WO2022121276A1 - V字型不对称分段永磁同步电机转子 - Google Patents

V字型不对称分段永磁同步电机转子 Download PDF

Info

Publication number
WO2022121276A1
WO2022121276A1 PCT/CN2021/101097 CN2021101097W WO2022121276A1 WO 2022121276 A1 WO2022121276 A1 WO 2022121276A1 CN 2021101097 W CN2021101097 W CN 2021101097W WO 2022121276 A1 WO2022121276 A1 WO 2022121276A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
permanent magnet
magnetic
shaped
rotor
Prior art date
Application number
PCT/CN2021/101097
Other languages
English (en)
French (fr)
Inventor
林德芳
Original Assignee
上海特波电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海特波电机有限公司 filed Critical 上海特波电机有限公司
Publication of WO2022121276A1 publication Critical patent/WO2022121276A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to motor technology, in particular to a technology of a V-shaped asymmetric segmented permanent magnet synchronous motor rotor.
  • Electric vehicles are an important way to solve the energy crisis and environmental pollution.
  • the drive motor for electric vehicles restricts the research and development and industrialization of electric vehicles in China.
  • the permanent magnet synchronous motor suitable for electric vehicles there are defects such as large torque fluctuation, narrow high-speed constant power range and poor reliability, which are difficult to meet the requirements.
  • the permanent magnet poles of the existing built-in permanent magnet synchronous motor rotor are all symmetrical structures.
  • the magnetic steels 121 are symmetrically arranged relative to the d-axis (magnetic pole axis), and magnetic isolation slots 122 are provided at both ends of the magnetic steel. Due to the action of the magnetic flux, the area between the magnetic isolation slot 122 at the outer end of the magnetic steel and the outer peripheral surface of the rotor core 120 forms a magnetic conductive bridge 123 , and the magnetic steel 121 and the rotor yoke 124 form symmetrical permanent magnetic poles.
  • the characteristic of the rotor with symmetrical permanent magnetic pole structure is that the d-axis permanent magnetic flux density is high, so that the radial force generated by the d-axis part and the stator tooth surface is large, while the q-axis (interpole axis) permanent magnetic flux density is low, The radial force generated by the q-axis part and the stator tooth surface is small. Due to the difference and change of the radial force generated by the d-axis and q-axis parts and the stator tooth surface, the motor will generate large mechanical vibration, noise and rotation during operation. moment fluctuations.
  • the technical problem to be solved by the present invention is to provide a V-shaped asymmetry that can reduce the torque fluctuation caused by the cogging, thereby reducing mechanical vibration, noise and expanding the range of high-speed constant power.
  • a V-shaped asymmetric segmented permanent magnet synchronous motor rotor provided by the present invention includes a rotor iron core, and a plurality of permanent magnet units are arranged on the rotor iron core, and each permanent magnet unit surrounds The axis of the rotor core is symmetrically arranged; it is characterized by:
  • the permanent magnet unit includes a V-shaped magnetic steel combination, the V-shaped magnetic steel combination is composed of a magnetic steel single body and two magnetic steel segments with different widths, and the magnetic steel in the V-shaped magnetic steel combination is composed of The steel monomer and the two magnetic steel segments are arranged in a V shape, wherein the magnetic steel monomer is arranged on the counterclockwise side of the d-axis, and the two magnetic steel segments are arranged on the clockwise side of the d-axis, and the two magnetic steel segments are arranged on the clockwise side of the d-axis.
  • the width of the magnetic steel segment near the d-axis side is greater than the width of the magnetic steel segment near the q-axis side, and the two magnetic steel segments are placed in two mutually isolated permanent magnet slots, and Magnetic isolation grooves are provided at the outer end of the magnetic steel single body and the outer end of the magnetic steel segment near the q-axis side.
  • each V-shaped magnetic steel combination is sequentially arranged from inside to outside along the radial direction of the rotor core.
  • the outer end of the magnetic steel single body and the outer end of the magnetic steel segment near the q-axis side of the magnetic isolation slot on the side of the outer circumference of the rotor core are facing from the d-axis side.
  • One side of the q-axis is inclined from the inside to the outside.
  • the V-shaped asymmetric segmented permanent magnet synchronous motor rotor provided by the present invention adopts a built-in unequal width magnetic steel segment structure, and forms an asymmetric permanent magnet magnetic pole with the pole piece, so as to obtain the stator core inclined slot and the rotor permanent magnet.
  • the magnetic pole slanted pole, the non-uniform air gap between the stator and the rotor and other processes and complex structures have the same effect, can reduce the torque fluctuation caused by the cogging, make the d axis of the radial center line of the magnetic pole and the q of the center line between the poles.
  • the radial force of the shaft tends to be balanced, reducing the centrifugal force of the rotor, reducing the mechanical vibration, noise and back-EMF harmonics, reducing the loss of the iron core, and overcoming the disadvantages of the inclined slot and the inclined pole; and two of the V-shaped magnetic steel combination
