic bridge on a side of the permanent magnet 1 near the outer edge of the rotor core 2; the outer magnetic bridge includes a first outer magnetic bridge on the front side of the tangential permanent magnet rotor rotation direction and A second outer magnetic bridge located on the rear side of the tangential permanent magnet rotor in the direction of rotation. That is, the sum of the first outer magnetic bridge and the second outer magnetic bridge is smaller than the width H2 of the permanent magnet 1.
  • the stress of the outer first magnetic bridge and the outer outer magnetic bridge of the tangential permanent magnet rotor are different, and the first outer magnetic shield of the front side of the tangential permanent magnet rotor rotates.
  • the bridge stress is always greater than the second outer magnetic bridge on the rear side.
  • the thickness B1 of the first outer magnetic bridge is greater than the thickness B2 of the second outer magnetic bridge, and the length D1 of the first outer magnetic bridge is smaller than the second outer side.
  • the length of the magnetic bridge is D2.
  • the rotor core 2 further has two permanent magnets located adjacent to each other. 1 an inner magnetic isolation structure between one side of the center of the rotor core 2; the inner magnetic isolation structure has a triangular or trapezoidal structure along an axis perpendicular to the axis of the tangential permanent magnet rotor, the small end of which faces the rotor core 2 center.
  • Two magnetic isolation bridges are disposed between two adjacent permanent magnets 1. In order to simplify the structural arrangement, the two magnetic isolation bridges are located in the inner magnetic isolation structure.
  • the two magnetic isolation bridges are respectively two sides of the inner magnetic isolation structure, and have an angle therebetween, so that the inner magnetic isolation structure is perpendicular to the axis of the tangential permanent magnet rotor.
  • the cross-sectional shape is a triangular or trapezoidal structure, so that the silicon steel sheet between the two permanent magnets 1 has better structural strength and is less inclined, thereby ensuring the dimensional stability of the permanent magnet slots of the rotor core 2 accommodating the permanent magnets 1.
  • a first inner magnetic isolation bridge formed between the inner magnetic isolation structure and the permanent magnet 1 on the front side of the tangential permanent magnet rotor rotation direction, the inner magnetic isolation structure and the rotation direction of the tangential permanent magnet rotor
  • a second inner magnetic bridge formed between the permanent magnets 1 on the rear side; a thickness C1 of the first inner magnetic bridge is greater than a thickness C2 of the second inner magnetic bridge.
  • the center line of the permanent magnet 1 is located on the front side in the rotation direction of the tangential permanent magnet rotor of the diameter line thereof; the diameter line is the rotor core perpendicular to the side of the permanent magnet 1 near the center of the rotor core 2.
  • the permanent magnet 1 is inclined toward the front side of the rotor rotation direction, thereby enabling the motor to generate greater torque under the same current, and causing the motor torque ripple to decrease, thereby reducing the electromagnetic noise of the motor.
  • An embodiment of the present invention also provides an electric machine comprising a tangential permanent magnet rotor, the tangential permanent magnet rotor being a tangential permanent magnet rotor of any of the above. Since the above tangential permanent magnet rotor has the above technical effects, the motor having the above tangential permanent magnet rotor should also have the same technical effect, and will not be detailed here. Introduction.

Abstract

一种电机及切向式永磁转子,切向式永磁转子包括转子铁芯(2)及设置于转子铁芯(2)上的永磁体(1),永磁体(1)靠近转子铁芯(2)的外边缘的一侧的宽度为H2,永磁体(1)靠近转子铁芯(2)的中心的一侧的宽度为H1,H2>H1。该切向式永磁转子使得靠近转子铁芯的外边缘的永磁体部分的宽度H2较大,而靠近转子铁芯的中心的永磁体部分的宽度H1较小,使得永磁体在两侧的工作点与现有技术中等宽度的永磁体的工作点一致性较高,进而降低了永磁体局部退磁的效果,确保了电机效率。