  • the magnetic steel segments are placed in two mutually isolated permanent magnet slots, thereby forming a magnetic conductive bridge between the two magnetic steel segments.
  • the existence of the magnetic conductive bridge between the magnetic steel segments provides additional The magnetic flux path improves the constant power expansion capability of the motor in the high-speed area.
  • the reinforcing rib of the rotor which resists the high-speed centrifugal force and improves the overload capacity, which is conducive to the frequent starting of the motor; in addition, the magnetic isolation slot is close to the outer circle of the rotor core A magnetic conductive bridge with unequal thickness is set on one side, which can adjust the saturation degree of the magnetic circuit in the magnetic conductive bridge area, optimize the magnetic flux density waveform, and effectively reduce the torque fluctuation.
  • Fig. 1 is the radial sectional view of the V-shaped permanent magnet synchronous motor rotor that adopts the symmetrical permanent magnetic pole structure in the prior art;
  • FIG. 2 is a radial cross-sectional view of the V-shaped asymmetric segmented permanent magnet synchronous motor rotor of the first embodiment of the present invention
  • FIG. 3 is a radial cross-sectional view of a V-shaped asymmetric segmented permanent magnet synchronous motor rotor according to a second embodiment of the present invention
  • Fig. 4 is a radial cross-sectional view of the rotor of the V-shaped asymmetric segmented permanent magnet synchronous motor according to the third embodiment of the present invention.
  • a V-shaped asymmetric segmented permanent magnet synchronous motor rotor provided by the first embodiment of the present invention includes a rotor iron core 10, and a plurality of permanent magnet units are arranged on the rotor iron core.
  • Each permanent magnet unit is symmetrically arranged around the axis of the rotor core; it is characterized in that:
  • the permanent magnet unit includes a V-shaped magnetic steel combination, and the V-shaped magnetic steel combination is composed of a single magnetic steel 14 and two magnetic steel segments 11 and 12 with different widths (the The length direction is parallel to the axial direction of the rotor core), and the magnetic steel unit 14 and the two magnetic steel segments 11 and 12 in the V-shaped magnetic steel combination are arranged in a V-shape, and the magnetic steel unit 14 is arranged in a V-shape.
  • two magnetic steel segments 11 and 12 are arranged on the clockwise side of the d-axis, and among the two magnetic steel segments, the magnetic steel segment 11 on the near-d-axis side
  • the width is greater than the width of the magnetic steel segment 12 on the near-q-axis side, and the two magnetic steel segments 11 and 12 are placed in two mutually isolated permanent magnet slots, and are located near the outer end of the magnetic steel unit 14.
  • the outer ends of the magnetic steel segments 12 on the q-axis side are provided with magnetic isolation slots 13 (the end facing the outer circle of the rotor core is the outer end).
  • Cogging torque also known as reluctance torque
  • the built-in permanent magnet motor has a small effective air gap, and the cogging torque has a greater impact on the output.
  • oblique slot or oblique pole is the most commonly used method to reduce torque fluctuation, but stator oblique slot complicates production process and structure, reduces stator slot area, reduces output, and increases copper consumption. Both the inclined slot and the inclined pole reduce the output, and complicate the process and structure of the motor, and increase the manufacturing cost of the motor.
  • the high-precision speed control system has strict requirements on the cogging torque fluctuation, because in the speed control system, when the frequency of the motor torque is consistent with the mechanical resonance frequency of the stator or rotor, the vibration and noise generated by the cogging torque are significantly reduced. Amplification also affects low speed performance and positioning accuracy.
  • the magnetic steel and the pole piece (rotor iron core) that are asymmetrically arranged relative to the d-axis form an asymmetrical permanent magnetic pole, and the stator iron core inclined slot, rotor permanent magnetic pole inclined pole, stator and rotor are obtained.
  • It has the same effect as the measures with complex structures such as uneven air gap, which can reduce the torque fluctuation caused by the cogging.
  • the change of the energy storage of the gap magnetic field makes the radial force of the d-axis and the q-axis (interpolar axis) tend to balance, which weakens the cogging torque (cogging torque is also called reluctance torque, which is the fatal factor in the electric vehicle drive system.
  • Harmonic distortion THD is beneficial to the frequent starting of the motor, improving the efficiency, overload capacity and power density; it overcomes the disadvantages of the chute and the inclined pole (both reduce the output, and make the process and structure of the motor complicated, and the manufacturing cost of the motor is increased.
  • the permanent magnet slots that are inserted into the unequal-width magnetic steel in the first embodiment of the present invention do not penetrate each other and have intervals to form a magnetic conductive bridge, and both ends of the magnetic steel are provided with magnetic isolation slots (non-magnetic flux barriers) both Both play the role of magnetic isolation and suppress leakage magnetic flux;