Description

电机及其切向式永磁转子
本申请要求于2015年09月24日提交中国专利局、申请号为201510622376.0、发明名称为“电机及其切向式永磁转子”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电机设备技术领域,特别是涉及一种电机及其切向式永磁转子。
背景技术
永磁体切向磁化结构的电机由于具有“聚磁”效果,较永磁体径向磁化电机能够产生更高的气隙磁密,使得电机具有较大的转矩/电流比和转矩/体积比,越来越多地应用于伺服系统、电力牵引、办公自动化及家用电器等场合。
切向永磁电机由于采用单个永磁体并联的磁路结构,永磁体的工作点比径磁电机低。而永磁体多为矩形,其沿转子的径向的宽度基本相同。但是,由于永磁体不同部位承受的退磁磁场强度不相同,造成了同一块永磁体在不同部位的工作点不相同,成的同一块永磁体不同部位的工作点不相同,导致电机整体抗退磁能力的下降。尤其是永磁体越靠近转子外侧承受的退磁磁场越强,进而引起电机效率下降。
因此,如何降低永磁体局部退磁效果,确保电机效率,是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种切向式永磁转子,以降低永磁体局部退磁效果,确保电机效率。本发明还提供了一种具有上述切向式永磁转子的电机。
为解决上述技术问题,本发明提供一种切向式永磁转子,包括转子铁芯及设置于所述转子铁芯上的永磁体,
所述永磁体靠近所述转子铁芯的外边缘的一侧的宽度为H2,所述永磁体靠近所述转子铁芯的中心的一侧的宽度为H1,H2>H1。
优选地,上述切向式永磁转子中,2.2≥H2/H1≥1.2。
优选地,上述切向式永磁转子中,相邻两个永磁体之间导磁通道的最大夹角为A2,所述永磁体的最小夹角为A1;A2≥A1;
A1为所述永磁体靠近所述转子铁芯的外边缘的一侧的面的两端分别与所述转子铁芯的中心之间的连线的夹角;A2为相邻两个所述永磁体之间的导磁通道靠近所述转子铁芯的外边缘的一侧的面的两端分别与所述转子铁芯的中心之间的连线的夹角。
优选地,上述切向式永磁转子中,A2≤1.6A1。
优选地,上述切向式永磁转子中,所述永磁体沿垂直于所述切向式永磁转子的轴线的截面形状为等腰梯形,其上底位于靠近所述转子铁芯的中心的一侧。
优选地,上述切向式永磁转子中,所述永磁体沿垂直于所述切向式永磁转子的轴线的截面形状为不等腰梯形,其上底位于靠近所述转子铁芯的中心的一侧,其腰包括位于所述切向式永磁转子的旋转方向前侧的第一腰及位于所述切向式永磁转子的旋转方向后侧的第二腰;所述第一腰的长度大于所述第二腰的长度。
优选地,上述切向式永磁转子中,所述转子铁芯具有位于所述永磁体靠近所述转子铁芯的外边缘的一侧的外侧隔磁桥;
所述外侧隔磁桥包括位于所述切向式永磁转子旋转方向前侧的第一外侧隔磁桥及位于所述切向式永磁转子旋转方向后侧的第二外侧隔磁桥;
第一外侧隔磁桥的厚度B1大于第二外侧隔磁桥的厚度B2,第一外侧隔磁桥的长度D1小于第二外侧隔磁桥的长度D2。
优选地,上述切向式永磁转子中,所述转子铁芯还具有位于相邻两个所述永磁体靠近所述转子铁芯的中心的一侧之间的内侧隔磁结构;
所述内侧隔磁结构沿垂直于所述切向式永磁转子的轴线的截面形状为三角形或梯形结构,其小端朝向所述转子铁芯的中心。
优选地,上述切向式永磁转子中,所述内侧隔磁结构与位于其所述切向式永磁转子旋转方向前侧的所述永磁体之间形成的第一内侧隔磁桥,所述内侧隔磁结构与位于其所述切向式永磁转子旋转方向后侧的所述永磁体之间形成的第二内侧隔磁桥;
所述第一内侧隔磁桥的厚度C1大于所述第二内侧隔磁桥的厚度C2。
优选地,上述切向式永磁转子中,所述永磁体的中线位于其直径线的所述切向式永磁转子旋转方向前侧;
所述直径线为垂直于该永磁体靠近所述转子铁芯的中心的一侧的所述转子铁芯的直径所在的直线。