  • the existence of the magnetic bridge between the magnetic steel segments provides additional magnetic flux paths on the one hand, and improves the constant power expansion capability of the motor in the high-speed area, on the other hand, it is quite Due to the reinforcing ribs of the rotor, it can resist high-speed centrifugal force and improve the overload capacity, which is conducive to the frequent start of the motor.
  • the second embodiment of the present invention is similar to the first embodiment.
  • the rotor core 20 of the second embodiment is also provided with a plurality of permanent magnet units, and each permanent magnet unit surrounds the axis of the rotor core Symmetrical layout, and the permanent magnet unit also includes a V-shaped magnetic steel combination;
  • the difference between the second embodiment of the present invention and the first embodiment is that there are two V-shaped magnetic steel combinations in the permanent magnet unit of the second embodiment, and the two V-shaped magnetic steel combinations are along the rotor core 20 .
  • the radial direction is arranged in turn from inside to outside, and the first V-shaped magnetic steel combination is composed of a magnetic steel single body 241 and two magnetic steel segments 211 and 221 with different widths, and the magnetic steel single body 241 is composed of two magnetic steel segments 211 and 221.
  • the outer end of the magnetic steel section 221 near the q-axis side is provided with a magnetic isolation slot 231, and the second V-shaped magnetic steel combination is composed of a magnetic steel single body 242 and two magnetic steel sections with different widths.
  • Segments 212 and 222 are formed, and magnetic isolation grooves 232 are provided at the outer end of the magnetic steel unit 242 and the outer end of the magnetic steel segment 222 near the q-axis side.
  • the second embodiment of the present invention adds a V-shaped magnetic steel combination on the basis of the first embodiment.
  • the air gap magnetic density can be improved, the torque density and power density of the motor can be improved, and the weak magnetic speed expansion capability can be improved.
  • V-shaped magnetic steel combinations there may also be more than two V-shaped magnetic steel combinations in the permanent magnet unit of other embodiments of the present invention.
  • the third embodiment of the present invention is similar to the first embodiment.
  • the rotor core 30 of the third embodiment is also provided with a plurality of permanent magnet units, and each permanent magnet unit surrounds the axis of the rotor core. Symmetrically arranged, and the permanent magnet unit also includes a V-shaped magnetic steel combination.
  • the V-shaped magnetic steel combination consists of a single magnetic steel 34 and two magnetic steel segments 31 and 32 with different widths. The outer end of the single body 34 and the outer end of the magnetic steel segment 32 near the q-axis are provided with a magnetic isolation slot 33 .
  • the difference between the third embodiment of the present invention and the first embodiment is that in the V-shaped magnetic steel combination of the third embodiment, the magnetic isolation groove 33 at the outer end of the magnetic steel single body and the outer end of the magnetic steel segment near the q-axis side
  • the edge of the slot near the outer circumference of the rotor core is inclined from the inside to the outside from the side of the d-axis to the side of the q-axis (the side facing the outer circumference of the rotor core is the outside), so that the magnetic isolation slot 33 is connected to the outer peripheral surface of the rotor core 30
  • the thickness of the magnetic conductive bridge 301 formed in the area between them also gradually becomes thinner from the d-axis side toward the q-axis side.
  • the saturation degree of the magnetic circuit in the bridge area optimize the magnetic flux density waveform, make the air gap flux density waveform closer to the sinusoidal distribution, reduce the harmonic component, improve the air gap magnetic field waveform of the motor, increase the fundamental wave frequency of the cogging torque fluctuation, reduce the Small cogging fundamental wave and higher harmonic torque amplitudes reduce torque fluctuations caused by cogging and effectively reduce torque fluctuations.
  • the motors of the embodiments of the present invention adopt the built-in unequal-width magnetic steel segment structure, and form asymmetric permanent magnetic poles with the pole pieces (local areas of the rotor core), which can reduce the torque fluctuation caused by the cogging and make the
  • the radial force of the d-axis of the radial center line of the magnetic pole and the q-axis of the center line between the poles tends to balance, reducing the centrifugal force of the rotor, reducing mechanical vibration, noise and back EMF harmonics, and reducing core loss.
  • the torque fluctuation of the permanent magnet synchronous motor comes from the cogging torque generated by the interaction between the magnetic steel and the stator teeth, the induced electromotive force waveform, and the ripple torque generated by the harmonics contained in the current waveform.
  • the magnetic synchronous motor has a wider range of constant power and speed, realizes the characteristics of high efficiency, high reliability, wide speed regulation, low noise, low fluctuation and smooth operation of the motor, effectively improves the comprehensive performance of the motor, and meets the driving requirements of electric and hybrid vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种V字型不对称分段永磁同步电机转子,涉及电机技术领域,该转子的转子铁芯上设有多个永磁单元,各个永磁单元围绕转子铁芯的轴心对称布设;所述永磁单元包括V字型磁钢组合,所述V字型磁钢组合由一个磁钢单体及两个宽度相异的磁钢分段组成,并且V字型磁钢组合中的磁钢单体及两个磁钢分段布设成V字型,并且近d轴侧磁钢分段的宽度大于近q轴侧磁钢分段的宽度,并且该两个磁钢分段分置于两个相互隔断的永磁槽内,并且在磁钢单体的外端及近q轴侧磁钢分段的外端都设有隔磁槽。本发明提供的转子,能降低齿槽引起的转矩波动。