本发明还提供了一种电机,包括切向式永磁转子,所述切向式永磁转子为如上述任一项所述的切向式永磁转子。
本发明提供的切向式永磁转子,使得靠近转子铁芯的外边缘的永磁体部分 的宽度H2较大,而靠近转子铁芯的中心的永磁体部分的宽度H1较小,使得永磁体在两侧(靠近转子铁芯的中心的一侧及靠近转子铁芯的外边缘的一侧)的工作点与现有技术中等宽度的永磁体的工作点一致性较高,进而降低了永磁体局部退磁的效果,确保了电机效率。
本发明还提供了一种具有上述切向式永磁转子的电机。由于上述切向式永磁转子具有上述技术效果,具有上述切向式永磁转子的电机也应具有同样的技术效果,在此不再详细介绍。
附图说明
图1为本发明所提供的切向式永磁转子的第一种结构示意图;
图2为本发明所提供的切向式永磁转子的永磁体宽度比值与磁链的关系示意图;
图3为本发明所提供的切向式永磁转子的夹角比值与退磁电流及输出转矩的关系示意图;
图4为本发明所提供的切向式永磁转子的第二种结构示意图;
图5为本发明所提供的切向式永磁转子的第三种结构示意图;
图6为本发明所提供的切向式永磁转子的第四种结构示意图;
图7为本发明所提供的切向式永磁转子的第五种结构示意图。
具体实施方式
本发明的核心是提供一种切向式永磁转子,以降低永磁体局部退磁效果, 确保电机效率。本发明还提供了一种具有上述切向式永磁转子的电机。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1和图2,图1为本发明所提供的切向式永磁转子的第一种结构示意图;图2为本发明所提供的切向式永磁转子的永磁体宽度比值与磁链关系示意图。
在这一具体实施方式中,切向式永磁转子包括转子铁芯2及设置于转子铁芯2上的永磁体1,其中,永磁体1的数量为偶数个且均匀设置于转子铁芯2上,相邻两个永磁体1的同极相对。
在本实施例中,永磁体1靠近转子铁芯2的外边缘的一侧的宽度为H2,永磁体1靠近转子铁芯2的中心的一侧的宽度为H1,H2>H1。
本发明实施例提供的切向式永磁转子,使得靠近转子铁芯2的外边缘的永磁体部分的宽度H2较大,而靠近转子铁芯2的中心的永磁体部分的宽度H1较小,使得永磁体1在两侧(靠近转子铁芯2的中心的一侧及靠近转子铁芯2的外边缘的一侧)的工作点与现有技术中等宽度的永磁体的工作点一致性较高,进而降低了永磁体局部退磁的效果,确保了电机效率。
进一步地,本发明实施例提供的切向式永磁转子中,永磁体1两侧的宽度取值范围是:2.2≥H2/H1≥1.2。
下面,结合图2进行说明:
研究发现,在电机带负载运行时,永磁体1靠近转子外侧的工作点要低于靠近内侧的部分,而永磁体产生定子磁通的部分主要集中在转子外侧,通过将永磁体靠近外侧的宽度H2设置成大于靠近转子内侧的宽度H1,可有效提高 永磁体1靠近转子外侧部分的工作点,进一步的由于外侧厚度的增加,使得定子外加在转子上的反向磁场更多的施加在永磁体靠近转子内侧的位置,使得永磁体1在工作点较高的位置承受退磁磁场大,工作点较低的位置承受退磁磁场小,使得整块永磁体的磁场更加均匀,电机永磁产生的气隙磁密谐波含量更低。但是,H2/H1的值也不是越高越好,当H2/H1>2.2时,定子磁链基本不再增加,进而使得定子磁通不再增加。因此,为了确保永磁体1的利用率,降低成本,永磁体1中,2.2≥H2/H1。
进一步的为了达到更佳的效果,通过将H2/H1≥1.2时,定子磁链增加更加明显,使电机具有更高的效率。
此外,通过有限元仿真发现,转子磁通都的通过两个相邻永磁体中间的硅钢片导磁通道进入定子,而在电机重负载时,此处最容易发生磁路饱和导致电机转矩下降,通过将相邻两个永磁体1之间导磁通道的最大夹角为A2,与永磁体1的最小夹角为A1设置成A2≥A1。如图2所示,A1为永磁体1靠近转子铁芯2的外边缘的一侧的面的两端分别与转子铁芯2的中心之间的连线的夹角;A2为相邻两个永磁体1之间的导磁通道靠近转子铁芯2的外边缘的一侧的面的两端分别与转子铁芯2的中心之间的连线的夹角。如图3所示,使得相邻两个永磁体1之间的导磁通道在重负载下不发生明显饱和,确保电机的输出转矩不下降。