Description

V字型不对称分段永磁同步电机转子 技术领域
本发明涉及电机技术,特别是涉及一种V字型不对称分段永磁同步电机转子的技术。
背景技术
电动汽车是解决能源危机和环境污染的重要途径。但电动汽车用驱动电机制约着中国电动汽车的研发及其产业化进程。尤其在适用于电动汽车用永磁同步电机方面,存在着转矩波动大、高速恒功率范围窄和可靠性差等缺陷,难以满足要求。
现有内置式永磁同步电机转子的永磁磁极都为对称结构,图1为现有采用对称永磁磁极结构的V字型永磁同步电机转子的结构示意图,如图1所示,对称永磁磁极结构的转子中,磁钢121都相对d轴(磁极轴线)对称布设,磁钢两端设有隔磁槽122,隔磁槽实际上是非磁性磁通屏障,起到隔磁、抑制漏磁通的作用,磁钢外端的隔磁槽122与转子铁芯120的外周面之间的区域形成导磁桥123,磁钢121与转子磁轭124构成对称永磁磁极。对称永磁磁极结构的转子的特点是,d轴永磁磁通密度高,使得d轴部位与定子齿面产生的径向力大,而q轴(极间轴线)永磁磁通密度低,使得q轴部位与定子齿面产生的径向力小,由于d轴、q轴部位与定子齿面产生的径向力差异、变化,使得电机运行时会产生较大的机械振动、噪音和转矩波动。
发明内容
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种能降低齿槽引起的转矩波动,从而能降低机械振动、噪音和扩大高速恒功率范围的V字型不对称分段永磁同步电机转子。
为了解决上述技术问题,本发明所提供的一种V字型不对称分段永磁同步电机转子,包括转子铁芯,所述转子铁芯上设有多个永磁单元,各个永磁单元围绕转子铁芯的轴心对称布设;其特征在于:
所述永磁单元包括V字型磁钢组合,所述V字型磁钢组合由一个磁钢单体及两个宽度相异的磁钢分段组成,并且V字型磁钢组合中的磁钢单体及两个磁钢分段布设成V字型,其中的磁钢单体布设在d轴的逆时针侧,两个磁钢分段布设在d轴的顺时针侧,并且该两个磁钢分段中,近d轴侧磁钢分段的宽度大于近q轴侧磁钢分段的宽度,并且该两个磁钢分段分置于两个相互隔断的永磁槽内,并且在磁钢单体的外端及近q轴侧磁钢分段的外端都设有隔磁槽。
进一步的,所述永磁单元中的V字型磁钢组合有多个,各个V字型磁钢组合沿转子铁芯的径向由内至外依次布设。
进一步的,所述V字型磁钢组合中,磁钢单体外端及近q轴侧磁钢分段外端的隔磁槽的近转子铁芯外圆一侧槽边从d轴一侧朝向q轴一侧由内向外倾斜。
本发明提供的V字型不对称分段永磁同步电机转子,采用内置式不等宽磁钢分段结构,并与极靴构成不对称永磁磁极,获得了与定子铁心斜槽、转子永磁磁极斜极、定转子间采用不均匀气隙等工艺和结构复杂的措施同样的效果,能降低齿槽引起的转矩波动,使磁极径向中心线的d轴与极间中心线的q轴径向力趋于平衡,减小转子离心力,降低机械振动、噪音和反电势谐波,减少铁心损耗,同时克服了斜槽和斜极的弊病;并且V字型磁钢组合中的两个磁钢分段分置于两个相互隔断的永磁槽内,从而在两个磁钢分段之间形成导磁桥,磁钢分段之间的导磁桥的存在,一方面提供了附加磁通路径,提高了电机高速区恒功率扩速能力,另一方面相当于转子的加强筋,抗高速离心力,提高过载能力,有利于电机频繁启动;此外在隔磁槽近转子铁芯外圆一侧设置有斜度的不等厚导磁桥,能调节导磁桥区域的磁路饱和程度,优化磁通密度波形,有效降低转矩波动。