进一步地,永磁体之间导磁通道也不是越大越好,随着A2角度的增大,容易导致电机的抗退磁能力下降,如图3所示,优选为A2小于或等于1.6倍的A1。因此,本实施例中,1≤A2/A1≤1.6。
如图1所示,在本实施例中,永磁体1沿垂直于切向式永磁转子的轴线的 截面形状为等腰梯形,其上底位于靠近转子铁芯2的中心的一侧。通过上述设置,使得永磁体1为中心对称结构,该中心线为等腰梯形的中线。通过上述设置,方便了永磁体1的加工及装配。
如图4所示,在本实施例中,永磁体1沿垂直于切向式永磁转子的轴线的截面形状为不等腰梯形,其上底位于靠近转子铁芯2的中心的一侧,其腰包括位于切向式永磁转子的旋转方向前侧的第一腰及位于切向式永磁转子的旋转方向后侧的第二腰;第一腰的长度大于第二腰的长度。通过上述设置,使得永磁体1位于切向式永磁转子的旋转方向前侧的面的面积大于永磁体1位于切向式永磁转子的旋转方向后侧的面的面积,以便于使永磁体1产生更大的定子磁通。
转子铁芯2具有位于永磁体1靠近转子铁芯2的外边缘的一侧的外侧隔磁桥;外侧隔磁桥包括位于切向式永磁转子旋转方向前侧的第一外侧隔磁桥及位于切向式永磁转子旋转方向后侧的第二外侧隔磁桥。即,第一外侧隔磁桥与第二外侧隔磁桥之和小于永磁体1的宽度H2。通过上述设置,保证了永磁体1固定在转子铁芯2的内部,同时,减少了永磁体1在切向式永磁转子外侧的漏磁。电机旋转时,切向式永磁转子的外侧第一外侧隔磁桥与第二外侧隔磁桥所承受的应力是不相同的,切向式永磁转子旋转方向前侧的第一外侧隔磁桥应力始终大于后侧的第二外侧隔磁桥,为此,第一外侧隔磁桥的厚度B1大于第二外侧隔磁桥的厚度B2,第一外侧隔磁桥的长度D1小于第二外侧隔磁桥的长度D2。通过上述设置,减少了应力集中,增强了切向式永磁转子的机械强度。
如图5和图6所示,更进一步地,转子铁芯2还具有位于相邻两个永磁体 1靠近转子铁芯2的中心的一侧之间的内侧隔磁结构;内侧隔磁结构沿垂直于切向式永磁转子的轴线的截面形状为三角形或梯形结构,其小端朝向转子铁芯2的中心。相邻两个永磁体1之间设置有两个隔磁桥,为了简化结构布置,两个隔磁桥均位于内侧隔磁结构内。由于永磁体1为梯形结构,使得两个隔磁桥分别为内侧隔磁结构的两个边,且二者间具有夹角,使得内侧隔磁结构的沿垂直于切向式永磁转子的轴线的截面形状为三角形或梯形结构,进而使得两个永磁体1之间的硅钢片结构强度更好,不容易倾斜,进而保证转子铁芯2中容纳永磁体1的永磁体槽的尺寸稳定性。
进一步地,内侧隔磁结构与位于其切向式永磁转子旋转方向前侧的永磁体1之间形成的第一内侧隔磁桥,内侧隔磁结构与位于其切向式永磁转子旋转方向后侧的永磁体1之间形成的第二内侧隔磁桥;第一内侧隔磁桥的厚度C1大于所述第二内侧隔磁桥的厚度C2。通过上述设置,避免了第一内侧隔磁桥的应力集中。
如图7所示,永磁体1的中线位于其直径线的切向式永磁转子旋转方向前侧;直径线为垂直于该永磁体1靠近转子铁芯2的中心的一侧的转子铁芯2的直径所在的直线。
通过上述设置,使得永磁体1向转子转动方向前侧倾斜,进而使得电机在相同电流下能够产生更大的转矩,并使得电机转矩脉动下降,降低了电机的电磁噪音。
本发明实施例还提供了一种电机,包括切向式永磁转子,切向式永磁转子为如上述任一种的切向式永磁转子。由于上述切向式永磁转子具有上述技术效果,具有上述切向式永磁转子的电机也应具有同样的技术效果,在此不再详细 介绍。
以上对本发明所提供的切向式永磁转子进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (11)

  1. 一种切向式永磁转子,包括转子铁芯(2)及设置于所述转子铁芯(2)上的永磁体(1),其特征在于,
    所述永磁体(1)靠近所述转子铁芯(2)的外边缘的一侧的宽度为H2,所述永磁体(1)靠近所述转子铁芯(2)的中心的一侧的宽度为H1,H2>H1。
  2. 根据权利要求1所述的切向式永磁转子,其特征在于,2.2≥H2/H1≥1.2。
  3. 根据权利要求1所述的切向式永磁转子,其特征在于,相邻两个永磁体(1)之间导磁通道的最大夹角为A2,所述永磁体(1)的最小夹角为A1;A2≥A1;
    A1为所述永磁体(1)靠近所述转子铁芯(2)的外边缘的一侧的面的两端分别与所述转子铁芯(2)的中心之间的连线的夹角;A2为相邻两个所述永磁体(1)之间的导磁通道靠近所述转子铁芯(2)的外边缘的一侧的面的两端分别与所述转子铁芯(2)的中心之间的连线的夹角。
  4. 根据权利要求3所述的切向式永磁转子,其特征在于,A2≤1.6A1。
  5. 根据权利要求1所述的切向式永磁转子,其特征在于,所述永磁体(1)沿垂直于所述切向式永磁转子的轴线的截面形状为等腰梯形,其上底位于靠近所述转子铁芯(2)的中心的一侧。
  6. 根据权利要求1所述的切向式永磁转子,其特征在于,所述永磁体(1)沿垂直于所述切向式永磁转子的轴线的截面形状为不等腰梯形,其上底位于靠近所述转子铁芯(2)的中心的一侧,其腰包括位于所述切向式永磁转子的旋 转方向前侧的第一腰及位于所述切向式永磁转子的旋转方向后侧的第二腰;所述第一腰的长度大于所述第二腰的长度。
  7. 根据权利要求1所述的切向式永磁转子,其特征在于,所述转子铁芯(2)具有位于所述永磁体(1)靠近所述转子铁芯(2)的外边缘的一侧的外侧隔磁桥;
    所述外侧隔磁桥包括位于所述切向式永磁转子旋转方向前侧的第一外侧隔磁桥及位于所述切向式永磁转子旋转方向后侧的第二外侧隔磁桥;
    第一外侧隔磁桥的厚度B1大于第二外侧隔磁桥的厚度B2,第一外侧隔磁桥的长度D1小于第二外侧隔磁桥的长度D2。
  8. 根据权利要求1所述的切向式永磁转子,其特征在于,所述转子铁芯(2)还具有位于相邻两个所述永磁体(1)靠近所述转子铁芯(2)的中心的一侧之间的内侧隔磁结构;
    所述内侧隔磁结构沿垂直于所述切向式永磁转子的轴线的截面形状为三角形或梯形结构,其小端朝向所述转子铁芯(2)的中心。
  9. 根据权利要求8所述的切向式永磁转子,其特征在于,所述内侧隔磁结构与位于其所述切向式永磁转子旋转方向前侧的所述永磁体(1)之间形成的第一内侧隔磁桥,所述内侧隔磁结构与位于其所述切向式永磁转子旋转方向后侧的所述永磁体(1)之间形成的第二内侧隔磁桥;
    所述第一内侧隔磁桥的厚度C1大于所述第二内侧隔磁桥的厚度C2。
  10. 根据权利要求1所述的切向式永磁转子,其特征在于,所述永磁体(1)的中线位于其直径线的所述切向式永磁转子旋转方向前侧;
    所述直径线为垂直于该永磁体(1)靠近所述转子铁芯(2)的中心的一侧 的所述转子铁芯(2)的直径所在的直线。
  11. 一种电机,包括切向式永磁转子,其特征在于,所述切向式永磁转子为如权利要求1-10任一项所述的切向式永磁转子。
PCT/CN2016/084524 2015-09-24 2016-06-02 电机及其切向式永磁转子 WO2017049954A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187009600A KR102021710B1 (ko) 2015-09-24 2016-06-02 모터 및 이의 접선형 영구자석 로터
US15/762,714 US10630124B2 (en) 2015-09-24 2016-06-02 Electric motor and tangential type permanent magnet rotor thereof
EP16847836.0A EP3355441B1 (en) 2015-09-24 2016-06-02 Electric motor and tangential type permanent magnet rotor thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510622376.0 2015-09-24
CN201510622376.0A CN106558931B (zh) 2015-09-24 2015-09-24 电机及其切向式永磁转子