附图说明
图1是现有采用对称永磁磁极结构的V字型永磁同步电机转子的径向截面图;
图2是本发明第一实施例的V字型不对称分段永磁同步电机转子的径向截面图;
图3是本发明第二实施例的V字型不对称分段永磁同步电机转子的径向截面图;
图4是本发明第三实施例的V字型不对称分段永磁同步电机转子的径向截面 图。
具体实施方式
以下结合附图说明对本发明的实施例作进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围,本发明中的顿号均表示和的关系。
如图2所示,本发明第一实施例所提供的一种V字型不对称分段永磁同步电机转子,包括转子铁芯10,所述转子铁芯上设有多个永磁单元,各个永磁单元围绕转子铁芯的轴心对称布设;其特征在于:
所述永磁单元包括一个V字型磁钢组合,所述V字型磁钢组合由一个磁钢单体14及两个宽度相异的磁钢分段11、12组成(磁钢分段的长度方向与转子铁芯的轴向平行),并且V字型磁钢组合中的磁钢单体14及两个磁钢分段11、12布设成V字型,其中的磁钢单体14布设在d轴(磁极轴线)的逆时针侧,两个磁钢分段11、12布设在d轴的顺时针侧,并且该两个磁钢分段中,近d轴侧磁钢分段11的宽度大于近q轴侧磁钢分段12的宽度,并且该两个磁钢分段11、12分置于两个相互隔断的永磁槽内,并且在磁钢单体14的外端及近q轴侧磁钢分段12的外端都设有隔磁槽13(朝向转子铁芯外圆一端为外端)。
齿槽转矩也称磁阻转矩是自动化场合、机电一体化场合的调速系统中致命缺陷,内置式永磁电机有效气隙小,齿槽转矩影响更大,齿槽转矩对输出造成干扰,产生振动和噪音,斜槽或斜极是最常用减小转矩波动的方法,但定子斜槽使生产工艺和结构复杂,使定子槽面积减小,降低出力,使铜耗增加,斜槽和斜极两者均降低出力,并是使电机的工艺和结构复杂,电机制造成本提高。高精度调速系统对齿槽转矩波动要求很严格,因为在调速系统中,当电机转矩的频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪音被显著放大,同时也影响低速性能和定位精度。
本发明第一实施例中,相对d轴形成不对称布设的磁钢与极靴(转子铁芯)构成不对称永磁磁极,获得了与定子铁心斜槽、转子永磁磁极斜极、定转子间采用不均匀气隙等工艺和结构复杂的措施同样的效果,能降低齿槽引起的转矩波动类似的平均效果,减小了气隙磁导的变化,从而减小了当转子旋转时气隙磁场储能的变化,使d轴与q轴(极间轴线)径向力趋于平衡,削弱了齿槽转矩(齿槽 转矩也称磁阻转矩,是电动汽车驱动系统中致命缺陷);而且还抑制了齿槽引起的转矩波动,显著减小转子高速运行时的噪音、机械振动和定子铁心变形,特别是可显著减小反电势谐波分量,使有效降低反电势总谐波失真THD,有利于电机频繁启动,提高效率、过载能力和功率密度;克服了斜槽和斜极的弊病(两者均降低出力,并是使电机的工艺和结构复杂,电机制造成本提高);本发明第一实施例镶入不等宽磁钢的永磁槽相互不贯通、有间隔,形成导磁桥,此外磁钢两端设有隔磁槽(非磁性磁通屏障)两者均起到隔磁、抑制漏磁通的作用;磁钢分段之间的导磁桥的存在,一方面提供了附加磁通路径,提高了电机高速区恒功率扩速能力,另一方面相当于转子的加强筋,抗高速离心力,提高过载能力,有利于电机频繁启动。