Publications (1)

Publication Number Publication Date
WO2017049954A1 true WO2017049954A1 (zh) 2017-03-30

Family

ID=58385812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084524 WO2017049954A1 (zh) 2015-09-24 2016-06-02 电机及其切向式永磁转子

Country Status (5)

Country Link
US (1) US10630124B2 (zh)
EP (1) EP3355441B1 (zh)
KR (1) KR102021710B1 (zh)
CN (1) CN106558931B (zh)
WO (1) WO2017049954A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117846A (zh) * 2019-06-19 2020-12-22 上海海立电器有限公司 一种电机转子的异形永磁体结构及压缩机
CN110299772B (zh) * 2019-07-26 2021-07-20 珠海格力节能环保制冷技术研究中心有限公司 转子、切向电机和压缩机
CN110474456A (zh) * 2019-08-30 2019-11-19 珠海格力节能环保制冷技术研究中心有限公司 永磁同步电机转子及具有其的压缩机
CN115189495A (zh) * 2022-06-17 2022-10-14 无锡世珂微电机有限公司 汽车空调压缩机铁氧体永磁电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232205A (zh) * 2008-01-25 2008-07-30 东南大学 可变磁通永磁同步电动机
CN201146439Y (zh) * 2008-01-25 2008-11-05 东南大学 可变磁通永磁同步电动机
US20120013206A1 (en) * 2010-07-19 2012-01-19 Andrew Meyer Cooling System and Method for an Electric Machine Module
CN104600938A (zh) * 2013-12-25 2015-05-06 珠海格力节能环保制冷技术研究中心有限公司 永磁电机
CN204376558U (zh) * 2015-02-12 2015-06-03 珠海格力节能环保制冷技术研究中心有限公司 转子铁芯及具有其的电机
CN205017131U (zh) * 2015-09-24 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 电机及其切向式永磁转子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268204A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp Ipmモータ用ロータとipmモータ
CN201270437Y (zh) * 2008-09-22 2009-07-08 重庆帕特龙智通电子科技有限公司 永磁发电机转子
JP5521820B2 (ja) * 2009-09-07 2014-06-18 株式会社安川電機 回転電機およびその製造方法
CN102306966A (zh) * 2011-09-14 2012-01-04 天津市松正电动汽车技术股份有限公司 一种永磁电机转子
FR2982093B1 (fr) 2011-10-27 2017-11-03 Valeo Equip Electr Moteur Rotor de machine electrique tournante et machine electrique tournante comprenant un rotor
CN103107665A (zh) * 2011-11-11 2013-05-15 德昌电机(深圳)有限公司 永磁电机及应用该永磁电机的电动工具和割草机
CN103166345B (zh) * 2011-12-12 2017-12-08 德昌电机(深圳)有限公司 无刷电机及其转子
KR101331654B1 (ko) * 2012-04-23 2013-11-20 삼성전기주식회사 로터 어셈블리
KR20150007371A (ko) 2013-07-10 2015-01-21 동진모타공업 주식회사 비엘디씨 모터의 회전자
CN204068474U (zh) * 2014-09-04 2014-12-31 珠海格力节能环保制冷技术研究中心有限公司 转子结构和电机
CN204669114U (zh) * 2015-05-29 2015-09-23 珠海格力节能环保制冷技术研究中心有限公司 永磁电机转子及永磁同步电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232205A (zh) * 2008-01-25 2008-07-30 东南大学 可变磁通永磁同步电动机
CN201146439Y (zh) * 2008-01-25 2008-11-05 东南大学 可变磁通永磁同步电动机
US20120013206A1 (en) * 2010-07-19 2012-01-19 Andrew Meyer Cooling System and Method for an Electric Machine Module
CN104600938A (zh) * 2013-12-25 2015-05-06 珠海格力节能环保制冷技术研究中心有限公司 永磁电机
CN204376558U (zh) * 2015-02-12 2015-06-03 珠海格力节能环保制冷技术研究中心有限公司 转子铁芯及具有其的电机
CN205017131U (zh) * 2015-09-24 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 电机及其切向式永磁转子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355441A4 *