如图3所示,本发明第二实施例与第一实施例相似,第二实施例的转子铁芯20上也设有多个永磁单元,并且各个永磁单元围绕转子铁芯的轴心对称布设,并且永磁单元中也包含V字型磁钢组合;
本发明第二实施例与第一实施例的区别在于,第二实施例的永磁单元中的V字型磁钢组合有两个,该两个V字型磁钢组合沿转子铁芯20的径向由内至外依次布设,其中的第一个V字型磁钢组合由一个磁钢单体241及两个宽度相异的磁钢分段211、221组成,并且在磁钢单体241的外端及近q轴侧磁钢分段221的外端都设有隔磁槽231,第二个V字型磁钢组合由一个磁钢单体242及两个宽度相异的磁钢分段212、222组成,并且在磁钢单体242的外端及近q轴侧磁钢分段222的外端都设有隔磁槽232。
本发明第二实施例在第一实施例的基础增加了一个V字型磁钢组合,相对第一实施例能提高气隙磁密,提高电机转矩密度和功率密度,提高弱磁扩速能力。
本发明其它实施例的永磁单元中的V字型磁钢组合也可以有两个以上。
如图4所示,本发明第三实施例与第一实施例相似,第三实施例的转子铁芯30上也设有多个永磁单元,并且各个永磁单元围绕转子铁芯的轴心对称布设,并且永磁单元中也包含V字型磁钢组合,V字型磁钢组合由一个磁钢单体34及两个宽度相异的磁钢分段31、32组成,并且在磁钢单体34的外端及近q轴侧磁钢分段32的外端都设有隔磁槽33。
本发明第三实施例与第一实施例的区别在于,第三实施例的V字型磁钢组合 中,磁钢单体外端及近q轴侧磁钢分段外端的隔磁槽33的近转子铁芯外圆一侧槽边从d轴一侧朝向q轴一侧由内向外倾斜(朝向转子铁芯外圆一侧为外侧),使得隔磁槽33与转子铁芯30的外周面之间的区域形成的导磁桥301的厚度也从d轴一侧朝向q轴一侧逐渐变薄,导磁桥301近d轴一端的厚度h2要大于导磁桥301近q轴一端的厚度h1,使得导磁桥301近q轴一端磁路相对饱和,导磁桥301的磁路饱和程度从近q轴一端朝向近d轴一端逐渐减弱,调节厚度h1和h2,即可调节该导磁桥区域的磁路饱和程度,优化磁通密度波形,使气隙磁密波形更接近正弦分布、减小谐波分量,改善电机气隙磁场波形,提高齿槽转矩波动的基波次数,减小齿槽基波和高次谐波转矩幅值,降低齿槽引起的转矩波动,有效降低转矩波动。
本发明各实施例电机采用内置式不等宽磁钢分段结构,并与极靴(转子铁芯的局部区域)构成不对称永磁磁极的措施,能降低齿槽引起的转矩波动,使磁极径向中心线的d轴与极间中心线的q轴径向力趋于平衡,减小转子离心力,降低机械振动、噪音和反电势谐波,减少铁心损耗。
永磁同步电机的转矩波动来自磁钢与定子齿之间的相互作用产生的齿槽转矩和感应电动势波形、电流波形中含有的谐波产生的纹波转矩,合理设置的导磁桥和磁钢两端设置有倾斜、不等厚导磁桥,使气隙磁密波形的谐波含量减小,有效削弱齿槽转矩和齿谐波电动势,可以获得比现有内置式整体永磁同步电机更宽广的恒功率速度范围,实现电机高效、高可靠性、宽调速、低噪、低波动平稳运行等特点,有效提高电机的综合性能,满足电动、混合动力汽车驱动要求。

Claims (3)

  1. 一种V字型不对称分段永磁同步电机转子,包括转子铁芯,所述转子铁芯上设有多个永磁单元,各个永磁单元围绕转子铁芯的轴心对称布设;其特征在于:所述永磁单元包括V字型磁钢组合,所述V字型磁钢组合由一个磁钢单体及两个宽度相异的磁钢分段组成,并且V字型磁钢组合中的磁钢单体及两个磁钢分段布设成V字型,其中的磁钢单体布设在d轴的逆时针侧,两个磁钢分段布设在d轴的顺时针侧,并且该两个磁钢分段中,近d轴侧磁钢分段的宽度大于近q轴侧磁钢分段的宽度,并且该两个磁钢分段分置于两个相互隔断的永磁槽内,并且在磁钢单体的外端及近q轴侧磁钢分段的外端都设有隔磁槽。
  2. 根据权利要求1所述的V字型不对称分段永磁同步电机转子,其特征在于:所述永磁单元中的V字型磁钢组合有多个,各个V字型磁钢组合沿转子铁芯的径向由内至外依次布设。
  3. 根据权利要求1所述的V字型不对称分段永磁同步电机转子,其特征在于:所述V字型磁钢组合中,磁钢单体外端及近q轴侧磁钢分段外端的隔磁槽的近转子铁芯外圆一侧槽边从d轴一侧朝向q轴一侧由内向外倾斜。
PCT/CN2021/101097 2020-12-09 2021-06-18 V字型不对称分段永磁同步电机转子 WO2022121276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011424736.3 2020-12-09
CN202011424736.3A CN112271843A (zh) 2020-12-09 2020-12-09 V字型不对称分段永磁同步电机转子

Publications (1)

Publication Number Publication Date
WO2022121276A1 true WO2022121276A1 (zh) 2022-06-16

Family

ID=74350301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101097 WO2022121276A1 (zh) 2020-12-09 2021-06-18 V字型不对称分段永磁同步电机转子

Country Status (2)