Also Published As

Publication number Publication date
US10630124B2 (en) 2020-04-21
US20180287442A1 (en) 2018-10-04
KR102021710B1 (ko) 2019-09-16
EP3355441B1 (en) 2022-04-13
EP3355441A4 (en) 2019-04-17
EP3355441A1 (en) 2018-08-01
CN106558931A (zh) 2017-04-05
CN106558931B (zh) 2019-12-24
KR20180044424A (ko) 2018-05-02

Similar Documents

Publication Publication Date Title
WO2017049954A1 (zh) 电机及其切向式永磁转子
WO2016192581A1 (zh) 永磁电机转子及永磁同步电机
WO2012014834A1 (ja) 回転電機用ローター
CN106340982B (zh) 永磁同步电机的转子及电机
WO2019029108A1 (zh) 切向电机、切向电机转子及其转子铁芯
WO2017118090A1 (zh) 永磁转子及永磁电机
CN107222047B (zh) 切向电机、切向电机转子及其转子铁芯
WO2020011161A1 (zh) 一种静音自发电发电机
WO2015096525A1 (zh) 永磁电机
WO2020098339A1 (zh) 电机转子结构及永磁电机
CN111082560B (zh) 电机转子和电机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
WO2016192582A1 (zh) 永磁电机转子及永磁同步电机
WO2022121276A1 (zh) V字型不对称分段永磁同步电机转子
US20210006109A1 (en) Permanent magnet auxiliary synchronous reluctance motor and electric vehicle provided with same
WO2024078117A1 (zh) 具有磁障的电机转子、电机及压缩机
CN107222045B (zh) 切向电机、切向电机转子及其转子铁芯
Chai et al. Theoretical analysis of torque performance in permanent magnet-assisted synchronous reluctance motor
CN205017131U (zh) 电机及其切向式永磁转子
CN110299774A (zh) 转子组件和永磁电机
JP7304411B2 (ja) モータのロータ構造及び永久磁石モータ
WO2024078113A1 (zh) 永磁辅助同步磁阻电机及压缩机
WO2024078131A1 (zh) 具有磁障的转子、电机及压缩机
WO2021022922A1 (zh) 转子组件和交替极电机
WO2020088085A1 (zh) 电机转子及永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009600

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016847836

Country of ref document: EP