Country Link
CN (1) CN112271843A (zh)
WO (1) WO2022121276A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207888A (zh) * 2022-12-30 2023-06-02 淮阴工学院 一种拼接轮辐式永磁电机的转子结构
CN116742852A (zh) * 2023-07-03 2023-09-12 山东理工大学 一种削弱气隙磁密畸变的发电机转子及稳压发电系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271843A (zh) * 2020-12-09 2021-01-26 上海特波电机有限公司 V字型不对称分段永磁同步电机转子
CN116566087B (zh) * 2023-05-16 2024-02-13 山东理工大学 削弱谐波磁场的极间非对称永磁发电机及稳压发电系统
CN116742856B (zh) * 2023-07-03 2024-05-31 山东理工大学 一种带有圆弧形隔磁障的磁场分布可调电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600890A (zh) * 2014-11-25 2015-05-06 珠海格力节能环保制冷技术研究中心有限公司 电机转子及具有其的电机
JP5891089B2 (ja) * 2012-03-29 2016-03-22 株式会社日立産機システム 永久磁石同期機
CN106329774A (zh) * 2016-09-14 2017-01-11 南京航空航天大学 一种电动汽车驱动用多层分段内置式永磁同步电机转子
CN110277848A (zh) * 2019-07-08 2019-09-24 广东工业大学 一种内置式永磁同步电机
CN210577995U (zh) * 2019-11-07 2020-05-19 菲仕绿能科技(宁波)有限公司 一种永磁同步电机转子结构
CN112271843A (zh) * 2020-12-09 2021-01-26 上海特波电机有限公司 V字型不对称分段永磁同步电机转子
CN213585322U (zh) * 2020-12-09 2021-06-29 上海特波电机有限公司 V字型不对称分段永磁同步电机转子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891089B2 (ja) * 2012-03-29 2016-03-22 株式会社日立産機システム 永久磁石同期機
CN104600890A (zh) * 2014-11-25 2015-05-06 珠海格力节能环保制冷技术研究中心有限公司 电机转子及具有其的电机
CN106329774A (zh) * 2016-09-14 2017-01-11 南京航空航天大学 一种电动汽车驱动用多层分段内置式永磁同步电机转子
CN110277848A (zh) * 2019-07-08 2019-09-24 广东工业大学 一种内置式永磁同步电机
CN210577995U (zh) * 2019-11-07 2020-05-19 菲仕绿能科技(宁波)有限公司 一种永磁同步电机转子结构
CN112271843A (zh) * 2020-12-09 2021-01-26 上海特波电机有限公司 V字型不对称分段永磁同步电机转子
CN213585322U (zh) * 2020-12-09 2021-06-29 上海特波电机有限公司 V字型不对称分段永磁同步电机转子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207888A (zh) * 2022-12-30 2023-06-02 淮阴工学院 一种拼接轮辐式永磁电机的转子结构
CN116742852A (zh) * 2023-07-03 2023-09-12 山东理工大学 一种削弱气隙磁密畸变的发电机转子及稳压发电系统
CN116742852B (zh) * 2023-07-03 2024-04-16 山东理工大学 一种削弱气隙磁密畸变的发电机转子及稳压发电系统

Also Published As

Publication number Publication date
CN112271843A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2022121276A1 (zh) V字型不对称分段永磁同步电机转子
JP3716809B2 (ja) 回転電機
Ngo et al. Torque enhancement for a novel flux intensifying PMa-SynRM using surface-inset permanent magnet
WO2015161668A1 (zh) 永磁同步电机及其转子
CN103915925B (zh) 一种永磁体为阶梯形的永磁同步电机转子结构
CN103280904A (zh) 电动汽车用双层v型内置式永磁电机转子
CN203251159U (zh) 电动汽车用双层v型内置式永磁电机转子
WO2022121277A1 (zh) U型不对称分段永磁同步电机转子
CN111082560B (zh) 电机转子和电机
CN101924445B (zh) 宽弱磁调速范围的永磁同步电机
Hao et al. Analysis of cogging torque reduction techniques in axial-field flux-switching permanent-magnet machine
CN103560634B (zh) 电动汽车用内置式永磁同步电机
CN103915926B (zh) 一种永磁体为三角梯形的永磁同步电机转子结构
Wang et al. A novel spoke-type IPM rotor with hybrid radial and axial flux concentration for reduction of interpolar leakage flux
CN213585322U (zh) V字型不对称分段永磁同步电机转子
CN213693262U (zh) 一字型不对称分段永磁同步电机转子
CN213585324U (zh) U型不对称分段永磁同步电机转子
CN105871097B (zh) 电动汽车电机的低波动永磁转子
Zeng et al. Design and optimization of a less-rare earth permanent magnet brushless motor considering cost effective
CN112271846A (zh) 一字型不对称分段永磁同步电机转子
WO2020057146A1 (zh) 一种转子开槽的内置式永磁伺服电机
CN105871098A (zh) 电动汽车电机的低波动非对称式永磁转子
JP5679695B2 (ja) 永久磁石式回転電機
CN110233530A (zh) U型复合永磁电机
CN214281054U (zh) 低转矩脉动的拼块定子结构的内转子永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901988

Country of ref document: EP

Kind code of ref document: A1